WO2022130946A1 - Slurry for plasma thermal spraying, method for producing thermally sprayed film, aluminum oxide thermally sprayed film, and thermally sprayed member - Google Patents

Slurry for plasma thermal spraying, method for producing thermally sprayed film, aluminum oxide thermally sprayed film, and thermally sprayed member Download PDF

Info

Publication number
WO2022130946A1
WO2022130946A1 PCT/JP2021/043556 JP2021043556W WO2022130946A1 WO 2022130946 A1 WO2022130946 A1 WO 2022130946A1 JP 2021043556 W JP2021043556 W JP 2021043556W WO 2022130946 A1 WO2022130946 A1 WO 2022130946A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
less
slurry
film
thermal spraying
Prior art date
Application number
PCT/JP2021/043556
Other languages
French (fr)
Japanese (ja)
Inventor
滉平 宮本
康 高井
瑞 中野
龍星 西村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020237023746A priority Critical patent/KR20230121818A/en
Priority to CN202180084117.0A priority patent/CN116635564A/en
Publication of WO2022130946A1 publication Critical patent/WO2022130946A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the present invention relates to a plasma spraying slurry containing aluminum oxide, a method for manufacturing a thermal spraying film using a plasma spraying slurry, an aluminum oxide thermal spraying film, and a thermal spraying member.
  • Aluminum oxide is used in a wide range of applications because it has high electrical insulation and can form films and sintered bodies with high hardness.
  • an aluminum oxide / titanium oxide dual-based ceramic spraying material formed by thermal spraying was used for the electrostatic chuck (.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-277682
  • the porosity of the sprayed membrane is as high as 5% or more and 15% or less
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-156651
  • the surface is porous, so that the specific surface area is specific.
  • it has become a cause of hastening deterioration due to corrosion of the dielectric layer.
  • This rare earth acid fluoride film has a thickness of about 100 ⁇ m, but when applied to an electrostatic chuck, it is desirable that it be as thick as possible in order to ensure insulation against the voltage applied for substrate adsorption.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2007-251124
  • an aluminum oxide film having a film thickness of more than 100 ⁇ m has been desired.
  • an aluminum oxide film that is thick and has a small temperature change in electrical resistance is required in order to suppress fluctuations in electrical stress that occur when the temperature rises during etching processing. ing.
  • Japanese Unexamined Patent Publication No. 2008-277862 Japanese Unexamined Patent Publication No. 2014-156651 International Publication No. 2018/012454 Japanese Unexamined Patent Publication No. 2007-251124
  • the present invention has been made in view of the above problems, and is a plasma spraying slurry and plasma spraying slurry capable of producing an aluminum oxide film having a low pore ratio, a sufficient film thickness, and a small temperature change in electrical resistance per volume. It is an object of the present invention to provide a method for producing a thermal sprayed film using a thermal sprayed film, an aluminum sprayed aluminum oxide sprayed film, and a thermal sprayed member.
  • the present inventors have contained 20% by mass or more and 80% by mass or less of aluminum oxide having a maximum particle size (D100) of 15 ⁇ m or less from water and an organic solvent.
  • 700 mL of the slurry for spraying containing one or more selected types as a dispersion medium is placed in a 1 L volume container having a height of 193 mm, allowed to stand at room temperature for 168 hours, and then the supernatant liquid is collected.
  • the spraying member provided with the aluminum oxide spraying film on the substrate obtained by using the spraying slurry having a liquid permeability of 90% or less is excellent, and has made the present invention.
  • the present invention provides the following plasma spraying slurry, a method for producing a thermal spraying film, an aluminum thermal spraying film, and a thermal spraying member.
  • a 1L container having a height of 193 mm, containing 20% by mass or more and 80% by mass or less of aluminum oxide particles having a maximum particle diameter (D100) of 15 ⁇ m or less, and using one or more kinds selected from water and an organic solvent as a dispersion medium.
  • a plasma spraying sol characterized by having a permeability of 90% or less of the supernatant liquid after being placed in 700 mL and allowed to stand at room temperature for 168 hours. 2.
  • the aluminum oxide particles have an average particle diameter D50 of 2 ⁇ m or more and 8 ⁇ m or less, a crystallite size of 350 nm or more and 600 nm or less, and the aluminum oxide particles have a crystal structure of ⁇ -type aluminum oxide1.
  • the rare earth element is one or more selected from yttrium (Y), gadolinium (Gd), formium (Ho), erbium (Er), ytterbium (Yb) and lutetium (Lu).
  • a method for producing a thermal sprayed film which comprises using the slurry for thermal spraying according to any one of 5.1 to 4. 6. 5. The method for producing a thermal spray film according to 5, wherein the thermal spraying method is used. 7. Porosity is 1% or less, film thickness is 100 ⁇ m or more, and (volume resistivity at 23 ° C) / (volume resistivity at 200 ° C). An aluminum oxide sprayed film having a temperature variable value of 1 or more and 20 or less.
  • a thermal spraying member comprising the thermal spraying film obtained by the production method according to 8.5 or the thermal spraying film according to 7. 9. 8. The thermal spraying member according to 8, which is an electrostatic chuck.
  • a thermal spraying film containing aluminum oxide which has a low porosity, a sufficient film thickness, and a small temperature change in electrical resistance per volume, can be stably formed on the substrate.
  • a thermal spraying member that can be formed and has such a thermal spraying film is useful for electrostatic chucks.
  • FIG. It is an X-ray diffraction chart of the aluminum oxide particle of Example 1.
  • FIG. It is an X-ray diffraction chart of the sprayed film of Example 1.
  • FIG. It is the distribution of the gray value of the cross-sectional image of the sprayed film.
  • the slurry of the present invention contains aluminum oxide particles.
  • the maximum particle size of the aluminum oxide particles (D100 (D100 in the present invention is the maximum particle size in the volume-based particle size distribution)) is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less. If D100 exceeds 15 ⁇ m, clogging may occur between the slurry feeder and the spray gun.
  • the slurry of the present invention preferably does not contain particles having a particle size of more than 15 ⁇ m.
  • the content of aluminum oxide particles in the slurry of the present invention is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, preferably 80% by mass or less, and more preferably 60% by mass. % Or less, more preferably 50% by mass or less.
  • the average particle diameter D50 of the aluminum oxide particles is a cumulative 50% diameter (median diameter) in the volume-based particle size distribution) is preferably 2 ⁇ m or more, particularly 3 ⁇ m or more, and 8 ⁇ m or less. In particular, 5 ⁇ m or less is preferable.
  • the specific surface area (BET specific surface area) of the aluminum oxide particles is preferably 3 m 2 / g or less, particularly preferably 1 m 2 / g or less.
  • the lower limit of the specific surface area (BET specific surface area) of the aluminum oxide particles is not particularly limited, but is preferably 0.1 m 2 / g or more.
  • the crystal structure of the aluminum oxide particles contained in the slurry of the present invention is preferably ⁇ -type.
  • ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type are present in the crystal phase of aluminum oxide, but the high-temperature type ⁇ -type is preferable because of its good stability in the slurry.
  • the crystallite size of the aluminum oxide particles obtained in the range of 2 ⁇ of 10 ° to 70 ° by using the WPPD method (Whole Powder Pattern Decompression method) of the X-ray diffraction method is preferably 350 nm or more, more preferably 400 nm. It is more preferably 600 nm or less, and more preferably 500 nm or less.
  • the slurry of the present invention is prepared by putting 700 mL of the slurry in a container having a height of 193 mm and a volume of 1 L, for example, a polypropylene container, and allowing the slurry to stand at room temperature for 168 hours.
  • the permeability is preferably 90% or less, more preferably 80% or less.
  • the slurry of the present invention contains a large number of fine sprayed particles, and as a result, although not particularly limited, it is possible to stably produce a dense sprayed film having a thick film thickness. Presumed.
  • the dispersion medium of the slurry one or more selected from water and an organic solvent is used.
  • the dispersion medium may be used alone with water, mixed with water and an organic solvent, or used alone with an organic solvent.
  • the organic solvent is preferably selected in consideration of its harmfulness and its influence on the environment, and examples thereof include alcohols, ethers, esters, and ketones. More specifically, a monohydric or divalent alcohol having 2 to 6 carbon atoms, an ether having 3 to 8 carbon atoms such as ethyl cellosolve, and a glycol having 4 to 8 carbon atoms such as dimethyldiglycol (DMDG).
  • DMDG dimethyldiglycol
  • Glycol esters having 4 to 8 carbon atoms such as ether, ethyl cellosolve acetate and butyl cellosolve acetate, and cyclic ketones having 6 to 9 carbon atoms such as isophorone are preferable.
  • the organic solvent a water-soluble organic solvent that can be mixed with water is particularly preferable from the viewpoint of flammability and safety.
  • the slurry of the present invention may contain one or more fine particle additives selected from rare earth oxides, aluminum oxide (preferably ⁇ -type aluminum oxide) and titanium oxide.
  • the average particle size (D50 (volume basis)) of the fine particle additive is preferably 0.3 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the content of the fine particle additive in the slurry is preferably 3% by mass or less, particularly preferably 1% by mass or less, and more preferably 0.1% by mass or more, particularly 0.2% by mass or more.
  • the rare earth element is preferably one or more selected from yttrium (Y), gadrinium (Gd), holmium (Ho), erbium (Er), ytterbium (Yb) and lutetium (Lu).
  • the rare earth element includes any of yttrium, gadrinium, ytterbium and lutetium, and in particular, yttrium in which the rare earth element is yttrium alone or the main component (for example, 90 mol% or more) and the remaining ytterbium or lutetium. It is more preferable that it is configured.
  • the specific surface area (BET specific surface area) of the fine particle additive is preferably 80 m 2 / g or less, more preferably 60 m 2 / g or less.
  • the lower limit of the specific surface area (BET specific surface area) of the fine particle additive is not particularly limited, but is preferably 1 m 2 / g or more.
  • the slurry of the present invention may contain an antiaggregating agent composed of an organic compound, particularly a water-soluble organic compound, in order to prevent aggregation of aluminum oxide particles.
  • an antiaggregating agent composed of an organic compound, particularly a water-soluble organic compound, in order to prevent aggregation of aluminum oxide particles.
  • a surfactant or the like is suitable. Since the zeta potential of aluminum oxide is positively charged, an anionic surfactant is preferable, and in particular, a polyethyleneimine-based anionic surfactant, a polycarboxylic acid-type polymer-based anionic surfactant, or the like can be used. preferable.
  • the dispersion medium contains water, an anionic surfactant is preferable, but when the dispersion medium is only an organic solvent, a nonionic surfactant can also be used.
  • the content of the antiaggregating agent in the slurry is preferably 3% by mass or less, particularly preferably 1% by mass or less, and more preferably 0.01% by mass or
  • the slurry of the present invention can be produced by mixing a predetermined amount of aluminum oxide particles and a dispersion medium with other components such as an antiaggregating agent and a particle additive, if necessary.
  • other components such as an antiaggregating agent and a particle additive
  • the mixing time can be, for example, 1 hour or more and 6 hours or less.
  • the slurry of the present invention is suitably used for plasma spraying in an atmosphere containing a gas containing oxygen, particularly for atmospheric suspension plasma spraying that forms plasma in an atmospheric atmosphere.
  • a gas containing oxygen particularly for atmospheric suspension plasma spraying that forms plasma in an atmospheric atmosphere.
  • the case where the ambient gas around which the plasma is formed is the atmosphere is referred to as atmospheric suspension plasma spraying.
