WO2022131591A1 - Steel wire with improved drawability, and manufacturing method therefor - Google Patents

Steel wire with improved drawability, and manufacturing method therefor Download PDF

Info

Publication number
WO2022131591A1
WO2022131591A1 PCT/KR2021/016988 KR2021016988W WO2022131591A1 WO 2022131591 A1 WO2022131591 A1 WO 2022131591A1 KR 2021016988 W KR2021016988 W KR 2021016988W WO 2022131591 A1 WO2022131591 A1 WO 2022131591A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
steel wire
improved
strain
steel
Prior art date
Application number
PCT/KR2021/016988
Other languages
French (fr)
Korean (ko)
Inventor
이충열
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202180084212.0A priority Critical patent/CN116829754A/en
Priority to US18/267,237 priority patent/US20240117459A1/en
Priority to EP21906896.2A priority patent/EP4265768A1/en
Publication of WO2022131591A1 publication Critical patent/WO2022131591A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Definitions

  • the present invention relates to a steel wire having improved wire drawing property and a method for manufacturing the same, and more particularly, to a steel wire having improved torsional properties and wire drawing property without delamination, and a method for manufacturing the same.
  • a method of increasing the strength of the material itself may be used. That is, as one of the methods for obtaining a high-strength steel wire, a method of increasing the strength of the material itself by adding a large amount of a reinforcing element to increase the strength of the steel may be used.
  • a representative example of such a strengthening element is carbon.
  • carbon When the carbon content increases, the fraction of cementite, which is a hard phase, increases inside the wire rod, and the lamellar spacing of the pearlite structure becomes dense, thereby improving the strength of the material.
  • a technique for adding various alloying elements has been proposed.
  • the strength can be improved by increasing the draw strain of the steel wire.
  • the wire-drawing strain of the material is closely related to the ductility of the material, the material itself does not break during wire-drawing and the easier it is processed, the more advantageous it is to improve strength.
  • the most economical method of increasing the strength of a steel wire is to reduce the amount of alloying elements and increase the wire-drawing strain.
  • delamination occurs when the wire strain rate increases, and if delamination occurs during a twist test of a wire, it is regarded as defective, and the maximum draw strain rate at which delamination does not occur is defined as a fresh system.
  • the occurrence of delamination is related to the decomposition of cementite.
  • carbon of the cementite is discharged to the ferrite, which rapidly reduces the plastic deformation ability of the ferrite and causes cracks. This acts as a major obstacle to increasing the strength of the steel wire.
  • An object of the present invention is to provide a steel wire with improved wire-drawing properties and a method for manufacturing the same by controlling the strength of the wire rod and slowing the decomposition rate of cementite.
  • the steel wire with improved wire drawing ability contains, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities, and in pearlite
  • the cementite carbon content is 7at.% or more, and the following formula (1) is satisfied.
  • the tensile strength of the wire rod may be 700 to 1,000 MPa.
  • the number of twists of the steel wire may be 30 or more.
  • delamination may not occur at a wire-drawing strain of 4.02 or less.
  • a method of manufacturing a steel wire for a spring having improved fatigue life and toughness includes C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities. hot rolling the billet to obtain a wire rod; cooling the hot-rolled wire rod at a cooling rate of 3 to 20° C./s; and obtaining a steel wire by wire-drawing the cooled wire rod to satisfy Equation (1) below.
  • delamination may not occur at a wire-drawing strain of 4.02 or less.
  • the steel wire according to an embodiment of the present invention by controlling the strength of the wire rod and slowing the decomposition rate of cementite, it is possible to suppress delamination and increase torsional characteristics and freshness even during wire-drawing with a high wire-drawing strain.
  • the number of twists can be secured to 27 or more even at a drawing strain of 4.02, and delamination does not occur during wire drawing, so that the freshness can be increased, and ultimately, having ultra-high strength Steel wire can be provided.
  • the steel wire with improved wire drawing ability contains, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities, and in pearlite
  • the cementite carbon content is 7at.% or more, and the following formula (1) is satisfied.
  • [TS] is the tensile strength of the wire rod before drawing (MPa), and ⁇ means the strain rate).
  • the steel wire with improved drawability includes, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities, and wire drawing
  • the cementite carbon content in the post pearlite is 7 at.% or more, and the following formula (1) is satisfied.
  • Equation (1) [TS] is the tensile strength (MPa) of the wire rod before wire drawing, and ⁇ means the wire-drawing strain.
  • the unit is % by weight.
  • the content of C is 0.52 to 0.69%.
  • C is an element added to improve the strength of the steel wire.
  • the C content is less than 0.52%, the effect of improving the strength is not sufficient, and when the C content exceeds 0.69%, the strength of the steel can be secured but the ductility is reduced. It is preferable to control with
  • the content of Mn is 0.3 to 0.8%.
  • Mn is an effective element for increasing hardenability.
  • the content of Mn is less than 0.3%, the above-described effects cannot be sufficiently obtained, and when the content of Mn exceeds 0.8%, central segregation may occur, and there is a very high possibility of causing a low-temperature structure. Therefore, in the present invention, the content of Mn It is preferable to control it to 0.3 to 0.8%.
  • the content of Si is 0.1 to 0.5%.
  • Si is an effective element to improve the cleanliness of the wire rod and to strengthen the steel by being dissolved in ferrite, which is a matrix structure.
  • the content is preferably controlled to 0.1 to 0.5%.
  • the remainder is Fe, and other impurities are included inevitably in the manufacturing process.
  • the present invention does not exclude the addition of other alloying elements other than the above-mentioned alloy composition.
  • the cementite carbon content in pearlite after drawing may be 7 at.% or more.
  • the carbon content of cementite (Fe 3 C) in pearlite is 25 at.%, and through the wire drawing process, the carbon content of cementite in pearlite is lower than 25 at.%. If the carbon content in cementite is less than 7at.%, delamination may occur, so the carbon content in cementite is limited to 7at.% or more.
  • the steel wire with improved wire drawing workability according to an embodiment of the present invention satisfies the following formula (1).
  • Equation (1) [TS] is the tensile strength (MPa) of the wire rod before wire drawing, and ⁇ means the wire-drawing strain.
  • the draw strain ⁇ is expressed as 2ln(di/df).
  • di means the initial diameter of the steel wire before drawing
  • df means the diameter of the steel wire after drawing.
  • the present invention by controlling the tensile strength and wire strain rate of the wire rod so that the value of Equation (1) is less than 1,500, it is possible to slow down the cementite decomposition rate and suppress the occurrence of delamination.
  • the cementite decomposition rate can be slowed down even at a high wire-drawing strain, and thus delamination can be suppressed.
  • a steel wire having high strength can be provided.
  • the ultra-high strength steel wire with increased freshness of the present invention can be applied to products such as tire cord, saw wire, wire rope, piano wire, and bridge steel wire.
  • the tensile strength of the wire rod according to the present invention may be in the range of 700 to 1,000 MPa.
  • the method for manufacturing a steel wire with improved wire drawing property according to an embodiment of the present invention, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, remaining Fe and unavoidable impurities.
  • Equation (1) [TS] is the tensile strength (MPa) of the wire rod before wire drawing, and ⁇ means the wire-drawing strain.
  • the steel wire with improved wire drawability according to the present invention is obtained by hot-rolling a billet containing the alloy composition described above to obtain a wire rod, then cooling the hot-rolled wire rod, and the cooled wire rod is wire-drawn to satisfy Equation (1).
  • the billet may be heated to a temperature range of 900 to 1100 °C and then hot-rolled in a temperature range of 800 °C to 1200 °C.
  • the cooling of the wire rod may be performed at a cooling rate of 3 to 20 °C / s. If the cooling rate is less than 3 °C / s, there is a problem that fragmented and coarse pearlite is generated, and when the cooling rate is more than 20 °C / s, there is a problem that low-temperature structures such as martensite are generated. Therefore, in the present invention, it is preferable to control the cooling rate of the wire rod to 3 to 20 °C / s.
  • the cooled wire rod can be wire-drawn so as to satisfy Equation (1) described above.
  • Inventive Example 1 To 3 is a cooling rate of 17 °C / s
  • Inventive Examples 5, 6 and Comparative Example 1 is cooled at a cooling rate of 5 °C / s to obtain a wire rod
  • Inventive Examples 1 to 5 and Comparative Example 1 in Table 1 A steel wire was manufactured by wire drawing according to the conditions of cementite carbon content, wire strength, and wire strain rate shown in Table 1 below. Table 1 below shows the number of twists and the occurrence of delamination of the steel wire thus manufactured.
  • the number of twists in the steel wire was defined as the number of revolutions until the steel wire was broken during the torsion test applying lateral stress, and the occurrence of delamination was indicated by checking whether a helical breakage defect appeared at the broken wire.
  • Inventive Example 3 has the same wire-drawing strain as Comparative Example 1, but by reducing the tensile strength of the wire rod by 119 MPa, the number of twists is reduced by 30 By securing more than once, it was confirmed that delamination was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

