WO2022131233A1 - Medical shaft assembly and medical shaft drill - Google Patents

Medical shaft assembly and medical shaft drill Download PDF

Info

Publication number
WO2022131233A1
WO2022131233A1 PCT/JP2021/045936 JP2021045936W WO2022131233A1 WO 2022131233 A1 WO2022131233 A1 WO 2022131233A1 JP 2021045936 W JP2021045936 W JP 2021045936W WO 2022131233 A1 WO2022131233 A1 WO 2022131233A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
medical
medical shaft
hole
drill
Prior art date
Application number
PCT/JP2021/045936
Other languages
French (fr)
Japanese (ja)
Inventor
美沙 松本
克也 宮川
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to JP2022569999A priority Critical patent/JPWO2022131233A1/ja
Publication of WO2022131233A1 publication Critical patent/WO2022131233A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans

Definitions

  • the present invention includes an invention relating to a medical shaft assembly and a method for manufacturing the same.
  • the present invention also relates to a medical shaft drill that is used by being inserted into a through hole (channel) in the lens barrel of a rigid endoscope and is used for cutting bone by rotating a drill head with a rotating shaft. include.
  • a medical shaft assembly in which two shafts are connected may be used.
  • the shaft (shank) of the drill portion is connected to the tip of the drive shaft (see, for example, Patent Document 1).
  • Patent Document 1 describes that the drive shaft and the shaft of the drill portion can be connected by press-fitting or screwing with a screw.
  • a shaft drill is used in surgery that requires bone cutting.
  • the drill portion constituting the tip portion is provided with a drill head, and the rotary shaft connected to the drill head rotates to cut a bone with the rotating drill head.
  • Patent Document 2 Japanese Patent Application Laid-Open No. It is disclosed in Japanese Patent Application Laid-Open No. 2013-18820 (Patent Document 2).
  • the shaft drill is used by being inserted into a through hole (channel) of a rigid endoscope, for example, in endoscopic spinal surgery. That is, the rotating shaft may rotate while being inserted into the channel of the rigid endoscope, and the vertebrae or the like may be cut under the endoscope by a drill head protruding toward the tip of the rigid endoscope.
  • the rigid endoscope when the rotating shaft inserted through the rigid endoscope is rotated at high speed, the rigid endoscope may be damaged due to contact with the rotating shaft, or the rotating shaft and the rigid endoscope may be damaged.
  • a new issue has become clear that heat generation due to friction can be a problem.
  • the rotating shaft has a small diameter with respect to the inner peripheral surface of the channel of the rigid endoscope to avoid problems due to contact, the strength of the rotating shaft with a small diameter becomes insufficient, or when the rotating shaft rotates. It was thought that the blurring would increase.
  • the method for manufacturing the medical shaft assembly and the medical shaft assembly according to the present invention has been made in view of the circumstances such as the above-mentioned [Problem 1], and the solution to the problem is the medical shaft. It is an object of the present invention to provide a medical shaft assembly having a novel structure with high connection strength between them.
  • the medical shaft drill according to the present invention has been made in view of the circumstances such as the above-mentioned [Problem 2], and the solution to the problem is to stabilize the operation of the rotating shaft during rotation. It is an object of the present invention to provide a medical shaft drill having a novel structure capable of avoiding a defect due to contact of a rotating shaft with a rigid endoscope.
  • a first aspect of the medical shaft assembly of the present disclosure is a first medical shaft having a connecting hole, a second medical shaft inserted into the connecting hole, and the first medical shaft. It is provided with a connecting pin inserted into the connecting through hole penetrating the peripheral wall of the connecting hole and the insertion portion into the connecting hole in the second medical shaft and fixed to the first medical shaft. ..
  • the first medical shaft and the second medical shaft are fixed by a connecting pin inserted into the connecting through hole and fixed to the first medical shaft. Therefore, it is possible to prevent the occurrence of breakage in the vicinity of the welded portion, which has been a problem in the conventional connection structure by welding. Further, even if the first medical shaft and the second medical shaft are made of different materials, they can be easily connected while ensuring sufficient connection strength. Further, between the peripheral wall of the connecting hole in the first medical shaft and the second medical shaft, the inner diameter dimension of the peripheral wall of the connecting hole and the outer diameter dimension of the insertion portion into the connecting hole in the second medical shaft. Since it is possible to provide a clearance in consideration of the tolerance with the above, it becomes easy to assemble the first medical shaft and the second medical shaft.
  • the second aspect is that in the medical shaft assembly described in the first aspect, the first medical shaft and the second medical shaft rotate integrally. Since the strain generated at the connecting portion when the first medical shaft and the second medical shaft are rotated integrally can be dispersed, it is possible to prevent breakage even when the shaft is rotated integrally.
  • the third aspect is that in the medical shaft assembly according to the first or second aspect, one of the first medical shaft and the second medical shaft is a drill bit. ..
  • the medical shaft assembly of the present disclosure has a high connection strength and can be used even when a large rotational torque such as a drill is required.
  • a fourth aspect is the medical shaft assembly according to any one of the first to third aspects, wherein the first medical shaft and the connecting pin are made of the same material and are made of the same material for the second medical use.
  • the shaft is made of a material different from that of the first medical shaft. According to this aspect, since the first medical shaft and the second medical shaft made of different materials can be connected, the material selection of the first medical shaft and the second medical shaft becomes easy.
  • a fifth aspect is the medical shaft assembly according to any one of the first to fourth aspects, in which a sleeve-shaped outer shaft covering the outer peripheral side of the first medical shaft is provided.
  • a sleeve-shaped outer shaft covering the outer peripheral side of the first medical shaft is provided.
  • the outer shaft is interposed between the first medical shaft which is a rotating shaft and the inner peripheral surface of the channel. Therefore, damage to the channel due to contact with the rotating first medical shaft is avoided, and the generation of frictional heat is also suppressed.
  • the outer peripheral side of the portion of the first medical shaft to which the connecting pin is fixed is covered with the outer shaft. be. According to this aspect, even if the connecting pin itself or the welding mark for fixing the connecting pin to the first medical shaft protrudes to the outer periphery from the first medical shaft, the protruding portion is a rigid endoscope. It is possible to prevent damage to the rigid endoscope by preventing contact with the channel of the mirror.
  • a seventh aspect is a method for manufacturing a medical shaft assembly, wherein the method includes a connecting hole extending in the axial direction and a first shaft through hole penetrating the peripheral wall of the connecting hole in the radial direction.
  • a step of preparing a medical shaft a step of preparing a second medical shaft having a second shaft through hole that can be inserted into the connecting hole and penetrates in the radial direction, and a step of preparing the first medical shaft.
  • the connecting pin inserted into the connecting through hole is fixed to the first medical shaft, and the first medical shaft and the second medical shaft are fixed. Can be easily connected to each other so that breakage at the connecting portion is less likely to occur. Further, even if the first medical shaft and the second medical shaft are made of different materials, they can be easily connected while ensuring sufficient connection strength. Further, since a sufficient clearance between the second medical shaft and the connecting hole can be provided, assembly becomes easy.
  • the eighth aspect is a medical shaft assembly, in which the second medical shaft is inserted and fixed in a connecting hole opened in the axial end face of the first medical shaft, and the second medical shaft is inserted and fixed.
  • a separation portion partially separated from the peripheral wall of the connection hole to the inner circumference is provided, and a connection pin that radially penetrates the peripheral wall of the connection hole in the first medical shaft.
  • the first medical shaft and the second medical shaft are mutually positioned by being welded to the separated portion of the second medical shaft in an abutting state.
  • the outer peripheral surface of the second medical shaft to which the connecting pin is abutted is a separation portion that is largely separated from the inner peripheral surface of the connecting hole of the first medical shaft.
  • the first medical shaft and the second medical shaft are positioned by the connecting pin, a clearance should be set between the peripheral wall of the connecting hole in the first medical shaft and the second medical shaft. Is also possible. According to this, for example, regardless of the variation in the inner diameter of the peripheral wall of the connecting hole and the outer diameter of the insertion portion into the connecting hole in the second medical shaft, the second medical shaft is used as the first medical shaft. It can be easily inserted into the connecting hole of.
  • a ninth aspect is that in the medical shaft assembly according to the eighth aspect, at the insertion portion of the first medical shaft into the connecting hole in the second medical shaft, the separated portions are both ends. It is provided in the axial intermediate region off the portion.
  • both ends of the second medical shaft can be brought close to the peripheral wall of the connecting hole in the first medical shaft, and the inclination of the first medical shaft and the second medical shaft can be achieved. It becomes easier to prevent.
  • a tenth aspect is the medical shaft assembly according to the eighth or ninth aspect, in which the connecting pins are arranged at positions sandwiching the second medical shaft in the radial direction, respectively. ..
  • the pair of connecting pins are fixed from both sides so as to sandwich the second medical shaft, so that the connecting strength between the first medical shaft and the second medical shaft can be efficiently obtained. can.
  • the eleventh aspect is in the medical shaft assembly according to any one of the eighth to tenth aspects, in which the plurality of connecting pins axial around the peripheral wall of the connecting hole in the first medical shaft.
  • the plurality of connecting pins are welded to the separated portion extending in the axial direction of the second medical shaft in an abutting state.
  • the space in the axial direction is effectively utilized for the first and second medical treatments. It is possible to obtain a large connection strength of the shaft. Further, since the connecting pins arranged at a plurality of positions in the axial direction are abutted against one separation portion extending in the axial direction, the relative positions of the first and second medical shafts in the axial direction when positioning by the connecting pins. The error is tolerated and the assembly work of the medical shaft assembly becomes easy.
  • a twelfth aspect is a method of manufacturing a medical shaft assembly, wherein a first medical shaft having a connecting hole extending in the axial direction and a first shaft through hole penetrating the peripheral wall of the connecting hole is provided.
  • a step of preparing a step of preparing a second medical shaft which is insertable into the connecting hole of the first medical shaft and has a separation portion partially provided on the outer peripheral surface, and the first step.
  • the second medical shaft is inserted into the connecting hole of the medical shaft, and the first shaft through hole of the first medical shaft and the separation portion of the second medical shaft are mutually positioned.
  • the second medical shaft is in a separated portion where the connecting pin inserted into the first shaft through hole of the first medical shaft is largely separated from the inner peripheral surface of the connecting hole of the first medical shaft.
  • the first shaft through hole and the separation portion are aligned with each other so as to be abutted against. Therefore, the length of the connecting pin can be increased, and a large amount of molten metal can be secured when the connecting pin abutted against the separation portion of the second medical shaft is melt-fixed. 1
  • the medical shaft and the second medical shaft can be firmly positioned and connected.
  • first medical shaft and the second medical shaft are positioned by the connecting pin, it is possible to set a clearance between the peripheral wall of the connecting hole in the first medical shaft and the second medical shaft. It is possible, and the second medical shaft can be easily inserted into the connecting hole of the first medical shaft.
  • a thirteenth aspect is a medical shaft drill having a drill head provided at the tip and having a rotating shaft inserted into a channel in a lens barrel of a rigid endoscope, which is external to the rotating shaft. It has an inserted sleeve-shaped outer shaft, and the rotating shaft is rotatable within the outer shaft inserted into the channel in the lens barrel of the rigid endoscope.
  • the rotating shaft connected to the drill head is guided by a non-rotating outer shaft, so that it is possible to prevent blurring during rotation and suppress heat generation due to friction. It is planned. Regardless of the outer diameter of the rotating shaft and the inner diameter of the channel of the lens barrel, the outer peripheral gap of the rotating shaft can be appropriately set by the thickness of the outer shaft, and blurring during rotation of the rotating shaft can be suppressed. ..
  • a fourteenth aspect is the medical shaft drill according to the thirteenth aspect, wherein both the rotary shaft and the outer shaft are made of metal, and the outer peripheral surface of the rotary shaft and the inner surface of the outer shaft are provided.
  • a low friction coating layer is provided on either one of the peripheral surfaces and the outer peripheral surface of the outer shaft.
  • the frictional resistance of the outer shaft with respect to the inner surface of the channel of the lens barrel is reduced to avoid damage to the lens barrel and to insert the lens barrel by reducing friction. Workability is improved.
  • the flow resistance of the fluid through the channel of the lens barrel can be reduced, and the outer shaft and rotation can be allowed while allowing the flow of fluid such as blood. It is possible to secure strength and take measures against blurring by increasing the diameter of the shaft.
  • a low friction coating layer on the outer peripheral surface of the outer shaft inserted through the channel such as when discharging saline solution to the bone cutting site through the channel or when discharging bone cutting debris to the outside through the channel of the lens barrel.
  • a fifteenth aspect is the medical shaft drill according to the thirteenth or fourteenth aspect, wherein the base end portion of the rotary shaft is engaged with the rotary output shaft to apply a driving force to the rotary shaft.
  • An engaging member made of synthetic resin to be transmitted to is fixed, and is rotatably externally attached to the rotating shaft on the tip side of the engaging member so as to be connected to the base end portion of the outer shaft. It is provided with a gap ring made of synthetic resin arranged between them.
  • the engaging member that rotates integrally with the rotating shaft and the base end portion of the outer shaft are indirectly in contact with the rotating shaft via a rotatable gap ring. ing. This makes it possible to prevent the generation of frictional heat due to the direct contact between the engaging member and the outer shaft.
  • the engaging member and the gap ring are made of synthetic resin, it is lighter than the case made of metal, and it is also possible to reduce heat generation by improving slipperiness and suppress heat transfer.
  • a sixteenth aspect is the medical shaft drill according to any one of the thirteenth to fifteenth aspects, wherein the rotary shaft includes a hollow shaft body, and the tip portion of the shaft body has the above-mentioned. The shank connected to the drill head is inserted and fixed.
  • the shaft body since the shaft body has a hollow structure, a good balance between strength and weight can be realized, and blurring during rotation can be suppressed.
  • the shaft body since the shaft body has a hollow structure, it has a large surface area and excellent cooling efficiency as compared with the solid structure, so that it is easy to release heat due to friction during rotation, and there is a problem due to heating. Hard to occur.
  • the shank of the drill head is inserted and fixed to the hollow shaft body, it can have a solid structure, is easy to manufacture, and can secure strength even with a small diameter.
  • the outer diameter of the drill head of the rotating shaft is made smaller than the inner diameter of the outer shaft.
  • the tip portion of the rotating shaft protruding from the outer shaft is provided with a protrusion on the outer peripheral surface away from the tip of the outer shaft toward the tip side.
  • the protrusion provided on the rotary shaft prevents the rotary shaft from being inadvertently pulled out from the outer shaft during transportation or handling of the shaft drill alone. Can be prevented by being locked to the tip of the outer shaft.
  • the protrusion provided on the rotary shaft is separated from the tip of the outer shaft when the shaft drill is used, the protrusion does not contact the outer shaft when the rotary shaft rotates, which is caused by the contact between the protrusion and the outer shaft. Heat generation and vibration are prevented.
  • Eighteenth aspect is the medical shaft drill according to the seventeenth aspect, wherein the tip portion of the rotary shaft has a tapered outer peripheral surface whose diameter gradually decreases toward the drill head.
  • the protrusion is provided on a large-diameter portion on the proximal end side of the tapered outer peripheral surface.
  • the tapered outer peripheral surface provided at the tip of the rotating shaft can improve the visibility of the drill head under an endoscope even when the drill head has a small diameter.
  • a nineteenth aspect is the medical shaft drill according to any one of the thirteenth to eighteenth aspects, wherein a connector detachably attached to a handpiece is attached to a base end portion of the outer shaft. It is provided by a synthetic resin material.
  • the connector is made of a synthetic resin material, the shape and structure of the connector can be designed more easily than those made of metal. Further, even if the connector comes into contact with the rotating shaft, heat generation can be reduced and heat transfer can be suppressed as compared with the case where a metal member comes into contact with the connector.
  • the medical shafts can be firmly connected to each other. Further, according to the medical shaft drill of the present disclosure, it is possible to avoid a defect due to contact of the rotary shaft with a rigid endoscope while stabilizing the operation of the rotary shaft during rotation.
  • FIG. 6 is an enlarged cross-sectional view showing the medical shaft assembly of FIG. 7, which corresponds to the IX-IX cross section of FIG.
  • FIG. 7 is a cross-sectional view of a first medical shaft constituting the medical shaft assembly shown in FIG.
  • FIG. 7 which corresponds to the XX cross section of FIG. XI-XI sectional view of FIG.
  • Sectional drawing of the shaft drill constituting the medical drill instrument shown in FIG. An exploded perspective view of the handpiece constituting the medical drill device shown in FIG.
  • the medical shaft assembly 100 includes a first medical shaft 101 and a second medical shaft 102 as shown in FIGS. 1 to 3.
  • the first medical shaft 101 is a drive shaft inserted into the body cavity from the working channel of the endoscope.
  • the second medical shaft 102 is a drill bit connected to the tip of the first medical shaft 101, has a shaft (shank) 121, and a blade portion 122 provided at the tip of the shank 121, and has a first medical treatment. It rotates integrally with the shaft 101.
  • the distal end side is the side closer to the patient, and the proximal end side is the opposite side.
  • the tip of the first medical shaft 101 is provided with a connecting recess 111 as a connecting hole extending in the axial direction.
  • the inner diameter of the connecting recess 111 is the same as or slightly larger than the outer diameter of the second medical shaft 102, and the base end portion of the second medical shaft 102 is inserted into the connecting recess 111.
  • a first shaft through hole 113 that penetrates the first medical shaft 101 in the radial direction is formed in a portion of the first medical shaft 101 where the connecting recess 111 is formed.
  • a second shaft through hole 123 that radially penetrates the second medical shaft 102 is formed at the base end portion of the second medical shaft 102.
  • the connecting through hole 104 By inserting the second medical shaft 102 into the connecting recess 111, the first shaft through hole 113 and the second shaft through hole 123 communicate with each other to form the connecting through hole 104.
  • a connecting pin 103 is inserted into the connecting through hole 104, and the connecting pin 103 is fixed to the first medical shaft 101, but not to the second medical shaft 102.
  • the first medical shaft 101 and the connecting pin 103 can be fixed by welding, for example.
  • laser welding using a laser is preferable because the thin connecting pin 103 can be firmly fixed to the first medical shaft 101 at a pinpoint. Since laser welding requires a very short welding time, it is possible to reduce metal fatigue caused by welding.
  • the first medical shaft 101 and the connecting pin 103 are fixed by welding, the first medical shaft 101 and the connecting pin 103 are preferably formed of materials having similar melting points, and are formed of the same material. Is more preferable.
  • the first medical shaft 101 and the second medical shaft 102 are connected via a connecting pin 103 inserted into the connecting through hole 104. Therefore, since the rotational torque is applied to the entire second medical shaft 102 via the connecting pin 103, the second medical shaft is less likely to be distorted and broken. The adverse effect of heating the second medical shaft 102 is reduced as compared with the case where the second medical shaft 102 itself is heated and welded.
  • the second medical shaft 102 since the second medical shaft 102 does not need to be welded to the first medical shaft 101 and the connecting pin 103, regardless of the material of the first medical shaft 101 and the connecting pin 103, the second medical shaft 102 does not need to be welded.
  • the material of the second medical shaft 102 can be freely selected. Therefore, the second medical shaft 102 can be formed of a material different from that of the first medical shaft 101, which is advantageous for the mutually different required performances of the first medical shaft 101 and the second medical shaft 102. It will be possible to realize.
  • the first medical shaft 101 and the second medical shaft 102 can also be formed of the same material.
  • the connecting pin 103 may be made of a material that can be easily welded to the first medical shaft 101, and the connecting pin 103 and the first medical shaft 101 are preferably made of the same material.
  • the inner diameter of the connecting recess 111 and the outer diameter of the second medical shaft 102 match as much as possible in order to increase the connecting strength. It is preferable to make it so that there is no gap.
  • the component dimensions of the first medical shaft 101 and the second medical shaft 102 are set. Regardless of the tolerance and the like, the assembly of the first medical shaft 101 and the second medical shaft 102 becomes easy.
  • the first medical shaft 101 and the second medical shaft 102 are connected so that their central axes match.
  • a screw groove is provided at the connecting portion between the first medical shaft 101 and the second medical shaft 102 and both are screwed together, or when the first medical shaft 101 and the second medical shaft 102 are screwed with a screw member.
  • the shaft tends to shake.
  • the structure of the connecting portion between the first medical shaft 101 and the second medical shaft 102 is simple, the shaft is less likely to shake, and the shaft can be rotated smoothly. Further, when the screw member is used, problems such as deterioration, misalignment, and dropout of the screw member are likely to occur.
  • the connecting pin 103 made of the same material as the first medical shaft 101 is pinpoint welded, such a problem is unlikely to occur.
  • the wall thickness of the wall surface of the first medical shaft 101 in the connecting recess 111 is preferably about 0.1 mm to 0.5 mm from the viewpoint of obtaining sufficient strength, although it depends on the material.
  • the thickness of the connecting pin 103 is preferably about 0.5 mm to 1.5 mm.
  • the length of the overlapping portion between the first medical shaft 101 and the second medical shaft 102 is not particularly limited and can be freely set, and is preferably about 10 mm to 400 mm as needed.
  • the position of the connecting through hole 104 is not particularly limited, but if it is formed at a position covered by a sleeve 124, which will be described later, about 5 mm to 20 mm from the tip of the first medical shaft 101, the welded portion of the connecting pin 103 is exposed to the outside. It is preferable because it does not.
  • the first medical shaft 101 can be a hollow shaft such as a hollow strand cable made of a plurality of stranded wires that are tightly twisted in a spiral shape.
  • the tip portion of the hollow shaft may be a connecting recess 111.
  • the first medical shaft 101 may have a configuration in which a core material is inserted into a hollow portion of the hollow shaft.
  • the connecting recess 111 may be formed so that the core material does not exist at the tip portion.
  • the core material can be fixed to the outer hollow shaft by welding.
  • the first medical shaft 101 may be a solid shaft. In this case, a hole in the axial direction may be drilled from the tip surface of the first medical shaft 101 with a drill or the like to form a connecting recess 111 into which the second medical shaft 102 is inserted.
  • the second medical shaft 102 is a drill bit having a blade portion 122 at the tip end portion of the shank 121.
  • the blade portion 122 has a hemispherical shape having a larger outer diameter than the shank 121.
  • a hard abrasive such as diamond is electrodeposited on the blade portion 122. That is, the hard abrasive is adhered to the outer peripheral surface of the blade portion 122, and the hard grinding material is held by the blade portion 122 by providing an electrodeposition layer such as diamond-like carbon (DLC) on the surface. ..
  • DLC diamond-like carbon
  • the structure can be ground not only on the tip end side of the blade portion 122 but also on the proximal end side (shank side).
  • the shape of the blade portion 122 is not limited to such a shape, and for example, a screw-shaped blade portion having a sharp thread can be used.
  • the second medical shaft 102 is a drill bit
  • its total length is not particularly limited, but it is preferably about 20 mm to 50 mm from the viewpoint of strength and the like.
  • the second medical shaft 102 is not limited to the drill bit, and may be a medical driver or the like. Even in such a case, the total length of the second medical shaft 102 can be set to a required length.
  • the sleeve 124 may be provided.
  • the sleeve 124 has, for example, the same structure and material as the outer shaft 36 described later, has a cylindrical shape, and can be made of resin or metal.
  • the fixing portion of the connecting pin 103 is covered with the sleeve 124 to improve the appearance. Further, by providing the sleeve 124, it is possible to prevent the first medical shaft 101 from coming into contact with the inside of the endoscope channel to generate heat or damaging the inside of the channel.
  • a plurality of connecting pins 103 can be provided. By providing a plurality of connecting pins 103, the connecting strength can be further increased. Further, by providing a plurality of connecting pins 103, it is possible to reduce the shake of the shaft even if the gap between the connecting recess 111 and the second medical shaft 102 is large.
  • the connecting pins 103 may be provided so as to be offset from each other in the axial position and intersect with each other. Further, as shown in FIG. 5, a plurality of connecting pins 103 may be provided so as to be parallel to each other when the radial cross section of the shaft is viewed.
  • the number of connecting pins 103 may be three or more.
  • the medical shaft assembly 100 of this embodiment can be formed as follows. First, a first medical shaft 101 having a connecting recess 111 extending in the axial direction is prepared. When the entire first medical shaft 101 is hollow, the tip of the lumen may be a connecting recess 111. Further, in the case of a configuration in which the core is inserted into the hollow shaft, a portion without a core may be provided on the tip side to form a connecting recess 111. In the case of the solid first medical shaft 101, the connecting recess 111 can be formed by grinding from the tip surface.
  • a first shaft through hole 113 penetrating in the radial direction is formed with respect to the peripheral wall portion of the connecting recess 111 in the first medical shaft 101.
  • a second medical shaft 102 having a shank 121 that can be inserted into the connecting recess 111 and having a second shaft through hole 123 that penetrates the shank 121 is prepared.
  • the shank 121 of the second medical shaft 102 is inserted into the connecting recess 111 of the first medical shaft 101 from the tip side, and the blade portion 122 of the second medical shaft 102 is on the tip side of the first medical shaft 101. It is in a state of being exposed to.
  • the shank 121 of the second medical shaft 102 is inserted into the connecting recess 111 of the first medical shaft 101, the first shaft through hole 113 and the second shaft through hole 123 are aligned with each other and communicate with each other.
  • the connecting through hole 104 is formed.
  • the connecting pin 103 is inserted into the connecting through hole 104.
  • the connecting pin 103 inserted in the connecting through hole 104 is welded to and fixed to the first medical shaft 101.
  • Laser welding using a YAG (yttrium-aluminum-garnet) laser or the like can be used for welding. If necessary, the welded portion may be polished.
  • the connecting pin 103 can be fixed to the first medical shaft 101 by welding other than laser welding, metal joining or bonding in a liquid phase or a solid phase, and the fixing means is not limited. ..
  • the length dimension of the connecting pin 103 that is, the protruding dimension from the outer peripheral surface of the second medical shaft 102 may be set before the insertion into the connecting through hole 104 or by cutting or the like after the insertion. ..
  • first medical shaft 101 is on the proximal end side of the medical device and the second medical shaft 102 is on the distal end side of the medical device.
  • second medical shaft 102 may be on the proximal end side of the medical device and the first medical shaft 101 may be on the distal end side of the medical device.
  • the first medical shaft is a drive shaft inserted into the working channel of the endoscope and the second medical shaft is a drill bit
  • the present disclosure shows that the medical shaft assembly is 2 It can be used in various applications to which the medical shaft of a book is connected. For example, it can also be used for a medical driver or the like.
  • the medical shaft assembly 130 includes a first medical shaft 132 having a connecting recess 111 as a connecting hole and a second medical shaft 134 having a shank 121 inserted into the connecting recess 111.
  • the peripheral wall portion of the connecting recess 111 in the first medical shaft 132 is formed with cuts 136, 136 as first shaft through holes that open in the inner peripheral surface and the tip surface.
  • the shank 121 of the second medical shaft 134 is provided with a connecting pin 103 protruding from the outer peripheral surface.
  • the connecting pin 103 is separated from the shank 121 and is inserted into the second shaft through hole 123 formed in the shank 121.
  • the connecting pin 103 can also be in the shape of a protrusion integrally formed with the shank 121.
  • the connecting pin 103 is inserted into the notch 136, 136 from the tip side.
  • the connecting pin 103 radially penetrating the peripheral wall of the connecting recess 111 at the cuts 136 and 136, the diameter of the first medical shaft 132 is reduced on the tip side of the connecting pin 103 to open the tip side of the cut 136.
  • the connecting pin 103 is prevented from coming off to the tip side with respect to the notch 136.
  • the first shaft through hole penetrating the connecting recess 111 is formed by the cuts 136 and 136, and the connecting pin 103 penetrates the peripheral wall portion of the connecting recess 111 in the cut 136 and 136 and the shank 121. It is inserted into the second shaft through hole 123 of.
  • the accuracy required for positioning the first shaft through hole 136 and the second shaft through hole 123 is relaxed, and the first medical shaft 132
  • the second medical shaft 134 can be easily assembled.
  • the means for fixing the connecting pin 103 inserted in the cuts 136 and 136 to the first medical shaft 132 is not limited to the diameter reduction processing of the first medical shaft 132.
  • the opening on the tip side of the cuts 136, 136 may be closed or narrowed by welding or adhesion, or the connecting pin 103 may be fixed to the first medical shaft 132 by welding or bonding to fix the tip of the cut 136, 136.
  • the side openings can also be left open.
  • the cuts 136 and 136 may, for example, penetrate the peripheral wall of the connecting recess 111 only in a part in the circumferential direction, or may penetrate the peripheral wall of the connecting recess 111 on both sides in the radial direction. .. In the latter case, the connecting pins 103 of the shank 121 are provided so as to project to both sides in the radial direction.
  • the medical shaft assembly 200 includes a first medical shaft 202 and a second medical shaft 204.
  • members and parts substantially the same as those in the first embodiment may be designated by the same reference numerals and detailed description thereof may be omitted.
  • the first medical shaft 202 includes a shaft body 206.
  • the shaft body 206 has a hollow cylindrical shape with a circular cross section, and a good balance between high strength and weight is realized in terms of weight ratio.
  • the shaft body 206 is made of a metal such as stainless steel for medical use or a titanium alloy, and has high strength.
  • the shaft body 206 may be provided with a low friction coating layer on the outer peripheral surface.
  • the low-friction coating layer is a coating layer that enhances the slipperiness of the surface (reduces the coefficient of friction), and is, for example, a fluororesin such as polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), silicon, and the like.
  • the inner and outer diameter dimensions of the shaft body 206 are not particularly limited, but for example, the inner diameter dimension is 2.2 mm and the outer diameter dimension is 2.7 mm. Therefore, the thickness dimension of the peripheral wall of the shaft main body 206 is set to, for example, about 0.25 mm.
  • first shaft through holes 208, 208, 208, 208 are formed in the shaft body 206.
  • the first shaft through hole 208 is a circular hole that penetrates the peripheral wall of the shaft body 206 in the radial direction.
  • the first shaft through holes 208 are provided at two locations in the circumferential direction that are opposite to each other in the radial direction and are separated from each other in the axial direction. Therefore, the two sets of first shaft through holes 208 and 208 arranged at the same axial position are arranged side by side in series in the radial direction.
  • the filling 209 is arranged in the hollow part in the shaft body 206.
  • the filling 209 is not particularly limited and may be a solid or a gel-like body.
  • the filling 209 of the present embodiment is solid, and is housed in the inner circumference of the shaft main body 206.
  • the filling 209 may be made of a single material as a whole, or may be formed of, for example, a tip portion and a base end portion made of different materials. In this case, the tip portion and the base end portion made of different materials may be independent of each other, and the entire filling 209 does not necessarily have to be continuous. Since the filling 209 is housed inside the hollow shaft body 206, the posture is stabilized by increasing the inertia during rotation, and the shake during rotation of the first medical shaft 202 is suppressed. ..
  • the filling 209 is not arranged at the tip portion of the shaft main body 206, and four first shaft through holes 208, 208, 208, 208 are formed at the tip portion of the shaft main body 206 in which the filling 209 is removed toward the tip side. ing. Further, in the tip portion of the first medical shaft 202 which is hollow without filling 209, a connecting recess 111 as a connecting hole is formed by the central hole of the shaft main body 206, and the second medical shaft 204 is formed. It is inserted into the connecting recess 111 from the tip side.
  • the second medical shaft 204 is provided with a drill head 210 at its tip.
  • the drill head 210 has a substantially spherical shape, and cutting particles such as diamond are fixed to the outer peripheral surface thereof.
  • the drill head 210 may have an electrodeposition layer such as a DLC layer covering the surface, similarly to the blade portion 122 of the first embodiment.
  • the specific structure of the drill head 210 is not particularly limited, and may include, for example, a cutting edge instead of the cutting particles.
  • the second medical shaft 204 includes a shank 212 that protrudes from the drill head 210 toward the base end.
  • the shank 212 has a solid rod shape and has a smaller diameter than the outer diameter of the drill head 210.
  • the shank 212 is made of a metal such as a titanium alloy or a cemented carbide.
  • the shank 212 is integrally formed with the drill head 210 and is connected to the drill head 210, and the second medical shaft 204 of the present embodiment includes the drill head 210 and the shank 212.
  • a pair of flat portions 214 and 214 are provided on the outer peripheral surface of the shank 212.
  • the flat portion 214 is composed of a plane extending orthogonal to the radial direction of the shank 212 having a cylindrical shape.
  • the pair of flat portions 214, 214 extend substantially parallel to each other.
  • the flat portion 214 extends continuously in the axial direction with a predetermined length.
  • the axial length dimension of the flat portion 214 is not particularly limited, but is larger than the distance between the axial outer ends of the first shaft through holes 208 and 208 arranged axially apart in the first medical shaft 202. It is lengthened and is more than twice as long as the distance between the axial outer ends of the first shaft through holes 208 and 208.
