WO2022130896A1 - Forklift - Google Patents

Forklift Download PDF

Info

Publication number
WO2022130896A1
WO2022130896A1 PCT/JP2021/042571 JP2021042571W WO2022130896A1 WO 2022130896 A1 WO2022130896 A1 WO 2022130896A1 JP 2021042571 W JP2021042571 W JP 2021042571W WO 2022130896 A1 WO2022130896 A1 WO 2022130896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cargo handling
fork
operation unit
lift
tilt
Prior art date
Application number
PCT/JP2021/042571
Other languages
French (fr)
Japanese (ja)
Inventor
安立結香子
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2022130896A1 publication Critical patent/WO2022130896A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems

Definitions

  • This disclosure relates to forklifts.
  • the forklift disclosed in Patent Document 1 includes a cargo handling device and an operation unit.
  • the cargo handling device performs a cargo handling operation.
  • the cargo handling device is equipped with a fork.
  • the operation unit is operated by an operator who operates the forklift. By operating the operation unit, the vertical position of the fork and the inclination of the fork can be adjusted.
  • the operator operates the operation unit to align the fork and the cargo handling target. After aligning the fork and the cargo handling target, the fork is brought closer to the cargo handling target to perform loading and unloading work.
  • the forklift may have an auxiliary function that controls the misalignment by the operator so as to be small.
  • this auxiliary function may limit the operation of the operator. For example, when the operator adjusts the fork and the cargo handling target by operating the operation unit, the control device may stop the fork at a position where the fork and the cargo handling target do not deviate from each other. .. In this case, the control device stops the fork even though the operator is operating the operation unit. Therefore, the operability of the forklift may be deteriorated.
  • a forklift that solves the above problems includes a cargo handling device having a fork, a control device configured to cause the cargo handling device to perform a cargo handling operation including at least one of a tilt operation, a lift operation, and a side shift operation, and the above-mentioned.
  • the control device includes an operation unit that is operated when the cargo handling device is to perform a cargo handling operation, and an acquisition unit that acquires information indicating whether or not the operation unit operated by the operator is being operated. Controls the cargo handling device so as to reduce the misalignment between the fork and the cargo handling target by the operator, whereby the auxiliary control for assisting the operator and the operation unit are operated. If so, the operation of the operation unit is characterized in that the prohibition control for prohibiting the auxiliary control for the same cargo handling operation as the cargo handling operation performed by the cargo handling device is performed.
  • auxiliary control for the same cargo handling operation as the cargo handling operation is prohibited. Therefore, when the operator is operating the operation unit, it is possible to prevent the cargo handling operation by the operation unit from being restricted by the auxiliary control. Since the operation of the operator is not restricted by the control device, the discomfort of the operator can be reduced and the deterioration of the operability of the forklift can be suppressed.
  • the cargo handling operation includes the lift operation
  • the operation unit includes a lift operation unit corresponding to the lift operation
  • the auxiliary control is relative to the vertical direction of the fork and the cargo handling target.
  • the prohibition control includes the lift assist control configured to assist the operator so as to reduce the misalignment, and the prohibition control is the lift when the lift operation is performed by the operation of the lift operation unit. It may include a lift prohibition control that prohibits auxiliary control.
  • the cargo handling operation includes the tilt operation
  • the operation unit includes a tilt operation unit corresponding to the tilt operation
  • the auxiliary control is relative to the fork and the cargo handling target in the front-rear direction.
  • the prohibition control includes a tilt assist control configured to assist the operator so that the deviation of the tilt is small, and the prohibition control is the tilt operation when the tilt operation is performed by the operation of the tilt operation unit. It may include a tilt prohibition control that prohibits the tilt auxiliary control.
  • the cargo handling operation includes the side shift operation
  • the operation unit includes a side shift operation unit corresponding to the side shift operation
  • the auxiliary control is a left-right direction between the fork and the cargo handling target.
  • the prohibition control includes the side shift assist control configured to assist the operator so that the relative positional deviation with respect to the vehicle is small, and the prohibition control is performed by the operation of the side shift operation unit. If so, the side shift prohibition control that prohibits the side shift auxiliary control may be included.
  • the auxiliary control may be performed in the process of the fork approaching the cargo handling target. At the stage of bringing the fork closer to the cargo handling target, it is assumed that the operator has finished aligning the fork with the cargo handling target.
  • the auxiliary control reduces the deviation caused by this alignment after the operator has finished aligning the fork with the cargo handling target. It is possible to suppress the auxiliary control from being performed even though the alignment has not been completed.
  • the forklift 10 includes a vehicle body 11, a reach leg 12, front wheels 13, rear wheels 14, a cargo handling device 21, and an operation unit 34.
  • the forklift 10 of the present embodiment is a reach type forklift.
  • the forklift 10 may be a counter type forklift.
  • the forklift 10 may be manually operated by an operator boarding the forklift 10, or may be capable of switching between automatic operation and manual operation. That is, the forklift 10 may be any as long as it can be manually operated by the operator.
  • the front-back, left-right, up-down are front-back, left-right, up-down with respect to the forklift 10.
  • the front-rear direction can be said to be the traveling direction of the forklift 10.
  • the left-right direction can be said to be the vehicle width direction of the forklift 10. It can be said that the vertical direction is the height direction of the forklift 10.
  • the reach leg 12 extends forward from the vehicle body 11.
  • One front wheel 13 is provided for each reach leg 12.
  • the rear wheel 14 is provided on the vehicle body 11.
  • the rear wheel 14 is a steering wheel.
  • the rear wheel 14 is a drive wheel.
  • the cargo handling device 21 is provided in front of the vehicle body 11.
  • the cargo handling device 21 includes a mast 22, a lift bracket 25, a fork 26, a lift cylinder 31, a tilt cylinder 32, and a reach cylinder 33.
  • the mast 22 is a multi-stage mast.
  • the mast 22 includes an outer mast 23 and an inner mast 24.
  • the inner mast 24 is provided so as to be able to move up and down with respect to the outer mast 23.
  • the lift bracket 25 is fixed to the inner mast 24.
  • the fork 26 is fixed to the lift bracket 25.
  • Two forks 26 are provided so as to be separated from each other in the left-right direction.
  • the lift bracket 25 is a member for fixing the fork 26 to the inner mast 24.
  • the lift cylinder 31 is a hydraulic cylinder.
  • the lift bracket 25 moves up and down by supplying and discharging hydraulic oil to and from the lift cylinder 31.
  • the fork 26 moves up and down together with the lift bracket 25.
  • the tilt cylinder 32 is a hydraulic cylinder.
  • the lift bracket 25 tilts in the front-rear direction by supplying and discharging hydraulic oil to the tilt cylinder 32.
  • Tilt includes forward tilt that tilts the lift bracket 25 forward and backward tilt that tilts the lift bracket 25 backward.
  • the fork 26 tilts together with the lift bracket 25.
  • the reach cylinder 33 is a hydraulic cylinder.
  • the mast 22 moves in the front-rear direction by supplying and discharging hydraulic oil to the reach cylinder 33.
  • the fork 26 moves in the front-rear direction together with the mast 22.
  • moving the fork 26 forward by the reach cylinder 33 is referred to as a reach-out operation.
  • the operation unit 34 includes a lift operation unit 35, a tilt operation unit 36, and a reach operation unit 37.
  • the lift operation unit 35 is operated by an operator.
  • the lift operation unit 35 of this embodiment is a lever.
  • the lift operation unit 35 tilts forward or backward from the neutral position.
  • the lift operation unit 35 is operated by an operator when raising and lowering the fork 26.
  • the tilt operation unit 36 is operated by an operator.
  • the tilt operation unit 36 of this embodiment is a lever.
  • the tilt operation unit 36 tilts forward or backward from the neutral position.
  • the tilt operation unit 36 is operated by an operator when the fork 26 is tilted.
  • the reach operation unit 37 is operated by an operator.
  • the reach operation unit 37 of this embodiment is a lever.
  • the reach operation unit 37 tilts forward or backward from the neutral position.
  • the reach operation unit 37 is operated by an operator when the fork 26 is moved in the front-rear direction.
  • the forklift 10 includes a lift sensor 41, a tilt sensor 42, a reach sensor 43, a drive mechanism 44, a hydraulic mechanism 45, a detection unit 46, a camera 51, and an image processing device 52. , And a control device 61.
  • the lift sensor 41 detects the amount of operation of the lift operation unit 35.
  • the lift sensor 41 outputs an electric signal according to the amount of operation of the lift operation unit 35. If the operation amount of the lift operation unit 35 is detected by the lift sensor 41, it can be said that the lift operation unit 35 is being operated. If the operation amount of the lift operation unit 35 is not detected by the lift sensor 41, it can be said that the lift operation unit 35 is not operated.
  • the detection result of the lift sensor 41 can be said to be information indicating whether or not the lift operation unit 35 is operated.
  • the tilt sensor 42 detects the amount of operation of the tilt operation unit 36.
  • the tilt sensor 42 outputs an electric signal according to the amount of operation of the tilt operation unit 36. If the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42, it can be said that the tilt operation unit 36 is being operated. If the operation amount of the tilt operation unit 36 is not detected by the tilt sensor 42, it can be said that the tilt operation unit 36 is not operated.
  • the detection result of the tilt sensor 42 can be said to be information indicating whether or not the tilt operation unit 36 is operated.
  • the reach sensor 43 detects the amount of operation of the reach operation unit 37.
  • the reach sensor 43 outputs an electric signal according to the amount of operation of the reach operation unit 37. If the amount of operation of the reach operation unit 37 is detected by the reach sensor 43, it can be said that the reach operation unit 37 is being operated. If the operation amount of the reach operation unit 37 is not detected by the reach sensor 43, it can be said that the reach operation unit 37 is not operated.
  • the detection result of the reach sensor 43 can be said to be information indicating whether or not the reach operation unit 37 is operated.
  • the drive mechanism 44 is a member for driving the forklift 10.
  • the drive mechanism 44 includes a drive source for driving the rear wheels 14 and a steering mechanism for steering the rear wheels 14.
  • the drive mechanism 44 includes a motor driver.
  • the drive mechanism 44 includes a fuel injection device.
  • the hydraulic mechanism 45 is a member for controlling the supply and discharge of hydraulic oil to the hydraulic equipment.
  • Hydraulic equipment includes a lift cylinder 31, a tilt cylinder 32, and a reach cylinder 33.
  • the hydraulic mechanism 45 includes a pump for discharging hydraulic oil and a control valve for controlling the supply and discharge of hydraulic oil to hydraulic equipment.
  • the detection unit 46 is provided to detect the position and inclination of the fork 26.
  • the detection unit 46 includes a tilt angle sensor 47, a lift sensor 48, and a reach amount sensor 49.
  • the tilt angle sensor 47 detects the tilt angle.
  • the tilt angle is the tilt angle of the fork 26.
  • the tilt angle of the fork 26 is, for example, an angle when the state in which the fork 26 is not tilted is 0 °.
  • the tilt angle sensor 47 outputs an electric signal corresponding to the tilt angle to the control device 61.
  • the control device 61 can recognize the tilt angle by the electric signal from the tilt angle sensor 47.
  • the lift sensor 48 detects the lift.
  • the lift is the height from the road surface to the fork 26.
  • the lift sensor 48 outputs an electric signal corresponding to the lift to the control device 61.
  • the control device 61 can recognize the lift by the electric signal from the lift sensor 48.
  • the reach amount sensor 49 detects the reach amount.
  • the reach amount is the amount of advance of the fork 26 when the state in which the fork 26 is closest to the vehicle body 11 is set to 0. That is, the reach amount is the distance at which the fork 26 is advanced by the reach-out operation.
  • the reach amount sensor 49 outputs an electric signal according to the reach amount to the control device 61.
  • the control device 61 can recognize the reach amount by the electric signal from the reach amount sensor 49.
  • the camera 51 is an RGB camera.
  • the camera 51 includes an image pickup element such as a CCD image sensor or a CMOS image sensor.
  • the camera 51 outputs image data composed of three color signals of red, green, and blue.
  • the camera 51 is attached to a position where it moves up and down together with the fork 26 and tilts together with the fork 26.
  • the camera 51 is attached to the lift bracket 25.
  • the position of the camera 51 in the left-right direction is, for example, the center position between the two forks 26.
  • the camera 51 is arranged facing forward.
  • the camera 51 is arranged so that the front of the fork 26 is reflected in the imaging range.
  • the imaging range is determined by the horizontal angle of view and the vertical angle of view of the camera 51.
  • the image processing device 52 includes a processor 53 and a storage unit 54.
  • the processor 53 for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a DSP (Digital Signal Processor) is used.
  • the storage unit 54 includes a RAM (Random access memory) and a ROM (Read Only Memory).
