WO2022131414A1 - Synthesis of superhydrophobic silica nanoparticles, and method for preparing non-stick paint by using same - Google Patents

Synthesis of superhydrophobic silica nanoparticles, and method for preparing non-stick paint by using same Download PDF

Info

Publication number
WO2022131414A1
WO2022131414A1 PCT/KR2020/018737 KR2020018737W WO2022131414A1 WO 2022131414 A1 WO2022131414 A1 WO 2022131414A1 KR 2020018737 W KR2020018737 W KR 2020018737W WO 2022131414 A1 WO2022131414 A1 WO 2022131414A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
hydrophobic
nano silica
superhydrophobic
Prior art date
Application number
PCT/KR2020/018737
Other languages
French (fr)
Korean (ko)
Inventor
김상목
남유준
금혜리
Original Assignee
주식회사 네오플램
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 네오플램 filed Critical 주식회사 네오플램
Publication of WO2022131414A1 publication Critical patent/WO2022131414A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0874Reactions involving a bond of the Si-O-Si linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for synthesizing superhydrophobic nano silica particles in a non-stick paint that can be used for kitchen appliances and the like.
  • Ceramic coating is a high-hardness fine ceramic with strong corrosion resistance, heat resistance, and abrasion resistance that forms an inorganic coating film on the surface of the product. It can be applied to various coating base materials, and has the characteristic that various colors can be applied.
  • Ceramic coatings with excellent heat resistance, durability, and corrosion resistance are being used because they are required.
  • a typical ceramic coating paint forms a coating layer through a sol-gel reaction of aqueous-type colloidal silica having a hydrophilic particle surface with an organosilane.
  • silicone oil exhibits a tendency to rapidly decrease non-stick performance due to separation and decomposition by external stimuli, and thus the coating life is short.
  • An object of the present invention is to provide a non-stick paint having excellent durability that can withstand severe conditions such as physical impact and heating.
  • the present invention includes a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms, and at least one of the silicon atoms constituting the spherical skeleton is represented by the following Chemical Formula 1 A group is bonded, and in Formula 1, R 1 , R 2 and R 3 are each independently a C1 to C5 hydrocarbon compound, and a non-stick paint is provided.
  • the spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms is a compound of Formula 2 below, and in Formula 2, Si a , Si b , Si c , Si d and Si e is each independently bonded to a group of Formula 1, and R 1 , R 2 and R 3 in the compound of Formula 1 bonded to each of Si a , Si b , Si c , Si d and Si e of Formula 2 are The same or different, non-stick paints are provided.
  • non-stick paint comprising a compound of Formula 3 below.
  • R 1 to R 18 are each independently a methyl group (Methyl) or an ethyl group (Ethyl).
  • a first step of hydrolyzing tetramethyl orthosilicate in the form of a monomer followed by condensation polymerization of hydrolyzed tetramethylorthosilicate (Tetramehtylorthosilicate) to synthesize a hydrophobic compound comprising a spherical skeleton consisting of alternating bonds of silicon atoms and oxygen atoms synthesized through a second step of synthesis, Superhydrophobic nano silica particles are provided.
  • a first step of hydrolyzing tetramethyl orthosilicate in the form of a monomer and a second step of synthesizing a hydrophobic compound comprising a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms by condensation polymerization of hydrolyzed tetramethylorthosilicate;
  • a hydrophobic compound comprising a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms by condensation polymerization of hydrolyzed tetramethylorthosilicate
  • At least one compound selected from the group consisting of alkyl silane (Alkyl Silane), alkoxy silane (Alkoxy Silane), and silazne (Silazne) is added during hydrolysis and condensation polymerization, respectively.
  • trimethylchlorosilane is added to promote the hydrolysis reaction of tetramethylorthosilicate in an acidic atmosphere without adding other acidic compounds, superhydrophobic nano silica
  • a method for synthesizing particles is provided.
  • the condensation polymerization reaction of tetramethyl orthosilicate hydrolyzed in a basic state by adding hexamethyldisilazane in the second step is promoted, and the spherical form of Provided is a method for synthesizing superhydrophobic nano silica particles, in which a methyl group is introduced on a skeleton.
  • an alcohol solvent is further added to control the condensation polymerization rate of tetramethylorthosilicate hydrolyzed in the second step, a superhydrophobic nano silica particle synthesis method is provided.
  • methyltrimethoxysilane is further added to modify the hydroxyl group provided on the surface of the spherical skeleton to a methyl group, superhydrophobic nano silica particle synthesis method this is provided
  • the hydrophobic compound synthesized after performing the second step includes a spherical skeleton composed of alternating combinations of silicon atoms and oxygen atoms, and constitutes the spherical skeleton.
  • a group of Formula 1 is bonded to at least one of the silicon atoms,
  • R 1 , R 2 and R 3 are each independently a C1 to C5 hydrocarbon compound, a method for synthesizing superhydrophobic nano silica particles is provided. .
  • FIG. 1 is a flowchart illustrating a method for synthesizing a non-stick paint according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a mixing sequence of reactants in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
  • 3A and 3B are reaction structural formulas illustrating a part of a reaction occurring in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
  • FIG. 4 is TEM analysis data of the hydrophobic TMOS precursor and superhydrophobic TMOS particles prepared according to Example 1.
  • FIG. 4 is TEM analysis data of the hydrophobic TMOS precursor and superhydrophobic TMOS particles prepared according to Example 1.
  • FIG. 5 is a FT-IR analysis result of superhydrophobic silica particles, TMOS, and a hydrophobic precursor prepared according to Example 1.
  • FIG. 5 is a FT-IR analysis result of superhydrophobic silica particles, TMOS, and a hydrophobic precursor prepared according to Example 1.
  • FIG. 7 is TEM analysis data for partial aggregation according to pH control when forming superhydrophobic TMOS particles according to Example 3.
  • FIG. 7 is TEM analysis data for partial aggregation according to pH control when forming superhydrophobic TMOS particles according to Example 3.
  • Example 8 is a photograph comparing the contact angle between the general ceramic coating according to Example 4, a hydrophobic TMOS precursor, and a ceramic coating to which superhydrophobic TMOS particles are introduced.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • the formed direction is not limited only to the upper direction, and includes those formed in the side or lower direction.
  • a part of a layer, film, region, plate, etc. is said to be “under” another part, this includes not only cases where it is “directly under” another part, but also cases where there is another part in between.
  • 'upper surface' and 'lower surface' are used as relative concepts in order to easily understand the technical idea of the present invention. Accordingly, the terms 'top' and 'bottom' do not refer to specific directions, positions, or components, and may be interchangeable with each other. For example, 'top' may be interpreted as 'bottom', and 'bottom' may be interpreted as 'top'. Accordingly, 'top' may be expressed as 'first' and 'bottom' as 'second', 'bottom' may be expressed as 'first', and 'top' may be expressed as 'second'. However, in one embodiment, 'top' and 'bottom' are not used interchangeably.
  • 1 is a flowchart illustrating a method for synthesizing a non-stick paint according to an embodiment of the present invention.
  • 2 is a block diagram illustrating a mixing sequence of reactants in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
  • a method for synthesizing a non-stick paint is provided, wherein at least one selected compound is added.
  • tetramethylorthosilicate in the form of a monomer is hydrolyzed.
  • a hydrophobic precursor may be provided in the form of a sol.
  • the hydrophobic precursor in the form of a sol provided by hydrolysis in the first step (S100) may include at least one siloxane compound.
  • the hydrolysis reaction may be performed in an acidic atmosphere.
  • the hydrolysis of tetramethylorthosilicate is carried out in an acidic atmosphere, the hydrolysis may be accelerated.
  • hydrophobic precursors formed by hydrolysis of tetramethyl orthosilicate may aggregate, resulting in gelation of the solution.
  • it is difficult to form superhydrophobic silica particles having a desired size For example, the size of the superhydrophobic silica particles may become excessively large due to aggregation of the hydrophobic precursor, and in this case, it may be difficult to utilize the synthesized hydrophobic precursor as a non-stick paint.
  • At least one compound selected from the group consisting of alkyl silane (Alkyl Silane), alkoxy silane (Alkoxy Silane), and silazne (Silazne) may be added to perform the hydrolysis reaction in an acidic atmosphere.
  • the compound added in the first step ( S100 ) may be trimethylcholorosilane (TMSC).
  • TMSC trimethylcholorosilane
  • hydrolysis using trimethylchlorosilane and tetramethyl orthosilicate without adding formic acid, acetic acid, hydrochloric acid, etc., which are acid catalysts commonly used when performing a hydrolysis reaction The reaction can be carried out.
  • trimethylchlorosilane By using trimethylchlorosilane to create an acidic atmosphere in the first step (S100), aggregation reaction between hydrophobic precursors generated by decomposition of tetramethyl orthosilicate can be suppressed and a stable sol state can be maintained.
  • trimethylchlorosilane reacts with a solvent in the reaction solution to be divided into hydrochloric acid (HCl) and trimethylsilyl ((CH 3 ) 3 -Si-).
  • Hydrochloric acid as an acid catalyst promotes the hydrolysis reaction, and the trimethylsilyl ((CH 3 ) 3 -Si-) group can impart hydrophobicity to the surface of the hydrophobic precursor by bonding with tetramethyl orthosilicate. Accordingly, it is possible to prevent the hydrophobic precursors from reacting with each other and aggregation, and the sol state may be maintained after hydrolysis in the first step ( S100 ).
  • water may be further added to perform a hydrolysis reaction. It may be added in an amount of 4 moles or less per mole of the hydrophobic precursor mixture. By adding relatively little water as described above, it is possible to prevent gelation from occurring in the hydrolysis reaction.
  • the tetramethyl orthosilicate decomposed in the first step (S100) has high reactivity, there is a problem in that it is difficult to maintain the stability of the hydrophobic precursors generated as a result of hydrolysis. Accordingly, by using trimethylchlorosilane in the first step (S100), hydrolysis can be promoted and the stability of the hydrolyzed hydrophobic precursor can be maintained.
  • a second step (S200) of performing a condensation polymerization reaction on the hydrophobic precursors produced by hydrolysis of tetramethyl orthosilicate is performed.
  • hydrolyzed tetramethylorthosilicate is condensation-polymerized to synthesize a hydrophobic compound including a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms.
  • the second step ( S200 ) may be performed in a basic atmosphere.
  • Hydrophobic precursors hydrolyzed in a basic atmosphere may be condensation-polymerized, and thus a hydrophobic compound including a spherical skeleton may be synthesized.
  • the hydrophobic compound including a spherical skeleton synthesized in the second step (S200) exhibits hydrophobicity by itself because the skeleton of the compound is composed of alternating bonds of silicon atoms and oxygen atoms.
  • hydrophobic functional groups may be bonded to the surface of the hydrophobic compound.
  • at least one compound selected from the group consisting of alkyl silane, alkoxy silane, and silazne may be added. .
  • the compound added in the second step (S200) may be hexamethyldisilazane (HMDS).
  • HMDS hexamethyldisilazane
  • Hexamethyldisilazane can promote the condensation reaction by creating a basic atmosphere.
  • hexamethyldisilazane may react on the surface of the hydrophobic compound particle to provide a trimethylsilyl group on the surface of the hydrophobic compound particle (spherical skeleton). Due to the introduction of the trimethylsilyl group, the hydrophobicity of the hydrophobic compound particles having a spherical skeleton may be increased.
  • the trimethylsilyl group is provided as a covalent bond on the spherical skeleton, it is not decomposed and separated by heating or physical impact. Accordingly, the non-stick properties of the coating provided by using the hydrophobic compound can be maintained for a long time.
  • hexamethyldisilazane When hexamethyldisilazane is added in the second step (S200), hexamethyldisilazane may be diluted in an alcohol solvent and added.
  • hexamethyldisilazane may be diluted in isopropyl alcohol (IPA) and added to the hydrophobic precursor solution. Accordingly, it is possible to prevent a sudden change in pH and local aggregation due to mixing of hexamethyldisilazane.
  • Hexamethyldisilazane may be added, for example, diluted in isopropyl alcohol to 0.4 wt% to 0.8 wt% .
  • the second step S200 may be performed in a sol state.
  • the sol-gel synthesis method in the first step (S100) and the second step (S200) the size and shape of the superhydrophobic silica particles synthesized can be effectively controlled.
  • methyltrimethoxysilane (MTMS) may be further added.
  • Methyltrimethoxysilane may react with hydroxyl groups that may exist on the surface of the spherical skeleton to modify them into hydrophobic groups such as methoxy groups.
  • an alcohol solvent may be further provided.
  • the alcohol solvent may be IPA (Isopropylalcohol) in some cases.
  • the alcohol solvent performs a function of controlling the polymerization reaction rate in the second step (S200).
  • water is added in the first step, the hydrolysis step (mixed with TMCS), and a relatively small amount of water (eg, 4 mol or less) may be added. If the amount of water added in the first step (S100) is increased, an unwanted condensation polymerization reaction rate in the first step (S100) may increase, resulting in gelation. Accordingly, the above-described gelation phenomenon can be prevented by adding the water content to 4 mol or less in the first step and adding IPA and HMDS by mixing in the second step, which is the condensation polymerization step.
  • 3A and 3B are reaction structural formulas illustrating a part of a reaction occurring in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
  • FIG. 3a shows the first-step reaction described above, and it can be confirmed that a hydrophobic precursor compound is prepared by a hydrolysis reaction between tetramethyl orthosilicate (TMOS) and trimethylchlorosilane (TMSC).
  • TMOS tetramethyl orthosilicate
  • TMSC trimethylchlorosilane
  • the hydrophobic precursor compound may include at least one siloxane compound.
  • the hydrophobic precursor compound is subjected to a condensation polymerization reaction with hexamethyldisilazane (HMDS) and methyltrimethoxysilane (MTMS), thereby synthesizing the hydrophobic compound particles.
  • HMDS hexamethyldisilazane
  • MTMS methyltrimethoxysilane
  • the synthesized hydrophobic compound particles include a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms, and at least one of the silicon atoms constituting the spherical skeleton is bonded to a group represented by the following Chemical Formula 1 and R 1 , R 2 and R 3 in Formula 1 may each independently be a C1 to C5 hydrocarbon compound.
  • Such a compound has excellent durability like silica because the skeleton is composed of silicon atoms and oxygen atoms, and also exhibits hydrophobicity by itself.
  • the hydrophobic group of Chemical Formula 1 is provided on the surface, so that the hydrophobic property is large.
  • the hydrophobic group of Formula 1 is covalently bonded to the surface of the spherical skeleton, it is not decomposed even at a high temperature in a cooking appliance. Therefore, there is no fear that the coating is decomposed and hydrophobicity is deteriorated even when a product provided with a coating is used at a high temperature.
  • the spherical skeleton provided in the above-described hydrophobic compound particles may be represented by Chemical Formula 2 below.
  • Si a , Si b , Si c , Si d and Si e are each independently bonded to the group of Chemical Formula 1, and Si a , Si b , Si c , Si d and Si e in Chemical Formula 2, respectively R 1 , R 2 and R 3 in the compound of Formula 1 bound to may be the same as or different from each other.
  • the superhydrophobic silica particles including the skeleton according to Chemical Formula 2 may have a form as shown in Chemical Formula 3 below.
  • R 1 to R 18 are each independently a methyl group (Methyl) or an ethyl group (Ethyl).
  • the spherical particle itself exhibits hydrophobicity, and a large number of alkyl silane groups are provided on the surface to provide excellent hydrophobicity.
  • an alkyl silane group providing hydrophobicity is bonded to the particle by a covalent bond, thermal stability is also excellent.
  • the superhydrophobic silica particles including the structures of Chemical Formulas 1 to 3 may be dispersed in an alcohol solvent and provided in the form of a paint.
  • the paint may be coated on kitchen appliances and the like, and thus a non-stick coating that prevents food from sticking may be provided.
  • FIG. 4 is TEM analysis data of the hydrophobic TMOS precursor and superhydrophobic TMOS particles prepared according to Example 1.
  • FIG. 4 is TEM analysis data of the hydrophobic TMOS precursor and superhydrophobic TMOS particles prepared according to Example 1.
  • TMOS, MTMS, and IPA were mixed in a weight ratio of 1:1:2, and a 0.8 ⁇ 1.0 wt% solution of TMCS diluted with distilled water and IPA was added to adjust the pH to 2-3, and stirred for 2 hours to hydrolyze TMOS.
  • a hydrophobic precursor was prepared.
  • 0.4 ⁇ 0.8% of the HMDS mixed solution diluted with IPA and 20 ⁇ 30% of the total amount of MTMS were added to the prepared hydrophobic precursor and stirred for 8 hours while maintaining pH 6 ⁇ 7 to prepare superhydrophobic silica particles did
  • FIG. 5 is a FT-IR analysis result of superhydrophobic silica particles, TMOS, and a hydrophobic precursor prepared according to Example 1.
  • FIG. 5 is a FT-IR analysis result of superhydrophobic silica particles, TMOS, and a hydrophobic precursor prepared according to Example 1.
  • FT-IR analysis was performed to confirm the structure of the prepared superhydrophobic silica particles.
  • analysis of TMOS and hydrophobic precursors generated by TMOS hydrolysis was conducted together.
  • TMOS a Si-O-Si peak at 1040-1100 cm -1 and a -OH peak at 3420 cm -1 are observed, but in the case of a hydrophobic TMOS precursor and a superhydrophobic particle, as the reaction progresses, It can be seen that the CH peak and the Si-CH 3 peak appear at 1253, 2960 cm -1 . In particular, it can be seen that the sizes of the CH peak and the Si-CH 3 peak appear larger in the superhydrophobic silica particles than in the hydrophobic precursor. Accordingly, it can be confirmed that the surface of the particles is made hydrophobic as the polymerization reaction proceeds.
  • the reaction times of TMOS and TMCS for preparing the hydrophobic precursor were adjusted to 2 hours, 3 hours, and 4 hours, respectively.
  • the reaction time between TMOS and TMSC was changed, the degree of hydrolysis reaction of TMOS was changed, and accordingly, it was confirmed that the superhydrophobic silica particle condensation polymerization reaction mode was changed.
  • the condensation polymerization reaction when HMDS and MTMS were added, the pH changed from acidic to basic. Specifically, it was confirmed that precipitation occurred due to partial gelation in the condensation polymerization reaction when the hydrolysis reaction was carried out for about 4 hours.
  • the hydrolysis reaction was carried out for about 2 hours, it was confirmed that precipitation due to gelation did not occur in the condensation polymerization reaction.
  • FIG. 7 is TEM analysis data for partial aggregation according to pH control when forming superhydrophobic TMOS particles according to Example 3.
  • FIG. 7 is TEM analysis data for partial aggregation according to pH control when forming superhydrophobic TMOS particles according to Example 3.
  • Example 8 is a photograph comparing the contact angle between the general ceramic coating according to Example 4, a hydrophobic TMOS precursor, and a ceramic coating to which superhydrophobic TMOS particles are introduced.
  • the solution was coated on the substrate.
  • the degree of hydrophobization was compared by measuring the contact angle of water droplets within 3 mm by dropping distilled water with a #3 needle of a 0.05 mL syringe on the substrate coated with the solution.
  • the contact angle was 90.4°
  • the contact angle was significantly increased from 107.4° to 155.4°, respectively. Therefore, it can be confirmed that when superhydrophobic silica particles are added, a superhydrophobic surface of 140° or more can be formed.