  • the length dimension of the flat portion 214 is preferably 1/3 or more of the length dimension of the shank 212, and is, for example, 7 mm or more. Further, in the present embodiment, the width dimension of the flat portion 214 is substantially the same as the diameter of the first shaft through hole 208 (connecting pin 216 described later). However, the width dimension of the flat portion 214 may be smaller or larger than, for example, the first shaft through hole 208.
  • the position of the first shaft through hole 208 (connecting pin 216 described later) with respect to the flat portion 214 in the connected state (described later) of the first medical shaft 202 and the second medical shaft 204 is indicated by a two-dot chain line. Indicated.
  • the second medical shaft 204 is connected to the first medical shaft 202 by fixing the shank 212 to the tip portion of the shaft main body 206 without the padding 209 in the inserted state.
  • the shank 212 of the second medical shaft 204 is provided with the first medical treatment by the connecting pin 216 inserted into the first shaft through hole 208 of the shaft body 206 of the first medical shaft 202. It is fixed to the shaft 202. It is desirable that the connecting pin 216 has a substantially cylindrical shape or a disk shape corresponding to the hole cross-sectional shape of the first shaft through hole 208, and is inserted into the first shaft through hole 208 without having a large gap. It is preferable that it is possible.
  • the connecting pin 216 is preferably made of the same metal material as at least one of the shaft body 206 and the shank 212, and is made of, for example, stainless steel.
  • the connecting pin 216 has a length of about 0.3 mm and a diameter of about 1.0 mm.
  • a second medical shaft 204 equipped with 214 is prepared.
  • the shank 212 of the second medical shaft 204 is inserted into the connecting recess 111 provided at the tip of the first medical shaft 202, and is flat with the first shaft through holes 208, 208, 208, 208.
  • the portions 214 and 214 are mutually positioned in the circumferential direction.
  • the outer peripheral surface of the shank 212 is largely separated from the inner peripheral surface of the shaft main body 206 at two points in the circumferential direction where the flat portions 214 and 214 are located, and the separated portions of the present embodiment are separated by the flat portions 214 and 214 in the circumferential direction. It is composed of two places.
  • the flat portions 214 and 214 constituting the separation portion are provided in the intermediate region in the axial direction away from both end portions at the insertion portion of the first medical shaft 202 into the connecting recess 111 in the second medical shaft 204. There is.
  • the connecting pins 216 are inserted into the first shaft through holes 208, 208, 208, 208 arranged on the pair of flat portions 214, 214, respectively.
  • the connecting pin 216 inserted into the first shaft through hole 208 penetrates the shaft body 206 of the first medical shaft 202, and the end face on the inner peripheral side is abutted against the flat portion 214 of the second medical shaft 204. ..
  • four connecting pins 216, 216, 216, 216 penetrate the first medical shaft 202 at four points and are abutted against the outer peripheral surface of the second medical shaft 204.
  • the connecting pin 216 in the first shaft through hole 208 is irradiated with a laser, and the connecting pin 216 is heated by the laser.
  • the connecting pin 216 is fixed to the first medical shaft 202 on the inner peripheral surface of the first shaft through hole 208.
  • At the end on the inner peripheral side is fixed to the outer peripheral surface (flat portion 214) of the shank 212 of the second medical shaft 204.
  • the first medical shaft 202 and the second medical shaft 204 are welded and fixed at four points by connecting pins 216, 216, 216, 216 to obtain the medical shaft assembly 200.
  • the laser irradiated to the connecting pin 216 is not particularly limited, and may be, for example, a pulse type such as a YAG laser or a ruby laser, or a continuous type such as carbon dioxide gas, and may be made of a material or size.
  • a pulse type such as a YAG laser or a ruby laser
  • a continuous type such as carbon dioxide gas
  • the medical shaft assembly 200 having a structure according to the present embodiment, even if a force in the twisting direction is applied when cutting the bone by the drill head 210, the first one is welded and fixed by the connecting pin 216.
  • the second medical shafts 202 and 204 are unlikely to cause damage such as breakage.
  • the reason why the strength of the first and second medical shafts 202 and 204 is advantageously secured is that, for example, the first and second medical shafts 202 and 204 themselves are heated and welded. It is conceivable that the change in material, residual stress, deformation, etc. due to heating of the first and second medical shafts 202 and 204 are reduced, and the strength of the first and second medical shafts 202 and 204 is secured. ..
  • damage to the second medical shaft 204 is prevented during bone cutting by avoiding a decrease in strength due to heating.
  • the connecting pin 216 is used.
  • the length of the shaft can be increased to obtain a large volume, and the fixing strength can be improved by welding.
  • the joint portion of the connecting pin 216 melted by heating and the second medical shaft 204 joined to the connecting pin 216 is prevented from being mechanically restricted in surface texture by the separation portion, and excessive to the surroundings. Heat transfer can also be reduced. Therefore, the joint portion is easily spread so as to enter between the radial directions of the first and second medical shafts 202 and 204. As a result, the fixing area of the connecting pin 216 to the outer peripheral surface (flat portion 214) of the shank 212 of the second medical shaft 204 is increased, and the fixing strength of the connecting pin 216 to the second medical shaft 204 is largely secured. ..
  • the connecting pin 216 is easily locked to the opening peripheral portion of the first shaft through hole 208 in the first medical shaft 202, and the fixing strength of the connecting pin 216 to the first medical shaft 202 is largely secured. Therefore, it is possible to obtain a large connection strength by the connecting pin 216 between the first medical shaft 202 and the second medical shaft 204, and the medical shaft set in the welded portion of the first and second medical shafts 202 and 204. Damage to the solid 200 is more advantageously prevented.
  • the connecting pin 216 penetrates the peripheral wall of the shaft body 206 and is abutted against the outer peripheral surface of the shank 212 of the second medical shaft 204 without penetrating the second medical shaft 204. It is welded.
  • the second medical shaft 204 can be easily manufactured and the second medical shaft 204 can be manufactured. It becomes easy to secure the strength of.
  • the second medical shaft 204 is a drill head 210 that requires strength, and the strength is improved by eliminating the through hole, and the through hole that is difficult to form is formed. By eliminating the need, manufacturing can be facilitated.
  • first medical shaft 202 and the second medical shaft 204 it is necessary to position the first medical shaft 202 and the second medical shaft 204 with higher accuracy than the structure in which the connecting pin penetrates the first medical shaft 202 and the second medical shaft 204. It is easy to assemble the first and second medical shafts 202 and 204.
  • the first and second medical shafts 202 and 204 are particularly easy in the axial direction. Can be positioned to. Further, since the flat portion 214 extends in the axial direction, for example, the relative position of the first shaft through hole 208 with respect to the flat portion 214 in the axial direction is appropriately adjusted to appropriately adjust the position of the first medical shaft 202 of the shank 212. It is also possible to change and set the exposure length from.
  • two connecting pins 216 and 216 provided at two positions separated from each other in the axial direction are abutted against one flat portion 214 and welded to the first medical shaft 202 and the second. Alignment with the medical shaft 204 in the axial direction is easy.
  • first and second medical shafts 202 and 204 are connected at four points by four connecting pins 216, 216 and 216, 216, the first and second medical shafts 202 and 204 are connected by the connecting pins 216.
  • the fixed strength of is greatly secured.
  • the welding positions of the first and second medical shafts 202 and 204 by the four connecting pins 216, 216, 216 and 216 are separated from each other in the circumferential direction and the axial direction, the first and second medical treatments are performed. Efficiently ensuring the fixing strength of the shafts 202 and 204 and preventing shaft shake during rotation are advantageous.
  • two points in the circumferential direction in which the first and second medical shafts 202 and 204 are welded are located on both sides in one radial direction, and the welded parts are the medical shaft assembly 200. It is provided substantially symmetrically with respect to the central axis, and the mutual distance in the circumferential direction is lengthened. As a result, it is possible to advantageously secure the fixing strength of the first and second medical shafts 202 and 204 and prevent shaft shake during rotation with a small number of welded parts.
  • the number, arrangement, shape, size, etc. of the connecting pins 216 can be appropriately changed as needed.
  • the separated portions are formed by providing the flat portions 214 and 214 on the outer peripheral surface of the shank 212.
  • the inner peripheral surface of the shaft body 206 is a cylindrical surface and the shank 212 is provided with a cylindrical surface. Since the outer peripheral surface is an elliptical cylindrical surface, separation portions may be formed on both sides in the radial direction of the shank 212 in the minor axis direction. Further, the separated portion may be formed by forming a concave portion or a concave groove that opens on the outer peripheral surface of the shank 212.
  • the separation portion may be provided so as to extend in the circumferential direction, and for example, the separation portion may be formed by an annular groove that is continuous over the entire circumference. According to this, the positioning of the first medical shaft 202 and the second medical shaft 204 in the circumferential direction becomes easy, and the molten connecting pin 216 spreads in the circumferential direction to facilitate the positioning of the first medical shaft 202 and the second medical shaft 204 in the circumferential direction. By entering between the radial oppositions of 202 and 204, it is possible to advantageously realize the securing of the welding area and the like. Further, the separation portions may be provided at a plurality of locations in the axial direction separated from each other.
  • connection structure between the first medical shaft 202 and the second medical shaft 204 shown in the present embodiment can be applied to a medical shaft assembly other than the illustrated shaft drill as in the first embodiment. can.
  • the tip end side may be the first medical shaft 202
  • the proximal end side may be the second medical shaft 204.
  • the 14 to 16 show a medical drill device 12 provided with a medical shaft drill (hereinafter, shaft drill) 10 as a third embodiment of the present invention.
  • the medical drill device 12 has a structure in which a handpiece 14 is attached to a base end portion of a shaft drill 10.
  • the tip side refers to the left side in FIG. 16 which is the drill head 16 side described later
  • the proximal end side refers to the right side in FIG. 16 which is the handpiece 14 side.
  • the vertical direction means the vertical direction in FIG.
  • the shaft drill 10 is provided with a drill head 16 at its tip.
  • the drill head 16 has a substantially spherical shape, and cutting particles such as diamond are fixed to the outer peripheral surface thereof.
  • the drill head 16 may have an electrodeposition layer such as a DLC layer covering the surface, similarly to the blade portion 122 of the first embodiment.
  • the specific structure of the drill head 16 is not particularly limited, and for example, a cutting edge may be provided instead of the cutting particles.
  • the shank 18 of the drill head 16 projects toward the proximal end.
  • the shank 18 has a solid rod shape and has a smaller diameter than the outer diameter of the drill head 16.
  • the shank 18 is made of a metal such as stainless steel for medical use, a titanium alloy, or a cemented carbide.
  • the shank 18 is integrally formed with the drill head 16 and is connected to the drill head 16.
  • the shank 18 is inserted and fixed to the tip of the shaft body 20.
  • the shaft body 20 has a hollow cylindrical shape with a circular cross section, and a good balance between high strength and weight is realized in terms of weight ratio.
  • the shaft body 20 is made of a metal such as stainless steel for medical use or a titanium alloy, and has high strength.
  • the shaft body 20 is provided with a low friction coating layer on the outer peripheral surface.
  • the low-friction coating layer is a coating layer that enhances the slipperiness of the surface, and is variously known such as fluororesin such as polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), silicon, and ceramic. Can be adopted as appropriate.
  • the outer diameter of the shaft body 20 is not particularly limited as long as it can be inserted into the outer shaft 36 described later, but is, for example, 2.75 mm.
  • Filling 22 is arranged in the hollow portion in the shaft body 20.
  • the filling 22 is not particularly limited and may be a solid or a gel-like body.
  • the filling 22 of the present embodiment is solid and is housed in the shaft body 20.
  • the filling 22 may be made of a single material as a whole, or may be formed of, for example, a tip portion and a base end portion made of different materials. In this case, the tip portion and the base end portion made of different materials may be independent of each other, and the entire filling 22 does not necessarily have to be continuous. Since the filling 22 is housed inside the hollow shaft main body 20, the posture is stabilized by increasing the inertia during rotation, and the shake during rotation of the shaft main body 20 is suppressed. The entire filling 22 may be housed in the shaft body 20.
  • the filling 22 is not arranged at the tip of the shaft body 20, but the shank 18 is inserted and fixed to the tip of the hollow shaft body 20, and the shank 18 and the shaft body 20 together form a medical shaft assembly.
  • the rotating shaft 24 as a solid is configured.
  • the shaft body 20 provided with the padding 22 is used as the first medical shaft
  • the shank 18 is used as the second medical shaft
  • the tip portion of the hollow shaft body 20 is connected. It is said to be a hole.
  • the rotating shaft 24 having a structure in which the shank 18 having a solid structure is inserted and fixed to the shaft body 20 having a hollow structure allows the strength of the shank 18 close to the drill head 16 to which a particularly strong force is applied to be secured by the solid structure, and further, the shaft body. 20 can be prevented from breaking by having a large-diameter hollow structure that makes it easy to secure strength.
  • the shank 18 may be press-fitted and fixed to the shaft body 20, or may be fixed by means such as welding, bonding, pinning, caulking, and screwing in the inserted state.
  • the shank 18 can be detachably fixed to the shaft body 20, whereby the drill bit composed of the drill head 16 and the shank 18 can be removed from the shaft body 20 for maintenance or replacement. Become.
  • a drill head 16 is provided at the tip of the rotating shaft 24.
  • the drill head 16 is fixed to the rotary shaft 24 and can rotate integrally with the rotary shaft 24.
  • the shank 18 and the shaft body 20 constituting the rotary shaft 24 are made of metal.
  • a step portion 26 is formed by the difference between the outer diameter of the shaft body 20 and the outer diameter of the shank 18, and the tip side of the step portion 26 has a smaller diameter than the proximal end side.
  • the shank 18 constitutes a small diameter portion on the tip side of the step portion 26, and the shaft body 20 constitutes a large diameter portion on the proximal end side of the step portion 26.
  • An engaging member 28 is fixed to the base end of the rotating shaft 24.
  • the engaging member 28 has a bottomed cylindrical shape, and the base end portion of the shaft body 20 is fixed in the inserted state. It is desirable that the engaging member 28 is made of a material capable of achieving low friction on the surface and low heat transfer coefficient.
  • the engaging member 28 is made of synthetic resin, and is formed of, for example, PEEK having a small surface friction coefficient and a small heat transfer coefficient (excellent in heat resistance).
  • the engaging member 28 includes an engaging ridge 30 that projects to the outer periphery. The engaging ridge 30 projects to the outer peripheral surface and extends linearly in the axial direction.
  • the engaging ridges 30 are provided at four locations in the circumferential direction of the engaging member 28 and are arranged at substantially equal intervals in the circumferential direction, but the number of formations, arrangement, and the like are not particularly limited. ..
  • the engaging ridge 30 of the present embodiment has a substantially semicircular cross section, but may have another cross-sectional shape such as a substantially rectangular cross section.
  • a gap ring 32 is extrapolated to the rotating shaft 24.
  • the gap ring 32 is made of synthetic resin like the engaging member 28, and is formed of, for example, PEEK.
  • the gap ring 32 is extrapolated so as to be rotatable relative to the rotating shaft 24.
  • the gap ring 32 is formed with lightening recesses 34 that open on the outer peripheral surface at two locations in the circumferential direction, and the heat dissipation performance is improved by increasing the surface area.
  • the gap ring 32 is extrapolated to the rotating shaft 24 on the distal end side of the engaging member 28.
  • the gap ring 32 has a larger diameter than the engaging member 28, and the outer peripheral surface is located on the outer peripheral side of the tip of the engaging ridge 30 of the engaging member 28.
  • the outer shaft 36 is extrapolated to the rotating shaft 24.
  • the outer shaft 36 has a sleeve shape having an inner diameter substantially the same as or slightly larger than the outer diameter of the shaft main body 20.
  • the outer shaft 36 is made of a metal such as stainless steel for medical use or a titanium alloy.
  • the outer shaft 36 is extrapolated to the shaft body 20, and the rotating shaft 24 is rotatable within the outer shaft 36. Similar to the outer peripheral surface of the shaft main body 20, a low friction coating layer is provided on the inner peripheral surface and the outer peripheral surface of the outer shaft 36.
  • the inner diameter of the outer shaft 36 is not particularly limited as long as the rotating shaft 24 can be inserted, but is, for example, 2.8 mm.
  • a connector 38 is attached to the base end portion of the outer shaft 36.
  • the connector 38 is made of a synthetic resin material such as polycarbonate.
  • the connector 38 has a hollow cylindrical shape as a whole, and the outer shaft 36 is fixed to the inner peripheral surface.
  • the connector 38 is provided with an operation piece 40 projecting from the outer peripheral surface at the tip portion thereof.
  • the operation piece 40 has an elliptical plate shape in the present embodiment, it may have a disk shape, a polygonal plate shape, a deformed plate shape, or the like.
  • the outer peripheral surface shape of the operation piece 40 is other than a circular shape, and an elliptical shape or a polygonal shape is preferable.
  • the connector 38 includes a connecting protrusion 42 protruding from the upper surface of the base end portion.
  • the connecting protrusion 42 is a protrusion extending in a substantially U-shape with the tip side open in a top view, and includes a pair of locking portions 44, 44 protruding outward from the left and right at the intermediate portion.
  • the rotary shaft 24 inserted through the outer shaft 36 projects toward the proximal end side from the connector 38.
  • the engaging member 28 fixed to the proximal end portion of the rotating shaft 24 is located closer to the proximal end side than the connector 38.
  • the gap ring 32 extrapolated to the rotary shaft 24 is arranged between the connector 38 provided at the base end portion of the outer shaft 36 and the engaging member 28 provided at the base end portion of the rotary shaft 24 in the axial direction. Has been done.
  • the gap ring 32 has a larger diameter than the outer shaft 36, and cannot be inserted into the outer shaft 36.
  • the gap ring 32 has a larger diameter than the opening on the base end side of the connector 38.
  • the shaft drill 10 is used by being connected to the handpiece 14 by attaching the connector 38 to the tip portion of the handpiece 14.
  • the handpiece 14 is a portion that the practitioner grips and operates by hand.
  • the handpiece 14 of the present embodiment includes an electric motor 46 that generates a rotational driving force, a power supply device 48 such as a battery pack that supplies electric power to the electric motor 46, and an electric motor from the power supply device 48. It has a built-in control board 50 that controls the power supply to the 46.
  • the handpiece 14 may be connected to an external power supply device by a power cord and supplied with power from the outside, or exert a rotational driving force by the pressure of air supplied and discharged by an external pump. It may be pneumatic.
  • the housing of the handpiece 14 of the present embodiment is a pen-holding type having a linear shape, but may be, for example, an L-shaped gun type.
  • the rotary shaft 24 is connected to the rotary output shaft 52 of the electric motor 46 built in the handpiece 14, and the rotary shaft 24 is rotated by the generated driving force of the electric motor 46.
  • the rotary output shaft 52 of the electric motor 46 includes a connection recess 54 that is open toward the tip, and is fixed to the base end portion of the rotary shaft 24 at the tip end portion of the connection recess 54.
  • the engaging member 28 is inserted.
  • the rotary output shaft 52 of the electric motor 46 is provided with a plurality of concave grooves corresponding to the engaging ridges 30 of the engaging member 28 on the inner peripheral surface of the connecting recess 54, and the engaging protrusions with respect to the concave grooves.
  • the rotational driving force of the electric motor 46 is transmitted from the rotary output shaft 52 to the rotary shaft 24.
  • the gap ring 32 arranged on the tip side of the engaging member 28 is housed in the housing of the handpiece 14.
  • the handpiece 14 is provided with a power switch 56 and a rotation control switch 58 for controlling the operation of the electric motor 46 on the upper surface.
  • the handpiece 14 can switch the operation and stop of the electric motor 46 by the practitioner pressing the power switch 56, and adjusts the rotation speed of the electric motor 46 by sliding the rotation control switch 58. be able to. Therefore, by operating the power switch 56 and the rotation control switch 58, the practitioner can switch between rotation and stop of the drill head 16 provided at the tip of the rotation shaft 24, control the rotation speed, and the like. .. Since the practitioner grips the tip portion of the handpiece 14 having a relatively small diameter, the rotation control switch 58 is arranged at the tip portion of the handpiece 14, making it easy to operate the rotation control switch 58 during use.
  • the power switch 56 is arranged at the rear end portion of the handpiece 14 to avoid erroneous operation of the power switch 56.
  • the connector 38 fixed to the outer shaft 36 is inserted into a connecting cylinder portion 60 whose base end portion is provided at the tip of the handpiece 14.
  • the connection cylinder portion 60 is provided with a notch-shaped connecting recess 62 at the upper portion.
  • the connecting recess 62 has a shape corresponding to the connecting protrusion 42 of the connector 38 in the top view shown in FIG. 16, and the locking recesses 64, 64 corresponding to the locking portions 44, 44 of the connecting protrusion 42 are provided. It is formed on both the left and right sides.
  • the connecting protrusion 42 of the connector 38 is inserted into the connecting recess 62 of the handpiece 14, and the locking portions 44, 44 of the connecting protrusion 42 are inserted into the locking recesses 64, 64 of the connecting recess 62.
  • the locking portions 44, 44 are axially locked to the inner surfaces of the locking recesses 64, 64, and the connector 38 is restricted from coming off from the connecting cylinder portion 60.
  • the outer shaft 36 is attached to the handpiece 14 via the connector 38 and is arranged so as to extend from the handpiece 14 toward the tip end side.
  • the ridges protruding outward on the opposite side of the connector 38 from the connecting protrusion 42 and extending in the axial direction open to the inner peripheral surface on the side opposite to the connecting recess 62 in the connecting cylinder 60, which is a groove-shaped concave portion (not shown).
  • the outer shaft 36 and the handpiece 14 are also positioned with each other in the circumferential direction by being inserted into the ridge and the groove-shaped concave portion being locked in the circumferential direction.
  • the locking portions 44, 44 can be pulled out from the locking recesses 64, 64, and the connector 38 can be separated from the handpiece 14.
  • the outer shaft 36 is detachably attached to the handpiece 14, facilitating replacement in the event of damage or failure, and making it compact in storage.
  • the shaft drill 10 and the handpiece 14 can be separated from each other, for example, the shaft drill 10 can be used once and the handpiece 14 can be used a plurality of times. It can be kept clean and the cost can be reduced by using the expensive handpiece 14 multiple times.
  • the method of applying the force toward the tip side to the connector 38 is not particularly limited, but for example, by pushing the operation piece 40 toward the tip side or pulling it from the tip side, the force toward the tip side is applied to the connector 38. , The connector 38 can be removed from the handpiece 14.
  • the outer shaft 36 In the state where the connector 38 is attached to the handpiece 14, the outer shaft 36 is fixed to the handpiece 14 and is not rotatable. Therefore, when the rotating shaft 24 is rotated by the driving force of the electric motor 46 of the handpiece 14, the rotating shaft 24 rotates relative to the outer shaft 36.
  • the medical drill instrument 12 having such a structure is inserted through a rigid endoscope 66 and used when cutting a bone in an endoscopic operation.
  • the rigid endoscope 66 includes a rigid lens barrel 68, and a shaft drill 10 is inserted through a channel 70 penetrating the lens barrel 68.
  • the drill head 16 of the shaft drill 10 may be positioned so as to project toward the tip end side from the lens barrel 68.
  • the rigid endoscope 66 is provided with a camera, a light, or the like (not shown) at the tip portion thereof, and the drill head 16 protruding from the lens barrel 68 to the tip can be visually recognized under the endoscope.
  • the base end portion of the shaft drill 10 projects toward the base end side of the lens barrel 68, and the handpiece 14 is arranged on the base end side of the lens barrel 68.
  • the outer shaft 36 may be largely separated from the inner peripheral surface of the channel 70 of the rigid endoscope 66, but it is desirable that the outer shaft 36 is in contact with or slightly separated from the inner peripheral surface.
  • the outer shaft 36 is made of metal, it has high strength and can sufficiently obtain pushability when it is inserted into the channel 70 of the rigid endoscope 66. Since the low friction coating layer is provided on the outer peripheral surface of the outer shaft 36, frictional resistance and catching are suppressed when the shaft drill 10 is inserted into the channel 70 of the rigid endoscope 66, which makes it easy. Can be inserted into. In addition, resistance when liquids such as blood and saline, and cut bone fragments (cutting debris) move between the inner peripheral surface of the channel 70 and the outer peripheral surface of the outer shaft 36 is reduced. As a result, it is possible to secure the field of view under the endoscope by discharging the physiological saline solution, and to efficiently discharge the cutting chips by suction.
  • the outer shaft 36 is attached to the rigid endoscope 66 unless the practitioner intentionally rotates it. On the other hand, it does not rotate.
  • the rotary shaft 24 inserted through the outer shaft 36 is rotatable within the outer shaft 36 inserted through the channel 70 of the lens barrel 68.
  • the outer shaft 36 is interposed between the rotating shaft 24 and the rigid endoscope 66, and the rotating shaft 24 and the rigid endoscope 66 do not come into contact with each other.
  • FIG. 16 the cross section of the rigid endoscope 66 passing through the channel 70 is shown.
  • the medical drill device 12 can scrape the bone by bringing the rotating drill head 16 into contact with the bone to be cut under the endoscope. Since the outer peripheral surface of the rotary shaft 24 continuous with the drill head 16 and the inner peripheral surface of the outer shaft 36 inserted into the channel 70 of the rigid endoscope 66 have a low friction coating layer, the rotary shaft 24 Is efficiently rotatable in the outer shaft 36, and heat generation due to friction is also reduced. Since the rotary shaft 24 is made of metal, it has high strength, and the drill head 16 can be brought into contact with the bone with sufficient force, and the reaction force when the drill head 16 comes into contact with the bone. Damage to the rotary shaft 24 due to the above is avoided.
  • the rotary shaft 24 When the rotary shaft 24 is rotated by the generated driving force of the electric motor 46, the rotary shaft 24 is covered with the outer shaft 36 and does not come into contact with the rigid endoscope 66. The damage and heating of 66 are prevented. Further, by adjusting the thickness dimension of the outer shaft 36 according to the difference between the outer diameter dimension of the rotary shaft 24 and the inner dimension of the channel 70 of the rigid endoscope 66, the rotary shaft 24 is formed by the outer shaft 36. It can be guided appropriately, and the blurring of the rotating shaft 24 during rotation can be suppressed.
  • a gap ring 32 is arranged between the engaging member 28 fixed to the rotating shaft 24 and the connector 38 fixed to the outer shaft 36. Since the gap ring 32 is rotatable relative to both the rotary shaft 24 and the outer shaft 36, when the rotary shaft 24 is rotationally driven, a part of the rotational force of the rotary shaft 24 is transmitted. Although it goes around, the rotation speed of the gap ring 32 is lower than the rotation speed of the rotary shaft 24. Therefore, the frictional heat generated between the engaging member 28 and the gap ring 32 and the frictional heat between the gap ring 32 and the connector 38 are more than the frictional heat when the engaging member 28 rotating at high speed is in direct contact with the connector 38. The amount of heat generated is smaller for the frictional heat generated between them. As a result, the gap ring 32 prevents damage to the engaging member 28 and the connector 38 due to heat.
  • the outer shaft 36, the engaging member 28, the handpiece 14, and the like shown in the present embodiment can also be adopted in combination with the medical shaft assemblies 100 and 200 according to the first and second embodiments.
  • the medical shaft assemblies 100 and 200 can also be adopted as the rotary shaft 24 of the present embodiment.
  • FIG. 20 shows a tip portion of a medical shaft drill 80 as a fourth embodiment of the present invention.
  • the members and parts substantially the same as those in the third embodiment are designated by the same reference numerals in the drawings, and the description thereof will be omitted.
  • the shaft drill 80 includes a shank 82 extending from the drill head 16 toward the base end.
  • the shank 82 has a tapered outer peripheral surface 84 whose tip portion connected to the drill head 16 gradually decreases in diameter toward the drill head 16.
  • the outer peripheral surface of the shank 82 is a cylindrical surface whose base end side extends with a substantially constant diameter from the tapered outer peripheral surface 84, and the base end portion of the shank 82 having the cylindrical surface is inserted and fixed to the shaft body 20. There is. Since the shank 82 is inserted and fixed to the shaft body 20, the portion of the rotary shaft 24 composed of the shaft body 20 has a larger diameter than the portion composed of the shank 82, and the tip of the rotary shaft 24 has a larger diameter.
  • a step portion 26 is formed in the portion.
  • the rotary shaft 24 has a tip portion smaller than the step portion 26 formed by the shank 82 and a smaller diameter than the base end portion of the step portion 26 formed by the shaft main body 20.
  • the tip portion of the rotary shaft 24 with respect to the step portion 26 is provided with a tapered outer peripheral surface 84 having a smaller diameter toward the tip.
  • the drill head 16 of the present embodiment has an outer dimension smaller than the inner diameter dimension of the outer shaft 36, and has a size capable of passing through the outer shaft 36.
  • the specific size is not particularly limited, but for example, the drill head 16 has cutting particles fixed to a spherical body having a diameter of 2.5 mm, and the inner diameter of the outer shaft 36 is 2.8 mm.
  • a ring member 86 constituting a protrusion is attached to a large diameter portion on the base end side of the step portion 26 formed by the shaft main body 20.
  • the ring member 86 is extrapolated to the shaft main body 20 constituting the large diameter portion on the base end side of the step portion 26 in the rotary shaft 24, and is provided so as to project on the outer peripheral surface of the large diameter portion of the shaft main body 20. ing.
  • the ring member 86 is fixed to the shaft body 20 by means such as welding, caulking, and press-fitting.
  • the ring member 86 is made of a metal that is harmless to the human body, such as medical stainless steel and titanium alloy.
  • the outer diameter of the ring member 86 is larger than the inner diameter of the outer shaft 36, so that the ring member 86 cannot pass through the outer shaft 36.
  • the outer diameter of the ring member 86 is 3.1 mm.
  • the outer diameter of the ring member 86 is less than or equal to the outer diameter of the outer shaft 36, whereby the ring member 86 is less likely to be caught when inserted into a through hole of a rigid endoscope (not shown), and also , It is unlikely to adversely affect the tip field of view of the camera under an endoscope.
  • the ring member 86 is arranged at a position away from the tip of the outer shaft 36 toward the tip.
  • the ring member 86 does not come into contact with the outer shaft 36 when the shaft drill 80 is in use.
  • the outer shaft 36 and the rotary shaft 24 are positioned so as not to be relatively movable in the axial direction and rotate.
  • the ring member 86 fixed to the shaft 24 does not come into contact with the outer shaft 36.
  • a step portion 26 is provided at the tip portion of the rotary shaft 24, the tip side of the step portion 26 has a smaller diameter, and the shank 82 has a smaller diameter. It is provided with a tapered outer peripheral surface 84 whose tip portion has a smaller diameter toward the drill head 16.
  • the tip portion of the rotating shaft 24 is provided in the view of the camera provided at the tip of the endoscope. The drill head 16 can be seen by the camera without getting in the way.
  • the ring member 86 is provided at a position separated from the drill head 16 toward the base end side, and the ring member 86 does not easily interfere with the visual recognition of the drill head 16 by the camera.
  • the rotary shaft 24 is pulled out toward the proximal end side with respect to the outer shaft 36 in the shaft drill 80 alone which is not attached to the handpiece (not shown). There is a risk of separation. Therefore, a ring member 86 having a size that cannot pass through the outer shaft 36 is attached to the rotary shaft 24, and the ring member 86 is locked to the tip of the outer shaft 36 so that the rotary shaft 24 is outside. It is possible to prevent the shaft 36 from coming off to the proximal end side.
  • the engagement member fixed to the base end portion of the rotary shaft 24 allows the engaging member fixed to the base end portion of the rotary shaft 24 to come off from the outer shaft 36 of the rotary shaft 24 through the gap ring or directly to the base end of the outer shaft 36. It is prevented by being locked in the axial direction to the connector fixed to the portion.
  • the ring member 86 is located on the tip side of the tip of the outer shaft 36 when the shaft drill 80 is attached to the handpiece, and does not come into contact with the outer shaft 36. Therefore, even if the ring member 86 rotates together with the rotating shaft 24, problems such as damage and heat generation due to contact with the outer shaft 36 do not occur.
  • the protrusions for preventing the rotary shaft 24 from coming off from the outer shaft 36 are formed of the ring member 86, but the protrusions are, for example, in the circumferential direction on the outer peripheral surface of the shaft body 20. Can be partially provided.
  • the step portion 26 is not limited to the one formed by the difference in the outer diameter dimension between the shaft main body 20 and the shank 82.
  • the tip portion of the shaft main body 20 is machined to have an outer diameter larger than that of the base end portion. By reducing the size, the step portion 26 can be formed in the middle of the shaft body 20.
  • FIG. 21 shows a shaft drill 90 as a fifth embodiment of the present invention.
  • the shaft drill 90 has a shorter axial length of the tapered outer peripheral surface 84 than the shaft drill 80 of the fourth embodiment. Further, the distance from the tip of the outer shaft 36 to the drill head 16 is also lengthened. Even with the shaft drill 90 having a structure according to the present embodiment, the same effect as that of the shaft drill 80 of the fourth embodiment can be obtained.
  • the present invention is not limited by the specific description thereof.
  • the specific structure of the handpiece 14 is not particularly limited, and various conventionally known structures can be adopted.
  • the connection structure between the handpiece 14 and the shaft drill 10 is not limited as long as the outer shaft 36 is held so as not to rotate and the rotary driving force is applied to the rotary shaft 24.
  • the ring member 86 is not necessarily provided only when the outer diameter of the drill head 16 is smaller than the inner diameter of the outer shaft 36. If the ring member 86 is provided when the outer diameter of the drill head 16 is larger than the inner diameter of the outer shaft 36, contact of the drill head 16 with the outer shaft 36 is avoided in the single state of the shaft drill.
  • the medical shaft assembly disclosed in the present disclosure is useful in medical equipment or the like in which the connection strength between medical shafts is high and a large force is applied to the shafts.
  • the medical shaft drill of the present disclosure is a rigid endoscope because the operation of the rotary shaft during rotation is stabilized and the trouble caused by the contact of the rotary shaft with the rigid endoscope is avoided. It is useful when cutting bones etc. in the procedure below.

