WO2022130938A1 - Hollow resin particles for semiconductor member resin composition - Google Patents

Hollow resin particles for semiconductor member resin composition Download PDF

Info

Publication number
WO2022130938A1
WO2022130938A1 PCT/JP2021/043435 JP2021043435W WO2022130938A1 WO 2022130938 A1 WO2022130938 A1 WO 2022130938A1 JP 2021043435 W JP2021043435 W JP 2021043435W WO 2022130938 A1 WO2022130938 A1 WO 2022130938A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
hollow resin
hollow
semiconductor member
monomer
Prior art date
Application number
PCT/JP2021/043435
Other languages
French (fr)
Japanese (ja)
Inventor
春彦 松浦
光一朗 岡本
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to KR1020237018450A priority Critical patent/KR20230096101A/en
Priority to CN202180084299.1A priority patent/CN116685611A/en
Publication of WO2022130938A1 publication Critical patent/WO2022130938A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices

Definitions

  • the present invention relates to hollow resin particles used in a resin composition for a semiconductor member.
  • the insulating resin material used for the semiconductor member used in the semiconductor device has a low relative permittivity and dielectric loss tangent of the insulating resin in order to increase the transmission speed of a high frequency signal and reduce the loss during signal transmission. Required.
  • Acrylic hollow resin particles are known as one of the known hollow particles.
  • acrylic hollow resin particles can be obtained by suspend-polymerizing a monomer containing an acrylic polyfunctional monomer such as trimethylolpropane tri (meth) acrylate or dipentaerythritol hexaacrylate as a main component together with a hydrophobic solvent. It has been reported (Patent Document 1). However, the acrylic resin has a high relative permittivity and dielectric loss tangent, and deteriorates the low dielectric property. Therefore, the acrylic hollow resin particles described in Patent Document 1 cannot be applied to semiconductor devices that process high-frequency signals in recent years.
  • styrene-based hollow resin particles are known as hollow resin particles having a lower relative permittivity and dielectric loss tangent than acrylic-based hollow resin particles.
  • polyvinylbenzene hollow resin particles can be obtained by suspend-polymerizing divinylbenzene together with saturated hydrocarbons having 8 to 18 carbon atoms (specifically, hexadecane).
  • Patent Document 2 has been reported (Patent Document 2).
  • Patent Document 2 since the polydivinylbenzene hollow resin particles described in Patent Document 2 use polyvinyl alcohol as a dispersant, polyvinyl alcohol remains on the particle surface, and the relative permittivity and the dielectric loss tangent value of the particles themselves are increased.
  • An object of the present invention is to provide styrene-based hollow resin particles used in a resin composition for a semiconductor member, which can provide a semiconductor member capable of exhibiting excellent low dielectric properties when used in the resin composition for a semiconductor member. ..
  • the present inventor has studied a technique for improving the low dielectric property of a semiconductor member, assuming a case where styrene-based hollow resin particles are mixed with an insulating resin to form a resin composition for a semiconductor member.
  • a specific amount of a monomer having a specific structure as the material monomer of the styrene-based hollow resin particles, the content of the alkali metal and the alkaline earth metal contained in the obtained styrene-based hollow resin particles can be suppressed, and thus the content of the alkali metal and the alkaline earth metal can be suppressed.
  • the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are Hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion.
  • the total concentration of the lithium element, the sodium element, the potassium element, the magnesium element, and the potassium element contained in the hollow resin particles is 200 mg / kg or less.
  • the total concentration of fluoride ion, chloride ion, nitrite ion, nitrate ion, phosphate ion, and sulfate ion contained in the hollow resin particles is 200 mg / kg or less.
  • the average particle size of the hollow resin particles is 0.1 ⁇ m to 5.0 ⁇ m.
  • the shell portion is represented by an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer represented by the formula (1) (meth). It contains an aromatic polymer (P1) obtained by polymerizing a monomer composition containing c).
  • R 1 represents H or CH 3
  • R 2 represents H, an alkyl group, or a phenyl group
  • R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms
  • m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.
  • the oxyalkylene group is at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the monomer composition comprises 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a), 10% by weight to 70% by weight of the aromatic monofunctional monomer (b), and It contains 1.0% by weight to 20% by weight of the (meth) acrylic acid ester-based monomer (c) represented by the general formula (1).
  • the shell portion is composed of the aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. It comprises at least one non-crosslinking polymer (P2) selected from the group.
  • the aromatic crosslinkable monomer (a) is divinylbenzene.
  • the aromatic monofunctional monomer (b) is at least one selected from the group consisting of styrene and ethyl vinylbenzene.
  • the semiconductor member according to the embodiment of the present invention includes hollow resin particles used in the resin composition for the semiconductor member according to the embodiment of the present invention.
  • styrene-based hollow resin particles used in a resin composition for a semiconductor member which can provide a semiconductor member capable of exhibiting excellent low dielectric properties when used in the resin composition for a semiconductor member. be able to.
  • FIG. It is a TEM photograph figure of the hollow resin particle (1) used in the resin composition for a semiconductor member obtained in Example 1.
  • FIG. It is a TEM photograph figure of the hollow resin particle (2) used in the resin composition for a semiconductor member obtained in Example 2.
  • FIG. It is a TEM photograph figure of the hollow resin particle (3) used in the resin composition for a semiconductor member obtained in Example 3.
  • FIG. It is a TEM photograph figure of the hollow resin particle (4) used in the resin composition for a semiconductor member obtained in Example 4.
  • FIG. It is a TEM photograph figure of the hollow resin particle (5) used in the resin composition for a semiconductor member obtained in Example 5.
  • FIG. It is a TEM photograph figure of the hollow resin particle (6) used in the resin composition for a semiconductor member obtained in Example 6.
  • FIG. 7 It is a TEM photograph figure of the hollow resin particle (7) used in the resin composition for a semiconductor member obtained in Example 7.
  • FIG. 8 It is a TEM photograph figure of the hollow resin particle (8) used in the resin composition for a semiconductor member obtained in Example 8.
  • FIG. 10 It is a TEM photograph figure of the hollow resin particle (10) used in the resin composition for a semiconductor member obtained in Example 10.
  • FIG. It is a TEM photograph figure of the hollow resin particle (11) used in the resin composition for a semiconductor member obtained in Example 11.
  • the semiconductor member means a member constituting a semiconductor, and examples thereof include a semiconductor package and a semiconductor module.
  • the resin composition for a semiconductor member means a resin composition used for a semiconductor member. Therefore, the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are used in the resin composition for semiconductor members, and are therefore preferably used for semiconductor members such as semiconductor packages and semiconductor modules.
  • Such a semiconductor member is a semiconductor member according to the embodiment of the present invention, and includes hollow resin particles used in the resin composition for the semiconductor member according to the embodiment of the present invention.
  • a semiconductor package is an IC chip as an essential component, and is a mold resin, an underfill material, a mold underfill material, a die bond material, a prepreg for a semiconductor package substrate, a metal-clad laminate for a semiconductor package substrate, and a printed circuit board for a semiconductor package. It is constructed using at least one member selected from the build-up materials of.
  • a semiconductor module is a prepreg for a printed circuit board, a metal-clad laminate for a printed circuit board, a build-up material for a printed circuit board, a solder resist material, a coverlay film, an electromagnetic wave shielding film, and a print, with a semiconductor package as an essential component. It is configured by using at least one member selected from the adhesive sheet for a circuit board.
  • the expression “(meth) acrylic” means “acrylic and / or methacrolein”
  • the expression “(meth) acrylate” means “acrylate and / or methacrylate”.
  • the expression “(meth) allyl” means “allyl and / or methacrolein”
  • “acrolein and / or methacrolein” is used. It means “rain”.
  • the expression “acid (salt)” when used in the present specification, it means “acid and / or a salt thereof”. Examples of the salt include alkali metal salts and alkaline earth metal salts, and specific examples thereof include sodium salts and potassium salts.
  • the resin composition for a semiconductor member is a resin composition used for a semiconductor member.
  • Such resin compositions typically include an insulating resin.
  • an insulating resin any suitable resin can be adopted as long as the effect of the present invention is not impaired.
  • examples of such insulating resins include polyphenylene ether, polyphenylene sulfide, polyimide, polyetherimide, polybismaleimide, polyarylate, epoxy resin, polyester resin, urethane resin, acrylic resin, cyanate resin, phenol resin, and polystyrene resin.
  • fluororesins such as PTFE and cycloolefin resins.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention are hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion.
  • the term "hollow” as used herein means a state in which the inside is filled with a substance other than a resin, for example, a gas or a liquid, and is preferably filled with a gas in that the effects of the present invention can be further exhibited. It means the state of being.
  • the hollow portion may be composed of one hollow region or may be composed of a plurality of hollow regions. From the viewpoint that the amount of the resin component constituting the shell portion is relatively large and the hollow portion of the base material or the like is prevented from infiltrating into the hollow portion, the hollow portion is preferably composed of one hollow region.
  • the average particle size of the hollow resin particles is preferably 0.1 ⁇ m to 5.0 ⁇ m, more preferably 0.15 ⁇ m to 1.0 ⁇ m, still more preferably 0.2 ⁇ m to 0.8 ⁇ m, and particularly preferably 0.2 ⁇ m to 0.8 ⁇ m. It is 0.3 ⁇ m to 0.6 ⁇ m. If the average particle size of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the average particle size of the hollow resin particles is less than 0.1 ⁇ m, the thickness of the shell portion is relatively thin, so that the hollow resin particles may not have sufficient strength.
  • the average particle size of the hollow resin particles is larger than 5.0 ⁇ m, phase separation between the polymer and the solvent generated by the polymerization of the monomer components during suspension polymerization may be difficult to occur, which makes it difficult to form the shell portion. There is a risk of becoming.
  • the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention preferably have a total concentration of lithium element, sodium element, potassium element, magnesium element, and potassium element contained in the hollow resin particles. It is 200 mg / kg or less, more preferably 150 mg / kg or less, still more preferably 100 mg / kg or less, and particularly preferably 50 mg / kg or less. If the total concentration of the lithium element, the sodium element, the potassium element, the magnesium element, and the potassium element contained in the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. If the total concentration of lithium element, sodium element, potassium element, magnesium element, and potassium element contained in the hollow resin particles is too large outside the above range, the semiconductor member containing the hollow resin particles has excellent low dielectric properties. May not be expressed.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention include fluoride ions, chloride ions, nitrite ions, nitrate ions, phosphate ions, and sulfate ions contained in the hollow resin particles.
  • the total concentration is preferably 200 mg / kg or less, more preferably 150 mg / kg or less, still more preferably 100 mg / kg or less, and particularly preferably 50 mg / kg or less. If the total concentration of fluoride ion, chloride ion, nitrite ion, nitrate ion, phosphate ion, and sulfate ion contained in the hollow resin particles is within the above range, the effect of the present invention can be more exhibited.
  • the semiconductor containing the hollow resin particles may not be able to exhibit excellent low dielectric properties.
  • the shell portion contains a monomer composition containing an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It contains an aromatic polymer (P1) obtained by polymerization.
  • the shell portion contains such an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1).
  • the effect of the present invention can be further exhibited.
  • the hollow resin is provided by the polar group provided in the aromatic polymer (P1). The adhesion between the particles and the insulating resin can be improved.
  • R 1 represents H or CH 3
  • R 2 represents H, an alkyl group, or a phenyl group
  • R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms
  • m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.
  • the content ratio of the aromatic polymer (P1) in the shell portion is preferably 60% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, in that the effect of the present invention can be more exhibited. It is more preferably 80% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight.
  • the aromatic polymer (P1) is an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It is obtained by polymerizing the monomer composition containing the mixture. That is, the aromatic polymer (P1) is represented by a structural unit derived from the aromatic crosslinkable monomer (a), a structural unit derived from the aromatic monofunctional monomer (b), and the formula (1) (meth). It has a structural unit derived from the acrylic acid ester-based monomer (c).
  • the monomer composition preferably contains 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a) and 10% by weight of the aromatic monofunctional monomer (b) in that the effects of the present invention can be further exhibited.
  • the aromatic monofunctional monomer (b) is 20% by weight to 65% by weight
  • the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) is 2.
  • the monomer composition contains an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1).
  • the total content of the aromatic crosslinkable monomer (a), the aromatic monofunctional monomer (b), and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) in the monomer composition Is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 100% by weight, still more preferably 90% by weight to 100% by weight, in that the effect of the present invention can be more exhibited. It is particularly preferably 95% by weight to 100% by weight.
  • the monomer composition is an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester type represented by the formula (1) as long as the effects of the present invention are not impaired. Any suitable other monomer other than the monomer (c) may be contained.
  • the other monomers may be only one kind or two or more kinds.
  • Aromatic crosslinkable monomer (a)) As the aromatic crosslinkable monomer (a), any suitable aromatic crosslinkable monomer can be adopted as long as it is an aromatic monomer having crosslinkability, as long as the effect of the present invention is not impaired.
  • aromatic crosslinkable monomer (a) examples include divinylbenzene, divinylnaphthalene, and diallyl phthalate in that the effects of the present invention can be further exhibited.
  • Divinylbenzene is preferable as the aromatic crosslinkable monomer (a) from the viewpoint of further exhibiting the effects of the present invention and the reactivity.
  • the aromatic crosslinkable monomer (a) may be only one kind or two or more kinds.
  • aromatic monofunctional monomer (b) any suitable aromatic monofunctional monomer can be adopted as long as it is a monofunctional aromatic monomer, as long as the effect of the present invention is not impaired.
  • an aromatic monofunctional monomer (b) for example, styrene, ethylvinylbenzene, ⁇ -methylstyrene, vinyltoluene, o-chlorostyrene, m- Examples thereof include chlorostyrene, p-chlorostyrene, vinylbiphenyl and vinylnaphthalene.
  • the aromatic monofunctional monomer (b) is preferably at least one selected from the group consisting of styrene and ethylvinylbenzene from the viewpoint of further exhibiting the effects of the present invention and the reactivity.
  • the aromatic monofunctional monomer (b) may be only one kind or two or more kinds.
  • the (meth) acrylic acid ester-based monomer (c) is represented by the formula (1).
  • R 1 represents H or CH 3 .
  • R 2 represents H, an alkyl group, or a phenyl group.
  • R3 - O represents an oxyalkylene group having 2 to 18 carbon atoms. That is, in the formula (1), R 3 represents an alkylene group having 2 to 18 carbon atoms.
  • R3 ⁇ O is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, and more preferably an oxyalkylene group having 2 to 4 carbon atoms. It is an oxyalkylene group.
  • R3 - O is at least two types selected from an oxyethylene group, an oxypropylene group, and an oxybutylene group
  • the addition form of R3 - O may be random addition, block addition, alternate addition, or the like. It may be in any form.
  • the addition form referred to here means the form itself, and does not mean that it must be obtained by an addition reaction.
  • R3 - O is composed of an oxyethylene group, an oxypropylene group, and an oxybutylene group (typically, an oxytetramethylene group) in that the effects of the present invention can be further exhibited. At least one selected from the group.
  • m represents the average number of moles of substance added (sometimes referred to as "chain length") of the oxyalkylene group.
  • m is a number of 1 to 100, preferably a number of 1 to 40, more preferably a number of 2 to 30, still more preferably a number of 3 to 20, and particularly preferably a number of 4 to 18. It is a number, most preferably a number of 5 to 15. When m is within the above range, the effect of the present invention can be more exhibited.
  • (meth) acrylic acid ester-based monomer (c) for example, methoxypolyethylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, propoxypolyethylene glycol methacrylate, butoxypolyethylene glycol methacrylate, hexaoxy, in that the effects of the present invention can be further exhibited.
  • (meth) acrylic acid ester-based monomer (c) a commercially available product can also be adopted.
  • the product name "Blemmer” series manufactured by NOF CORPORATION can be adopted.
  • the (meth) acrylic acid ester-based monomer (c) may be of only one type or of two or more types.
  • the shell portion is at least one selected from the group consisting of an aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. It may contain a non-crosslinking polymer (P2).
  • the content of the non-crosslinkable polymer (P2) in the shell portion is preferably 0% by weight to 40% by weight, more preferably 0% by weight to 30% by weight, in that the effects of the present invention can be more exhibited. It is more preferably 0% by weight to 20% by weight, and particularly preferably 0% by weight to 10% by weight.
  • polystyrene resin examples include polyethylene, polypropylene, poly ⁇ -olefin and the like. From the viewpoint of solubility in the monomer composition, it is preferable to use a side chain crystalline polyolefin using a long-chain ⁇ -olefin as a raw material, a low molecular weight polyolefin produced by a metallocene catalyst, or an olefin oligomer.
  • styrene polymer examples include polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer and the like.
  • Examples of the (meth) acrylic acid-based polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, and polypropyl (meth) acrylate.
  • styrene- (meth) acrylic acid-based polymer examples include a styrene-methyl (meth) acrylate copolymer, a styrene-ethyl (meth) acrylate copolymer, a styrene-butyl (meth) acrylate copolymer, and a styrene-propyl. Examples thereof include (meth) acrylate copolymers.
  • the relative permittivity of the hollow resin particles is preferably 1.0 to 2.5, more preferably 1.0 to 2.4, and even more preferably 1.0 to 2.3. If the relative permittivity of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the relative permittivity of the hollow resin particles exceeds 2.5, the semiconductor member containing the hollow resin particles may not be able to exhibit excellent low dielectric properties.
  • the relative permittivity of the hollow resin particles can be calculated with reference to, for example, "dielectric constant of the mixed system" (Applied Physics, Vol. 27, No. 8 (1958)).
  • the relative permittivity of the mixed system of the dispersion medium and the hollow resin particles is ⁇