Abstract

According to one embodiment of the present invention, provided are superhydrophobic silica nanoparticles comprising a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms, wherein a group of chemical formula 1 is bound to at least one of the silicon atoms constituting the spherical skeleton, and in chemical formula 1, R1, R2 and R3 are each independently a C1-C5 hydrocarbon compound.

Description

초소수성 나노 실리카 입자 합성 및 이를 응용한 넌스틱 도료 제조방법Synthesis of superhydrophobic nano silica particles and manufacturing method of non-stick paint using the same
본 발명은 주방용품 등에 사용될 수 있는 넌스틱 도료 내 초소수성 나노 실리카 입자 합성 방법에 관한 것이다.The present invention relates to a method for synthesizing superhydrophobic nano silica particles in a non-stick paint that can be used for kitchen appliances and the like.
세라믹 코팅은 내식성, 내열성, 내마모성이 강한 고경도의 파인 세라믹으로 제품 표면에 무기질 코팅막을 형성하는 것으로 이러한 세라믹 코팅의 특징으로는 150~250℃의 저온 경화가 가능하고 목재, 유리, 금속, 플라스틱과 같이 다양한 코팅 모재에 적용가능하며, 다양한 색상을 적용할 수 있다는 특징이 있다.Ceramic coating is a high-hardness fine ceramic with strong corrosion resistance, heat resistance, and abrasion resistance that forms an inorganic coating film on the surface of the product. It can be applied to various coating base materials, and has the characteristic that various colors can be applied.
이러한 세라믹 코팅의 특징을 적용하는 산업 분야로는 내열기기, 전자·반도체 등 산업용 소재, 건물 내외장재 및 주방용기 등의 분야에 사용되고 있으며, 주방용기의 경우 높은 조리 온도와 표면 마모 및 스크래치와 같은 내마모성이 요구되기 때문에 내열성과 내구성, 내식성이 우수한 세라믹 코팅이 적용되고 있으며, 이러한 세라믹 코팅에 음식물이 눌러 붙지 않는 넌스틱 기능의 도입이 연구·개발되어 적용되고 있다.In the industrial fields that apply the characteristics of these ceramic coatings, they are used in the fields of heat-resistant devices, industrial materials such as electronics and semiconductors, building interior and exterior materials, and kitchenware. Ceramic coatings with excellent heat resistance, durability, and corrosion resistance are being used because they are required.
일반적인 세라믹 코팅 도료는 친수성의 입자표면을 갖는 수계타입의 콜로이달 실리카를 유기실란과의 졸-겔 반응을 통해 코팅층을 이루게 되며, 이러한 세라믹 코팅층에 넌스틱성을 부여하기 위해 이형성을 갖는 실리콘 오일을 물리적으로 혼합하여 도료를 제조하는데 실리콘 오일은 외부 자극에 의해 이탈 및 분해로 인해 넌스틱성능이 급격히 감소하는 경향을 나타내어 코팅의 수명이 짧은 단점이 있다.A typical ceramic coating paint forms a coating layer through a sol-gel reaction of aqueous-type colloidal silica having a hydrophilic particle surface with an organosilane. Although the paint is physically mixed, silicone oil exhibits a tendency to rapidly decrease non-stick performance due to separation and decomposition by external stimuli, and thus the coating life is short.
이를 극복하기 위해 실리콘 오일의 치환기 변경 및 점도에 따른 실리콘 오일의 내구성을 개선시키거나 각기 다른 입자크기를 갖는 콜로이달 실리카의 표면을 유기 실란으로 개질하여 혼합하는 방식 등 여러 방향으로 연구가 진행되고 있지만 세라믹 코팅의 주용매로 사용되는 물과 실리콘 오일간의 혼화성이 낮기 때문에 넌스틱성능의 불균일함과 실리콘오일의 재분산에 어려움이 있어 이러한 방법에는 한계가 존재하며, 반응성이 있는 일정한 크기 이상의 콜로이달 실리카의 표면을 유기실란으로 개질하는데는 실리카 입자간의 결합 혹은 유기실란간의 결합을 제어가 불가능하기 때문에 표면 개질이 제한적이다.To overcome this, research is being conducted in several directions, such as changing the substituent of silicone oil and improving the durability of silicone oil according to viscosity, or modifying the surface of colloidal silica having different particle sizes with organosilane and mixing them. Because the miscibility between water and silicone oil used as the main solvent for ceramic coating is low, there are limitations to this method due to non-uniformity of non-stick performance and difficulty in redispersing silicone oil. In modifying the surface of silica with organosilane, the surface modification is limited because bonding between silica particles or bonding between organosilanes cannot be controlled.
따라서, 종래의 세라믹 코팅보다 개선된, 내구성이 우수한 세라믹 코팅이 필요하다.Accordingly, there is a need for a ceramic coating having superior durability and improved over conventional ceramic coatings.
본 발명은 물리적 충격, 가열 등의 가혹 조건에서 버틸 수 있는 내구성이 우수한 넌스틱 도료를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a non-stick paint having excellent durability that can withstand severe conditions such as physical impact and heating.
본 발명의 일 실시예에 따르면, 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하고, 상기 구 형태의 뼈대를 구성하는 실리콘 원자 중 적어도 하나에는 하기 화학식 1의 그룹이 결합되고, 상기 화학식 1에서 R1, R2 및 R3는 각각 독립적으로 C1 내지 C5의 탄화수소 화합물인, 넌스틱(non-stick) 도료가 제공된다.According to an embodiment of the present invention, it includes a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms, and at least one of the silicon atoms constituting the spherical skeleton is represented by the following Chemical Formula 1 A group is bonded, and in Formula 1, R 1 , R 2 and R 3 are each independently a C1 to C5 hydrocarbon compound, and a non-stick paint is provided.
[화학식 1][Formula 1]
Figure PCTKR2020018737-appb-I000001
Figure PCTKR2020018737-appb-I000001
본 발명의 일 실시예에 따르면, 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 상기 구 형태의 뼈대는 아래 화학식 2의 화합물이고, 상기 화학식 2에서 Sia, Sib, Sic, Sid 및 Sie에는 각각 독립적으로 상기 화학식 1의 그룹이 결합되고, 상기 화학식 2의 Sia, Sib, Sic, Sid 및 Sie 각각에 결합된 화학식 1의 화합물 내 R1, R2 및 R3는 서로 같거나 다른, 넌스틱(non-stick) 도료가 제공된다.According to an embodiment of the present invention, the spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms is a compound of Formula 2 below, and in Formula 2, Si a , Si b , Si c , Si d and Si e is each independently bonded to a group of Formula 1, and R 1 , R 2 and R 3 in the compound of Formula 1 bonded to each of Si a , Si b , Si c , Si d and Si e of Formula 2 are The same or different, non-stick paints are provided.
[화학식 2][Formula 2]
Figure PCTKR2020018737-appb-I000002
Figure PCTKR2020018737-appb-I000002
본 발명의 일 실시예에 따르면, 하기 화학식 3의 화합물을 포함하는, 넌스틱(non-stick) 도료가 제공된다.According to an embodiment of the present invention, there is provided a non-stick paint comprising a compound of Formula 3 below.
[화학식 3][Formula 3]
Figure PCTKR2020018737-appb-I000003
Figure PCTKR2020018737-appb-I000003
상기 화학식 3에서 R1 내지 R18은 각각 독립적으로 메틸기(Methyl) 또는 에틸기(Ethyl)이다.In Formula 3, R 1 to R 18 are each independently a methyl group (Methyl) or an ethyl group (Ethyl).
본 발명의 일 실시예에 따르면, 모노머 형태의 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 가수분해하는 제1 단계; 및 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합하여 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하는 소수성 화합물을 합성하는 제2 단계를 거쳐 합성된, 초소수성 나노 실리카 입자가 제공된다.According to an embodiment of the present invention, a first step of hydrolyzing tetramethyl orthosilicate in the form of a monomer; And by condensation polymerization of hydrolyzed tetramethylorthosilicate (Tetramehtylorthosilicate) to synthesize a hydrophobic compound comprising a spherical skeleton consisting of alternating bonds of silicon atoms and oxygen atoms synthesized through a second step of synthesis, Superhydrophobic nano silica particles are provided.
본 발명의 일 실시예에 따르면, 모노머 형태의 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 가수분해하는 제1 단계; 및 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합하여 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하는 소수성 화합물을 합성하는 제2 단계를 포함하고, 상기 제1 단계 및 상기 제2 단계에서는 각각 가수분해 및 축합 중합 반응 시에 알킬 실란(Alkyl Silane), 알콕시 실란(Alkoxy Silane), 실라잔(Silazne)으로 이루어진 군에서 선택된 적어도 하나의 화합물이 첨가되는, 초소수성 나노 실리카 입자 합성 방법이 제공된다.According to an embodiment of the present invention, a first step of hydrolyzing tetramethyl orthosilicate in the form of a monomer; and a second step of synthesizing a hydrophobic compound comprising a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms by condensation polymerization of hydrolyzed tetramethylorthosilicate; In the first step and the second step, at least one compound selected from the group consisting of alkyl silane (Alkyl Silane), alkoxy silane (Alkoxy Silane), and silazne (Silazne) is added during hydrolysis and condensation polymerization, respectively, A method for synthesizing superhydrophobic nano silica particles is provided.
본 발명의 일 실시예에 따르면, 상기 제1 단계에서 트리메틸클로로실란(Trimethylchlorosilane)이 첨가되어 다른 산성 화합물 첨가 없이 산성 분위기에서 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)의 가수분해 반응이 촉진되는, 초소수성 나노 실리카 입자 합성 방법이 제공된다.According to an embodiment of the present invention, in the first step, trimethylchlorosilane is added to promote the hydrolysis reaction of tetramethylorthosilicate in an acidic atmosphere without adding other acidic compounds, superhydrophobic nano silica A method for synthesizing particles is provided.