  • the storage unit 54 stores a program code or a command configured to cause a processor to execute a process.
  • the storage 54 i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
  • the image processing device 52 may be configured by a hardware circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the image processing apparatus 52 which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
  • the image processing device 52 detects the position of the cargo handling target and the inclination of the cargo handling target from the image data obtained by the image pickup of the camera 51.
  • the cargo handling target includes a pallet loaded on the fork 26 and a loading space on which the pallet is placed.
  • the image processing device 52 derives the coordinates and inclination of the cargo handling target in the camera coordinate system from the image data. Let the coordinates of the camera coordinate system be the camera coordinates. The method for deriving the camera coordinates of the cargo handling target is arbitrary.
  • the image processing device 52 may derive the camera coordinates and inclination of the cargo handling target from the appearance of the cargo handling target in the image data. Since there is a correlation between the relative position of the camera 51 and the cargo handling target and the way the cargo handling target is captured, the camera coordinates and tilt of the cargo handling target may be derived using this correlation.
  • the image processing device 52 may derive the camera coordinates and inclination of the cargo handling target by using the AR (Augmented Reality) marker.
  • the camera coordinates of the AR marker can be derived by capturing the image of the AR marker by the camera 51.
  • the image processing device 52 may regard the coordinates of the AR marker as the coordinates of the palette, or may derive the camera coordinates of the cargo handling target from the positional relationship between the AR marker and the cargo handling target.
  • the image processing device 52 may derive the camera coordinates and the inclination from the changes in the position and posture of the camera 51 with time.
  • the forklift 10 includes a sensor that detects the position and orientation of the camera 51.
  • the image processing device 52 acquires the position and orientation of the camera 51 at the first time and the second time, which are two different times, from the sensor.
  • the image processing device 52 derives changes in the position and orientation of the camera 51 at the first time and the second time.
  • the image processing device 52 determines the change in the coordinates on the image of the same feature point reflected in the image at the first time and the second time, and the change in the position and posture of the camera 51 at the first time and the second time.
  • the camera coordinates of the feature points are derived by triangulation.
  • the image processing device 52 regards the camera 51 at the first time and the camera 51 at the second time as one stereo camera, and derives the camera coordinates.
  • a feature point is a part that can be recognized as a boundary of a cargo handling target, such as an edge of a cargo handling target. Examples of the feature point extraction algorithm include SIFT (Scale-Invariant Feature Transform) and SURF (Speeded Up Robust Features).
  • SIFT Scale-Invariant Feature Transform
  • SURF Speeded Up Robust Features
  • the image processing device 52 converts the camera coordinates into the coordinates of the world coordinate system.
  • the world coordinate system is a 3-axis Cartesian coordinate system.
  • the X-axis of the world coordinate system is an axis extending in the left-right direction.
  • the Y axis of the world coordinate system is an axis extending in the front-back direction.
  • the Z axis of the world coordinate system is an axis extending in the vertical direction.
  • the origin of the world coordinate system may be any longer as long as the positional relationship with the forklift 10 is constant, and for example, the origin can be the center position between the two front wheels 13. Let the coordinates of the world coordinate system be the world coordinates.
  • the image processing device 52 converts the camera coordinates into world coordinates based on the deviation between the origin of the world coordinate system and the origin of the camera coordinate system and the deviation between the coordinate axes of the world coordinate system and the coordinate axes of the camera coordinate system.
  • the origin of the camera coordinate system and the inclination of the coordinate axes change depending on the position and inclination of the lift bracket 25. Therefore, the image processing device 52 acquires the tilt angle, the lift, and the reach amount from the control device 61, and converts the camera coordinates into the world coordinates based on the acquisition.
  • the image processing device 52 can derive the world coordinates and the inclination of the cargo handling target.
  • the inclination of the cargo handling target is the deviation angle of the cargo handling target with respect to the coordinate axes of the world coordinate system.
  • the X-axis of the world coordinate system is indicated by an arrow X
  • the Y-axis is indicated by an arrow Y
  • the Z-axis is indicated by an arrow Z.
  • the X coordinate is the X coordinate in the world coordinate system
  • the Z coordinate is the Z coordinate in the world coordinate system.
  • the control device 61 includes a processor 62 and a storage unit 63.
  • the hardware configuration of the control device 61 is, for example, the same as that of the image processing device 52.
  • the control device 61 controls the traveling operation.
  • the control device 61 drives the forklift 10 by controlling the drive mechanism 44.
  • the control device 61 controls the cargo handling operation.
  • the control device 61 controls the hydraulic mechanism 45 to cause the cargo handling device 21 to perform a cargo handling operation.
  • the control device 61 acquires the detection results of the lift sensor 41, the tilt sensor 42, and the reach sensor 43.
  • the control device 61 causes the cargo handling device 21 to perform cargo handling operations according to the detection results of the lift sensor 41, the tilt sensor 42, and the reach sensor 43.
  • the control device 61 can cause the cargo handling device 21 to perform a cargo handling operation according to the operation of the operator.
  • Whether or not each of the lift operation unit 35, the tilt operation unit 36, and the reach operation unit 37 is operated by the control device 61 by acquiring the detection results of the tilt sensor 42, the lift sensor 41, and the reach sensor 43. Can be determined.
  • the control device 61 functions as an acquisition unit.
  • the cargo handling operation of the present embodiment includes a lift operation for raising and lowering the fork 26, a tilt operation for tilting the fork 26, and a reach operation for moving the fork 26 in the front-rear direction.
  • the lift operation unit 35 corresponds to the lift operation.
  • the tilt operation unit 36 corresponds to the tilt operation.
  • the reach operation unit 37 corresponds to the reach operation.
  • Cargo handling work includes loading work and unloading work.
  • the loading operation is to place the pallet loaded on the fork 26 in the loading area.
  • the loading operation is to load the pallets placed in the loading area on the fork 26.
  • the operator When aligning the fork 26 and the cargo handling target, the operator operates the lift operation unit 35 to align the fork 26 and the cargo handling target in the vertical direction.
  • the operator operates the tilt operation unit 36 to adjust the inclination of the fork 26 and the cargo handling target.
  • the reach operation unit 37 By operating the reach operation unit 37 in this state to bring the fork 26 closer to the cargo handling target, the loading operation or the loading operation is performed.
  • the operator adjusts the vertical position of the fork 26 and the pallet insertion hole and the inclination of the fork 26 and the pallet, and then inserts the fork 26 into the insertion hole. I will plug it in.
  • the control device 61 assists the operator in operating the forklift 10 by performing auxiliary control.
  • the auxiliary control is a control that automatically reduces the misalignment between the fork 26 and the cargo handling target by the operation of the operator.
  • Auxiliary control includes lift assist control that assists lift operation and tilt assist control that assists tilt operation.
  • an auxiliary control for loading a pallet on the fork 26 will be described.
  • the timing at which the auxiliary control is performed is arbitrary. For example, when the forklift 10 is in the activated state, the auxiliary control may be always performed, or the auxiliary control may be performed when a predetermined condition is satisfied.
  • the predetermined condition is, for example, that the cargo handling operation is started.
  • the lift assist control is started, for example, on condition that the lift operation is started.
  • the control device 61 starts the lift operation if the operation amount of the lift operation unit 35 is detected by the lift sensor 41.
  • the control device 61 starts lift assist control accordingly.
  • the lift assist control is repeatedly performed in a predetermined control cycle.
  • step S1 the control device 61 acquires the world coordinates of the pallet.
  • the world coordinates of the palette can be obtained from the image processing device 52.
  • step S2 the control device 61 determines whether or not the position of the fork 26 and the pallet is displaced.
  • the misalignment between the fork 26 and the pallet is the relative misalignment between the fork 26 and the pallet in the vertical direction. More specifically, the relative positional deviation between the fork 26 and the pallet in the vertical direction is the vertical deviation between the vertical center position of the fork 26 and the vertical center position in the insertion hole of the pallet. be.
  • Whether or not the position of the fork 26 and the pallet is misaligned can be determined based on the world coordinates of the fork 26 and the world coordinates of the pallet.
  • the positional relationship between the origin of the world coordinate system and the fork 26 is determined by the lift, tilt angle, and reach amount. Therefore, the control device 61 can derive the world coordinates of the fork 26 from the lift, tilt angle, and reach amount.
  • the control device 61 regards the difference between the Z coordinate of the fork 26 and the Z coordinate of the insertion hole of the pallet as the amount of misalignment between the fork 26 and the pallet. If the amount of misalignment between the fork 26 and the pallet is less than the threshold value, the control device 61 determines that no misalignment has occurred.
  • step S2 determines that the misalignment has occurred. If the determination result in step S2 is negative, the control device 61 ends the lift assist control. If the determination result in step S2 is affirmative, the control device 61 performs the process of step S3.
  • step S3 the control device 61 determines whether or not the lift is in operation. In other words, the control device 61 determines whether or not the lift operation has been stopped. If the operation amount of the lift operation unit 35 is detected by the lift sensor 41, the control device 61 determines that the lift operation is in progress. The control device 61 determines that the lift operation is not in progress unless the operation amount of the lift operation unit 35 is detected by the lift sensor 41. If the determination result in step S3 is affirmative, the control device 61 performs the process of step S11. If the determination result in step S3 is negative, the control device 61 performs the process of step S4.
  • step S4 the control device 61 determines whether or not to start the reach-out operation. If the reach-out operation is instructed by the reach operation unit 37, the control device 61 starts the reach-out operation. If the determination result in step S4 is negative, the control device 61 ends the lift assist control. If the determination result in step S4 is affirmative, the control device 61 performs the process of step S5.
  • step S5 the control device 61 performs lift assist control to assist the lift operation.
  • the lift assist control is to control the cargo handling device 21 so that the control device 61 reduces the relative positional deviation between the fork 26 and the pallet in the vertical direction.
  • the control device 61 controls so as to reduce the misalignment during the reach-out operation.
  • the fork 26 approaches the pallet. It can be said that the control device 61 performs lift assist control in the process of the fork 26 approaching the pallet.
  • the control device 61 raises and lowers the fork 26 by controlling the hydraulic mechanism 45. For example, the control device 61 raises and lowers the fork 26 so that the amount of misalignment between the fork 26 and the pallet is less than the threshold value.
  • the control device 61 stops the fork 26 from moving up and down.
  • the control device 61 includes an auxiliary unit for performing auxiliary control and a lift auxiliary unit for performing lift auxiliary control.
  • step S11 the control device 61 performs lift prohibition control for prohibiting lift auxiliary control. That is, during the lift operation, it is prohibited to assist the control device 61 so as to reduce the positional deviation between the fork 26 and the pallet.
  • the lift assist control when the amount of misalignment between the fork 26 and the pallet becomes less than the threshold value, the fork 26 stops moving up and down. By prohibiting the lift assist control, it is suppressed that the fork 26 is automatically stopped during the lift operation.
  • the control device 61 includes a prohibition unit for performing prohibition control and a lift prohibition unit for performing lift prohibition control.
  • the tilt assist control is started, for example, on condition that the tilt operation is started.
  • the control device 61 starts the tilt operation if the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42.
  • the control device 61 starts tilt assist control accordingly.
  • the tilt assist control is repeatedly performed in a predetermined control cycle.
  • step S21 the control device 61 acquires the inclination of the pallet.
  • the tilt of the palette can be obtained from the image processing device 52.
  • step S22 the control device 61 determines whether or not the inclination of the fork 26 and the pallet is displaced.
  • the deviation of the inclination between the fork 26 and the pallet is the deviation of the inclination of the fork 26 and the pallet relative to the front-rear direction.
  • Whether or not the inclination of the fork 26 and the pallet is misaligned can be determined based on the inclination of the fork 26 and the inclination of the pallet.
  • the inclination of the fork 26 is a tilt angle.
  • the slope of the palette is the slope of the palette with respect to the Y axis of the world coordinate system. Since the tilt angle represents the inclination of the world coordinate system with respect to the Y axis, the difference between the tilt angle and the inclination of the pallet with respect to the Y axis of the world coordinate system is the deviation of the relative inclination of the fork 26 and the pallet in the front-back direction. I can say.
  • the control device 61 regards the difference between the inclination of the fork 26 and the inclination of the pallet as the amount of angular deviation between the fork 26 and the pallet. The control device 61 determines that the inclination deviation has not occurred if the angle deviation amount between the fork 26 and the pallet is less than the threshold value. If the angle deviation amount between the fork 26 and the pallet is equal to or greater than the threshold value, the control device 61 determines that the inclination deviation has occurred. If the determination result in step S22 is negative, the control device 61 ends the tilt assist control. If the determination result in step S22 is affirmative, the control device 61 performs the process of step S23.