A steel wire with improved drawability, and a manufacturing method therefor are disclosed. A steel wire according to the present invention comprises, by wt%, 0.52-0.69% of C, 0.3-0.8% of Mn, 0.1-0.5% of Si, and the balance of Fe and inevitable impurities, wherein the carbon content of cementite in pearlite is 7 at.% or more, and the following formula (1) is satsified. (1) [TS]+exp(ε)*10 < 1,500 (In formula (1), [TS] means the tensile strength (MPa) of a wire before drawing, and ε means draw strain.)

Description

신선가공성이 향상된 강선 및 그 제조방법Steel wire with improved drawability and manufacturing method therefor
본 발명은 신선가공성이 향상된 강선 및 그 제조방법에 관한 것으로, 더욱 상세하게는 디라미네이션이 발생하지 않고, 비틀림 특성과 신선가공성이 향상된 강선 및 그 제조방법에 관한 것이다.The present invention relates to a steel wire having improved wire drawing property and a method for manufacturing the same, and more particularly, to a steel wire having improved torsional properties and wire drawing property without delamination, and a method for manufacturing the same.
일반적으로, 고강도 강선을 얻기 위해 여러 가지 방법이 사용될 수 있다.In general, several methods can be used to obtain a high strength steel wire.
우선 소재 자체의 강도를 증가시키는 방법이 사용될 수 있다. 즉, 고강도 강선을 얻기 위한 방법의 하나로서, 강의 강도를 높이는 강화원소를 다량 첨가하여 소재 자체의 강도를 증가시키는 방법이 사용될 수 있다. 이러한 강화 원소의 대표적인 예로는 탄소를 들 수 있다. 탄소 함량이 증가할 경우 선재 내부에는 경질상인 시멘타이트의 분율이 증가하고 펄라이트 조직의 라멜라 간격이 조밀해져 소재의 강도가 향상되게 된다. 탄소 이외에도 다양한 합금원소를 첨가하는 기술이 제안되어 왔다.First, a method of increasing the strength of the material itself may be used. That is, as one of the methods for obtaining a high-strength steel wire, a method of increasing the strength of the material itself by adding a large amount of a reinforcing element to increase the strength of the steel may be used. A representative example of such a strengthening element is carbon. When the carbon content increases, the fraction of cementite, which is a hard phase, increases inside the wire rod, and the lamellar spacing of the pearlite structure becomes dense, thereby improving the strength of the material. In addition to carbon, a technique for adding various alloying elements has been proposed.
다른 방법으로 강선의 신선 변형율을 증가시킴으로써 강도가 향상될 수 있다. 이 때, 소재의 신선 변형율은 소재의 연성에 밀접한 관계가 있는 것으로서 소재 자체가 신선 가공시 단선이 일어나지 않고 용이하게 가공될수록 강도 향상에 유리하다. Alternatively, the strength can be improved by increasing the draw strain of the steel wire. At this time, as the wire-drawing strain of the material is closely related to the ductility of the material, the material itself does not break during wire-drawing and the easier it is processed, the more advantageous it is to improve strength.
선재의 강도를 향상시키기 위해 단순히 합금원소를 다량 첨가할 경우, 선재 압연 후 후속되는 강선 제조공정에서 선재의 연성이 열위해져 단선이 발생하는 등의 문제가 발생될 수 있다. 따라서, 강선의 강도를 높이는 방법 중 가장 경제적인 방법은 합금원소 양을 줄이고 신선 변형율을 늘리는 방법이다.If a large amount of alloying elements are simply added to improve the strength of the wire rod, problems such as wire breakage may occur due to poor ductility of the wire rod in the subsequent steel wire manufacturing process after the wire rod rolling. Therefore, the most economical method of increasing the strength of a steel wire is to reduce the amount of alloying elements and increase the wire-drawing strain.
그러나, 통상적으로 신선 변형율이 증가하면 디라미네이션(Delamination)이 발생하는데, 소선의 비틀림 시험시 디라미네이션이 발생하면 불량으로 보고 있으며, 디라미네이션이 발생하지 않는 최대 신선 변형율을 신선한계로 규정하고 있다. However, in general, delamination occurs when the wire strain rate increases, and if delamination occurs during a twist test of a wire, it is regarded as defective, and the maximum draw strain rate at which delamination does not occur is defined as a fresh system.
디라미네이션의 발생은 시멘타이트 분해와 연관이 있는데 신선 변형율이 증가하여 시멘타이트 분해가 일어나는 경우, 시멘타이트의 탄소가 페라이트로 배출되어 페라이트의 소성변형능을 급격하게 감소시키고 크랙을 발생시킨다. 이는 강선의 고강도화에 큰 걸림돌로 작용한다.The occurrence of delamination is related to the decomposition of cementite. When the delamination of cementite occurs due to an increase in the wire-drawing strain, carbon of the cementite is discharged to the ferrite, which rapidly reduces the plastic deformation ability of the ferrite and causes cracks. This acts as a major obstacle to increasing the strength of the steel wire.
따라서, 신선 변형율을 늘리면서도 디라미네이션의 발생을 억제시킬 수 있는 고강도 강선이 요구된다.Therefore, a high-strength steel wire capable of suppressing the occurrence of delamination while increasing the wire-drawing strain is required.
본 발명은 선재의 강도를 제어하고 시멘타이트의 분해 속도를 늦춤으로써 신선가공성이 향상된 강선 및 그 제조방법을 제공하고자 한다.An object of the present invention is to provide a steel wire with improved wire-drawing properties and a method for manufacturing the same by controlling the strength of the wire rod and slowing the decomposition rate of cementite.