Abstract

The present invention makes it possible to provide a medical shaft assembly in which the strength of connection between medical shafts is high. A medical shaft assembly 100 comprises a first medical shaft 101 having a connection hole 111, a second medical shaft 102 inserted into the connection hole 111, and a connection pin 103 fixed to the first medical shaft 101. The connection pin 103 is inserted into a connection through hole 104 that extends through the peripheral wall of the connection hole 111 of the first medical shaft 101 and an inserted portion of the second medical shaft 102 in the connection hole 111.

Description

医療用シャフト組立体および医療用のシャフトドリルMedical shaft assembly and medical shaft drill
 本発明は、医療用シャフト組立体及びその製造方法に関する発明を含む。また、本発明は、硬性内視鏡の鏡筒内の貫通孔(チャネル)へ挿通されて用いられ、回転シャフトによってドリルヘッドを回転させて骨の切削に用いられる医療用のシャフトドリルに関する発明を含む。 The present invention includes an invention relating to a medical shaft assembly and a method for manufacturing the same. The present invention also relates to a medical shaft drill that is used by being inserted into a through hole (channel) in the lens barrel of a rigid endoscope and is used for cutting bone by rotating a drill head with a rotating shaft. include.
 医療用機器において、2本のシャフトを連結した医療用シャフト組立体を使用する場合がある。例えば、内視鏡下での手術に用いられる医療用のシャフトドリルの場合、駆動シャフトの先にドリル部のシャフト(シャンク)が連結される(例えば、特許文献1を参照)。特許文献1においては、駆動シャフトとドリル部のシャフトとは、圧入したり、ネジを設けて螺合したりすることにより連結できることが記載されている。 In medical equipment, a medical shaft assembly in which two shafts are connected may be used. For example, in the case of a medical shaft drill used for endoscopic surgery, the shaft (shank) of the drill portion is connected to the tip of the drive shaft (see, for example, Patent Document 1). Patent Document 1 describes that the drive shaft and the shaft of the drill portion can be connected by press-fitting or screwing with a screw.
 例えば、骨の切削を要する手術においてシャフトドリルが用いられている。シャフトドリルは、先端部分を構成するドリル部がドリルヘッドを備えており、ドリルヘッドに連結された回転シャフトが回転することにより、回転するドリルヘッドで骨を削るものであって、例えば、特開2013-18820号公報(特許文献2)に開示されている。 For example, a shaft drill is used in surgery that requires bone cutting. In a shaft drill, the drill portion constituting the tip portion is provided with a drill head, and the rotary shaft connected to the drill head rotates to cut a bone with the rotating drill head. For example, Japanese Patent Application Laid-Open No. It is disclosed in Japanese Patent Application Laid-Open No. 2013-18820 (Patent Document 2).
特表2017-524402号公報Special Table 2017-524402 特開2013-18820号公報Japanese Unexamined Patent Publication No. 2013-18820
[課題1]
 ところで、医療用シャフト組立体では、人体に使用されるため高い安全性が求められる。しかしながら、圧入や螺合によるシャフト間の連結では、引っ張り強度やトルク強度の要求を十分な安全性を確保する程に満たすことができなかった。特に最近では、患者の負担を低減するために、シャフトを細くすることが求められており、シャフト同士を圧入により接続したり、ネジを設けて螺合したりすることがさらに困難になっている。また、シャフト同士を溶接により接続することも行われているが、薄肉や小径の部材を直接に溶着する場合に溶接の条件設定や安定性の確保が難しく、異種材料の場合は溶着が一層困難であるという問題を有している。これらの問題は、内視鏡下で使用するドリルに限らず、細いシャフト同士を連結しなければならないあらゆる医療用機器において共通する。
[Issue 1]
By the way, in the medical shaft assembly, high safety is required because it is used for the human body. However, the connection between the shafts by press fitting or screwing cannot meet the requirements for tensile strength and torque strength to the extent that sufficient safety is ensured. In particular, recently, in order to reduce the burden on the patient, it is required to make the shaft thinner, and it is more difficult to connect the shafts by press fitting or to provide screws to screw them together. .. In addition, although shafts are connected to each other by welding, it is difficult to set welding conditions and ensure stability when directly welding thin-walled or small-diameter members, and welding is even more difficult when using different materials. Has the problem of being. These problems are common to all medical devices that must connect thin shafts, not just drills used under an endoscope.
[課題2]
 また、シャフトドリルは、特許文献2に示されているように、例えば内視鏡下脊椎手術等において、硬性内視鏡の貫通孔(チャネル)に挿通されて使用される。即ち、回転シャフトが硬性内視鏡のチャネルに挿通された状態で回転し、硬性内視鏡よりも先端へ突出したドリルヘッドによって内視鏡下で椎骨等を切削する場合がある。
[Problem 2]
Further, as shown in Patent Document 2, the shaft drill is used by being inserted into a through hole (channel) of a rigid endoscope, for example, in endoscopic spinal surgery. That is, the rotating shaft may rotate while being inserted into the channel of the rigid endoscope, and the vertebrae or the like may be cut under the endoscope by a drill head protruding toward the tip of the rigid endoscope.
 しかし、本発明者が検討したところ、硬性内視鏡に挿通された回転シャフトを高速で回転させると、回転シャフトとの接触によって硬性内視鏡が損傷したり、回転シャフトと硬性内視鏡の摩擦による発熱が問題となり得るという、新規な課題が明らかとなった。また、硬性内視鏡のチャネルの内周面に対して回転シャフトを小径とすることで接触による不具合を回避しようとすると、小径とされた回転シャフトの強度が不足したり、回転シャフトの回転時のブレが大きくなることが考えられた。 However, as examined by the present inventor, when the rotating shaft inserted through the rigid endoscope is rotated at high speed, the rigid endoscope may be damaged due to contact with the rotating shaft, or the rotating shaft and the rigid endoscope may be damaged. A new issue has become clear that heat generation due to friction can be a problem. In addition, if the rotating shaft has a small diameter with respect to the inner peripheral surface of the channel of the rigid endoscope to avoid problems due to contact, the strength of the rotating shaft with a small diameter becomes insufficient, or when the rotating shaft rotates. It was thought that the blurring would increase.
 ここにおいて、本発明に係る医療用シャフト組立体及び医療用シャフト組立体の製造方法は、例えば前記[課題1]の如き事情に鑑みて為されたものであり、その解決課題は、医療用シャフト同士の連結強度が高い、新規な構造の医療用シャフト組立体を提供することにある。 Here, the method for manufacturing the medical shaft assembly and the medical shaft assembly according to the present invention has been made in view of the circumstances such as the above-mentioned [Problem 1], and the solution to the problem is the medical shaft. It is an object of the present invention to provide a medical shaft assembly having a novel structure with high connection strength between them.
 また、本発明に係る医療用のシャフトドリルは、例えば前記[課題2]の如き事情に鑑みて為されたものであり、その解決課題は、回転シャフトの回転時の作動の安定化を図りつつ、回転シャフトの硬性内視鏡への接触による不具合を回避することができる、新規な構造の医療用のシャフトドリルを提供することにある。 Further, the medical shaft drill according to the present invention has been made in view of the circumstances such as the above-mentioned [Problem 2], and the solution to the problem is to stabilize the operation of the rotating shaft during rotation. It is an object of the present invention to provide a medical shaft drill having a novel structure capable of avoiding a defect due to contact of a rotating shaft with a rigid endoscope.
 本開示の医療用シャフト組立体の第1の態様は、連結用穴を有する第1医療用シャフトと、該連結用穴に挿入された第2医療用シャフトと、該第1医療用シャフトにおける該連結用穴の周壁と該第2医療用シャフトにおける該連結用穴への挿入部分とを貫通する連結貫通孔に挿入されて、該第1医療用シャフトに固定された連結ピンとを、備えている。 A first aspect of the medical shaft assembly of the present disclosure is a first medical shaft having a connecting hole, a second medical shaft inserted into the connecting hole, and the first medical shaft. It is provided with a connecting pin inserted into the connecting through hole penetrating the peripheral wall of the connecting hole and the insertion portion into the connecting hole in the second medical shaft and fixed to the first medical shaft. ..
 第1の態様によれば、第1医療用シャフトと第2医療用シャフトとが、連結貫通孔に挿入されて第1医療用シャフトと固定された連結ピンにより固定されている。このため、溶接による従来の連結構造で問題となっていた溶接箇所付近における破断の発生を防ぐことができる。また、第1医療用シャフトと第2医療用シャフトとが異なる材質であっても、十分な連結強度を確保しつつ容易に連結することができる。さらに、第1医療用シャフトにおける連結用穴の周壁と第2医療用シャフトとの間に、連結用穴の周壁の内径寸法及び第2医療用シャフトにおける連結用穴への挿入部分の外径寸法との公差等を考慮したクリアランスを設けることができるため、第1医療用シャフトと第2医療用シャフトの組立てが容易となる。 According to the first aspect, the first medical shaft and the second medical shaft are fixed by a connecting pin inserted into the connecting through hole and fixed to the first medical shaft. Therefore, it is possible to prevent the occurrence of breakage in the vicinity of the welded portion, which has been a problem in the conventional connection structure by welding. Further, even if the first medical shaft and the second medical shaft are made of different materials, they can be easily connected while ensuring sufficient connection strength. Further, between the peripheral wall of the connecting hole in the first medical shaft and the second medical shaft, the inner diameter dimension of the peripheral wall of the connecting hole and the outer diameter dimension of the insertion portion into the connecting hole in the second medical shaft. Since it is possible to provide a clearance in consideration of the tolerance with the above, it becomes easy to assemble the first medical shaft and the second medical shaft.
 第2の態様は、第1態様に記載された医療用シャフト組立体において、前記第1医療用シャフトと前記第2医療用シャフトとは、一体に回転するものである。第1医療用シャフトと第2医療用シャフトとを一体に回転させた際に連結部位に生じる歪みを分散させることができるので、一体に回転させた場合にも破断を生じにくくできる。 The second aspect is that in the medical shaft assembly described in the first aspect, the first medical shaft and the second medical shaft rotate integrally. Since the strain generated at the connecting portion when the first medical shaft and the second medical shaft are rotated integrally can be dispersed, it is possible to prevent breakage even when the shaft is rotated integrally.
 第3の態様は、第1又は第2の態様に記載された医療用シャフト組立体において、前記第1医療用シャフト及び前記第2医療用シャフトの一方は、ドリルビットとされているものである。本開示の医療用シャフト組立体は、連結強度が高いため、ドリルのような大きな回転トルクを必要とする場合にも使用することができる。 The third aspect is that in the medical shaft assembly according to the first or second aspect, one of the first medical shaft and the second medical shaft is a drill bit. .. The medical shaft assembly of the present disclosure has a high connection strength and can be used even when a large rotational torque such as a drill is required.
 第4の態様は、第1~第3の何れか1つの態様に記載された医療用シャフト組立体において、前記第1医療用シャフトと前記連結ピンとは同一の材料からなり、前記第2医療用シャフトは、該第1医療用シャフトとは異なる材料からなるようにしたものである。本態様によれば、異なる材料からなる第1医療用シャフトと第2医療用シャフトとを接続することができるため、第1医療用シャフトと第2医療用シャフトの材料選択が容易となる。 A fourth aspect is the medical shaft assembly according to any one of the first to third aspects, wherein the first medical shaft and the connecting pin are made of the same material and are made of the same material for the second medical use. The shaft is made of a material different from that of the first medical shaft. According to this aspect, since the first medical shaft and the second medical shaft made of different materials can be connected, the material selection of the first medical shaft and the second medical shaft becomes easy.
 第5の態様は、第1~第4の何れか1つの態様に記載された医療用シャフト組立体において、前記第1医療用シャフトの外周側を覆うスリーブ状の外シャフトが設けられているものである。本態様によれば、例えば、シャフトが硬性内視鏡のチャネルに挿通されて使用される場合に、回転シャフトである第1医療用シャフトとチャネルの内周面との間に外シャフトが介在することから、回転する第1医療用シャフトの接触によるチャネルの損傷が回避されると共に、摩擦熱の発生も抑制される。 A fifth aspect is the medical shaft assembly according to any one of the first to fourth aspects, in which a sleeve-shaped outer shaft covering the outer peripheral side of the first medical shaft is provided. Is. According to this aspect, for example, when the shaft is inserted through the channel of a rigid endoscope and used, the outer shaft is interposed between the first medical shaft which is a rotating shaft and the inner peripheral surface of the channel. Therefore, damage to the channel due to contact with the rotating first medical shaft is avoided, and the generation of frictional heat is also suppressed.
 第6の態様は、第5の態様に記載された医療用シャフト組立体において、前記第1医療用シャフトにおける前記連結ピンが固定された部分の外周側が、前記外シャフトによって覆われているものである。本態様によれば、仮に連結ピン自体又は連結ピンを第1医療用シャフトに固定するための溶接痕等が第1医療用シャフトよりも外周へ突出していたとしても、当該突出部分が硬性内視鏡のチャネルに接触するのを防いで、硬性内視鏡の損傷等を防ぐことができる。 In the sixth aspect, in the medical shaft assembly according to the fifth aspect, the outer peripheral side of the portion of the first medical shaft to which the connecting pin is fixed is covered with the outer shaft. be. According to this aspect, even if the connecting pin itself or the welding mark for fixing the connecting pin to the first medical shaft protrudes to the outer periphery from the first medical shaft, the protruding portion is a rigid endoscope. It is possible to prevent damage to the rigid endoscope by preventing contact with the channel of the mirror.
 第7の態様は、医療用シャフト組立体の製造方法であって、軸方向に延びる連結用穴と、該連結用穴の周壁を径方向に貫通する第1シャフト貫通孔とを有する、第1医療用シャフトを準備する工程と、該連結用穴に挿入可能とされて、径方向に貫通する第2シャフト貫通孔を有する、第2医療用シャフトを準備する工程と、該第1医療用シャフトの該連結用穴に該第2医療用シャフトを挿入して、該第1シャフト貫通孔と該第2シャフト貫通孔とを相互に位置合わせする工程と、該第1シャフト貫通孔及び該第2シャフト貫通孔に連結ピンを挿入し、該連結ピンを該第1医療用シャフトに固定する工程とを、含むものである。 A seventh aspect is a method for manufacturing a medical shaft assembly, wherein the method includes a connecting hole extending in the axial direction and a first shaft through hole penetrating the peripheral wall of the connecting hole in the radial direction. A step of preparing a medical shaft, a step of preparing a second medical shaft having a second shaft through hole that can be inserted into the connecting hole and penetrates in the radial direction, and a step of preparing the first medical shaft. A step of inserting the second medical shaft into the connecting hole of the above to align the first shaft through hole and the second shaft through hole with each other, and the first shaft through hole and the second shaft through hole. It includes a step of inserting a connecting pin into the shaft through hole and fixing the connecting pin to the first medical shaft.
 第7の態様に示す医療用シャフト組立体の製造方法によれば、連結貫通孔に挿入された連結ピンを第1医療用シャフトに固定しており、第1医療用シャフトと第2医療用シャフトとを強固に連結し、連結部位での破断を生じにくくすることが容易にできる。また、第1医療用シャフトと第2医療用シャフトとが異なる材質であっても、十分な連結強度を確保しつつ容易に連結することができる。さらに、第2医療用シャフトと連結用穴とのクリアランスを十分に設けることができるため、組立てが容易となる。 According to the method for manufacturing the medical shaft assembly shown in the seventh aspect, the connecting pin inserted into the connecting through hole is fixed to the first medical shaft, and the first medical shaft and the second medical shaft are fixed. Can be easily connected to each other so that breakage at the connecting portion is less likely to occur. Further, even if the first medical shaft and the second medical shaft are made of different materials, they can be easily connected while ensuring sufficient connection strength. Further, since a sufficient clearance between the second medical shaft and the connecting hole can be provided, assembly becomes easy.
 第8の態様は、医療用シャフト組立体であって、第1医療用シャフトの軸方向端面に開口する連結用穴に第2医療用シャフトが挿入固定されていると共に、該第2医療用シャフトの外周面には、該連結用穴の周壁から内周へ部分的に離隔した離隔部が設けられており、該第1医療用シャフトにおける該連結用穴の周壁を径方向に貫通する連結ピンが、該第2医療用シャフトの該離隔部に対して突き当て状態で溶着されていることにより、該第1医療用シャフトと該第2医療用シャフトが相互に位置決めされているものである。 The eighth aspect is a medical shaft assembly, in which the second medical shaft is inserted and fixed in a connecting hole opened in the axial end face of the first medical shaft, and the second medical shaft is inserted and fixed. On the outer peripheral surface of the above, a separation portion partially separated from the peripheral wall of the connection hole to the inner circumference is provided, and a connection pin that radially penetrates the peripheral wall of the connection hole in the first medical shaft. However, the first medical shaft and the second medical shaft are mutually positioned by being welded to the separated portion of the second medical shaft in an abutting state.
 本態様によれば、連結ピンが突き当てられる第2医療用シャフトの外周面が、第1医療用シャフトの連結用穴の内周面から大きく離隔する離隔部とされている。これにより、連結ピンの長さを長くすることができて、連結ピンを溶融させて第2医療用シャフトに固着させる際に溶融金属の量を多く確保できる。それゆえ、第1医療用シャフトを貫通する連結ピンの第2医療用シャフトへの溶着によって、第1医療用シャフトと第2医療用シャフトを強固に位置決めして連結することができる。 According to this aspect, the outer peripheral surface of the second medical shaft to which the connecting pin is abutted is a separation portion that is largely separated from the inner peripheral surface of the connecting hole of the first medical shaft. As a result, the length of the connecting pin can be lengthened, and a large amount of molten metal can be secured when the connecting pin is melted and fixed to the second medical shaft. Therefore, the first medical shaft and the second medical shaft can be firmly positioned and connected by welding the connecting pin penetrating the first medical shaft to the second medical shaft.
 また、第1医療用シャフトと第2医療用シャフトとが連結ピンによって位置決めされることから、第1医療用シャフトにおける連結用穴の周壁と第2医療用シャフトとの間にクリアランスを設定することも可能である。これによれば、例えば、連結用穴の周壁の内径寸法及び第2医療用シャフトにおける連結用穴への挿入部分の外径寸法のばらつきに拘らず、第2医療用シャフトを第1医療用シャフトの連結用穴へ容易に挿入可能とすることができる。 Further, since the first medical shaft and the second medical shaft are positioned by the connecting pin, a clearance should be set between the peripheral wall of the connecting hole in the first medical shaft and the second medical shaft. Is also possible. According to this, for example, regardless of the variation in the inner diameter of the peripheral wall of the connecting hole and the outer diameter of the insertion portion into the connecting hole in the second medical shaft, the second medical shaft is used as the first medical shaft. It can be easily inserted into the connecting hole of.
 第9の態様は、第8の態様に記載された医療用シャフト組立体において、前記第2医療用シャフトにおける前記第1医療用シャフトの前記連結用穴への挿入部分において、前記離隔部が両端部分を外れた軸方向中間領域に設けられているものである。 A ninth aspect is that in the medical shaft assembly according to the eighth aspect, at the insertion portion of the first medical shaft into the connecting hole in the second medical shaft, the separated portions are both ends. It is provided in the axial intermediate region off the portion.
 本態様によれば、例えば、第2医療用シャフトの両端部分を第1医療用シャフトにおける連結用穴の周壁に近接させることが可能になり、第1医療用シャフトと第2医療用シャフトの傾きを防ぎやすくなる。 According to this aspect, for example, both ends of the second medical shaft can be brought close to the peripheral wall of the connecting hole in the first medical shaft, and the inclination of the first medical shaft and the second medical shaft can be achieved. It becomes easier to prevent.
 第10の態様は、第8又は第9の態様に記載された医療用シャフト組立体において、前記連結ピンが前記第2医療用シャフトを径方向に挟んだ位置にそれぞれ配されているものである。 A tenth aspect is the medical shaft assembly according to the eighth or ninth aspect, in which the connecting pins are arranged at positions sandwiching the second medical shaft in the radial direction, respectively. ..
 本態様によれば、一対の連結ピンが第2医療用シャフトを挟むように両側から固着されることにより、第1医療用シャフトと第2医療用シャフトとの連結強度を効率的に得ることができる。 According to this aspect, the pair of connecting pins are fixed from both sides so as to sandwich the second medical shaft, so that the connecting strength between the first medical shaft and the second medical shaft can be efficiently obtained. can.
 第11の態様は、第8~第10の何れか1つの態様に記載された医療用シャフト組立体において、複数の前記連結ピンが前記第1医療用シャフトにおける前記連結用穴の周壁を軸方向の複数箇所において貫通していると共に、それら複数の連結ピンが前記第2医療用シャフトの軸方向に延びる1つの前記離隔部に対して突き当て状態で溶着されているものである。 The eleventh aspect is in the medical shaft assembly according to any one of the eighth to tenth aspects, in which the plurality of connecting pins axial around the peripheral wall of the connecting hole in the first medical shaft. The plurality of connecting pins are welded to the separated portion extending in the axial direction of the second medical shaft in an abutting state.
 本態様によれば、第1医療用シャフトと第2医療用シャフトとが軸方向の複数箇所において連結ピンで位置決めされることから、軸方向のスペースを有効に利用して第1,第2医療用シャフトの連結強度を大きく得ることができる。また、軸方向の複数箇所に配された連結ピンが軸方向に延びる1つの離隔部に突き当てられることから、連結ピンによる位置決めに際して、第1,第2医療用シャフトの軸方向での相対位置の誤差が許容され、医療用シャフト組立体の組立て作業が簡単になる。 According to this aspect, since the first medical shaft and the second medical shaft are positioned by the connecting pins at a plurality of points in the axial direction, the space in the axial direction is effectively utilized for the first and second medical treatments. It is possible to obtain a large connection strength of the shaft. Further, since the connecting pins arranged at a plurality of positions in the axial direction are abutted against one separation portion extending in the axial direction, the relative positions of the first and second medical shafts in the axial direction when positioning by the connecting pins. The error is tolerated and the assembly work of the medical shaft assembly becomes easy.
 第12の態様は、医療用シャフト組立体の製造方法であって、軸方向に延びる連結用穴と、該連結用穴の周壁を貫通する第1シャフト貫通孔とを有する第1医療用シャフトを準備する工程と、該第1医療用シャフトの該連結用穴に挿入可能とされており、外周面に部分的に設けられた離隔部を有する第2医療用シャフトを準備する工程と、該第1医療用シャフトの該連結用穴に該第2医療用シャフトを挿入して、該第1医療用シャフトの該第1シャフト貫通孔と該第2医療用シャフトの該離隔部とを相互に位置合わせする工程と、該第1医療用シャフトの該第1シャフト貫通孔に連結ピンを挿入し、該連結ピンを該第2医療用シャフトの該離隔部に対して突き当て状態で溶着することにより、該第1医療用シャフトと該第2医療用シャフトを相互に位置決めする工程とを、含むものである。 A twelfth aspect is a method of manufacturing a medical shaft assembly, wherein a first medical shaft having a connecting hole extending in the axial direction and a first shaft through hole penetrating the peripheral wall of the connecting hole is provided. A step of preparing, a step of preparing a second medical shaft which is insertable into the connecting hole of the first medical shaft and has a separation portion partially provided on the outer peripheral surface, and the first step. (1) The second medical shaft is inserted into the connecting hole of the medical shaft, and the first shaft through hole of the first medical shaft and the separation portion of the second medical shaft are mutually positioned. By inserting a connecting pin into the first shaft through hole of the first medical shaft and welding the connecting pin to the separated portion of the second medical shaft in an abutting state. , A step of mutually positioning the first medical shaft and the second medical shaft.
 本態様によれば、第1医療用シャフトの第1シャフト貫通孔に挿入された連結ピンが、第1医療用シャフトの連結用穴の内周面から大きく離隔する離隔部において第2医療用シャフトに突き当てられるように、第1シャフト貫通孔と離隔部とが相互に位置合わせされる。それゆえ、連結ピンの長さを長くすることができて、第2医療用シャフトの離隔部に突き当てられた連結ピンを溶融固着させる際の溶融金属の量を多く確保することができ、第1医療用シャフトと第2医療用シャフトを強固に位置決めして連結することができる。 According to this aspect, the second medical shaft is in a separated portion where the connecting pin inserted into the first shaft through hole of the first medical shaft is largely separated from the inner peripheral surface of the connecting hole of the first medical shaft. The first shaft through hole and the separation portion are aligned with each other so as to be abutted against. Therefore, the length of the connecting pin can be increased, and a large amount of molten metal can be secured when the connecting pin abutted against the separation portion of the second medical shaft is melt-fixed. 1 The medical shaft and the second medical shaft can be firmly positioned and connected.
 また、第1医療用シャフトと第2医療用シャフトとを連結ピンによって位置決めすることから、第1医療用シャフトにおける連結用穴の周壁と第2医療用シャフトとの間にクリアランスを設定することも可能であり、第2医療用シャフトを第1医療用シャフトの連結用穴へ容易に挿入可能とすることができる。 Further, since the first medical shaft and the second medical shaft are positioned by the connecting pin, it is possible to set a clearance between the peripheral wall of the connecting hole in the first medical shaft and the second medical shaft. It is possible, and the second medical shaft can be easily inserted into the connecting hole of the first medical shaft.
 第13の態様は、先端にドリルヘッドが設けられており、硬性内視鏡の鏡筒内のチャネルへ挿通されて用いられる回転シャフトを有する医療用のシャフトドリルであって、前記回転シャフトに外挿されたスリーブ状の外シャフトを有しており、前記硬性内視鏡の前記鏡筒内の前記チャネルへ挿通された該外シャフト内で該回転シャフトが回転可能とされているものである。 A thirteenth aspect is a medical shaft drill having a drill head provided at the tip and having a rotating shaft inserted into a channel in a lens barrel of a rigid endoscope, which is external to the rotating shaft. It has an inserted sleeve-shaped outer shaft, and the rotating shaft is rotatable within the outer shaft inserted into the channel in the lens barrel of the rigid endoscope.
 本態様に従う構造とされた医療用のシャフトドリルによれば、ドリルヘッドにつながる回転シャフトが、回転しない外シャフトによってガイドされることから、回転時のブレの防止や、摩擦による発熱の抑制などが図られる。回転シャフトの外径と鏡筒のチャネルの内径とに関わらず、回転シャフトの外周隙間を外シャフトの厚さによって適切に設定することができて、回転シャフトの回転時のブレを抑えることができる。 According to a medical shaft drill having a structure according to this aspect, the rotating shaft connected to the drill head is guided by a non-rotating outer shaft, so that it is possible to prevent blurring during rotation and suppress heat generation due to friction. It is planned. Regardless of the outer diameter of the rotating shaft and the inner diameter of the channel of the lens barrel, the outer peripheral gap of the rotating shaft can be appropriately set by the thickness of the outer shaft, and blurring during rotation of the rotating shaft can be suppressed. ..
 回転シャフトと硬性内視鏡の鏡筒との間に外シャフトが介在することにより、回転シャフトの鏡筒への接触が防止され、鏡筒の損傷防止や鏡筒への摩擦熱の伝達抑制などが図られる。 By interposing the outer shaft between the rotating shaft and the lens barrel of the rigid endoscope, contact of the rotating shaft with the lens barrel is prevented, damage to the lens barrel is prevented, and frictional heat transfer to the lens barrel is suppressed. Is planned.
 第14の態様は、第13の態様に記載された医療用のシャフトドリルにおいて、前記回転シャフトと前記外シャフトが何れも金属製であり、且つ、該回転シャフトの外周面と該外シャフトの内周面のいずれか一方及び該外シャフトの外周面には、それぞれ低摩擦性コーティング層を設けたものである。 A fourteenth aspect is the medical shaft drill according to the thirteenth aspect, wherein both the rotary shaft and the outer shaft are made of metal, and the outer peripheral surface of the rotary shaft and the inner surface of the outer shaft are provided. A low friction coating layer is provided on either one of the peripheral surfaces and the outer peripheral surface of the outer shaft.
 本態様によれば、鏡筒のチャネルに対して外シャフトが抜差しされる際に、鏡筒のチャネル内面に対する外シャフトの摩擦抵抗が低減されて、鏡筒の損傷の回避、摩擦の低減による挿通作業性の向上などが図られる。外シャフトの外周面に低摩擦性コーティング層が設けられることにより、鏡筒のチャネルを通じての流体の流通抵抗を軽減することができて、血液等の流体の流動を許容しながら、外シャフト及び回転シャフトの大径化による強度確保やブレ対策を講じることができる。チャネルを通じて骨の切削部位へ生理食塩水を吐出する場合や、骨の切削屑を鏡筒のチャネルを通じて外部へ排出する場合等に、チャネルに挿通された外シャフトの外周面に低摩擦性コーティング層が設けられていることにより、生理食塩水の安定した流動や、切削屑の排出効率の向上等が図られる。 According to this aspect, when the outer shaft is inserted and removed from the channel of the lens barrel, the frictional resistance of the outer shaft with respect to the inner surface of the channel of the lens barrel is reduced to avoid damage to the lens barrel and to insert the lens barrel by reducing friction. Workability is improved. By providing a low-friction coating layer on the outer peripheral surface of the outer shaft, the flow resistance of the fluid through the channel of the lens barrel can be reduced, and the outer shaft and rotation can be allowed while allowing the flow of fluid such as blood. It is possible to secure strength and take measures against blurring by increasing the diameter of the shaft. A low friction coating layer on the outer peripheral surface of the outer shaft inserted through the channel, such as when discharging saline solution to the bone cutting site through the channel or when discharging bone cutting debris to the outside through the channel of the lens barrel. By providing the above, stable flow of physiological saline and improvement of cutting waste discharge efficiency can be achieved.
 回転シャフトの外周面と外シャフトの内周面とに低摩擦性コーティング層が設けられていることにより、回転シャフトが外シャフト内で回転する際に、金属同士の回転接触に起因する発熱を回避することができる。また、回転シャフトと外シャフト間のクリアランスを小さくできることから、回転シャフトの回転時のブレを抑制することができる。 By providing a low friction coating layer on the outer peripheral surface of the rotary shaft and the inner peripheral surface of the outer shaft, heat generation due to rotational contact between metals is avoided when the rotary shaft rotates in the outer shaft. can do. Further, since the clearance between the rotating shaft and the outer shaft can be reduced, it is possible to suppress the shake during rotation of the rotating shaft.
 第15の態様は、第13又は第14の態様に記載された医療用のシャフトドリルにおいて、前記回転シャフトの基端部分には、回転出力軸に対して係合して駆動力を該回転シャフトへ伝達する合成樹脂製の係合部材が固着されていると共に、該係合部材よりも先端側には、該回転シャフトに対して回転可能に外挿されて前記外シャフトの基端部との間に配される合成樹脂製の隙間リングを設けたものである。 A fifteenth aspect is the medical shaft drill according to the thirteenth or fourteenth aspect, wherein the base end portion of the rotary shaft is engaged with the rotary output shaft to apply a driving force to the rotary shaft. An engaging member made of synthetic resin to be transmitted to is fixed, and is rotatably externally attached to the rotating shaft on the tip side of the engaging member so as to be connected to the base end portion of the outer shaft. It is provided with a gap ring made of synthetic resin arranged between them.
 本態様によれば、回転シャフトと一体的に回転する係合部材と、外シャフトの基端部とが、回転シャフトに対して回転可能とされた隙間リングを介して間接的に接するようになっている。これにより、係合部材と外シャフトの直接的な接触に起因する摩擦熱の発生を防ぐことができる。 According to this aspect, the engaging member that rotates integrally with the rotating shaft and the base end portion of the outer shaft are indirectly in contact with the rotating shaft via a rotatable gap ring. ing. This makes it possible to prevent the generation of frictional heat due to the direct contact between the engaging member and the outer shaft.
 係合部材と隙間リングが合成樹脂製とされていることから、金属製の場合に比して軽量であると共に、滑り性の向上による発熱の軽減や、熱伝達の抑制なども図られる。 Since the engaging member and the gap ring are made of synthetic resin, it is lighter than the case made of metal, and it is also possible to reduce heat generation by improving slipperiness and suppress heat transfer.
 第16の態様は、第13~第15の何れか1つの態様に記載された医療用のシャフトドリルにおいて、前記回転シャフトが中空のシャフト本体を備えており、該シャフト本体の先端部分には前記ドリルヘッドにつながるシャンクが挿入固定されているものである。 A sixteenth aspect is the medical shaft drill according to any one of the thirteenth to fifteenth aspects, wherein the rotary shaft includes a hollow shaft body, and the tip portion of the shaft body has the above-mentioned. The shank connected to the drill head is inserted and fixed.
 本態様によれば、シャフト本体が中空構造であることによって、強度と重量の良好なバランスを実現し、回転時のブレも抑えることができる。また、シャフト本体は、中空構造であることによって、中実構造に比して表面積が大きく冷却効率に優れていることから、回転時の摩擦などに起因する熱を放出し易く、加熱による不具合が生じ難い。 According to this aspect, since the shaft body has a hollow structure, a good balance between strength and weight can be realized, and blurring during rotation can be suppressed. In addition, since the shaft body has a hollow structure, it has a large surface area and excellent cooling efficiency as compared with the solid structure, so that it is easy to release heat due to friction during rotation, and there is a problem due to heating. Hard to occur.
 ドリルヘッドのシャンクは、中空のシャフト本体に挿入固定されることから、中実構造とすることができ、製造が容易であると共に、小径としても強度を確保することができる。 Since the shank of the drill head is inserted and fixed to the hollow shaft body, it can have a solid structure, is easy to manufacture, and can secure strength even with a small diameter.
 第17の態様は、第13~第16の何れか1つの態様に記載された医療用のシャフトドリルにおいて、前記回転シャフトの前記ドリルヘッドの外径が、前記外シャフトの内径よりも小さくされていると共に、該外シャフトから突出した該回転シャフトの先端部分には、該外シャフトの先端から先端側へ離れた外周面上に突部が設けられているものである。 In the seventeenth aspect, in the medical shaft drill according to any one of the thirteenth to sixteenth aspects, the outer diameter of the drill head of the rotating shaft is made smaller than the inner diameter of the outer shaft. At the same time, the tip portion of the rotating shaft protruding from the outer shaft is provided with a protrusion on the outer peripheral surface away from the tip of the outer shaft toward the tip side.
 本態様によれば、ドリルヘッドが外シャフトを通過可能な場合に、シャフトドリル単体での輸送時や取扱時に、回転シャフトが外シャフトから不用意に抜け出すのを、回転シャフトに設けられた突部が外シャフトの先端に係止されることによって防ぐことができる。 According to this aspect, when the drill head can pass through the outer shaft, the protrusion provided on the rotary shaft prevents the rotary shaft from being inadvertently pulled out from the outer shaft during transportation or handling of the shaft drill alone. Can be prevented by being locked to the tip of the outer shaft.
 回転シャフトに設けられた突部は、シャフトドリルの使用時には外シャフトの先端から離れていることから、回転シャフトの回転に際して突部が外シャフトに接触せず、突部と外シャフトの接触に起因する発熱や振動が防止される。 Since the protrusion provided on the rotary shaft is separated from the tip of the outer shaft when the shaft drill is used, the protrusion does not contact the outer shaft when the rotary shaft rotates, which is caused by the contact between the protrusion and the outer shaft. Heat generation and vibration are prevented.
 第18の態様は、第17の態様に記載された医療用のシャフトドリルにおいて、前記回転シャフトの先端部分は、前記ドリルヘッドに向けて次第に小径となるテーパ状外周面を有しており、該テーパ状外周面よりも基端側の大径部分に前記突部が設けられているものである。 Eighteenth aspect is the medical shaft drill according to the seventeenth aspect, wherein the tip portion of the rotary shaft has a tapered outer peripheral surface whose diameter gradually decreases toward the drill head. The protrusion is provided on a large-diameter portion on the proximal end side of the tapered outer peripheral surface.
 本態様によれば、回転シャフトの先端部分に設けられたテーパ状外周面によって、ドリルヘッドが小径の場合にも内視鏡下でのドリルヘッドの視認性を向上できる。 According to this aspect, the tapered outer peripheral surface provided at the tip of the rotating shaft can improve the visibility of the drill head under an endoscope even when the drill head has a small diameter.
 テーパ状外周面よりも基端側の大径部分を利用して突部を設けることにより、比較的に高さの低い突部によって回転シャフトの外シャフトからの抜けを防止することができる。 By providing a protrusion using a large diameter portion on the base end side of the tapered outer peripheral surface, it is possible to prevent the rotating shaft from coming off from the outer shaft due to the protrusion having a relatively low height.