  • step S23 the control device 61 determines whether or not the tilt operation is in progress. In other words, the control device 61 determines whether or not the tilt operation has been stopped. If the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42, the control device 61 determines that the tilt operation is in progress. The control device 61 determines that the tilt operation is not in progress unless the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42. If the determination result in step S23 is affirmative, the control device 61 performs the process of step S31. If the determination result in step S23 is negative, the control device 61 performs the process of step S24.
  • Step S24 is the same process as step S4. If the determination result in step S24 is negative, the control device 61 ends the tilt assist control. If the determination result in step S24 is affirmative, the control device 61 performs the process of step S25.
  • step S25 the control device 61 performs tilt assist control to assist the tilt operation.
  • the tilt assist control is to control the cargo handling device 21 so that the control device 61 reduces the deviation of the inclination between the fork 26 and the pallet.
  • the control device 61 controls so as to reduce the deviation of the inclination during the reach-out operation.
  • the control device 61 performs tilt assist control in the process of the fork 26 approaching the pallet.
  • the control device 61 tilts the fork 26 by controlling the hydraulic mechanism 45. As a result, the control device 61 reduces the deviation of the inclination between the fork 26 and the pallet.
  • control device 61 tilts the fork 26 so that the amount of angular deviation between the fork 26 and the pallet is less than the threshold value.
  • the control device 61 stops tilting of the fork 26 when the amount of angular deviation between the fork 26 and the pallet becomes less than the threshold value.
  • step S31 the control device 61 performs tilt prohibition control for prohibiting tilt assist control. That is, during the tilt operation, it is prohibited to assist the control device 61 so as to reduce the deviation of the inclination between the fork 26 and the pallet.
  • the tilt assist control when the amount of angular deviation between the fork 26 and the pallet becomes less than the threshold value, the tilt of the fork 26 is stopped.
  • the control device 61 includes a prohibition unit for performing prohibition control and a tilt prohibition unit for performing tilt prohibition control.
  • the control device 61 prohibits the lift assist control when the lift operation unit 35 is performing the lift operation, and prohibits the tilt assist control when the tilt operation unit 36 is performing the tilt operation. is doing.
  • the control device 61 prohibits assistance for the same cargo handling operation as the cargo handling operation performed by the cargo handling device 21 by the operation of the operation unit 34.
  • the operation of the first embodiment will be described.
  • the shelf R includes a plurality of shelf boards B.
  • the shelf boards B are provided so as to be separated from each other in the vertical direction.
  • a pallet P is arranged on the shelf board B.
  • Three of the plurality of pallets P are arranged vertically apart from each other.
  • the pallet P includes an insertion hole H.
  • a load W is loaded on the pallet P.
  • the operator When vertically aligning the pallet P located at the uppermost position of the three pallets P with the fork 26, the operator raises the fork 26 by operating the lift operation unit 35. During the lift operation, assistance for the lift operation by the control device 61 is prohibited. Therefore, the position of the fork 26 in the vertical direction is determined by the operation of the lift operation unit 35 by the operator. In the state shown in FIG. 6, in the operation of the operator, a positional shift in the vertical direction occurs between the fork 26 and the pallet P. The operator starts the reach-out operation by operating the reach operation unit 37 in this state.
  • the control device 61 performs lift assist control to assist the lift operation.
  • the fork 26 is raised by a predetermined amount A1 from the state shown in FIG. As a result, the vertical positional deviation between the fork 26 and the pallet P is reduced. Even if the position shift between the fork 26 and the pallet P in the vertical direction occurs when the operator finishes the operation of the lift operation unit 35, the position shift is eliminated during the reach-out operation.
  • the operator tilts the fork 26 by operating the tilt operation unit 36.
  • a deviation in inclination occurs between the fork 26 and the pallet P in the operation by the operator.
  • the operator starts the reach-out operation by operating the reach operation unit 37 in this state.
  • the control device 61 performs tilt assist control to assist the tilt operation.
  • the fork 26 is tilted backward by a predetermined angle ⁇ 1 from the state shown in FIG. As a result, the deviation of the inclination between the fork 26 and the pallet P becomes small. Even if the tilt of the fork 26 and the pallet P is misaligned when the operator finishes the operation of the tilt operation unit 36, the misalignment of the fork 26 and the pallet P is eliminated during the reach-out operation.
  • control device 61 When the control device 61 is performing the lift operation by operating the lift operation unit 35, the control device 61 does not perform the lift assist control. It is suppressed that the lift operation by the operation of the lift operation unit 35 is restricted by the assistance of the control device 61.
  • the control device 61 controls the hydraulic mechanism 45 so that the misalignment between the fork 26 and the cargo handling target becomes small in the process of the fork 26 approaching the cargo handling target. At the stage of bringing the fork 26 closer to the cargo handling target, it is assumed that the operator has completed the alignment between the fork 26 and the cargo handling target. After the operator finishes the alignment between the fork 26 and the cargo handling target, by reducing the deviation caused by this alignment, the control device 61 assists even though the alignment has not been completed. Can be suppressed.
  • the cargo handling device 21 includes a side shift device 80.
  • the side shift device 80 moves the fork 26 in the left-right direction.
  • the side shift device 80 of the present embodiment moves both of the two forks 26 in the left-right direction while maintaining the distance between the two forks 26.
  • the side shift device 80 is attached to the lift bracket 25.
  • the lift bracket 25 includes two finger bars 71 and 72.
  • the two finger bars 71 and 72 are provided at intervals in the vertical direction.
  • the side shift device 80 includes a shifter 81 and a shift cylinder 86.
  • the shifter 81 is provided so as to be movable to the left and right with respect to the two finger bars 71 and 72.
  • the shifter 81 includes two shifter bars 82, 83 and two connecting members 84, 85 that connect the two shifter bars 82, 83.
  • the two shifter bars 82 and 83 are provided at intervals in the vertical direction.
  • the two connecting members 84 and 85 are provided at intervals in the left-right direction.
  • the connecting members 84 and 85 connect the ends of the shifter bars 82 and 83 to each other.
  • a fork 26 is connected to the shifter bars 82 and 83.
  • the shift cylinder 86 is a hydraulic cylinder.
  • the shifter 81 moves in the left-right direction by supplying and discharging the hydraulic oil to the shift cylinder 86.
  • the fork 26 also moves in the left-right direction together with the shifter 81.
  • the operation unit 34 includes a side shift operation unit 38.
  • the forklift 10 includes a side shift sensor 90.
  • the detection unit 46 includes a shift amount sensor 91.
  • the side shift operation unit 38 is operated by an operator.
  • the side shift operation unit 38 of this embodiment is a lever.
  • the side shift operation unit 38 tilts forward or backward from the neutral position.
  • the side shift operation unit 38 is operated when the fork 26 is moved in the left-right direction.
  • the side shift sensor 90 detects the amount of operation of the side shift operation unit 38.
  • the side shift sensor 90 outputs an electric signal according to the amount of operation of the side shift operation unit 38. If the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90, it can be said that the side shift operation unit 38 is being operated. If the operation amount of the side shift operation unit 38 is not detected by the side shift sensor 90, it can be said that the side shift operation unit 38 is not operated.
  • the detection result of the side shift sensor 90 can be said to be information indicating whether or not the side shift operation unit 38 is operated.
  • the shift amount sensor 91 detects the shift amount.
  • the shift amount is an amount in which the fork 26 is moved in the left-right direction by the side shift device 80.
  • the shift amount is, for example, the amount of movement from the reference when the center position of the two forks 26 and the center position of the lift bracket 25 in the left-right direction coincide with each other.
  • the control device 61 causes the cargo handling device 21 to perform a side shift operation according to the detection result of the side shift sensor 90.
  • the cargo handling operation of the second embodiment includes a side shift operation of moving the fork 26 in the left-right direction.
  • the side shift operation unit 38 corresponds to the side shift operation.
  • the control device 61 performs side shift auxiliary control as an auxiliary control to assist the side shift operation.
  • side shift auxiliary control will be described. Similar to the first embodiment, as an example, a side shift auxiliary control when performing a loading operation for loading a pallet on a fork 26 will be described.
  • the side shift auxiliary control is started, for example, on condition that the side shift operation is started.
  • the control device 61 starts the side shift operation if the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90.
  • the control device 61 starts side shift auxiliary control accordingly.
  • the side shift auxiliary control is repeatedly performed in a predetermined control cycle.
  • step S41 the control device 61 acquires the world coordinates of the pallet.
  • the world coordinates of the palette can be obtained from the image processing device 52.
  • step S42 the control device 61 determines whether or not the position of the fork 26 and the pallet is displaced.
  • the positional deviation between the fork 26 and the pallet is a relative positional deviation between the fork 26 and the pallet in the left-right direction. More specifically, the deviation between the center position of the two forks 26 and the center position in the left-right direction of the pallet in the left-right direction is the relative positional deviation between the fork 26 and the pallet in the left-right direction.
  • Whether or not the position of the fork 26 and the pallet is misaligned can be determined based on the X coordinate indicating the center position of the two forks 26 and the X coordinate of the pallet.
  • the X coordinate indicating the center position of the two forks 26 coincides with the origin of the world coordinate system. From the X coordinate of the palette, the X coordinate indicating the center position in the left-right direction of the palette can be derived.
  • the control device 61 regards the difference between the X coordinate indicating the center position of the two forks 26 and the X coordinate indicating the center position in the left-right direction of the pallet as the amount of misalignment between the fork 26 and the pallet.
  • step S42 determines that the control device 61 determines that the misalignment has occurred. If the determination result in step S42 is negative, the control device 61 ends the side shift auxiliary control. If the determination result in step S42 is affirmative, the control device 61 performs the process of step S43.
  • step S43 the control device 61 determines whether or not the side shift operation is in progress. In other words, the control device 61 determines whether or not the side shift operation has been stopped. If the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90, the control device 61 determines that the side shift operation is in progress. The control device 61 determines that the side shift operation is not in progress unless the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90. If the determination result in step S43 is affirmative, the control device 61 performs the process of step S51. If the determination result in step S43 is negative, the control device 61 performs the process of step S44.
  • Step S44 is the same process as step S4. If the determination result in step S44 is negative, the control device 61 ends the side shift auxiliary control. If the determination result in step S44 is affirmative, the control device 61 performs the process of step S45.
  • step S45 the control device 61 performs side shift assist control to assist the side shift operation.
  • the side shift auxiliary control is to control the cargo handling device 21 so that the control device 61 reduces the positional deviation between the fork 26 and the pallet in the left-right direction.
  • the control device 61 controls so as to reduce the misalignment during the reach-out operation.
  • the control device 61 moves the fork 26 in the left-right direction by controlling the hydraulic mechanism 45. For example, the control device 61 moves the fork 26 in the left-right direction so that the amount of misalignment between the fork 26 and the pallet is less than the threshold value.
  • the control device 61 stops the fork 26 from moving in the left-right direction.
  • the control device 61 includes an auxiliary unit for performing auxiliary control and a side shift auxiliary unit for performing side shift auxiliary control.
  • step S51 the control device 61 performs side shift prohibition control that prohibits side shift auxiliary control. That is, during the side shift operation, it is prohibited to assist the control device 61 so as to reduce the positional deviation between the fork 26 and the pallet.
  • the side shift auxiliary control when the amount of misalignment between the fork 26 and the pallet becomes less than the threshold value, the fork 26 stops moving in the left-right direction. By prohibiting the side shift auxiliary control, it is suppressed that the fork 26 is automatically stopped during the side shift operation.
  • the control device 61 includes a prohibition unit for performing prohibition control and a side shift prohibition unit for performing side shift prohibition control.
  • the forklift 10 when loading the pallet P, the forklift 10 is moved so that the fork 26 and the pallet P face each other.
  • the operator operates the side shift operation unit 38 to move the fork 26 in the left-right direction.
  • the side shift auxiliary control by the control device 61 is prohibited. Therefore, the position of the fork 26 in the left-right direction is determined by the operation of the side shift operation unit 38 by the operator.
  • a positional shift in the left-right direction occurs between the fork 26 and the pallet P. The operator starts the reach-out operation by operating the reach operation unit 37 in this state.
  • the control device 61 performs side shift auxiliary control when the reach-out operation is started.
  • the fork 26 is moved to the right of A2 by a predetermined amount from the state shown in FIG. As a result, the positional deviation between the fork 26 and the pallet P in the left-right direction is reduced. Even if the position shift between the fork 26 and the pallet P in the left-right direction occurs when the operator finishes the operation of the side shift operation unit 38, the position shift is eliminated during the reach-out operation.
  • the lift assist control by the control device 61 may be prohibited during the lift operation, and may be performed at a timing different from that during the reach-out operation.
  • the lift assist control by the control device 61 may be performed at the timing when the determination in step S4 is omitted and the determination in step S3 is negative.
  • the lift assist control by the control device 61 may be performed during the tilt operation or the side shift operation.