본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선은 중량%로, C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하고, 펄라이트 내 시멘타이트 탄소함량이 7at.% 이상이고, 하기 식 (1)을 만족한다.The steel wire with improved wire drawing ability according to an embodiment of the present invention contains, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities, and in pearlite The cementite carbon content is 7at.% or more, and the following formula (1) is satisfied.
(1) TS+exp(ε)*10 < 1500(1) TS+exp(ε)*10 < 1500
(상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다)(In Equation (1), [TS] is the tensile strength of the wire before drawing (MPa), and ε means the strain rate of wire drawing)
선재의 인장강도는 700 내지 1,000 MPa일 수 있다.The tensile strength of the wire rod may be 700 to 1,000 MPa.
강선의 비틀림 횟수는 30회 이상일 수 있다. The number of twists of the steel wire may be 30 or more.
강선은 신선 변형율 4.02이하에서 디라미네이션(Delamination)이 발생되지 않을 수 있다.In the steel wire, delamination may not occur at a wire-drawing strain of 4.02 or less.
본 발명의 일 실시 예에 따른 피로수명 및 인성이 향상된 스프링용 강선의 제조방법은 C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하는 빌렛을 열간 압연하여 선재를 얻는 단계; 상기 열간 압연된 선재를 3 내지 20℃/s의 냉각속도로 냉각하는 단계; 및 상기 냉각된 선재를 하기 식 (1)을 만족하도록 신선 가공하여 강선을 얻는 단계;를 포함한다.A method of manufacturing a steel wire for a spring having improved fatigue life and toughness according to an embodiment of the present invention includes C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities. hot rolling the billet to obtain a wire rod; cooling the hot-rolled wire rod at a cooling rate of 3 to 20° C./s; and obtaining a steel wire by wire-drawing the cooled wire rod to satisfy Equation (1) below.
(1) [TS]+exp(ε)*10 < 1500 (1) [TS]+exp(ε)*10 < 1500
(상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다)(In Equation (1), [TS] is the tensile strength of the wire before drawing (MPa), and ε means the strain rate of wire drawing)
신선 가공시 신선 변형율 4.02이하에서 디라미네이션(Delamination)이 발생되지 않을 수 있다.During wire-drawing, delamination may not occur at a wire-drawing strain of 4.02 or less.
본 발명의 실시 예에 따른 강선은 선재의 강도를 제어하고 시멘타이트의 분해 속도를 늦춤으로써 신선 변형율이 높은 신선가공시에도 디라미네이션 발생을 억제하고 비틀림 특성 및 신선한계를 증대시킬 수 있다. In the steel wire according to an embodiment of the present invention, by controlling the strength of the wire rod and slowing the decomposition rate of cementite, it is possible to suppress delamination and increase torsional characteristics and freshness even during wire-drawing with a high wire-drawing strain.
구체적으로, 본 발명의 실시 예에 따른 강선은 신선변형률 4.02에서도 비틀림 횟수를 27회 이상으로 확보할 수 있으며, 신선가공시 디라미네이션이 발생되지 않아 신선한계를 높일 수 있고, 궁극적으로 초고강도를 갖는 강선을 제공할 수 있다.Specifically, in the steel wire according to the embodiment of the present invention, the number of twists can be secured to 27 or more even at a drawing strain of 4.02, and delamination does not occur during wire drawing, so that the freshness can be increased, and ultimately, having ultra-high strength Steel wire can be provided.
본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선은 중량%로, C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하고, 펄라이트 내 시멘타이트 탄소함량이 7at.% 이상이고, 하기 식 (1)을 만족한다.The steel wire with improved wire drawing ability according to an embodiment of the present invention contains, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities, and in pearlite The cementite carbon content is 7at.% or more, and the following formula (1) is satisfied.
(1) TS+exp(ε)*10 < 1500(1) TS+exp(ε)*10 < 1500
(상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다).(In Equation (1), [TS] is the tensile strength of the wire rod before drawing (MPa), and ε means the strain rate).
본 명세서가 실시 예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시 예들 간에 중복되는 내용은 생략한다. This specification does not describe all elements of the embodiments, and general content in the technical field to which the present invention pertains or content that overlaps among the embodiments is omitted.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Also, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.The singular expression includes the plural expression unless the context clearly dictates otherwise.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선은 중량%로, C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하고, 신선가공 후 펄라이트 내 시멘타이트 탄소함량이 7at.% 이상이고, 하기 식 (1)을 만족한다.The steel wire with improved drawability according to an embodiment of the present invention includes, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities, and wire drawing The cementite carbon content in the post pearlite is 7 at.% or more, and the following formula (1) is satisfied.