  • the relative permittivity of the base material for example, a resin composition such as polyimide or epoxy
  • the relative permittivity of the hollow resin particles is ⁇ 1.
  • ⁇ 2 and the volume ratio of the hollow resin particles in the mixed system is ⁇ , the following equation holds. That is, if ⁇ , ⁇ 1 , and ⁇ are experimentally obtained, the relative permittivity ⁇ 2 of the hollow resin particles can be calculated.
  • the volume fraction ⁇ of the hollow resin particles in the mixed system of the dispersion medium and the hollow resin particles can be obtained as follows.
  • the density of the hollow resin particles can be determined experimentally using a pycnometer (Cortec Co., Ltd., TQC 50 mL specific gravity bottle) and ARUFON UP-1080 (Toa Synthetic Co., Ltd., density 1.05 g / cm 3 ) which is a liquid polymer. .. Specifically, the hollow resin particles and ARUFON UP-1080 are defoamed and stirred using a planetary stirring defoaming machine (MAZELSTAR KK-250, manufactured by KURABO) so that the ratio of the hollow resin particles is 10% by weight. Make an evaluation mixture.
  • a planetary stirring defoaming machine MAZELSTAR KK-250, manufactured by KURABO
  • the evaluation mixture is filled in a pycnometer having a capacity of 50 mL, and the weight of the filled evaluation mixture is calculated by subtracting the weight of the empty pycnometer from the weight of the pycnometer filled with the mixture. From this value, the density of the hollow resin particles can be calculated using the following formula.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can be produced by any suitable method as long as the effects of the present invention are not impaired.
  • Such a manufacturing method includes, for example, a dispersion step (step 1), a polymerization step (step 2), a cleaning step (step 3), and a drying step (step 4).
  • step 1 the aromatic crosslinkable monomer (a), the aromatic monofunctional monomer (b), and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) are added to the aqueous solution containing the dispersant. ), A polymerization initiator, and an organic mixed solution containing an organic solvent having a boiling point of less than 100 ° C. are dispersed.
  • any appropriate dispersion method is adopted as long as the organic mixture solution can be present in the form of droplets in the aqueous solution, as long as the effect of the present invention is not impaired.
  • Such a dispersion method is typically a dispersion method using a homogenizer, and examples thereof include an ultrasonic homogenizer and a high-pressure homogenizer.
  • the aqueous solution contains an aqueous medium and a dispersant.
  • aqueous medium examples include water, a mixed medium of water and a lower alcohol (methanol, ethanol, etc.).
  • a mixed medium of water and a lower alcohol methanol, ethanol, etc.
  • the water at least one selected from ion-exchanged water and distilled water is preferable.
  • any appropriate dispersant can be adopted as long as the effect of the present invention is not impaired.
  • a surfactant is preferably used as the dispersant in that the effects of the present invention can be further exhibited.
  • the surfactant include anionic surfactants, cationic surfactants, amphoteric ionic surfactants, nonionic surfactants and the like.
  • anionic surfactant examples include an alkyl sulfate ester fatty acid salt, an alkylbenzene sulfonate, an alkylnaphthalene sulfonate, an alkane sulfonate, an alkyldiphenyl ether sulfonate, a dialkyl sulfosuccinate, a monoalkyl sulfosuccinate, and a poly.
  • Non-reactive anionic surfactants such as oxyethylene alkylphenyl ether phosphate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate ester ammonium salt, polyoxyethylene alkylpropenylphenyl ether sulfate ester ammonium salt, Examples thereof include reactive anionic surfactants such as polyoxyalkylene alkenyl ether ammonium sulfate.
  • cationic surfactant examples include cationicity such as alkyltrimethylammonium salt, alkyltriethylammonium salt, dialkyldimethylammonium salt, dialkyldiethylammonium salt, and N-polyoxyalkylene-N, N, N-trialkylammonium salt.
  • surfactants include surfactants.
  • amphoteric ionic surfactant examples include lauryldimethylamine oxide, phosphoric acid ester salt, and phosphite ester-based surfactant.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, and oxyethylene.
  • examples include oxypropylene block polymer.
  • the amount of the surfactant added is preferably 0.01 part by weight to 1 part by weight with respect to 100 parts by weight of the organic mixture solution.
  • the surfactant may be only one kind or two or more kinds.
  • the aqueous solution may contain any suitable other components as long as the effects of the present invention are not impaired.
  • the organic mixed solution is a monomer composition containing an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It contains a polymerization initiator and an organic solvent having a boiling point of less than 100 ° C.
  • the explanation in the item of ⁇ hollow resin particles >>>> can be used as it is.
  • any suitable polymerization initiator can be adopted as long as the effect of the present invention is not impaired.
  • the polymerization initiator preferably has a 10-hour half-life temperature of 90 ° C. or lower.
  • the polymerization initiator remaining in the hollow resin particles can be completely decomposed. For example, when a semiconductor member containing the hollow resin particles is heated by solder reflow or the like, the remaining polymerization is carried out. It is possible to suppress oxidative deterioration and gas generation of the resin due to the initiator.
  • the polymerization initiator is preferably polymerized at a combination of a reaction temperature and a reaction time at which the decomposition rate of the polymerization initiator calculated by the following formula is 98% or more. Under such polymerization conditions, the polymerization initiator remaining in the hollow resin particles can be completely decomposed, and for example, the polymerization remaining when the semiconductor member containing the hollow resin particles is heated by solder reflow or the like. It is possible to suppress oxidative deterioration and gas generation of the resin due to the initiator.
  • k d represents the thermal decomposition rate constant
  • t represents the reaction time (hr)
  • A represents the frequency factor (hr -1 )
  • ⁇ E represents the activation energy (J / mol)
  • R represents the gas constant (8.314 J / mol ⁇ K)
  • T represents the reaction temperature (K).
  • polymerization initiator examples include lauroyl peroxide, benzoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and t-butylperoxy-2-ethylhexano.
  • Organic peroxides such as ate, di-t-butyl peroxide; 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile, 2,2'-azobis (2,4-azobis) Azo-based compounds such as dimethylvaleronitrile); and the like.
  • the amount of the polymerization initiator added is preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer composition.
  • the polymerization initiator may be only one kind or two or more kinds.
  • Examples of the organic solvent having a boiling point of less than 100 ° C. include heptane, hexane, cyclohexane, methyl acetate, ethyl acetate, methyl ethyl ketone, chloroform, carbon tetrachloride, and the like.
  • the organic solvent having a boiling point of less than 100 ° C. may be a mixed solvent.
  • the amount of the organic solvent added having a boiling point of less than 100 ° C. is preferably 20 parts by weight to 250 parts by weight with respect to 100 parts by weight of the monomer composition.
  • the organic mixed solution may contain any suitable other components as long as the effects of the present invention are not impaired.
  • suitable other components include ⁇ non-crosslinkable polymer (P2)> of ⁇ shell portion >> of ⁇ hollow resin particles >>>>.
  • the amount of the non-crosslinkable polymer (P2) added is preferably 0 to 67 parts by weight with respect to 100 parts by weight of the monomer composition.
  • the non-crosslinkable polymer (P2) may be only one kind or two or more kinds.
  • Step 2 is a step of heating the dispersion obtained in Step 1 for suspension polymerization.
  • any appropriate polymerization temperature can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired.
  • the polymerization temperature is preferably 30 ° C to 80 ° C.
  • any appropriate polymerization time can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired.
  • the polymerization time is preferably 1 hour to 20 hours.
  • Post-heating which is preferably performed after polymerization, is a suitable treatment for obtaining hollow resin particles having a high degree of perfection.
  • any appropriate temperature can be adopted as long as the effect of the present invention is not impaired.
  • the temperature for such post-heating is preferably 50 ° C to 120 ° C.
  • any appropriate time can be adopted as long as the effect of the present invention is not impaired.
  • the time for such post-heating is preferably 1 hour to 10 hours.
  • Step 3 is a step of cleaning the slurry obtained in step 2.
  • any appropriate cleaning method can be adopted as long as the effect of the present invention is not impaired.
  • a cleaning method for example, (1) after forming hollow resin particles, a very high centrifugal acceleration is applied to settle the hollow resin particles using a high-speed centrifuge or the like to remove the supernatant. , A method of newly adding ion-exchanged water or distilled water, dispersing the settled hollow resin particles in the ion-exchanged water, and removing impurities by repeating this operation several times, (2) Cross flow using a ceramics filter or the like.
  • Examples thereof include a method of separating the hollow resin particles using a filter or the like and cleaning with a cleaning solvent.
  • Step 4 is a step of drying the washed slurry obtained in step 3.
  • any appropriate drying method can be adopted as long as the effect of the present invention is not impaired.
  • Examples of such a drying method include drying by heating.
  • any appropriate temperature can be adopted as long as the effect of the present invention is not impaired.
  • the temperature for such heating is preferably 50 ° C to 120 ° C.
  • any appropriate time can be adopted as long as the effect of the present invention is not impaired.
  • the time for such heating is preferably 1 hour to 10 hours.
  • part means “part by weight”
  • % means “% by weight”.
  • the Z average particle size of the hollow resin particles or particles was measured by using a dynamic light scattering method, and the measured Z average particle size was used as the obtained average particle size of the hollow resin particles or particles. That is, first, the obtained slurry-shaped hollow resin particles or particles are diluted with ion-exchanged water, and the aqueous dispersion adjusted to 0.1% by weight is irradiated with laser light and scattered from the hollow resin particles or particles. The scattered light intensity was measured over time in microseconds. Then, the scattering intensity distribution caused by the detected hollow resin particles or particles was applied to the normal distribution, and the Z average particle size of the hollow resin particles or particles was obtained by a cumulant analysis method for calculating the average particle size.
  • the measurement of the Z average particle size can be easily carried out with a commercially available particle size measuring device.
  • the Z average particle size was measured using a particle size measuring device (Zetasizer Nano ZS manufactured by Malvern).
  • a commercially available particle size measuring device is equipped with data analysis software, and the data analysis software can automatically analyze the measurement data to calculate the Z average particle size.
  • ⁇ TEM measurement Observation of hollow resin particles or hollow particles and their shape> Hollow resin particles or particles as dry powder were surface-treated (10 Pa, 5 mA, 10 seconds) using a "Osmium Coater Neoc-Pro" coating device manufactured by Meiwaforsis. Next, the hollow resin particles or particles were observed with a TEM (transmission electron microscope, H-7600 manufactured by Hitachi High-Technologies) to confirm the presence or absence of hollowness and the shape of the hollow resin particles or particles. At this time, the acceleration voltage was set to 80 kV, and the magnification was set to 5000 times or 10,000 times.
  • the amount of metal element was measured as follows.
  • (Measurement sample) 0.5 g of hollow resin particles were precisely weighed in a washed 50 mL plastic container. 1 mL of washing ethanol was added, and the mixture was well mixed and dispersed. Further, 50 mL of ion-exchanged water was added and mixed well. After performing ultrasonic cleaning and extraction for about 10 minutes, the mixture was allowed to stand in a constant temperature bath at 60 ° C. for 60 minutes. The slurry after standing was filtered with an aqueous 0.20 ⁇ m chromatodisc and used as a measurement sample. (Measuring method) The metal element concentration in the measurement sample was measured under the following conditions.
  • the metal element concentration was obtained from a calibration curve prepared in advance.
  • the amount of metal element was calculated from the following formula.
  • Metal element amount (mg / kg) Measured metal element concentration ( ⁇ g / mL) x 51 (mL) ⁇ Sample amount (g)
  • the lower limit of quantification is 1 mg / kg, and the measurement result is less than or equal to the lower limit of quantification. In this case, the lower limit of quantification, 1 mg / kg, was used as the measurement result.
  • Measuring device "ICPE-9000" multi-type ICP emission spectroscopic analyzer manufactured by Shimadzu Corporation
  • Carrier flow rate 0.7L / min
  • Plasma flow rate 10.0L / min
  • Auxiliary flow rate 0.6L / min
  • Exposure time 30 seconds
  • Standard solution for calibration line US SPEX "XSTC-13" general-purpose mixed standard solution 31 elemental mixture (base 5% HNO 3 ) -about 10 mg / L each, "XSTC-8" general-purpose mixed standard solution 13 Elemental mixture (base H 2 O / trace HF) -about 10 mg / L each
  • (Measurement sample) 0.5 g of hollow resin particles were precisely weighed in a washed 50 mL plastic container. 1 mL of washing ethanol was added, and the mixture was well mixed and dispersed. Further, 50 mL of ion-exchanged water was added and mixed well. After performing ultrasonic cleaning and extraction for about 10 minutes, the mixture was allowed to stand in a constant temperature bath at 60 ° C. for 60 minutes. The slurry after standing was filtered with an aqueous 0.20 ⁇ m chromatodisc and used as a measurement sample. (Measuring method) A calibration curve was prepared by measuring the standard solution under the following measurement conditions.
  • the sample solution was measured under the same conditions. Using the peak area value of each ion obtained from the chromatogram, the ion elution concentration in the sample solution was determined from the calibration curve.
  • VB divinyl
  • the obtained slurry was cross-flow washed with 10 times the amount of ion-exchanged water using a ceramic filter having a pore diameter of 50 nm to remove impurities.
  • the obtained washed slurry was heated at 100 ° C. for 24 hours to obtain hollow resin particles (1) as dry powder.
  • the average particle size of the obtained hollow resin particles (1) was 356 nm, and the particle density was 0.65 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (1) is shown in FIG. It was confirmed that the hollow resin particles (1) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 2 Hollow by performing the same operation as in Example 1 except that styrene (St) was 0.92 g, divinylbenzene (DVB) 810 was 1.48 g, heptane was 3.0 g, and parloyl L was 0.10 g.
  • Resin particles (2) were obtained.
  • the average particle size of the obtained hollow resin particles (2) was 382 nm, and the particle density was 0.64 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (2) is shown in FIG. It was confirmed that the hollow resin particles (2) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 3 Hollow by performing the same operation as in Example 1 except that styrene (St) was 1.49 g, divinylbenzene (DVB) 810 was 2.41 g, heptane was 1.5 g, and parloyl L was 0.126 g.
  • Resin particles (3) were obtained.
  • the average particle size of the obtained hollow resin particles (3) was 329 nm, and the particle density was 0.69 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (3) is shown in FIG. It was confirmed that the hollow resin particles (3) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 4 1.19 g of styrene (St), 1.93 g of divinylbenzene (DVB) 810, 0.10 g of parloyl L, and polystyrene instead of 0.3 g of HS Crysta 4100 (side chain crystalline polyolefin, Toyokuni Oil Co., Ltd.)
  • Hollow resin particles (4) were obtained by performing the same operation as in Example 1 except that PS) (non-crosslinked, weight average molecular weight 300,000) was 0.18 g.
  • the average particle size of the obtained hollow resin particles (4) was 390 nm, and the particle density was 0.67 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (4) is shown in FIG. It was confirmed that the hollow resin particles (4) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 5 Hollow resin particles (5) were obtained by performing the same operation as in Example 1 except that the Blemmer 50 PEP-300 was set to 0.6 g and the HS Crysta 4100 was not used. The average particle size of the obtained hollow resin particles (5) was 310 nm. Moreover, the TEM observation result of the obtained hollow resin particles (5) is shown in FIG. It was confirmed that the hollow resin particles (5) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Resin particles (6) were obtained.
  • the average particle size of the obtained hollow resin particles (6) was 520 nm.
  • the TEM observation result of the obtained hollow resin particles (6) is shown in FIG. It was confirmed that the hollow resin particles (6) were hollow resin particles having a hollow surrounded by a shell.
  • Table 1 shows the composition and measurement results.
  • Example 7 Hollow resin particles (7) were obtained by performing the same operation as in Example 3 except that 0.3 g of Blemmer PME-100 was used instead of 0.3 g of Blemmer 50 PEP-300.
  • the average particle size of the obtained hollow resin particles (7) was 501 nm, and the particle density was 0.63 g / cm 3 .
  • the TEM observation result of the obtained hollow resin particles (7) is shown in FIG. It was confirmed that the hollow resin particles (7) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 9 Hollow resin particles (9) were operated in the same manner as in Example 3 except that 0.0081 g of Coatamine 86W (surfactant, Kao Corporation) was used instead of 0.017 g of Lapizol A-80. ) was obtained. The average particle size of the obtained hollow resin particles (9) was 539 nm. Moreover, the TEM observation result of the obtained hollow resin particles (9) is shown in FIG. It was confirmed that the hollow resin particles (9) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Coatamine 86W surfactant, Kao Corporation
  • Example 10 Hollow resin particles were operated in the same manner as in Example 3 except that 0.034 g of ADEKAMIN 4MAC-30 (surfactant, ADEKA Corporation) was used instead of 0.017 g of Rapisol A-80. (10) was obtained. The average particle size of the obtained hollow resin particles (10) was 430 nm. Moreover, the TEM observation result of the obtained hollow resin particles (10) is shown in FIG. It was confirmed that the hollow resin particles (10) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • ADEKAMIN 4MAC-30 surfactant, ADEKA Corporation
  • Example 11 Hollow resin particles (11) were obtained by performing the same operation as in Example 3 except that 0.0076 g of Adecamine 4MAC-30 was used instead of 0.017 g of Lapizol A-80. The average particle size of the obtained hollow resin particles (11) was 1270 nm. Moreover, the TEM observation result of the obtained hollow resin particles (11) is shown in FIG. It was confirmed that the hollow resin particles (11) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 12 1.38 g of styrene (St), 2.22 g of divinylbenzene (DVB) 810, 1.5 g of cyclohexane instead of heptane, 0.6 g of HS Crysta 4100, 0.054 g of parloyl L, and Lapizol A-80.
  • Hollow resin particles (12) were obtained by performing the same operation as in Example 3 except that 0.0085 g was used. The average particle size of the obtained hollow resin particles (12) was 416 nm. Moreover, the TEM observation result of the obtained hollow resin particles (12) is shown in FIG. It was confirmed that the hollow resin particles (12) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
  • Example 13 Hollow resin particles (13) were obtained by performing the same operation as in Example 1 except that distilled water was used instead of ion-exchanged water in the cross-flow cleaning of the hollow resin particles.
  • the average particle size of the obtained hollow resin particles (13) was 356 nm. Table 1 shows the composition and measurement results.
  • the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can suppress the content of the alkali metal and the alkaline earth metal contained therein. rice field. Therefore, the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can provide a semiconductor member capable of exhibiting excellent low dielectric properties.
  • the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are used in the resin composition for semiconductor members, and therefore can be suitably used for semiconductor members such as semiconductor packages and semiconductor modules.