  • the tilt assist control by the control device 61 may be prohibited during the tilt operation, and may be performed at a timing different from that during the reach-out operation.
  • the determination in step S24 may be omitted, and the tilt operation may be assisted by the control device 61 at the timing when the determination in step S23 becomes negative.
  • the tilt assist control by the control device 61 may be performed during the lift operation or the side shift operation.
  • the side shift auxiliary control by the control device 61 may be prohibited during the side shift operation, and may be performed at a timing different from that during the reach out operation.
  • the determination in step S44 may be omitted, and the side shift auxiliary control may be performed by the control device 61 at the timing when the determination in step S43 is negative.
  • the side shift auxiliary control by the control device 61 may be performed during the lift operation or the tilt operation.
  • the control device 61 may perform either tilt assist control or lift assist control as auxiliary control.
  • the control device 61 may perform only the side shift auxiliary control as the auxiliary control. That is, the control device 61 may perform at least one of tilt assist control, lift assist control, and side shift assist control.
  • the cargo handling target may be a loading place. Even if the cargo handling target is a cargo handling area, the deviation between the fork 26 and the cargo handling object can be derived from the world coordinates and inclination of the cargo handling area. Therefore, the control device 61 can assist the cargo handling operation as in the case where the cargo handling target is the pallet.
  • the forklift 10 may be remotely controlled.
  • the operator operates the forklift 10 at a remote location away from the forklift 10.
  • the operator operates an operation terminal provided at a remote location.
  • a dedicated device can be used, or a mobile communication terminal such as a tablet terminal can be used.
  • the operation terminal includes an operation unit for operating the forklift 10, an operation amount detection unit for detecting the operation amount of the operation unit, and a communication device.
  • the operation unit may be a physical member such as a lever, or may be a touch panel displaying a symbol functioning as the operation unit. When the operation terminal displays a symbol functioning as an operation unit on the touch panel, the cargo handling operation of the forklift 10 is performed by operating the touch panel.
  • the cargo handling operation of the forklift 10 is performed by the operator's tap operation or slide operation on the touch panel.
  • the operation amount is the number of taps and the slide amount
  • the touch panel functions as the operation amount detection unit.
  • the communication device generates data in a predetermined format and transmits this data to the forklift 10.
  • the communication device transmits information such as the amount of operation of the operation unit so that the control device 61 can determine whether or not the operation unit is being operated.
  • the forklift 10 includes an in-vehicle communication device.
  • the in-vehicle communication device receives the data transmitted from the communication device and outputs the data to the control device 61.
  • the control device 61 operates the forklift 10 according to the data transmitted from the communication device.
  • the control device 61 controls the cargo handling device 21 according to the operation of the operation unit.
  • the control device 61 determines whether or not the operation unit is operated from the data transmitted from the communication device. in this case. It can be said that the in-vehicle communication device functions as an acquisition unit.
  • the control device 61 performs prohibition control for prohibiting auxiliary control for the same cargo handling operation as the cargo handling operation performed by the cargo handling device 21 by the operation of the operation unit.
  • the forklift 10 when the forklift 10 is a counter type, the forklift 10 may be advanced for loading or unloading instead of the reach-out operation.
  • the control device 61 may assist the cargo handling operation while the forklift 10 is advancing. Even in this case, it can be said that the cargo handling operation is assisted in the process of the fork 26 approaching the cargo handling target.
  • the forklift 10 may include a ToF (Time of Flight) camera, a LIDAR (Laser Imaging Detection and Ringing), a millimeter-wave radar, or a stereo camera instead of the camera 51.
  • ToF cameras, LIDARs, millimeter-wave radars, and stereo cameras are devices that can measure three-dimensional coordinates in the world coordinate system. Even when these devices are used, the world coordinates and inclination of the cargo handling target can be derived. Therefore, the same control as in the embodiment can be performed.
  • the forklift 10 may include a display unit on which an image being captured by the camera 51 is captured.
  • the side shift device 80 may be a device in which the distance between the two forks 26 changes.
  • control device 61 may function as the image processing device 52. That is, the control device 61 and the image processing device 52 may be the same device.
  • P Pallet as a cargo handling object 10 ... Forklift 21 ... Cargo handling device 26 ... Fork 34 ... Operation unit 35 ... Lift operation unit 36 ... Tilt operation unit 38 ... Side shift operation unit 61 ... Acquisition unit, auxiliary unit, prohibition unit, lift assistance A control device as a unit, a lift prohibition unit, a tilt assist unit, a tilt prohibition unit, a side shift assist unit, and a side shift prohibition unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

A forklift (10) is provided with a cargo handling device (21), an operation unit (34), and a control device (61). The cargo handling device (21) is provided with a fork (26). The cargo handling device (21) performs cargo handling motions. The cargo handling motions include a lift motion for raising and lowering the fork (26), a tilt motion for tilting the fork, and a reach motion for moving the fork in a front/rear direction. The control device (61) causes the cargo handling device (21) to perform the cargo handling motions in accordance with operation of the operation unit (34). The control device (61) provides assistance to an operator by controlling the cargo handling device (21) such that positioning displacement, by the operator, of the fork (26) and a cargo to be handled becomes small. When the operation unit (34) is operated, the control device (61) prohibits assistance for the cargo handling motion identical to the cargo handling motion performed by the cargo handling device (21) through operation of the operation unit (34).

Description

フォークリフトforklift
  本開示は、フォークリフトに関する。 This disclosure relates to forklifts.
  特許文献1に開示のフォークリフトは、荷役装置と、操作部と、を備える。荷役装置は、荷役動作を行う。荷役装置は、フォークを備える。操作部は、フォークリフトを操作する操作者に操作される。操作部の操作によって、フォークの上下方向の位置、及びフォークの傾きを調整することができる。荷取り作業や荷置き作業を行う際には、操作者が操作部を操作することでフォークと荷役対象との位置合わせを行う。フォークと荷役対象との位置合わせを行った後に、フォークを荷役対象に近付けることで、荷取り作業や荷置き作業が行われる。 The forklift disclosed in Patent Document 1 includes a cargo handling device and an operation unit. The cargo handling device performs a cargo handling operation. The cargo handling device is equipped with a fork. The operation unit is operated by an operator who operates the forklift. By operating the operation unit, the vertical position of the fork and the inclination of the fork can be adjusted. When performing loading work or loading work, the operator operates the operation unit to align the fork and the cargo handling target. After aligning the fork and the cargo handling target, the fork is brought closer to the cargo handling target to perform loading and unloading work.
特開2017-114674号公報JP-A-2017-114674A
  操作者がフォークと荷役対象との位置合わせを行った場合であっても、フォークと荷役対象との間には、ずれが生じている場合がある。フォークリフトは、操作者による位置合わせのずれが小さくなるように制御を行う補助機能を備えている場合がある。しかしながら、この補助機能により、操作者の操作が制限されるおそれがある。例えば、操作者が操作部を操作することでフォークと荷役対象との位置合わせを行っている際に、フォークと荷役対象とのずれが生じていない位置で制御装置がフォークを停止させる場合がある。この場合、操作者が操作部を操作しているにも関わらず、制御装置がフォークを停止させてしまう。このため、フォークリフトの操作性の低下を招くおそれがある。 Even when the operator aligns the fork with the cargo handling target, there may be a gap between the fork and the cargo handling target. The forklift may have an auxiliary function that controls the misalignment by the operator so as to be small. However, this auxiliary function may limit the operation of the operator. For example, when the operator adjusts the fork and the cargo handling target by operating the operation unit, the control device may stop the fork at a position where the fork and the cargo handling target do not deviate from each other. .. In this case, the control device stops the fork even though the operator is operating the operation unit. Therefore, the operability of the forklift may be deteriorated.
  上記課題を解決するフォークリフトは、フォークを有する荷役装置と、ティルト動作、リフト動作、及びサイドシフト動作の少なくとも1つを含む荷役動作を前記荷役装置に行わせるように構成された制御装置と、前記荷役動作を前記荷役装置に行わせる際に操作される操作部であって操作者によって操作される操作部が操作されているか否かを示す情報を取得する取得部と、を備え、前記制御装置は、前記操作者による前記フォークと荷役対象との位置合わせのずれを小さくするように前記荷役装置の制御を行うことで、前記操作者の補助を行う補助制御と、前記操作部が操作されている場合、当該操作部の操作により前記荷役装置が行う前記荷役動作と同一の前記荷役動作に対する前記補助制御を禁止する禁止制御と、を行うことを特徴とする。 A forklift that solves the above problems includes a cargo handling device having a fork, a control device configured to cause the cargo handling device to perform a cargo handling operation including at least one of a tilt operation, a lift operation, and a side shift operation, and the above-mentioned. The control device includes an operation unit that is operated when the cargo handling device is to perform a cargo handling operation, and an acquisition unit that acquires information indicating whether or not the operation unit operated by the operator is being operated. Controls the cargo handling device so as to reduce the misalignment between the fork and the cargo handling target by the operator, whereby the auxiliary control for assisting the operator and the operation unit are operated. If so, the operation of the operation unit is characterized in that the prohibition control for prohibiting the auxiliary control for the same cargo handling operation as the cargo handling operation performed by the cargo handling device is performed.
  操作部の操作による荷役動作が行われている場合、当該荷役動作と同一の荷役動作に対する補助制御が禁止される。このため、操作者が操作部を操作している場合に、当該操作部による荷役動作が補助制御によって制限されることが抑制される。操作者の操作が制御装置によって制限されないため、操作者の違和感が軽減されるとともに、フォークリフトの操作性の低下を抑制できる。 When a cargo handling operation is performed by the operation of the operation unit, auxiliary control for the same cargo handling operation as the cargo handling operation is prohibited. Therefore, when the operator is operating the operation unit, it is possible to prevent the cargo handling operation by the operation unit from being restricted by the auxiliary control. Since the operation of the operator is not restricted by the control device, the discomfort of the operator can be reduced and the deterioration of the operability of the forklift can be suppressed.
  上記フォークリフトについて、前記荷役動作は、前記リフト動作を含み、前記操作部は、前記リフト動作に対応するリフト操作部を含み、前記補助制御は、前記フォークと前記荷役対象との上下方向に対する相対的な位置ずれが小さくなるように前記操作者の補助を行うように構成されたリフト補助制御を含み、前記禁止制御は、前記リフト操作部の操作により前記リフト動作が行われている場合、前記リフト補助制御を禁止するリフト禁止制御を含んでいてもよい。 With respect to the forklift, the cargo handling operation includes the lift operation, the operation unit includes a lift operation unit corresponding to the lift operation, and the auxiliary control is relative to the vertical direction of the fork and the cargo handling target. The prohibition control includes the lift assist control configured to assist the operator so as to reduce the misalignment, and the prohibition control is the lift when the lift operation is performed by the operation of the lift operation unit. It may include a lift prohibition control that prohibits auxiliary control.
  上記フォークリフトについて、前記荷役動作は、前記ティルト動作を含み、前記操作部は、前記ティルト動作に対応するティルト操作部を含み、前記補助制御は、前記フォークと前記荷役対象との前後方向に対する相対的な傾きのずれが小さくなるように前記操作者の補助を行うように構成されたティルト補助制御を含み、前記禁止制御は、前記ティルト操作部の操作により前記ティルト動作が行われている場合、前記ティルト補助制御を禁止するティルト禁止制御を含んでいてもよい。 For the forklift, the cargo handling operation includes the tilt operation, the operation unit includes a tilt operation unit corresponding to the tilt operation, and the auxiliary control is relative to the fork and the cargo handling target in the front-rear direction. The prohibition control includes a tilt assist control configured to assist the operator so that the deviation of the tilt is small, and the prohibition control is the tilt operation when the tilt operation is performed by the operation of the tilt operation unit. It may include a tilt prohibition control that prohibits the tilt auxiliary control.
  上記フォークリフトについて、前記荷役動作は、前記サイドシフト動作を含み、前記操作部は、前記サイドシフト動作に対応するサイドシフト操作部を含み、前記補助制御は、前記フォークと前記荷役対象との左右方向に対する相対的な位置ずれが小さくなるように前記操作者の補助を行うように構成されたサイドシフト補助制御を含み、前記禁止制御は、前記サイドシフト操作部の操作により前記サイドシフト動作が行われている場合、前記サイドシフト補助制御を禁止するサイドシフト禁止制御を含んでいてもよい。 Regarding the forklift, the cargo handling operation includes the side shift operation, the operation unit includes a side shift operation unit corresponding to the side shift operation, and the auxiliary control is a left-right direction between the fork and the cargo handling target. The prohibition control includes the side shift assist control configured to assist the operator so that the relative positional deviation with respect to the vehicle is small, and the prohibition control is performed by the operation of the side shift operation unit. If so, the side shift prohibition control that prohibits the side shift auxiliary control may be included.