(1) [TS]+exp(ε)*10 < 1500(1) [TS]+exp(ε)*10 < 1500
상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다. In Equation (1), [TS] is the tensile strength (MPa) of the wire rod before wire drawing, and ε means the wire-drawing strain.
이하, 본 발명의 실시 예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for numerical limitation of the alloying element content in an embodiment of the present invention will be described. Hereinafter, unless otherwise specified, the unit is % by weight.
C의 함량은 0.52 내지 0.69% 이다.The content of C is 0.52 to 0.69%.
C는 강선의 강도를 향상시키기 위해 첨가되는 원소이다. C 함량이 0.52% 미만일 경우, 강도 향상 효과가 충분하지 못하고, C의 함량이 0.69%를 초과할 경우, 강의 강도는 확보할 수 있으나 연성이 저하되므로, 본 발명에서는 C의 함량을 0.52 내지 0.69%로 제어하는 것이 바람직하다.C is an element added to improve the strength of the steel wire. When the C content is less than 0.52%, the effect of improving the strength is not sufficient, and when the C content exceeds 0.69%, the strength of the steel can be secured but the ductility is reduced. It is preferable to control with
Mn의 함량은 0.3 내지 0.8%이다.The content of Mn is 0.3 to 0.8%.
Mn은 소입성을 증가시키는 효과적인 원소이다. Mn의 함량이 0.3% 미만일 경우 상술한 효과를 충분히 얻을 수 없으며, Mn의 함량이 0.8%를 초과할 경우 중심편석을 일으킬 수 있고, 저온조직을 유발할 가능성이 매우 크므로, 본 발명에서는 Mn의 함량을 0.3 내지 0.8%로 제어하는 것이 바람직하다.Mn is an effective element for increasing hardenability. When the content of Mn is less than 0.3%, the above-described effects cannot be sufficiently obtained, and when the content of Mn exceeds 0.8%, central segregation may occur, and there is a very high possibility of causing a low-temperature structure. Therefore, in the present invention, the content of Mn It is preferable to control it to 0.3 to 0.8%.
Si의 함량은 0.1 내지 0.5%이다.The content of Si is 0.1 to 0.5%.
Si는 선재의 청정성을 높이고, 기지조직인 페라이트에 고용되어 강을 강화시켜 강도 향상에 효과적인 원소이다. Si의 함량이 0.1% 미만일 경우 전술한 효과를 얻을 수 없고, Si의 함량이 0.5% 초과일 경우 신선가공량이 많을 경우 크랙 전파 경로가 될 수 있으며, 연성을 급격히 감소시켜 신선가공성을 악화시키므로 Si의 함량은 0.1 내지 0.5%로 제어하는 것이 바람직하다.Si is an effective element to improve the cleanliness of the wire rod and to strengthen the steel by being dissolved in ferrite, which is a matrix structure. When the content of Si is less than 0.1%, the above-mentioned effect cannot be obtained, and when the content of Si exceeds 0.5%, it can become a crack propagation path when the amount of wire drawing is large. The content is preferably controlled to 0.1 to 0.5%.
상기 조성 이외에 나머지는 Fe이며, 기타 제조공정상 불가피하게 혼입되는 불순물을 포함한다. 본 발명에서는 상기 언급된 합금 조성 이외에 다른 합금원소의 추가를 배제하지 않는다.In addition to the above composition, the remainder is Fe, and other impurities are included inevitably in the manufacturing process. The present invention does not exclude the addition of other alloying elements other than the above-mentioned alloy composition.
본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선은 신선가공 후 펄라이트 내 시멘타이트 탄소 함량이 7at.% 이상일 수 있다.In the steel wire with improved drawability according to an embodiment of the present invention, the cementite carbon content in pearlite after drawing may be 7 at.% or more.
신선가공 전의 강선은 펄라이트 내의 시멘타이트(Fe3C)의 탄소 함량이 25at.%인데, 신선 공정을 통해, 펄라이트 내의 시멘타이트의 탄소 함량이 25at.% 보다 낮아지게 된다. 시멘타이트 내의 탄소 함량이 7at.% 미만일 경우, 디라미네이션이 발생할 수 있으므로 시멘타이트 내의 탄소 함량을 7at.% 이상으로 제한한다. In the steel wire before wire drawing, the carbon content of cementite (Fe 3 C) in pearlite is 25 at.%, and through the wire drawing process, the carbon content of cementite in pearlite is lower than 25 at.%. If the carbon content in cementite is less than 7at.%, delamination may occur, so the carbon content in cementite is limited to 7at.% or more.
본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선은 하기 식 (1)을 만족한다.The steel wire with improved wire drawing workability according to an embodiment of the present invention satisfies the following formula (1).
(1) [TS]+exp(ε)*10 < 1500(1) [TS]+exp(ε)*10 < 1500
상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다.In Equation (1), [TS] is the tensile strength (MPa) of the wire rod before wire drawing, and ε means the wire-drawing strain.
신선 변형율(ε)은 2ln(di/df)로 표현된다. 여기서, di는 신선가공전 강선의 초기 직경을 의미하며, df는 신선가공후의 강선의 직경을 의미한다.The draw strain ε is expressed as 2ln(di/df). Here, di means the initial diameter of the steel wire before drawing, and df means the diameter of the steel wire after drawing.