본 발명의 일 실시예에 따르면, 상기 제2 단계에서 헥사메틸디실라잔(Hexamethyldisilazane)이 첨가되어 염기성 상태에서 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)의 축합 중합 반응이 촉진되는 동시에 상기 구 형태의 뼈대 상에 메틸기가 도입되는, 초소수성 나노 실리카 입자 합성 방법이 제공된다.According to an embodiment of the present invention, the condensation polymerization reaction of tetramethyl orthosilicate hydrolyzed in a basic state by adding hexamethyldisilazane in the second step is promoted, and the spherical form of Provided is a method for synthesizing superhydrophobic nano silica particles, in which a methyl group is introduced on a skeleton.
본 발명의 일 실시예에 따르면, 상기 제2 단계에서 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합 속도를 제어하기 위하여 알코올 용매가 더 첨가되는, 초소수성 나노 실리카 입자 합성 방법이 제공된다.According to an embodiment of the present invention, an alcohol solvent is further added to control the condensation polymerization rate of tetramethylorthosilicate hydrolyzed in the second step, a superhydrophobic nano silica particle synthesis method is provided.
본 발명의 일 실시예에 따르면, 상기 제2 단계에서 상기 구 형태의 뼈대 표면에 제공된 하이드록시기를 메틸기로 개질하기 위하여 메틸트리메톡시실란(Methyltrimethoxysilane)을 더 첨가하는, 초소수성 나노 실리카 입자 합성 방법이 제공된다.According to an embodiment of the present invention, in the second step, methyltrimethoxysilane is further added to modify the hydroxyl group provided on the surface of the spherical skeleton to a methyl group, superhydrophobic nano silica particle synthesis method this is provided
본 발명의 일 실시예에 따르면, 상기 제2 단계 수행 후 합성된 소수성 화합물은 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하고, 상기 구 형태의 뼈대를 구성하는 실리콘 원자 중 적어도 하나에는 상기 화학식 1의 그룹이 결합되고,상기 화학식 1에서 R1, R2 및 R3는 각각 독립적으로 C1 내지 C5의 탄화수소 화합물인, 초소수성 나노 실리카 입자 합성 방법이 제공된다.According to an embodiment of the present invention, the hydrophobic compound synthesized after performing the second step includes a spherical skeleton composed of alternating combinations of silicon atoms and oxygen atoms, and constitutes the spherical skeleton. A group of Formula 1 is bonded to at least one of the silicon atoms, In Formula 1, R 1 , R 2 and R 3 are each independently a C1 to C5 hydrocarbon compound, a method for synthesizing superhydrophobic nano silica particles is provided. .
본 발명에 따르면 소수성으로 표면 개질된 수계타입의 콜로이달 실리카 또는 PDMS 오일 등을 물리적으로 혼합하는 것이 아니라, 표면에 소수성 그룹을 포함하여 그 자체로서 소수성을 나타내는 구형 입자를 이용함으로써 물리적 충격, 가열 등의 가혹 조건에서도 소수성이 없어지지 않는 초소수성 나노 실리카 입자 및 이를 포함하는 넌스틱 도료를 제공할 수 있다.According to the present invention, instead of physically mixing hydrophobically surface-modified aqueous type colloidal silica or PDMS oil, etc., physical impact, heating, etc. It is possible to provide a superhydrophobic nano silica particle that does not lose its hydrophobicity even under severe conditions and a non-stick paint including the same.
도 1은 본 발명의 일 실시예에 따른 넌스틱 도료 합성 방법을 나타낸 순서도이다.1 is a flowchart illustrating a method for synthesizing a non-stick paint according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 넌스틱 도료 합성 방법 중 반응 물질의 혼합 순서를 나타낸 블럭도이다.2 is a block diagram illustrating a mixing sequence of reactants in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 넌스틱 도료 합성 방법에서 발생하는 반응의 일부를 나타낸 반응 구조식이다.3A and 3B are reaction structural formulas illustrating a part of a reaction occurring in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
도 4는 실시예 1에 따른 제조된 소수성 TMOS 전구체 및 초소수성 TMOS 입자의 TEM 분석데이터이다.4 is TEM analysis data of the hydrophobic TMOS precursor and superhydrophobic TMOS particles prepared according to Example 1. FIG.
도 5는 실시예 1에 따라 제조된 초소수성 실리카 입자와 TMOS, 소수성 전구체의 FT-IR 분석 결과이다.5 is a FT-IR analysis result of superhydrophobic silica particles, TMOS, and a hydrophobic precursor prepared according to Example 1. FIG.
도 6은 실시예 3에 따른 소수성 TMOS 전구체 제조간 반응시간에 따른 분산안정성에 대한 이미지이다.6 is an image of dispersion stability according to reaction time between preparations of a hydrophobic TMOS precursor according to Example 3.
도 7은 실시예 3에 따른 초소수성 TMOS 입자 형성 시 pH제어에 따른 부분응집현상에 대한 TEM분석데이터이다.7 is TEM analysis data for partial aggregation according to pH control when forming superhydrophobic TMOS particles according to Example 3. FIG.
도 8은 실시예 4에 따른 일반적인 세라믹 코팅과 소수성 TMOS 전구체, 초소수성 TMOS 입자가 도입된 세라믹 코팅간의 접촉각 비교 사진이다.8 is a photograph comparing the contact angle between the general ceramic coating according to Example 4, a hydrophobic TMOS precursor, and a ceramic coating to which superhydrophobic TMOS particles are introduced.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than the actual size for clarity of the present invention. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 명세서에 있어서, 어느 층, 막, 영역, 판 등의 부분이 다른 부분 상(on)에 형성되었다고 할 경우, 상기 형성된 방향은 상부 방향만 한정되지 않으며 측면이나 하부 방향으로 형성된 것을 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof. Also, when a part of a layer, film, region, plate, etc. is said to be “on” another part, it includes not only the case where the other part is “directly on” but also the case where there is another part in between. In addition, in the present specification, when a portion such as a layer, film, region, plate, etc. is formed on another portion, the formed direction is not limited only to the upper direction, and includes those formed in the side or lower direction. . Conversely, when a part of a layer, film, region, plate, etc. is said to be "under" another part, this includes not only cases where it is "directly under" another part, but also cases where there is another part in between.
본 명세서에서 '상면'과 '하면'는 본 발명의 기술적 사상을 이해하기 쉽도록 설명하기 위하여 상대적인 개념으로 사용된 것이다. 따라서, '상면'과 '하면'은 특정한 방향, 위치 또는 구성 요소를 지칭하는 것이 아니고 서로 호환될 수 있다. 예를 들어, '상면'이 '하면'이라고 해석될 수도 있고 '하면'이 '상면'으로 해석될 수도 있다. 따라서, '상면'을 '제1'이라고 표현하고 '하면'을 '제2'라고 표현할 수도 있고, '하면'을 '제1'로 표현하고 '상면’을 '제2'라고 표현할 수도 있다. 그러나, 하나의 실시예 내에서는 '상면'과 '하면'이 혼용되지 않는다.In this specification, 'upper surface' and 'lower surface' are used as relative concepts in order to easily understand the technical idea of the present invention. Accordingly, the terms 'top' and 'bottom' do not refer to specific directions, positions, or components, and may be interchangeable with each other. For example, 'top' may be interpreted as 'bottom', and 'bottom' may be interpreted as 'top'. Accordingly, 'top' may be expressed as 'first' and 'bottom' as 'second', 'bottom' may be expressed as 'first', and 'top' may be expressed as 'second'. However, in one embodiment, 'top' and 'bottom' are not used interchangeably.
본 발명의 일 실시예에 따르면 세라믹 코팅을 제공함에 있어서 PDMS 오일과 같은 소수성 첨가제 없이 세라믹 코팅을 구성하는 입자 자체가 강한 소수성을 갖도록 합성함으로써, 고온 및 외부 충격 등이 가해져도 넌스틱 특성을 유지할 수 있도록 한다.According to an embodiment of the present invention, in providing a ceramic coating, by synthesizing the particles constituting the ceramic coating to have strong hydrophobicity without hydrophobic additives such as PDMS oil, it is possible to maintain non-stick properties even when high temperature and external impact are applied. let it be
도 1은 본 발명의 일 실시예에 따른 넌스틱 도료 합성 방법을 나타낸 순서도이다. 도 2는 본 발명의 일 실시예에 따른 넌스틱 도료 합성 방법 중 반응 물질의 혼합 순서를 나타낸 블럭도이다.1 is a flowchart illustrating a method for synthesizing a non-stick paint according to an embodiment of the present invention. 2 is a block diagram illustrating a mixing sequence of reactants in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
도 1 및 도 2를 참고하면, 모노머 형태의 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate; TMOS)를 가수분해하는 제1 단계(S100); 및 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합하여 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하는 소수성 화합물을 합성하는 제2 단계(S200)를 포함하고, 상기 제1 단계(S100) 및 상기 제2 단계(S200)에서는 각각 가수분해 및 축합 중합 반응 시에 알킬 실란(Alkyl Silane), 알콕시 실란(Alkoxy Silane), 실라잔(Silazne)으로 이루어진 군에서 선택된 적어도 하나의 화합물이 첨가되는, 넌스틱 도료 합성 방법이 제공된다.1 and 2, a first step of hydrolyzing tetramethylorthosilicate (TMOS) in the form of a monomer (S100); And a second step (S200) of synthesizing a hydrophobic compound comprising a spherical skeleton consisting of alternating bonds of silicon and oxygen atoms by condensation polymerization of hydrolyzed tetramethylorthosilicate (Tetramehtylorthosilicate) And, in the first step (S100) and the second step (S200), respectively, in the hydrolysis and condensation polymerization reaction from the group consisting of alkyl silane (Alkyl Silane), alkoxy silane (Alkoxy Silane), silazane (Silazne) A method for synthesizing a non-stick paint is provided, wherein at least one selected compound is added.