  上記フォークリフトについて、前記補助制御は、前記フォークが前記荷役対象に近付く過程で行われてもよい。
  フォークを荷役対象に近付ける段階では、操作者がフォークと荷役対象との位置合わせを終えていると想定される。補助制御は、操作者がフォークと荷役対象との位置合わせを終えた後に、この位置合わせにより生じたずれを小さくする。位置合わせを終えていないにも関わらず補助制御が行われることを抑制できる。
Regarding the forklift, the auxiliary control may be performed in the process of the fork approaching the cargo handling target.
At the stage of bringing the fork closer to the cargo handling target, it is assumed that the operator has finished aligning the fork with the cargo handling target. The auxiliary control reduces the deviation caused by this alignment after the operator has finished aligning the fork with the cargo handling target. It is possible to suppress the auxiliary control from being performed even though the alignment has not been completed.
  本発明によれば、操作性の低下を抑制できる。 According to the present invention, deterioration of operability can be suppressed.
フォークリフトの側面図。Side view of the forklift. フォークリフトの斜視図。Perspective view of a forklift. 第1実施形態におけるフォークリフトの概略構成図。The schematic block diagram of the forklift in 1st Embodiment. 制御装置が行うリフト補助制御を示すフローチャート。The flowchart which shows the lift assist control performed by a control device. 制御装置が行うティルト補助制御を示すフローチャート。A flowchart showing tilt assist control performed by the control device. リフト補助制御の作用を説明するための図。The figure for demonstrating the operation of the lift assist control. リフト補助制御の作用を説明するための図。The figure for demonstrating the operation of the lift assist control. ティルト補助制御の作用を説明するための図。The figure for demonstrating the action of the tilt assist control. ティルト補助制御の作用を説明するための図。The figure for demonstrating the action of the tilt assist control. サイドシフト装置を示す斜視図。The perspective view which shows the side shift device. 第2実施形態におけるフォークリフトの概略構成図。The schematic block diagram of the forklift in the 2nd Embodiment. 制御装置が行うサイドシフト補助制御を示すフローチャート。The flowchart which shows the side shift auxiliary control performed by a control device. サイドシフト補助制御の作用を説明するための図。The figure for demonstrating the operation of the side shift auxiliary control. サイドシフト補助制御の作用を説明するための図。The figure for demonstrating the operation of the side shift auxiliary control.
  (第1実施形態)
  フォークリフトの第1実施形態について説明する。
  図1及び図2に示すように、フォークリフト10は、車体11と、リーチレグ12と、前輪13と、後輪14と、荷役装置21と、操作部34と、を備える。
(First Embodiment)
The first embodiment of the forklift will be described.
As shown in FIGS. 1 and 2, the forklift 10 includes a vehicle body 11, a reach leg 12, front wheels 13, rear wheels 14, a cargo handling device 21, and an operation unit 34.
  本実施形態のフォークリフト10は、リーチ式のフォークリフトである。フォークリフト10は、カウンタ式のフォークリフトであってもよい。フォークリフト10は、フォークリフト10に搭乗した操作者によって手動で動作するものであってもよいし、自動での動作と手動での動作を切り替えられるものであってもよい。即ち、フォークリフト10は、操作者による手動での動作が可能なものであればよい。以下の説明において、前後左右上下とはフォークリフト10を基準にした前後左右上下である。前後方向は、フォークリフト10の進行方向ともいえる。左右方向は、フォークリフト10の車幅方向ともいえる。上下方向はフォークリフト10の高さ方向ともいえる。 The forklift 10 of the present embodiment is a reach type forklift. The forklift 10 may be a counter type forklift. The forklift 10 may be manually operated by an operator boarding the forklift 10, or may be capable of switching between automatic operation and manual operation. That is, the forklift 10 may be any as long as it can be manually operated by the operator. In the following description, the front-back, left-right, up-down are front-back, left-right, up-down with respect to the forklift 10. The front-rear direction can be said to be the traveling direction of the forklift 10. The left-right direction can be said to be the vehicle width direction of the forklift 10. It can be said that the vertical direction is the height direction of the forklift 10.
  リーチレグ12は、左右方向に互いに離間して2つ設けられている。リーチレグ12は、車体11から前方に延びている。
  前輪13は、各リーチレグ12に1つずつ設けられている。後輪14は、車体11に設けられている。後輪14は、操舵輪である。後輪14は、駆動輪である。
Two reach legs 12 are provided so as to be separated from each other in the left-right direction. The reach leg 12 extends forward from the vehicle body 11.
One front wheel 13 is provided for each reach leg 12. The rear wheel 14 is provided on the vehicle body 11. The rear wheel 14 is a steering wheel. The rear wheel 14 is a drive wheel.
  荷役装置21は、車体11の前方に設けられている。荷役装置21は、マスト22と、リフトブラケット25と、フォーク26と、リフトシリンダ31と、ティルトシリンダ32と、リーチシリンダ33と、を備える。 The cargo handling device 21 is provided in front of the vehicle body 11. The cargo handling device 21 includes a mast 22, a lift bracket 25, a fork 26, a lift cylinder 31, a tilt cylinder 32, and a reach cylinder 33.
  マスト22は、多段式のマストである。マスト22は、アウタマスト23と、インナマスト24と、を備える。インナマスト24は、アウタマスト23に対して昇降可能に設けられている。 The mast 22 is a multi-stage mast. The mast 22 includes an outer mast 23 and an inner mast 24. The inner mast 24 is provided so as to be able to move up and down with respect to the outer mast 23.
  リフトブラケット25は、インナマスト24に固定されている。フォーク26は、リフトブラケット25に固定されている。フォーク26は、左右方向に互いに離間して2つ設けられている。リフトブラケット25は、フォーク26をインナマスト24に固定するための部材である。 The lift bracket 25 is fixed to the inner mast 24. The fork 26 is fixed to the lift bracket 25. Two forks 26 are provided so as to be separated from each other in the left-right direction. The lift bracket 25 is a member for fixing the fork 26 to the inner mast 24.
  リフトシリンダ31は、油圧シリンダである。リフトブラケット25は、リフトシリンダ31への作動油の給排によって昇降する。フォーク26は、リフトブラケット25とともに昇降する。 The lift cylinder 31 is a hydraulic cylinder. The lift bracket 25 moves up and down by supplying and discharging hydraulic oil to and from the lift cylinder 31. The fork 26 moves up and down together with the lift bracket 25.
  ティルトシリンダ32は、油圧シリンダである。リフトブラケット25は、ティルトシリンダ32への作動油の給排によって前後方向に傾動する。傾動は、リフトブラケット25を前方に傾動させる前傾、及びリフトブラケット25を後方に傾動させる後傾を含む。フォーク26は、リフトブラケット25とともに傾動する。 The tilt cylinder 32 is a hydraulic cylinder. The lift bracket 25 tilts in the front-rear direction by supplying and discharging hydraulic oil to the tilt cylinder 32. Tilt includes forward tilt that tilts the lift bracket 25 forward and backward tilt that tilts the lift bracket 25 backward. The fork 26 tilts together with the lift bracket 25.
  リーチシリンダ33は、油圧シリンダである。マスト22は、リーチシリンダ33への作動油の給排によって前後方向に移動する。フォーク26は、マスト22とともに前後方向に移動する。以下、リーチシリンダ33によってフォーク26を前進させることをリーチアウト動作という。 The reach cylinder 33 is a hydraulic cylinder. The mast 22 moves in the front-rear direction by supplying and discharging hydraulic oil to the reach cylinder 33. The fork 26 moves in the front-rear direction together with the mast 22. Hereinafter, moving the fork 26 forward by the reach cylinder 33 is referred to as a reach-out operation.
  操作部34は、リフト操作部35と、ティルト操作部36と、リーチ操作部37と、を含む。
  リフト操作部35は、操作者によって操作される。本実施形態のリフト操作部35はレバーである。リフト操作部35は、中立位置から前傾又は後傾する。リフト操作部35は、フォーク26を昇降させるときに操作者によって操作される。
The operation unit 34 includes a lift operation unit 35, a tilt operation unit 36, and a reach operation unit 37.
The lift operation unit 35 is operated by an operator. The lift operation unit 35 of this embodiment is a lever. The lift operation unit 35 tilts forward or backward from the neutral position. The lift operation unit 35 is operated by an operator when raising and lowering the fork 26.
  ティルト操作部36は、操作者によって操作される。本実施形態のティルト操作部36はレバーである。ティルト操作部36は、中立位置から前傾又は後傾する。ティルト操作部36は、フォーク26を傾動させるときに操作者によって操作される。 The tilt operation unit 36 is operated by an operator. The tilt operation unit 36 of this embodiment is a lever. The tilt operation unit 36 tilts forward or backward from the neutral position. The tilt operation unit 36 is operated by an operator when the fork 26 is tilted.
  リーチ操作部37は、操作者によって操作される。本実施形態のリーチ操作部37はレバーである。リーチ操作部37は、中立位置から前傾又は後傾する。リーチ操作部37は、フォーク26を前後方向に移動させるときに操作者によって操作される。 The reach operation unit 37 is operated by an operator. The reach operation unit 37 of this embodiment is a lever. The reach operation unit 37 tilts forward or backward from the neutral position. The reach operation unit 37 is operated by an operator when the fork 26 is moved in the front-rear direction.
  図3に示すように、フォークリフト10は、リフトセンサ41と、ティルトセンサ42と、リーチセンサ43と、駆動機構44と、油圧機構45と、検出部46と、カメラ51と、画像処理装置52と、制御装置61と、を備える。 As shown in FIG. 3, the forklift 10 includes a lift sensor 41, a tilt sensor 42, a reach sensor 43, a drive mechanism 44, a hydraulic mechanism 45, a detection unit 46, a camera 51, and an image processing device 52. , And a control device 61.
  リフトセンサ41は、リフト操作部35の操作量を検出する。リフトセンサ41は、リフト操作部35の操作量に応じた電気信号を出力する。リフトセンサ41によってリフト操作部35の操作量が検出されていれば、リフト操作部35が操作されているといえる。リフトセンサ41によってリフト操作部35の操作量が検出されていなければ、リフト操作部35が操作されていないといえる。リフトセンサ41の検出結果は、リフト操作部35が操作されているか否かを示す情報といえる。 The lift sensor 41 detects the amount of operation of the lift operation unit 35. The lift sensor 41 outputs an electric signal according to the amount of operation of the lift operation unit 35. If the operation amount of the lift operation unit 35 is detected by the lift sensor 41, it can be said that the lift operation unit 35 is being operated. If the operation amount of the lift operation unit 35 is not detected by the lift sensor 41, it can be said that the lift operation unit 35 is not operated. The detection result of the lift sensor 41 can be said to be information indicating whether or not the lift operation unit 35 is operated.
  ティルトセンサ42は、ティルト操作部36の操作量を検出する。ティルトセンサ42は、ティルト操作部36の操作量に応じた電気信号を出力する。ティルトセンサ42によってティルト操作部36の操作量が検出されていれば、ティルト操作部36が操作されているといえる。ティルトセンサ42によってティルト操作部36の操作量が検出されていなければ、ティルト操作部36が操作されていないといえる。ティルトセンサ42の検出結果は、ティルト操作部36が操作されているか否かを示す情報といえる。 The tilt sensor 42 detects the amount of operation of the tilt operation unit 36. The tilt sensor 42 outputs an electric signal according to the amount of operation of the tilt operation unit 36. If the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42, it can be said that the tilt operation unit 36 is being operated. If the operation amount of the tilt operation unit 36 is not detected by the tilt sensor 42, it can be said that the tilt operation unit 36 is not operated. The detection result of the tilt sensor 42 can be said to be information indicating whether or not the tilt operation unit 36 is operated.
  リーチセンサ43は、リーチ操作部37の操作量を検出する。リーチセンサ43は、リーチ操作部37の操作量に応じた電気信号を出力する。リーチセンサ43によってリーチ操作部37の操作量が検出されていれば、リーチ操作部37が操作されているといえる。リーチセンサ43によってリーチ操作部37の操作量が検出されていなければ、リーチ操作部37が操作されていないといえる。リーチセンサ43の検出結果は、リーチ操作部37が操作されているか否かを示す情報といえる。 The reach sensor 43 detects the amount of operation of the reach operation unit 37. The reach sensor 43 outputs an electric signal according to the amount of operation of the reach operation unit 37. If the amount of operation of the reach operation unit 37 is detected by the reach sensor 43, it can be said that the reach operation unit 37 is being operated. If the operation amount of the reach operation unit 37 is not detected by the reach sensor 43, it can be said that the reach operation unit 37 is not operated. The detection result of the reach sensor 43 can be said to be information indicating whether or not the reach operation unit 37 is operated.