본 발명은 선재의 인장강도 및 신선 변형율을 식 (1) 값이 1,500 미만이 되도록 제어함으로써 시멘타이트 분해 속도를 늦출 수 있고, 디라미네이션 발생을 억제할 수 있다. 일반적으로 신선 공정에서 과도한 신선 변형율이 가해질 경우, 시멘타이트에 존재하던 탄소가 페라이트로 배출되어 페라이트의 소성변형능을 급격하게 감소시켜 크랙을 일으키고 디라미네이션의 발생 가능성을 증가시키나, 선재의 인장강도를 식 (1)을 만족하도록 감소시키면 높은 신선 변형율에도 시멘타이트 분해 속도를 늦출 수 있고, 이에 따라 디라미네이션이 억제될 수 있다. According to the present invention, by controlling the tensile strength and wire strain rate of the wire rod so that the value of Equation (1) is less than 1,500, it is possible to slow down the cementite decomposition rate and suppress the occurrence of delamination. In general, when excessive drawing strain is applied in the wire drawing process, carbon present in cementite is discharged to ferrite, which sharply reduces the plastic deformation capacity of ferrite, causing cracks and increasing the possibility of delamination. If it is reduced to satisfy 1), the cementite decomposition rate can be slowed down even at a high wire-drawing strain, and thus delamination can be suppressed.
구체적으로, 통상 신선을 수행할 때 신선 변형율이 3.0 이상인 경우를 과도한 변형으로 보고 있는데, 본 발명에서는 신선을 수행할 때 4.02의 혹독한 신선 변형율이 가해진 경우에도 비틀림 횟수를 27회 이상으로 할 수 있는 초고강도를 갖는 강선을 제공할 수 있다. 본 발명의 신선한계가 증대된 초고강도 강선은 타이어코드, Saw wire, 와이어로프, 피아노선, 교량용 강선 등의 제품에 적용 가능하다. Specifically, a case in which the wire drawing strain rate is 3.0 or more when performing wire drawing is usually regarded as excessive deformation. A steel wire having high strength can be provided. The ultra-high strength steel wire with increased freshness of the present invention can be applied to products such as tire cord, saw wire, wire rope, piano wire, and bridge steel wire.
본 발명에 따른 선재의 인장강도는 700 내지 1,000 MPa 범위일 수 있다.The tensile strength of the wire rod according to the present invention may be in the range of 700 to 1,000 MPa.
다음으로, 본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선의 제조방법에 대하여 설명한다.Next, a method for manufacturing a steel wire having improved wire drawing workability according to an embodiment of the present invention will be described.
본 발명의 일 실시 예에 따른 신선가공성이 향상된 강선의 제조방법은, 중량%로, C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하는 빌렛을 열간 압연하여 선재를 얻는 단계; 열간 압연된 선재를 3 내지 20℃/s의 냉각속도로 냉각하는 단계; 및 상기 냉각된 선재를 하기 식 (1)을 만족하도록 신선 가공하여 강선을 얻는 단계를 포함한다. The method for manufacturing a steel wire with improved wire drawing property according to an embodiment of the present invention, by weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, remaining Fe and unavoidable impurities. Hot rolling the billet to obtain a wire rod; cooling the hot-rolled wire rod at a cooling rate of 3 to 20° C./s; and wire-drawing the cooled wire rod so as to satisfy Equation (1) below to obtain a steel wire.
(1) [TS]+exp(ε)*10 < 1500 (1) [TS]+exp(ε)*10 < 1500
상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다.In Equation (1), [TS] is the tensile strength (MPa) of the wire rod before wire drawing, and ε means the wire-drawing strain.
본 발명에 따른 신선가공성이 향상된 강선은 상술한 합금 조성을 포함하는 빌렛을 열간 압연하여 선재를 얻고, 이후 열간 압연된 선재를 냉각하고, 냉각된 선재는 식(1)을 만족하도록 신선 가공하여 제조될 수 있다. The steel wire with improved wire drawability according to the present invention is obtained by hot-rolling a billet containing the alloy composition described above to obtain a wire rod, then cooling the hot-rolled wire rod, and the cooled wire rod is wire-drawn to satisfy Equation (1). can
이때, 빌렛은 900~1100℃의 온도범위로 가열한 후 800℃내지 1200℃의 온도범위에서 열간 압연될 수 있다.At this time, the billet may be heated to a temperature range of 900 to 1100 °C and then hot-rolled in a temperature range of 800 °C to 1200 °C.
이때, 선재의 냉각은 3 내지 20℃/s의 냉각속도로 수행될 수 있다. 냉각 속도가 3℃/s미만일 경우, 분절되고 조대한 펄라이트가 생성되는 문제가 있고, 냉각 속도가 20℃/s초과일 경우 마르텐사이트 등 저온조직이 발생하는 문제가 있다. 이에 본 발명에서는 선재의 냉각 속도를 3 내지 20℃/s로 제어하는 것이 바람직하다.At this time, the cooling of the wire rod may be performed at a cooling rate of 3 to 20 ℃ / s. If the cooling rate is less than 3 ℃ / s, there is a problem that fragmented and coarse pearlite is generated, and when the cooling rate is more than 20 ℃ / s, there is a problem that low-temperature structures such as martensite are generated. Therefore, in the present invention, it is preferable to control the cooling rate of the wire rod to 3 to 20 ℃ / s.
이어서 냉각된 선재를 상술한 식 (1)을 만족하도록 신선 가공할 수 있다. Then, the cooled wire rod can be wire-drawn so as to satisfy Equation (1) described above.
이하 본 발명의 바람직한 실시 예를 통해 보다 상세히 설명하기로 한다. 다만, 하기 실시 예는 본 발명을 상세히 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지 않는다.Hereinafter, it will be described in more detail through preferred embodiments of the present invention. However, the following examples are only examples for explaining the present invention in detail, and do not limit the scope of the present invention.