 第19の態様は、第13~第18の何れか1つの態様に記載された医療用のシャフトドリルにおいて、前記外シャフトの基端部分には、ハンドピースに対して着脱可能に取り付けられるコネクタが合成樹脂材によって設けられているものである。 A nineteenth aspect is the medical shaft drill according to any one of the thirteenth to eighteenth aspects, wherein a connector detachably attached to a handpiece is attached to a base end portion of the outer shaft. It is provided by a synthetic resin material.
 本態様によれば、コネクタが合成樹脂材とされていることによって、コネクタの形状や構造の設計が金属製に比して容易である。また、仮にコネクタが回転シャフトに接触したとしても、金属製の部材が接触する場合に比して、発熱の低減や熱伝達の抑制などが実現される。 According to this aspect, since the connector is made of a synthetic resin material, the shape and structure of the connector can be designed more easily than those made of metal. Further, even if the connector comes into contact with the rotating shaft, heat generation can be reduced and heat transfer can be suppressed as compared with the case where a metal member comes into contact with the connector.
 本開示の医療用シャフト組立体によれば、医療用シャフト同士を強固に連結することができる。また、本開示の医療用のシャフトドリルによれば、回転シャフトの回転時の作動の安定化を図りつつ、回転シャフトの硬性内視鏡への接触による不具合を回避することができる。 According to the medical shaft assembly of the present disclosure, the medical shafts can be firmly connected to each other. Further, according to the medical shaft drill of the present disclosure, it is possible to avoid a defect due to contact of the rotary shaft with a rigid endoscope while stabilizing the operation of the rotary shaft during rotation.
本発明の第1実施形態としての医療用シャフト組立体を示す平面図A plan view showing a medical shaft assembly as the first embodiment of the present invention. 図1のII-II断面図II-II sectional view of FIG. 図1のIII-III断面図Section III-III sectional view of FIG. 本発明の別の一実施形態としての医療用シャフト組立体を示す断面図Sectional drawing which shows the medical shaft assembly as another Embodiment of this invention. 本発明のまた別の一実施形態としての医療用シャフト組立体を示す断面図Sectional drawing which shows the medical shaft assembly as another embodiment of this invention. 本発明の更にまた別の一実施形態としての医療用シャフト組立体の先端部分を示す分解斜視図An exploded perspective view showing a tip portion of a medical shaft assembly as yet another embodiment of the present invention. 本発明の第2実施形態としての医療用シャフト組立体を示す平面図A plan view showing a medical shaft assembly as a second embodiment of the present invention. 図7のVIII-VIII断面図VIII-VIII sectional view of FIG. 図7の医療用シャフト組立体を拡大して示す断面図であって、図8のIX-IX断面に相当する図FIG. 6 is an enlarged cross-sectional view showing the medical shaft assembly of FIG. 7, which corresponds to the IX-IX cross section of FIG. 図7に示す医療用シャフト組立体を構成する第1医療用シャフトの断面図であって、図11のX-X断面に相当する図FIG. 7 is a cross-sectional view of a first medical shaft constituting the medical shaft assembly shown in FIG. 7, which corresponds to the XX cross section of FIG. 図10のXI-XI断面図XI-XI sectional view of FIG. 図7に示す医療用シャフト組立体を構成する第2医療用シャフトの平面図Top view of the second medical shaft constituting the medical shaft assembly shown in FIG. 7. 図12に示す第2医療用シャフトの正面図Front view of the second medical shaft shown in FIG. 本発明の第3実施形態としてのシャフトドリルを備える医療用ドリル器具の斜視図Perspective view of a medical drill device including a shaft drill as a third embodiment of the present invention. 図14の医療用ドリル器具を、シャフトドリルとハンドピースを分解した状態で示す斜視図A perspective view showing the medical drill device of FIG. 14 in a state where the shaft drill and the handpiece are disassembled. 図14の医療用ドリル器具を、シャフトドリルとハンドピースを分解した状態で示す平面図Top view showing the medical drill instrument of FIG. 14 in a state where the shaft drill and the handpiece are disassembled. 図14に示す医療用ドリル器具を構成するシャフトドリルの断面図Sectional drawing of the shaft drill constituting the medical drill instrument shown in FIG. 図14に示す医療用ドリル器具を構成するハンドピースの分解斜視図An exploded perspective view of the handpiece constituting the medical drill device shown in FIG. 図14に示す医療用ドリル器具の使用状態を示す写真A photograph showing the usage state of the medical drill device shown in FIG. 本発明の第4実施形態としてのシャフトドリルの先端部分を示す平面図Top view showing the tip portion of the shaft drill as the 4th Embodiment of this invention. 本発明の第5実施形態としてのシャフトドリルの先端部分を示す平面図Top view showing the tip portion of the shaft drill as the 5th Embodiment of this invention.
 第1実施形態に係る医療用シャフト組立体100は、図1~図3に示すように第1医療用シャフト101と第2医療用シャフト102とを備えている。本実施形態において、第1医療用シャフト101は、内視鏡のワーキングチャネルから体腔内に挿入される駆動シャフトである。第2医療用シャフト102は、第1医療用シャフト101の先端に接続されるドリルビットであり、軸(シャンク)121とシャンク121の先端に設けられた刃部122とを有し、第1医療用シャフト101と一体に回転する。なお、先端側とは患者に近い側であり、基端側とはその反対側である。 The medical shaft assembly 100 according to the first embodiment includes a first medical shaft 101 and a second medical shaft 102 as shown in FIGS. 1 to 3. In the present embodiment, the first medical shaft 101 is a drive shaft inserted into the body cavity from the working channel of the endoscope. The second medical shaft 102 is a drill bit connected to the tip of the first medical shaft 101, has a shaft (shank) 121, and a blade portion 122 provided at the tip of the shank 121, and has a first medical treatment. It rotates integrally with the shaft 101. The distal end side is the side closer to the patient, and the proximal end side is the opposite side.
 第1医療用シャフト101の先端部には、軸方向に延びる連結用穴としての連結用凹部111が設けられている。連結用凹部111の内径は、第2医療用シャフト102の外径と同じかわずかに大きく、第2医療用シャフト102は、基端部が連結用凹部111に挿入されている。第1医療用シャフト101の連結用凹部111が形成された部分には、径方向に第1医療用シャフト101を貫通する第1シャフト貫通孔113が形成されている。第2医療用シャフト102の基端部には、第2医療用シャフト102を径方向に貫通する第2シャフト貫通孔123が形成されている。第2医療用シャフト102を連結用凹部111に挿入することにより、第1シャフト貫通孔113と第2シャフト貫通孔123とは連通して、連結貫通孔104を形成する。連結貫通孔104には、連結ピン103が挿入され、連結ピン103は、第1医療用シャフト101に固定されているが、第2医療用シャフト102には固定されていない。 The tip of the first medical shaft 101 is provided with a connecting recess 111 as a connecting hole extending in the axial direction. The inner diameter of the connecting recess 111 is the same as or slightly larger than the outer diameter of the second medical shaft 102, and the base end portion of the second medical shaft 102 is inserted into the connecting recess 111. A first shaft through hole 113 that penetrates the first medical shaft 101 in the radial direction is formed in a portion of the first medical shaft 101 where the connecting recess 111 is formed. A second shaft through hole 123 that radially penetrates the second medical shaft 102 is formed at the base end portion of the second medical shaft 102. By inserting the second medical shaft 102 into the connecting recess 111, the first shaft through hole 113 and the second shaft through hole 123 communicate with each other to form the connecting through hole 104. A connecting pin 103 is inserted into the connecting through hole 104, and the connecting pin 103 is fixed to the first medical shaft 101, but not to the second medical shaft 102.
 第1医療用シャフト101と連結ピン103との固定は、例えば溶接により行うことができる。なかでも、レーザを用いたレーザ溶接は、細い連結ピン103を第1医療用シャフト101にピンポイントで強固に固定できるので好ましい。レーザ溶接は溶接時間が非常に短くてすむため、溶接による金属疲労を生じにくくすることもできる。第1医療用シャフト101と連結ピン103とを溶接により固定する場合には、第1医療用シャフト101と連結ピン103とは融点が近い材料により形成することが好ましく、同一の材料により形成することがより好ましい。 The first medical shaft 101 and the connecting pin 103 can be fixed by welding, for example. Among them, laser welding using a laser is preferable because the thin connecting pin 103 can be firmly fixed to the first medical shaft 101 at a pinpoint. Since laser welding requires a very short welding time, it is possible to reduce metal fatigue caused by welding. When the first medical shaft 101 and the connecting pin 103 are fixed by welding, the first medical shaft 101 and the connecting pin 103 are preferably formed of materials having similar melting points, and are formed of the same material. Is more preferable.
 本実施形態においては、第1医療用シャフト101と第2医療用シャフト102とは連結貫通孔104に挿入された連結ピン103を介して連結されている。このため、回転トルクは連結ピン103を介して、第2医療用シャフト102全体に加わるため、第2医療用シャフトに歪みが生じにくく、破断が生じにくい。
第2医療用シャフト102自体を加熱して溶接する場合に比して、第2医療用シャフト102の加熱による悪影響が軽減される。
In the present embodiment, the first medical shaft 101 and the second medical shaft 102 are connected via a connecting pin 103 inserted into the connecting through hole 104. Therefore, since the rotational torque is applied to the entire second medical shaft 102 via the connecting pin 103, the second medical shaft is less likely to be distorted and broken.
The adverse effect of heating the second medical shaft 102 is reduced as compared with the case where the second medical shaft 102 itself is heated and welded.
 また、本実施形態においては、第2医療用シャフト102は、第1医療用シャフト101及び連結ピン103と溶接する必要がないため、第1医療用シャフト101及び連結ピン103の材質にかかわらず、第2医療用シャフト102の材質を自由に選択することができる。このため、第2医療用シャフト102は、第1医療用シャフト101と異なる材料により形成することができて、第1医療用シャフト101と第2医療用シャフト102の相互に異なる要求性能をそれぞれ有利に実現することが可能となる。尤も、第1医療用シャフト101と第2医療用シャフト102は、同じ材料によって形成することもできる。なお、連結ピン103は第1医療用シャフト101と溶接が容易な材料とすればよく、連結ピン103と第1医療用シャフト101とは同じ材料とすることが好ましい。 Further, in the present embodiment, since the second medical shaft 102 does not need to be welded to the first medical shaft 101 and the connecting pin 103, regardless of the material of the first medical shaft 101 and the connecting pin 103, the second medical shaft 102 does not need to be welded. The material of the second medical shaft 102 can be freely selected. Therefore, the second medical shaft 102 can be formed of a material different from that of the first medical shaft 101, which is advantageous for the mutually different required performances of the first medical shaft 101 and the second medical shaft 102. It will be possible to realize. However, the first medical shaft 101 and the second medical shaft 102 can also be formed of the same material. The connecting pin 103 may be made of a material that can be easily welded to the first medical shaft 101, and the connecting pin 103 and the first medical shaft 101 are preferably made of the same material.
 第1医療用シャフト101と第2医療用シャフト102とを直接溶接する場合には、連結強度を高くするために、連結用凹部111の内径と第2医療用シャフト102の外径とをできるだけ一致させ、隙間ができないようにすることが好ましい。一方、本実施形態においては、連結用凹部111と第2医療用シャフト102との間に十分なクリアランスを設けることができるため、第1医療用シャフト101と第2医療用シャフト102の部品寸法の公差等に拘らず、第1医療用シャフト101と第2医療用シャフト102との組立てが容易となる。 When the first medical shaft 101 and the second medical shaft 102 are directly welded, the inner diameter of the connecting recess 111 and the outer diameter of the second medical shaft 102 match as much as possible in order to increase the connecting strength. It is preferable to make it so that there is no gap. On the other hand, in the present embodiment, since a sufficient clearance can be provided between the connecting recess 111 and the second medical shaft 102, the component dimensions of the first medical shaft 101 and the second medical shaft 102 are set. Regardless of the tolerance and the like, the assembly of the first medical shaft 101 and the second medical shaft 102 becomes easy.
 第1医療用シャフト101と第2医療用シャフト102とは中心軸を一致させて連結されている。第1医療用シャフト101と第2医療用シャフト102との連結部にネジ溝を設けて両者を螺合する場合や、第1医療用シャフト101と第2医療用シャフト102とをネジ部材によりネジ止めする場合には、軸のブレが生じやすい。本実施形態においては、第1医療用シャフト101と第2医療用シャフト102との連結部の構成が単純であり軸のブレが生じにくく、スムーズに回転させることができる。また、ネジ部材を用いた場合には、ネジ部材の劣化、位置ずれ及び脱落といった問題も生じやすい。本実施形態は、第1医療用シャフト101と同材質の連結ピン103をピンポイント溶接しているので、このような問題も生じにくい。 The first medical shaft 101 and the second medical shaft 102 are connected so that their central axes match. When a screw groove is provided at the connecting portion between the first medical shaft 101 and the second medical shaft 102 and both are screwed together, or when the first medical shaft 101 and the second medical shaft 102 are screwed with a screw member. When stopping, the shaft tends to shake. In the present embodiment, the structure of the connecting portion between the first medical shaft 101 and the second medical shaft 102 is simple, the shaft is less likely to shake, and the shaft can be rotated smoothly. Further, when the screw member is used, problems such as deterioration, misalignment, and dropout of the screw member are likely to occur. In this embodiment, since the connecting pin 103 made of the same material as the first medical shaft 101 is pinpoint welded, such a problem is unlikely to occur.
 第1医療用シャフト101が内視鏡のワーキングチャネルに挿入される駆動シャフトである場合、その直径は2mm~4mm程度であり、その全長は必要に応じて設定できるが、100mm~400mm程度である。この場合において、連結用凹部111における第1医療用シャフト101の壁面の肉厚は、材質にもよるが十分な強度を得る観点から0.1mm~0.5mm程度とすることが好ましい。また、連結ピン103の太さは0.5mm~1.5mm程度とすることが好ましい。第1医療用シャフト101と第2医療用シャフト102との重なり部分の長さは、特に限定されず自由に設定でき、必要に応じて10mm~400mm程度とすることが好ましい。連結貫通孔104の位置は、特に限定されないが、第1医療用シャフト101の先端から5mm~20mm程度の後述するスリーブ124に覆われる位置に形成すれば、連結ピン103の溶接部が外部に露出しないので好ましい。 When the first medical shaft 101 is a drive shaft inserted into the working channel of the endoscope, its diameter is about 2 mm to 4 mm, and its total length can be set as needed, but it is about 100 mm to 400 mm. .. In this case, the wall thickness of the wall surface of the first medical shaft 101 in the connecting recess 111 is preferably about 0.1 mm to 0.5 mm from the viewpoint of obtaining sufficient strength, although it depends on the material. Further, the thickness of the connecting pin 103 is preferably about 0.5 mm to 1.5 mm. The length of the overlapping portion between the first medical shaft 101 and the second medical shaft 102 is not particularly limited and can be freely set, and is preferably about 10 mm to 400 mm as needed. The position of the connecting through hole 104 is not particularly limited, but if it is formed at a position covered by a sleeve 124, which will be described later, about 5 mm to 20 mm from the tip of the first medical shaft 101, the welded portion of the connecting pin 103 is exposed to the outside. It is preferable because it does not.
 第1医療用シャフト101は、螺旋状に堅く撚られた複数の撚り線から作られた中空のストランドケーブル等の中空シャフトとすることができる。この場合、中空シャフトの先端部分を連結用凹部111とすればよい。第1医療用シャフト101は、中空シャフトの中空部分に芯材が挿入された構成としてもよい。この場合、先端部には芯材が存在しないようにして連結用凹部111を形成すればよい。なお、芯材は外側の中空シャフトと溶接により固定できる。但し、第1医療用シャフト101は中実のシャフトであってもよい。この場合、第1医療用シャフト101の先端面からドリル等で軸方向の穴を開けて、先端部に第2医療用シャフト102が挿入される連結用凹部111を形成すればよい。 The first medical shaft 101 can be a hollow shaft such as a hollow strand cable made of a plurality of stranded wires that are tightly twisted in a spiral shape. In this case, the tip portion of the hollow shaft may be a connecting recess 111. The first medical shaft 101 may have a configuration in which a core material is inserted into a hollow portion of the hollow shaft. In this case, the connecting recess 111 may be formed so that the core material does not exist at the tip portion. The core material can be fixed to the outer hollow shaft by welding. However, the first medical shaft 101 may be a solid shaft. In this case, a hole in the axial direction may be drilled from the tip surface of the first medical shaft 101 with a drill or the like to form a connecting recess 111 into which the second medical shaft 102 is inserted.
 本実施形態において、第2医療用シャフト102は、シャンク121の先端部に刃部122を有するドリルビットである。本実施形態において刃部122が、シャンク121より外径が大きい半球状である構成を示している。刃部122には、ダイヤモンド等の硬質研削材が電着加工されている。即ち、刃部122の外周面に硬質研削材が接着されていると共に、表面にダイヤモンドライクカーボン(DLC)等の電着層が設けられることによって、硬質研削材が刃部122に保持されている。刃部122の外径がシャンク121よりも大きいことにより、刃部122の先端側だけでなく、基端側(シャンク側)において組織を研削することもできる。但し、刃部122の形状はこのような形状に限らず、例えば、鋭利なねじ山を有するスクリュー状の刃部とすることもできる。 In the present embodiment, the second medical shaft 102 is a drill bit having a blade portion 122 at the tip end portion of the shank 121. In the present embodiment, the blade portion 122 has a hemispherical shape having a larger outer diameter than the shank 121. A hard abrasive such as diamond is electrodeposited on the blade portion 122. That is, the hard abrasive is adhered to the outer peripheral surface of the blade portion 122, and the hard grinding material is held by the blade portion 122 by providing an electrodeposition layer such as diamond-like carbon (DLC) on the surface. .. Since the outer diameter of the blade portion 122 is larger than that of the shank 121, the structure can be ground not only on the tip end side of the blade portion 122 but also on the proximal end side (shank side). However, the shape of the blade portion 122 is not limited to such a shape, and for example, a screw-shaped blade portion having a sharp thread can be used.
 第2医療用シャフト102がドリルビットである場合、その全長は特に限定されないが、強度等の観点から、20mm~50mm程度とすることが好ましい。但し、第2医療用シャフト102はドリルビットに限らず、医療用ドライバー等とすることもできる。このような場合も、第2医療用シャフト102の全長は必要に応じた長さとすることができる。 When the second medical shaft 102 is a drill bit, its total length is not particularly limited, but it is preferably about 20 mm to 50 mm from the viewpoint of strength and the like. However, the second medical shaft 102 is not limited to the drill bit, and may be a medical driver or the like. Even in such a case, the total length of the second medical shaft 102 can be set to a required length.
 第1医療用シャフト101が内視鏡のワーキングチャネルに挿入される駆動シャフトである場合、図2に二点鎖線で仮想的に示したように、第1医療用シャフト101の外側を覆う外シャフトとしてのスリーブ124が設けられていてもよい。スリーブ124は、例えば後述する外シャフト36と同様の構造及び材質とされており、円筒形状とされて、樹脂又は金属製とすることができる。スリーブ124を設ける場合、第1医療用シャフト101における連結ピン103の固定部分をスリーブ124が覆うようにすれば、連結ピン103の溶接部分にわずかな凹凸が生じていても組織が引っかかりにくくできるので好ましい。また、連結ピン103の固定部分がスリーブ124で覆われることによって、見た目をよくすることもできる。また、スリーブ124を設けることにより、第1医療用シャフト101が内視鏡チャネルの内部と接触して発熱したり、チャネル内部を傷つけたりしないようにできる。 When the first medical shaft 101 is a drive shaft inserted into the working channel of the endoscope, an outer shaft covering the outside of the first medical shaft 101 is virtually shown by a two-dot chain line in FIG. The sleeve 124 may be provided. The sleeve 124 has, for example, the same structure and material as the outer shaft 36 described later, has a cylindrical shape, and can be made of resin or metal. When the sleeve 124 is provided, if the sleeve 124 covers the fixed portion of the connecting pin 103 in the first medical shaft 101, the tissue can be less likely to be caught even if the welded portion of the connecting pin 103 has slight irregularities. preferable. Further, the fixing portion of the connecting pin 103 is covered with the sleeve 124 to improve the appearance. Further, by providing the sleeve 124, it is possible to prevent the first medical shaft 101 from coming into contact with the inside of the endoscope channel to generate heat or damaging the inside of the channel.
 連結ピン103は、複数設けることもできる。連結ピン103を複数設けることにより連結強度をさらに高くすることができる。また、連結ピン103を複数設けることにより、連結用凹部111と第2医療用シャフト102との間の隙間が大きくても、軸のブレを小さくすることができる。連結ピン103を複数設ける場合、例えば、図4に示すように、各連結ピン103の軸方向の位置をずらして互いに交差するように設けることができる。また、図5に示すように、シャフトの径方向断面を見た場合に複数の連結ピン103が互いに並行するように設けることもできる。なお、連結ピン103は3本以上とすることもできる。 A plurality of connecting pins 103 can be provided. By providing a plurality of connecting pins 103, the connecting strength can be further increased. Further, by providing a plurality of connecting pins 103, it is possible to reduce the shake of the shaft even if the gap between the connecting recess 111 and the second medical shaft 102 is large. When a plurality of connecting pins 103 are provided, for example, as shown in FIG. 4, the connecting pins 103 may be provided so as to be offset from each other in the axial position and intersect with each other. Further, as shown in FIG. 5, a plurality of connecting pins 103 may be provided so as to be parallel to each other when the radial cross section of the shaft is viewed. The number of connecting pins 103 may be three or more.
 本実施形態の医療用シャフト組立体100は、以下のように形成することができる。まず、軸方向に延びる連結用凹部111を有する第1医療用シャフト101を準備する。第1医療用シャフト101の全体が中空の場合は、内腔の先端部を連結用凹部111とすればよい。また、中空のシャフトに芯が挿入されている構成の場合、先端側に芯のない部分を設けて連結用凹部111とすればよい。中実の第1医療用シャフト101の場合には、先端面から研削して連結用凹部111を形成することができる。 The medical shaft assembly 100 of this embodiment can be formed as follows. First, a first medical shaft 101 having a connecting recess 111 extending in the axial direction is prepared. When the entire first medical shaft 101 is hollow, the tip of the lumen may be a connecting recess 111. Further, in the case of a configuration in which the core is inserted into the hollow shaft, a portion without a core may be provided on the tip side to form a connecting recess 111. In the case of the solid first medical shaft 101, the connecting recess 111 can be formed by grinding from the tip surface.
 次に、第1医療用シャフト101における連結用凹部111の周壁部分に対して、径方向に貫通する第1シャフト貫通孔113を形成する。 Next, a first shaft through hole 113 penetrating in the radial direction is formed with respect to the peripheral wall portion of the connecting recess 111 in the first medical shaft 101.
 次に、連結用凹部111に挿入可能なシャンク121を有し、シャンク121を貫通する第2シャフト貫通孔123を有する第2医療用シャフト102を準備する。第2医療用シャフト102のシャンク121を第1医療用シャフト101の連結用凹部111に先端側から挿入すると共に、第2医療用シャフト102の刃部122を第1医療用シャフト101よりも先端側へ露出した状態とする。第2医療用シャフト102のシャンク121を第1医療用シャフト101の連結用凹部111に挿入する際に、第1シャフト貫通孔113と第2シャフト貫通孔123とを相互に位置合わせして連通させることにより、連結貫通孔104を形成する。そして、連結貫通孔104に連結ピン103を挿入する。 Next, a second medical shaft 102 having a shank 121 that can be inserted into the connecting recess 111 and having a second shaft through hole 123 that penetrates the shank 121 is prepared. The shank 121 of the second medical shaft 102 is inserted into the connecting recess 111 of the first medical shaft 101 from the tip side, and the blade portion 122 of the second medical shaft 102 is on the tip side of the first medical shaft 101. It is in a state of being exposed to. When the shank 121 of the second medical shaft 102 is inserted into the connecting recess 111 of the first medical shaft 101, the first shaft through hole 113 and the second shaft through hole 123 are aligned with each other and communicate with each other. As a result, the connecting through hole 104 is formed. Then, the connecting pin 103 is inserted into the connecting through hole 104.
 次に、連結貫通孔104に挿入された連結ピン103を第1医療用シャフト101に溶接して固定する。溶接には、YAG(イットリウム-アルミニウム-ガーネット)レーザ等を用いたレーザ溶接を用いることができる。必要に応じて溶接箇所の研磨等を行ってもよい。なお、連結ピン103の第1医療用シャフト101への固定は、レーザ溶接以外の溶接や、液相や固相での金属接合、接着なども可能であって、固定手段が限定されるものでない。また、連結ピン103の長さ寸法、即ち第2医療用シャフト102の外周面からの突出寸法は、連結貫通孔104への挿入前に設定する他、挿入後に切断等して設定しても良い。また、連結ピン103の挿入に際しては、例えば第1医療用シャフト101及び/又は第2の医療用シャフト102を加熱及び冷却して熱嵌合等させることで挿入部分の隙間を抑えることも考えられる。 Next, the connecting pin 103 inserted in the connecting through hole 104 is welded to and fixed to the first medical shaft 101. Laser welding using a YAG (yttrium-aluminum-garnet) laser or the like can be used for welding. If necessary, the welded portion may be polished. The connecting pin 103 can be fixed to the first medical shaft 101 by welding other than laser welding, metal joining or bonding in a liquid phase or a solid phase, and the fixing means is not limited. .. Further, the length dimension of the connecting pin 103, that is, the protruding dimension from the outer peripheral surface of the second medical shaft 102 may be set before the insertion into the connecting through hole 104 or by cutting or the like after the insertion. .. Further, when inserting the connecting pin 103, for example, it is conceivable to heat and cool the first medical shaft 101 and / or the second medical shaft 102 to heat-fit them to suppress the gap in the insertion portion. ..
 本実施形態において、第1医療用シャフト101が医療用機器の基端側で、第2医療用シャフト102が医療用機器の先端側である例を示した。逆に、第2医療用シャフト102が医療用機器の基端側で第1医療用シャフト101が医療用機器の先端側であってもよい。 In the present embodiment, an example is shown in which the first medical shaft 101 is on the proximal end side of the medical device and the second medical shaft 102 is on the distal end side of the medical device. Conversely, the second medical shaft 102 may be on the proximal end side of the medical device and the first medical shaft 101 may be on the distal end side of the medical device.
 第1医療用シャフトが内視鏡のワーキングチャネルに挿入される駆動用シャフトであり、第2医療用シャフトがドリルビットである例を示したが、本開示は、医療用シャフト組立体は、2本の医療用シャフトが連結される様々な用途において用いることができる。例えば、医療用ドライバー等に用いることもできる。 Although the first medical shaft is a drive shaft inserted into the working channel of the endoscope and the second medical shaft is a drill bit, the present disclosure shows that the medical shaft assembly is 2 It can be used in various applications to which the medical shaft of a book is connected. For example, it can also be used for a medical driver or the like.
 また、図6に示す医療用シャフト組立体130の如き構造も採用可能である。即ち、医療用シャフト組立体130は、連結用穴としての連結用凹部111を備える第1医療用シャフト132と、連結用凹部111に挿入されるシャンク121を備える第2医療用シャフト134とを、備えている。第1医療用シャフト132における連結用凹部111の周壁部には、内外周面及び先端面に開口する第1シャフト貫通孔としての切込み136,136が形成されている。第2医療用シャフト134のシャンク121には、外周面に突出する連結ピン103が設けられている。連結ピン103は、シャンク121とは別体とされて、シャンク121に形成された第2シャフト貫通孔123に挿通されている。尤も、連結ピン103は、シャンク121に一体形成された突起状とすることもできる。 Further, a structure such as the medical shaft assembly 130 shown in FIG. 6 can also be adopted. That is, the medical shaft assembly 130 includes a first medical shaft 132 having a connecting recess 111 as a connecting hole and a second medical shaft 134 having a shank 121 inserted into the connecting recess 111. I have. The peripheral wall portion of the connecting recess 111 in the first medical shaft 132 is formed with cuts 136, 136 as first shaft through holes that open in the inner peripheral surface and the tip surface. The shank 121 of the second medical shaft 134 is provided with a connecting pin 103 protruding from the outer peripheral surface. The connecting pin 103 is separated from the shank 121 and is inserted into the second shaft through hole 123 formed in the shank 121. However, the connecting pin 103 can also be in the shape of a protrusion integrally formed with the shank 121.
 そして、シャンク121が第1医療用シャフト132の連結用凹部111に挿入される際に、連結ピン103が先端側から切込み136,136に挿入される。連結ピン103が切込み136,136において連結用凹部111の周壁部を径方向に貫通した状態で、連結ピン103よりも先端側において第1医療用シャフト132を縮径させて切込み136の先端側開口を狭窄することにより、連結ピン103の切込み136に対する先端側への抜けが防止される。これにより、連結用凹部111を貫通する第1シャフト貫通孔が切込み136,136によって構成されており、連結ピン103は、切込み136,136において連結用凹部111の周壁部を貫通して、シャンク121の第2シャフト貫通孔123に挿入されている。 Then, when the shank 121 is inserted into the connecting recess 111 of the first medical shaft 132, the connecting pin 103 is inserted into the notch 136, 136 from the tip side. With the connecting pin 103 radially penetrating the peripheral wall of the connecting recess 111 at the cuts 136 and 136, the diameter of the first medical shaft 132 is reduced on the tip side of the connecting pin 103 to open the tip side of the cut 136. By narrowing the gap, the connecting pin 103 is prevented from coming off to the tip side with respect to the notch 136. As a result, the first shaft through hole penetrating the connecting recess 111 is formed by the cuts 136 and 136, and the connecting pin 103 penetrates the peripheral wall portion of the connecting recess 111 in the cut 136 and 136 and the shank 121. It is inserted into the second shaft through hole 123 of.
 このような図6に示す医療用シャフト組立体130によれば、第1シャフト貫通孔136と第2シャフト貫通孔123との位置決めに要求される精度が緩和されて、第1医療用シャフト132と第2医療用シャフト134の組立てが容易になる。 According to the medical shaft assembly 130 shown in FIG. 6, the accuracy required for positioning the first shaft through hole 136 and the second shaft through hole 123 is relaxed, and the first medical shaft 132 The second medical shaft 134 can be easily assembled.
 なお、切込み136,136に差し入れられた連結ピン103を第1医療用シャフト132に固定する手段は、第1医療用シャフト132の縮径加工に限定されない。例えば、切込み136,136の先端側開口部を溶接や接着等によって塞いだり狭窄してよいし、連結ピン103を溶接や接着によって第1医療用シャフト132に固定して、切込み136,136の先端側開口部は開放されたままとすることもできる。 The means for fixing the connecting pin 103 inserted in the cuts 136 and 136 to the first medical shaft 132 is not limited to the diameter reduction processing of the first medical shaft 132. For example, the opening on the tip side of the cuts 136, 136 may be closed or narrowed by welding or adhesion, or the connecting pin 103 may be fixed to the first medical shaft 132 by welding or bonding to fix the tip of the cut 136, 136. The side openings can also be left open.
 また、切込み136,136は、例えば、周方向の一部においてのみ連結用凹部111の周壁を貫通していてもよいし、径方向の両側において連結用凹部111の周壁を貫通していてもよい。後者の場合には、シャンク121の連結ピン103が径方向の両側へ突出するように設けられる。 Further, the cuts 136 and 136 may, for example, penetrate the peripheral wall of the connecting recess 111 only in a part in the circumferential direction, or may penetrate the peripheral wall of the connecting recess 111 on both sides in the radial direction. .. In the latter case, the connecting pins 103 of the shank 121 are provided so as to project to both sides in the radial direction.
 図7~図9には、本発明の第2実施形態としての医療用シャフト組立体200が示されている。医療用シャフト組立体200は、第1医療用シャフト202と第2医療用シャフト204とを備えている。以下の説明において、第1実施形態と実質的に同一の部材及び部位には、同一の符号を付して詳細な説明を省略する場合がある。 7 to 9 show a medical shaft assembly 200 as a second embodiment of the present invention. The medical shaft assembly 200 includes a first medical shaft 202 and a second medical shaft 204. In the following description, members and parts substantially the same as those in the first embodiment may be designated by the same reference numerals and detailed description thereof may be omitted.
 第1医療用シャフト202は、図10,図11にも示すように、シャフト本体206を備えている。シャフト本体206は、円形断面の中空筒状とされており、重量比で高強度と重量の良好なバランスが実現されている。シャフト本体206は、医療用のステンレス鋼やチタン合金等の金属によって形成されており、高い強度を有している。シャフト本体206は、外周面に低摩擦性コーティング層が設けられていてもよい。低摩擦性コーティング層は、表面の滑り性を高める(摩擦係数を低減する)コーティング層であって、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ポリエーテルエーテルケトン(PEEK)、シリコン、セラミックなど、各種公知のものが適宜に採用可能である。シャフト本体206の内外径寸法は、特に限定されないが、例えば、内径寸法が2.2mmとされていると共に、外径寸法が2.7mmとされている。従って、シャフト本体206の周壁の厚さ寸法は、例えば0.25mm程度とされている。 As shown in FIGS. 10 and 11, the first medical shaft 202 includes a shaft body 206. The shaft body 206 has a hollow cylindrical shape with a circular cross section, and a good balance between high strength and weight is realized in terms of weight ratio. The shaft body 206 is made of a metal such as stainless steel for medical use or a titanium alloy, and has high strength. The shaft body 206 may be provided with a low friction coating layer on the outer peripheral surface. The low-friction coating layer is a coating layer that enhances the slipperiness of the surface (reduces the coefficient of friction), and is, for example, a fluororesin such as polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), silicon, and the like. Various known materials such as ceramic can be appropriately adopted. The inner and outer diameter dimensions of the shaft body 206 are not particularly limited, but for example, the inner diameter dimension is 2.2 mm and the outer diameter dimension is 2.7 mm. Therefore, the thickness dimension of the peripheral wall of the shaft main body 206 is set to, for example, about 0.25 mm.
 シャフト本体206には、4つの第1シャフト貫通孔208,208,208,208が形成されている。第1シャフト貫通孔208は、シャフト本体206の周壁を径方向に貫通する円形孔とされている。第1シャフト貫通孔208は、径方向で相互に反対側となる周方向の2箇所において、軸方向で相互に離隔した2つがそれぞれ設けられている。従って、相互に同じ軸方向位置に配された2組の第1シャフト貫通孔208,208は、径方向で直列的に並んで配されている。 Four first shaft through holes 208, 208, 208, 208 are formed in the shaft body 206. The first shaft through hole 208 is a circular hole that penetrates the peripheral wall of the shaft body 206 in the radial direction. The first shaft through holes 208 are provided at two locations in the circumferential direction that are opposite to each other in the radial direction and are separated from each other in the axial direction. Therefore, the two sets of first shaft through holes 208 and 208 arranged at the same axial position are arranged side by side in series in the radial direction.
 シャフト本体206内の中空部分には、詰物209が配されている。詰物209は、特に限定されず、固体やゲル状体などであってよい。本実施形態の詰物209は、固体とされており、シャフト本体206の内周に収容されている。詰物209は、全体が単一の材質とされていてもよいし、例えば、先端部分と基端部分が異なる材質で形成されていてもよい。この場合に、材質の異なる先端部分と基端部分は互いに独立していてもよく、必ずしも詰物209の全体が連続している必要はない。中空とされたシャフト本体206の内部に詰物209が収容されていることにより、回転時に慣性の増大による姿勢の安定化が図られて、第1医療用シャフト202の回転時のブレが抑制される。 Filling 209 is arranged in the hollow part in the shaft body 206. The filling 209 is not particularly limited and may be a solid or a gel-like body. The filling 209 of the present embodiment is solid, and is housed in the inner circumference of the shaft main body 206. The filling 209 may be made of a single material as a whole, or may be formed of, for example, a tip portion and a base end portion made of different materials. In this case, the tip portion and the base end portion made of different materials may be independent of each other, and the entire filling 209 does not necessarily have to be continuous. Since the filling 209 is housed inside the hollow shaft body 206, the posture is stabilized by increasing the inertia during rotation, and the shake during rotation of the first medical shaft 202 is suppressed. ..
 詰物209は、シャフト本体206の先端部分には配されておらず、4つの第1シャフト貫通孔208,208,208,208が詰物209を先端側へ外れたシャフト本体206の先端部分に形成されている。また、詰物209がなく中空とされた第1医療用シャフト202の先端部分は、シャフト本体206の中心孔によって連結用穴としての連結用凹部111が構成されており、第2医療用シャフト204が連結用凹部111に先端側から挿入されている。 The filling 209 is not arranged at the tip portion of the shaft main body 206, and four first shaft through holes 208, 208, 208, 208 are formed at the tip portion of the shaft main body 206 in which the filling 209 is removed toward the tip side. ing. Further, in the tip portion of the first medical shaft 202 which is hollow without filling 209, a connecting recess 111 as a connecting hole is formed by the central hole of the shaft main body 206, and the second medical shaft 204 is formed. It is inserted into the connecting recess 111 from the tip side.