  駆動機構44は、フォークリフト10を走行動作させるための部材である。駆動機構44は、後輪14を駆動させるための駆動源及び後輪14を操舵するための操舵機構を含む。駆動源をモータとするフォークリフトであれば、駆動機構44はモータドライバを含む。駆動源をエンジンとするフォークリフトであれば、駆動機構44は燃料噴射装置を含む。 The drive mechanism 44 is a member for driving the forklift 10. The drive mechanism 44 includes a drive source for driving the rear wheels 14 and a steering mechanism for steering the rear wheels 14. In the case of a forklift whose motor is a drive source, the drive mechanism 44 includes a motor driver. In the case of a forklift whose engine is a drive source, the drive mechanism 44 includes a fuel injection device.
  油圧機構45は、油圧機器への作動油の給排を制御するための部材である。油圧機器は、リフトシリンダ31、ティルトシリンダ32、及びリーチシリンダ33を含む。油圧機構45は、作動油を吐出するポンプ、及び油圧機器への作動油の給排を制御するコントロールバルブを含む。 The hydraulic mechanism 45 is a member for controlling the supply and discharge of hydraulic oil to the hydraulic equipment. Hydraulic equipment includes a lift cylinder 31, a tilt cylinder 32, and a reach cylinder 33. The hydraulic mechanism 45 includes a pump for discharging hydraulic oil and a control valve for controlling the supply and discharge of hydraulic oil to hydraulic equipment.
  検出部46は、フォーク26の位置及び傾きを検出するために設けられている。検出部46は、ティルト角センサ47と、揚高センサ48と、リーチ量センサ49と、を含む。
  ティルト角センサ47は、ティルト角を検出する。ティルト角とは、フォーク26の傾動角度である。フォーク26の傾動角度は、例えば、フォーク26が傾動していない状態を0°とした場合の角度である。ティルト角センサ47は、ティルト角に応じた電気信号を制御装置61に出力する。制御装置61は、ティルト角センサ47からの電気信号によりティルト角を認識可能である。
The detection unit 46 is provided to detect the position and inclination of the fork 26. The detection unit 46 includes a tilt angle sensor 47, a lift sensor 48, and a reach amount sensor 49.
The tilt angle sensor 47 detects the tilt angle. The tilt angle is the tilt angle of the fork 26. The tilt angle of the fork 26 is, for example, an angle when the state in which the fork 26 is not tilted is 0 °. The tilt angle sensor 47 outputs an electric signal corresponding to the tilt angle to the control device 61. The control device 61 can recognize the tilt angle by the electric signal from the tilt angle sensor 47.
  揚高センサ48は、揚高を検出する。揚高は、路面からフォーク26までの高さである。揚高センサ48は、揚高に応じた電気信号を制御装置61に出力する。制御装置61は、揚高センサ48からの電気信号により揚高を認識可能である。 The lift sensor 48 detects the lift. The lift is the height from the road surface to the fork 26. The lift sensor 48 outputs an electric signal corresponding to the lift to the control device 61. The control device 61 can recognize the lift by the electric signal from the lift sensor 48.
  リーチ量センサ49は、リーチ量を検出する。リーチ量とは、フォーク26が最も車体11に近い状態を0とした場合のフォーク26の前進量である。即ち、リーチ量とは、リーチアウト動作によりフォーク26が前進している距離である。リーチ量センサ49は、リーチ量に応じた電気信号を制御装置61に出力する。制御装置61は、リーチ量センサ49からの電気信号によりリーチ量を認識可能である。 The reach amount sensor 49 detects the reach amount. The reach amount is the amount of advance of the fork 26 when the state in which the fork 26 is closest to the vehicle body 11 is set to 0. That is, the reach amount is the distance at which the fork 26 is advanced by the reach-out operation. The reach amount sensor 49 outputs an electric signal according to the reach amount to the control device 61. The control device 61 can recognize the reach amount by the electric signal from the reach amount sensor 49.
  カメラ51は、RGBカメラである。カメラ51は、CCDイメージセンサ又はCMOSイメージセンサ等の撮像素子を備える。カメラ51は、赤、緑及び青の3色のカラー信号で構成された画像データを出力する。 The camera 51 is an RGB camera. The camera 51 includes an image pickup element such as a CCD image sensor or a CMOS image sensor. The camera 51 outputs image data composed of three color signals of red, green, and blue.
  カメラ51は、フォーク26とともに昇降し、かつ、フォーク26とともに傾動する箇所に取り付けられている。本実施形態において、カメラ51は、リフトブラケット25に取り付けられている。カメラ51の左右方向の位置は、例えば、2つのフォーク26同士の中心位置である。 The camera 51 is attached to a position where it moves up and down together with the fork 26 and tilts together with the fork 26. In this embodiment, the camera 51 is attached to the lift bracket 25. The position of the camera 51 in the left-right direction is, for example, the center position between the two forks 26.
  カメラ51は、前方を向いて配置されている。カメラ51は、撮像範囲にフォーク26の前方が映りこむように配置されている。撮像範囲は、カメラ51の水平画角と垂直画角によって定まる。 The camera 51 is arranged facing forward. The camera 51 is arranged so that the front of the fork 26 is reflected in the imaging range. The imaging range is determined by the horizontal angle of view and the vertical angle of view of the camera 51.
  画像処理装置52は、プロセッサ53と、記憶部54と、を備える。プロセッサ53としては、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、又はDSP(Digital Signal Processor)が用いられる。記憶部54は、RAM(Random access memory)及びROM(Read Only Memory)を含む。記憶部54は、処理をプロセッサに実行させるように構成されたプログラムコードまたは指令を格納している。記憶部54、即ち、コンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。画像処理装置52は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェア回路によって構成されていてもよい。処理回路である画像処理装置52は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。 The image processing device 52 includes a processor 53 and a storage unit 54. As the processor 53, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a DSP (Digital Signal Processor) is used. The storage unit 54 includes a RAM (Random access memory) and a ROM (Read Only Memory). The storage unit 54 stores a program code or a command configured to cause a processor to execute a process. The storage 54, i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer. The image processing device 52 may be configured by a hardware circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). The image processing apparatus 52, which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
  画像処理装置52は、カメラ51の撮像によって得られた画像データから荷役対象の位置、及び荷役対象の傾きを検出する。荷役対象は、フォーク26に積載されるパレット、及びパレットが置かれる対象となる荷置き場を含む。 The image processing device 52 detects the position of the cargo handling target and the inclination of the cargo handling target from the image data obtained by the image pickup of the camera 51. The cargo handling target includes a pallet loaded on the fork 26 and a loading space on which the pallet is placed.
  画像処理装置52は、画像データからカメラ座標系での荷役対象の座標及び傾きを導出する。カメラ座標系の座標をカメラ座標とする。荷役対象のカメラ座標の導出手法は任意である。 The image processing device 52 derives the coordinates and inclination of the cargo handling target in the camera coordinate system from the image data. Let the coordinates of the camera coordinate system be the camera coordinates. The method for deriving the camera coordinates of the cargo handling target is arbitrary.
  画像処理装置52は、画像データ中の荷役対象の写り方から荷役対象のカメラ座標及び傾きを導出してもよい。カメラ51と荷役対象との相対位置と荷役対象の写り方には相関があるため、この相関を用いて荷役対象のカメラ座標及び傾きを導出するようにしてもよい。 The image processing device 52 may derive the camera coordinates and inclination of the cargo handling target from the appearance of the cargo handling target in the image data. Since there is a correlation between the relative position of the camera 51 and the cargo handling target and the way the cargo handling target is captured, the camera coordinates and tilt of the cargo handling target may be derived using this correlation.
  画像処理装置52は、AR(Augmented Reality)マーカーを用いて荷役対象のカメラ座標及び傾きを導出してもよい。荷役対象にARマーカーが設けられている場合、カメラ51によってARマーカーが撮像されることでARマーカーのカメラ座標を導出することができる。画像処理装置52は、ARマーカーの座標をパレットの座標とみなしてもよいし、ARマーカーと荷役対象の位置関係から荷役対象のカメラ座標を導出してもよい。 The image processing device 52 may derive the camera coordinates and inclination of the cargo handling target by using the AR (Augmented Reality) marker. When the AR marker is provided on the cargo handling target, the camera coordinates of the AR marker can be derived by capturing the image of the AR marker by the camera 51. The image processing device 52 may regard the coordinates of the AR marker as the coordinates of the palette, or may derive the camera coordinates of the cargo handling target from the positional relationship between the AR marker and the cargo handling target.
  画像処理装置52は、時間変化に伴うカメラ51の位置、及び姿勢の変化からカメラ座標及び傾きを導出してもよい。この場合、フォークリフト10は、カメラ51の位置及び姿勢を検出するセンサを備える。画像処理装置52は、異なる2つの時刻である第1時刻及び第2時刻でのカメラ51の位置及び姿勢をセンサから取得する。画像処理装置52は、第1時刻及び第2時刻でのカメラ51の位置及び姿勢の変化を導出する。画像処理装置52は、第1時刻及び第2時刻での画像に写る同一特徴点の画像上での座標の変化と、第1時刻及び第2時刻でのカメラ51の位置及び姿勢の変化とを用いて三角測量により特徴点のカメラ座標を導出する。即ち、画像処理装置52は、第1時刻でのカメラ51と第2時刻でのカメラ51とを1つのステレオカメラとみなしてカメラ座標を導出する。特徴点とは、荷役対象のエッジなど、荷役対象の境目として認識可能な部分である。特徴点の抽出アルゴリズムとしては、例えば、SIFT(Scale-Invariant Feature Transform)、又はSURF(Speeded Up Robust Features)を挙げることができる。画像処理装置52は、特徴点のカメラ座標から、荷役対象のカメラ座標及び傾きを導出する。 The image processing device 52 may derive the camera coordinates and the inclination from the changes in the position and posture of the camera 51 with time. In this case, the forklift 10 includes a sensor that detects the position and orientation of the camera 51. The image processing device 52 acquires the position and orientation of the camera 51 at the first time and the second time, which are two different times, from the sensor. The image processing device 52 derives changes in the position and orientation of the camera 51 at the first time and the second time. The image processing device 52 determines the change in the coordinates on the image of the same feature point reflected in the image at the first time and the second time, and the change in the position and posture of the camera 51 at the first time and the second time. The camera coordinates of the feature points are derived by triangulation. That is, the image processing device 52 regards the camera 51 at the first time and the camera 51 at the second time as one stereo camera, and derives the camera coordinates. A feature point is a part that can be recognized as a boundary of a cargo handling target, such as an edge of a cargo handling target. Examples of the feature point extraction algorithm include SIFT (Scale-Invariant Feature Transform) and SURF (Speeded Up Robust Features). The image processing device 52 derives the camera coordinates and the inclination of the cargo handling target from the camera coordinates of the feature points.
  画像処理装置52は、荷役対象のカメラ座標を導出すると、カメラ座標をワールド座標系の座標に変換する。ワールド座標系は3軸直交座標系である。ワールド座標系のX軸は左右方向に延びる軸である。ワールド座標系のY軸は前後方向に延びる軸である。ワールド座標系のZ軸は上下方向に延びる軸である。ワールド座標系の原点は、フォークリフト10との位置関係が一定であればよく、例えば、2つの前輪13同士の間の中心位置を原点とすることができる。ワールド座標系の座標をワールド座標とする。画像処理装置52は、ワールド座標系の原点とカメラ座標系の原点とのずれ、及びワールド座標系の座標軸とカメラ座標系の座標軸とのずれに基づき、カメラ座標をワールド座標に変換する。リフトブラケット25の位置、及び傾きによってカメラ座標系の原点、及び座標軸の傾きは変化する。このため、画像処理装置52は、制御装置61からティルト角、揚高、及びリーチ量を取得し、これに基づき、カメラ座標をワールド座標に変換する。これにより、画像処理装置52は、荷役対象のワールド座標、及び傾きを導出することができる。なお、荷役対象の傾きとは、ワールド座標系の座標軸に対する荷役対象のずれ角である。図2には、ワールド座標系のX軸を矢印X、Y軸を矢印Y、Z軸を矢印Zで示している。以下の説明において、X座標とはワールド座標系でのX座標であり、Z座標とはワールド座標系でのZ座標である。 When the image processing device 52 derives the camera coordinates of the cargo handling target, the image processing device 52 converts the camera coordinates into the coordinates of the world coordinate system. The world coordinate system is a 3-axis Cartesian coordinate system. The X-axis of the world coordinate system is an axis extending in the left-right direction. The Y axis of the world coordinate system is an axis extending in the front-back direction. The Z axis of the world coordinate system is an axis extending in the vertical direction. The origin of the world coordinate system may be any longer as long as the positional relationship with the forklift 10 is constant, and for example, the origin can be the center position between the two front wheels 13. Let the coordinates of the world coordinate system be the world coordinates. The image processing device 52 converts the camera coordinates into world coordinates based on the deviation between the origin of the world coordinate system and the origin of the camera coordinate system and the deviation between the coordinate axes of the world coordinate system and the coordinate axes of the camera coordinate system. The origin of the camera coordinate system and the inclination of the coordinate axes change depending on the position and inclination of the lift bracket 25. Therefore, the image processing device 52 acquires the tilt angle, the lift, and the reach amount from the control device 61, and converts the camera coordinates into the world coordinates based on the acquisition. As a result, the image processing device 52 can derive the world coordinates and the inclination of the cargo handling target. The inclination of the cargo handling target is the deviation angle of the cargo handling target with respect to the coordinate axes of the world coordinate system. In FIG. 2, the X-axis of the world coordinate system is indicated by an arrow X, the Y-axis is indicated by an arrow Y, and the Z-axis is indicated by an arrow Z. In the following description, the X coordinate is the X coordinate in the world coordinate system, and the Z coordinate is the Z coordinate in the world coordinate system.