Abstract

The present invention provides styrene-based hollow resin particles for a semiconductor member resin composition that make it possible to provide a semiconductor member that achieves excellent low dielectric characteristics as a result of using the semiconductor member resin composition. According to the embodiments, the hollow resin particles for a semiconductor member resin composition have a shell part and a hollow portion that is enclosed by the shell part, the total concentration of the lithium, sodium, potassium, and magnesium included in the hollow resin particles being no more than 200 mg/kg.

Description

半導体部材用樹脂組成物に用いる中空樹脂粒子Hollow resin particles used in resin compositions for semiconductor members
 本発明は、半導体部材用樹脂組成物に用いる中空樹脂粒子に関する。 The present invention relates to hollow resin particles used in a resin composition for a semiconductor member.
 近年、各種電子機器の情報処理量と通信速度の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化などの実装技術が急速に進展している。半導体デバイスにおいて用いられる半導体部材に用いられる絶縁樹脂材料には、高い周波数の信号の伝送速度を高め、信号伝送時の損失を低減させるために、絶縁樹脂の比誘電率及び誘電正接が低いことが要求される。 In recent years, with the increase in the amount of information processing and the communication speed of various electronic devices, mounting technologies such as high integration of mounted semiconductor devices, high density of wiring, and multi-layering have been rapidly progressing. The insulating resin material used for the semiconductor member used in the semiconductor device has a low relative permittivity and dielectric loss tangent of the insulating resin in order to increase the transmission speed of a high frequency signal and reduce the loss during signal transmission. Required.
 このような要求に対し、シェル部と該シェル部により囲われた中空部分を有する中空粒子を絶縁樹脂に混在させることで、絶縁樹脂内に空域を導入し、低比誘電化、低誘電正接化を図る技術が報告されている。 In response to such demands, by mixing hollow particles having a shell portion and a hollow portion surrounded by the shell portion in the insulating resin, an airspace is introduced in the insulating resin, and low specific dielectric and low dielectric loss tangent are achieved. The technology to aim for is reported.
 公知の中空粒子の一つとしてアクリル系中空樹脂粒子が知られている。例えば、トリメチロールプロパントリ(メタ)アクリレートやジペンタエリスリトールヘキサアクリレートをはじめとするアクリル系多官能モノマーを主成分としたモノマーを疎水性溶剤と共に懸濁重合することでアクリル系中空樹脂粒子が得られることが報告されている(特許文献1)。しかし、アクリル系樹脂は、比誘電率及び誘電正接が高く、低誘電特性を悪化させる。このため、特許文献1に記載のアクリル系中空樹脂粒子は、近年の高周波数の信号を処理する半導体デバイスには適用できない。 Acrylic hollow resin particles are known as one of the known hollow particles. For example, acrylic hollow resin particles can be obtained by suspend-polymerizing a monomer containing an acrylic polyfunctional monomer such as trimethylolpropane tri (meth) acrylate or dipentaerythritol hexaacrylate as a main component together with a hydrophobic solvent. It has been reported (Patent Document 1). However, the acrylic resin has a high relative permittivity and dielectric loss tangent, and deteriorates the low dielectric property. Therefore, the acrylic hollow resin particles described in Patent Document 1 cannot be applied to semiconductor devices that process high-frequency signals in recent years.
 他方、アクリル系中空樹脂粒子に比べて比誘電率及び誘電正接が低い中空樹脂粒子として、スチレン系中空樹脂粒子が知られている。このようなスチレン系中空樹脂粒子として、例えば、ジビニルベンゼンを炭素数8~18の飽和炭化水素類(具体的には、ヘキサデカン)と共に懸濁重合することでポリジビニルベンゼン中空樹脂粒子を得られることが報告されている(特許文献2)。しかし、特許文献2に記載のポリジビニルベンゼン中空樹脂粒子は、ポリビニルアルコールを分散剤としているため、粒子表面にポリビニルアルコールが残存し、粒子自体の比誘電率及び誘電正接の数値を高くしてしまい、低誘電特性を悪化させるため、近年の高周波数の信号を処理する半導体デバイスには適用できない。さらに、ポリビニルアルコールには、鹸化反応に用いる水酸化アルカリの残渣が含まれるため、低誘電特性の悪化の原因となるという問題がある。また、特許文献2に記載のポリジビニルベンゼン中空樹脂粒子は、絶縁樹脂に混在させて絶縁樹脂材料とした場合に、粒子表面と絶縁樹脂の間(粒子と絶縁樹脂の界面)に空隙ができやすい。このため、絶縁樹脂材料の強度が低下するという問題や低吸湿性が悪化するという問題がある。 On the other hand, styrene-based hollow resin particles are known as hollow resin particles having a lower relative permittivity and dielectric loss tangent than acrylic-based hollow resin particles. As such styrene-based hollow resin particles, for example, polyvinylbenzene hollow resin particles can be obtained by suspend-polymerizing divinylbenzene together with saturated hydrocarbons having 8 to 18 carbon atoms (specifically, hexadecane). Has been reported (Patent Document 2). However, since the polydivinylbenzene hollow resin particles described in Patent Document 2 use polyvinyl alcohol as a dispersant, polyvinyl alcohol remains on the particle surface, and the relative permittivity and the dielectric loss tangent value of the particles themselves are increased. Since it deteriorates the low dielectric property, it cannot be applied to semiconductor devices that process high frequency signals in recent years. Further, since polyvinyl alcohol contains a residue of alkali hydroxide used in the saponification reaction, there is a problem that it causes deterioration of low dielectric properties. Further, when the polydivinylbenzene hollow resin particles described in Patent Document 2 are mixed with the insulating resin to form an insulating resin material, voids are likely to be formed between the particle surface and the insulating resin (the interface between the particles and the insulating resin). .. Therefore, there is a problem that the strength of the insulating resin material is lowered and a problem that the low hygroscopicity is deteriorated.
特許第6513273号Patent No. 65132373 特開2002-080503号公報JP-A-2002-08503
 本発明の課題は、半導体部材用樹脂組成物に用いることで優れた低誘電特性を発現できる半導体部材を提供し得る、半導体部材用樹脂組成物に用いるスチレン系中空樹脂粒子を提供することにある。 An object of the present invention is to provide styrene-based hollow resin particles used in a resin composition for a semiconductor member, which can provide a semiconductor member capable of exhibiting excellent low dielectric properties when used in the resin composition for a semiconductor member. ..
 本発明者は、スチレン系中空樹脂粒子を絶縁樹脂に混在させて半導体部材用樹脂組成物とする場合を想定し、半導体部材の低誘電特性を向上させるための技術について検討を行った。その結果、スチレン系中空樹脂粒子の材料モノマーとして、特定構造のモノマーを特定量使用することにより、得られるスチレン系中空樹脂粒子に含まれるアルカリ金属およびアルカリ土類金属の含有量を抑制でき、よって、優れた低誘電特性を発現できる半導体部材を提供し得ることを見いだし、本発明を完成させるに至った。 The present inventor has studied a technique for improving the low dielectric property of a semiconductor member, assuming a case where styrene-based hollow resin particles are mixed with an insulating resin to form a resin composition for a semiconductor member. As a result, by using a specific amount of a monomer having a specific structure as the material monomer of the styrene-based hollow resin particles, the content of the alkali metal and the alkaline earth metal contained in the obtained styrene-based hollow resin particles can be suppressed, and thus the content of the alkali metal and the alkaline earth metal can be suppressed. We have found that it is possible to provide a semiconductor member capable of exhibiting excellent low dielectric properties, and have completed the present invention.
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、
 シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子であって、
 該中空樹脂粒子中に含まれるリチウム元素、ナトリウム元素、カリウム元素、マグネシウム元素、及びカリウム元素の濃度の合計が200mg/kg以下である。
The hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are
Hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion.
The total concentration of the lithium element, the sodium element, the potassium element, the magnesium element, and the potassium element contained in the hollow resin particles is 200 mg / kg or less.
 一つの実施形態においては、上記中空樹脂粒子中に含まれるフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、及び硫酸イオンの濃度の合計が200mg/kg以下である。 In one embodiment, the total concentration of fluoride ion, chloride ion, nitrite ion, nitrate ion, phosphate ion, and sulfate ion contained in the hollow resin particles is 200 mg / kg or less.
 一つの実施形態においては、上記中空樹脂粒子の平均粒子径が0.1μm~5.0μmである。 In one embodiment, the average particle size of the hollow resin particles is 0.1 μm to 5.0 μm.
 一つの実施形態においては、上記シェル部が、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含む。
Figure JPOXMLDOC01-appb-C000002
(RはHまたはCHを表し、RはH、アルキル基、またはフェニル基を表し、R-Oは炭素原子数2~18のオキシアルキレン基を表し、mは該オキシアルキレン基の平均付加モル数であり、1~100の数を表す。)
In one embodiment, the shell portion is represented by an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer represented by the formula (1) (meth). It contains an aromatic polymer (P1) obtained by polymerizing a monomer composition containing c).
Figure JPOXMLDOC01-appb-C000002
(R 1 represents H or CH 3 , R 2 represents H, an alkyl group, or a phenyl group, R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms, and m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.)
 一つの実施形態においては、上記オキシアルキレン基が、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基からなる群から選択される少なくとも1種である。 In one embodiment, the oxyalkylene group is at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxybutylene group.
 一つの実施形態においては、上記モノマー組成物が、芳香族系架橋性モノマー(a)を10重量%~70重量%、芳香族系単官能モノマー(b)を10重量%~70重量%、及び一般式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を1.0重量%~20重量%含む。 In one embodiment, the monomer composition comprises 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a), 10% by weight to 70% by weight of the aromatic monofunctional monomer (b), and It contains 1.0% by weight to 20% by weight of the (meth) acrylic acid ester-based monomer (c) represented by the general formula (1).
 一つの実施形態においては、上記シェル部が、上記芳香族系ポリマー(P1)と、さらに、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、及びスチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種である非架橋性ポリマー(P2)を含む。 In one embodiment, the shell portion is composed of the aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. It comprises at least one non-crosslinking polymer (P2) selected from the group.
 一つの実施形態においては、上記芳香族系架橋性モノマー(a)がジビニルベンゼンである。 In one embodiment, the aromatic crosslinkable monomer (a) is divinylbenzene.
 一つの実施形態においては、上記芳香族系単官能モノマー(b)がスチレン及びエチルビニルベンゼンからなる群から選択される少なくとも1種である。 In one embodiment, the aromatic monofunctional monomer (b) is at least one selected from the group consisting of styrene and ethyl vinylbenzene.
 本発明の実施形態による半導体部材は、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子を含む。 The semiconductor member according to the embodiment of the present invention includes hollow resin particles used in the resin composition for the semiconductor member according to the embodiment of the present invention.
 本発明の実施形態によれば、半導体部材用樹脂組成物に用いることで優れた低誘電特性を発現できる半導体部材を提供し得る、半導体部材用樹脂組成物に用いるスチレン系中空樹脂粒子を提供することができる。 According to an embodiment of the present invention, there is provided styrene-based hollow resin particles used in a resin composition for a semiconductor member, which can provide a semiconductor member capable of exhibiting excellent low dielectric properties when used in the resin composition for a semiconductor member. be able to.
実施例1で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(1)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (1) used in the resin composition for a semiconductor member obtained in Example 1. FIG. 実施例2で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(2)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (2) used in the resin composition for a semiconductor member obtained in Example 2. FIG. 実施例3で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(3)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (3) used in the resin composition for a semiconductor member obtained in Example 3. FIG. 実施例4で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(4)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (4) used in the resin composition for a semiconductor member obtained in Example 4. FIG. 実施例5で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(5)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (5) used in the resin composition for a semiconductor member obtained in Example 5. FIG. 実施例6で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(6)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (6) used in the resin composition for a semiconductor member obtained in Example 6. 実施例7で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(7)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (7) used in the resin composition for a semiconductor member obtained in Example 7. FIG. 実施例8で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(8)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (8) used in the resin composition for a semiconductor member obtained in Example 8. 実施例9で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(9)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (9) used in the resin composition for a semiconductor member obtained in Example 9. FIG. 実施例10で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(10)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (10) used in the resin composition for a semiconductor member obtained in Example 10. FIG. 実施例11で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(11)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (11) used in the resin composition for a semiconductor member obtained in Example 11. 実施例12で得られた半導体部材用樹脂組成物に用いる中空樹脂粒子(12)のTEM写真図である。It is a TEM photograph figure of the hollow resin particle (12) used in the resin composition for a semiconductor member obtained in Example 12.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
 本明細書において、半導体部材とは、半導体を構成する部材を意味し、例えば、半導体パッケージや半導体モジュールが挙げられる。本明細書において、半導体部材用樹脂組成物とは、半導体部材に用いる樹脂組成物を意味する。したがって、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、半導体部材用樹脂組成物に用いられ、よって、半導体パッケージや半導体モジュールなどの半導体部材に好適に用いられる。このような半導体部材は、本発明の実施形態による半導体部材であり、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子を含む。 In the present specification, the semiconductor member means a member constituting a semiconductor, and examples thereof include a semiconductor package and a semiconductor module. In the present specification, the resin composition for a semiconductor member means a resin composition used for a semiconductor member. Therefore, the hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are used in the resin composition for semiconductor members, and are therefore preferably used for semiconductor members such as semiconductor packages and semiconductor modules. Such a semiconductor member is a semiconductor member according to the embodiment of the present invention, and includes hollow resin particles used in the resin composition for the semiconductor member according to the embodiment of the present invention.
 半導体パッケージとは、ICチップを必須構成部材として、モールド樹脂、アンダーフィル材、モールドアンダーフィル材、ダイボンド材、半導体パッケージ基板用プリプレグ、半導体パッケージ基板用金属張積層板、及び半導体パッケージ用プリント回路基板のビルドアップ材料から選ばれる少なくとも1種の部材を用いて構成されるものである。 A semiconductor package is an IC chip as an essential component, and is a mold resin, an underfill material, a mold underfill material, a die bond material, a prepreg for a semiconductor package substrate, a metal-clad laminate for a semiconductor package substrate, and a printed circuit board for a semiconductor package. It is constructed using at least one member selected from the build-up materials of.
 半導体モジュールとは、半導体パッケージを必須構成部材として、プリント回路基板用プリプレグ、プリント回路基板用金属張積層板、プリント回路基板用ビルドアップ材料、ソルダーレジスト材、カバーレイフィルム、電磁波シールドフィルム、及びプリント回路基板用接着シートから選ばれる少なくとも1種の部材を用いて構成されるものである。 A semiconductor module is a prepreg for a printed circuit board, a metal-clad laminate for a printed circuit board, a build-up material for a printed circuit board, a solder resist material, a coverlay film, an electromagnetic wave shielding film, and a print, with a semiconductor package as an essential component. It is configured by using at least one member selected from the adhesive sheet for a circuit board.