  • the pressure in the field where the plasma is formed may be under normal pressure such as under atmospheric pressure, under pressure, or under reduced pressure.
  • HVOF thermal spraying may be used.
  • the base material is selected from stainless steel, aluminum, nickel, chromium, zinc and their alloys, alumina, aluminum nitride, silicon nitride, silicon carbide, quartz glass and the like, and is appropriately selected according to the application of the spraying member. To.
  • the plasma gas for forming the plasma is preferably a mixed gas in which two or more kinds selected from argon gas, hydrogen gas, helium gas and nitrogen gas are combined, and in particular, two kinds of argon gas and nitrogen gas.
  • a mixed gas of three types of mixed gas, argon gas, hydrogen gas and nitrogen gas, or a mixed gas of four types of argon gas, hydrogen gas, helium gas and nitrogen gas is suitable.
  • a slurry containing aluminum oxide particles is filled in a slurry supply device, and a carrier gas (usually argon gas) is used to reach the tip of the plasma spraying gun using a pipe (powder hose).
  • a carrier gas usually argon gas
  • the piping preferably has an inner diameter of 2 mm ⁇ to 6 mm ⁇ .
  • the sprayed film can be formed by scanning a predetermined area on the surface of the substrate while moving the liquefied frame left and right or up and down along the surface of the substrate by using an automatic machine (robot) or a human hand. ..
  • the thickness of the sprayed film is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more. Further, it is preferably 300 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • thermal spraying conditions such as thermal spraying distance, current value, voltage value, gas type, and gas supply amount in suspension plasma spraying, and conventionally known conditions can be applied, including a base material and aluminum oxide particles. It may be appropriately set according to the use of the slurry and the obtained thermal spraying member. Further, on the substrate, a layer of rare earth oxide, rare earth fluoride, rare earth acid fluoride or the like having a thickness of about 50 ⁇ m to 300 ⁇ m is previously applied as a base film, for example, atmospheric plasma spraying or atmospheric suspension at normal pressure. After forming by plasma spraying or the like, the sprayed film of the present invention may be formed on the sprayed film.
  • the sprayed film of the present invention is an oxide sprayed film, and this oxide is an oxide composed of aluminum oxide when the slurry contains only aluminum oxide, and the slurry is a rare earth oxide, titanium oxide or the like as a fine particle additive. If the oxide contains aluminum oxide as a main component and contains a small amount of a component derived from a fine particle additive (an oxide such as a rare earth element or titanium or a composite oxide), the oxide is exposed to aluminum oxide in the present invention.
  • the oxide constituting the film includes both an oxide made of aluminum oxide and an oxide containing aluminum oxide as a main component and a small amount of a component derived from a fine particle additive.
  • the aluminum oxide spray film of the present invention has a pore ratio of 1% or less, and the temperature variable of the volume resistivity obtained by dividing the volume resistivity at 23 ° C by the volume resistivity at 200 ° C is 1 or more and 20 or less. It has low temperature dependence and is useful for electrostatic chucks.
  • the thermal spraying member provided with the thermal spraying film of the present invention as an electrostatic chuck, sufficient electrostatic adsorption force can be obtained by reducing the surface roughness.
  • a method of polishing the surface of the sprayed film is also effective.
  • the surface roughness is small, and the surface roughness Ra is preferably 3.5 ⁇ m or less.
  • Aluminum oxide ceramics are known to have high hardness and are also excellent in wear resistance.
  • the sprayed film of aluminum oxide preferably has a high hardness, and the Vickers hardness is preferably 700 HV or more.
  • Example 1 to 4 [Manufacturing of Thermal Spraying Slurries of Examples 1 to 4 and Comparative Example 1]
  • examples 1 to 4 after weighing the aluminum oxide particles ( ⁇ -type aluminum oxide particles), the fine particle additive, and the anti-aggregation agent (surfactant) at the ratios shown in Table 1, Table 1 shows.
  • Dispersion media were prepared to the indicated content, placed in a nylon pot containing 15 mm ⁇ nylon balls and mixed for about 6 hours, and the resulting mixture was passed through a 500 mesh (25 ⁇ m) sieve. A slurry containing aluminum oxide particles was obtained.
  • the spraying slurry of Comparative Example 1 was produced by the same method as in Example 1 except that the aluminum oxide particles used were different in D50, D100, BET specific surface area, crystallite size, and no fine particle additive was used. ..
  • thermal spraying film (thermal spraying member)
  • the surface of a 100 mm square (thickness 5 mm) A5052 aluminum alloy base material was degreased with acetone, and one side of this base material was roughened using a corundum grinding material (# 60). After that, it was manufactured under the thermal spraying conditions shown in Table 2.
  • the values of D100 and D50 of the aluminum oxide particles used in the spraying slurry of Examples 1 to 4 and Comparative Example 1 and D50 of the fine particle additive are such that the aluminum oxide particles and the fine particle additive are put into pure water.
  • the prepared slurry was ultrasonically treated at 40 W for 1 minute, and then measured by a laser diffraction method using a particle size distribution measuring device MT-3300 manufactured by Microtrac.
  • FIG. 1 shows the measurement results of the X-ray diffraction of the aluminum oxide particles of Example 1.
  • the mixture was allowed to stand for 168 hours in the same manner as the measurement of the turbidity, and then the supernatant liquid was collected in a quartz cell from the middle between the bottom surface of the container and the slurry liquid surface.
  • the transmittance was measured with an absorptiometer (LAMBDA750 (light source D2, tungsten) manufactured by PerkinElmer) at a wavelength of 250 nm to 850 nm, and the data interval was 1 nm and the scan speed was 256.75 nm / min. From the result, the transmittance of the wavelength of 550 nm was read.
  • LAMBDA750 light source D2, tungsten
  • FIG. 2 shows the measurement results of the X-ray diffraction of the sprayed film of Example 1.
  • the film thickness of the obtained film was measured with an eddy current type film thickness meter (LH-300 type manufactured by Kett).
  • the surface roughness Ra of the obtained sprayed film was measured using a surface roughness measuring instrument HANDYSURF E-35A manufactured by Tokyo Seimitsu Co., Ltd.
  • the hardness of the surface of the sprayed film was measured 10 times each with a micro Vickers hardness tester HMV-G31-XY-S manufactured by Shimadzu Corporation under measurement conditions of HV0.1 (980.7 mN) and 10 seconds. The average value was used as the measured value.
  • the cross-sectional image taken by an electron microscope is a reflected electron image and is represented by an 8-bit gray scale.
  • the light intensity (gray value) is expressed in 256 steps from 0 (no light: black) to 255 (maximum light output) for each pixel.
  • the void portion is closer to black with respect to the entire sprayed film, and the gray value is relatively low.
  • FIG. 3 shows the distribution of gray values in the cross-sectional image of the sprayed film.
  • the threshold value was determined and the binarization process was performed on the cross-sectional image of the sprayed film.
  • the gray value of the void portion is converted to 0, and the gray value of the entire other sprayed film is converted to 255.
  • the ratio of the total number of pixels in the void portion to the total number of pixels in the cross-sectional image was defined as the porosity.
  • the threshold value is set and binarized by focusing on the valley that appears in the gray value distribution, but in this case, it is assumed that the gray value distribution is bimodal. It is supposed to be. However, as shown in FIG. 3, the gray value of the sprayed film has a monomodal distribution, so that a general image binarization method cannot be applied.
  • the distribution of gray values is approximated by the normal distribution represented by the following formula.
  • x is the gray value
  • y is the number of pixels
  • a is the maximum value of the normal distribution
  • b is the gray value having the maximum value
  • c is the width of the normal distribution.
  • the fitting was performed by the nonlinear least squares method, the gray value x was changed from 0 to 255, and the fitting parameters a, b, and c in which the residual sum of squares of the number of pixels y at this time was minimized were numerically analyzed by the iterative method. ..
  • initial values a was 10,000, b was 100, and c was 10. Further, as initial conditions, a is 0 or more, b is 0 or more and 255 or less, and c is 0 or more.
  • the threshold value t was defined by the following equation using the fitting parameters b and c of the normal distribution. This formula is a floor function, and the integer part is used as the threshold value. Since b corresponds to brightness and c corresponds to contrast, the threshold value is determined according to the brightness and contrast.
  • m was 5.35 and n was -62.9.
  • the crystallite size of the aluminum oxide particles of Example 1 obtained by the WPPD method was 455 nm.
  • the crystallite sizes of the aluminum oxide particles in Comparative Example 1 were 430 nm, 460 nm, and 420 nm, respectively.
  • the crystallite size of the aluminum oxide particles of Comparative Example 1 obtained by the same method was 250 nm.
  • the D100 of the aluminum oxide particles contained is 15 ⁇ m or less, the crystallite size is 455 nm and 430 nm, and the content thereof is 30% by mass and 50% by mass with respect to the total amount of the spray slurry.
  • 700 mL of aluminum oxide fine particles having a D50 of 150 nm is contained in 0.1% by mass and 0.3% by mass in a 1 L volume polypropylene container having a height of 193 mm and 168 at room temperature.
  • the D100 of the contained aluminum oxide particles is 15 ⁇ m or less, the crystallite size is 460 nm, and the content is 30% by mass with respect to the total amount of the thermal spraying slurry, and further.
  • IPA isopropyl alcohol
  • the D100 of the contained aluminum oxide particles is 15 ⁇ m or less, the crystallite size is 460 nm, and the content is 30% by mass with respect to the total amount of the thermal spraying slurry, and further.
  • a fine particle additive 700 mL of Y 2 O 3 fine particles having a D50 of 20 nm is contained in 0.3% by mass in a 1 L volume polypropylene container having a height of 193 mm, and the supernatant is allowed to stand at room temperature for 168 hours.
  • the film thickness was 200 ⁇ m
  • the surface roughness was 3.07 ⁇ m
  • the pore ratio was 0.96%.
  • the ratio (temperature variable) of the electric resistance per volume of 23 ° C./200 ° C. was 3.2.
  • the D100 of the contained aluminum oxide particles is 15 ⁇ m or less, the crystallite size is 420 nm, and the content thereof is 30% by mass with respect to the total amount of the spray slurry, and further, a fine particle additive.
  • 700 mL of TiO 2 fine particles having a D50 of 50 nm is contained in 0.3% by mass, 0.1% by mass of polyethyleneimine as a surfactant, and 700 mL is placed in a 1 L volume polypropylene container having a height of 193 mm.
  • Example 4 When suspension spraying was carried out using the spraying slurry of Example 4 in which the permeability of the supernatant liquid after standing at room temperature for 168 hours was 75.5%, the film thickness was 176 ⁇ m and the surface roughness was 2. The pore ratio was 93 ⁇ m, the pore ratio was 0.69%, and the ratio (temperature variable) of the electric resistance per volume at 23 ° C./200 ° C. was 1.9.
  • the D100 of the aluminum oxide particles contained is 18.5 ⁇ m, the crystallite size is 250 nm, and the content thereof is 30% by mass with respect to the total amount of the spraying slurry, and the height is high.
  • Suspension spraying was carried out using the spraying slurry of Comparative Example 1 in which 700 mL was placed in a polypropylene container having a volume of 193 mm and having a volume of 1 L and the supernatant liquid had a permeability of 97.4% after being allowed to stand at room temperature for 168 hours.
  • the film thickness was 87 nm, which was thinner than that of the examples.
  • the surface roughness was 3.83 ⁇ m, which was larger than that of Examples 1 to 4. Further, the porosity was 1.5%, which was larger than that of Examples 1 to 4 and exceeded 1.
  • the ratio (temperature variable) of the electric resistance per volume at 23 ° C./200 ° C. was 28.5, which was more than 3 times higher than that of Examples 1 to 4.