넌스틱 도료 합성 방법의 각 단계에 대하여 더 자세히 살펴보면, 먼저 제1 단계(S100)에서는 모노머 형태의 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 가수분해된다. 테트라메틸오쏘실리케이트의 가수분해 결과 소수성 전구체가 졸(sol) 형태로 제공될 수 있다. 제1 단계(S100)에서 가수분해에 따라 제공되는 졸 형태의 소수성 전구체는 도면에서 확인할 수 있듯이 적어도 1종 이상의 실록산(siloxane) 화합물을 포함할 수 있다.Looking more closely at each step of the nonstick paint synthesis method, first, in the first step ( S100 ), tetramethylorthosilicate in the form of a monomer is hydrolyzed. As a result of hydrolysis of tetramethylorthosilicate, a hydrophobic precursor may be provided in the form of a sol. As can be seen in the drawings, the hydrophobic precursor in the form of a sol provided by hydrolysis in the first step (S100) may include at least one siloxane compound.
제1 단계(S100)에서 가수분해 반응은 산성 분위기에서 수행될 수 있다. 테트라메틸오쏘실리케이트의 가수분해가 산성 분위기에서 수행됨에 따라 가수분해가 촉진될 수 있다. 가수분해 반응 시간이 지나치게 길어질 경우, 테트라메틸오쏘실리케이트가 가수분해되어 형성된 소수성 전구체들이 응집되어 용액의 겔화가 일어날 수 있다. 이 경우 원하는 크기로 초소수성 실리카 입자를 형성하기가 어렵다. 예를 들어 소수성 전구체의 응집에 의해 초소수성 실리카 입자의 크기가 지나치게 커질 수 있으며, 이 경우 합성된 소수성 전구체를 넌스틱 도료로 활용하기가 어려울 수 있다. In the first step (S100), the hydrolysis reaction may be performed in an acidic atmosphere. As the hydrolysis of tetramethylorthosilicate is carried out in an acidic atmosphere, the hydrolysis may be accelerated. If the hydrolysis reaction time is excessively long, hydrophobic precursors formed by hydrolysis of tetramethyl orthosilicate may aggregate, resulting in gelation of the solution. In this case, it is difficult to form superhydrophobic silica particles having a desired size. For example, the size of the superhydrophobic silica particles may become excessively large due to aggregation of the hydrophobic precursor, and in this case, it may be difficult to utilize the synthesized hydrophobic precursor as a non-stick paint.
제1 단계(S100)에서, 산성 분위기에서 가수분해 반응을 수행하기 위하여 알킬 실란(Alkyl Silane), 알콕시 실란(Alkoxy Silane), 실라잔(Silazne)으로 이루어진 군에서 선택된 적어도 하나의 화합물이 첨가될 수 있다. 경우에 따라, 제1 단계(S100)에서 첨가되는 화합물은 트리메틸클로로실란(Trimethylcholorosilane; TMSC)일 수 있다. 트리메틸클로로실란을 첨가함으로써 제1 단계(S100)에서 다른 산성 화합물을 첨가하지 않고도 가수분해 반응을 수행할 수 있다. 예를 들어, 통상적으로 가수분해 반응을 수행할 때 사용되는 산 촉매인 포름산(Formic Acid), 아세트산(Acetic Acid), 염산 등을 첨가하지 않고, 트리메틸클로로실란과 테트라메틸오쏘실리케이트를 이용하여 가수분해 반응을 수행할 수 있다.In the first step (S100), at least one compound selected from the group consisting of alkyl silane (Alkyl Silane), alkoxy silane (Alkoxy Silane), and silazne (Silazne) may be added to perform the hydrolysis reaction in an acidic atmosphere. have. In some cases, the compound added in the first step ( S100 ) may be trimethylcholorosilane (TMSC). By adding trimethylchlorosilane, the hydrolysis reaction can be performed without adding other acidic compounds in the first step (S100). For example, hydrolysis using trimethylchlorosilane and tetramethyl orthosilicate without adding formic acid, acetic acid, hydrochloric acid, etc., which are acid catalysts commonly used when performing a hydrolysis reaction The reaction can be carried out.
제1 단계(S100)에서 산성 분위기 조성을 위해 트리메틸클로로실란을 사용함으로써, 테트라메틸오쏘실리케이트의 분해에 의해 생성되는 소수성 전구체들간 응집 반응을 억제하고 안정적인 졸 상태가 유지되도록 할 수 있다. 구체적으로, 트리메틸클로로실란은 반응 용액 내에서 용매와 반응하여 염산(HCl)과 트리메틸실릴((CH3)3-Si-)로 나뉘게 된다. 염산은 산성 촉매로서 가수분해 반응을 촉진하며, 트리메틸실릴((CH3)3-Si-) 그룹은 테트라메틸오쏘실리케이트가 결합함으로써 소수성 전구체 표면에 소수성이 부여될 수 있다. 이에 따라, 소수성 전구체들이 서로 반응하여 응집하는 것을 막을 수 있고 제1 단계(S100)에서 가수분해 후 졸 상태가 유지될 수 있다.By using trimethylchlorosilane to create an acidic atmosphere in the first step (S100), aggregation reaction between hydrophobic precursors generated by decomposition of tetramethyl orthosilicate can be suppressed and a stable sol state can be maintained. Specifically, trimethylchlorosilane reacts with a solvent in the reaction solution to be divided into hydrochloric acid (HCl) and trimethylsilyl ((CH 3 ) 3 -Si-). Hydrochloric acid as an acid catalyst promotes the hydrolysis reaction, and the trimethylsilyl ((CH 3 ) 3 -Si-) group can impart hydrophobicity to the surface of the hydrophobic precursor by bonding with tetramethyl orthosilicate. Accordingly, it is possible to prevent the hydrophobic precursors from reacting with each other and aggregation, and the sol state may be maintained after hydrolysis in the first step ( S100 ).
제1 단계(S100)에서 물이 더 첨가되어 가수분해 반응이 수행될 수 있다. 소수성 전구체 혼합물 1 몰당 4몰 이하의 범위로 첨가될 수 있다. 물을 상술한 것과 같이 상대적으로 적게 첨가함으로써 가수분해 반응에서 겔화 현상이 나타나는 것을 막을 수 있다.In the first step (S100), water may be further added to perform a hydrolysis reaction. It may be added in an amount of 4 moles or less per mole of the hydrophobic precursor mixture. By adding relatively little water as described above, it is possible to prevent gelation from occurring in the hydrolysis reaction.
제1 단계(S100)에서 분해되는 테트라메틸오쏘실리케이트는 반응성이 높기 때문에, 가수분해 결과 생성되는 소수성 전구체들의 안정성을 유지하기가 어렵다는 문제가 있다. 따라서, 제1 단계(S100)에서 트리메틸클로로실란을 사용함으로써 가수분해를 촉진하는 동시에 가수분해된 소수성 전구체의 안정성도 유지할 수 있다.Since the tetramethyl orthosilicate decomposed in the first step (S100) has high reactivity, there is a problem in that it is difficult to maintain the stability of the hydrophobic precursors generated as a result of hydrolysis. Accordingly, by using trimethylchlorosilane in the first step (S100), hydrolysis can be promoted and the stability of the hydrolyzed hydrophobic precursor can be maintained.
다음으로, 테트라메틸오쏘실리케이트가 가수분해되어 생성된 소수성 전구체들에 대하여 축합 중합반응을 수행하는 제2 단계(S200)가 수행된다.Next, a second step (S200) of performing a condensation polymerization reaction on the hydrophobic precursors produced by hydrolysis of tetramethyl orthosilicate is performed.
제2 단계(S200)에서는 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합하여 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하는 소수성 화합물을 합성한다.In the second step (S200), hydrolyzed tetramethylorthosilicate is condensation-polymerized to synthesize a hydrophobic compound including a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms.
제2 단계(S200)는 염기성 분위기에서 수행될 수 있다. 염기성 분위기에서 가수분해된 소수성 전구체들은 축합 중합될 수 있으며, 이에 따라 구 형태의 뼈대를 포함하는 소수성 화합물이 합성될 수 있다.The second step ( S200 ) may be performed in a basic atmosphere. Hydrophobic precursors hydrolyzed in a basic atmosphere may be condensation-polymerized, and thus a hydrophobic compound including a spherical skeleton may be synthesized.
제2 단계(S200)에서 합성되는 구 형태의 뼈대를 포함하는 소수성 화합물은 화합물의 뼈대가 실리콘 원자와 산소 원자의 교번적인 결합으로 구성되어 그 자체로 소수성을 나타낸다. 또한, 소수성 화합물의 표면에는 소수성 관능기들이 결합될 수 있는데, 이를 위하여 알킬 실란(Alkyl Silane), 알콕시 실란(Alkoxy Silane), 실라잔(Silazne)으로 이루어진 군에서 선택된 적어도 하나의 화합물을 첨가할 수 있다.The hydrophobic compound including a spherical skeleton synthesized in the second step (S200) exhibits hydrophobicity by itself because the skeleton of the compound is composed of alternating bonds of silicon atoms and oxygen atoms. In addition, hydrophobic functional groups may be bonded to the surface of the hydrophobic compound. For this purpose, at least one compound selected from the group consisting of alkyl silane, alkoxy silane, and silazne may be added. .