 本明細書中で「(メタ)アクリル」との表現がある場合は、「アクリルおよび/またはメタクリル」を意味し、「(メタ)アクリレート」との表現がある場合は、「アクリレートおよび/またはメタクリレート」を意味し、「(メタ)アリル」との表現がある場合は、「アリルおよび/またはメタリル」を意味し、「(メタ)アクロレイン」との表現がある場合は、「アクロレインおよび/またはメタクロレイン」を意味する。また、本明細書中で「酸(塩)」との表現がある場合は、「酸および/またはその塩」を意味する。塩としては、例えば、アルカリ金属塩、アルカリ土類金属塩が挙げられ、具体的には、例えば、ナトリウム塩、カリウム塩などが挙げられる。 In the present specification, the expression "(meth) acrylic" means "acrylic and / or methacrolein", and the expression "(meth) acrylate" means "acrylate and / or methacrylate". When the expression "(meth) allyl" is used, it means "allyl and / or methacrolein", and when the expression "(meth) acrolein" is used, "acrolein and / or methacrolein" is used. It means "rain". Further, when the expression "acid (salt)" is used in the present specification, it means "acid and / or a salt thereof". Examples of the salt include alkali metal salts and alkaline earth metal salts, and specific examples thereof include sodium salts and potassium salts.
≪≪中空樹脂粒子≫≫
 本発明の実施形態による中空樹脂粒子は、半導体部材用樹脂組成物に用いる。半導体部材用樹脂組成物は、前述したように、半導体部材に用いる樹脂組成物である。このような樹脂組成物は、代表的には、絶縁樹脂を含む。このような絶縁樹脂としては、本発明の効果を損なわない範囲で、任意の適切な樹脂を採用し得る。このような絶縁樹脂としては、例えば、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリイミド、ポリエーテルイミド、ポリビスマレイミド、ポリアリレート、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、シアネート樹脂、フェノール樹脂、ポリスチレン樹脂、PTFE等のフッ素樹脂、シクロオレフィン樹脂などが挙げられる。
≪≪Hollow resin particles≫≫
The hollow resin particles according to the embodiment of the present invention are used in the resin composition for semiconductor members. As described above, the resin composition for a semiconductor member is a resin composition used for a semiconductor member. Such resin compositions typically include an insulating resin. As such an insulating resin, any suitable resin can be adopted as long as the effect of the present invention is not impaired. Examples of such insulating resins include polyphenylene ether, polyphenylene sulfide, polyimide, polyetherimide, polybismaleimide, polyarylate, epoxy resin, polyester resin, urethane resin, acrylic resin, cyanate resin, phenol resin, and polystyrene resin. Examples thereof include fluororesins such as PTFE and cycloolefin resins.
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子である。ここでいう中空とは、内部が樹脂以外の物質、例えば、気体や液体等で満たされている状態を意味し、本発明の効果をより発現させ得る点で、好ましくは、気体で満たされている状態を意味する。 The hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention are hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion. The term "hollow" as used herein means a state in which the inside is filled with a substance other than a resin, for example, a gas or a liquid, and is preferably filled with a gas in that the effects of the present invention can be further exhibited. It means the state of being.
 中空部分は、1つの中空領域からなるものであってもよいし、複数の中空領域からなるものであってもよい。シェル部を構成する樹脂成分が相対的に多くなり、基材等の中空部分への浸入を防ぐ観点から、中空部分は1つの中空領域からなることが好ましい。 The hollow portion may be composed of one hollow region or may be composed of a plurality of hollow regions. From the viewpoint that the amount of the resin component constituting the shell portion is relatively large and the hollow portion of the base material or the like is prevented from infiltrating into the hollow portion, the hollow portion is preferably composed of one hollow region.
 中空樹脂粒子の平均粒子径は、好ましくは0.1μm~5.0μmであり、より好ましくは0.15μm~1.0μmであり、さらに好ましくは0.2μm~0.8μmであり、特に好ましくは0.3μm~0.6μmである。中空樹脂粒子の平均粒子径が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子の平均粒子径が0.1μm未満の場合、シェル部の厚みが相対的に薄くなるため、十分な強度を有する中空樹脂粒子とならないおそれがある。中空樹脂粒子の平均粒子径が5.0μmより大きい場合、懸濁重合中にモノマー成分が重合して生じるポリマーと溶剤との相分離が生じにくくなるおそれがあり、これによってシェル部の形成が困難となるおそれがある。 The average particle size of the hollow resin particles is preferably 0.1 μm to 5.0 μm, more preferably 0.15 μm to 1.0 μm, still more preferably 0.2 μm to 0.8 μm, and particularly preferably 0.2 μm to 0.8 μm. It is 0.3 μm to 0.6 μm. If the average particle size of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the average particle size of the hollow resin particles is less than 0.1 μm, the thickness of the shell portion is relatively thin, so that the hollow resin particles may not have sufficient strength. When the average particle size of the hollow resin particles is larger than 5.0 μm, phase separation between the polymer and the solvent generated by the polymerization of the monomer components during suspension polymerization may be difficult to occur, which makes it difficult to form the shell portion. There is a risk of becoming.
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、該中空樹脂粒子中に含まれるリチウム元素、ナトリウム元素、カリウム元素、マグネシウム元素、及びカリウム元素の濃度の合計が、好ましくは200mg/kg以下であり、より好ましくは150mg/kg以下であり、さらに好ましくは100mg/kg以下であり、特に好ましくは50mg/kg以下である。中空樹脂粒子中に含まれるリチウム元素、ナトリウム元素、カリウム元素、マグネシウム元素、及びカリウム元素の濃度の合計が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子中に含まれるリチウム元素、ナトリウム元素、カリウム元素、マグネシウム元素、及びカリウム元素の濃度の合計が上記範囲を外れて大きすぎると、該中空樹脂粒子を含む半導体部材が優れた低誘電特性を発現できないおそれがある。 The hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention preferably have a total concentration of lithium element, sodium element, potassium element, magnesium element, and potassium element contained in the hollow resin particles. It is 200 mg / kg or less, more preferably 150 mg / kg or less, still more preferably 100 mg / kg or less, and particularly preferably 50 mg / kg or less. If the total concentration of the lithium element, the sodium element, the potassium element, the magnesium element, and the potassium element contained in the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. If the total concentration of lithium element, sodium element, potassium element, magnesium element, and potassium element contained in the hollow resin particles is too large outside the above range, the semiconductor member containing the hollow resin particles has excellent low dielectric properties. May not be expressed.
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、該中空樹脂粒子中に含まれるフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、及び硫酸イオンの濃度の合計が、好ましくは200mg/kg以下であり、より好ましくは150mg/kg以下であり、さらに好ましくは100mg/kg以下であり、特に好ましくは50mg/kg以下である。中空樹脂粒子中に含まれるフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、及び硫酸イオンの濃度の合計が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子中に含まれるフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、及び硫酸イオンの濃度の合計が上記範囲を外れて大きすぎると、該中空樹脂粒子を含む半導体部材が優れた低誘電特性を発現できないおそれがある。 The hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention include fluoride ions, chloride ions, nitrite ions, nitrate ions, phosphate ions, and sulfate ions contained in the hollow resin particles. The total concentration is preferably 200 mg / kg or less, more preferably 150 mg / kg or less, still more preferably 100 mg / kg or less, and particularly preferably 50 mg / kg or less. If the total concentration of fluoride ion, chloride ion, nitrite ion, nitrate ion, phosphate ion, and sulfate ion contained in the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. .. If the total concentration of fluoride ions, chloride ions, nitrite ions, nitrate ions, phosphate ions, and sulfate ions contained in the hollow resin particles is too large outside the above range, the semiconductor containing the hollow resin particles The member may not be able to exhibit excellent low dielectric properties.
≪シェル部≫
 シェル部は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含む。シェル部が、このような、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含むことにより、本発明の効果がより発現し得る。特に、芳香族系ポリマー(P1)を構成するモノマーとして、特定構造の(メタ)アクリル酸エステル系モノマー(c)を採用することにより、本発明の効果がより発現し得る。また、芳香族系ポリマー(P1)を構成するモノマーとして、特定構造の(メタ)アクリル酸エステル系モノマー(c)を採用することにより芳香族系ポリマー(P1)に備えられる極性基によって、中空樹脂粒子と絶縁樹脂との密着性が高まり得る。
≪Shell part≫
The shell portion contains a monomer composition containing an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It contains an aromatic polymer (P1) obtained by polymerization. The shell portion contains such an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). By including the aromatic polymer (P1) obtained by polymerizing the monomer composition, the effect of the present invention can be further exhibited. In particular, by adopting the (meth) acrylic acid ester-based monomer (c) having a specific structure as the monomer constituting the aromatic polymer (P1), the effect of the present invention can be further exhibited. Further, by adopting the (meth) acrylic acid ester-based monomer (c) having a specific structure as the monomer constituting the aromatic polymer (P1), the hollow resin is provided by the polar group provided in the aromatic polymer (P1). The adhesion between the particles and the insulating resin can be improved.
Figure JPOXMLDOC01-appb-C000003
(RはHまたはCHを表し、RはH、アルキル基、またはフェニル基を表し、R-Oは炭素原子数2~18のオキシアルキレン基を表し、mは該オキシアルキレン基の平均付加モル数であり、1~100の数を表す。)
Figure JPOXMLDOC01-appb-C000003
(R 1 represents H or CH 3 , R 2 represents H, an alkyl group, or a phenyl group, R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms, and m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.)
 シェル部中の芳香族系ポリマー(P1)の含有割合は、本発明の効果をより発現させ得る点で、好ましくは60重量%~100重量%であり、より好ましくは70重量%~100重量%であり、さらに好ましくは80重量%~100重量%であり、特に好ましくは90重量%~100重量%である。 The content ratio of the aromatic polymer (P1) in the shell portion is preferably 60% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, in that the effect of the present invention can be more exhibited. It is more preferably 80% by weight to 100% by weight, and particularly preferably 90% by weight to 100% by weight.
<芳香族系ポリマー(P1)>
 芳香族系ポリマー(P1)は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる。すなわち、芳香族系ポリマー(P1)は、芳香族系架橋性モノマー(a)由来の構造単位、芳香族系単官能モノマー(b)由来の構造単位、式(1)により表される(メタ)アクリル酸エステル系モノマー(c)由来の構造単位を有する。
<Aromatic polymer (P1)>
The aromatic polymer (P1) is an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It is obtained by polymerizing the monomer composition containing the mixture. That is, the aromatic polymer (P1) is represented by a structural unit derived from the aromatic crosslinkable monomer (a), a structural unit derived from the aromatic monofunctional monomer (b), and the formula (1) (meth). It has a structural unit derived from the acrylic acid ester-based monomer (c).
 モノマー組成物は、本発明の効果をより発現させ得る点で、好ましくは、芳香族系架橋性モノマー(a)を10重量%~70重量%、芳香族系単官能モノマー(b)を10重量%~70重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を1.0重量%~20重量%含み、より好ましくは、芳香族系架橋性モノマー(a)を20重量%~65重量%、芳香族系単官能モノマー(b)を20重量%~65重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を2.0重量%~18重量%含み、さらに好ましくは、芳香族系架橋性モノマー(a)を30重量%~60重量%、芳香族系単官能モノマー(b)を30重量%~60重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を4.0重量%~16重量%含み、特に好ましくは、芳香族系架橋性モノマー(a)を40重量%~50重量%、芳香族系単官能モノマー(b)を40重量%~50重量%、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を6.0重量%~14重量%含む。 The monomer composition preferably contains 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a) and 10% by weight of the aromatic monofunctional monomer (b) in that the effects of the present invention can be further exhibited. % To 70% by weight and 1.0% by weight to 20% by weight of the (meth) acrylic acid ester-based monomer (c) represented by the formula (1), more preferably the aromatic crosslinkable monomer (a). ) Is 20% by weight to 65% by weight, the aromatic monofunctional monomer (b) is 20% by weight to 65% by weight, and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) is 2. It contains 0.0% to 18% by weight, more preferably 30% by weight to 60% by weight of the aromatic crosslinkable monomer (a), and 30% by weight to 60% by weight of the aromatic monofunctional monomer (b). And 4.0% by weight to 16% by weight of the (meth) acrylic acid ester-based monomer (c) represented by the formula (1), and particularly preferably 40% by weight to the aromatic crosslinkable monomer (a). 50% by weight, 40% by weight to 50% by weight of the aromatic monofunctional monomer (b), and 6.0% by weight to 14% by weight of the (meth) acrylic acid ester-based monomer (c) represented by the formula (1). Including% by weight.
 モノマー組成物は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含む。モノマー組成物中の、芳香族系架橋性モノマー(a)と芳香族系単官能モノマー(b)と式(1)により表される(メタ)アクリル酸エステル系モノマー(c)の合計の含有割合は、本発明の効果をより発現させ得る点で、好ましくは80重量%~100重量%であり、より好ましくは85重量%~100重量%であり、さらに好ましくは90重量%~100重量%であり、特に好ましくは95重量%~100重量%である。 The monomer composition contains an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). The total content of the aromatic crosslinkable monomer (a), the aromatic monofunctional monomer (b), and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) in the monomer composition. Is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 100% by weight, still more preferably 90% by weight to 100% by weight, in that the effect of the present invention can be more exhibited. It is particularly preferably 95% by weight to 100% by weight.
 モノマー組成物は、本発明の効果を損なわない範囲で、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、式(1)により表される(メタ)アクリル酸エステル系モノマー(c)以外の、任意の適切なその他のモノマーを含んでいてもよい。その他のモノマーは、1種のみであってもよいし、2種以上であってもよい。 The monomer composition is an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester type represented by the formula (1) as long as the effects of the present invention are not impaired. Any suitable other monomer other than the monomer (c) may be contained. The other monomers may be only one kind or two or more kinds.
(芳香族系架橋性モノマー(a))
 芳香族系架橋性モノマー(a)は、架橋性を有する芳香族系モノマーであれば、本発明の効果を損なわない範囲で、任意の適切な芳香族系架橋性モノマーを採用し得る。このような芳香族系架橋性モノマー(a)としては、本発明の効果をより発現させ得る点で、例えば、ジビニルベンゼン、ジビニルナフタレン、ジアリルフタレートなどが挙げられる。本発明の効果をより一層発現させ得る点、および、反応性の点から、芳香族系架橋性モノマー(a)としては、ジビニルベンゼンが好ましい。
(Aromatic crosslinkable monomer (a))
As the aromatic crosslinkable monomer (a), any suitable aromatic crosslinkable monomer can be adopted as long as it is an aromatic monomer having crosslinkability, as long as the effect of the present invention is not impaired. Examples of such an aromatic crosslinkable monomer (a) include divinylbenzene, divinylnaphthalene, and diallyl phthalate in that the effects of the present invention can be further exhibited. Divinylbenzene is preferable as the aromatic crosslinkable monomer (a) from the viewpoint of further exhibiting the effects of the present invention and the reactivity.
 芳香族系架橋性モノマー(a)は、1種のみであってもよいし、2種以上であってもよい。 The aromatic crosslinkable monomer (a) may be only one kind or two or more kinds.
(芳香族系単官能モノマー(b))
 芳香族系単官能モノマー(b)は、単官能の芳香族系モノマーであれば、本発明の効果を損なわない範囲で、任意の適切な芳香族系単官能モノマーを採用し得る。このような芳香族系単官能モノマー(b)としては、本発明の効果をより発現させ得る点で、例えば、スチレン、エチルビニルベンゼン、α-メチルスチレン、ビニルトルエン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、ビニルビフェニル、ビニルナフタレンなどが挙げられる。本発明の効果をより一層発現させ得る点、および、反応性の点から、芳香族系単官能モノマー(b)としては、スチレン及びエチルビニルベンゼンからなる群から選択される少なくとも1種が好ましい。
(Aromatic monofunctional monomer (b))
As the aromatic monofunctional monomer (b), any suitable aromatic monofunctional monomer can be adopted as long as it is a monofunctional aromatic monomer, as long as the effect of the present invention is not impaired. As such an aromatic monofunctional monomer (b), for example, styrene, ethylvinylbenzene, α-methylstyrene, vinyltoluene, o-chlorostyrene, m- Examples thereof include chlorostyrene, p-chlorostyrene, vinylbiphenyl and vinylnaphthalene. The aromatic monofunctional monomer (b) is preferably at least one selected from the group consisting of styrene and ethylvinylbenzene from the viewpoint of further exhibiting the effects of the present invention and the reactivity.
 芳香族系単官能モノマー(b)は、1種のみであってもよいし、2種以上であってもよい。 The aromatic monofunctional monomer (b) may be only one kind or two or more kinds.
((メタ)アクリル酸エステル系モノマー(c))
 (メタ)アクリル酸エステル系モノマー(c)は、式(1)により表される。
Figure JPOXMLDOC01-appb-C000004
((Meta) acrylic acid ester-based monomer (c))
The (meth) acrylic acid ester-based monomer (c) is represented by the formula (1).
Figure JPOXMLDOC01-appb-C000004
 式(1)中、RはHまたはCHを表す。 In equation (1), R 1 represents H or CH 3 .