  図3に示すように、制御装置61は、プロセッサ62と、記憶部63と、を備える。制御装置61のハードウェア構成は、例えば、画像処理装置52と同一である。
  制御装置61は、走行動作に関する制御を行う。制御装置61は、駆動機構44を制御することでフォークリフト10を走行させる。
As shown in FIG. 3, the control device 61 includes a processor 62 and a storage unit 63. The hardware configuration of the control device 61 is, for example, the same as that of the image processing device 52.
The control device 61 controls the traveling operation. The control device 61 drives the forklift 10 by controlling the drive mechanism 44.
  制御装置61は、荷役動作に関する制御を行う。制御装置61は、油圧機構45を制御することで荷役装置21に荷役動作を行わせる。制御装置61は、リフトセンサ41、ティルトセンサ42、及びリーチセンサ43の検出結果を取得する。制御装置61は、リフトセンサ41、ティルトセンサ42、及びリーチセンサ43の検出結果に応じて荷役装置21に荷役動作を行わせる。これにより、制御装置61は、操作者の操作に応じた荷役動作を荷役装置21に行わせることができる。制御装置61は、ティルトセンサ42、リフトセンサ41、及びリーチセンサ43の検出結果を取得することで、リフト操作部35、ティルト操作部36、及びリーチ操作部37のそれぞれが操作されているか否かを判定できる。制御装置61は、取得部として機能しているといえる。本実施形態の荷役動作は、フォーク26を昇降させるリフト動作、フォーク26を傾動させるティルト動作、及びフォーク26を前後方向に移動させるリーチ動作を含む。リフト操作部35は、リフト動作に対応している。ティルト操作部36は、ティルト動作に対応している。リーチ操作部37は、リーチ動作に対応している。 The control device 61 controls the cargo handling operation. The control device 61 controls the hydraulic mechanism 45 to cause the cargo handling device 21 to perform a cargo handling operation. The control device 61 acquires the detection results of the lift sensor 41, the tilt sensor 42, and the reach sensor 43. The control device 61 causes the cargo handling device 21 to perform cargo handling operations according to the detection results of the lift sensor 41, the tilt sensor 42, and the reach sensor 43. As a result, the control device 61 can cause the cargo handling device 21 to perform a cargo handling operation according to the operation of the operator. Whether or not each of the lift operation unit 35, the tilt operation unit 36, and the reach operation unit 37 is operated by the control device 61 by acquiring the detection results of the tilt sensor 42, the lift sensor 41, and the reach sensor 43. Can be determined. It can be said that the control device 61 functions as an acquisition unit. The cargo handling operation of the present embodiment includes a lift operation for raising and lowering the fork 26, a tilt operation for tilting the fork 26, and a reach operation for moving the fork 26 in the front-rear direction. The lift operation unit 35 corresponds to the lift operation. The tilt operation unit 36 corresponds to the tilt operation. The reach operation unit 37 corresponds to the reach operation.
  フォークリフト10によって荷役作業を行う際には、操作者がフォーク26と荷役対象との位置合わせを行う。荷役作業は、荷置き作業及び荷取り作業を含む。荷置き作業とは、フォーク26に積載されたパレットを荷置き場に置くことである。荷取り作業とは、荷置き場に置かれたパレットをフォーク26に積載することである。 When performing cargo handling work with the forklift 10, the operator aligns the fork 26 with the cargo handling target. Cargo handling work includes loading work and unloading work. The loading operation is to place the pallet loaded on the fork 26 in the loading area. The loading operation is to load the pallets placed in the loading area on the fork 26.
  フォーク26と荷役対象との位置合わせを行う際、操作者は、リフト操作部35を操作することでフォーク26と荷役対象との上下方向の位置を合わせる。操作者は、ティルト操作部36を操作することでフォーク26と荷役対象との傾きを合わせる。この状態でリーチ操作部37を操作してフォーク26を荷役対象に近付けていくことで、荷置き作業又は荷取り作業が行われる。パレットの荷取りを例に挙げて説明すると、操作者はフォーク26とパレットの差込孔との上下方向の位置、及びフォーク26とパレットとの傾きを合わせた上でフォーク26を差込孔に差し込んでいく。 When aligning the fork 26 and the cargo handling target, the operator operates the lift operation unit 35 to align the fork 26 and the cargo handling target in the vertical direction. The operator operates the tilt operation unit 36 to adjust the inclination of the fork 26 and the cargo handling target. By operating the reach operation unit 37 in this state to bring the fork 26 closer to the cargo handling target, the loading operation or the loading operation is performed. Taking pallet loading as an example, the operator adjusts the vertical position of the fork 26 and the pallet insertion hole and the inclination of the fork 26 and the pallet, and then inserts the fork 26 into the insertion hole. I will plug it in.
  制御装置61は、補助制御を行うことで、操作者によるフォークリフト10の操作の補助を行う。補助制御は、操作者の操作によるフォーク26と荷役対象との位置合わせのずれを自動で小さくする制御である。補助制御は、リフト動作を補助するリフト補助制御と、ティルト動作を補助するティルト補助制御と、を含む。以下では、一例として、フォーク26にパレットを積載する荷取り作業を行う際の補助制御について説明を行う。補助制御が行われるタイミングは任意である。例えば、フォークリフト10が起動状態の場合、常に補助制御が行われるようにしてもよいし、予め定められた条件が成立した場合に補助制御が行われるようにしてもよい。予め定められた条件としては、例えば、荷役動作が開始されることである。 The control device 61 assists the operator in operating the forklift 10 by performing auxiliary control. The auxiliary control is a control that automatically reduces the misalignment between the fork 26 and the cargo handling target by the operation of the operator. Auxiliary control includes lift assist control that assists lift operation and tilt assist control that assists tilt operation. Hereinafter, as an example, an auxiliary control for loading a pallet on the fork 26 will be described. The timing at which the auxiliary control is performed is arbitrary. For example, when the forklift 10 is in the activated state, the auxiliary control may be always performed, or the auxiliary control may be performed when a predetermined condition is satisfied. The predetermined condition is, for example, that the cargo handling operation is started.
  以下、リフト補助制御について説明する。
  リフト補助制御は、例えば、リフト動作の開始を条件として開始される。制御装置61は、リフトセンサ41によってリフト操作部35の操作量が検出されていればリフト動作を開始する。制御装置61は、これに伴いリフト補助制御を開始する。リフト補助制御は、所定の制御周期で繰り返し行われる。
Hereinafter, the lift assist control will be described.
The lift assist control is started, for example, on condition that the lift operation is started. The control device 61 starts the lift operation if the operation amount of the lift operation unit 35 is detected by the lift sensor 41. The control device 61 starts lift assist control accordingly. The lift assist control is repeatedly performed in a predetermined control cycle.
  図4に示すように、ステップS1において、制御装置61は、パレットのワールド座標を取得する。パレットのワールド座標は画像処理装置52から取得することができる。
  次に、ステップS2において、制御装置61は、フォーク26とパレットとの位置ずれが生じているか否かを判定する。リフト補助制御において、フォーク26とパレットとの位置ずれとは、フォーク26とパレットとの上下方向に対する相対的な位置ずれである。詳細にいえば、フォーク26とパレットとの上下方向に対する相対的な位置ずれとは、フォーク26の上下方向の中心位置と、パレットの差込孔における上下方向の中心位置との上下方向に対するずれである。リーチ動作によりフォーク26をパレットに向けて移動させた際に、フォーク26が差込孔に差し込まれる状態は位置ずれが生じていない状態といえる。
As shown in FIG. 4, in step S1, the control device 61 acquires the world coordinates of the pallet. The world coordinates of the palette can be obtained from the image processing device 52.
Next, in step S2, the control device 61 determines whether or not the position of the fork 26 and the pallet is displaced. In the lift assist control, the misalignment between the fork 26 and the pallet is the relative misalignment between the fork 26 and the pallet in the vertical direction. More specifically, the relative positional deviation between the fork 26 and the pallet in the vertical direction is the vertical deviation between the vertical center position of the fork 26 and the vertical center position in the insertion hole of the pallet. be. When the fork 26 is moved toward the pallet by the reach operation, it can be said that the state in which the fork 26 is inserted into the insertion hole is a state in which the position shift does not occur.
  フォーク26とパレットとの位置ずれが生じているか否かは、フォーク26のワールド座標と、パレットのワールド座標とに基づいて判定することができる。ワールド座標系の原点とフォーク26との位置関係は揚高、ティルト角及びリーチ量によって定まる。従って、制御装置61は、揚高、ティルト角及びリーチ量からフォーク26のワールド座標を導出することができる。制御装置61は、フォーク26のZ座標とパレットの差込孔のZ座標との差をフォーク26とパレットとの位置ずれ量とみなす。制御装置61は、フォーク26とパレットとの位置ずれ量が閾値未満であれば位置ずれが生じていないと判定する。制御装置61は、フォーク26とパレットとの位置ずれ量が閾値以上であれば位置ずれが生じていると判定する。ステップS2の判定結果が否定の場合、制御装置61はリフト補助制御を終了する。ステップS2の判定結果が肯定の場合、制御装置61は、ステップS3の処理を行う。 Whether or not the position of the fork 26 and the pallet is misaligned can be determined based on the world coordinates of the fork 26 and the world coordinates of the pallet. The positional relationship between the origin of the world coordinate system and the fork 26 is determined by the lift, tilt angle, and reach amount. Therefore, the control device 61 can derive the world coordinates of the fork 26 from the lift, tilt angle, and reach amount. The control device 61 regards the difference between the Z coordinate of the fork 26 and the Z coordinate of the insertion hole of the pallet as the amount of misalignment between the fork 26 and the pallet. If the amount of misalignment between the fork 26 and the pallet is less than the threshold value, the control device 61 determines that no misalignment has occurred. If the amount of misalignment between the fork 26 and the pallet is equal to or greater than the threshold value, the control device 61 determines that the misalignment has occurred. If the determination result in step S2 is negative, the control device 61 ends the lift assist control. If the determination result in step S2 is affirmative, the control device 61 performs the process of step S3.
  ステップS3において、制御装置61は、リフト動作中か否かを判定する。言い換えれば、制御装置61は、リフト動作が停止されたか否かを判定する。制御装置61は、リフトセンサ41によってリフト操作部35の操作量が検出されていればリフト動作中であると判定する。制御装置61は、リフトセンサ41によってリフト操作部35の操作量が検出されていなければリフト動作中ではないと判定する。ステップS3の判定結果が肯定の場合、制御装置61はステップS11の処理を行う。ステップS3の判定結果が否定の場合、制御装置61はステップS4の処理を行う。 In step S3, the control device 61 determines whether or not the lift is in operation. In other words, the control device 61 determines whether or not the lift operation has been stopped. If the operation amount of the lift operation unit 35 is detected by the lift sensor 41, the control device 61 determines that the lift operation is in progress. The control device 61 determines that the lift operation is not in progress unless the operation amount of the lift operation unit 35 is detected by the lift sensor 41. If the determination result in step S3 is affirmative, the control device 61 performs the process of step S11. If the determination result in step S3 is negative, the control device 61 performs the process of step S4.
  ステップS4において、制御装置61は、リーチアウト動作を開始するか否かを判定する。制御装置61は、リーチ操作部37によってリーチアウト動作が指示されていれば、リーチアウト動作を開始する。ステップS4の判定結果が否定の場合、制御装置61はリフト補助制御を終了する。ステップS4の判定結果が肯定の場合、制御装置61はステップS5の処理を行う。 In step S4, the control device 61 determines whether or not to start the reach-out operation. If the reach-out operation is instructed by the reach operation unit 37, the control device 61 starts the reach-out operation. If the determination result in step S4 is negative, the control device 61 ends the lift assist control. If the determination result in step S4 is affirmative, the control device 61 performs the process of step S5.