제2 단계(S200)에서 첨가되는 화합물은 경우에 따라 헥사메틸디실라잔(Hexamethyldisilazane; HMDS)일 수 있다. 헥사메틸디실라잔(Hexamethyldisilazane)은 염기성 분위기를 조성하여 축합반응을 촉진할 수 있다. 또한, 헥사메틸디실라잔은 소수성 화합물 입자 표면에서 반응하여 소수성 화합물 입자(구 형태의 뼈대) 표면에 트리메틸실릴(trimethylsilyl)기를 제공할 수 있다. 트리메틸실릴기 도입으로 인해 구 형태의 뼈대를 갖는 소수성 화합물 입자의 소수성이 더 커질 수 있다. 또한, 트리메틸실릴기는 구 형태의 뼈대 상에 공유결합으로 제공되기 때문에 가열 또는 물리적 충격에 의해 분해되어 떨어져 나가지 않는다. 따라서, 소수성 화합물을 이용하여 제공된 코팅의 넌스틱 특성이 오랫동안 유지될 수 있다.In some cases, the compound added in the second step (S200) may be hexamethyldisilazane (HMDS). Hexamethyldisilazane can promote the condensation reaction by creating a basic atmosphere. In addition, hexamethyldisilazane may react on the surface of the hydrophobic compound particle to provide a trimethylsilyl group on the surface of the hydrophobic compound particle (spherical skeleton). Due to the introduction of the trimethylsilyl group, the hydrophobicity of the hydrophobic compound particles having a spherical skeleton may be increased. In addition, since the trimethylsilyl group is provided as a covalent bond on the spherical skeleton, it is not decomposed and separated by heating or physical impact. Accordingly, the non-stick properties of the coating provided by using the hydrophobic compound can be maintained for a long time.
제2 단계(S200)에서 헥사메틸디실라잔을 첨가할 때, 헥사메틸디실라잔을 알코올 용매에 희석하여 첨가할 수 있다. 예를 들어, 헥사메틸디실라잔은 아이소프로필알코올(Isopropylalcohol; IPA)에 희석되어 소수성 전구체 용액 내에 첨가될 수 있다. 이에 따라 헥사메틸디실라잔 혼합으로 인해 pH가 급격히 변화하고 국부적으로 응집이 발생하는 것을 막을 수 있다. 헥사메틸디실라잔은 예를 들어 아이소프로필알코올에 희석되어 0.4 wt% 내지 0.8 wt%로 희석된 상태로 첨가될 수 있다. When hexamethyldisilazane is added in the second step (S200), hexamethyldisilazane may be diluted in an alcohol solvent and added. For example, hexamethyldisilazane may be diluted in isopropyl alcohol (IPA) and added to the hydrophobic precursor solution. Accordingly, it is possible to prevent a sudden change in pH and local aggregation due to mixing of hexamethyldisilazane. Hexamethyldisilazane may be added, for example, diluted in isopropyl alcohol to 0.4 wt% to 0.8 wt% .
제2 단계(S200)는 졸(sol) 상태에서 수행될 수 있다. 제1 단계(S100)와 제2 단계(S200)에서 졸-겔 합성법을 이용함으로써 합성되는 초소수성 실리카 입자의 크기과 형상을 효과적으로 제어할 수 있다.The second step S200 may be performed in a sol state. By using the sol-gel synthesis method in the first step (S100) and the second step (S200), the size and shape of the superhydrophobic silica particles synthesized can be effectively controlled.
제2 단계(S200)를 수행함에 있어서, 메틸트리메톡시실란(Methyltrimethoxysilane; MTMS)을 더 첨가할 수 있다. 메틸트리메톡시실란은 구 형태의 뼈대 표면에 존재할 수 있는 하이드록시기와 반응하여 이들을 메톡시기 등의 소수성 그룹으로 개질할 수 있다.In performing the second step (S200), methyltrimethoxysilane (MTMS) may be further added. Methyltrimethoxysilane may react with hydroxyl groups that may exist on the surface of the spherical skeleton to modify them into hydrophobic groups such as methoxy groups.
제2 단계(S200)에서 알코올 용매가 더 제공될 수 있다. 알코올 용매는 경우에 따라 IPA(Isopropylalcohol)일 수 있다. 알코올 용매는 제2 단계(S200)에서 중합 반응 속도를 제어하는 기능을 수행한다. 본 발명의 경우 제1 단계인 가수분해 단계(TMCS와 혼합)에서 물을 첨가하며, 물을 상대적으로 적게(예를 들어, 4몰 이하) 첨가할 수 있다. 제1 단계(S100)에서 물의 첨가량이 증가할 경우 제1 단계(S100)내에서 원치 않는 축합 중합 반응 속도가 증가하여 겔화 현상이 발생할 수 있다. 따라서, 제1 단계에서 물의 함량을 4몰 이하로 첨가하고, 축합 중합 단계인 2단계에서는 IPA와 HMDS를 혼합하여 첨가함으로써 상술한 것과 같은 겔화 현상을 방지할 수 있다.In the second step (S200), an alcohol solvent may be further provided. The alcohol solvent may be IPA (Isopropylalcohol) in some cases. The alcohol solvent performs a function of controlling the polymerization reaction rate in the second step (S200). In the present invention, water is added in the first step, the hydrolysis step (mixed with TMCS), and a relatively small amount of water (eg, 4 mol or less) may be added. If the amount of water added in the first step (S100) is increased, an unwanted condensation polymerization reaction rate in the first step (S100) may increase, resulting in gelation. Accordingly, the above-described gelation phenomenon can be prevented by adding the water content to 4 mol or less in the first step and adding IPA and HMDS by mixing in the second step, which is the condensation polymerization step.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 넌스틱 도료 합성 방법에서 발생하는 반응의 일부를 나타낸 반응 구조식이다.3A and 3B are reaction structural formulas illustrating a part of a reaction occurring in a method for synthesizing a non-stick paint according to an embodiment of the present invention.
도 3a는 앞서 설명한 제1 단계 반응을 나타낸 것으로, 테트라메틸오쏘실리케이트(TMOS)와 트리메틸클로로실란(TMSC)이 가수분해 반응하여 소수성 전구체 화합물이 제조되는 것을 확인할 수 있다. 소수성 전구체 화합물은 도면에서 확인할 수 있듯이 적어도 1종 이상의 실록산 화합물을 포함할 수 있다.FIG. 3a shows the first-step reaction described above, and it can be confirmed that a hydrophobic precursor compound is prepared by a hydrolysis reaction between tetramethyl orthosilicate (TMOS) and trimethylchlorosilane (TMSC). As can be seen from the drawings, the hydrophobic precursor compound may include at least one siloxane compound.
다음으로, 도 3b를 참고하면, 소수성 전구체 화합물은 헥사메틸디실라잔(HMDS) 및 메틸트리메톡시실란(MTMS)과 축합 중합 반응하고 이에 따라 소수성 화합물 입자가 합성되는 것을 확인할 수 있다.Next, referring to FIG. 3b , it can be confirmed that the hydrophobic precursor compound is subjected to a condensation polymerization reaction with hexamethyldisilazane (HMDS) and methyltrimethoxysilane (MTMS), thereby synthesizing the hydrophobic compound particles.
합성된 소수성 화합물 입자는 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하고, 상기 구 형태의 뼈대를 구성하는 실리콘 원자 중 적어도 하나에는 하기 화학식 1의 그룹이 결합되고, 상기 화학식 1에서 R1, R2 및 R3는 각각 독립적으로 C1 내지 C5의 탄화수소 화합물일 수 있다.The synthesized hydrophobic compound particles include a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms, and at least one of the silicon atoms constituting the spherical skeleton is bonded to a group represented by the following Chemical Formula 1 and R 1 , R 2 and R 3 in Formula 1 may each independently be a C1 to C5 hydrocarbon compound.
[화학식 1][Formula 1]
Figure PCTKR2020018737-appb-I000004
Figure PCTKR2020018737-appb-I000004
이러한 화합물은 뼈대가 실리콘 원자와 산소 원자로 구성되어 실리카와 같이 내구성이 우수할 뿐만 아니라, 그 자체로 소수성을 나타낸다. 또한, 표면에 화학식 1의 소수성 그룹이 제공되어 소수성 성질이 크다. 특히, 화학식 1의 소수성 그룹은 구 형태의 뼈대 표면에 공유결합으로 결합되어 있기 때문에 조리 기구에서 고온에서도 분해되지 않는다. 따라서, 고온에서 코팅이 제공된 제품을 사용해도 코팅이 분해되어 소수성이 열화될 우려가 없다.Such a compound has excellent durability like silica because the skeleton is composed of silicon atoms and oxygen atoms, and also exhibits hydrophobicity by itself. In addition, the hydrophobic group of Chemical Formula 1 is provided on the surface, so that the hydrophobic property is large. In particular, since the hydrophobic group of Formula 1 is covalently bonded to the surface of the spherical skeleton, it is not decomposed even at a high temperature in a cooking appliance. Therefore, there is no fear that the coating is decomposed and hydrophobicity is deteriorated even when a product provided with a coating is used at a high temperature.
경우에 따라 상술한 소수성 화합물 입자에 제공된 구 형태의 뼈대는 아래의 화학식 2와 같이 나타날 수 있다.In some cases, the spherical skeleton provided in the above-described hydrophobic compound particles may be represented by Chemical Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2020018737-appb-I000005
Figure PCTKR2020018737-appb-I000005
상기 화학식 2에서 Sia, Sib, Sic, Sid 및 Sie에는 각각 독립적으로 상기 화학식 1의 그룹이 결합되고, 상기 화학식 2의 Sia, Sib, Sic, Sid 및 Sie 각각에 결합된 화학식 1의 화합물 내 R1, R2 및 R3는 서로 같거나 다를 수 있다.In Chemical Formula 2, Si a , Si b , Si c , Si d and Si e are each independently bonded to the group of Chemical Formula 1, and Si a , Si b , Si c , Si d and Si e in Chemical Formula 2, respectively R 1 , R 2 and R 3 in the compound of Formula 1 bound to may be the same as or different from each other.
또한, 경우에 따라 화학식 2에 따른 뼈대를 포함하는 초소수성 실리카 입자는 아래의 화학식 3과 같은 형태를 나타낼 수 있다.In addition, in some cases, the superhydrophobic silica particles including the skeleton according to Chemical Formula 2 may have a form as shown in Chemical Formula 3 below.
[화학식 3][Formula 3]
Figure PCTKR2020018737-appb-I000006
Figure PCTKR2020018737-appb-I000006
상기 화학식 3에서 R1 내지 R18은 각각 독립적으로 메틸기(Methyl) 또는 에틸기(Ethyl)이다.In Formula 3, R 1 to R 18 are each independently a methyl group (Methyl) or an ethyl group (Ethyl).
상술한 화합물은 앞서 설명한 것과 같이 구형 입자 자체가 소수성을 나타내며, 표면에 다수의 알킬 실란기가 제공되어 소수성이 우수하다. 아울러, 소수성을 제공하는 알킬 실란기 등이 공유결합으로 입자에 결합되어 있어 열 안정성 또한 우수하다.As described above, as described above, the spherical particle itself exhibits hydrophobicity, and a large number of alkyl silane groups are provided on the surface to provide excellent hydrophobicity. In addition, since an alkyl silane group providing hydrophobicity is bonded to the particle by a covalent bond, thermal stability is also excellent.