Abstract

In the present invention, a thermally sprayed film is produced by plasma thermal spraying using a slurry for plasma thermal spraying that includes 20 mass% to 80 mass% of aluminum oxide particles having a maximum particle diameter (D100) of 15 μm or less, wherein the dispersion medium is one or more mediums selected from water and an organic solvent, and when 700 mL of the slurry is placed in a 1 L container with a height of 193 mm and left to stand at room temperature for 168 hours, the transmittance of the supernatant liquid is 90% or less. By using a slurry for plasma thermal spraying according to the present invention, it is possible to stably form, on a substrate, a thermally sprayed film which includes aluminum oxide and has low porosity and sufficient film thickness, and in which the electrical resistance by volume varies little by temperature, and a thermally sprayed member that comprises such a thermally sprayed film is useful in an electrostatic chuck.

Description

プラズマ溶射用スラリー、溶射膜の製造方法、酸化アルミニウム溶射膜、及び溶射部材Plasma spraying slurry, spraying film manufacturing method, aluminum oxide spraying film, and spraying member
 本発明は、酸化アルミニウムを含むプラズマ溶射用スラリー、プラズマ溶射用スラリーを用いた溶射膜の製造方法、酸化アルミニウム溶射膜、及び溶射部材に関する。 The present invention relates to a plasma spraying slurry containing aluminum oxide, a method for manufacturing a thermal spraying film using a plasma spraying slurry, an aluminum oxide thermal spraying film, and a thermal spraying member.
 酸化アルミニウムは電気絶縁性が高く、硬度の高い膜や焼結体ができることから、幅広い用途に使用されている。例えば、半導体製造装置に使用されている静電チャックの場合、従来手法として、大気プラズマ溶射で成膜した酸化アルミニウム・酸化チタン二元系のセラミック溶射材料が静電チャックに使用されていたが(特許文献1:特開2008-277862号公報)、溶射膜の気孔率は5%以上15%以下と高く(特許文献2:特開2014-156651号公報)、表面が多孔性となるため比表面積が大きくなり、使用環境によっては、誘電体層の腐食などによる劣化を早める原因となっていた。 Aluminum oxide is used in a wide range of applications because it has high electrical insulation and can form films and sintered bodies with high hardness. For example, in the case of the electrostatic chuck used in semiconductor manufacturing equipment, as a conventional method, an aluminum oxide / titanium oxide dual-based ceramic spraying material formed by thermal spraying was used for the electrostatic chuck (. Patent Document 1: Japanese Patent Application Laid-Open No. 2008-277682), the porosity of the sprayed membrane is as high as 5% or more and 15% or less (Patent Document 2: Japanese Patent Application Laid-Open No. 2014-156651), and the surface is porous, so that the specific surface area is specific. Depending on the usage environment, it has become a cause of hastening deterioration due to corrosion of the dielectric layer.
 最近では、溶射等の成膜技術の向上で、焼結体に近い成膜ができるものが開発されており、上記の問題を解消するため、エアロゾルディポジッション法(AD法)やサスペンションプラズマ溶射法(SPS法)による成膜が提案されている。 Recently, improvements in film formation technology such as thermal spraying have led to the development of films that can form a film close to that of a sintered body. In order to solve the above problems, the aerosol deposition method (AD method) and suspension plasma spraying method have been developed. (SPS method) film formation has been proposed.
 例えば、サスペンションプラズマ溶射法では、溶射に平均粒径D50が1μm以上、5μm以下の粒子をスラリーとして用いることで、気孔率が1%以下で、100μm程度の膜厚をもつ希土類酸フッ化物皮膜が得られるようになった(特許文献3:国際公開第2018/012454号)。 For example, in the suspension plasma spraying method, by using particles having an average particle size D50 of 1 μm or more and 5 μm or less as a slurry for thermal spraying, a rare earth acid fluoride film having a porosity of 1% or less and a film thickness of about 100 μm can be obtained. It has become available (Patent Document 3: International Publication No. 2018/012454).
 この希土類酸フッ化物皮膜は、膜厚が100μm程度であるが、静電チャックに適用する場合、基板吸着のために印加される電圧に対し絶縁性を確保するためには、できるだけ厚い方が望ましく(特許文献4:特開2007-251124号公報)、100μmを超える膜厚をもつ酸化アルミニウム膜が望まれていた。 This rare earth acid fluoride film has a thickness of about 100 μm, but when applied to an electrostatic chuck, it is desirable that it be as thick as possible in order to ensure insulation against the voltage applied for substrate adsorption. (Patent Document 4: Japanese Patent Application Laid-Open No. 2007-251124), an aluminum oxide film having a film thickness of more than 100 μm has been desired.
 また、静電チャックに適用する場合には、エッチング処理中に温度が上昇した際に生じる電気応力の変動を抑えるため、厚いことに加えて、電気抵抗の温度変化が小さい酸化アルミニウム皮膜が求められている。 In addition, when applied to an electrostatic chuck, an aluminum oxide film that is thick and has a small temperature change in electrical resistance is required in order to suppress fluctuations in electrical stress that occur when the temperature rises during etching processing. ing.
特開2008-277862号公報Japanese Unexamined Patent Publication No. 2008-277862 特開2014-156651号公報Japanese Unexamined Patent Publication No. 2014-156651 国際公開第2018/012454号International Publication No. 2018/012454 特開2007-251124号公報Japanese Unexamined Patent Publication No. 2007-251124
 本発明は、上記課題に鑑みなされたものであり、気孔率が低く、十分な膜厚をもち、体積当たりの電気抵抗の温度変化が少ない酸化アルミニウム皮膜を作製可能なプラズマ溶射用スラリー、プラズマ溶射用スラリーを用いた溶射膜の製造方法、酸化アルミニウム溶射膜、及び溶射部材を提供することを目的とする。 The present invention has been made in view of the above problems, and is a plasma spraying slurry and plasma spraying slurry capable of producing an aluminum oxide film having a low pore ratio, a sufficient film thickness, and a small temperature change in electrical resistance per volume. It is an object of the present invention to provide a method for producing a thermal sprayed film using a thermal sprayed film, an aluminum sprayed aluminum oxide sprayed film, and a thermal sprayed member.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、最大粒子径(D100)が15μm以下の酸化アルミニウムを20質量%以上、80質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を分散媒とした溶射用スラリーを、高さ193mmを有する容積1L容器に700mL入れて、室温下で168時間静置後、その上澄み液を採取したとき、この上澄み液の透過率が90%以下である溶射用スラリーを用いて得た、基材上に、酸化アルミニウム溶射膜を備える溶射部材が優れたものであることを見出し、本発明をなすに至った。 As a result of diligent studies to solve the above problems, the present inventors have contained 20% by mass or more and 80% by mass or less of aluminum oxide having a maximum particle size (D100) of 15 μm or less from water and an organic solvent. 700 mL of the slurry for spraying containing one or more selected types as a dispersion medium is placed in a 1 L volume container having a height of 193 mm, allowed to stand at room temperature for 168 hours, and then the supernatant liquid is collected. We have found that the spraying member provided with the aluminum oxide spraying film on the substrate obtained by using the spraying slurry having a liquid permeability of 90% or less is excellent, and has made the present invention.
 従って、本発明は、下記のプラズマ溶射用スラリー、溶射膜の製造方法、酸化アルミニウム溶射膜、及び溶射部材を提供する。
1.最大粒子径(D100)が15μm以下の酸化アルミニウム粒子を20質量%以上、80質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を分散媒とし、高さ193mmの1L容器に700mL入れて室温下で168時間静置後の上澄み液の透過率が90%以下であることを特徴とするプラズマ溶射用スラリー。
2.上記酸化アルミニウム粒子の、平均粒子径D50が2μm以上、8μm以下、結晶子サイズが350nm以上、600nm以下であり、上記酸化アルミニウム粒子が、α型酸化アルミニウムの結晶構造を有することを特徴とする1に記載のプラズマ溶射用スラリー。
3.さらに、希土類酸化物、酸化アルミニウム及び酸化チタンから選ばれる1種又は2種以上の微粒子添加剤を3質量%以下含有し、上記微粒子添加剤の平均粒子径D50が0.3μm以下であることを特徴とする1又は2に記載のプラズマ溶射用スラリー。
4.上記希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする3に記載のプラズマ溶射用スラリー。
5.1ないし4のいずれかに記載されたプラズマ溶射用スラリーを用いることを特徴とする溶射膜の製造方法。
6.大気中溶射法を用いることを特徴とする5に記載の溶射膜の製造方法。
7.気孔率が1%以下であり、膜厚が100μm以上であり、かつ
 (23℃における体積抵抗率)/(200℃における体積抵抗率)
で表される温度変数の値が1以上、20以下であることを特徴とする酸化アルミニウム溶射膜。
8.5に記載の製造方法により得た溶射膜又は7に記載の溶射膜を備えることを特徴とする溶射部材。
9.静電チャックであることを特徴とする8に記載の溶射部材。
Therefore, the present invention provides the following plasma spraying slurry, a method for producing a thermal spraying film, an aluminum thermal spraying film, and a thermal spraying member.
1. 1. A 1L container having a height of 193 mm, containing 20% by mass or more and 80% by mass or less of aluminum oxide particles having a maximum particle diameter (D100) of 15 μm or less, and using one or more kinds selected from water and an organic solvent as a dispersion medium. A plasma spraying sol characterized by having a permeability of 90% or less of the supernatant liquid after being placed in 700 mL and allowed to stand at room temperature for 168 hours.
2. 2. The aluminum oxide particles have an average particle diameter D50 of 2 μm or more and 8 μm or less, a crystallite size of 350 nm or more and 600 nm or less, and the aluminum oxide particles have a crystal structure of α-type aluminum oxide1. The slurry for plasma spraying described in 1.
3. 3. Further, it contains 3% by mass or less of one or more kinds of fine particle additives selected from rare earth oxides, aluminum oxide and titanium oxide, and the average particle size D50 of the fine particle additive is 0.3 μm or less. The plasma spraying slurry according to 1 or 2 as a feature.
4. The rare earth element is one or more selected from yttrium (Y), gadolinium (Gd), formium (Ho), erbium (Er), ytterbium (Yb) and lutetium (Lu). 3. The slurry for plasma spraying according to 3.
A method for producing a thermal sprayed film, which comprises using the slurry for thermal spraying according to any one of 5.1 to 4.
6. 5. The method for producing a thermal spray film according to 5, wherein the thermal spraying method is used.
7. Porosity is 1% or less, film thickness is 100 μm or more, and (volume resistivity at 23 ° C) / (volume resistivity at 200 ° C).
An aluminum oxide sprayed film having a temperature variable value of 1 or more and 20 or less.
A thermal spraying member comprising the thermal spraying film obtained by the production method according to 8.5 or the thermal spraying film according to 7.
9. 8. The thermal spraying member according to 8, which is an electrostatic chuck.
 本発明のプラズマ溶射用スラリーを用いることにより、基材上に、気孔率が低く、かつ十分な膜厚で、体積あたりの電気抵抗の温度変化が少ない、酸化アルミニウムを含む溶射膜を安定して形成することができ、このような溶射膜を備える溶射部材は、静電チャックに有用である。 By using the plasma spraying slurry of the present invention, a thermal spraying film containing aluminum oxide, which has a low porosity, a sufficient film thickness, and a small temperature change in electrical resistance per volume, can be stably formed on the substrate. A thermal spraying member that can be formed and has such a thermal spraying film is useful for electrostatic chucks.
実施例1の酸化アルミニウム粒子のX線回折チャートである。It is an X-ray diffraction chart of the aluminum oxide particle of Example 1. FIG. 実施例1の溶射膜のX線回折チャートである。It is an X-ray diffraction chart of the sprayed film of Example 1. FIG. 溶射膜の断面像のグレー値の分布である。It is the distribution of the gray value of the cross-sectional image of the sprayed film.
 以下、本発明について、さらに詳細に説明する。
 本発明では、酸化アルミニウム粒子をスラリーとして溶射する。本発明のスラリーは、酸化アルミニウム粒子を含有する。酸化アルミニウム粒子の最大粒子径(D100(本発明におけるD100は、体積基準の粒子径分布における最大粒子径である。))は、好ましくは15μm以下、より好ましくは12μm以下である。D100が15μmを超えると、スラリーの供給装置から溶射ガンの間に目詰まりが発生する可能性がある。本発明のスラリーは、粒子径が15μmを超える粒子は含まれていないことが好ましい。本発明のスラリーの酸化アルミニウム粒子の含有率は、好ましくは20質量%以上、より好ましくは25質量%以上、さらに好ましくは30質量%以上であり、好ましくは80質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。
Hereinafter, the present invention will be described in more detail.
In the present invention, aluminum oxide particles are sprayed as a slurry. The slurry of the present invention contains aluminum oxide particles. The maximum particle size of the aluminum oxide particles (D100 (D100 in the present invention is the maximum particle size in the volume-based particle size distribution)) is preferably 15 μm or less, more preferably 12 μm or less. If D100 exceeds 15 μm, clogging may occur between the slurry feeder and the spray gun. The slurry of the present invention preferably does not contain particles having a particle size of more than 15 μm. The content of aluminum oxide particles in the slurry of the present invention is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, preferably 80% by mass or less, and more preferably 60% by mass. % Or less, more preferably 50% by mass or less.