 第2医療用シャフト204は、図12,図13に示すように、先端部にドリルヘッド210を備えている。ドリルヘッド210は、略球形とされており、外周面にはダイヤモンド等の切削用粒子が固着されている。なお、ドリルヘッド210は、第1実施形態の刃部122と同様に、表面を覆うDLC層等の電着層を有していてもよい。ドリルヘッド210の具体的な構造は、特に限定されず、例えば、切削用粒子の代わりに切刃を備えるものであってもよい。 As shown in FIGS. 12 and 13, the second medical shaft 204 is provided with a drill head 210 at its tip. The drill head 210 has a substantially spherical shape, and cutting particles such as diamond are fixed to the outer peripheral surface thereof. The drill head 210 may have an electrodeposition layer such as a DLC layer covering the surface, similarly to the blade portion 122 of the first embodiment. The specific structure of the drill head 210 is not particularly limited, and may include, for example, a cutting edge instead of the cutting particles.
 第2医療用シャフト204は、ドリルヘッド210から基端へ向けて突出するシャンク212を備えている。シャンク212は、中実ロッド状とされており、ドリルヘッド210の外径よりも小径とされている。シャンク212は、チタン合金や超硬合金等の金属で形成されている。シャンク212は、ドリルヘッド210と一体形成されて、ドリルヘッド210につながっており、本実施形態の第2医療用シャフト204がドリルヘッド210とシャンク212とを含んで構成されている。 The second medical shaft 204 includes a shank 212 that protrudes from the drill head 210 toward the base end. The shank 212 has a solid rod shape and has a smaller diameter than the outer diameter of the drill head 210. The shank 212 is made of a metal such as a titanium alloy or a cemented carbide. The shank 212 is integrally formed with the drill head 210 and is connected to the drill head 210, and the second medical shaft 204 of the present embodiment includes the drill head 210 and the shank 212.
 シャンク212の外周面には、一対の平坦部214,214が設けられている。平坦部214は、円柱形状とされたシャンク212の径方向に対して直交して広がる平面によって構成されている。一対の平坦部214,214は、相互に略平行に広がっている。平坦部214は、軸方向に所定の長さで連続して延びている。平坦部214の軸方向の長さ寸法は、特に限定されないが、第1医療用シャフト202において軸方向に離れて配された第1シャフト貫通孔208,208の軸方向外端間の距離よりも長くされており、第1シャフト貫通孔208,208の軸方向外端間の距離に対して2倍以上とされている。平坦部214の長さ寸法は、シャンク212の長さ寸法に対して1/3以上の長さであることが望ましく、例えば7mm以上とされる。また、本実施形態において、平坦部214の幅寸法は、第1シャフト貫通孔208(後述する連結ピン216)の直径と略同じとされている。尤も、平坦部214の幅寸法は、例えば、第1シャフト貫通孔208よりも小さく又は大きくされていてもよい。なお、図12では、第1医療用シャフト202と第2医療用シャフト204の連結状態(後述)における平坦部214に対する第1シャフト貫通孔208(後述する連結ピン216)の位置を二点鎖線で示した。 A pair of flat portions 214 and 214 are provided on the outer peripheral surface of the shank 212. The flat portion 214 is composed of a plane extending orthogonal to the radial direction of the shank 212 having a cylindrical shape. The pair of flat portions 214, 214 extend substantially parallel to each other. The flat portion 214 extends continuously in the axial direction with a predetermined length. The axial length dimension of the flat portion 214 is not particularly limited, but is larger than the distance between the axial outer ends of the first shaft through holes 208 and 208 arranged axially apart in the first medical shaft 202. It is lengthened and is more than twice as long as the distance between the axial outer ends of the first shaft through holes 208 and 208. The length dimension of the flat portion 214 is preferably 1/3 or more of the length dimension of the shank 212, and is, for example, 7 mm or more. Further, in the present embodiment, the width dimension of the flat portion 214 is substantially the same as the diameter of the first shaft through hole 208 (connecting pin 216 described later). However, the width dimension of the flat portion 214 may be smaller or larger than, for example, the first shaft through hole 208. In FIG. 12, the position of the first shaft through hole 208 (connecting pin 216 described later) with respect to the flat portion 214 in the connected state (described later) of the first medical shaft 202 and the second medical shaft 204 is indicated by a two-dot chain line. Indicated.
 第2医療用シャフト204は、図8に示すように、詰物209のないシャフト本体206の先端部分へシャンク212が挿入状態で固定されることにより、第1医療用シャフト202と連結されている。 As shown in FIG. 8, the second medical shaft 204 is connected to the first medical shaft 202 by fixing the shank 212 to the tip portion of the shaft main body 206 without the padding 209 in the inserted state.
 第2医療用シャフト204のシャンク212は、図8,図9に示すように、第1医療用シャフト202におけるシャフト本体206の第1シャフト貫通孔208に挿入される連結ピン216によって、第1医療用シャフト202に固定されている。連結ピン216は、第1シャフト貫通孔208の孔断面形状に対応する略円柱形状乃至は円板形状とされていることが望ましく、第1シャフト貫通孔208に対して大きな隙間を有することなく挿入可能であることが好ましい。連結ピン216は、シャフト本体206とシャンク212との少なくとも一方と同じ金属材料で形成されていることが望ましく、例えばステンレス製とされている。連結ピン216は、長さが0.3mm程度、直径が1.0mm程度とされている。 As shown in FIGS. 8 and 9, the shank 212 of the second medical shaft 204 is provided with the first medical treatment by the connecting pin 216 inserted into the first shaft through hole 208 of the shaft body 206 of the first medical shaft 202. It is fixed to the shaft 202. It is desirable that the connecting pin 216 has a substantially cylindrical shape or a disk shape corresponding to the hole cross-sectional shape of the first shaft through hole 208, and is inserted into the first shaft through hole 208 without having a large gap. It is preferable that it is possible. The connecting pin 216 is preferably made of the same metal material as at least one of the shaft body 206 and the shank 212, and is made of, for example, stainless steel. The connecting pin 216 has a length of about 0.3 mm and a diameter of about 1.0 mm.
 以下に、本実施形態の医療用シャフト組立体200の製造方法の一例について説明する。先ず、連結用凹部111と4つの第1シャフト貫通孔208,208,208,208とを備えた第1医療用シャフト202と、連結用凹部111へ挿入可能なシャンク212に一対の平坦部214,214を備えた第2医療用シャフト204とを、準備する。次に、第2医療用シャフト204のシャンク212を第1医療用シャフト202の先端部分に設けられた連結用凹部111へ挿入し、第1シャフト貫通孔208,208,208,208と一対の平坦部214,214とを周方向で相互に位置決めする。平坦部214,214が位置する周方向の2箇所において、シャンク212の外周面がシャフト本体206の内周面から大きく離隔しており、平坦部214,214によって本実施形態の離隔部が周方向の2箇所に構成されている。離隔部を構成する平坦部214,214は、第2医療用シャフト204における第1医療用シャフト202の連結用凹部111への挿入部分において、両端部分を外れた軸方向の中間領域に設けられている。 Hereinafter, an example of the manufacturing method of the medical shaft assembly 200 of the present embodiment will be described. First, a pair of flat portions 214, a first medical shaft 202 having a connecting recess 111 and four first shaft through holes 208, 208, 208, 208, and a shank 212 that can be inserted into the connecting recess 111. A second medical shaft 204 equipped with 214 is prepared. Next, the shank 212 of the second medical shaft 204 is inserted into the connecting recess 111 provided at the tip of the first medical shaft 202, and is flat with the first shaft through holes 208, 208, 208, 208. The portions 214 and 214 are mutually positioned in the circumferential direction. The outer peripheral surface of the shank 212 is largely separated from the inner peripheral surface of the shaft main body 206 at two points in the circumferential direction where the flat portions 214 and 214 are located, and the separated portions of the present embodiment are separated by the flat portions 214 and 214 in the circumferential direction. It is composed of two places. The flat portions 214 and 214 constituting the separation portion are provided in the intermediate region in the axial direction away from both end portions at the insertion portion of the first medical shaft 202 into the connecting recess 111 in the second medical shaft 204. There is.
 次に、一対の平坦部214,214上に配置された第1シャフト貫通孔208,208,208,208に対して、連結ピン216をそれぞれ挿入する。第1シャフト貫通孔208に挿入された連結ピン216は、第1医療用シャフト202のシャフト本体206を貫通して、内周側の端面が第2医療用シャフト204の平坦部214に突き当てられる。本実施形態では、4つの連結ピン216,216,216,216が、第1医療用シャフト202を4箇所において貫通して、第2医療用シャフト204の外周面に突き当てられる。 Next, the connecting pins 216 are inserted into the first shaft through holes 208, 208, 208, 208 arranged on the pair of flat portions 214, 214, respectively. The connecting pin 216 inserted into the first shaft through hole 208 penetrates the shaft body 206 of the first medical shaft 202, and the end face on the inner peripheral side is abutted against the flat portion 214 of the second medical shaft 204. .. In the present embodiment, four connecting pins 216, 216, 216, 216 penetrate the first medical shaft 202 at four points and are abutted against the outer peripheral surface of the second medical shaft 204.
 そして、第1シャフト貫通孔208内の連結ピン216にレーザを照射して、連結ピン216をレーザによって加熱する。第1シャフト貫通孔208に挿入された連結ピン216をレーザによって加熱して溶融させることにより、連結ピン216を、第1シャフト貫通孔208の内周面において第1医療用シャフト202に固着させると共に、内周側の端部において第2医療用シャフト204のシャンク212の外周面(平坦部214)に固着させる。これらにより、第1医療用シャフト202と第2医療用シャフト204とを、4箇所において連結ピン216,216,216,216によって溶接固定して、医療用シャフト組立体200を得る。なお、連結ピン216に照射されるレーザは、特に限定されず、例えば、YAGレーザやルビーレーザ等のパルス形であってもよいし、炭酸ガス等の連続形であってもよく、材質やサイズなどを考慮してレーザ溶接以外の例えば抵抗溶接等の各種溶接方法も採用可能である。 Then, the connecting pin 216 in the first shaft through hole 208 is irradiated with a laser, and the connecting pin 216 is heated by the laser. By heating and melting the connecting pin 216 inserted in the first shaft through hole 208 by a laser, the connecting pin 216 is fixed to the first medical shaft 202 on the inner peripheral surface of the first shaft through hole 208. , At the end on the inner peripheral side, is fixed to the outer peripheral surface (flat portion 214) of the shank 212 of the second medical shaft 204. As a result, the first medical shaft 202 and the second medical shaft 204 are welded and fixed at four points by connecting pins 216, 216, 216, 216 to obtain the medical shaft assembly 200. The laser irradiated to the connecting pin 216 is not particularly limited, and may be, for example, a pulse type such as a YAG laser or a ruby laser, or a continuous type such as carbon dioxide gas, and may be made of a material or size. In consideration of the above, various welding methods other than laser welding, such as resistance welding, can also be adopted.
 このような本実施形態に従う構造とされた医療用シャフト組立体200によれば、ドリルヘッド210による骨の切削に際して捩り方向の力が作用しても、連結ピン216によって溶接固定された第1,第2医療用シャフト202,204が破断等の損傷を生じ難い。第1,第2医療用シャフト202,204の強度が有利に確保される理由としては、例えば、第1,第2医療用シャフト202,204自体を加熱して溶接する場合に比して、第1,第2医療用シャフト202,204の加熱による材質の変化、応力の残留、変形等が軽減されて、第1,第2医療用シャフト202,204の強度が確保されること等が考えられる。特に、捩り応力による破断等が発生し易い内周側の第2医療用シャフト204において、加熱による強度低下等が回避されることにより、骨の切削に際して第2医療用シャフト204の損傷が防止される。 According to the medical shaft assembly 200 having a structure according to the present embodiment, even if a force in the twisting direction is applied when cutting the bone by the drill head 210, the first one is welded and fixed by the connecting pin 216. The second medical shafts 202 and 204 are unlikely to cause damage such as breakage. The reason why the strength of the first and second medical shafts 202 and 204 is advantageously secured is that, for example, the first and second medical shafts 202 and 204 themselves are heated and welded. It is conceivable that the change in material, residual stress, deformation, etc. due to heating of the first and second medical shafts 202 and 204 are reduced, and the strength of the first and second medical shafts 202 and 204 is secured. .. In particular, in the second medical shaft 204 on the inner peripheral side where breakage due to torsional stress is likely to occur, damage to the second medical shaft 204 is prevented during bone cutting by avoiding a decrease in strength due to heating. To.
 また、第2医療用シャフト204は、連結ピン216による溶接部分が平坦部214によって第1医療用シャフト202からの径方向の離隔距離を大きくされた離隔部とされていることから、連結ピン216の長さを長くして体積を大きく得ることができて、溶接による固定強度の向上が図られる。 Further, in the second medical shaft 204, since the welded portion by the connecting pin 216 is a separated portion in which the radial separation distance from the first medical shaft 202 is increased by the flat portion 214, the connecting pin 216 is used. The length of the shaft can be increased to obtain a large volume, and the fixing strength can be improved by welding.
 加熱によって溶融した連結ピン216や当該連結ピン216に接合される第2医療用シャフト204の接合部位は、離隔部によって表面性状を機械的に制限されることが回避され、また周囲への過度な伝熱も軽減され得る。それ故、かかる接合部位は、第1,第2医療用シャフト202,204の径方向間に入り込むように広がりやすくされている。これにより、第2医療用シャフト204のシャンク212の外周面(平坦部214)に対する連結ピン216の固着面積が大きくされて、第2医療用シャフト204に対する連結ピン216の固定強度が大きく確保される。更に、連結ピン216が第1医療用シャフト202における第1シャフト貫通孔208の開口周縁部に係止され易く、第1医療用シャフト202に対する連結ピン216の固定強度が大きく確保される。従って、第1医療用シャフト202と第2医療用シャフト204との連結ピン216による連結強度を大きく得ることができて、第1,第2医療用シャフト202,204の溶接部分における医療用シャフト組立体200の損傷がより有利に防止される。 The joint portion of the connecting pin 216 melted by heating and the second medical shaft 204 joined to the connecting pin 216 is prevented from being mechanically restricted in surface texture by the separation portion, and excessive to the surroundings. Heat transfer can also be reduced. Therefore, the joint portion is easily spread so as to enter between the radial directions of the first and second medical shafts 202 and 204. As a result, the fixing area of the connecting pin 216 to the outer peripheral surface (flat portion 214) of the shank 212 of the second medical shaft 204 is increased, and the fixing strength of the connecting pin 216 to the second medical shaft 204 is largely secured. .. Further, the connecting pin 216 is easily locked to the opening peripheral portion of the first shaft through hole 208 in the first medical shaft 202, and the fixing strength of the connecting pin 216 to the first medical shaft 202 is largely secured. Therefore, it is possible to obtain a large connection strength by the connecting pin 216 between the first medical shaft 202 and the second medical shaft 204, and the medical shaft set in the welded portion of the first and second medical shafts 202 and 204. Damage to the solid 200 is more advantageously prevented.
 また、連結ピン216は、シャフト本体206の周壁を貫通していると共に、第2医療用シャフト204を貫通することなく、第2医療用シャフト204におけるシャンク212の外周面に突き当てられた状態で溶接されている。このように、第2医療用シャフト204において連結ピン216を挿通するための貫通孔が不要とされていることから、第2医療用シャフト204の製造が容易になると共に、第2医療用シャフト204の強度を確保し易くなる。特に本実施形態では、第2医療用シャフト204が強度を要求されるドリルヘッド210とされており、貫通孔をなくすことによる強度の向上が図られていると共に、形成難易度が高い貫通孔を不要とすることによる製造の容易化が図られる。 Further, the connecting pin 216 penetrates the peripheral wall of the shaft body 206 and is abutted against the outer peripheral surface of the shank 212 of the second medical shaft 204 without penetrating the second medical shaft 204. It is welded. As described above, since the through hole for inserting the connecting pin 216 is not required in the second medical shaft 204, the second medical shaft 204 can be easily manufactured and the second medical shaft 204 can be manufactured. It becomes easy to secure the strength of. In particular, in the present embodiment, the second medical shaft 204 is a drill head 210 that requires strength, and the strength is improved by eliminating the through hole, and the through hole that is difficult to form is formed. By eliminating the need, manufacturing can be facilitated.
 さらに、連結ピンが第1医療用シャフト202と第2医療用シャフト204とを貫通する構造に比して、第1医療用シャフト202と第2医療用シャフト204とを高精度に位置決めする必要がなく、第1,第2医療用シャフト202,204の組立てが容易である。 Further, it is necessary to position the first medical shaft 202 and the second medical shaft 204 with higher accuracy than the structure in which the connecting pin penetrates the first medical shaft 202 and the second medical shaft 204. It is easy to assemble the first and second medical shafts 202 and 204.
 特に本実施形態では、連結ピン216が突き当てられる第2医療用シャフト204の平坦部214が軸方向に延びていることから、第1,第2医療用シャフト202,204を特に軸方向において容易に位置決めすることができる。また、平坦部214が軸方向に延びていることにより、例えば、平坦部214に対する第1シャフト貫通孔208の軸方向での相対位置を適宜に調節して、シャンク212の第1医療用シャフト202からの露出長さを変更設定することも可能となる。本実施形態では、軸方向で相互に離れた二箇所に設けられた2つの連結ピン216,216が1つの平坦部214に突き当てられて溶接されており、第1医療用シャフト202と第2医療用シャフト204との軸方向での位置合わせが容易とされている。 In particular, in the present embodiment, since the flat portion 214 of the second medical shaft 204 to which the connecting pin 216 is abutted extends in the axial direction, the first and second medical shafts 202 and 204 are particularly easy in the axial direction. Can be positioned to. Further, since the flat portion 214 extends in the axial direction, for example, the relative position of the first shaft through hole 208 with respect to the flat portion 214 in the axial direction is appropriately adjusted to appropriately adjust the position of the first medical shaft 202 of the shank 212. It is also possible to change and set the exposure length from. In the present embodiment, two connecting pins 216 and 216 provided at two positions separated from each other in the axial direction are abutted against one flat portion 214 and welded to the first medical shaft 202 and the second. Alignment with the medical shaft 204 in the axial direction is easy.
 第1,第2医療用シャフト202,204は、4つの連結ピン216,216,216,216によって4箇所で連結されていることから、連結ピン216による第1,第2医療用シャフト202,204の固定強度が大きく確保されている。また、4つの連結ピン216,216,216,216による第1,第2医療用シャフト202,204の溶接位置が、周方向及び軸方向で相互に離れていることから、第1,第2医療用シャフト202,204の固定強度の効率的な確保と、回転時の軸ブレの防止等が有利に図られる。特に本実施形態では、第1,第2医療用シャフト202,204が溶接される周方向の2箇所が、径方向一方向の両側に位置しており、溶接部位が医療用シャフト組立体200の中心軸に対して略対称に設けられていると共に、周方向における相互の距離が長くされている。これにより、少ない溶接箇所によって、第1,第2医療用シャフト202,204の固定強度の確保や、回転時の軸ブレの防止などが有利に実現される。 Since the first and second medical shafts 202 and 204 are connected at four points by four connecting pins 216, 216 and 216, 216, the first and second medical shafts 202 and 204 are connected by the connecting pins 216. The fixed strength of is greatly secured. Further, since the welding positions of the first and second medical shafts 202 and 204 by the four connecting pins 216, 216, 216 and 216 are separated from each other in the circumferential direction and the axial direction, the first and second medical treatments are performed. Efficiently ensuring the fixing strength of the shafts 202 and 204 and preventing shaft shake during rotation are advantageous. In particular, in the present embodiment, two points in the circumferential direction in which the first and second medical shafts 202 and 204 are welded are located on both sides in one radial direction, and the welded parts are the medical shaft assembly 200. It is provided substantially symmetrically with respect to the central axis, and the mutual distance in the circumferential direction is lengthened. As a result, it is possible to advantageously secure the fixing strength of the first and second medical shafts 202 and 204 and prevent shaft shake during rotation with a small number of welded parts.
 なお、本実施形態において、連結ピン216の数、配置、形状、大きさ等は、必要に応じて適宜に変更され得る。例えば、第1,第2医療用シャフト202,204の相互に直交する径方向2方向にそれぞれ連結ピン216を設けることも可能であり、それによって、固定力の強化を図りつつ、固定力を周方向においてバランスよく作用させることができる。 In the present embodiment, the number, arrangement, shape, size, etc. of the connecting pins 216 can be appropriately changed as needed. For example, it is also possible to provide connecting pins 216 in two radial directions orthogonal to each other of the first and second medical shafts 202 and 204, whereby the fixing force is circulated while strengthening the fixing force. It can work in a well-balanced manner in the direction.
 本実施形態では、シャンク212の外周面に平坦部214,214が設けられることによって離隔部が構成されていたが、例えば、シャフト本体206の内周面が円筒面とされると共に、シャンク212の外周面が楕円筒面とされることによって、シャンク212の短軸方向となる径方向の両側に離隔部が構成されるようにしてもよい。また、シャンク212の外周面に開口する凹所や凹溝が形成されることによって、離隔部が構成されるようにしてもよい。 In the present embodiment, the separated portions are formed by providing the flat portions 214 and 214 on the outer peripheral surface of the shank 212. For example, the inner peripheral surface of the shaft body 206 is a cylindrical surface and the shank 212 is provided with a cylindrical surface. Since the outer peripheral surface is an elliptical cylindrical surface, separation portions may be formed on both sides in the radial direction of the shank 212 in the minor axis direction. Further, the separated portion may be formed by forming a concave portion or a concave groove that opens on the outer peripheral surface of the shank 212.
 離隔部は、周方向に延びるように設けられていてもよく、例えば、全周にわたって連続する環状の凹溝によって離隔部を構成することもできる。これによれば、第1医療用シャフト202と第2医療用シャフト204との周方向での位置決めが容易になると共に、溶融した連結ピン216が周方向で広がって第1,第2医療用シャフト202,204の径方向対向間に入り込むことにより、溶接面積の確保等が有利に実現され得る。また、離隔部は、相互に離隔した軸方向の複数箇所に設けられていてもよい。 The separation portion may be provided so as to extend in the circumferential direction, and for example, the separation portion may be formed by an annular groove that is continuous over the entire circumference. According to this, the positioning of the first medical shaft 202 and the second medical shaft 204 in the circumferential direction becomes easy, and the molten connecting pin 216 spreads in the circumferential direction to facilitate the positioning of the first medical shaft 202 and the second medical shaft 204 in the circumferential direction. By entering between the radial oppositions of 202 and 204, it is possible to advantageously realize the securing of the welding area and the like. Further, the separation portions may be provided at a plurality of locations in the axial direction separated from each other.
 本実施形態に示した第1医療用シャフト202と第2医療用シャフト204との連結構造は、第1実施形態と同様に、例示したシャフトドリル以外の医療用シャフト組立体にも適用することができる。また、先端側が第1医療用シャフト202で、基端側が第2医療用シャフト204とされていてもよい。 The connection structure between the first medical shaft 202 and the second medical shaft 204 shown in the present embodiment can be applied to a medical shaft assembly other than the illustrated shaft drill as in the first embodiment. can. Further, the tip end side may be the first medical shaft 202, and the proximal end side may be the second medical shaft 204.
 図14~図16には、本発明の第3実施形態としての医療用のシャフトドリル(以下、シャフトドリル)10を備える医療用ドリル器具12が示されている。医療用ドリル器具12は、シャフトドリル10の基端部にハンドピース14が取り付けられた構造とされている。以下の説明において、原則として、先端側とは後述するドリルヘッド16側である図16中の左側を、基端側とはハンドピース14側である図16中の右側を言う。また、原則として、上下方向とは図14中の上下方向を言う。 14 to 16 show a medical drill device 12 provided with a medical shaft drill (hereinafter, shaft drill) 10 as a third embodiment of the present invention. The medical drill device 12 has a structure in which a handpiece 14 is attached to a base end portion of a shaft drill 10. In the following description, as a general rule, the tip side refers to the left side in FIG. 16 which is the drill head 16 side described later, and the proximal end side refers to the right side in FIG. 16 which is the handpiece 14 side. Further, as a general rule, the vertical direction means the vertical direction in FIG.
 シャフトドリル10は、図15~図17に示すように、先端部にドリルヘッド16を備えている。ドリルヘッド16は、略球形とされており、外周面にはダイヤモンド等の切削用粒子が固着されている。ドリルヘッド16は、第1実施形態の刃部122と同様に、表面を覆うDLC層等の電着層を有していてもよい。ドリルヘッド16の具体的な構造は、特に限定されず、例えば、切削用粒子の代わりに切刃を備えるものであってもよい。 As shown in FIGS. 15 to 17, the shaft drill 10 is provided with a drill head 16 at its tip. The drill head 16 has a substantially spherical shape, and cutting particles such as diamond are fixed to the outer peripheral surface thereof. The drill head 16 may have an electrodeposition layer such as a DLC layer covering the surface, similarly to the blade portion 122 of the first embodiment. The specific structure of the drill head 16 is not particularly limited, and for example, a cutting edge may be provided instead of the cutting particles.
 図17に示すように、ドリルヘッド16は、シャンク18が基端へ向けて突出している。シャンク18は、中実ロッド状とされており、ドリルヘッド16の外径よりも小径とされている。シャンク18は、医療用のステンレス鋼やチタン合金、超硬合金等の金属製とされている。シャンク18は、ドリルヘッド16と一体形成されて、ドリルヘッド16につながっている。 As shown in FIG. 17, the shank 18 of the drill head 16 projects toward the proximal end. The shank 18 has a solid rod shape and has a smaller diameter than the outer diameter of the drill head 16. The shank 18 is made of a metal such as stainless steel for medical use, a titanium alloy, or a cemented carbide. The shank 18 is integrally formed with the drill head 16 and is connected to the drill head 16.
 シャンク18は、シャフト本体20の先端部に挿入固定されている。シャフト本体20は、円形断面の中空筒状とされており、重量比で高強度と重量の良好なバランスが実現されている。シャフト本体20は、医療用のステンレス鋼やチタン合金等の金属によって形成されており、高い強度を有している。シャフト本体20は、外周面に低摩擦性コーティング層が設けられている。低摩擦性コーティング層は、表面の滑り性を高めるコーティング層であって、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ポリエーテルエーテルケトン(PEEK)、シリコン、セラミックなど、各種公知のものが適宜に採用可能である。シャフト本体20の外径寸法は、後述する外シャフト36に挿通可能であれば特に限定されないが、例えば2.75mmとされる。 The shank 18 is inserted and fixed to the tip of the shaft body 20. The shaft body 20 has a hollow cylindrical shape with a circular cross section, and a good balance between high strength and weight is realized in terms of weight ratio. The shaft body 20 is made of a metal such as stainless steel for medical use or a titanium alloy, and has high strength. The shaft body 20 is provided with a low friction coating layer on the outer peripheral surface. The low-friction coating layer is a coating layer that enhances the slipperiness of the surface, and is variously known such as fluororesin such as polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), silicon, and ceramic. Can be adopted as appropriate. The outer diameter of the shaft body 20 is not particularly limited as long as it can be inserted into the outer shaft 36 described later, but is, for example, 2.75 mm.
 シャフト本体20内の中空部分には、詰物22が配されている。詰物22は、特に限定されず、固体やゲル状体などであってよい。本実施形態の詰物22は、固体とされており、シャフト本体20内に収容されている。詰物22は、全体が単一の材質とされていてもよいし、例えば、先端部分と基端部分が異なる材質で形成されていてもよい。この場合に、材質の異なる先端部分と基端部分は互いに独立していてもよく、必ずしも詰物22の全体が連続している必要はない。中空とされたシャフト本体20の内部に詰物22が収容されていることにより、回転時に慣性の増大による姿勢の安定化が図られて、シャフト本体20の回転時のブレが抑制される。詰物22は、全体がシャフト本体20内に収容されていてもよい。 Filling 22 is arranged in the hollow portion in the shaft body 20. The filling 22 is not particularly limited and may be a solid or a gel-like body. The filling 22 of the present embodiment is solid and is housed in the shaft body 20. The filling 22 may be made of a single material as a whole, or may be formed of, for example, a tip portion and a base end portion made of different materials. In this case, the tip portion and the base end portion made of different materials may be independent of each other, and the entire filling 22 does not necessarily have to be continuous. Since the filling 22 is housed inside the hollow shaft main body 20, the posture is stabilized by increasing the inertia during rotation, and the shake during rotation of the shaft main body 20 is suppressed. The entire filling 22 may be housed in the shaft body 20.
 詰物22は、シャフト本体20の先端部分には配されておらず、中空とされたシャフト本体20の先端部分にシャンク18が挿入固定されており、シャンク18とシャフト本体20とによって医療用シャフト組立体としての回転シャフト24が構成されている。本実施形態では、詰物22を備えたシャフト本体20が第1医療用シャフトとされていると共に、シャンク18が第2医療用シャフトとされており、中空とされたシャフト本体20の先端部分が連結用穴とされている。 The filling 22 is not arranged at the tip of the shaft body 20, but the shank 18 is inserted and fixed to the tip of the hollow shaft body 20, and the shank 18 and the shaft body 20 together form a medical shaft assembly. The rotating shaft 24 as a solid is configured. In the present embodiment, the shaft body 20 provided with the padding 22 is used as the first medical shaft, and the shank 18 is used as the second medical shaft, and the tip portion of the hollow shaft body 20 is connected. It is said to be a hole.
 中実構造のシャンク18が中空構造のシャフト本体20に挿入固定された構造の回転シャフト24により、特に力がかかるドリルヘッド16に近接するシャンク18の強度を中実構造によって確保でき、更にシャフト本体20は強度確保しやすい大径の中空構造としたことで破断を防止できる。シャンク18は、シャフト本体20に対して圧入固定されていてもよいし、挿入状態で溶接、接着、ピン留め、かしめ、ねじ留め等の手段によって固定されていてもよい。シャンク18は、シャフト本体20に対して、着脱可能に固定することもでき、これにより、ドリルヘッド16とシャンク18からなるドリルビットは、メンテナンスや交換等に際して、シャフト本体20から取り外すことが可能となる。 The rotating shaft 24 having a structure in which the shank 18 having a solid structure is inserted and fixed to the shaft body 20 having a hollow structure allows the strength of the shank 18 close to the drill head 16 to which a particularly strong force is applied to be secured by the solid structure, and further, the shaft body. 20 can be prevented from breaking by having a large-diameter hollow structure that makes it easy to secure strength. The shank 18 may be press-fitted and fixed to the shaft body 20, or may be fixed by means such as welding, bonding, pinning, caulking, and screwing in the inserted state. The shank 18 can be detachably fixed to the shaft body 20, whereby the drill bit composed of the drill head 16 and the shank 18 can be removed from the shaft body 20 for maintenance or replacement. Become.
 シャンク18がシャフト本体20に固定されることにより、回転シャフト24の先端にドリルヘッド16が設けられている。ドリルヘッド16は、回転シャフト24に固定されており、回転シャフト24と一体的に回転可能とされている。回転シャフト24を構成するシャンク18とシャフト本体20は、金属製とされている。 By fixing the shank 18 to the shaft body 20, a drill head 16 is provided at the tip of the rotating shaft 24. The drill head 16 is fixed to the rotary shaft 24 and can rotate integrally with the rotary shaft 24. The shank 18 and the shaft body 20 constituting the rotary shaft 24 are made of metal.
 回転シャフト24の先端部分には、シャフト本体20の外径とシャンク18の外径との差によって段差部26が形成されており、段差部26よりも先端側が基端側よりも小径とされている。シャンク18が段差部26よりも先端側の小径部分を構成し、シャフト本体20が段差部26よりも基端側の大径部分を構成する。 At the tip of the rotating shaft 24, a step portion 26 is formed by the difference between the outer diameter of the shaft body 20 and the outer diameter of the shank 18, and the tip side of the step portion 26 has a smaller diameter than the proximal end side. There is. The shank 18 constitutes a small diameter portion on the tip side of the step portion 26, and the shaft body 20 constitutes a large diameter portion on the proximal end side of the step portion 26.
 回転シャフト24の基端部には、係合部材28が固着されている。係合部材28は、有底筒状とされており、シャフト本体20の基端部が挿入状態で固着されている。係合部材28は、表面の低摩擦性や低い熱伝達率などを実現可能な材料で形成されていることが望ましい。係合部材28は、合成樹脂製とされており、例えば表面の摩擦係数が小さく熱伝達率が小さい(耐熱性に優れる)PEEK等によって形成されている。係合部材28は、外周へ突出する係合突条30を備えている。係合突条30は、外周面に突出して、軸方向に直線的に延びている。係合突条30は、本実施形態では、係合部材28の周方向の4か所に設けられて、周方向で略等間隔に配されているが、形成数や配置等は特に限定されない。本実施形態の係合突条30は、略半円形断面を有しているが、例えば略矩形断面など、他の断面形状であってもよい。 An engaging member 28 is fixed to the base end of the rotating shaft 24. The engaging member 28 has a bottomed cylindrical shape, and the base end portion of the shaft body 20 is fixed in the inserted state. It is desirable that the engaging member 28 is made of a material capable of achieving low friction on the surface and low heat transfer coefficient. The engaging member 28 is made of synthetic resin, and is formed of, for example, PEEK having a small surface friction coefficient and a small heat transfer coefficient (excellent in heat resistance). The engaging member 28 includes an engaging ridge 30 that projects to the outer periphery. The engaging ridge 30 projects to the outer peripheral surface and extends linearly in the axial direction. In the present embodiment, the engaging ridges 30 are provided at four locations in the circumferential direction of the engaging member 28 and are arranged at substantially equal intervals in the circumferential direction, but the number of formations, arrangement, and the like are not particularly limited. .. The engaging ridge 30 of the present embodiment has a substantially semicircular cross section, but may have another cross-sectional shape such as a substantially rectangular cross section.
 回転シャフト24には、隙間リング32が外挿されている。隙間リング32は、係合部材28と同様に合成樹脂製とされており、例えばPEEKによって形成されている。隙間リング32は、回転シャフト24に対して相対回転可能に外挿されている。隙間リング32には、外周面に開口する肉抜凹所34が周方向の2か所に形成されており、表面積の増大による放熱性能の向上が図られている。隙間リング32は、係合部材28よりも先端側で回転シャフト24に外挿されている。隙間リング32は、係合部材28よりも大径とされており、外周面が係合部材28の係合突条30の先端よりも更に外周側に位置している。 A gap ring 32 is extrapolated to the rotating shaft 24. The gap ring 32 is made of synthetic resin like the engaging member 28, and is formed of, for example, PEEK. The gap ring 32 is extrapolated so as to be rotatable relative to the rotating shaft 24. The gap ring 32 is formed with lightening recesses 34 that open on the outer peripheral surface at two locations in the circumferential direction, and the heat dissipation performance is improved by increasing the surface area. The gap ring 32 is extrapolated to the rotating shaft 24 on the distal end side of the engaging member 28. The gap ring 32 has a larger diameter than the engaging member 28, and the outer peripheral surface is located on the outer peripheral side of the tip of the engaging ridge 30 of the engaging member 28.
 回転シャフト24には、外シャフト36が外挿されている。外シャフト36は、シャフト本体20の外径と略同じか僅かに大きい内径を有するスリーブ状とされている。外シャフト36は、医療用のステンレス鋼やチタン合金等の金属によって形成されている。外シャフト36は、シャフト本体20に外挿されており、回転シャフト24が外シャフト36内で回転可能とされている。外シャフト36の内周面及び外周面には、シャフト本体20の外周面と同様に、低摩擦性コーティング層が設けられている。外シャフト36の内径寸法は、回転シャフト24が挿通可能であれば特に限定されないが、例えば2.8mmとされる。 The outer shaft 36 is extrapolated to the rotating shaft 24. The outer shaft 36 has a sleeve shape having an inner diameter substantially the same as or slightly larger than the outer diameter of the shaft main body 20. The outer shaft 36 is made of a metal such as stainless steel for medical use or a titanium alloy. The outer shaft 36 is extrapolated to the shaft body 20, and the rotating shaft 24 is rotatable within the outer shaft 36. Similar to the outer peripheral surface of the shaft main body 20, a low friction coating layer is provided on the inner peripheral surface and the outer peripheral surface of the outer shaft 36. The inner diameter of the outer shaft 36 is not particularly limited as long as the rotating shaft 24 can be inserted, but is, for example, 2.8 mm.