상술한 화학식 1 내지 화학식 3의 구조를 포함하는 초소수성 실리카 입자는 알코올 용매에 분산되어 도료 형태로 제공될 수 있다. 도료는 주방 기구 등 상에 코팅될 수 있으며, 이에 따라 음식물이 눌어붙지 않는 넌스틱 코팅이 제공될 수 있다.The superhydrophobic silica particles including the structures of Chemical Formulas 1 to 3 may be dispersed in an alcohol solvent and provided in the form of a paint. The paint may be coated on kitchen appliances and the like, and thus a non-stick coating that prevents food from sticking may be provided.
이상에서는 본 발명의 일 실시예에 따른 넌스틱 도료 및 넌스틱 도료 제조 방법에 대하여 살펴보았다. 이하에서는 실험예에 따른 넌스틱 도료의 특징 분석 결과를 검토하고자 한다.In the above, a non-stick paint and a method for manufacturing a non-stick paint according to an embodiment of the present invention have been described. Hereinafter, the results of characteristic analysis of the non-stick paint according to the experimental example will be reviewed.
실시예 1. 초소수성 TMOS 입자 제조Example 1. Preparation of superhydrophobic TMOS particles
도 4는 실시예 1에 따른 제조된 소수성 TMOS 전구체 및 초소수성 TMOS 입자의 TEM 분석데이터이다.4 is TEM analysis data of the hydrophobic TMOS precursor and superhydrophobic TMOS particles prepared according to Example 1. FIG.
TMOS와 MTMS, IPA를 중량비 1:1:2로 혼합하고 TMCS를 증류수와 IPA로 희석시킨 TMCS 0.8~1.0 wt% 용액을 첨가하여 pH 2~3으로 제어한 후 2시간 동안 교반시켜 TMOS를 가수분해하였으며, 그 결과 소수성 전구체가 제조됐다. 다음으로 준비된 소수성 전구체에 IPA로 희석된 HMDS 혼합용액을 0.4~0.8%와 MTMS를 전체양의 20~30% 첨가하고 pH 6~7를 유지한 상태에서 8시간 동안 교반하여 초소수성 실리카 입자를 제조하였다.TMOS, MTMS, and IPA were mixed in a weight ratio of 1:1:2, and a 0.8~1.0 wt% solution of TMCS diluted with distilled water and IPA was added to adjust the pH to 2-3, and stirred for 2 hours to hydrolyze TMOS. As a result, a hydrophobic precursor was prepared. Next, 0.4~0.8% of the HMDS mixed solution diluted with IPA and 20~30% of the total amount of MTMS were added to the prepared hydrophobic precursor and stirred for 8 hours while maintaining pH 6~7 to prepare superhydrophobic silica particles did
도 4의 TEM 이미지를 확인하면 직경 약 25nm의 초소수성 실리카 입자가 합성된 것을 확인할 수 있다.When checking the TEM image of FIG. 4 , it can be confirmed that superhydrophobic silica particles having a diameter of about 25 nm were synthesized.
실시예 2. 초소수성 실리카 입자 FT-IR 분석Example 2. FT-IR analysis of superhydrophobic silica particles
도 5는 실시예 1에 따라 제조된 초소수성 실리카 입자와 TMOS, 소수성 전구체의 FT-IR 분석 결과이다.5 is a FT-IR analysis result of superhydrophobic silica particles, TMOS, and a hydrophobic precursor prepared according to Example 1. FIG.
제조된 초소수성 실리카 입자의 구조를 확인하기 위해 FT-IR분석을 진행하였다. 비교군으로 TMOS와 TMOS 가수분해에 의해 생성된 소수성 전구체에 대한 분석을 함께 진행하였다. FT-IR analysis was performed to confirm the structure of the prepared superhydrophobic silica particles. As a comparison group, analysis of TMOS and hydrophobic precursors generated by TMOS hydrolysis was conducted together.
TMOS의 경우 1040-1100cm-1 에서 Si-O-Si 피크와 3420cm-1 에서 -OH 피크가 관찰되지만, 소수성 전구체(Hydrophobic TMOS precursor)와 초소수성 실리카 입자(Superhydrophobic particle)의 경우 반응이 진행됨에 따라 1253, 2960cm-1에서 C-H 피크와 Si-CH3 피크가 나타나는 것을 확인할 수 있다. 특히, C-H 피크와 Si-CH3 피크의 크기는 소수성 전구체에서보다 초소수성 실리카 입자에서 더 크게 나타나는 것을 확인할 수 있다. 이에 따라 중합 반응 진행에 따라 입자 표면의 소수성화가 이뤄지는 것을 확인할 수 있다.In the case of TMOS, a Si-O-Si peak at 1040-1100 cm -1 and a -OH peak at 3420 cm -1 are observed, but in the case of a hydrophobic TMOS precursor and a superhydrophobic particle, as the reaction progresses, It can be seen that the CH peak and the Si-CH 3 peak appear at 1253, 2960 cm -1 . In particular, it can be seen that the sizes of the CH peak and the Si-CH 3 peak appear larger in the superhydrophobic silica particles than in the hydrophobic precursor. Accordingly, it can be confirmed that the surface of the particles is made hydrophobic as the polymerization reaction proceeds.
실시예 3. 가수분해 반응시간에 따른 초소수성 실리카 입자의 특성 분석Example 3. Characterization of superhydrophobic silica particles according to hydrolysis reaction time
도 6은 실시예 3에 따른 소수성 TMOS 전구체 제조간 반응시간에 따른 분산안정성에 대한 이미지이다.6 is an image of dispersion stability according to reaction time between preparations of a hydrophobic TMOS precursor according to Example 3.
실시예 1의 초소수성 실리카 입자 제조 반응에 대하여, 소수성 전구체를 제조하기 위한 TMOS와 TMCS의 반응시간을 각각 2시간, 3시간, 4시간으로 조절하였다. TMOS와 TMSC의 반응시간이 달라짐에 따라 TMOS의 가수분해 반응정도가 달라지고, 이에 따라 초소수성 실리카 입자 축합중합 반응 양태가 달라지는 것을 확인하였다. 구체적으로, 축합중합 반응에서 HMDS와 MTMS 첨가 시 pH가 산성에서 염기성으로 변화하는데 이때 TMOS의 가수분해 반응정도에 따라 입자간 응집이 발생하는 것을 확인하였다. 구체적으로, 가수분해 반응을 약 4시간 동안 진행한 경우 축합중합 반응에서 부분적인 겔화로 침전이 발생됨을 확인하였다. 가수분해 반응을 약 2시간 동안 진행한 경우에는 축합 중합 반응에서 겔화로 인한 침전이 발생되지 않는 것을 확인하였다.For the superhydrophobic silica particle preparation reaction of Example 1, the reaction times of TMOS and TMCS for preparing the hydrophobic precursor were adjusted to 2 hours, 3 hours, and 4 hours, respectively. As the reaction time between TMOS and TMSC was changed, the degree of hydrolysis reaction of TMOS was changed, and accordingly, it was confirmed that the superhydrophobic silica particle condensation polymerization reaction mode was changed. Specifically, in the condensation polymerization reaction, when HMDS and MTMS were added, the pH changed from acidic to basic. Specifically, it was confirmed that precipitation occurred due to partial gelation in the condensation polymerization reaction when the hydrolysis reaction was carried out for about 4 hours. When the hydrolysis reaction was carried out for about 2 hours, it was confirmed that precipitation due to gelation did not occur in the condensation polymerization reaction.
도 7은 실시예 3에 따른 초소수성 TMOS 입자 형성 시 pH제어에 따른 부분응집현상에 대한 TEM 분석데이터이다.FIG. 7 is TEM analysis data for partial aggregation according to pH control when forming superhydrophobic TMOS particles according to Example 3. FIG.
가수분해 반응 후 형성된 소수성 전구체에 HMDS 첨가 시 pH제어에 따른 국부적인 응집현상으로 인해 입자간 불균일이 발생되고 용액의 분산안정성이 저하되는 것을 이를 TEM 분석을 통해 확인하였다. It was confirmed through TEM analysis that when HMDS was added to the hydrophobic precursor formed after the hydrolysis reaction, non-uniformity between particles occurred and the dispersion stability of the solution was lowered due to local aggregation according to pH control.
실시예 4. 접촉각 측정Example 4. Contact angle measurement
도 8은 실시예 4에 따른 일반적인 세라믹 코팅과 소수성 TMOS 전구체, 초소수성 TMOS 입자가 도입된 세라믹 코팅간의 접촉각 비교 사진이다.8 is a photograph comparing the contact angle between the general ceramic coating according to Example 4, a hydrophobic TMOS precursor, and a ceramic coating to which superhydrophobic TMOS particles are introduced.
일반적인 세라믹코팅용액에 소수성 전구체, 초소수성 실리카 입자를 각각 첨가 후 용액을 기재상에 코팅하였다. 다음으로, 용액이 코팅된 기재 상에 0.05mL 주사기의 #3 바늘로 증류수를 떨어뜨려서 3mm이내의 물방울의 접촉각을 측정하여 소수성화 정도를 비교하였다. 일반 세라믹 코팅의 경우 접촉각이 90.4°로 나타났으며, 소수성 전구체, 초소수성 실리카 입자가 첨가된 세라믹 코팅은 각각 접촉각이 107.4°에서 155.4°로 크게 증가한 것으로 나타났다. 따라서, 초소수성 실리카 입자를 첨가하였을 경우 140° 이상의 초소수성 표면을 형성할 수 있음을 확인할 수 있다.After adding the hydrophobic precursor and superhydrophobic silica particles to the general ceramic coating solution, the solution was coated on the substrate. Next, the degree of hydrophobization was compared by measuring the contact angle of water droplets within 3 mm by dropping distilled water with a #3 needle of a 0.05 mL syringe on the substrate coated with the solution. In the case of general ceramic coating, the contact angle was 90.4°, and in the case of the ceramic coating to which the hydrophobic precursor and superhydrophobic silica particles were added, the contact angle was significantly increased from 107.4° to 155.4°, respectively. Therefore, it can be confirmed that when superhydrophobic silica particles are added, a superhydrophobic surface of 140° or more can be formed.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art or those with ordinary skill in the art will not depart from the spirit and scope of the present invention described in the claims to be described later. It will be understood that various modifications and variations of the present invention can be made without departing from the scope of the present invention.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Accordingly, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.