 酸化アルミニウム粒子の平均粒子径D50(本発明におけるD50は、体積基準の粒子径分布における累積50%径(メジアン径)である。)は、2μm以上、特に3μm以上が好適であり、8μm以下、特に5μm以下が好適である。 The average particle diameter D50 of the aluminum oxide particles (D50 in the present invention is a cumulative 50% diameter (median diameter) in the volume-based particle size distribution) is preferably 2 μm or more, particularly 3 μm or more, and 8 μm or less. In particular, 5 μm or less is preferable.
 酸化アルミニウム粒子の比表面積(BET比表面積)は、3m2/g以下、特に1m2/g以下が好ましい。酸化アルミニウム粒子の比表面積(BET比表面積)の下限は、特に限定されるものではないが、0.1m2/g以上が好ましい。 The specific surface area (BET specific surface area) of the aluminum oxide particles is preferably 3 m 2 / g or less, particularly preferably 1 m 2 / g or less. The lower limit of the specific surface area (BET specific surface area) of the aluminum oxide particles is not particularly limited, but is preferably 0.1 m 2 / g or more.
 本発明のスラリーに含まれる酸化アルミニウム粒子の結晶構造はα型が好ましい。酸化アルミニウムの結晶相には、α型以外に、η型、κ型、δ型、χ型、γ型、θ型などが存在するが、高温型のα型がスラリーでの安定が良く好ましい。 The crystal structure of the aluminum oxide particles contained in the slurry of the present invention is preferably α-type. In addition to α-type, η-type, κ-type, δ-type, χ-type, γ-type, and θ-type are present in the crystal phase of aluminum oxide, but the high-temperature type α-type is preferable because of its good stability in the slurry.
 また、X線回折法のWPPD法(Whole Powder Pattern Decomposition method)を用いて、2θが10°~70°の範囲で求めた酸化アルミニウム粒子の結晶子サイズは、好ましくは350nm以上、より好ましくは400nm以上であり、また、好ましくは600nm以下、より好ましくは500nm以下である。 Further, the crystallite size of the aluminum oxide particles obtained in the range of 2θ of 10 ° to 70 ° by using the WPPD method (Whole Powder Pattern Decompression method) of the X-ray diffraction method is preferably 350 nm or more, more preferably 400 nm. It is more preferably 600 nm or less, and more preferably 500 nm or less.
 スラリー中に含まれる粒子の沈降に関し、本発明のスラリーは、193mmの高さを有する容積1Lの容器、例えばポリプロピレン容器に、スラリーを700mL入れて、室温下で168時間静置後の上澄み液の透過率が90%以下であることが好ましく、80%以下であることがより好ましい。 Regarding the precipitation of particles contained in the slurry, the slurry of the present invention is prepared by putting 700 mL of the slurry in a container having a height of 193 mm and a volume of 1 L, for example, a polypropylene container, and allowing the slurry to stand at room temperature for 168 hours. The permeability is preferably 90% or less, more preferably 80% or less.
 本発明のスラリーには、微小な溶射粒子が多数含まれており、その結果、特に限定されるものではないが、膜厚が厚く、緻密な溶射膜を、安定して製造することができると推定される。 The slurry of the present invention contains a large number of fine sprayed particles, and as a result, although not particularly limited, it is possible to stably produce a dense sprayed film having a thick film thickness. Presumed.
 スラリーの分散媒としては、水及び有機溶媒から選ばれる1種又は2種以上を用いる。分散媒は、水単独で用いても、水と有機溶媒と混合して用いても、有機溶媒単独で用いてもよい。有機溶媒としては、有害性や環境への影響を考慮して選択することが好ましく、例えば、アルコール、エーテル、エステル、ケトンなどが挙げられる。より具体的には、炭素数が2~6の一価又は二価のアルコール、エチルセロソルブ等の炭素数が3~8のエーテル、ジメチルジグリコール(DMDG)等の炭素数が4~8のグリコールエーテル、エチルセロソルブアセテート、ブチルセロソルブアセテート等の炭素数が4~8のグリコールエステル、イソホロン等の炭素数が6~9の環状ケトンなどが好ましい。有機溶媒は、燃焼性や安全性の観点から、水と混合できる水溶性有機溶媒が特に好適である。 As the dispersion medium of the slurry, one or more selected from water and an organic solvent is used. The dispersion medium may be used alone with water, mixed with water and an organic solvent, or used alone with an organic solvent. The organic solvent is preferably selected in consideration of its harmfulness and its influence on the environment, and examples thereof include alcohols, ethers, esters, and ketones. More specifically, a monohydric or divalent alcohol having 2 to 6 carbon atoms, an ether having 3 to 8 carbon atoms such as ethyl cellosolve, and a glycol having 4 to 8 carbon atoms such as dimethyldiglycol (DMDG). Glycol esters having 4 to 8 carbon atoms such as ether, ethyl cellosolve acetate and butyl cellosolve acetate, and cyclic ketones having 6 to 9 carbon atoms such as isophorone are preferable. As the organic solvent, a water-soluble organic solvent that can be mixed with water is particularly preferable from the viewpoint of flammability and safety.
 本発明のスラリーは、希土類酸化物、酸化アルミニウム(好ましくはα型の酸化アルミニウム)及び酸化チタンから選ばれる1種又は2種以上の微粒子添加剤を含んでもよい。微粒子添加剤の平均粒子径(D50(体積基準))は、0.3μm以下が好ましく、0.2μm以下がより好ましい。スラリー中の微粒子添加剤の含有率は、3質量%以下、特に1質量%以下が好ましく、0.1質量%以上、特に0.2質量%以上がより好ましい。 The slurry of the present invention may contain one or more fine particle additives selected from rare earth oxides, aluminum oxide (preferably α-type aluminum oxide) and titanium oxide. The average particle size (D50 (volume basis)) of the fine particle additive is preferably 0.3 μm or less, more preferably 0.2 μm or less. The content of the fine particle additive in the slurry is preferably 3% by mass or less, particularly preferably 1% by mass or less, and more preferably 0.1% by mass or more, particularly 0.2% by mass or more.
 本発明において、希土類元素としては、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上が好ましい。希土類元素としては、イットリウム、ガドリニウム、イッテルビウム及びルテチウムのいずれかを含むこと、特に、希土類元素が、イットリウムのみ、又は主成分(例えば90モル%以上)であるイットリウムと、残部のイッテルビウム又はルテチウムとで構成されていることがより好ましい。 In the present invention, the rare earth element is preferably one or more selected from yttrium (Y), gadrinium (Gd), holmium (Ho), erbium (Er), ytterbium (Yb) and lutetium (Lu). The rare earth element includes any of yttrium, gadrinium, ytterbium and lutetium, and in particular, yttrium in which the rare earth element is yttrium alone or the main component (for example, 90 mol% or more) and the remaining ytterbium or lutetium. It is more preferable that it is configured.
 微粒子添加剤の比表面積(BET比表面積)は、好ましくは80m2/g以下、より好ましくは60m2/g以下である。微粒子添加剤の比表面積(BET比表面積)の下限は、特に限定されるものではないが、好ましくは1m2/g以上である。 The specific surface area (BET specific surface area) of the fine particle additive is preferably 80 m 2 / g or less, more preferably 60 m 2 / g or less. The lower limit of the specific surface area (BET specific surface area) of the fine particle additive is not particularly limited, but is preferably 1 m 2 / g or more.
 本発明のスラリーは、酸化アルミニウム粒子の凝集を防ぐため、有機化合物、特に水溶性有機化合物からなる凝集防止剤を含んでもよい。凝集防止剤としては、界面活性剤などが好適である。酸化アルミニウムは、ゼータ電位が+に帯電しているので、アニオン界面活性剤が好ましく、特に、ポリエチレンイミン系のアニオン界面活性剤、ポリカルボン酸型高分子系のアニオン界面活性剤などを用いることが好ましい。分散媒が水を含むものの場合は、アニオン界面活性剤が好ましいが、分散媒が有機溶媒のみの場合は、ノニオン界面活性剤を用いることもできる。スラリー中の凝集防止剤の含有率は、3質量%以下、特に1質量%以下が好ましく、0.01質量%以上、特に0.03質量%以上がより好ましい。 The slurry of the present invention may contain an antiaggregating agent composed of an organic compound, particularly a water-soluble organic compound, in order to prevent aggregation of aluminum oxide particles. As the anti-aggregation agent, a surfactant or the like is suitable. Since the zeta potential of aluminum oxide is positively charged, an anionic surfactant is preferable, and in particular, a polyethyleneimine-based anionic surfactant, a polycarboxylic acid-type polymer-based anionic surfactant, or the like can be used. preferable. When the dispersion medium contains water, an anionic surfactant is preferable, but when the dispersion medium is only an organic solvent, a nonionic surfactant can also be used. The content of the antiaggregating agent in the slurry is preferably 3% by mass or less, particularly preferably 1% by mass or less, and more preferably 0.01% by mass or more, particularly 0.03% by mass or more.
 本発明のスラリーは、所定量の酸化アルミニウム粒子及び分散媒と、必要に応じて凝集防止剤、粒子添加剤などの他の成分を混合することにより製造することができる。特に、酸化アルミニウム粒子などの固体成分を過度に粉砕しないようにするためには、例えば、樹脂製ボールミルと樹脂製ボール(例えば10mmφ以上)とを用いることが好ましい。この場合、混合時間は、例えば、1時間以上、6時間以下とすることができる。さらに、凝集した粒子の解砕と、混入物の除去のためには、混合後のスラリーを、500メッシュ(目開き25μm)以下の篩に通すことが有効である。 The slurry of the present invention can be produced by mixing a predetermined amount of aluminum oxide particles and a dispersion medium with other components such as an antiaggregating agent and a particle additive, if necessary. In particular, in order to prevent excessive pulverization of solid components such as aluminum oxide particles, it is preferable to use, for example, a resin ball mill and a resin ball (for example, 10 mmφ or more). In this case, the mixing time can be, for example, 1 hour or more and 6 hours or less. Further, for crushing the agglomerated particles and removing contaminants, it is effective to pass the mixed slurry through a sieve having a mesh size of 500 mesh (opening 25 μm) or less.
 本発明のスラリーは、酸素を含有するガスを含む雰囲気下でのプラズマ溶射、特に、大気雰囲気下でプラズマを形成する大気サスペンションプラズマ溶射に好適に用いられる。本発明においては、プラズマが形成される周囲の雰囲気ガスが、大気の場合を、大気サスペンションプラズマ溶射と呼ぶ。また、プラズマが形成される場の圧力は、大気圧下などの常圧の他、加圧下、減圧下であってもよい。さらに、HVOF溶射でもよい。 The slurry of the present invention is suitably used for plasma spraying in an atmosphere containing a gas containing oxygen, particularly for atmospheric suspension plasma spraying that forms plasma in an atmospheric atmosphere. In the present invention, the case where the ambient gas around which the plasma is formed is the atmosphere is referred to as atmospheric suspension plasma spraying. Further, the pressure in the field where the plasma is formed may be under normal pressure such as under atmospheric pressure, under pressure, or under reduced pressure. Further, HVOF thermal spraying may be used.
 基材としては、ステンレススチール、アルミニウム、ニッケル、クロム、亜鉛及びそれらの合金、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素及び石英ガラスなどから選ばれ、溶射部材の用途に合わせて、適宜、選択される。 The base material is selected from stainless steel, aluminum, nickel, chromium, zinc and their alloys, alumina, aluminum nitride, silicon nitride, silicon carbide, quartz glass and the like, and is appropriately selected according to the application of the spraying member. To.
 プラズマを形成するためのプラズマガスは、アルゴンガス、水素ガス、ヘリウムガス及び窒素ガスから選択される2種類以上を組み合わせた混合ガスであることが好ましく、特に、アルゴンガス及び窒素ガスの2種の混合ガス、アルゴンガス、水素ガス及び窒素ガスの3種の混合ガス、又はアルゴンガス、水素ガス、ヘリウムガス及び窒素ガスの4種の混合ガスが好適である。 The plasma gas for forming the plasma is preferably a mixed gas in which two or more kinds selected from argon gas, hydrogen gas, helium gas and nitrogen gas are combined, and in particular, two kinds of argon gas and nitrogen gas. A mixed gas of three types of mixed gas, argon gas, hydrogen gas and nitrogen gas, or a mixed gas of four types of argon gas, hydrogen gas, helium gas and nitrogen gas is suitable.
 溶射操作として具体的には、例えば、まず、スラリー供給装置に酸化アルミニウム粒子を含むスラリーを充填し、配管(パウダーホース)を用いてキャリアガス(通常、アルゴンガス)により、プラズマ溶射ガン先端部まで、本発明のスラリーを供給する。 Specifically, for example, as a thermal spraying operation, for example, first, a slurry containing aluminum oxide particles is filled in a slurry supply device, and a carrier gas (usually argon gas) is used to reach the tip of the plasma spraying gun using a pipe (powder hose). , Supply the slurry of the present invention.
 配管は、内径が2mmφ~6mmφのものが好ましい。この配管のいずれか、例えば、配管へのスラリー供給口には、500メッシュ(目開き25μm)以下、好ましくは100メッシュ(目開き149μm)程度の篩を設けることで、配管やプラズマ溶射ガンでの詰まりを防止することができる。 The piping preferably has an inner diameter of 2 mmφ to 6 mmφ. By providing a sieve of 500 mesh (opening 25 μm) or less, preferably about 100 mesh (opening 149 μm) at any of these pipes, for example, the slurry supply port to the pipe, the pipe or plasma spray gun can be used. It is possible to prevent clogging.