실시 예Example
중량%로, C: 0.57 내지 0.67%, Mn: 0.3 내지 0.8%, Si: 1.0 내지 1.6%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 합금 조성 및 성분범위를 가진 빌렛을 열간 압연후, 발명예 1 내지 3은 17℃/s의 냉각속도, 발명예 5, 6 및 비교예1은 5℃/s의 냉각속도로 냉각하여 선재를 얻은 뒤, 하기 표 1의 발명예 1 내지 5, 비교예 1에 대해 하기 표 1의 시멘타이트 탄소 함량, 선재 강도 및 신선 변형율 조건에 따라 신선가공하여 강선을 제조하였다. 이와 같이 제조된 강선의 비틀림 횟수 및 디라미네이션 발생여부를 하기 표 1에 나타내었다.Inventive Example 1 To 3 is a cooling rate of 17 ℃ / s, Inventive Examples 5, 6 and Comparative Example 1 is cooled at a cooling rate of 5 ℃ / s to obtain a wire rod, Inventive Examples 1 to 5 and Comparative Example 1 in Table 1 A steel wire was manufactured by wire drawing according to the conditions of cementite carbon content, wire strength, and wire strain rate shown in Table 1 below. Table 1 below shows the number of twists and the occurrence of delamination of the steel wire thus manufactured.
강선의 비틀림 횟수는 횡방향 응력을 가하는 비틀림 시험 시 강선이 파단할 때까지의 회전수로 하였으며, 소선 파단부에 나선형 파단 불량이 나타나는지 확인하여 디라미네이션 발생 유무를 나타내었다.The number of twists in the steel wire was defined as the number of revolutions until the steel wire was broken during the torsion test applying lateral stress, and the occurrence of delamination was indicated by checking whether a helical breakage defect appeared at the broken wire.
구분division 선재 강도 (MPa)Wire rod strength (MPa) 신선
변형율
fresh
strain rate
시멘타이트 탄소 함량 (at.%)Cementite carbon content (at.%) 비틀림 횟수
(회)
number of twists
(episode)
디라미네이션
발생유무
delamination
Occurrence
식(1) 값Equation (1) value
발명예 1Invention Example 1 856856 3.573.57 1212 3636 미발생non-occurring 1211 1211
발명예 2Invention Example 2 844844 3.793.79 1111 3434 미발생non-occurring 1287 1287
발명예 3Invention Example 3 848848 4.024.02 99 3030 미발생non-occurring 1405 1405
발명예 4Invention Example 4 948948 3.573.57 1010 3535 미발생non-occurring 1303 1303
발명예 5Invention Example 5 950950 3.793.79 99 3333 미발생non-occurring 1393 1393
비교예 1Comparative Example 1 967967 4.024.02 66 2424 발생Occur 1524 1524
상기 표 1에 나타난 바와 같이, 본 발명에 부합되는 시멘타이트 탄소 햠량과 신선가공 조건으로 제조된 발명재 1 내지 5는 30회 이상의 우수한 비틀림 횟수를 가질 뿐만 아니라, 디라미네이션이 발생하지 않음을 확인할 수 있었다. 구체적으로, 신선가공 후 펄라이트 내 시멘타이트 탄소 함량이 6at.%이고, 식(1) 값이 1,500을 초과하는 비교예 1의 경우 비틀림 횟수가 24회로 현저하게 낮고, 디라미네이션이 발생하였으나, 시멘타이트 탄소 함량이 9at.% 이상이고 식 (1) 값이 1,500 미만인 발명재 1 내지 5의 경우에는 30회 이상의 비틀림 횟수를 보이고 디라미네이션이 발생하지 않았다. 신선 변형율이 증가하면 디라미네이션 발생 가능성이 증가하나, 발명예 3과 비교예 1을 비교하면 발명예 3은 비교예 1과 동일 신선 변형율을 가짐에도 선재의 인장 강도를 119 MPa 감소시킴으로써 비틀림 횟수를 30회 이상으로 확보하며, 디라미네이션이 억제됨을 확인할 수 있었다.As shown in Table 1, it was confirmed that the invention materials 1 to 5 prepared under the cementite carbon content and wire drawing conditions consistent with the present invention not only had an excellent number of twists of 30 times or more, but also did not cause delamination. . Specifically, in Comparative Example 1 in which the cementite carbon content in the pearlite after wire drawing was 6at.% and the value of Equation (1) exceeds 1,500, the number of twists was remarkably low to 24 times, and delamination occurred, but the cementite carbon content In the case of invention materials 1 to 5, which is 9 at.% or more and the formula (1) value is less than 1,500, the number of twists of 30 times or more was shown, and delamination did not occur. When the wire-drawing strain increases, the possibility of occurrence of delamination increases, but when comparing Inventive Example 3 and Comparative Example 1, Inventive Example 3 has the same wire-drawing strain as Comparative Example 1, but by reducing the tensile strength of the wire rod by 119 MPa, the number of twists is reduced by 30 By securing more than once, it was confirmed that delamination was suppressed.
상술한 바에 있어서, 본 발명의 예시적인 실시 예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.In the above bar, exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and those of ordinary skill in the art may not depart from the concept and scope of the following claims. It will be appreciated that various modifications and variations are possible.
본 발명의 일 예에 따르면선재의 강도를 제어하고 시멘타이트의 분해 속도를 늦춤으로써 신선가공성이 향상된 강선 및 그 제조방법을 제공할 수 있다.According to an embodiment of the present invention, it is possible to provide a steel wire having improved wire drawing properties and a method for manufacturing the same by controlling the strength of the wire rod and slowing the decomposition rate of cementite.