Claims (10)

  1. 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하고, It contains a spherical skeleton consisting of alternating bonds of silicon atoms and oxygen atoms,
    상기 구 형태의 뼈대를 구성하는 실리콘 원자 중 적어도 하나에는 하기 화학식 1의 그룹이 결합되고,A group represented by the following formula (1) is bonded to at least one of the silicon atoms constituting the spherical skeleton,
    [화학식 1][Formula 1]
    Figure PCTKR2020018737-appb-I000007
    Figure PCTKR2020018737-appb-I000007
    상기 화학식 1에서 R1, R2 및 R3는 각각 독립적으로 C1 내지 C5의 탄화수소 화합물인, 초소수성 나노 실리카 입자.In Formula 1, R 1 , R 2 and R 3 are each independently a C1 to C5 hydrocarbon compound, superhydrophobic nano silica particles.
  2. 제1항에 있어서,According to claim 1,
    실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 상기 구 형태의 뼈대는 아래 화학식 2의 화합물이고,The spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms is a compound of Formula 2 below,
    [화학식 2][Formula 2]
    Figure PCTKR2020018737-appb-I000008
    Figure PCTKR2020018737-appb-I000008
    상기 화학식 2에서 Sia, Sib, Sic, Sid 및 Sie에는 각각 독립적으로 상기 화학식 1의 그룹이 결합되고,In Formula 2, Si a , Si b , Si c , Si d and Si e are each independently bonded to the group of Formula 1,
    상기 화학식 2의 Sia, Sib, Sic, Sid 및 Sie 각각에 결합된 화학식 1의 화합물 내 R1, R2 및 R3는 서로 같거나 다른, 초소수성 나노 실리카 입자.Si a , Si b , Si c , Si d and Si e of Formula 2 in the compound of Formula 1 bonded to each of R 1 , R 2 and R 3 are the same as or different from each other, superhydrophobic nano silica particles.
  3. 제1항에 있어서,According to claim 1,
    하기 화학식 3의 화합물을 포함하는, 초소수성 나노 실리카 입자.A superhydrophobic nano silica particle comprising a compound of Formula 3 below.
    [화학식 3][Formula 3]
    Figure PCTKR2020018737-appb-I000009
    Figure PCTKR2020018737-appb-I000009
    상기 화학식 3에서 R1 내지 R18은 각각 독립적으로 메틸기(Methyl) 또는 에틸기(Ethyl)이다.In Formula 3, R 1 to R 18 are each independently a methyl group (Methyl) or an ethyl group (Ethyl).
  4. 제1항에 있어서,According to claim 1,
    모노머 형태의 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 가수분해하는 제1 단계; 및A first step of hydrolyzing tetramethyl orthosilicate in the form of a monomer; and
    가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합하여 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하는 소수성 화합물을 합성하는 제2 단계를 거쳐 합성된, 초소수성 나노 실리카 입자.The second step of synthesizing a hydrophobic compound including a spherical skeleton composed of alternating bonds of silicon and oxygen atoms by condensation polymerization of hydrolyzed tetramethylorthosilicate Hydrophobic Nano Silica Particles.
  5. 모노머 형태의 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 가수분해하는 제1 단계; 및A first step of hydrolyzing tetramethylorthosilicate in the form of a monomer; and
    가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합하여 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하는 소수성 화합물을 합성하는 제2 단계를 포함하고,A second step of synthesizing a hydrophobic compound comprising a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms by condensation polymerization of hydrolyzed tetramethylorthosilicate;
    상기 제1 단계 및 상기 제2 단계에서는 각각 가수분해 및 축합 중합 반응 시에 알킬 실란(Alkyl Silane), 알콕시 실란(Alkoxy Silane), 실라잔(Silazne)으로 이루어진 군에서 선택된 적어도 하나의 화합물이 첨가되는, 초소수성 나노 실리카 입자 합성 방법.In the first step and the second step, at least one compound selected from the group consisting of alkyl silane, alkoxy silane, and silazne is added during hydrolysis and condensation polymerization, respectively , a method for synthesizing superhydrophobic nano silica particles.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제1 단계에서 트리메틸클로로실란(Trimethylchlorosilane)이 첨가되어 다른 산성 화합물 첨가 없이 산성 분위기에서 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)의 가수분해 반응이 촉진되는, 초소수성 나노 실리카 입자 합성 방법.In the first step, trimethylchlorosilane is added so that the hydrolysis reaction of tetramethylorthosilicate is promoted in an acidic atmosphere without adding other acidic compounds, superhydrophobic nano silica particle synthesis method.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 제2 단계에서 헥사메틸디실라잔(Hexamethyldisilazane)이 첨가되어 염기성 상태에서 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)의 축합 중합 반응이 촉진되는 동시에 상기 구 형태의 뼈대 상에 메틸기가 도입되는, 초소수성 나노 실리카 입자 합성 방법.In the second step, hexamethyldisilazane is added to promote the condensation polymerization reaction of tetramethylorthosilicate hydrolyzed in a basic state, and at the same time, a methyl group is introduced on the spherical skeleton. Method for synthesizing hydrophobic nano silica particles.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 제2 단계에서 가수분해된 테트라메틸오쏘실리케이트(Tetramehtylorthosilicate)를 축합 중합 속도를 제어하기 위하여 알코올 용매가 더 첨가되는, 초소수성 나노 실리카 입자 합성 방법.A method for synthesizing superhydrophobic nano silica particles, wherein an alcohol solvent is further added to control the condensation polymerization rate of tetramethylorthosilicate hydrolyzed in the second step.
  9. 제5항에 있어서,6. The method of claim 5,
    상기 제2 단계에서 상기 구 형태의 뼈대 표면에 제공된 하이드록시기를 메틸기로 개질하기 위하여 메틸트리메톡시실란(Methyltrimethoxysilane)을 더 첨가하는, 초소수성 나노 실리카 입자 합성 방법.In the second step, the superhydrophobic nano silica particle synthesis method for further adding methyltrimethoxysilane to modify the hydroxyl group provided on the surface of the spherical skeleton with a methyl group.
  10. 제5항에 있어서,6. The method of claim 5,
    상기 제2 단계 수행 후 합성된 소수성 화합물은 실리콘 원자와 산소 원자의 교번적인 결합으로 구성된 구 형태의 뼈대(spherical skeleton)를 포함하고, The hydrophobic compound synthesized after performing the second step includes a spherical skeleton composed of alternating bonds of silicon atoms and oxygen atoms,
    상기 구 형태의 뼈대를 구성하는 실리콘 원자 중 적어도 하나에는 하기 화학식 1의 그룹이 결합되고,A group represented by the following formula (1) is bonded to at least one of the silicon atoms constituting the spherical skeleton,
    [화학식 1][Formula 1]
    Figure PCTKR2020018737-appb-I000010
    Figure PCTKR2020018737-appb-I000010
    상기 화학식 1에서 R1, R2 및 R3는 각각 독립적으로 C1 내지 C5의 탄화수소 화합물인, 초소수성 나노 실리카 입자 합성 방법.In Formula 1, R 1 , R 2 and R 3 are each independently a C1 to C5 hydrocarbon compound, a method for synthesizing superhydrophobic nano silica particles.
PCT/KR2020/018737 2020-12-18 2020-12-21 Synthesis of superhydrophobic silica nanoparticles, and method for preparing non-stick paint by using same WO2022131414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200178895A KR102563318B1 (en) 2020-12-18 2020-12-18 Synthesis of high hydrophobic silica particle and preparation method of non-stick paste using thereof
KR10-2020-0178895 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131414A1 true WO2022131414A1 (en) 2022-06-23