 式(1)中、RはH、アルキル基、またはフェニル基を表す。 In formula (1), R 2 represents H, an alkyl group, or a phenyl group.
 式(1)中、R-Oは、炭素原子数2~18のオキシアルキレン基を表す。すなわち、式(1)中、Rは、炭素原子数2~18のアルキレン基を表す。 In the formula (1), R3 - O represents an oxyalkylene group having 2 to 18 carbon atoms. That is, in the formula (1), R 3 represents an alkylene group having 2 to 18 carbon atoms.
 式(1)中、R-Oは、炭素原子数2~18のオキシアルキレン基であり、好ましくは炭素原子数2~8のオキシアルキレン基であり、より好ましくは炭素原子数2~4のオキシアルキレン基である。また、R-Oが、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基から選ばれる少なくとも2種類以上の場合は、R-Oの付加形態は、ランダム付加、ブロック付加、交互付加等のいずれの形態であってもよい。なお、ここでいう付加形態は、形態そのものを意味するものであり、付加反応によって得られなければならないことを意味するものではない。 In the formula ( 1 ), R3 −O is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, and more preferably an oxyalkylene group having 2 to 4 carbon atoms. It is an oxyalkylene group. When R3 - O is at least two types selected from an oxyethylene group, an oxypropylene group, and an oxybutylene group, the addition form of R3 - O may be random addition, block addition, alternate addition, or the like. It may be in any form. The addition form referred to here means the form itself, and does not mean that it must be obtained by an addition reaction.
 式(1)中、R-Oとしては、本発明の効果をより発現させ得る点で、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基(代表的には、オキシテトラメチレン基)からなる群から選択される少なくとも1種である。 In the formula (1), R3 - O is composed of an oxyethylene group, an oxypropylene group, and an oxybutylene group (typically, an oxytetramethylene group) in that the effects of the present invention can be further exhibited. At least one selected from the group.
 式(1)中、mはオキシアルキレン基の平均付加モル数(「鎖長」と称することがある)を表す。mは、1~100の数であり、好ましくは1~40の数であり、より好ましくは2~30の数であり、さらに好ましくは3~20の数であり、特に好ましくは4~18の数であり、最も好ましくは5~15の数である。mが上記範囲内にあることにより、本発明の効果がより発現し得る。 In formula (1), m represents the average number of moles of substance added (sometimes referred to as "chain length") of the oxyalkylene group. m is a number of 1 to 100, preferably a number of 1 to 40, more preferably a number of 2 to 30, still more preferably a number of 3 to 20, and particularly preferably a number of 4 to 18. It is a number, most preferably a number of 5 to 15. When m is within the above range, the effect of the present invention can be more exhibited.
 式(1)中、R-Oが2種以上の場合、例えば、オキシエチレン基(CO)とオキシプロピレン基(CO)からなる場合、mは、それぞれのオキシアルキレン基の平均付加モル数の合計となる。具体的には、例えば、-(R-O)-が、-[(CO)(CO)]-である場合(上述の通り、付加形態は、ランダム付加、ブロック付加、交互付加等のいずれの形態であってもよい)、m=p+qとなる。 In the formula (1), when there are two or more types of R 3 − O, for example, when it is composed of an oxyethylene group (C 2 H 4 O) and an oxypropylene group (C 3 H 6 O), m is each oxy. It is the total number of moles of alkylene groups added. Specifically, for example, when-(R 3 -O) m- is-[(C 2 H 4 O) p (C 3 H 6 O) q ]-(as described above, the additional form is: It may be in any form of random addition, block addition, alternate addition, etc.), and m = p + q.
 (メタ)アクリル酸エステル系モノマー(c)としては、本発明の効果をより発現させ得る点で、例えば、メトキシポリエチレングリコールメタクリレート、エトキシポリエチレングリコールメタクリレート、プロポキシポリエチレングリコールメタクリレート、ブトキシポリエチレングリコールメタクリレート、ヘキサオキシポリエチレングリコールメタクリレート、オクトキシポリエチレングリコールポリプロピレングリコールメタクリレート、ラウロキシポリエチレングリコールメタクリレート、ステアロキシポリエチレングリコールメタクリレート、フェノキシポリエチレングリコールポリプロピレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリエチレングリコールプロピレングリコールモノメタクリレート、ポリエチレングリコールテトラメチレングリコールモノメタクリレート、プロピレングリコールポリブチレングリコールモノメタクリレート、モノエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレートなどが挙げられる。 As the (meth) acrylic acid ester-based monomer (c), for example, methoxypolyethylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, propoxypolyethylene glycol methacrylate, butoxypolyethylene glycol methacrylate, hexaoxy, in that the effects of the present invention can be further exhibited. Polyethylene Glycol Methacrylate, Octoxy Polyethylene Glycol Polyethylene Glycol Methacrylate, Lauroxy Polyethylene Glycol Methacrylate, Stearoxy Polyethylene Glycol Methacrylate, Phenoxy Polyethylene Glycol Polyethylene Glycol methacrylate, methoxy Polyethylene Glycol Alacrylate, Polyethylene Glycol Monomethacrylate, Polyethylene Glycol Monomethacrylate, Polyethylene Glycol Propropylene Glycol Examples thereof include monomethacrylate, polyethylene glycol tetramethylene glycol monomethacrylate, propylene glycol polybutylene glycol monomethacrylate, monoethylene glycol monoacrylate, and polypropylene glycol monoacrylate.
 (メタ)アクリル酸エステル系モノマー(c)としては、市販品も採用でき、例えば、日油株式会社製の商品名「ブレンマー」シリーズが採用できる。 As the (meth) acrylic acid ester-based monomer (c), a commercially available product can also be adopted. For example, the product name "Blemmer" series manufactured by NOF CORPORATION can be adopted.
 (メタ)アクリル酸エステル系モノマー(c)は、1種のみであってもよいし、2種以上であってもよい。 The (meth) acrylic acid ester-based monomer (c) may be of only one type or of two or more types.
<非架橋性ポリマー(P2)>
 シェル部は、芳香族系ポリマー(P1)と、さらに、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、及びスチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種である非架橋性ポリマー(P2)を含んでいてもよい。
<Non-crosslinkable polymer (P2)>
The shell portion is at least one selected from the group consisting of an aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. It may contain a non-crosslinking polymer (P2).
 シェル部中の非架橋性ポリマー(P2)の含有割合は、本発明の効果をより発現させ得る点で、好ましくは0重量%~40重量%であり、より好ましくは0重量%~30重量%であり、さらに好ましくは0重量%~20重量%であり、特に好ましくは0重量%~10重量%である。 The content of the non-crosslinkable polymer (P2) in the shell portion is preferably 0% by weight to 40% by weight, more preferably 0% by weight to 30% by weight, in that the effects of the present invention can be more exhibited. It is more preferably 0% by weight to 20% by weight, and particularly preferably 0% by weight to 10% by weight.
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリα―オレフィンなどが挙げられる。モノマー組成物への溶解性の観点から、原料に長鎖のα-オレフィンを使用した側鎖結晶性ポリオレフィン、メタロセン触媒で製造された低分子量ポリオレフィンやオレフィンオリゴマーの使用が好ましい。 Examples of the polyolefin include polyethylene, polypropylene, polyα-olefin and the like. From the viewpoint of solubility in the monomer composition, it is preferable to use a side chain crystalline polyolefin using a long-chain α-olefin as a raw material, a low molecular weight polyolefin produced by a metallocene catalyst, or an olefin oligomer.
 スチレン系ポリマーとしては、例えば、ポリスチレン、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。 Examples of the styrene polymer include polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer and the like.
 (メタ)アクリル酸系ポリマーとしては、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリプロピル(メタ)アクリレートなどが挙げられる。 Examples of the (meth) acrylic acid-based polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, and polypropyl (meth) acrylate.
 スチレン-(メタ)アクリル酸系ポリマーとしては、例えば、スチレン-メチル(メタ)アクリレート共重合体、スチレン-エチル(メタ)アクリレート共重合体、スチレン-ブチル(メタ)アクリレート共重合体、スチレン-プロピル(メタ)アクリレート共重合体などが挙げられる。 Examples of the styrene- (meth) acrylic acid-based polymer include a styrene-methyl (meth) acrylate copolymer, a styrene-ethyl (meth) acrylate copolymer, a styrene-butyl (meth) acrylate copolymer, and a styrene-propyl. Examples thereof include (meth) acrylate copolymers.
≪中空樹脂粒子の比誘電率≫
 中空樹脂粒子の比誘電率は、好ましくは1.0~2.5であり、より好ましくは1.0~2.4であり、さらに好ましくは1.0~2.3である。中空樹脂粒子の比誘電率が上記範囲内にあれば、本発明の効果がより発現し得る。中空樹脂粒子の比誘電率が2.5を上回る場合、該中空樹脂粒子を含む半導体部材が優れた低誘電特性を発現できないおそれがある。
≪Relative permittivity of hollow resin particles≫
The relative permittivity of the hollow resin particles is preferably 1.0 to 2.5, more preferably 1.0 to 2.4, and even more preferably 1.0 to 2.3. If the relative permittivity of the hollow resin particles is within the above range, the effect of the present invention can be more exhibited. When the relative permittivity of the hollow resin particles exceeds 2.5, the semiconductor member containing the hollow resin particles may not be able to exhibit excellent low dielectric properties.
 中空樹脂粒子の比誘電率は、例えば「混合系の誘電率」(応用物理、第27巻、第8号(1958))を参考に算出することができる。分散媒と中空樹脂粒子の混合系の比誘電率をε、分散媒となる基材(例えば、ポリイミドやエポキシ等の樹脂組成物)の比誘電率をε、中空樹脂粒子の比誘電率をε、混合系中の中空樹脂粒子の体積率をφとした場合、下記式が成り立つ。すなわち、ε、ε、φを実験的に求めれば、中空樹脂粒子の比誘電率εを算出することができる。
Figure JPOXMLDOC01-appb-M000005
The relative permittivity of the hollow resin particles can be calculated with reference to, for example, "dielectric constant of the mixed system" (Applied Physics, Vol. 27, No. 8 (1958)). The relative permittivity of the mixed system of the dispersion medium and the hollow resin particles is ε, the relative permittivity of the base material (for example, a resin composition such as polyimide or epoxy) as the dispersion medium is ε 1 , and the relative permittivity of the hollow resin particles is ε 1. When ε 2 and the volume ratio of the hollow resin particles in the mixed system is φ, the following equation holds. That is, if ε, ε 1 , and φ are experimentally obtained, the relative permittivity ε 2 of the hollow resin particles can be calculated.
Figure JPOXMLDOC01-appb-M000005
 なお、分散媒と中空樹脂粒子の混合系中の中空樹脂粒子の体積率φは以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000006
The volume fraction φ of the hollow resin particles in the mixed system of the dispersion medium and the hollow resin particles can be obtained as follows.
Figure JPOXMLDOC01-appb-M000006
 中空樹脂粒子の密度はピクノメーター(コーテック株式会社、TQC50mL比重瓶)と液状ポリマーであるARUFON UP―1080(東亜合成株式会社、密度1.05g/cm)を用いて実験的に求めることができる。具体的には、中空樹脂粒子の割合が10重量%となるよう、中空樹脂粒子とARUFON UP―1080を遊星攪拌脱泡機(KURABO社製、マゼルスターKK-250)を用いて脱泡攪拌し、評価用混合物を作製する。評価用混合物を容量50mLのピクノメーターに充填し、混合物で満たされたピクノメーターの重量から、空の状態のピクノメーターの重量を差し引くことで充填した評価用混合物の重量を算出する。この値から、以下式を用いて中空樹脂粒子の密度を算出することができる。
Figure JPOXMLDOC01-appb-M000007
The density of the hollow resin particles can be determined experimentally using a pycnometer (Cortec Co., Ltd., TQC 50 mL specific gravity bottle) and ARUFON UP-1080 (Toa Synthetic Co., Ltd., density 1.05 g / cm 3 ) which is a liquid polymer. .. Specifically, the hollow resin particles and ARUFON UP-1080 are defoamed and stirred using a planetary stirring defoaming machine (MAZELSTAR KK-250, manufactured by KURABO) so that the ratio of the hollow resin particles is 10% by weight. Make an evaluation mixture. The evaluation mixture is filled in a pycnometer having a capacity of 50 mL, and the weight of the filled evaluation mixture is calculated by subtracting the weight of the empty pycnometer from the weight of the pycnometer filled with the mixture. From this value, the density of the hollow resin particles can be calculated using the following formula.
Figure JPOXMLDOC01-appb-M000007
≪≪中空樹脂粒子の製造方法≫≫
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、本発明の効果を損なわない範囲で、任意の適切な方法で製造し得る。
≪≪Manufacturing method of hollow resin particles≫≫
The hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can be produced by any suitable method as long as the effects of the present invention are not impaired.
 このような製造方法としては、例えば、分散工程(工程1)、重合工程(工程2)、洗浄工程(工程3)、乾燥工程(工程4)を含む。 Such a manufacturing method includes, for example, a dispersion step (step 1), a polymerization step (step 2), a cleaning step (step 3), and a drying step (step 4).
≪工程1:分散工程≫
 工程1は、分散剤を含む水溶液に、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物と重合開始剤と沸点100℃未満の有機溶媒を含む有機混合溶液を分散させる工程である。
<< Process 1: Dispersion process >>
In step 1, the aromatic crosslinkable monomer (a), the aromatic monofunctional monomer (b), and the (meth) acrylic acid ester-based monomer (c) represented by the formula (1) are added to the aqueous solution containing the dispersant. ), A polymerization initiator, and an organic mixed solution containing an organic solvent having a boiling point of less than 100 ° C. are dispersed.
 水溶液中への有機混合溶液の分散は、水溶液中で有機混合溶液を液滴状で存在させることができさえすれば、本発明の効果を損なわない範囲で、任意の適切な分散方法を採用し得る。このような分散方法としては、代表的には、ホモジナイザーを用いた分散方法であり、例えば、超音波ホモジナイザーや高圧ホモジナイザーなどが挙げられる。 For the dispersion of the organic mixture solution in the aqueous solution, any appropriate dispersion method is adopted as long as the organic mixture solution can be present in the form of droplets in the aqueous solution, as long as the effect of the present invention is not impaired. obtain. Such a dispersion method is typically a dispersion method using a homogenizer, and examples thereof include an ultrasonic homogenizer and a high-pressure homogenizer.
 水溶液は、水性媒体と分散剤を含む。 The aqueous solution contains an aqueous medium and a dispersant.
 水性媒体としては、例えば、水、水と低級アルコール(メタノール、エタノール等)との混合媒体などが挙げられる。水としては、イオン交換水及び蒸留水から選ばれる少なくとも1種が好ましい。 Examples of the aqueous medium include water, a mixed medium of water and a lower alcohol (methanol, ethanol, etc.). As the water, at least one selected from ion-exchanged water and distilled water is preferable.
 分散剤としては、本発明の効果を損なわない範囲で、任意の適切な分散剤を採用し得る。本発明の効果をより発現させ得る点で、好ましくは、分散剤として界面活性剤を採用する。界面活性剤としては、例えば、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤などが挙げられる。 As the dispersant, any appropriate dispersant can be adopted as long as the effect of the present invention is not impaired. A surfactant is preferably used as the dispersant in that the effects of the present invention can be further exhibited. Examples of the surfactant include anionic surfactants, cationic surfactants, amphoteric ionic surfactants, nonionic surfactants and the like.
 アニオン性界面活性剤としては、例えば、アルキル硫酸エステル脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩、ジアルキルスルホコハク酸塩、モノアルキルスルホコハク酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩等の非反応性のアニオン性界面活性剤、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩、ポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステルアンモニウム塩、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム等の反応性のアニオン性界面活性剤などが挙げられる。 Examples of the anionic surfactant include an alkyl sulfate ester fatty acid salt, an alkylbenzene sulfonate, an alkylnaphthalene sulfonate, an alkane sulfonate, an alkyldiphenyl ether sulfonate, a dialkyl sulfosuccinate, a monoalkyl sulfosuccinate, and a poly. Non-reactive anionic surfactants such as oxyethylene alkylphenyl ether phosphate, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate ester ammonium salt, polyoxyethylene alkylpropenylphenyl ether sulfate ester ammonium salt, Examples thereof include reactive anionic surfactants such as polyoxyalkylene alkenyl ether ammonium sulfate.
 カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、アルキルトリエチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、ジアルキルジエチルアンモニウム塩、N-ポリオキシアルキレン-N,N,N-トリアルキルアンモニウム塩等のカチオン性界面活性剤などが挙げられる。 Examples of the cationic surfactant include cationicity such as alkyltrimethylammonium salt, alkyltriethylammonium salt, dialkyldimethylammonium salt, dialkyldiethylammonium salt, and N-polyoxyalkylene-N, N, N-trialkylammonium salt. Examples include surfactants.
 両性イオン性界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド、リン酸エステル塩、亜リン酸エステル系界面活性剤などが挙げられる。 Examples of the amphoteric ionic surfactant include lauryldimethylamine oxide, phosphoric acid ester salt, and phosphite ester-based surfactant.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマーなどが挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, and oxyethylene. -Examples include oxypropylene block polymer.
 界面活性剤の添加量は、有機混合溶液100重量部に対して、0.01重量部~1重量部が好ましい。界面活性剤は、1種のみであってもよいし、2種以上であってもよい。 The amount of the surfactant added is preferably 0.01 part by weight to 1 part by weight with respect to 100 parts by weight of the organic mixture solution. The surfactant may be only one kind or two or more kinds.
 水溶液には、本発明の効果を損なわない範囲で、任意の適切な他の成分を含んでいてもよい。 The aqueous solution may contain any suitable other components as long as the effects of the present invention are not impaired.