Claims (6)

  1. 중량%로, C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하고, 펄라이트 내 시멘타이트 탄소함량이 7at.% 이상이고, 하기 식 (1)을 만족하는 신선가공성이 향상된 강선.By weight, C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, the remaining Fe and unavoidable impurities are included, and the cementite carbon content in the pearlite is 7 at.% or more, and the following formula (1 ) with improved drawing processability that satisfies the
    (1) TS+exp(ε)*10 < 1500(1) TS+exp(ε)*10 < 1500
    (상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다)(In Equation (1), [TS] is the tensile strength of the wire before drawing (MPa), and ε means the strain rate of wire drawing)
  2. 제 1항에 있어서, The method of claim 1,
    상기 신선가공전 선재의 인장강도는,The tensile strength of the wire rod before the wire drawing is,
    700 내지 1,000 MPa인 신선가공성이 향상된 강선.A steel wire with improved drawability of 700 to 1,000 MPa.
  3. 제 1항에 있어서,The method of claim 1,
    상기 강선의 비틀림 횟수는,The number of twists of the steel wire is,
    27회 이상인 신선가공성이 향상된 강선.Steel wire with improved drawing processability of 27 or more.
  4. 제 1항에 있어서,The method of claim 1,
    상기 신선 변형율 4.02이하에서 디라미네이션(Delamination)이 발생되지 않는 신선가공성이 향상된 강선.A steel wire with improved wire-drawing properties that does not cause delamination at the wire-drawing strain of 4.02 or less.
  5. 중량%로, C: 0.52 내지 0.69%, Mn: 0.3 내지 0.8%, Si: 0.1 내지 0.5%, 나머지 Fe 및 불가피한 불순물을 포함하는 빌렛을 열간 압연하여 선재를 얻는 단계;Obtaining a wire rod by hot rolling a billet containing C: 0.52 to 0.69%, Mn: 0.3 to 0.8%, Si: 0.1 to 0.5%, remaining Fe and unavoidable impurities by weight %;
    상기 열간 압연된 선재를 3 내지 20℃/s의 냉각속도로 냉각하는 단계; 및cooling the hot-rolled wire rod at a cooling rate of 3 to 20° C./s; and
    상기 냉각된 선재를 하기 식 (1)을 만족하도록 신선 가공하여 강선을 얻는 단계;를 포함하는 신선가공성이 향상된 강선의 제조방법.A method of manufacturing a steel wire with improved wire-drawing properties, comprising: obtaining a steel wire by wire-drawing the cooled wire rod so as to satisfy the following formula (1).
    (1) [TS]+exp(ε)*10 < 1500 (1) [TS]+exp(ε)*10 < 1500
    (상기 식 (1)에서, [TS]는 신선가공전 선재의 인장강도(MPa), ε는 신선 변형율을 의미한다)(In Equation (1), [TS] is the tensile strength of the wire before drawing (MPa), and ε means the strain rate of wire drawing)
  6. 제 5항에 있어서,6. The method of claim 5,
    상기 신선 가공시 신선 변형율 4.02이하에서 디라미네이션(Delamination)이 발생되지 않는 신선가공성이 향상된 강선의 제조방법.A method of manufacturing a steel wire with improved wire drawing property in which delamination does not occur at a wire drawing strain of 4.02 or less during wire drawing.
PCT/KR2021/016988 2020-12-15 2021-11-18 Steel wire with improved drawability, and manufacturing method therefor WO2022131591A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180084212.0A CN116829754A (en) 2020-12-15 2021-11-18 Steel wire with improved drawability and method for manufacturing the same
US18/267,237 US20240117459A1 (en) 2020-12-15 2021-11-18 Steel wire with improved drawability, and manufacturing method therefor
EP21906896.2A EP4265768A1 (en) 2020-12-15 2021-11-18 Steel wire with improved drawability, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200175304A KR102464611B1 (en) 2020-12-15 2020-12-15 Steel wire with improved wire drawability and the method for manufacturing the same
KR10-2020-0175304 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131591A1 true WO2022131591A1 (en) 2022-06-23