 外シャフト36の基端部分には、コネクタ38が取り付けられている。コネクタ38は、ポリカーボネート等の合成樹脂材によって形成されている。コネクタ38は、全体として中空筒状とされており、内周面に外シャフト36が固着されている。コネクタ38には、先端部分において外周面に突出する操作片40が設けられている。操作片40は、本実施形態では楕円板形状とされているが、円板形状や多角形板状、異形板状などであってもよい。例えば、シャフトドリル10の転がりを防止するためには、操作片40の外周面形状が円形以外であることが望ましく、楕円形や多角形が好適である。コネクタ38は、基端部分の上面に突出する連結突部42を備えている。連結突部42は、上面視において先端側が開放された略U字状に延びる突条とされており、中間部分で左右外側へ向けて突出する一対の係止部44,44を備えている。 A connector 38 is attached to the base end portion of the outer shaft 36. The connector 38 is made of a synthetic resin material such as polycarbonate. The connector 38 has a hollow cylindrical shape as a whole, and the outer shaft 36 is fixed to the inner peripheral surface. The connector 38 is provided with an operation piece 40 projecting from the outer peripheral surface at the tip portion thereof. Although the operation piece 40 has an elliptical plate shape in the present embodiment, it may have a disk shape, a polygonal plate shape, a deformed plate shape, or the like. For example, in order to prevent the shaft drill 10 from rolling, it is desirable that the outer peripheral surface shape of the operation piece 40 is other than a circular shape, and an elliptical shape or a polygonal shape is preferable. The connector 38 includes a connecting protrusion 42 protruding from the upper surface of the base end portion. The connecting protrusion 42 is a protrusion extending in a substantially U-shape with the tip side open in a top view, and includes a pair of locking portions 44, 44 protruding outward from the left and right at the intermediate portion.
 外シャフト36に挿通された回転シャフト24は、コネクタ38よりも基端側へ突出している。回転シャフト24の基端部に固着された係合部材28は、コネクタ38よりも基端側に位置している。回転シャフト24に外挿された隙間リング32は、外シャフト36の基端部に設けられたコネクタ38と、回転シャフト24の基端部に設けられた係合部材28との軸方向間に配されている。隙間リング32は、外シャフト36よりも大径とされており、外シャフト36内へ挿入不能とされている。隙間リング32は、コネクタ38の基端側の開口よりも大径とされている。 The rotary shaft 24 inserted through the outer shaft 36 projects toward the proximal end side from the connector 38. The engaging member 28 fixed to the proximal end portion of the rotating shaft 24 is located closer to the proximal end side than the connector 38. The gap ring 32 extrapolated to the rotary shaft 24 is arranged between the connector 38 provided at the base end portion of the outer shaft 36 and the engaging member 28 provided at the base end portion of the rotary shaft 24 in the axial direction. Has been done. The gap ring 32 has a larger diameter than the outer shaft 36, and cannot be inserted into the outer shaft 36. The gap ring 32 has a larger diameter than the opening on the base end side of the connector 38.
 シャフトドリル10は、コネクタ38がハンドピース14の先端部分に取り付けられることにより、ハンドピース14に連結されて使用される。ハンドピース14は、施術者が手で把持して操作する部分である。本実施形態のハンドピース14は、図18に示すように、回転駆動力を発生する電気モータ46と、電気モータ46に電力を供給する電池パックなどの電源装置48と、電源装置48から電気モータ46への給電を制御する制御基板50とを、内蔵している。もっとも、ハンドピース14は、例えば、外部の電源装置に電源コードによって接続されて電源が外部から供給されるものでもよいし、外部のポンプによって給排される空気の圧力によって回転駆動力を発揮する空気圧式のものであってもよい。本実施形態のハンドピース14の筐体は、直線的な形状のペン持ちタイプとされているが、例えば、L字状のガンタイプであってもよい。 The shaft drill 10 is used by being connected to the handpiece 14 by attaching the connector 38 to the tip portion of the handpiece 14. The handpiece 14 is a portion that the practitioner grips and operates by hand. As shown in FIG. 18, the handpiece 14 of the present embodiment includes an electric motor 46 that generates a rotational driving force, a power supply device 48 such as a battery pack that supplies electric power to the electric motor 46, and an electric motor from the power supply device 48. It has a built-in control board 50 that controls the power supply to the 46. However, the handpiece 14 may be connected to an external power supply device by a power cord and supplied with power from the outside, or exert a rotational driving force by the pressure of air supplied and discharged by an external pump. It may be pneumatic. The housing of the handpiece 14 of the present embodiment is a pen-holding type having a linear shape, but may be, for example, an L-shaped gun type.
 ハンドピース14に内蔵された電気モータ46の回転出力軸52に対して、回転シャフト24が接続されて、電気モータ46の発生駆動力によって回転シャフト24が回転する。具体的には、電気モータ46の回転出力軸52は、先端へ向けて開放された接続凹所54を備えており、接続凹所54の先端部分に回転シャフト24の基端部に固着された係合部材28が挿入される。電気モータ46の回転出力軸52は、接続凹所54の内周面に係合部材28の係合突条30と対応する複数の凹溝を備えており、該凹溝に対して係合突条30が挿入されて周方向で係合されることにより、電気モータ46の回転駆動力が回転出力軸52から回転シャフト24に伝達される。係合部材28よりも先端側に配された隙間リング32は、ハンドピース14の筐体内に収容されている。 The rotary shaft 24 is connected to the rotary output shaft 52 of the electric motor 46 built in the handpiece 14, and the rotary shaft 24 is rotated by the generated driving force of the electric motor 46. Specifically, the rotary output shaft 52 of the electric motor 46 includes a connection recess 54 that is open toward the tip, and is fixed to the base end portion of the rotary shaft 24 at the tip end portion of the connection recess 54. The engaging member 28 is inserted. The rotary output shaft 52 of the electric motor 46 is provided with a plurality of concave grooves corresponding to the engaging ridges 30 of the engaging member 28 on the inner peripheral surface of the connecting recess 54, and the engaging protrusions with respect to the concave grooves. When the strip 30 is inserted and engaged in the circumferential direction, the rotational driving force of the electric motor 46 is transmitted from the rotary output shaft 52 to the rotary shaft 24. The gap ring 32 arranged on the tip side of the engaging member 28 is housed in the housing of the handpiece 14.
 ハンドピース14は、電気モータ46の作動を制御するための電源スイッチ56と回転制御スイッチ58が上面に設けられている。ハンドピース14は、施術者が電源スイッチ56を押圧操作することによって電気モータ46の作動と停止を切り替えることができると共に、回転制御スイッチ58をスライド操作することによって電気モータ46の回転数を調節することができる。従って、施術者は、電源スイッチ56と回転制御スイッチ58を操作することによって、回転シャフト24の先端に設けられたドリルヘッド16の回転と停止の切替えや、回転数の制御などを行うことができる。施術者は、比較的に小径とされたハンドピース14の先端部分を把持することから、回転制御スイッチ58がハンドピース14の先端部分に配されて、使用中に回転制御スイッチ58を操作し易くなっていると共に、電源スイッチ56がハンドピース14の後端部分に配されて、電源スイッチ56の誤操作が回避されている。 The handpiece 14 is provided with a power switch 56 and a rotation control switch 58 for controlling the operation of the electric motor 46 on the upper surface. The handpiece 14 can switch the operation and stop of the electric motor 46 by the practitioner pressing the power switch 56, and adjusts the rotation speed of the electric motor 46 by sliding the rotation control switch 58. be able to. Therefore, by operating the power switch 56 and the rotation control switch 58, the practitioner can switch between rotation and stop of the drill head 16 provided at the tip of the rotation shaft 24, control the rotation speed, and the like. .. Since the practitioner grips the tip portion of the handpiece 14 having a relatively small diameter, the rotation control switch 58 is arranged at the tip portion of the handpiece 14, making it easy to operate the rotation control switch 58 during use. At the same time, the power switch 56 is arranged at the rear end portion of the handpiece 14 to avoid erroneous operation of the power switch 56.
 外シャフト36に固定されたコネクタ38は、基端部分がハンドピース14の先端に設けられた接続筒部60に挿入される。接続筒部60は、上部に切欠状の連結凹部62を備えている。連結凹部62は、図16に示す上面視において、コネクタ38の連結突部42に対応する形状とされており、連結突部42の係止部44,44に対応する係止凹部64,64が左右両側に形成されている。そして、コネクタ38の連結突部42が、ハンドピース14の連結凹部62に挿入されて、連結突部42の係止部44,44が連結凹部62の係止凹部64,64に挿入されることにより、係止部44,44が係止凹部64,64の内面に軸方向で係止され、コネクタ38の接続筒部60からの抜けが制限される。これにより、外シャフト36がハンドピース14にコネクタ38を介して取り付けられて、ハンドピース14から先端側へ延び出すように配される。なお、コネクタ38における連結突部42と反対側で外周へ突出して軸方向に延びる図示しない凸条が、接続筒部60における連結凹部62と反対側で内周面に開口する図示しない溝状凹部に挿入されて、それら凸条と溝状凹部が周方向で係止されることによっても、外シャフト36とハンドピース14が周方向で相互に位置決めされている。 The connector 38 fixed to the outer shaft 36 is inserted into a connecting cylinder portion 60 whose base end portion is provided at the tip of the handpiece 14. The connection cylinder portion 60 is provided with a notch-shaped connecting recess 62 at the upper portion. The connecting recess 62 has a shape corresponding to the connecting protrusion 42 of the connector 38 in the top view shown in FIG. 16, and the locking recesses 64, 64 corresponding to the locking portions 44, 44 of the connecting protrusion 42 are provided. It is formed on both the left and right sides. Then, the connecting protrusion 42 of the connector 38 is inserted into the connecting recess 62 of the handpiece 14, and the locking portions 44, 44 of the connecting protrusion 42 are inserted into the locking recesses 64, 64 of the connecting recess 62. As a result, the locking portions 44, 44 are axially locked to the inner surfaces of the locking recesses 64, 64, and the connector 38 is restricted from coming off from the connecting cylinder portion 60. As a result, the outer shaft 36 is attached to the handpiece 14 via the connector 38 and is arranged so as to extend from the handpiece 14 toward the tip end side. It should be noted that the ridges (not shown) protruding outward on the opposite side of the connector 38 from the connecting protrusion 42 and extending in the axial direction open to the inner peripheral surface on the side opposite to the connecting recess 62 in the connecting cylinder 60, which is a groove-shaped concave portion (not shown). The outer shaft 36 and the handpiece 14 are also positioned with each other in the circumferential direction by being inserted into the ridge and the groove-shaped concave portion being locked in the circumferential direction.
 なお、コネクタ38に先端側へ向けた力を及ぼすことにより、係止部44,44を係止凹部64,64から抜けださせて、コネクタ38をハンドピース14から離脱させることができる。このように、外シャフト36は、ハンドピース14に対して着脱自在に取り付けられ、損傷や故障時の交換の容易化、収納時のコンパクト化などが実現される。また、シャフトドリル10とハンドピース14とが分離可能であることにより、例えば、シャフトドリル10は単回使用とし、ハンドピース14は複数回使用とすることもでき、単回使用によってシャフトドリル10を清潔に保つことができると共に、高価なハンドピース14を複数回使用することでコストの低減が図られる。コネクタ38に先端側へ向けた力を及ぼす方法は特に限定されないが、例えば、操作片40を先端側へ向けて押す或いは先端側から引くことにより、先端側へ向けた力をコネクタ38に及ぼして、コネクタ38をハンドピース14から取り外すことができる。 By applying a force toward the tip side of the connector 38, the locking portions 44, 44 can be pulled out from the locking recesses 64, 64, and the connector 38 can be separated from the handpiece 14. In this way, the outer shaft 36 is detachably attached to the handpiece 14, facilitating replacement in the event of damage or failure, and making it compact in storage. Further, since the shaft drill 10 and the handpiece 14 can be separated from each other, for example, the shaft drill 10 can be used once and the handpiece 14 can be used a plurality of times. It can be kept clean and the cost can be reduced by using the expensive handpiece 14 multiple times. The method of applying the force toward the tip side to the connector 38 is not particularly limited, but for example, by pushing the operation piece 40 toward the tip side or pulling it from the tip side, the force toward the tip side is applied to the connector 38. , The connector 38 can be removed from the handpiece 14.
 コネクタ38がハンドピース14に取り付けられた状態において、外シャフト36は、ハンドピース14に対して固定されており、回転不能とされている。従って、回転シャフト24がハンドピース14の電気モータ46の駆動力によって回転すると、回転シャフト24は、外シャフト36に対して相対的に回転する。 In the state where the connector 38 is attached to the handpiece 14, the outer shaft 36 is fixed to the handpiece 14 and is not rotatable. Therefore, when the rotating shaft 24 is rotated by the driving force of the electric motor 46 of the handpiece 14, the rotating shaft 24 rotates relative to the outer shaft 36.
 かくの如き構造とされた医療用ドリル器具12は、内視鏡下の手術において骨を切削する際に、図19に示すように、硬性内視鏡66に挿通されて使用される。硬性内視鏡66は、図16にも仮想的に示すように、硬質の鏡筒68を備えており、鏡筒68を貫通するチャネル70にシャフトドリル10が挿通される。シャフトドリル10のドリルヘッド16は、鏡筒68から先端側へ突出して位置し得る。硬性内視鏡66は、図示しないカメラやライトなどを先端部分に備えており、鏡筒68から先端へ突出するドリルヘッド16を内視鏡下で視認可能とされている。シャフトドリル10の基端部は、鏡筒68の基端側へ突出しており、ハンドピース14が鏡筒68よりも基端側に配されている。外シャフト36は、硬性内視鏡66のチャネル70の内周面から大きく離れていてもよいが、接しているか、僅かに離れた近接状態とされていることが望ましい。 As shown in FIG. 19, the medical drill instrument 12 having such a structure is inserted through a rigid endoscope 66 and used when cutting a bone in an endoscopic operation. As virtually shown in FIG. 16, the rigid endoscope 66 includes a rigid lens barrel 68, and a shaft drill 10 is inserted through a channel 70 penetrating the lens barrel 68. The drill head 16 of the shaft drill 10 may be positioned so as to project toward the tip end side from the lens barrel 68. The rigid endoscope 66 is provided with a camera, a light, or the like (not shown) at the tip portion thereof, and the drill head 16 protruding from the lens barrel 68 to the tip can be visually recognized under the endoscope. The base end portion of the shaft drill 10 projects toward the base end side of the lens barrel 68, and the handpiece 14 is arranged on the base end side of the lens barrel 68. The outer shaft 36 may be largely separated from the inner peripheral surface of the channel 70 of the rigid endoscope 66, but it is desirable that the outer shaft 36 is in contact with or slightly separated from the inner peripheral surface.
 外シャフト36は、金属製とされていることから、高強度であり、硬性内視鏡66のチャネル70へ挿入する際のプッシャビリティを十分に得ることができる。外シャフト36の外周面には、低摩擦性コーティング層が設けられていることから、シャフトドリル10を硬性内視鏡66のチャネル70に挿通する際に、摩擦抵抗や引っ掛かりが抑えられて、容易に挿通することができる。また、血液や生理食塩水等の液体や、切削された骨の細片(切削屑)などがチャネル70の内周面と外シャフト36の外周面との間を移動する際の抵抗が低減されて、生理食塩水の吐出による内視鏡下での視野の確保や、吸引による切削屑の効率的な排出等が実現される。 Since the outer shaft 36 is made of metal, it has high strength and can sufficiently obtain pushability when it is inserted into the channel 70 of the rigid endoscope 66. Since the low friction coating layer is provided on the outer peripheral surface of the outer shaft 36, frictional resistance and catching are suppressed when the shaft drill 10 is inserted into the channel 70 of the rigid endoscope 66, which makes it easy. Can be inserted into. In addition, resistance when liquids such as blood and saline, and cut bone fragments (cutting debris) move between the inner peripheral surface of the channel 70 and the outer peripheral surface of the outer shaft 36 is reduced. As a result, it is possible to secure the field of view under the endoscope by discharging the physiological saline solution, and to efficiently discharge the cutting chips by suction.
 図19に示すように、施術者がハンドピース14と鏡筒68を把持して使用する際に、外シャフト36は、施術者が意図的に回転させる場合を除いて、硬性内視鏡66に対して回転しない。外シャフト36に挿通された回転シャフト24は、鏡筒68のチャネル70に挿通された外シャフト36内で回転可能とされている。シャフトドリル10がチャネル70に挿通された状態において、回転シャフト24と硬性内視鏡66の間に外シャフト36が介在しており、回転シャフト24と硬性内視鏡66は接触しない。なお、図16において、硬性内視鏡66は、チャネル70を通る断面が示されている。 As shown in FIG. 19, when the practitioner grips and uses the handpiece 14 and the lens barrel 68, the outer shaft 36 is attached to the rigid endoscope 66 unless the practitioner intentionally rotates it. On the other hand, it does not rotate. The rotary shaft 24 inserted through the outer shaft 36 is rotatable within the outer shaft 36 inserted through the channel 70 of the lens barrel 68. In a state where the shaft drill 10 is inserted through the channel 70, the outer shaft 36 is interposed between the rotating shaft 24 and the rigid endoscope 66, and the rotating shaft 24 and the rigid endoscope 66 do not come into contact with each other. In addition, in FIG. 16, the cross section of the rigid endoscope 66 passing through the channel 70 is shown.
 医療用ドリル器具12は、内視鏡下で切削すべき骨に回転するドリルヘッド16を接触させることにより、骨を削り取ることができる。ドリルヘッド16と連続する回転シャフト24の外周面と、硬性内視鏡66のチャネル70に挿通された外シャフト36の内周面は、低摩擦コーティング層を有していることから、回転シャフト24が外シャフト36内で効率的に回転可能とされていると共に、摩擦による発熱も低減されている。回転シャフト24は、金属製とされていることから、強度が大きく、ドリルヘッド16を骨に対して十分な力で当接させることができると共に、ドリルヘッド16が骨に当接する際の反力による回転シャフト24の損傷が回避される。 The medical drill device 12 can scrape the bone by bringing the rotating drill head 16 into contact with the bone to be cut under the endoscope. Since the outer peripheral surface of the rotary shaft 24 continuous with the drill head 16 and the inner peripheral surface of the outer shaft 36 inserted into the channel 70 of the rigid endoscope 66 have a low friction coating layer, the rotary shaft 24 Is efficiently rotatable in the outer shaft 36, and heat generation due to friction is also reduced. Since the rotary shaft 24 is made of metal, it has high strength, and the drill head 16 can be brought into contact with the bone with sufficient force, and the reaction force when the drill head 16 comes into contact with the bone. Damage to the rotary shaft 24 due to the above is avoided.
 回転シャフト24が電気モータ46の発生駆動力によって回転する際に、回転シャフト24が外シャフト36で覆われて硬性内視鏡66に接触しないことから、回転シャフト24との接触による硬性内視鏡66の損傷や加熱が防止される。また、回転シャフト24の外径寸法と硬性内視鏡66のチャネル70の内法寸法との差に応じて、外シャフト36の厚さ寸法を調節することにより、回転シャフト24を外シャフト36によって適切にガイドすることができて、回転シャフト24の回転時のブレを抑えることができる。 When the rotary shaft 24 is rotated by the generated driving force of the electric motor 46, the rotary shaft 24 is covered with the outer shaft 36 and does not come into contact with the rigid endoscope 66. The damage and heating of 66 are prevented. Further, by adjusting the thickness dimension of the outer shaft 36 according to the difference between the outer diameter dimension of the rotary shaft 24 and the inner dimension of the channel 70 of the rigid endoscope 66, the rotary shaft 24 is formed by the outer shaft 36. It can be guided appropriately, and the blurring of the rotating shaft 24 during rotation can be suppressed.
 回転シャフト24が回転する際に、回転シャフト24に固定された係合部材28と外シャフト36に固定されたコネクタ38との間には、隙間リング32が配されている。隙間リング32は、回転シャフト24と外シャフト36の両方に対して相対回転可能とされていることから、回転シャフト24が回転駆動されると、回転シャフト24の回転力の一部が伝達されて連れ回りするが、隙間リング32の回転数は、回転シャフト24の回転数よりも低くなる。それゆえ、高速回転する係合部材28がコネクタ38に直接的に接する場合の摩擦熱よりも、係合部材28と隙間リング32との間に生じる摩擦熱や、隙間リング32とコネクタ38との間に生じる摩擦熱の方が、発熱量が小さくなる。その結果、係合部材28とコネクタ38の熱による損傷等が隙間リング32によって防止される。 When the rotating shaft 24 rotates, a gap ring 32 is arranged between the engaging member 28 fixed to the rotating shaft 24 and the connector 38 fixed to the outer shaft 36. Since the gap ring 32 is rotatable relative to both the rotary shaft 24 and the outer shaft 36, when the rotary shaft 24 is rotationally driven, a part of the rotational force of the rotary shaft 24 is transmitted. Although it goes around, the rotation speed of the gap ring 32 is lower than the rotation speed of the rotary shaft 24. Therefore, the frictional heat generated between the engaging member 28 and the gap ring 32 and the frictional heat between the gap ring 32 and the connector 38 are more than the frictional heat when the engaging member 28 rotating at high speed is in direct contact with the connector 38. The amount of heat generated is smaller for the frictional heat generated between them. As a result, the gap ring 32 prevents damage to the engaging member 28 and the connector 38 due to heat.
 なお、本実施形態で示した外シャフト36、係合部材28、ハンドピース14などは、前記第1,第2実施形態に従う医療用シャフト組立体100,200と組み合わせて採用することもできる。換言すれば、本実施形態の回転シャフト24として、医療用シャフト組立体100,200を採用することもできる。 The outer shaft 36, the engaging member 28, the handpiece 14, and the like shown in the present embodiment can also be adopted in combination with the medical shaft assemblies 100 and 200 according to the first and second embodiments. In other words, the medical shaft assemblies 100 and 200 can also be adopted as the rotary shaft 24 of the present embodiment.
 図20には、本発明の第4実施形態としての医療用のシャフトドリル80の先端部分が示されている。以下の説明において、第3実施形態と実質的に同一の部材及び部位については、図中に同一の符号を付すことにより、説明を省略する。 FIG. 20 shows a tip portion of a medical shaft drill 80 as a fourth embodiment of the present invention. In the following description, the members and parts substantially the same as those in the third embodiment are designated by the same reference numerals in the drawings, and the description thereof will be omitted.
 シャフトドリル80は、ドリルヘッド16から基端へ向けて延び出すシャンク82を備えている。シャンク82は、ドリルヘッド16につながる先端部分がドリルヘッド16へ向けて次第に小径となるテーパ状外周面84を有している。シャンク82の外周面は、テーパ状外周面84よりも基端側が略一定の直径で延びる円筒面とされており、当該円筒面を有するシャンク82の基端部分がシャフト本体20に挿入固定されている。シャンク82がシャフト本体20に挿入固定されていることにより、回転シャフト24のシャフト本体20で構成された部分が、シャンク82で構成された部分よりも大径とされており、回転シャフト24の先端部分に段差部26が形成されている。回転シャフト24は、シャンク82によって構成された段差部26よりも先端部分が、シャフト本体20によって構成された段差部26よりも基端部分に比して小径とされている。回転シャフト24における段差部26よりも先端部分は、先端へ向けて小径となるテーパ状外周面84を備えている。 The shaft drill 80 includes a shank 82 extending from the drill head 16 toward the base end. The shank 82 has a tapered outer peripheral surface 84 whose tip portion connected to the drill head 16 gradually decreases in diameter toward the drill head 16. The outer peripheral surface of the shank 82 is a cylindrical surface whose base end side extends with a substantially constant diameter from the tapered outer peripheral surface 84, and the base end portion of the shank 82 having the cylindrical surface is inserted and fixed to the shaft body 20. There is. Since the shank 82 is inserted and fixed to the shaft body 20, the portion of the rotary shaft 24 composed of the shaft body 20 has a larger diameter than the portion composed of the shank 82, and the tip of the rotary shaft 24 has a larger diameter. A step portion 26 is formed in the portion. The rotary shaft 24 has a tip portion smaller than the step portion 26 formed by the shank 82 and a smaller diameter than the base end portion of the step portion 26 formed by the shaft main body 20. The tip portion of the rotary shaft 24 with respect to the step portion 26 is provided with a tapered outer peripheral surface 84 having a smaller diameter toward the tip.
 本実施形態のドリルヘッド16は、外法寸法が外シャフト36の内径寸法よりも小さくされており、外シャフト36内を通過可能な大きさとされている。具体的なサイズは特に限定されないが、例えば、ドリルヘッド16は、直径2.5mmの球状体に切削用粒子が固着されたものであり、外シャフト36の内径が2.8mmとされる。 The drill head 16 of the present embodiment has an outer dimension smaller than the inner diameter dimension of the outer shaft 36, and has a size capable of passing through the outer shaft 36. The specific size is not particularly limited, but for example, the drill head 16 has cutting particles fixed to a spherical body having a diameter of 2.5 mm, and the inner diameter of the outer shaft 36 is 2.8 mm.
 シャフト本体20によって構成された段差部26よりも基端側の大径部分には、突部を構成するリング部材86が取り付けられている。リング部材86は、回転シャフト24において、段差部26よりも基端側の大径部分を構成するシャフト本体20に外挿されて、シャフト本体20の大径部分の外周面上に突出して設けられている。リング部材86は、例えば、溶接、かしめ、圧入等の手段でシャフト本体20に固定されている。リング部材86は、医療用のステンレス鋼やチタン合金等の人体に無害な金属によって形成されている。リング部材86の外径寸法は、外シャフト36の内径寸法よりも大きくされており、リング部材86が外シャフト36内を通過不能な大きさとされている。具体的には、例えば、リング部材86の外径寸法が3.1mmとされている。好適には、リング部材86の外径寸法は、外シャフト36の外径寸法以下とされ、それによって、リング部材86が図示しない硬性内視鏡の貫通孔に挿通される際に引っ掛かり難く、また、内視鏡下でのカメラによる先端視野に悪影響を及ぼし難い。 A ring member 86 constituting a protrusion is attached to a large diameter portion on the base end side of the step portion 26 formed by the shaft main body 20. The ring member 86 is extrapolated to the shaft main body 20 constituting the large diameter portion on the base end side of the step portion 26 in the rotary shaft 24, and is provided so as to project on the outer peripheral surface of the large diameter portion of the shaft main body 20. ing. The ring member 86 is fixed to the shaft body 20 by means such as welding, caulking, and press-fitting. The ring member 86 is made of a metal that is harmless to the human body, such as medical stainless steel and titanium alloy. The outer diameter of the ring member 86 is larger than the inner diameter of the outer shaft 36, so that the ring member 86 cannot pass through the outer shaft 36. Specifically, for example, the outer diameter of the ring member 86 is 3.1 mm. Preferably, the outer diameter of the ring member 86 is less than or equal to the outer diameter of the outer shaft 36, whereby the ring member 86 is less likely to be caught when inserted into a through hole of a rigid endoscope (not shown), and also , It is unlikely to adversely affect the tip field of view of the camera under an endoscope.
 リング部材86は、外シャフト36の先端に対して、先端側へ離れた位置に配されている。リング部材86は、シャフトドリル80の使用状態において、外シャフト36に接触しないようになっている。シャフトドリル80の使用状態では、外シャフト36と回転シャフト24の各基端が図示しないハンドピースに装着されることから、外シャフト36と回転シャフト24が軸方向で相対移動不能に位置決めされ、回転シャフト24に固定されたリング部材86が外シャフト36に接触しない。 The ring member 86 is arranged at a position away from the tip of the outer shaft 36 toward the tip. The ring member 86 does not come into contact with the outer shaft 36 when the shaft drill 80 is in use. In the state of using the shaft drill 80, since the base ends of the outer shaft 36 and the rotary shaft 24 are mounted on a handpiece (not shown), the outer shaft 36 and the rotary shaft 24 are positioned so as not to be relatively movable in the axial direction and rotate. The ring member 86 fixed to the shaft 24 does not come into contact with the outer shaft 36.
 このような本実施形態に従う構造とされたシャフトドリル80によれば、回転シャフト24の先端部分に段差部26が設けられて、段差部26よりも先端側が小径とされていると共に、シャンク82の先端部分がドリルヘッド16に向けて小径となるテーパ状外周面84を備えている。これらにより、内視鏡下でシャフトドリル80を使用する際に、例えばドリルヘッド16が小径の場合であっても、回転シャフト24の先端部分が内視鏡の先端に設けられたカメラの視界の妨げになり難く、カメラによってドリルヘッド16を見ることができる。また、リング部材86がドリルヘッド16に対して基端側へ離れた位置に設けられており、リング部材86がドリルヘッド16をカメラによって視認する際の邪魔になり難い。 According to the shaft drill 80 having a structure according to the present embodiment, a step portion 26 is provided at the tip portion of the rotary shaft 24, the tip side of the step portion 26 has a smaller diameter, and the shank 82 has a smaller diameter. It is provided with a tapered outer peripheral surface 84 whose tip portion has a smaller diameter toward the drill head 16. As a result, when using the shaft drill 80 under an endoscope, for example, even when the drill head 16 has a small diameter, the tip portion of the rotating shaft 24 is provided in the view of the camera provided at the tip of the endoscope. The drill head 16 can be seen by the camera without getting in the way. Further, the ring member 86 is provided at a position separated from the drill head 16 toward the base end side, and the ring member 86 does not easily interfere with the visual recognition of the drill head 16 by the camera.
 また、ドリルヘッド16が外シャフト36を通過可能なほどに小さい場合に、図示しないハンドピースに装着されていないシャフトドリル80単体では、回転シャフト24が外シャフト36に対して基端側へ抜けて分離するおそれがある。そこで、外シャフト36内を通過不可能な大きさのリング部材86が、回転シャフト24に取り付けられており、リング部材86が外シャフト36の先端に係止されることにより、回転シャフト24が外シャフト36から基端側へ抜けるのを防ぐことができる。なお、回転シャフト24の外シャフト36から先端への抜けは、例えば、回転シャフト24の基端部分に固定された係合部材が、隙間リングを介して或いは直接的に、外シャフト36の基端部に固定されたコネクタに軸方向で係止されることにより、防止される。 Further, when the drill head 16 is small enough to pass through the outer shaft 36, the rotary shaft 24 is pulled out toward the proximal end side with respect to the outer shaft 36 in the shaft drill 80 alone which is not attached to the handpiece (not shown). There is a risk of separation. Therefore, a ring member 86 having a size that cannot pass through the outer shaft 36 is attached to the rotary shaft 24, and the ring member 86 is locked to the tip of the outer shaft 36 so that the rotary shaft 24 is outside. It is possible to prevent the shaft 36 from coming off to the proximal end side. It should be noted that, for example, the engagement member fixed to the base end portion of the rotary shaft 24 allows the engaging member fixed to the base end portion of the rotary shaft 24 to come off from the outer shaft 36 of the rotary shaft 24 through the gap ring or directly to the base end of the outer shaft 36. It is prevented by being locked in the axial direction to the connector fixed to the portion.
 リング部材86は、シャフトドリル80がハンドピースに装着された使用状態では、外シャフト36の先端よりも先端側に位置しており、外シャフト36に接触しない。それゆえ、リング部材86が回転シャフト24とともに回転しても、外シャフト36への接触による損傷や発熱といった不具合を生じない。 The ring member 86 is located on the tip side of the tip of the outer shaft 36 when the shaft drill 80 is attached to the handpiece, and does not come into contact with the outer shaft 36. Therefore, even if the ring member 86 rotates together with the rotating shaft 24, problems such as damage and heat generation due to contact with the outer shaft 36 do not occur.
 なお、本実施形態では、回転シャフト24の外シャフト36からの抜けを防止する突部が、リング部材86によって構成されていたが、突部は、例えば、シャフト本体20の外周面において周方向で部分的に設けられ得る。また、段差部26は、シャフト本体20とシャンク82の外径寸法の差によって形成されるものに限定されず、例えば、シャフト本体20の先端部分を切削加工して、基端部分よりも外径寸法を小さくすることにより、段差部26をシャフト本体20の途中に形成することもできる。 In the present embodiment, the protrusions for preventing the rotary shaft 24 from coming off from the outer shaft 36 are formed of the ring member 86, but the protrusions are, for example, in the circumferential direction on the outer peripheral surface of the shaft body 20. Can be partially provided. Further, the step portion 26 is not limited to the one formed by the difference in the outer diameter dimension between the shaft main body 20 and the shank 82. For example, the tip portion of the shaft main body 20 is machined to have an outer diameter larger than that of the base end portion. By reducing the size, the step portion 26 can be formed in the middle of the shaft body 20.
 図21には、本発明の第5実施形態としてのシャフトドリル90が示されている。シャフトドリル90は、第4実施形態のシャフトドリル80に比して、テーパ状外周面84の軸方向の長さが短くされている。また、外シャフト36の先端からドリルヘッド16までの距離も長くされている。このような本実施形態に従う構造とされたシャフトドリル90によっても、第4実施形態のシャフトドリル80と同様の効果を得ることができる。 FIG. 21 shows a shaft drill 90 as a fifth embodiment of the present invention. The shaft drill 90 has a shorter axial length of the tapered outer peripheral surface 84 than the shaft drill 80 of the fourth embodiment. Further, the distance from the tip of the outer shaft 36 to the drill head 16 is also lengthened. Even with the shaft drill 90 having a structure according to the present embodiment, the same effect as that of the shaft drill 80 of the fourth embodiment can be obtained.
 以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、ハンドピース14の具体的な構造は特に限定されず、従来から公知の各種構造のものが採用され得る。また、ハンドピース14とシャフトドリル10の接続構造も限定されるものではなく、外シャフト36が回転しないように保持され、且つ回転シャフト24に回転駆動力が及ぼされるようになっていればよい。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited by the specific description thereof. For example, the specific structure of the handpiece 14 is not particularly limited, and various conventionally known structures can be adopted. Further, the connection structure between the handpiece 14 and the shaft drill 10 is not limited as long as the outer shaft 36 is held so as not to rotate and the rotary driving force is applied to the rotary shaft 24.
 リング部材86は、必ずしもドリルヘッド16の外径が外シャフト36の内径よりも小さい場合にのみ設けられるものではない。ドリルヘッド16の外径が外シャフト36の内径よりも大きい場合にリング部材86を設ければ、シャフトドリルの単体状態において、ドリルヘッド16の外シャフト36への接触が回避される。 The ring member 86 is not necessarily provided only when the outer diameter of the drill head 16 is smaller than the inner diameter of the outer shaft 36. If the ring member 86 is provided when the outer diameter of the drill head 16 is larger than the inner diameter of the outer shaft 36, contact of the drill head 16 with the outer shaft 36 is avoided in the single state of the shaft drill.
 本開示の医療用シャフト組立体は、医療用シャフト同士の連結強度が高く、シャフトに大きな力が加わる医療用機器等において有用である。また、本開示の医療用のシャフトドリルは、回転シャフトの回転時の作動の安定化が図られると共に、回転シャフトの硬性内視鏡への接触による不具合が回避されることから、硬性内視鏡下の手技において骨等を削る際に有用である。 The medical shaft assembly disclosed in the present disclosure is useful in medical equipment or the like in which the connection strength between medical shafts is high and a large force is applied to the shafts. Further, the medical shaft drill of the present disclosure is a rigid endoscope because the operation of the rotary shaft during rotation is stabilized and the trouble caused by the contact of the rotary shaft with the rigid endoscope is avoided. It is useful when cutting bones etc. in the procedure below.
100 医療用シャフト組立体(第1実施形態)
101 第1医療用シャフト
102 第2医療用シャフト
103 連結ピン
104 連結貫通孔
111 連結用凹部(連結用穴)
113 第1シャフト貫通孔
121 シャンク
122 刃部
123 第2シャフト貫通孔
124 スリーブ(外シャフト)
130 医療用シャフト組立体(別の一実施形態)
132 第1医療用シャフト
134 第2医療用シャフト
136 切込み(第1シャフト貫通孔)
200 医療用シャフト組立体(第2実施形態)
202 第1医療用シャフト
204 第2医療用シャフト
206 シャフト本体
208 第1シャフト貫通孔
209 詰物
210 ドリルヘッド
212 シャンク
214 平坦部(離隔部)
216 連結ピン
10 医療用のシャフトドリル(第3実施形態)
12 医療用ドリル器具
14 ハンドピース
16 ドリルヘッド
18 シャンク
20 シャフト本体
22 詰物
24 回転シャフト
26 段差部
28 係合部材
30 係合突条
32 隙間リング
34 肉抜凹所
36 外シャフト
38 コネクタ
40 操作片
42 連結突部
44 係止部
46 電気モータ
48 電源装置
50 制御基板
52 回転出力軸
54 接続凹所
56 電源スイッチ
58 回転制御スイッチ
60 接続筒部
62 連結凹部
64 係止凹部
66 硬性内視鏡
68 鏡筒
70 チャネル
80 医療用のシャフトドリル(第4実施形態)
82 シャンク
84 テーパ状外周面
86 リング部材(突部)
90 医療用のシャフトドリル(第5実施形態)
100 Medical shaft assembly (first embodiment)
101 1st medical shaft 102 2nd medical shaft 103 Connecting pin 104 Connecting through hole 111 Connecting recess (connecting hole)
113 1st shaft through hole 121 Shank 122 Blade part 123 2nd shaft through hole 124 Sleeve (outer shaft)
130 Medical Shaft Assembly (Another Embodiment)
132 1st medical shaft 134 2nd medical shaft 136 Notch (1st shaft through hole)
200 Medical shaft assembly (second embodiment)
202 1st medical shaft 204 2nd medical shaft 206 Shaft body 208 1st shaft through hole 209 Filling 210 Drill head 212 Shank 214 Flat part (separation part)
216 Connecting pin 10 Medical shaft drill (third embodiment)
12 Medical drill equipment 14 Handpiece 16 Drill head 18 Shank 20 Shaft body 22 Filling 24 Rotating shaft 26 Step 28 Engagement member 30 Engagement ridge 32 Gap ring 34 Lightening recess 36 Outer shaft 38 Connector 40 Operation piece 42 Connecting protrusion 44 Locking part 46 Electric motor 48 Power supply device 50 Control board 52 Rotating output shaft 54 Connection recess 56 Power switch 58 Rotation control switch 60 Connection cylinder part 62 Connecting recess 64 Locking recess 66 Rigid endoscope 68 Endoscope 70 channel 80 medical shaft drill (4th embodiment)
82 Shank 84 Tapered outer surface 86 Ring member (protrusion)
90 Medical shaft drill (fifth embodiment)