 溶射膜は、自動機械(ロボット)や人間の手を使って、液化フレームを基材表面に沿って左右又は上下に動かしながら、基板表面上の所定の範囲を走査することによって形成することができる。溶射膜の厚さは、100μm以上であることが好ましく、150μm以上であることがより好ましい。また、300μm以下であることが好ましく、250μm以下であることがより好ましい。 The sprayed film can be formed by scanning a predetermined area on the surface of the substrate while moving the liquefied frame left and right or up and down along the surface of the substrate by using an automatic machine (robot) or a human hand. .. The thickness of the sprayed film is preferably 100 μm or more, more preferably 150 μm or more. Further, it is preferably 300 μm or less, and more preferably 250 μm or less.
 サスペンションプラズマ溶射における、溶射距離、電流値、電圧値、ガス種類、ガス供給量などの溶射条件に、特に制限はなく、従来公知の条件を適用することができ、基材、酸化アルミニウム粒子を含むスラリー、得られる溶射部材の用途などに応じて、適宜設定すればよい。また、基材上に、予め、厚さが50μm~300μm程度の希土類酸化物、希土類フッ化物、希土類酸フッ化物などの層を、下地膜として、例えば常圧での、大気プラズマ溶射、大気サスペンションプラズマ溶射などで形成した後、その上に、本発明の溶射膜を形成してもよい。 There are no particular restrictions on the thermal spraying conditions such as thermal spraying distance, current value, voltage value, gas type, and gas supply amount in suspension plasma spraying, and conventionally known conditions can be applied, including a base material and aluminum oxide particles. It may be appropriately set according to the use of the slurry and the obtained thermal spraying member. Further, on the substrate, a layer of rare earth oxide, rare earth fluoride, rare earth acid fluoride or the like having a thickness of about 50 μm to 300 μm is previously applied as a base film, for example, atmospheric plasma spraying or atmospheric suspension at normal pressure. After forming by plasma spraying or the like, the sprayed film of the present invention may be formed on the sprayed film.
 本発明の溶射膜は、酸化物溶射膜であり、この酸化物は、スラリーが酸化アルミニウムのみを含む場合は、酸化アルミニウムからなる酸化物、スラリーが、微粒子添加剤として希土類酸化物や酸化チタンなどを含む場合は、酸化アルミニウムを主成分とし、微粒子添加剤由来の成分(希土類元素やチタン等の酸化物や複合酸化物など)を少量含有する酸化物となるが、本発明において、酸化アルミニウム溶射膜を構成する酸化物には、酸化アルミニウムからなる酸化物、及び酸化アルミニウムを主成分とし、微粒子添加剤由来の成分を少量含有する酸化物の双方が含まれる。本発明の酸化アルミニウム溶射膜は、気孔率1%以下で、23℃における体積抵抗率を200℃における体積抵抗率で除した体積抵抗率の温度変数が1以上、20以下と、体積抵抗率の温度依存性が低く、静電チャックに有用である。 The sprayed film of the present invention is an oxide sprayed film, and this oxide is an oxide composed of aluminum oxide when the slurry contains only aluminum oxide, and the slurry is a rare earth oxide, titanium oxide or the like as a fine particle additive. If the oxide contains aluminum oxide as a main component and contains a small amount of a component derived from a fine particle additive (an oxide such as a rare earth element or titanium or a composite oxide), the oxide is exposed to aluminum oxide in the present invention. The oxide constituting the film includes both an oxide made of aluminum oxide and an oxide containing aluminum oxide as a main component and a small amount of a component derived from a fine particle additive. The aluminum oxide spray film of the present invention has a pore ratio of 1% or less, and the temperature variable of the volume resistivity obtained by dividing the volume resistivity at 23 ° C by the volume resistivity at 200 ° C is 1 or more and 20 or less. It has low temperature dependence and is useful for electrostatic chucks.
 本発明の溶射膜を備える溶射部材を静電チャックとして利用するには、表面粗さを小さくすることで、十分な静電吸着力が得られる。表面粗さが大きいことが原因で静電吸着力が得られない場合には、溶射膜の表面を研磨する方法も有効である。表面研磨を容易に行うためには、表面粗さが小さい方が好ましく、表面粗さRaは3.5μm以下であることが好ましい。 In order to use the thermal spraying member provided with the thermal spraying film of the present invention as an electrostatic chuck, sufficient electrostatic adsorption force can be obtained by reducing the surface roughness. When the electrostatic adsorption force cannot be obtained due to the large surface roughness, a method of polishing the surface of the sprayed film is also effective. In order to easily perform surface polishing, it is preferable that the surface roughness is small, and the surface roughness Ra is preferably 3.5 μm or less.
 酸化アルミニウムのセラミックスは、高硬度であることが知られており、耐摩耗性にも優れている。酸化アルミニウムの溶射膜も同様に、高硬度である方が好ましく、ビッカース硬度が700HV以上であることが好ましい。 Aluminum oxide ceramics are known to have high hardness and are also excellent in wear resistance. Similarly, the sprayed film of aluminum oxide preferably has a high hardness, and the Vickers hardness is preferably 700 HV or more.
 以下に、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
  [実施例1~4、比較例1]
 〔実施例1~4、比較例1の溶射用スラリーの製造〕
 実施例1~4について、表1に示される割合で、酸化アルミニウム粒子(α型の酸化アルミニウム粒子)と、微粒子添加剤と、凝集防止剤(界面活性剤)とを秤量した後、表1に示される含有率となるように分散媒を準備し、これらを15mmφのナイロンボールが入ったナイロンポットに入れて約6時間混合し、得られた混合物を目開き500メッシュ(25μm)の篩に通して、酸化アルミニウム粒子を含むスラリーを得た。比較例1の溶射用スラリーは、使用する酸化アルミニウム粒子のD50、D100、BET比表面積、結晶子サイズが異なること、及び微粒子添加材を用いなかったこと以外、実施例1と同じ方法で製造した。
[Examples 1 to 4, Comparative Example 1]
[Manufacturing of Thermal Spraying Slurries of Examples 1 to 4 and Comparative Example 1]
For Examples 1 to 4, after weighing the aluminum oxide particles (α-type aluminum oxide particles), the fine particle additive, and the anti-aggregation agent (surfactant) at the ratios shown in Table 1, Table 1 shows. Dispersion media were prepared to the indicated content, placed in a nylon pot containing 15 mmφ nylon balls and mixed for about 6 hours, and the resulting mixture was passed through a 500 mesh (25 μm) sieve. A slurry containing aluminum oxide particles was obtained. The spraying slurry of Comparative Example 1 was produced by the same method as in Example 1 except that the aluminum oxide particles used were different in D50, D100, BET specific surface area, crystallite size, and no fine particle additive was used. ..
 〔実施例1~4、比較例1の溶射膜(溶射部材)の製造〕
 溶射膜(溶射部材)は、100mm角(厚さ5mm)のA5052アルミニウム合金基材の表面をアセトン脱脂し、この基材の片面をコランダムの研削材(#60)を用いて粗面化処理した後、表2に示す溶射条件で製造した。
[Manufacturing of Thermal Spray Films (Spraying Members) of Examples 1 to 4 and Comparative Example 1]
For the thermal spraying film (thermal spraying member), the surface of a 100 mm square (thickness 5 mm) A5052 aluminum alloy base material was degreased with acetone, and one side of this base material was roughened using a corundum grinding material (# 60). After that, it was manufactured under the thermal spraying conditions shown in Table 2.
 〔溶射用スラリーの評価〕
 溶射用スラリーの評価結果は表1に示した。
[Evaluation of spraying slurry]
The evaluation results of the spraying slurry are shown in Table 1.
 (粒度の測定)
 実施例1~4、比較例1の溶射用スラリーに使用された酸化アルミニウム粒子のD100及びD50、並びに微粒子添加剤のD50の値は、酸化アルミニウム粒子、微粒子添加剤を、純水に投入することでスラリーを作製し、作製されたスラリーを、1分間、40Wで、超音波処理した後、マイクロトラック社製、粒子径分布測定装置 MT-3300を用いて、レーザー回折法により測定した。
(Measurement of particle size)
The values of D100 and D50 of the aluminum oxide particles used in the spraying slurry of Examples 1 to 4 and Comparative Example 1 and D50 of the fine particle additive are such that the aluminum oxide particles and the fine particle additive are put into pure water. The prepared slurry was ultrasonically treated at 40 W for 1 minute, and then measured by a laser diffraction method using a particle size distribution measuring device MT-3300 manufactured by Microtrac.
 (BET比表面積の測定)
 実施例1~4、比較例1の溶射用スラリーに使用された酸化アルミニウム粒子と微粒子添加剤の比表面積は、株式会社マウンテック製、全自動比表面積測定装置 Macsorb HM model-1280で測定した。
(Measurement of BET specific surface area)
The specific surface area of the aluminum oxide particles and the fine particle additive used in the spray slurry of Examples 1 to 4 and Comparative Example 1 was measured by a fully automatic specific surface area measuring device Macsorb HM model-1280 manufactured by Mountech Co., Ltd.
 (X線回折測定、及び結晶子サイズの測定)
 実施例1~4、比較例1の溶射用スラリーに使用された酸化アルミニウム粒子のX線回折は、X線回折装置(PANalytical社製、X-Part Pro MPD、CuKα線)を用いて測定した。また、結晶子サイズは、得られたX線回折測定結果をWPPD法(Whole Powder Pattern Decomposition method)を用いて、2θ=10°~70°で算出した。図1に、実施例1の酸化アルミニウム粒子のX線回折の測定結果を示す。
(X-ray diffraction measurement and crystallite size measurement)
The X-ray diffraction of the aluminum oxide particles used in the spraying slurry of Examples 1 to 4 and Comparative Example 1 was measured using an X-ray diffractometer (X-Part Pro MPD, CuK α ray manufactured by PANalytical). .. The crystallite size was calculated from the obtained X-ray diffraction measurement results at 2θ = 10 ° to 70 ° using the WPPD method (Whole Powder Pattern Decomposition measurement). FIG. 1 shows the measurement results of the X-ray diffraction of the aluminum oxide particles of Example 1.
 (濁度と透過率の測定)
 実施例1~4、比較例1の溶射用スラリーを均一になるまで攪拌して分散させてから、193mmの高さを有する1L容器(ケニス株式会社製、JK-PPボトル広口1000mL)に700mL充填して168時間静置させた。その後、その容器の底面とスラリー液面との中間で上澄みの濁度を測定した。濁度は、アズワン社のデジタル濁度計TBD700で測定した。
(Measurement of turbidity and transmittance)
The spraying slurries of Examples 1 to 4 and Comparative Example 1 are stirred and dispersed until uniform, and then 700 mL is filled in a 1 L container (manufactured by KENIS, Ltd., JK-PP bottle wide mouth 1000 mL) having a height of 193 mm. Then, it was allowed to stand for 168 hours. Then, the turbidity of the supernatant was measured between the bottom surface of the container and the liquid level of the slurry. The turbidity was measured with a digital turbidity meter TBD700 manufactured by AS ONE.
 一方、透過率の測定のために、濁度の測定と同様に168時間静置させてから、その容器の底面とスラリー液面との中間から上澄み液を石英セルに採取した。透過率は、吸光光度計(PerkinElmer社製、LAMBDA750(光源D2 タングステン))で、250nm~850nmの波長で行ない、データ間隔1nm、スキャン速度256.75nm/minとした。その結果から、550nmの波長の透過率を読みとった。 On the other hand, for the measurement of the transmittance, the mixture was allowed to stand for 168 hours in the same manner as the measurement of the turbidity, and then the supernatant liquid was collected in a quartz cell from the middle between the bottom surface of the container and the slurry liquid surface. The transmittance was measured with an absorptiometer (LAMBDA750 (light source D2, tungsten) manufactured by PerkinElmer) at a wavelength of 250 nm to 850 nm, and the data interval was 1 nm and the scan speed was 256.75 nm / min. From the result, the transmittance of the wavelength of 550 nm was read.
 〔溶射膜の評価〕
 溶射膜の評価結果は表3に示した。
[Evaluation of sprayed membrane]
The evaluation results of the sprayed membrane are shown in Table 3.
 (X線回折測定)
 得られた溶射部材から溶射膜を削り取り、X線回折法により分析した。なお、X線回折には、X線回折装置(PANalytical社製、X-Part Pro MPD、CuKα線)を用いた。図2に、実施例1の溶射膜のX線回折の測定結果を示す。
(X-ray diffraction measurement)
The thermal spray film was scraped from the obtained thermal spray member and analyzed by X-ray diffraction method. An X-ray diffractometer (X-Part Pro MPD, CuK α ray manufactured by PANalytical) was used for X-ray diffraction. FIG. 2 shows the measurement results of the X-ray diffraction of the sprayed film of Example 1.
 (溶射膜の膜厚の測定)
 得られた皮膜の膜厚は、渦電流式膜厚計(Kett社製、LH-300型)で測定した。
(Measurement of thermal spray film thickness)
The film thickness of the obtained film was measured with an eddy current type film thickness meter (LH-300 type manufactured by Kett).
 (溶射膜の表面粗さRaの測定)
 得られた溶射膜の表面粗さRaは、株式会社東京精密製、表面粗さ測定器HANDYSURF E-35Aを用いて測定した。
(Measurement of surface roughness Ra of thermal spray film)
The surface roughness Ra of the obtained sprayed film was measured using a surface roughness measuring instrument HANDYSURF E-35A manufactured by Tokyo Seimitsu Co., Ltd.
 (溶射膜のビッカース硬度の測定)
 溶射膜表面の硬度を、株式会社島津製作所製、マイクロビッカース硬度計HMV-G31-XY-Sにより、測定条件HV0.1(980.7mN)、10秒保持で、各10回測定し、それらの平均値を測定値とした。
(Measurement of Vickers hardness of sprayed film)
The hardness of the surface of the sprayed film was measured 10 times each with a micro Vickers hardness tester HMV-G31-XY-S manufactured by Shimadzu Corporation under measurement conditions of HV0.1 (980.7 mN) and 10 seconds. The average value was used as the measured value.
 (溶射膜の気孔率の測定)
 溶射部材の試験片を樹脂に埋め込んで断面を切り出し、断面を鏡面仕上げ(Ra=0.1μm)した後、走査型電子顕微鏡(SEM)により断面像(倍率:200倍)を撮影した。10視野(1視野の撮影面積:0.017mm2)の撮影を行った後、画像処理ソフト「Photoshop」(アドビシステムズ株式会社製)で画像処理し、画像解析ソフト「Scion Image」(Scion Corporation)を使って、気孔率の定量化を行い、10視野平均の気孔率を、画像総面積に対する百分率として評価した。