 有機混合溶液は、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物と重合開始剤と沸点100℃未満の有機溶媒を含む。 The organic mixed solution is a monomer composition containing an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). It contains a polymerization initiator and an organic solvent having a boiling point of less than 100 ° C.
 有機混合溶液に含まれるモノマー組成物としては、≪≪中空樹脂粒子≫≫の項目における説明をそのまま援用し得る。 As the monomer composition contained in the organic mixed solution, the explanation in the item of <<<< hollow resin particles >>>> can be used as it is.
 重合開始剤としては、本発明の効果を損なわない範囲で、任意の適切な重合開始剤を採用し得る。 As the polymerization initiator, any suitable polymerization initiator can be adopted as long as the effect of the present invention is not impaired.
 重合開始剤は、10時間半減期温度が90℃以下であることが好ましい。このような重合開始剤を用いれば、中空樹脂粒子内に残存する重合開始剤を完全に分解することができ、例えば、中空樹脂粒子を含む半導体部材をはんだリフロー等で加熱する時に、残存する重合開始剤による樹脂の酸化劣化やガス発生を抑制することができる。 The polymerization initiator preferably has a 10-hour half-life temperature of 90 ° C. or lower. By using such a polymerization initiator, the polymerization initiator remaining in the hollow resin particles can be completely decomposed. For example, when a semiconductor member containing the hollow resin particles is heated by solder reflow or the like, the remaining polymerization is carried out. It is possible to suppress oxidative deterioration and gas generation of the resin due to the initiator.
 重合開始剤は、下記式により算出される重合開始剤の分解率が98%以上となる反応温度および反応時間の組み合わせで重合することが好ましい。このような重合条件にすることで、中空樹脂粒子内に残存する重合開始剤を完全に分解することができ、例えば、中空樹脂粒子を含む半導体部材をはんだリフロー等で加熱する時に、残存する重合開始剤による樹脂の酸化劣化やガス発生を抑制することができる。 The polymerization initiator is preferably polymerized at a combination of a reaction temperature and a reaction time at which the decomposition rate of the polymerization initiator calculated by the following formula is 98% or more. Under such polymerization conditions, the polymerization initiator remaining in the hollow resin particles can be completely decomposed, and for example, the polymerization remaining when the semiconductor member containing the hollow resin particles is heated by solder reflow or the like. It is possible to suppress oxidative deterioration and gas generation of the resin due to the initiator.
 分解率(%)=(1-exp(-kt))×100
 kd=Aexp(-ΔE/RT)
Decomposition rate (%) = (1-exp (-k dt )) x 100
kd = Aexp (-ΔE / RT)
 上記式中、kは熱分解速度定数を表し、tは反応時間(hr)を表し、Aは頻度因子(hr-1)を表し、ΔEは活性化エネルギー(J/mol)を表し、Rは気体定数(8.314J/mol・K)を表し、Tは反応温度(K)を表す。 In the above formula, k d represents the thermal decomposition rate constant, t represents the reaction time (hr), A represents the frequency factor (hr -1 ), ΔE represents the activation energy (J / mol), and R Represents the gas constant (8.314 J / mol · K), and T represents the reaction temperature (K).
 重合開始剤としては、例えば、過酸化ラウロイル、過酸化ベンゾイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物;などが挙げられる。 Examples of the polymerization initiator include lauroyl peroxide, benzoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and t-butylperoxy-2-ethylhexano. Organic peroxides such as ate, di-t-butyl peroxide; 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile, 2,2'-azobis (2,4-azobis) Azo-based compounds such as dimethylvaleronitrile); and the like.
 重合開始剤の添加量は、モノマー組成物100重量部に対して、0.1~5重量部の範囲が好ましい。重合開始剤は、1種のみであってもよいし、2種以上であってもよい。 The amount of the polymerization initiator added is preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer composition. The polymerization initiator may be only one kind or two or more kinds.
 沸点100℃未満の有機溶媒としては、例えば、ヘプタン、ヘキサン、シクロヘキサン、酢酸メチル、酢酸エチル、メチルエチルケトン、クロロホルム、四塩化炭素、などが挙げられる。 Examples of the organic solvent having a boiling point of less than 100 ° C. include heptane, hexane, cyclohexane, methyl acetate, ethyl acetate, methyl ethyl ketone, chloroform, carbon tetrachloride, and the like.
 沸点100℃未満の有機溶媒は、混合溶媒であってもよい。 The organic solvent having a boiling point of less than 100 ° C. may be a mixed solvent.
 有機溶媒として沸点100℃未満の有機溶媒を用いることにより、得られる中空樹脂粒子の中空部分からの溶媒除去が容易になり、製造コストの低減が可能となる。 By using an organic solvent having a boiling point of less than 100 ° C. as the organic solvent, it becomes easy to remove the solvent from the hollow portion of the obtained hollow resin particles, and the manufacturing cost can be reduced.
 沸点100℃未満の有機溶媒の添加量は、モノマー組成物100重量部に対して、20量部~250重量部が好ましい。 The amount of the organic solvent added having a boiling point of less than 100 ° C. is preferably 20 parts by weight to 250 parts by weight with respect to 100 parts by weight of the monomer composition.
 有機混合溶液には、本発明の効果を損なわない範囲で、任意の適切な他の成分を含んでいてもよい。このような他の成分としては、例えば、≪≪中空樹脂粒子≫≫の≪シェル部≫の<非架橋性ポリマー(P2)>が挙げられる。 The organic mixed solution may contain any suitable other components as long as the effects of the present invention are not impaired. Examples of such other components include <non-crosslinkable polymer (P2)> of << shell portion >> of <<<< hollow resin particles >>>>.
 非架橋性ポリマー(P2)の添加量は、モノマー組成物100重量部に対して、0重量部~67重量部が好ましい。非架橋性ポリマー(P2)は、1種のみであってもよいし、2種以上であってもよい。 The amount of the non-crosslinkable polymer (P2) added is preferably 0 to 67 parts by weight with respect to 100 parts by weight of the monomer composition. The non-crosslinkable polymer (P2) may be only one kind or two or more kinds.
≪工程2:重合工程≫
 工程2は、工程1で得られる分散液を加熱して懸濁重合する工程である。
<< Process 2: Polymerization process >>
Step 2 is a step of heating the dispersion obtained in Step 1 for suspension polymerization.
 重合温度は、懸濁重合に適した温度であれば、本発明の効果を損なわない範囲で、任意の適切な重合温度を採用し得る。このような重合温度としては、好ましくは30℃~80℃である。 As the polymerization temperature, any appropriate polymerization temperature can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired. The polymerization temperature is preferably 30 ° C to 80 ° C.
 重合時間は、懸濁重合に適した時間であれば、本発明の効果を損なわない範囲で、任意の適切な重合時間を採用し得る。このような重合時間としては、好ましくは1時間~20時間である。 As the polymerization time, any appropriate polymerization time can be adopted as long as it is suitable for suspension polymerization, as long as the effect of the present invention is not impaired. The polymerization time is preferably 1 hour to 20 hours.
 重合後に好ましく行う後加熱は、完成度の高い中空樹脂粒子を得るために好適な処理である。 Post-heating, which is preferably performed after polymerization, is a suitable treatment for obtaining hollow resin particles having a high degree of perfection.
 重合後に好ましく行う後加熱の温度は、本発明の効果を損なわない範囲で、任意の適切な温度を採用し得る。このような後加熱の温度としては、好ましくは50℃~120℃である。 As the temperature of post-heating preferably performed after polymerization, any appropriate temperature can be adopted as long as the effect of the present invention is not impaired. The temperature for such post-heating is preferably 50 ° C to 120 ° C.
 重合後に好ましく行う後加熱の時間は、本発明の効果を損なわない範囲で、任意の適切な時間を採用し得る。このような後加熱の時間としては、好ましくは1時間~10時間である。 As the post-heating time preferably performed after the polymerization, any appropriate time can be adopted as long as the effect of the present invention is not impaired. The time for such post-heating is preferably 1 hour to 10 hours.
≪工程3:洗浄工程≫
 工程3は、工程2で得られたスラリーを洗浄する工程である。
<< Process 3: Cleaning process >>
Step 3 is a step of cleaning the slurry obtained in step 2.
 洗浄方法としては、本発明の効果を損なわない範囲で、任意の適切な洗浄方法を採用し得る。このような洗浄方法としては、例えば、(1)中空樹脂粒子を形成させた後、高速遠心機等を用いて、非常に高い遠心加速度を与えて該中空樹脂粒子を沈降させて上澄みを除去し、新たにイオン交換水または蒸留水を加え、沈降した中空樹脂粒子をイオン交換水に分散させ、この操作を数回繰り返すことにより不純物を除去する方法、(2)セラミックスフィルター等を用いたクロスフロー式のろ過方法により洗浄を行うことで不純物を除去する方法、また、(3)中空樹脂粒子に対して、粒子の凝集剤となる溶媒を添加することにより、溶媒中において粒子を凝集沈降させ、フィルター等を用いて該中空樹脂粒子を分離し、洗浄溶媒により洗浄する方法、などが挙げられる。 As the cleaning method, any appropriate cleaning method can be adopted as long as the effect of the present invention is not impaired. As such a cleaning method, for example, (1) after forming hollow resin particles, a very high centrifugal acceleration is applied to settle the hollow resin particles using a high-speed centrifuge or the like to remove the supernatant. , A method of newly adding ion-exchanged water or distilled water, dispersing the settled hollow resin particles in the ion-exchanged water, and removing impurities by repeating this operation several times, (2) Cross flow using a ceramics filter or the like. A method of removing impurities by washing by the filtration method of the formula, and (3) by adding a solvent acting as a particle aggregating agent to the hollow resin particles, the particles are aggregated and settled in the solvent. Examples thereof include a method of separating the hollow resin particles using a filter or the like and cleaning with a cleaning solvent.
 上記(1)の洗浄方法においては、イオン交換水または蒸留水はスラリー重量の5倍以上の量を用いて、洗浄することが好ましい。 In the washing method of (1) above, it is preferable to wash the ion-exchanged water or distilled water using an amount of 5 times or more the weight of the slurry.
 比重が小さい中空樹脂粒子に対しては、(2)のセラミックスフィルター等を用いクロスフロー式のろ過方法により洗浄を行うことが好ましい。 For hollow resin particles having a small specific gravity, it is preferable to wash them by a cross-flow type filtration method using the ceramic filter of (2) or the like.
≪工程4:乾燥工程≫
 工程4は、工程3で得られた洗浄後のスラリーを乾燥する工程である。
<< Process 4: Drying process >>
Step 4 is a step of drying the washed slurry obtained in step 3.
 乾燥方法としては、本発明の効果を損なわない範囲で、任意の適切な乾燥方法を採用し得る。このような乾燥方法としては、例えば、加熱による乾燥が挙げられる。 As the drying method, any appropriate drying method can be adopted as long as the effect of the present invention is not impaired. Examples of such a drying method include drying by heating.
 加熱の温度は、本発明の効果を損なわない範囲で、任意の適切な温度を採用し得る。このような加熱の温度としては、好ましくは50℃~120℃である。 As the heating temperature, any appropriate temperature can be adopted as long as the effect of the present invention is not impaired. The temperature for such heating is preferably 50 ° C to 120 ° C.
 加熱の時間は、本発明の効果を損なわない範囲で、任意の適切な時間を採用し得る。このような加熱の時間としては、好ましくは1時間~10時間である。 As the heating time, any appropriate time can be adopted as long as the effect of the present invention is not impaired. The time for such heating is preferably 1 hour to 10 hours.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「重量%」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, "part" means "part by weight" and "%" means "% by weight".
<平均粒子径>
 動的光散乱法を利用して、中空樹脂粒子または粒子のZ平均粒子径を測定し、測定されたZ平均粒子径を得られた中空樹脂粒子または粒子の平均粒子径とした。
 すなわち、まず、得られたスラリー状の中空樹脂粒子または粒子をイオン交換水で希釈し、0.1重量%に調整した水分散体にレーザー光を照射し、中空樹脂粒子または粒子から散乱される散乱光強度をマイクロ秒単位の時間変化で測定した。そして、検出された中空樹脂粒子または粒子に起因する散乱強度分布を正規分布に当てはめて、平均粒子径を算出するためのキュムラント解析法により中空樹脂粒子または粒子のZ平均粒子径を求めた。
 このZ平均粒子径の測定は、市販の粒子径測定装置で簡便に実施できる。以下の実施例および比較例では、粒子径測定装置(マルバーン社製ゼータサイザーナノZS)を使用してZ平均粒子径を測定した。通常、市販の粒子径測定装置は、データ解析ソフトが搭載されており、データ解析ソフトが測定データを自動的に解析することでZ平均粒子径を算出できるようになっている。
<Average particle size>
The Z average particle size of the hollow resin particles or particles was measured by using a dynamic light scattering method, and the measured Z average particle size was used as the obtained average particle size of the hollow resin particles or particles.
That is, first, the obtained slurry-shaped hollow resin particles or particles are diluted with ion-exchanged water, and the aqueous dispersion adjusted to 0.1% by weight is irradiated with laser light and scattered from the hollow resin particles or particles. The scattered light intensity was measured over time in microseconds. Then, the scattering intensity distribution caused by the detected hollow resin particles or particles was applied to the normal distribution, and the Z average particle size of the hollow resin particles or particles was obtained by a cumulant analysis method for calculating the average particle size.
The measurement of the Z average particle size can be easily carried out with a commercially available particle size measuring device. In the following examples and comparative examples, the Z average particle size was measured using a particle size measuring device (Zetasizer Nano ZS manufactured by Malvern). Usually, a commercially available particle size measuring device is equipped with data analysis software, and the data analysis software can automatically analyze the measurement data to calculate the Z average particle size.
<TEM測定:中空樹脂粒子または粒子の中空の有無と形状の観察>
 乾燥粉体としての中空樹脂粒子または粒子に対し、メイワフォーシス社製「オスミウムコータNeoc-Pro」コーティング装置を用いて表面処理(10Pa、5mA、10秒)を行った。次いで、中空樹脂粒子または粒子をTEM(透過型電子顕微鏡、日立ハイテクノロジーズ社製H-7600)にて観察し、中空の有無および中空樹脂粒子または粒子の形状を確認した。この時、加速電圧は80kVとし、倍率は5000倍または1万倍として撮影した。
<TEM measurement: Observation of hollow resin particles or hollow particles and their shape>
Hollow resin particles or particles as dry powder were surface-treated (10 Pa, 5 mA, 10 seconds) using a "Osmium Coater Neoc-Pro" coating device manufactured by Meiwaforsis. Next, the hollow resin particles or particles were observed with a TEM (transmission electron microscope, H-7600 manufactured by Hitachi High-Technologies) to confirm the presence or absence of hollowness and the shape of the hollow resin particles or particles. At this time, the acceleration voltage was set to 80 kV, and the magnification was set to 5000 times or 10,000 times.
<金属元素量測定>
 金属元素量について、以下のように測定した。
(測定試料)
 洗浄済みの50mLポリ容器に中空樹脂粒子を0.5g精秤した。洗浄用エタノールを1mL加えて、よく混合分散した。さらにイオン交換水50mLを注加して、よく混合した。超音波洗浄抽出を約10min実施後、60℃恒温槽にて60min静置した。静置後のスラリーを水系0.20μmクロマトディスクでろ過したものを測定試料とした。
(測定方法)
 測定試料中の金属元素濃度を下記条件で測定した。金属元素濃度は予め作成した検量線より求めた。金属元素量は下式より算出した。金属元素量(mg/kg)=測定金属元素濃度(μg/mL)×51(mL)÷試料量(g)また、定量下限値は1mg/kgであり、測定結果が、定量下限値以下の場合は定量下限値の1mg/kgを測定結果とした。
(ICP測定条件)
測定装置=(株)島津製作所製「ICPE-9000」マルチタイプICP発光分光分析装置 
測定元素=Ca、K、Li、Mg、Na
観測方向=軸方向,
高周波出力=1.20kw,
キャリアー流量=0.7L/min,
プラズマ流量=10.0L/min,
補助流量=0.6L/min,
露光時間=30秒
検量線用標準液=米国SPEX社「XSTC-13」汎用混合標準溶液31元素混合(ベース5%HNO3)-各約10mg/L,「XSTC-8」汎用混合標準溶液13元素混合(ベースHO/trace HF)-各約10mg/L
<Measurement of metal element amount>
The amount of metal element was measured as follows.
(Measurement sample)
0.5 g of hollow resin particles were precisely weighed in a washed 50 mL plastic container. 1 mL of washing ethanol was added, and the mixture was well mixed and dispersed. Further, 50 mL of ion-exchanged water was added and mixed well. After performing ultrasonic cleaning and extraction for about 10 minutes, the mixture was allowed to stand in a constant temperature bath at 60 ° C. for 60 minutes. The slurry after standing was filtered with an aqueous 0.20 μm chromatodisc and used as a measurement sample.
(Measuring method)
The metal element concentration in the measurement sample was measured under the following conditions. The metal element concentration was obtained from a calibration curve prepared in advance. The amount of metal element was calculated from the following formula. Metal element amount (mg / kg) = Measured metal element concentration (μg / mL) x 51 (mL) ÷ Sample amount (g) The lower limit of quantification is 1 mg / kg, and the measurement result is less than or equal to the lower limit of quantification. In this case, the lower limit of quantification, 1 mg / kg, was used as the measurement result.
(ICP measurement conditions)
Measuring device = "ICPE-9000" multi-type ICP emission spectroscopic analyzer manufactured by Shimadzu Corporation
Measuring elements = Ca, K, Li, Mg, Na
Observation direction = axial direction,
High frequency output = 1.20kw,
Carrier flow rate = 0.7L / min,
Plasma flow rate = 10.0L / min,
Auxiliary flow rate = 0.6L / min,
Exposure time = 30 seconds Standard solution for calibration line = US SPEX "XSTC-13" general-purpose mixed standard solution 31 elemental mixture (base 5% HNO 3 ) -about 10 mg / L each, "XSTC-8" general-purpose mixed standard solution 13 Elemental mixture (base H 2 O / trace HF) -about 10 mg / L each
<イオン量測定>
 イオン量を以下のようにして測定した。
(測定試料)
 洗浄済みの50mLポリ容器に中空樹脂粒子を0.5g精秤した。洗浄用エタノールを1mL加えて、よく混合分散した。さらにイオン交換水50mLを注加して、よく混合した。超音波洗浄抽出を約10min実施後、60℃恒温槽にて60min静置した。静置後のスラリーを水系0.20μmクロマトディスクでろ過したものを測定試料とした。
(測定方法)