Family

ID=82057871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016988 WO2022131591A1 (en) 2020-12-15 2021-11-18 Steel wire with improved drawability, and manufacturing method therefor

Country Status (5)

Country Link
US (1) US20240117459A1 (en)
EP (1) EP4265768A1 (en)
KR (1) KR102464611B1 (en)
CN (1) CN116829754A (en)
WO (1) WO2022131591A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001751A (en) * 1998-04-15 2000-01-07 Nippon Steel Corp High strength steel wire having disconnection resistance
KR100651302B1 (en) * 2004-01-20 2006-11-29 가부시키가이샤 고베 세이코쇼 High carbon steel wire rod superior in wire-drawability and method for producing the same
JP2012126954A (en) * 2010-12-15 2012-07-05 Kobe Steel Ltd High carbon steel wire rod having excellent dry wire drawability and method for producing the same
KR20130099668A (en) * 2012-02-29 2013-09-06 주식회사 포스코 High carbon steel wire for aluminium conductor steel reinforced having superior electroconductivity and method of manufacturing the same
US20170121786A1 (en) * 2014-03-28 2017-05-04 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101676130B1 (en) * 2014-12-19 2016-11-15 주식회사 포스코 Wire rod having high strength and ductility and method for manufacturing the same
KR20160075956A (en) * 2014-12-19 2016-06-30 주식회사 포스코 High strength steel wire and method for manufacturing the same
KR101889179B1 (en) * 2016-12-16 2018-08-16 주식회사 포스코 High-strength steel wire and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001751A (en) * 1998-04-15 2000-01-07 Nippon Steel Corp High strength steel wire having disconnection resistance
KR100651302B1 (en) * 2004-01-20 2006-11-29 가부시키가이샤 고베 세이코쇼 High carbon steel wire rod superior in wire-drawability and method for producing the same
JP2012126954A (en) * 2010-12-15 2012-07-05 Kobe Steel Ltd High carbon steel wire rod having excellent dry wire drawability and method for producing the same
KR20130099668A (en) * 2012-02-29 2013-09-06 주식회사 포스코 High carbon steel wire for aluminium conductor steel reinforced having superior electroconductivity and method of manufacturing the same
US20170121786A1 (en) * 2014-03-28 2017-05-04 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
KR20220085333A (en) 2022-06-22
CN116829754A (en) 2023-09-29
EP4265768A1 (en) 2023-10-25
US20240117459A1 (en) 2024-04-11
KR102464611B1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
EP0493807B1 (en) Steel cord for reinforcement of rubber articles, made from steel wires with high strength and high toughness, and process for manufacturing the same
WO2011055919A2 (en) Wire rod for drawing having excellent drawability, super-high-strength steel wire and manufacturing method thereof
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2020046016A1 (en) Wire rod for cold heading, processed product using same, and manufacturing methods therefor
WO2018110779A1 (en) Low alloy steel sheet having excellent strength and ductility
WO2017104969A1 (en) Pressure vessel steel sheet having excellent post weld heat treatment resistance, and manufacturing method therefor
CN115652215B (en) High-strength high-hardness fatigue-resistant cast steel
CA2058470C (en) Wire rod for high strength and high toughness fine steel wire, high strength and high toughness fine steel wire, twisted products using the fine steel wires, and manufacture of the fine steel wire
KR20200042118A (en) Wire rod for high strength steel fiber, high strength steel fiber and manufacturing method thereof
WO2021125554A2 (en) Wire rod for high-strength steel fiber, high-strength steel fiber, and method for manufacturing same
WO2013172510A1 (en) Fe-mn-c-based twip steel having remarkable mechanical performance at very low temperature, and preparation method thereof
WO2022131591A1 (en) Steel wire with improved drawability, and manufacturing method therefor
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
KR101987656B1 (en) High strength steel wire and the method for manufacturing the same
WO2016072679A1 (en) Wire rod having enhanced strength and impact toughness and preparation method for same
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2022131708A1 (en) Wire rod for concrete reinforced steel fiber, steel fiber, and manufacturing method therefor
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2020060050A1 (en) Ferrite-based stainless steel having excellent processability and high-temperature strength and method for manufacturing same
WO2017095049A1 (en) Wire rod having excellent low temperature impact toughness and manufacturing method therefor
WO2023234702A1 (en) Non-quenched and non-tempered steel wire rod for hot forging with excellent machinability and impact toughness and method for manufacturing same
WO2021125470A1 (en) Wire rod and steel wire for high strength spring, and manufacturing method therefor
WO2022131752A1 (en) Wire rod and parts with improved delayed fracture resistance, and methods for manufacturing same
WO2018105944A1 (en) High strength steel wire having excellent corrosion resistance and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084212.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906896

Country of ref document: EP

Effective date: 20230717