(Measurement of porosity of sprayed membrane)
A test piece of the thermal spraying member was embedded in a resin to cut out a cross section, and the cross section was mirror-finished (Ra = 0.1 μm), and then a cross-sectional image (magnification: 200 times) was taken with a scanning electron microscope (SEM). After shooting 10 fields (shooting area of 1 field: 0.017 mm 2 ), image processing is performed with the image processing software "Photoshop" (manufactured by Adobe Systems Incorporated), and the image analysis software "Scion Image" (Scion Corporation). The pore ratio was quantified using, and the pore ratio of the average of 10 visual fields was evaluated as a percentage of the total image area.
 電子顕微鏡により撮影した断面像は反射電子像であり、8ビットグレースケールで表される。断面像はピクセルごとに0(光が全くない状態:黒)から255(すべての光が最大限出ている状態)の256段階で光の強度(グレー値)が表現される。溶射膜の断面像では、溶射膜全体に対してボイド部分がより黒に近い状態であり、グレー値が相対的に低くなっている。溶射膜の断面像のグレー値の分布を図3に示す。 The cross-sectional image taken by an electron microscope is a reflected electron image and is represented by an 8-bit gray scale. In the cross-sectional image, the light intensity (gray value) is expressed in 256 steps from 0 (no light: black) to 255 (maximum light output) for each pixel. In the cross-sectional image of the sprayed film, the void portion is closer to black with respect to the entire sprayed film, and the gray value is relatively low. FIG. 3 shows the distribution of gray values in the cross-sectional image of the sprayed film.
 溶射膜の断面像に対して、しきい値を決定して二値化処理を行った。ボイド部分のグレー値は0に変換され、それ以外の溶射膜全体のグレー値は255に変換される。断面像の総ピクセル数に対する、ボイド部分の総ピクセル数の割合を気孔率として定義した。 The threshold value was determined and the binarization process was performed on the cross-sectional image of the sprayed film. The gray value of the void portion is converted to 0, and the gray value of the entire other sprayed film is converted to 255. The ratio of the total number of pixels in the void portion to the total number of pixels in the cross-sectional image was defined as the porosity.
 二値化処理でしきい値を固定した場合、像ごとに明るさやコントラストが異なるため、ボイドを適切に分離することが困難である。そのため、明るさとコントラストに応じてしきい値を決定する必要がある。一般的な画像二値化手法では、グレー値の分布に現れる谷に注目してしきい値を定め二値化を行うが、この場合は、グレー値の分布が双峰性をなすことを前提としている。しかし、溶射膜のグレー値は、図3に示されるように、単峰性の分布であるため一般的な画像二値化手法を適用できない。 When the threshold value is fixed in the binarization process, it is difficult to properly separate voids because the brightness and contrast differ for each image. Therefore, it is necessary to determine the threshold value according to the brightness and the contrast. In the general image binarization method, the threshold value is set and binarized by focusing on the valley that appears in the gray value distribution, but in this case, it is assumed that the gray value distribution is bimodal. It is supposed to be. However, as shown in FIG. 3, the gray value of the sprayed film has a monomodal distribution, so that a general image binarization method cannot be applied.
 本発明では、明るさとコントラストを定量化するために、グレー値の分布に対して下記式で表される正規分布で近似した。xはグレー値、yはピクセル数、aは正規分布の最大値、bは最大値をとるグレー値、cは正規分布の幅を表す。フィッティングは非線形最小二乗法で行い、グレー値xを0から255まで変化させて、このときのピクセル数yの残差平方和が最小となるフィッティングパラメーターa、b、cを反復法により数値解析した。初期値として、aを10,000、bを100、cを10とした。また、初期条件として、aは0以上、bは0以上255以下、cは0以上とした。 In the present invention, in order to quantify the brightness and contrast, the distribution of gray values is approximated by the normal distribution represented by the following formula. x is the gray value, y is the number of pixels, a is the maximum value of the normal distribution, b is the gray value having the maximum value, and c is the width of the normal distribution. The fitting was performed by the nonlinear least squares method, the gray value x was changed from 0 to 255, and the fitting parameters a, b, and c in which the residual sum of squares of the number of pixels y at this time was minimized were numerically analyzed by the iterative method. .. As initial values, a was 10,000, b was 100, and c was 10. Further, as initial conditions, a is 0 or more, b is 0 or more and 255 or less, and c is 0 or more.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 しきい値tは、下記式により、正規分布のフィッティングパラメーターb及びcを用いて定義した。この式は、床関数であり、整数部分をしきい値とする。bは明るさ、cはコントラストに相当するため、明るさとコントラストに応じてしきい値を決定していることになる。酸化アルミニウムの溶射膜を評価する場合は、mを5.35、nを-62.9とした。 The threshold value t was defined by the following equation using the fitting parameters b and c of the normal distribution. This formula is a floor function, and the integer part is used as the threshold value. Since b corresponds to brightness and c corresponds to contrast, the threshold value is determined according to the brightness and contrast. When evaluating the sprayed film of aluminum oxide, m was 5.35 and n was -62.9.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (溶射膜の体積固有抵抗率の測定)
 デジタル超高抵抗/微小電流計8340A型(株式会社エーディーシー製)を用い、試験規格ASTM(D257:2007)に準じて、室温23℃と200℃での体積抵抗を測定し、膜厚データをもとに体積抵抗率を算出した。なお、表3における「温度変数」とは(23℃における体積抵抗率)/(200℃における体積抵抗率)から算出した値であり、温度変数が1に近いほど体積抵抗率の温度変化が少ないことを表す。
(Measurement of volume resistivity of thermal spray film)
Using a digital ultra-high resistance / micro ammeter 8340A type (manufactured by ADC Co., Ltd.), measure the volume resistance at room temperature 23 ° C and 200 ° C according to the test standard ASTM (D257: 2007), and obtain the film thickness data. The volume resistance was calculated based on this. The "temperature variable" in Table 3 is a value calculated from (volume resistivity at 23 ° C.) / (volume resistivity at 200 ° C.), and the closer the temperature variable is to 1, the smaller the temperature change in the volume resistivity. Represents that.
 得られたX線回折の結果から、WPPD法(Whole Powder Pattern Decomposition methodにより求めた実施例1の酸化アルミニウム粒子の結晶子サイズは、455nmであった。同様な方法で求めた実施例2~4の酸化アルミニウム粒子の結晶子サイズは、それぞれ、430nm、460nm、420nmであった。一方、同様な方法で求めた比較例1の酸化アルミニウム粒子の結晶子サイズは250nmであった。 From the results of the obtained X-ray diffraction, the crystallite size of the aluminum oxide particles of Example 1 obtained by the WPPD method (Whole Powder Pattern Decomposition method) was 455 nm. Examples 2 to 4 obtained by the same method. The crystallite sizes of the aluminum oxide particles in Comparative Example 1 were 430 nm, 460 nm, and 420 nm, respectively. On the other hand, the crystallite size of the aluminum oxide particles of Comparative Example 1 obtained by the same method was 250 nm.
 水を分散媒とし、含有される酸化アルミニウム粒子のD100が15μm以下、結晶子サイズが455nm、430nmであり、その含有率が、溶射用スラリーの総量に対し、30質量%、50質量%であり、さらに、微粒子添加剤として、D50が150nmである酸化アルミニウム微粒子を0.1質量%、0.3質量%含有し、高さ193mmを有する容積1Lのポリプロピレン容器に700mL入れて、室温下で168時間静置後の上澄み液の透過率が46.1%、75.7%である実施例1、2の溶射用スラリーを用いて、サスペンション溶射を実施したところ、各々、膜厚が153μm、213μm、表面粗さが2.88μm、2.82μm、気孔率が0.42%、0.32%、体積当たりの電気抵抗の23℃/200℃の比率(温度変数)が8.0、1.3であった。 Using water as a dispersion medium, the D100 of the aluminum oxide particles contained is 15 μm or less, the crystallite size is 455 nm and 430 nm, and the content thereof is 30% by mass and 50% by mass with respect to the total amount of the spray slurry. Further, as a fine particle additive, 700 mL of aluminum oxide fine particles having a D50 of 150 nm is contained in 0.1% by mass and 0.3% by mass in a 1 L volume polypropylene container having a height of 193 mm and 168 at room temperature. When suspension spraying was performed using the spraying slurry of Examples 1 and 2 in which the permeability of the supernatant liquid after standing for a long time was 46.1% and 75.7%, the film thickness was 153 μm and 213 μm, respectively. The surface roughness is 2.88 μm, 2.82 μm, the pore ratio is 0.42%, 0.32%, and the ratio of electric resistance per volume to 23 ° C / 200 ° C (temperature variable) is 8.0, 1. It was 3.
 IPA(イソプロピルアルコール)を分散媒とし、含有される酸化アルミニウム粒子のD100が15μm以下、結晶子サイズが460nmであり、その含有率が、溶射用スラリーの総量に対し、30質量%であり、さらに、微粒子添加剤として、D50が20nmであるY23微粒子を0.3質量%含有し、高さ193mmを有する容積1Lのポリプロピレン容器に700mL入れて、室温下で168時間静置後の上澄み液の透過率が62.3%である実施例3の溶射用スラリーを用いて、サスペンション溶射を実施したところ、膜厚が200μm、表面粗さが3.07μm、気孔率が0.96%、体積当たりの電気抵抗の23℃/200℃の比率(温度変数)が3.2であった。 Using IPA (isopropyl alcohol) as a dispersion medium, the D100 of the contained aluminum oxide particles is 15 μm or less, the crystallite size is 460 nm, and the content is 30% by mass with respect to the total amount of the thermal spraying slurry, and further. As a fine particle additive, 700 mL of Y 2 O 3 fine particles having a D50 of 20 nm is contained in 0.3% by mass in a 1 L volume polypropylene container having a height of 193 mm, and the supernatant is allowed to stand at room temperature for 168 hours. When the suspension spraying was carried out using the spraying slurry of Example 3 having a liquid permeability of 62.3%, the film thickness was 200 μm, the surface roughness was 3.07 μm, and the pore ratio was 0.96%. The ratio (temperature variable) of the electric resistance per volume of 23 ° C./200 ° C. was 3.2.
 水を分散媒とし、含有される酸化アルミニウム粒子のD100が15μm以下、結晶子サイズが420nmであり、その含有率が、溶射用スラリーの総量に対し、30質量%であり、さらに、微粒子添加剤として、D50が50nmであるTiO2微粒子を0.3質量%含有し、界面活性剤であるポリエチレンイミンを0.1質量%含有し、高さ193mmを有する容積1Lのポリプロピレン容器に700mL入れて、室温下で168時間静置後の上澄み液の透過率が75.5%である実施例4の溶射用スラリーを用いて、サスペンション溶射を実施したところ、膜厚が176μm、表面粗さが2.93μm、気孔率が0.69%、体積当たりの電気抵抗の23℃/200℃の比率(温度変数)が1.9であった。 Using water as a dispersion medium, the D100 of the contained aluminum oxide particles is 15 μm or less, the crystallite size is 420 nm, and the content thereof is 30% by mass with respect to the total amount of the spray slurry, and further, a fine particle additive. As a result, 700 mL of TiO 2 fine particles having a D50 of 50 nm is contained in 0.3% by mass, 0.1% by mass of polyethyleneimine as a surfactant, and 700 mL is placed in a 1 L volume polypropylene container having a height of 193 mm. When suspension spraying was carried out using the spraying slurry of Example 4 in which the permeability of the supernatant liquid after standing at room temperature for 168 hours was 75.5%, the film thickness was 176 μm and the surface roughness was 2. The pore ratio was 93 μm, the pore ratio was 0.69%, and the ratio (temperature variable) of the electric resistance per volume at 23 ° C./200 ° C. was 1.9.
 一方、水を分散媒とし、含有される酸化アルミニウム粒子のD100が18.5μm、結晶子サイズが250nmであり、その含有率が、溶射用スラリーの総量に対し、30質量%であり、高さ193mmを有する容積1Lのポリプロピレン容器に700mL入れて、室温下で168時間静置後の上澄み液の透過率が97.4%である比較例1の溶射用スラリーを用いて、サスペンション溶射を実施したところ、膜厚が87nmと、実施例より薄い膜厚のものしか得られなかった。また、表面粗さは3.83μmであり、実施例1~4よりも大きくなった。さらに、気孔率は1.5%で、実施例1~4のものより大きく、1を超えていた。体積当たりの電気抵抗の23℃/200℃の比率(温度変数)が28.5であり、実施例1~4と比べ、3倍以上高い結果となった。 On the other hand, using water as a dispersion medium, the D100 of the aluminum oxide particles contained is 18.5 μm, the crystallite size is 250 nm, and the content thereof is 30% by mass with respect to the total amount of the spraying slurry, and the height is high. Suspension spraying was carried out using the spraying slurry of Comparative Example 1 in which 700 mL was placed in a polypropylene container having a volume of 193 mm and having a volume of 1 L and the supernatant liquid had a permeability of 97.4% after being allowed to stand at room temperature for 168 hours. However, the film thickness was 87 nm, which was thinner than that of the examples. The surface roughness was 3.83 μm, which was larger than that of Examples 1 to 4. Further, the porosity was 1.5%, which was larger than that of Examples 1 to 4 and exceeded 1. The ratio (temperature variable) of the electric resistance per volume at 23 ° C./200 ° C. was 28.5, which was more than 3 times higher than that of Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (9)