 下記測定条件で標準液を測定して検量線を作成した。次に試料液を同条件にて測定した。クロマトグラムより得られた各イオンのピーク面積値を用いて、検量線より試料液中のイオン溶出濃度を求めた。なお、検量線用標準液は(富士フィルム和光純薬株式会社製 陰イオン混合標準液1)を使用した。下式より試料のイオン量を算出した。イオン量(mg/kg)= 測定イオン溶出濃度(μg/mL)×51(mL)÷試料量(g)また、定量下限値は1mg/kgであり、測定結果が、定量下限値以下の場合は定量下限値の1mg/kgを測定結果とした。
(イオンクロマトグラフ測定条件)
測定装置=東ソー(株)製「IC-2001」イオンクロマトグラフ測定イオン=F-,CL-,NO-,Br-,NO-,PO -,SO
カラム=TOSOH社製「TSKGEK superIC-AZ」
移動相=3.2mM NaCO+1.9mM NaHCO
流速=0.8mL/min 
カラム温度=40℃ 
注入量=30μL 
<Measurement of ion amount>
The amount of ions was measured as follows.
(Measurement sample)
0.5 g of hollow resin particles were precisely weighed in a washed 50 mL plastic container. 1 mL of washing ethanol was added, and the mixture was well mixed and dispersed. Further, 50 mL of ion-exchanged water was added and mixed well. After performing ultrasonic cleaning and extraction for about 10 minutes, the mixture was allowed to stand in a constant temperature bath at 60 ° C. for 60 minutes. The slurry after standing was filtered with an aqueous 0.20 μm chromatodisc and used as a measurement sample.
(Measuring method)
A calibration curve was prepared by measuring the standard solution under the following measurement conditions. Next, the sample solution was measured under the same conditions. Using the peak area value of each ion obtained from the chromatogram, the ion elution concentration in the sample solution was determined from the calibration curve. As the standard solution for the calibration curve, (Anion mixed standard solution 1 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used. The amount of ions in the sample was calculated from the following formula. Ion amount (mg / kg) = Measured ion elution concentration (μg / mL) x 51 (mL) ÷ Sample amount (g) Also, when the lower limit of quantification is 1 mg / kg and the measurement result is less than or equal to the lower limit of quantification. The measurement result was 1 mg / kg, which is the lower limit of quantification.
(Ion chromatograph measurement conditions)
Measuring device = "IC-2001" ion chromatograph manufactured by Tosoh Corporation Ion = F-, CL-, NO 2- , Br-, NO 3- , PO 43- , SO 4 2-
Column = "TSKGEK superIC-AZ" manufactured by TOSOH
Mobile phase = 3.2 mM Na 2 CO 3 + 1.9 mM NaHCO 3
Flow velocity = 0.8 mL / min
Column temperature = 40 ° C
Injection amount = 30 μL
〔実施例1〕
 スチレン(St)1.15g、ジビニルベンゼン(DVB)810(日鉄ケミカル&マテリアル株式会社、81%含有品、19%はエチルビニルベンゼン(EVB))1.85g、ヘプタン2.4g、HSクリスタ4100(側鎖結晶性ポリオレフィン、豊国製油株式会社)0.3g、ブレンマー50PEP-300(ポリエチレングリコールプロピレングリコールモノメタクリレート(式(1)において、R=CH、R=H、(R-O)=[(CO)3.5(CO)2.5]、ランダム付加形態)、日油株式会社)0.3g、パーロイルL(重合開始剤、日油株式会社)0.099gを混合し、油相を作製した。
 次いで、イオン交換水34gとラピゾールA-80(界面活性剤、日油株式会社)0.017gを混合し、水相を作製した。
 水相に油相を加え、超音波ホモジナイザー(BRANSON社、SONIFIER450、条件:DutyCycle=50%、OutputControl=5、処理時間3分)を用いて懸濁液を作製した。得られた懸濁液を70℃で4時間加熱することで重合を行い、中空樹脂粒子が分散したスラリーを得た。
 得られたスラリーを50nmの細孔径を有するセラミックフィルターを用いて10倍量のイオン交換水でクロスフロー洗浄し、不純物を除去した。
 得られた洗浄後のスラリーを100℃にて24時間加熱することで、乾燥粉体としての中空樹脂粒子(1)を得た。得られた中空樹脂粒子(1)の平均粒子径は356nmであり、粒子密度は0.65g/cmであった。また、得られた中空樹脂粒子(1)のTEM観察結果を図1に示す。中空樹脂粒子(1)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 1]
Styrene (St) 1.15 g, divinylbenzene (DVB) 810 (Nittetsu Chemical & Materials Co., Ltd., 81% content, 19% ethylvinylbenzene (EVB)) 1.85 g, heptane 2.4 g, HS Crysta 4100 (Side Chain Crystalline Polyolefin, Toyokuni Oil Co., Ltd.) 0.3 g, Blemmer 50 PEP-300 (Polyethylene Glycol Styrene Glycol Monomethacrylate (in formula (1), R 1 = CH 3 , R 2 = H, (R 3 -O) ) M = [(C 2 H 4 O) 3.5 (C 3 H 6 O) 2.5 ], random addition form), Nichiyu Co., Ltd.) 0.3 g, Parloyl L (polymerization initiator, Nichiyu stock) Company) 0.099 g was mixed to prepare an oil phase.
Next, 34 g of ion-exchanged water and 0.017 g of Rapisol A-80 (surfactant, NOF CORPORATION) were mixed to prepare an aqueous phase.
An oil phase was added to the aqueous phase, and a suspension was prepared using an ultrasonic homogenizer (BRANSON, SONIFIER 450, conditions: DutyCycle = 50%, OutputControl = 5, treatment time 3 minutes). The obtained suspension was heated at 70 ° C. for 4 hours to carry out polymerization to obtain a slurry in which hollow resin particles were dispersed.
The obtained slurry was cross-flow washed with 10 times the amount of ion-exchanged water using a ceramic filter having a pore diameter of 50 nm to remove impurities.
The obtained washed slurry was heated at 100 ° C. for 24 hours to obtain hollow resin particles (1) as dry powder. The average particle size of the obtained hollow resin particles (1) was 356 nm, and the particle density was 0.65 g / cm 3 . Moreover, the TEM observation result of the obtained hollow resin particles (1) is shown in FIG. It was confirmed that the hollow resin particles (1) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例2〕
 スチレン(St)を0.92g、ジビニルベンゼン(DVB)810を1.48g、ヘプタンを3.0g、パーロイルLを0.10gとした以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(2)を得た。得られた中空樹脂粒子(2)の平均粒子径は382nmであり、粒子密度は0.64g/cmであった。また、得られた中空樹脂粒子(2)のTEM観察結果を図2に示す。中空樹脂粒子(2)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 2]
Hollow by performing the same operation as in Example 1 except that styrene (St) was 0.92 g, divinylbenzene (DVB) 810 was 1.48 g, heptane was 3.0 g, and parloyl L was 0.10 g. Resin particles (2) were obtained. The average particle size of the obtained hollow resin particles (2) was 382 nm, and the particle density was 0.64 g / cm 3 . Moreover, the TEM observation result of the obtained hollow resin particles (2) is shown in FIG. It was confirmed that the hollow resin particles (2) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例3〕
 スチレン(St)を1.49g、ジビニルベンゼン(DVB)810を2.41g、ヘプタンを1.5g、パーロイルLを0.126gとした以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(3)を得た。得られた中空樹脂粒子(3)の平均粒子径は329nmであり、粒子密度は0.69g/cmであった。また、得られた中空樹脂粒子(3)のTEM観察結果を図3に示す。中空樹脂粒子(3)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 3]
Hollow by performing the same operation as in Example 1 except that styrene (St) was 1.49 g, divinylbenzene (DVB) 810 was 2.41 g, heptane was 1.5 g, and parloyl L was 0.126 g. Resin particles (3) were obtained. The average particle size of the obtained hollow resin particles (3) was 329 nm, and the particle density was 0.69 g / cm 3 . Moreover, the TEM observation result of the obtained hollow resin particles (3) is shown in FIG. It was confirmed that the hollow resin particles (3) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例4〕
 スチレン(St)を1.19g、ジビニルベンゼン(DVB)810を1.93g、パーロイルLを0.10g、HSクリスタ4100(側鎖結晶性ポリオレフィン、豊国製油株式会社)0.3gの代わりにポリスチレン(PS)(非架橋、重量平均分子量30万)0.18gとした以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(4)を得た。得られた中空樹脂粒子(4)の平均粒子径は390nmであり、粒子密度は0.67g/cmであった。また、得られた中空樹脂粒子(4)のTEM観察結果を図4に示す。中空樹脂粒子(4)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 4]
1.19 g of styrene (St), 1.93 g of divinylbenzene (DVB) 810, 0.10 g of parloyl L, and polystyrene instead of 0.3 g of HS Crysta 4100 (side chain crystalline polyolefin, Toyokuni Oil Co., Ltd.) Hollow resin particles (4) were obtained by performing the same operation as in Example 1 except that PS) (non-crosslinked, weight average molecular weight 300,000) was 0.18 g. The average particle size of the obtained hollow resin particles (4) was 390 nm, and the particle density was 0.67 g / cm 3 . Moreover, the TEM observation result of the obtained hollow resin particles (4) is shown in FIG. It was confirmed that the hollow resin particles (4) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例5〕
 ブレンマー50PEP-300を0.6gとしたことに加え、HSクリスタ4100を使用しなかった以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(5)を得た。得られた中空樹脂粒子(5)の平均粒子径は310nmであった。また、得られた中空樹脂粒子(5)のTEM観察結果を図5に示す。中空樹脂粒子(5)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 5]
Hollow resin particles (5) were obtained by performing the same operation as in Example 1 except that the Blemmer 50 PEP-300 was set to 0.6 g and the HS Crysta 4100 was not used. The average particle size of the obtained hollow resin particles (5) was 310 nm. Moreover, the TEM observation result of the obtained hollow resin particles (5) is shown in FIG. It was confirmed that the hollow resin particles (5) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例6〕
 ブレンマー50PEP-300(ポリエチレングリコールプロピレングリコールモノメタクリレート(式(1)において、R=CH、R=H、(R-O)=[(CO)3.5(CO)2.5]、ランダム付加形態)、日油株式会社)0.3gの代わりに、ブレンマーPME-100(ポリエチレングリコールメタクリレート(式(1)において、R=CH、R=CH、(R-O)=(CO))、日油株式会社)0.3gを使用したこと以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(6)を得た。得られた中空樹脂粒子(6)の平均粒子径は520nmであった。また、得られた中空樹脂粒子(6)のTEM観察結果を図6に示す。中空樹脂粒子(6)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 6]
Blemmer 50 PEP-300 (Polyethylene Glycol Propylene Glycol Monomethacrylate (in formula (1), R 1 = CH 3 , R 2 = H, (R 3 − O) m = [(C 2 H 4 O) 3.5 (C) 3 H 6 O) 2.5 ], random addition form), Nichiyu Co., Ltd.) Instead of 0.3 g, Blemmer PME-100 (polyethylene glycol methacrylate (in formula (1), R 1 = CH 3 , R 2 ). = CH 3 , (R 3 -O) m = (C 2 H 4 O) 2 ), Nikko Co., Ltd.) Hollow by performing the same operation as in Example 1 except that 0.3 g was used. Resin particles (6) were obtained. The average particle size of the obtained hollow resin particles (6) was 520 nm. Moreover, the TEM observation result of the obtained hollow resin particles (6) is shown in FIG. It was confirmed that the hollow resin particles (6) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例7〕
 ブレンマー50PEP-300を0.3g用いる代わりに、ブレンマーPME-100を0.3g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(7)を得た。得られた中空樹脂粒子(7)の平均粒子径は501nmであり、粒子密度は0.63g/cmであった。また、得られた中空樹脂粒子(7)のTEM観察結果を図7に示す。中空樹脂粒子(7)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 7]
Hollow resin particles (7) were obtained by performing the same operation as in Example 3 except that 0.3 g of Blemmer PME-100 was used instead of 0.3 g of Blemmer 50 PEP-300. The average particle size of the obtained hollow resin particles (7) was 501 nm, and the particle density was 0.63 g / cm 3 . Moreover, the TEM observation result of the obtained hollow resin particles (7) is shown in FIG. It was confirmed that the hollow resin particles (7) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例8〕
 ブレンマー50PEP-300を0.3g用いる代わりに、ブレンマー55PET-800(ポリエチレングリコールテトラメチレングリコールモノメタクリレート(式(1)においてR=CH、R=H、(R-O)=[(CO)10(CO)]、ランダム付加形態)を0.3g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(8)を得た。得られた中空樹脂粒子(8)の平均粒子径は325nmであった。また、得られた中空樹脂粒子(8)のTEM観察結果を図8に示す。中空樹脂粒子(8)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 8]
Instead of using 0.3 g of Blemmer 50 PEP-300, Blemmer 55 PET-800 (polyethylene glycol tetramethylene glycol monomethacrylate (R 1 = CH 3 , R 2 = H, (R 3 -O) m = [in formula (1)) Hollow resin particles (8) were subjected to the same operation as in Example 3 except that 0.3 g of (C 2 H 4 O) 10 (C 4 H 8 O) 5 ], random addition form) was used. The average particle size of the obtained hollow resin particles (8) was 325 nm. The TEM observation results of the obtained hollow resin particles (8) are shown in FIG. 8. Hollow resin particles (8). Was confirmed to be hollow resin particles having a hollow surrounded by a shell. Table 1 shows the compounding composition, measurement results, and the like.
〔実施例9〕
 ラピゾールA-80を0.017g用いる代わりに、コータミン86W(界面活性剤、花王株式会社)0.0081gを使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(9)を得た。得られた中空樹脂粒子(9)の平均粒子径は539nmであった。また、得られた中空樹脂粒子(9)のTEM観察結果を図9に示す。中空樹脂粒子(9)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 9]
Hollow resin particles (9) were operated in the same manner as in Example 3 except that 0.0081 g of Coatamine 86W (surfactant, Kao Corporation) was used instead of 0.017 g of Lapizol A-80. ) Was obtained. The average particle size of the obtained hollow resin particles (9) was 539 nm. Moreover, the TEM observation result of the obtained hollow resin particles (9) is shown in FIG. It was confirmed that the hollow resin particles (9) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例10〕
 ラピゾールA-80を0.017g用いる代わりに、アデカミン4MAC-30(界面活性剤、株式会社ADEKA)0.034gを使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(10)を得た。得られた中空樹脂粒子(10)の平均粒子径は430nmであった。また、得られた中空樹脂粒子(10)のTEM観察結果を図10に示す。中空樹脂粒子(10)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 10]
Hollow resin particles were operated in the same manner as in Example 3 except that 0.034 g of ADEKAMIN 4MAC-30 (surfactant, ADEKA Corporation) was used instead of 0.017 g of Rapisol A-80. (10) was obtained. The average particle size of the obtained hollow resin particles (10) was 430 nm. Moreover, the TEM observation result of the obtained hollow resin particles (10) is shown in FIG. It was confirmed that the hollow resin particles (10) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例11〕
 ラピゾールA-80を0.017g用いる代わりに、アデカミン4MAC-30を0.0076g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(11)を得た。得られた中空樹脂粒子(11)の平均粒子径は1270nmであった。また、得られた中空樹脂粒子(11)のTEM観察結果を図11に示す。中空樹脂粒子(11)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 11]
Hollow resin particles (11) were obtained by performing the same operation as in Example 3 except that 0.0076 g of Adecamine 4MAC-30 was used instead of 0.017 g of Lapizol A-80. The average particle size of the obtained hollow resin particles (11) was 1270 nm. Moreover, the TEM observation result of the obtained hollow resin particles (11) is shown in FIG. It was confirmed that the hollow resin particles (11) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例12〕
 スチレン(St)を1.38g、ジビニルベンゼン(DVB)810を2.22g、ヘプタンの代わりにシクロヘキサンを1.5g、HSクリスタ4100を0.6g、パーロイルLを0.054g、ラピゾールA-80を0.0085g使用したこと以外は、実施例3と同様の操作を行うことで、中空樹脂粒子(12)を得た。得られた中空樹脂粒子(12)の平均粒子径は416nmであった。また、得られた中空樹脂粒子(12)のTEM観察結果を図12に示す。中空樹脂粒子(12)は、シェルにより囲われた中空を持つ中空樹脂粒子であることが確認できた。配合組成や測定結果などを表1に示す。
[Example 12]
1.38 g of styrene (St), 2.22 g of divinylbenzene (DVB) 810, 1.5 g of cyclohexane instead of heptane, 0.6 g of HS Crysta 4100, 0.054 g of parloyl L, and Lapizol A-80. Hollow resin particles (12) were obtained by performing the same operation as in Example 3 except that 0.0085 g was used. The average particle size of the obtained hollow resin particles (12) was 416 nm. Moreover, the TEM observation result of the obtained hollow resin particles (12) is shown in FIG. It was confirmed that the hollow resin particles (12) were hollow resin particles having a hollow surrounded by a shell. Table 1 shows the composition and measurement results.
〔実施例13〕
 中空樹脂粒子のクロスフロー洗浄において、イオン交換水の代わりに蒸留水を用いた以外は、実施例1と同様の操作を行うことで、中空樹脂粒子(13)を得た。得られた中空樹脂粒子(13)の平均粒子径は356nmであった。配合組成や測定結果などを表1に示す。
[Example 13]
Hollow resin particles (13) were obtained by performing the same operation as in Example 1 except that distilled water was used instead of ion-exchanged water in the cross-flow cleaning of the hollow resin particles. The average particle size of the obtained hollow resin particles (13) was 356 nm. Table 1 shows the composition and measurement results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~13に示すように、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、それに含まれるアルカリ金属およびアルカリ土類金属の含有量が抑制できていることがわかった。したがって、本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、優れた低誘電特性を発現できる半導体部材を提供し得る。 As shown in Examples 1 to 13, it was found that the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can suppress the content of the alkali metal and the alkaline earth metal contained therein. rice field. Therefore, the hollow resin particles used in the resin composition for a semiconductor member according to the embodiment of the present invention can provide a semiconductor member capable of exhibiting excellent low dielectric properties.
 本発明の実施形態による半導体部材用樹脂組成物に用いる中空樹脂粒子は、半導体部材用樹脂組成物に用いられ、したがって、半導体パッケージや半導体モジュールなどの半導体部材に好適に利用できる。
 