Claims (19)

  1.  連結用穴を有する第1医療用シャフトと、
     該連結用穴に挿入された第2医療用シャフトと、
     該第1医療用シャフトにおける該連結用穴の周壁と該第2医療用シャフトにおける該連結用穴への挿入部分とを貫通する連結貫通孔に挿入されて、該第1医療用シャフトに固定された連結ピンと
    を、備えている医療用シャフト組立体。
    A first medical shaft with a connecting hole,
    A second medical shaft inserted into the connecting hole,
    It is inserted into a connecting through hole penetrating the peripheral wall of the connecting hole in the first medical shaft and the insertion portion into the connecting hole in the second medical shaft, and is fixed to the first medical shaft. A medical shaft assembly equipped with a connecting pin.
  2.  前記第1医療用シャフトと前記第2医療用シャフトとは、一体に回転する請求項1に記載の医療用シャフト組立体。 The medical shaft assembly according to claim 1, wherein the first medical shaft and the second medical shaft rotate integrally.
  3.  前記第1医療用シャフト及び前記第2医療用シャフトの一方は、ドリルビットである請求項2に記載の医療用シャフト組立体。 The medical shaft assembly according to claim 2, wherein one of the first medical shaft and the second medical shaft is a drill bit.
  4.  前記第1医療用シャフトと前記連結ピンとは同一の材料からなり、
     前記第2医療用シャフトは、該第1医療用シャフトとは異なる材料からなる請求項1~3の何れか1項に記載の医療用シャフト組立体。
    The first medical shaft and the connecting pin are made of the same material.
    The medical shaft assembly according to any one of claims 1 to 3, wherein the second medical shaft is made of a material different from that of the first medical shaft.
  5.  前記第1医療用シャフトの外周側を覆うスリーブ状の外シャフトが設けられている請求項1~4の何れか1項に記載の医療用シャフト組立体。 The medical shaft assembly according to any one of claims 1 to 4, wherein a sleeve-shaped outer shaft covering the outer peripheral side of the first medical shaft is provided.
  6.  前記第1医療用シャフトにおける前記連結ピンが固定された部分の外周側が、前記外シャフトによって覆われている請求項5に記載の医療用シャフト組立体。 The medical shaft assembly according to claim 5, wherein the outer peripheral side of the portion of the first medical shaft to which the connecting pin is fixed is covered with the outer shaft.
  7.  軸方向に延びる連結用穴と、該連結用穴の周壁を径方向に貫通する第1シャフト貫通孔とを有する、第1医療用シャフトを準備する工程と、
     該連結用穴に挿入可能とされて、径方向に貫通する第2シャフト貫通孔を有する、第2医療用シャフトを準備する工程と、
     該第1医療用シャフトの該連結用穴に該第2医療用シャフトを挿入して、該第1シャフト貫通孔と該第2シャフト貫通孔とを相互に位置合わせする工程と、
     該第1シャフト貫通孔及び該第2シャフト貫通孔に連結ピンを挿入し、該連結ピンを該第1医療用シャフトに固定する工程と
    を、含む医療用シャフト組立体の製造方法。
    A step of preparing a first medical shaft having a connecting hole extending in the axial direction and a first shaft through hole that radially penetrates the peripheral wall of the connecting hole.
    A step of preparing a second medical shaft that is insertable into the connecting hole and has a second shaft through hole that penetrates in the radial direction.
    A step of inserting the second medical shaft into the connecting hole of the first medical shaft to align the first shaft through hole and the second shaft through hole with each other.
    A method for manufacturing a medical shaft assembly, comprising a step of inserting a connecting pin into the first shaft through hole and the second shaft through hole and fixing the connecting pin to the first medical shaft.
  8.  第1医療用シャフトの軸方向端面に開口する連結用穴に第2医療用シャフトが挿入されていると共に、
     該第2医療用シャフトの外周面には、該連結用穴の周壁から内周へ部分的に離隔した離隔部が設けられており、
     該第1医療用シャフトにおける該連結用穴の周壁を径方向に貫通する連結ピンが、該第2医療用シャフトの該離隔部に対して突き当て状態で溶着されていることにより、該第1医療用シャフトと該第2医療用シャフトが相互に位置決めされている医療用シャフト組立体。
    The second medical shaft is inserted into the connecting hole that opens on the axial end face of the first medical shaft, and the second medical shaft is inserted.
    On the outer peripheral surface of the second medical shaft, a separation portion partially separated from the peripheral wall of the connection hole to the inner circumference is provided.
    The first medical shaft has a connecting pin that radially penetrates the peripheral wall of the connecting hole of the first medical shaft and is welded to the separated portion of the second medical shaft in an abutting state. A medical shaft assembly in which a medical shaft and the second medical shaft are mutually positioned.
  9.  前記第2医療用シャフトにおける前記第1医療用シャフトの前記連結用穴への挿入部分において、前記離隔部が両端部分を外れた軸方向中間領域に設けられている請求項8に記載の医療用シャフト組立体。 The medical use according to claim 8, wherein in the insertion portion of the first medical shaft into the connecting hole of the second medical shaft, the separation portion is provided in an axial intermediate region deviating from both end portions. Shaft assembly.
  10.  前記連結ピンが前記第2医療用シャフトを径方向に挟んだ位置にそれぞれ配されている請求項8又は9に記載の医療用シャフト組立体。 The medical shaft assembly according to claim 8 or 9, wherein the connecting pins are arranged at positions sandwiching the second medical shaft in the radial direction, respectively.
  11.  複数の前記連結ピンが前記第1医療用シャフトにおける前記連結用穴の周壁を軸方向の複数箇所において貫通していると共に、
     それら複数の連結ピンが前記第2医療用シャフトの軸方向に延びる1つの前記離隔部に対して突き当て状態で溶着されている請求項8~10の何れか1項に記載の医療用シャフト組立体。
    A plurality of the connecting pins penetrate the peripheral wall of the connecting hole in the first medical shaft at a plurality of points in the axial direction, and also
    The medical shaft set according to any one of claims 8 to 10, wherein the plurality of connecting pins are welded to one of the separated portions extending in the axial direction of the second medical shaft in an abutting state. Solid.
  12.  軸方向に延びる連結用穴と、該連結用穴の周壁を貫通する第1シャフト貫通孔とを有する第1医療用シャフトを準備する工程と、
     該第1医療用シャフトの該連結用穴に挿入可能とされており、外周面に部分的に設けられた離隔部を有する第2医療用シャフトを準備する工程と、
     該第1医療用シャフトの該連結用穴に該第2医療用シャフトを挿入して、該第1医療用シャフトの該第1シャフト貫通孔と該第2医療用シャフトの該離隔部とを相互に位置合わせする工程と、
     該第1医療用シャフトの該第1シャフト貫通孔に連結ピンを挿入し、該連結ピンを該第2医療用シャフトの該離隔部に対して突き当て状態で溶着することにより、該第1医療用シャフトと該第2医療用シャフトを相互に位置決めする工程と
    を、含む医療用シャフト組立体の製造方法。
    A step of preparing a first medical shaft having a connecting hole extending in the axial direction and a first shaft through hole penetrating the peripheral wall of the connecting hole.
    A step of preparing a second medical shaft which is insertable into the connecting hole of the first medical shaft and has a separation portion partially provided on the outer peripheral surface.
    The second medical shaft is inserted into the connecting hole of the first medical shaft so that the first shaft through hole of the first medical shaft and the separated portion of the second medical shaft are mutually exchanged. And the process of aligning to
    The first medical treatment is performed by inserting a connecting pin into the first shaft through hole of the first medical shaft and welding the connecting pin to the separated portion of the second medical shaft in an abutting state. A method of manufacturing a medical shaft assembly comprising a step of mutually positioning a medical shaft and the second medical shaft.
  13.  先端にドリルヘッドが設けられており、硬性内視鏡の鏡筒内のチャネルへ挿通されて用いられる回転シャフトを有する医療用のシャフトドリルであって、
     前記回転シャフトに外挿されたスリーブ状の外シャフトを有しており、前記硬性内視鏡の前記鏡筒内の前記チャネルへ挿通された該外シャフト内で該回転シャフトが回転可能とされている医療用のシャフトドリル。
    A medical shaft drill having a drill head at the tip and a rotating shaft that is used by being inserted into a channel in the lens barrel of a rigid endoscope.
    It has a sleeve-shaped outer shaft extrapolated to the rotary shaft, and the rotary shaft is rotatable within the outer shaft inserted into the channel in the lens barrel of the rigid endoscope. There is a medical shaft drill.
  14.  前記回転シャフトと前記外シャフトが何れも金属製であり、且つ、該回転シャフトの外周面と該外シャフトの内周面の何れか一方及び該外シャフトの外周面には、それぞれ低摩擦性コーティング層を設けた請求項13に記載の医療用のシャフトドリル。 The rotary shaft and the outer shaft are both made of metal, and one of the outer peripheral surface of the rotary shaft and the inner peripheral surface of the outer shaft and the outer peripheral surface of the outer shaft are each coated with low friction. The medical shaft drill according to claim 13, which is provided with a layer.
  15.  前記回転シャフトの基端部分には、回転出力軸に対して係合して駆動力を該回転シャフトへ伝達する合成樹脂製の係合部材が固着されていると共に、
     該係合部材よりも先端側には、該回転シャフトに対して回転可能に外挿されて前記外シャフトの基端部との間に配される合成樹脂製の隙間リングを設けた請求項13又は14に記載の医療用のシャフトドリル。
    An engaging member made of synthetic resin that engages with the rotary output shaft and transmits the driving force to the rotary shaft is fixed to the base end portion of the rotary shaft.
    13. Claim 13 provided with a gap ring made of synthetic resin rotatably extrapolated to the rotating shaft and arranged between the base end portion of the outer shaft and the tip side of the engaging member. Or the medical shaft drill according to 14.
  16.  前記回転シャフトが中空のシャフト本体を備えており、
     該シャフト本体の先端部分には前記ドリルヘッドにつながるシャンクが挿入固定されている請求項13~15の何れか一項に記載の医療用のシャフトドリル。
    The rotating shaft is provided with a hollow shaft body.
    The medical shaft drill according to any one of claims 13 to 15, wherein a shank connected to the drill head is inserted and fixed at the tip end portion of the shaft body.
  17.  前記回転シャフトの前記ドリルヘッドの外径が、前記外シャフトの内径よりも小さくされていると共に、
     該外シャフトから突出した該回転シャフトの先端部分には、該外シャフトの先端から先端側へ離れた外周面上に突部が設けられている請求項13~16の何れか一項に記載の医療用のシャフトドリル。
    The outer diameter of the drill head of the rotating shaft is made smaller than the inner diameter of the outer shaft, and
    13. Shaft drill for medical use.
  18.  前記回転シャフトの先端部分は、前記ドリルヘッドに向けて次第に小径となるテーパ状外周面を有しており、該テーパ状外周面よりも基端側の大径部分に前記突部が設けられている請求項17に記載の医療用のシャフトドリル。 The tip portion of the rotary shaft has a tapered outer peripheral surface whose diameter gradually decreases toward the drill head, and the protrusion is provided on a large diameter portion on the proximal end side of the tapered outer peripheral surface. The medical shaft drill according to claim 17.
  19.  前記外シャフトの基端部分には、ハンドピースに対して着脱可能に取り付けられるコネクタが合成樹脂材によって設けられている請求項13~18の何れか一項に記載の医療用のシャフトドリル。 The medical shaft drill according to any one of claims 13 to 18, wherein a connector detachably attached to the handpiece is provided at the base end portion of the outer shaft by using a synthetic resin material.
PCT/JP2021/045936 2020-12-14 2021-12-14 Medical shaft assembly and medical shaft drill WO2022131233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022569999A JPWO2022131233A1 (en) 2020-12-14 2021-12-14