  1.  最大粒子径(D100)が15μm以下の酸化アルミニウム粒子を20質量%以上、80質量%以下含有し、水及び有機溶媒から選ばれる1種又は2種以上を分散媒とし、高さ193mmの1L容器に700mL入れて室温下で168時間静置後の上澄み液の透過率が90%以下であることを特徴とするプラズマ溶射用スラリー。 A 1L container having a height of 193 mm, containing 20% by mass or more and 80% by mass or less of aluminum oxide particles having a maximum particle diameter (D100) of 15 μm or less, and using one or more kinds selected from water and an organic solvent as a dispersion medium. A plasma spraying sol characterized by having a permeability of 90% or less of the supernatant liquid after being placed in 700 mL and allowed to stand at room temperature for 168 hours.
  2.  上記酸化アルミニウム粒子の、平均粒子径D50が2μm以上、8μm以下、結晶子サイズが350nm以上、600nm以下であり、上記酸化アルミニウム粒子が、α型酸化アルミニウムの結晶構造を有することを特徴とする請求項1に記載のプラズマ溶射用スラリー。 The aluminum oxide particles have an average particle diameter D50 of 2 μm or more and 8 μm or less, a crystallite size of 350 nm or more and 600 nm or less, and the aluminum oxide particles have an α-type aluminum oxide crystal structure. Item 1. The slurry for plasma spraying according to Item 1.
  3.  さらに、希土類酸化物、酸化アルミニウム及び酸化チタンから選ばれる1種又は2種以上の微粒子添加剤を3質量%以下含有し、上記微粒子添加剤の平均粒子径D50が0.3μm以下であることを特徴とする請求項1又は2に記載のプラズマ溶射用スラリー。 Further, it contains 3% by mass or less of one or more fine particle additives selected from rare earth oxides, aluminum oxide and titanium oxide, and the average particle diameter D50 of the fine particle additive is 0.3 μm or less. The plasma spraying slurry according to claim 1 or 2.
  4.  上記希土類元素が、イットリウム(Y)、ガドリニウム(Gd)、ホルミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)及びルテチウム(Lu)から選ばれる1種又は2種以上であることを特徴とする請求項3に記載のプラズマ溶射用スラリー。 The rare earth element is one or more selected from yttrium (Y), gadolinium (Gd), formium (Ho), erbium (Er), ytterbium (Yb) and lutetium (Lu). The slurry for plasma spraying according to claim 3.
  5.  請求項1ないし4のいずれか1項に記載されたプラズマ溶射用スラリーを用いることを特徴とする溶射膜の製造方法。 A method for producing a thermal sprayed film, which comprises using the plasma spraying slurry according to any one of claims 1 to 4.
  6.  大気中溶射法を用いることを特徴とする請求項5に記載の溶射膜の製造方法。 The method for producing a thermal spray film according to claim 5, wherein the thermal spraying method is used.
  7.  気孔率が1%以下であり、膜厚が100μm以上であり、かつ
     (23℃における体積抵抗率)/(200℃における体積抵抗率)
    で表される温度変数の値が1以上、20以下であることを特徴とする酸化アルミニウム溶射膜。
    Porosity is 1% or less, film thickness is 100 μm or more, and (volume resistivity at 23 ° C) / (volume resistivity at 200 ° C).
    An aluminum oxide sprayed film having a temperature variable value of 1 or more and 20 or less.
  8.  請求項5に記載の製造方法により得た溶射膜又は請求項7に記載の溶射膜を備えることを特徴とする溶射部材。 A thermal spraying member comprising the thermal spraying film obtained by the production method according to claim 5 or the thermal spraying film according to claim 7.
  9.  静電チャックであることを特徴とする請求項8に記載の溶射部材。 The thermal spraying member according to claim 8, which is an electrostatic chuck.
PCT/JP2021/043556 2020-12-15 2021-11-29 Slurry for plasma thermal spraying, method for producing thermally sprayed film, aluminum oxide thermally sprayed film, and thermally sprayed member WO2022130946A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237023746A KR20230121818A (en) 2020-12-15 2021-11-29 Slurry for plasma thermal spraying, method for manufacturing thermal spray coating, aluminum oxide thermal spray coating and thermal spray member
CN202180084117.0A CN116635564A (en) 2020-12-15 2021-11-29 Slurry for plasma spraying, method for producing sprayed film, alumina sprayed film and sprayed member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020207771 2020-12-15
JP2020-207771 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022130946A1 true WO2022130946A1 (en) 2022-06-23