Family

ID=82057729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018737 WO2022131414A1 (en) 2020-12-18 2020-12-21 Synthesis of superhydrophobic silica nanoparticles, and method for preparing non-stick paint by using same

Country Status (2)

Country Link
KR (1) KR102563318B1 (en)
WO (1) WO2022131414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558418A (en) * 2022-09-13 2023-01-03 北京中煤矿山工程有限公司 Nano SiO on surface of casting wedge tooth hob 2 Preparation process of super-hydrophobic coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585456A1 (en) * 1992-02-18 1994-03-09 Matsushita Electric Works Ltd Process for producing hydrophobic aerogel
JP2014185293A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Curable silicone resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585456A1 (en) * 1992-02-18 1994-03-09 Matsushita Electric Works Ltd Process for producing hydrophobic aerogel
JP2014185293A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Curable silicone resin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRATTON GRAHAM J, CURRELL BRIAN R, PARSONAGE JOHN R, THOMAS MICHAEL J K: "Controlled Polymerization of Silicic Acids derived from Mineral Silicates", JOURNAL OF MATERIALS CHEMISTRY, vol. 3, no. 4, 1 January 1993 (1993-01-01), pages 343 - 346, XP055943063, DOI: 10.1039/JM9930300343 *
FEHER F J, TERROBA R, JIN R-Z: "CONTROLLED PARTIAL HYDROLYSIS OF SPHEROSILICATE FRAMEWORKS: SYNTHESES OF ENDO-¬(ME3SIO)6SI6O7(OH)4¾ AND ENDO-¬(ME3SIO)6SI6O7äOSIME2(CH=CH2)ü4¾ FROM ¬(ME3SIO)6SI6O9¾", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, 1 January 1999 (1999-01-01), UK , pages 2513/2514, XP001038447, ISSN: 1359-7345, DOI: 10.1039/a907419h *
ZHANG XINXIANG, ZHENG FENG, YE LONGQIANG, XIONG PAN, YAN LIANGHONG, YANG WENBIN, JIANG BO: "A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles", RSC ADVANCES, vol. 4, no. 19, 1 January 2014 (2014-01-01), pages 9838, XP055943065, DOI: 10.1039/c3ra47185c *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558418A (en) * 2022-09-13 2023-01-03 北京中煤矿山工程有限公司 Nano SiO on surface of casting wedge tooth hob 2 Preparation process of super-hydrophobic coating

Also Published As

Publication number Publication date
KR20220088148A (en) 2022-06-27
KR102563318B1 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
JP4236937B2 (en) Thermally stable, moisture-curing polysilazanes and polysiloxazanes
KR100898442B1 (en) Polyether-functional siloxanes, polyether siloxane-containing compositions, methods for the production thereof and use thereof
WO2017185737A1 (en) A method for preparing organopolysiloxane resins
US5393815A (en) Silazane-based, heat resistant, dielectric coating compositions
CN101367939A (en) Process for controlled hydrolysis and condensation of epoxy-functional organosilanes and the cocondensation thereof with further organofunctional alkoxysilanes
WO2022131414A1 (en) Synthesis of superhydrophobic silica nanoparticles, and method for preparing non-stick paint by using same
CA2536709A1 (en) Organosilane-modified polysiloxanes and their use for surface modification
KR20030040090A (en) Room Temperature Curable Silicone Rubber Compositions
WO2022111610A1 (en) Method for preparing hollow silica powder filler, powder filler obtained thereby, and application thereof
CN109592690B (en) Method for preparing hydrophobic silicon dioxide by using fumed silica
CN109796601B (en) Silicon dioxide modified organic silicon defoaming agent and preparation method thereof
CN107641466B (en) Organic silicon solvent-free impregnating varnish and preparation method thereof
WO2009077498A1 (en) Sol-gel process with an encapsulated catalyst
JP3175124B2 (en) Silica-based coating materials and coatings
CN106589384B (en) Preparation method of particle-size-controllable modified polysiloxane microspheres
JP2824044B2 (en) Heat resistant insulating coating composition
CN113956668B (en) Ultrahigh heat-resistant silicone rubber and preparation method thereof
JPH07316297A (en) High-molecular weight poly(organosilyl silicate) and production thereof
KR20170018237A (en) A polymer film forming composition, polymer film prepared therefrom, and electronic device comprising the polymer film
WO2013141444A1 (en) Inorganic nanoparticle composite having orientation
JP3875756B2 (en) Silicone emulsion coating material composition and method for producing the same
WO2014115974A1 (en) Composition for coating low refractive index layer and preparation method thereof
JP3761747B2 (en) Paint structure
JP4352568B2 (en) Inorganic paint
JPH09175868A (en) Polycarbonate product covered with hard coat film and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966068

Country of ref document: EP

Kind code of ref document: A1