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-206654 2020-12-14
JP2020206654 2020-12-14
JP2020-209845 2020-12-18
JP2020209845 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131233A1 true WO2022131233A1 (en) 2022-06-23

Family

ID=82059174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045936 WO2022131233A1 (en) 2020-12-14 2021-12-14 Medical shaft assembly and medical shaft drill

Country Status (2)

Country Link
JP (1) JPWO2022131233A1 (en)
WO (1) WO2022131233A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108230A (en) * 1995-10-20 1997-04-28 Olympus Optical Co Ltd Surgical instrument
US20040267275A1 (en) * 2003-06-26 2004-12-30 Cournoyer John R. Spinal implant holder and rod reduction systems and methods
JP2010533518A (en) * 2007-07-31 2010-10-28 ストライカー トラウマ ゲーエムベーハー Carbon shaft reaming equipment
WO2011027689A1 (en) * 2009-09-01 2011-03-10 Akutsu Isao Instrument for implant, and system for guiding instrument for implant
US20180168670A1 (en) * 2015-06-02 2018-06-21 Rz Medizintechnik Gmbh Instrument for Endoscopic Surgery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108230A (en) * 1995-10-20 1997-04-28 Olympus Optical Co Ltd Surgical instrument
US20040267275A1 (en) * 2003-06-26 2004-12-30 Cournoyer John R. Spinal implant holder and rod reduction systems and methods
JP2010533518A (en) * 2007-07-31 2010-10-28 ストライカー トラウマ ゲーエムベーハー Carbon shaft reaming equipment
WO2011027689A1 (en) * 2009-09-01 2011-03-10 Akutsu Isao Instrument for implant, and system for guiding instrument for implant
US20180168670A1 (en) * 2015-06-02 2018-06-21 Rz Medizintechnik Gmbh Instrument for Endoscopic Surgery

Also Published As

Publication number Publication date
JPWO2022131233A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US10695073B2 (en) Control system for retrograde drill medical device
CA2551887C (en) High speed surgical cutting instrument
CA2053681C (en) Surgical device
US6958071B2 (en) Surgical tool system
JP2020058865A (en) Powered surgical handpiece with chuck that facilitates alignment of cutting accessory fitted to tool
US9597093B2 (en) Temporarily fixable angled drill
JP2015527148A (en) Surgical torque transmission instrument including related tools
KR20120057643A (en) Surgical cutting accessory with flexible tube
US8573090B2 (en) Remote-controlled actuator
JP6321612B2 (en) Secure drive chuck and bar arrangement for dental handpieces
WO2010041397A1 (en) Remotely operated actuator
JP6726209B2 (en) Surgical cutting instrument
KR20190123096A (en) A drill for dental implant
WO2022131233A1 (en) Medical shaft assembly and medical shaft drill
KR20210076923A (en) Ultrasonic tip with protrusion defining pre-aspiration hole
JP6261592B2 (en) Surgical torque transmission instrument including related tools
US10285779B2 (en) Dental and/or surgical instrument with a cartridge, and a corresponding cartridge
US11660712B1 (en) Method of assembling a measurement module for a surgical handpiece system
EP3897413B1 (en) A surgical cutting tool
WO2002087422A2 (en) Surgical instrument and attachment
WO2023069516A1 (en) Powered surgical drill having a depth measurement extension
EP4090267A1 (en) Powered instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906595

Country of ref document: EP

Kind code of ref document: A1