Family

ID=82059033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043556 WO2022130946A1 (en) 2020-12-15 2021-11-29 Slurry for plasma thermal spraying, method for producing thermally sprayed film, aluminum oxide thermally sprayed film, and thermally sprayed member

Country Status (5)

Country Link
JP (1) JP2022094933A (en)
KR (1) KR20230121818A (en)
CN (1) CN116635564A (en)
TW (1) TW202237871A (en)
WO (1) WO2022130946A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156651A (en) * 2013-01-18 2014-08-28 Fujimi Inc Sprayed coating and metallic member with coating
WO2014142019A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
JP2014240511A (en) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド Method of producing sprayed coating and material for flame spray
JP2019073805A (en) * 2014-09-18 2019-05-16 エリコン メテコ(ユーエス)インコーポレイテッド Preliminarily blended powder material
JP2019533090A (en) * 2016-10-18 2019-11-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and coating substrate obtained by the method
JP2020029614A (en) * 2018-08-15 2020-02-27 信越化学工業株式会社 Thermal spray coating, production method of thermal spray coating, thermal spray member and thermal spray material
JP2020056114A (en) * 2020-01-16 2020-04-09 株式会社フジミインコーポレーテッド Slurry for spray
JP2020172702A (en) * 2019-04-12 2020-10-22 信越化学工業株式会社 Thermal spray material, method for manufacturing the same, thermal spray coating, method for forming the same, and thermal spray member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565136B2 (en) 2000-10-11 2010-10-20 独立行政法人産業技術総合研究所 Electrostatic chuck
JP4811790B2 (en) 2006-02-20 2011-11-09 Toto株式会社 Electrostatic chuck
JP6315151B1 (en) 2016-07-14 2018-04-25 信越化学工業株式会社 Suspension plasma spray slurry and method for forming rare earth oxyfluoride spray coating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156651A (en) * 2013-01-18 2014-08-28 Fujimi Inc Sprayed coating and metallic member with coating
WO2014142019A1 (en) * 2013-03-13 2014-09-18 株式会社 フジミインコーポレーテッド Powder for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
JP2014240511A (en) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド Method of producing sprayed coating and material for flame spray
JP2019073805A (en) * 2014-09-18 2019-05-16 エリコン メテコ(ユーエス)インコーポレイテッド Preliminarily blended powder material
JP2019533090A (en) * 2016-10-18 2019-11-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and coating substrate obtained by the method
JP2020029614A (en) * 2018-08-15 2020-02-27 信越化学工業株式会社 Thermal spray coating, production method of thermal spray coating, thermal spray member and thermal spray material
JP2020172702A (en) * 2019-04-12 2020-10-22 信越化学工業株式会社 Thermal spray material, method for manufacturing the same, thermal spray coating, method for forming the same, and thermal spray member
JP2020056114A (en) * 2020-01-16 2020-04-09 株式会社フジミインコーポレーテッド Slurry for spray

Also Published As

Publication number Publication date
CN116635564A (en) 2023-08-22
TW202237871A (en) 2022-10-01
KR20230121818A (en) 2023-08-21
JP2022094933A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
TWI724150B (en) Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
JP7120398B2 (en) Thermal spray material
TWI394735B (en) Yttrium sintered body and components for plasma process equipment
JP7367824B2 (en) rare earth oxide particles
JP7147675B2 (en) Thermal spray material and method for producing thermal spray member
KR102459191B1 (en) Suspension plasma thermal spray slurry, rare earth acid fluoride thermal spray coating method and thermal spray member
JP6597922B1 (en) COMPOSITE STRUCTURE, SEMICONDUCTOR MANUFACTURING APPARATUS HAVING COMPOSITE STRUCTURE AND DISPLAY MANUFACTURING APPARATUS
WO2022130946A1 (en) Slurry for plasma thermal spraying, method for producing thermally sprayed film, aluminum oxide thermally sprayed film, and thermally sprayed member
JP2017061737A (en) Thermal spray material
EP2757083A1 (en) Magnesium aluminate-based sintered body and member for use in semiconductor manufacturing devices
JP7359136B2 (en) Methods for producing particulate thermal spray materials and rare earth oxide thermal spray materials, and rare earth oxide thermal spray coatings and methods for forming the same.
JP2001206764A (en) Corrosion-resistant ceramics and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084117.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237023746

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906309

Country of ref document: EP

Kind code of ref document: A1