The hollow resin particles used in the resin composition for semiconductor members according to the embodiment of the present invention are used in the resin composition for semiconductor members, and therefore can be suitably used for semiconductor members such as semiconductor packages and semiconductor modules.

Claims (10)

  1.  シェル部と該シェル部により囲われた中空部分を有する中空樹脂粒子であって、
     該中空樹脂粒子中に含まれるリチウム元素、ナトリウム元素、カリウム元素、マグネシウム元素、及びカリウム元素の濃度の合計が200mg/kg以下である、
     半導体部材用樹脂組成物に用いる中空樹脂粒子。
    Hollow resin particles having a shell portion and a hollow portion surrounded by the shell portion.
    The total concentration of lithium element, sodium element, potassium element, magnesium element, and potassium element contained in the hollow resin particles is 200 mg / kg or less.
    Hollow resin particles used in resin compositions for semiconductor members.
  2.  前記中空樹脂粒子中に含まれるフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、及び硫酸イオンの濃度の合計が200mg/kg以下である、請求項1に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The semiconductor member according to claim 1, wherein the total concentration of fluoride ions, chloride ions, nitrite ions, nitrate ions, phosphate ions, and sulfate ions contained in the hollow resin particles is 200 mg / kg or less. Hollow resin particles used in the resin composition for use.
  3.  前記中空樹脂粒子の平均粒子径が0.1μm~5.0μmである、請求項1または2に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The hollow resin particles used in the resin composition for a semiconductor member according to claim 1 or 2, wherein the average particle diameter of the hollow resin particles is 0.1 μm to 5.0 μm.
  4.  前記シェル部が、芳香族系架橋性モノマー(a)、芳香族系単官能モノマー(b)、及び式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を含むモノマー組成物を重合して得られる芳香族系ポリマー(P1)を含む、請求項1から3までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。
    Figure JPOXMLDOC01-appb-C000001
    (RはHまたはCHを表し、RはH、アルキル基、またはフェニル基を表し、R-Oは炭素原子数2~18のオキシアルキレン基を表し、mは該オキシアルキレン基の平均付加モル数であり、1~100の数を表す。)
    A monomer composition in which the shell portion contains an aromatic crosslinkable monomer (a), an aromatic monofunctional monomer (b), and a (meth) acrylic acid ester-based monomer (c) represented by the formula (1). The hollow resin particles used in the resin composition for a semiconductor member according to any one of claims 1 to 3, which comprises an aromatic polymer (P1) obtained by polymerizing the above.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 represents H or CH 3 , R 2 represents H, an alkyl group, or a phenyl group, R 3 -O represents an oxyalkylene group having 2 to 18 carbon atoms, and m represents the oxyalkylene group. It is the average number of added moles and represents a number from 1 to 100.)
  5.  前記オキシアルキレン基が、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基からなる群から選択される少なくとも1種である、請求項4に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The hollow resin particles used in the resin composition for a semiconductor member according to claim 4, wherein the oxyalkylene group is at least one selected from the group consisting of an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  6.  前記モノマー組成物が、芳香族系架橋性モノマー(a)を10重量%~70重量%、芳香族系単官能モノマー(b)を10重量%~70重量%、及び一般式(1)により表される(メタ)アクリル酸エステル系モノマー(c)を1.0重量%~20重量%含む、請求項4または5に記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The monomer composition is represented by 10% by weight to 70% by weight of the aromatic crosslinkable monomer (a), 10% by weight to 70% by weight of the aromatic monofunctional monomer (b), and the general formula (1). The hollow resin particles used in the resin composition for a semiconductor member according to claim 4 or 5, which contain 1.0% by weight to 20% by weight of the (meth) acrylic acid ester-based monomer (c) to be obtained.
  7.  前記シェル部が、前記芳香族系ポリマー(P1)と、さらに、ポリオレフィン、スチレン系ポリマー、(メタ)アクリル酸系ポリマー、及びスチレン-(メタ)アクリル酸系ポリマーからなる群から選択される少なくとも1種である非架橋性ポリマー(P2)を含む、請求項4から6までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The shell portion is at least one selected from the group consisting of the aromatic polymer (P1), a polyolefin, a styrene polymer, a (meth) acrylic acid polymer, and a styrene- (meth) acrylic acid polymer. Hollow resin particles used in the resin composition for a semiconductor member according to any one of claims 4 to 6, which comprises a non-crosslinkable polymer (P2) as a seed.
  8.  前記芳香族系架橋性モノマー(a)がジビニルベンゼンである、請求項4から7までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The hollow resin particles used in the resin composition for a semiconductor member according to any one of claims 4 to 7, wherein the aromatic crosslinkable monomer (a) is divinylbenzene.
  9.  前記芳香族系単官能モノマー(b)がスチレン及びエチルビニルベンゼンからなる群から選択される少なくとも1種である、請求項4から8までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子。 The hollow used in the resin composition for a semiconductor member according to any one of claims 4 to 8, wherein the aromatic monofunctional monomer (b) is at least one selected from the group consisting of styrene and ethylvinylbenzene. Resin particles.
  10.  請求項1から9までのいずれかに記載の半導体部材用樹脂組成物に用いる中空樹脂粒子を含む、半導体部材。
     
    A semiconductor member comprising hollow resin particles used in the resin composition for a semiconductor member according to any one of claims 1 to 9.
PCT/JP2021/043435 2020-12-17 2021-11-26 Hollow resin particles for semiconductor member resin composition WO2022130938A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237018450A KR20230096101A (en) 2020-12-17 2021-11-26 Hollow resin particles used in resin compositions for semiconductor members
CN202180084299.1A CN116685611A (en) 2020-12-17 2021-11-26 Hollow resin particles for resin composition for semiconductor member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209332A JP2022096298A (en) 2020-12-17 2020-12-17 Hollow resin particles for semiconductor member resin composition
JP2020-209332 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022130938A1 true WO2022130938A1 (en) 2022-06-23

Family

ID=82059080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043435 WO2022130938A1 (en) 2020-12-17 2021-11-26 Hollow resin particles for semiconductor member resin composition

Country Status (5)

Country Link
JP (1) JP2022096298A (en)
KR (1) KR20230096101A (en)
CN (1) CN116685611A (en)
TW (1) TW202235153A (en)
WO (1) WO2022130938A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311518A (en) * 1999-04-28 2000-11-07 Jsr Corp Composition for organic insulating material, organic insulating material, sealing material and circuit board
JP2000313818A (en) * 1999-03-03 2000-11-14 Jsr Corp Crosslinked resin particle, composition for organic insulation material, organic insulation material, sealant and circuit board
WO2011040376A1 (en) * 2009-09-29 2011-04-07 積水化成品工業株式会社 Hollow particles for light diffusion
JP2011094124A (en) * 2009-09-29 2011-05-12 Sekisui Plastics Co Ltd Single hollow particle, and method for manufacturing the same
JP2016069619A (en) * 2014-09-30 2016-05-09 積水化成品工業株式会社 Polymer particle, manufacturing method of polymer particle and use thereof
WO2021085189A1 (en) * 2019-10-29 2021-05-06 積水化成品工業株式会社 Hollow resin particle and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448930B2 (en) 2000-09-04 2010-04-14 財団法人新産業創造研究機構 Hollow polymer fine particles and production method thereof
JP6513273B1 (en) 2018-08-31 2019-05-15 三井化学株式会社 Resin particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313818A (en) * 1999-03-03 2000-11-14 Jsr Corp Crosslinked resin particle, composition for organic insulation material, organic insulation material, sealant and circuit board
JP2000311518A (en) * 1999-04-28 2000-11-07 Jsr Corp Composition for organic insulating material, organic insulating material, sealing material and circuit board
WO2011040376A1 (en) * 2009-09-29 2011-04-07 積水化成品工業株式会社 Hollow particles for light diffusion
JP2011094124A (en) * 2009-09-29 2011-05-12 Sekisui Plastics Co Ltd Single hollow particle, and method for manufacturing the same
JP2016069619A (en) * 2014-09-30 2016-05-09 積水化成品工業株式会社 Polymer particle, manufacturing method of polymer particle and use thereof
WO2021085189A1 (en) * 2019-10-29 2021-05-06 積水化成品工業株式会社 Hollow resin particle and method for producing same

Also Published As

Publication number Publication date
JP2022096298A (en) 2022-06-29
CN116685611A (en) 2023-09-01
KR20230096101A (en) 2023-06-29
TW202235153A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2021085189A1 (en) Hollow resin particle and method for producing same
JP7127746B2 (en) Resin sheets and resin multilayer substrates
US10381124B2 (en) Silver powder, manufacturing method therefor, and conductive paste
WO2022130939A1 (en) Hollow resin particles for semiconductor member resin composition
WO2022130938A1 (en) Hollow resin particles for semiconductor member resin composition
US20230391900A1 (en) Hollow resin particles, method for producing hollow resin particles, and use of hollow resin particles
EP4265650A1 (en) Hollow resin particles used in resin composition for semiconductor member
WO2023074651A1 (en) Hollow particle, method for producing hollow particle, resin composition, and molded body
TW202330666A (en) Hollow particles, resin composition, and resin molded body
CN100587009C (en) Resin composition for GHz-band electronic component and GHz-band electronic component
EP4249526A1 (en) Hollow particles
EP4023681A1 (en) Fine resin particles and production method therefor
WO2022130575A1 (en) Resin composition for semiconductor sealing, underfill material, mold resin, and semiconductor package
EP4299640A1 (en) Thermal conductivity regulating agent and molded body
KR20230104261A (en) Hollow Resin Particles, Manufacturing Method Thereof, and Use Thereof
JP2006223931A (en) Two-dimensional particle aligned member, two-dimensional void aligned porous member and manufacturing method of them
Karnati Polymer colloids for catalysis in fluorous media and for colloidal crystalline arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018450

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084299.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906301

Country of ref document: EP

Kind code of ref document: A1