  ステップS5において、制御装置61は、リフト動作を補助するリフト補助制御を行う。リフト補助制御とは、制御装置61がフォーク26とパレットとの上下方向に対する相対的な位置ずれを小さくするように荷役装置21の制御を行うことである。制御装置61は、リーチアウト動作中に、位置ずれを小さくするように制御を行う。リーチアウト動作中は、フォーク26がパレットに近付く。制御装置61は、フォーク26がパレットに近付く過程でリフト補助制御を行うといえる。制御装置61は、油圧機構45を制御することでフォーク26を昇降させる。例えば、制御装置61は、フォーク26とパレットとの位置ずれ量が閾値未満になるようにフォーク26を昇降させる。制御装置61は、フォーク26とパレットとの位置ずれ量が閾値未満になると、フォーク26の昇降を停止する。ステップS5の処理を行うことで、制御装置61は、補助制御を行う補助部及びリフト補助制御を行うリフト補助部を備えているといえる。 In step S5, the control device 61 performs lift assist control to assist the lift operation. The lift assist control is to control the cargo handling device 21 so that the control device 61 reduces the relative positional deviation between the fork 26 and the pallet in the vertical direction. The control device 61 controls so as to reduce the misalignment during the reach-out operation. During the reach-out operation, the fork 26 approaches the pallet. It can be said that the control device 61 performs lift assist control in the process of the fork 26 approaching the pallet. The control device 61 raises and lowers the fork 26 by controlling the hydraulic mechanism 45. For example, the control device 61 raises and lowers the fork 26 so that the amount of misalignment between the fork 26 and the pallet is less than the threshold value. When the amount of misalignment between the fork 26 and the pallet becomes less than the threshold value, the control device 61 stops the fork 26 from moving up and down. By performing the process of step S5, it can be said that the control device 61 includes an auxiliary unit for performing auxiliary control and a lift auxiliary unit for performing lift auxiliary control.
  ステップS11において、制御装置61は、リフト補助制御を禁止するリフト禁止制御を行う。即ち、リフト動作中には、フォーク26とパレットとの位置ずれを小さくするように制御装置61による補助が行われることが禁止される。リフト補助制御では、フォーク26とパレットとの位置ずれ量が閾値未満になると、フォーク26の昇降が停止する。リフト補助制御が禁止されることで、リフト動作中に自動でフォーク26が停止することが抑制されている。ステップS11の処理を行うことで、制御装置61は、禁止制御を行う禁止部及びリフト禁止制御を行うリフト禁止部を備えているといえる。 In step S11, the control device 61 performs lift prohibition control for prohibiting lift auxiliary control. That is, during the lift operation, it is prohibited to assist the control device 61 so as to reduce the positional deviation between the fork 26 and the pallet. In the lift assist control, when the amount of misalignment between the fork 26 and the pallet becomes less than the threshold value, the fork 26 stops moving up and down. By prohibiting the lift assist control, it is suppressed that the fork 26 is automatically stopped during the lift operation. By performing the process of step S11, it can be said that the control device 61 includes a prohibition unit for performing prohibition control and a lift prohibition unit for performing lift prohibition control.
  以下、ティルト補助制御について説明する。
  ティルト補助制御は、例えば、ティルト動作の開始を条件として開始される。制御装置61は、ティルトセンサ42によってティルト操作部36の操作量が検出されていればティルト動作を開始する。制御装置61は、これに伴いティルト補助制御を開始する。ティルト補助制御は、所定の制御周期で繰り返し行われる。
Hereinafter, tilt assist control will be described.
The tilt assist control is started, for example, on condition that the tilt operation is started. The control device 61 starts the tilt operation if the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42. The control device 61 starts tilt assist control accordingly. The tilt assist control is repeatedly performed in a predetermined control cycle.
  図5に示すように、ステップS21において、制御装置61は、パレットの傾きを取得する。パレットの傾きは画像処理装置52から取得することができる。
  次に、ステップS22において、制御装置61は、フォーク26とパレットとの傾きのずれが生じているか否かを判定する。フォーク26とパレットとの傾きのずれとは、フォーク26とパレットとの前後方向に対する相対的な傾きのずれである。
As shown in FIG. 5, in step S21, the control device 61 acquires the inclination of the pallet. The tilt of the palette can be obtained from the image processing device 52.
Next, in step S22, the control device 61 determines whether or not the inclination of the fork 26 and the pallet is displaced. The deviation of the inclination between the fork 26 and the pallet is the deviation of the inclination of the fork 26 and the pallet relative to the front-rear direction.
  フォーク26とパレットとの傾きのずれが生じているか否かは、フォーク26の傾きと、パレットの傾きに基づいて判定することができる。フォーク26の傾きとは、ティルト角である。パレットの傾きは、ワールド座標系のY軸に対するパレットの傾きである。ティルト角は、ワールド座標系のY軸に対する傾きを表すため、ティルト角とワールド座標系のY軸に対するパレットの傾きとの差は、フォーク26とパレットとの前後方向に対する相対的な傾きのずれといえる。制御装置61は、フォーク26の傾きとパレットの傾きとの差をフォーク26とパレットとの角度ずれ量とみなす。制御装置61は、フォーク26とパレットとの角度ずれ量が閾値未満であれば傾きのずれが生じていないと判定する。制御装置61は、フォーク26とパレットとの角度ずれ量が閾値以上であれば傾きのずれが生じていると判定する。ステップS22の判定結果が否定の場合、制御装置61はティルト補助制御を終了する。ステップS22の判定結果が肯定の場合、制御装置61は、ステップS23の処理を行う。 Whether or not the inclination of the fork 26 and the pallet is misaligned can be determined based on the inclination of the fork 26 and the inclination of the pallet. The inclination of the fork 26 is a tilt angle. The slope of the palette is the slope of the palette with respect to the Y axis of the world coordinate system. Since the tilt angle represents the inclination of the world coordinate system with respect to the Y axis, the difference between the tilt angle and the inclination of the pallet with respect to the Y axis of the world coordinate system is the deviation of the relative inclination of the fork 26 and the pallet in the front-back direction. I can say. The control device 61 regards the difference between the inclination of the fork 26 and the inclination of the pallet as the amount of angular deviation between the fork 26 and the pallet. The control device 61 determines that the inclination deviation has not occurred if the angle deviation amount between the fork 26 and the pallet is less than the threshold value. If the angle deviation amount between the fork 26 and the pallet is equal to or greater than the threshold value, the control device 61 determines that the inclination deviation has occurred. If the determination result in step S22 is negative, the control device 61 ends the tilt assist control. If the determination result in step S22 is affirmative, the control device 61 performs the process of step S23.
  ステップS23において、制御装置61は、ティルト動作中か否かを判定する。言い換えれば、制御装置61は、ティルト動作が停止されたか否かを判定する。制御装置61は、ティルトセンサ42によってティルト操作部36の操作量が検出されていればティルト動作中であると判定する。制御装置61は、ティルトセンサ42によってティルト操作部36の操作量が検出されていなければティルト動作中ではないと判定する。ステップS23の判定結果が肯定の場合、制御装置61はステップS31の処理を行う。ステップS23の判定結果が否定の場合、制御装置61はステップS24の処理を行う。 In step S23, the control device 61 determines whether or not the tilt operation is in progress. In other words, the control device 61 determines whether or not the tilt operation has been stopped. If the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42, the control device 61 determines that the tilt operation is in progress. The control device 61 determines that the tilt operation is not in progress unless the operation amount of the tilt operation unit 36 is detected by the tilt sensor 42. If the determination result in step S23 is affirmative, the control device 61 performs the process of step S31. If the determination result in step S23 is negative, the control device 61 performs the process of step S24.
  ステップS24は、ステップS4と同様の処理である。ステップS24の判定結果が否定の場合、制御装置61はティルト補助制御を終了する。ステップS24の判定結果が肯定の場合、制御装置61はステップS25の処理を行う。 Step S24 is the same process as step S4. If the determination result in step S24 is negative, the control device 61 ends the tilt assist control. If the determination result in step S24 is affirmative, the control device 61 performs the process of step S25.
  ステップS25において、制御装置61は、ティルト動作を補助するティルト補助制御を行う。ティルト補助制御とは、制御装置61がフォーク26とパレットとの傾きのずれを小さくするように荷役装置21の制御を行うことである。制御装置61は、リーチアウト動作中に、傾きのずれを小さくするように制御を行う。リーチアウト動作中は、フォーク26がパレットに近付く。制御装置61は、フォーク26がパレットに近付く過程でティルト補助制御を行うといえる。制御装置61は、油圧機構45を制御することでフォーク26を傾動させる。これにより、制御装置61は、フォーク26とパレットとの傾きのずれを小さくする。例えば、制御装置61は、フォーク26とパレットとの角度ずれ量が閾値未満になるようにフォーク26を傾動させる。制御装置61は、フォーク26とパレットとの角度ずれ量が閾値未満になると、フォーク26の傾動を停止する。ステップS25の処理を行うことで、制御装置61は、補助制御を行う補助部及びティルト補助制御を行うティルト補助部を備えているといえる。 In step S25, the control device 61 performs tilt assist control to assist the tilt operation. The tilt assist control is to control the cargo handling device 21 so that the control device 61 reduces the deviation of the inclination between the fork 26 and the pallet. The control device 61 controls so as to reduce the deviation of the inclination during the reach-out operation. During the reach-out operation, the fork 26 approaches the pallet. It can be said that the control device 61 performs tilt assist control in the process of the fork 26 approaching the pallet. The control device 61 tilts the fork 26 by controlling the hydraulic mechanism 45. As a result, the control device 61 reduces the deviation of the inclination between the fork 26 and the pallet. For example, the control device 61 tilts the fork 26 so that the amount of angular deviation between the fork 26 and the pallet is less than the threshold value. The control device 61 stops tilting of the fork 26 when the amount of angular deviation between the fork 26 and the pallet becomes less than the threshold value. By performing the process of step S25, it can be said that the control device 61 includes an auxiliary unit for performing auxiliary control and a tilt auxiliary unit for performing tilt auxiliary control.
  ステップS31において、制御装置61は、ティルト補助制御を禁止するティルト禁止制御を行う。即ち、ティルト動作中には、フォーク26とパレットとの傾きのずれを小さくするように制御装置61による補助が行われることが禁止される。ティルト補助制御では、フォーク26とパレットとの角度ずれ量が閾値未満になると、フォーク26の傾動が停止する。ティルト補助制御が禁止されることで、ティルト動作中に自動でフォーク26が停止することが抑制されている。ステップS31の処理を行うことで、制御装置61は、禁止制御を行う禁止部及びティルト禁止制御を行うティルト禁止部を備えているといえる。 In step S31, the control device 61 performs tilt prohibition control for prohibiting tilt assist control. That is, during the tilt operation, it is prohibited to assist the control device 61 so as to reduce the deviation of the inclination between the fork 26 and the pallet. In the tilt assist control, when the amount of angular deviation between the fork 26 and the pallet becomes less than the threshold value, the tilt of the fork 26 is stopped. By prohibiting tilt assist control, it is suppressed that the fork 26 is automatically stopped during the tilt operation. By performing the process of step S31, it can be said that the control device 61 includes a prohibition unit for performing prohibition control and a tilt prohibition unit for performing tilt prohibition control.
  上記したように、制御装置61は、リフト操作部35によるリフト動作を行っている場合にはリフト補助制御を禁止し、ティルト操作部36によるティルト動作を行っている場合にはティルト補助制御を禁止している。制御装置61は、操作部34が操作されている場合、当該操作部34の操作により荷役装置21が行う荷役動作と同一の荷役動作に対する補助を禁止しているといえる。 As described above, the control device 61 prohibits the lift assist control when the lift operation unit 35 is performing the lift operation, and prohibits the tilt assist control when the tilt operation unit 36 is performing the tilt operation. is doing. When the operation unit 34 is operated, it can be said that the control device 61 prohibits assistance for the same cargo handling operation as the cargo handling operation performed by the cargo handling device 21 by the operation of the operation unit 34.
  第1実施形態の作用について説明する。
  図6に示すように、棚Rに置かれたパレットPを荷取りする場合を例に挙げて説明を行う。棚Rは、複数の棚板Bを備える。棚板Bは、上下方向に互いに離間して設けられている。棚板Bには、パレットPが配置されている。複数のパレットPは、上下方向に互いに離間して3つ配置されている。パレットPは、差込孔Hを備える。パレットPには荷Wが積まれている。
The operation of the first embodiment will be described.
As shown in FIG. 6, a case where the pallet P placed on the shelf R is picked up will be described as an example. The shelf R includes a plurality of shelf boards B. The shelf boards B are provided so as to be separated from each other in the vertical direction. A pallet P is arranged on the shelf board B. Three of the plurality of pallets P are arranged vertically apart from each other. The pallet P includes an insertion hole H. A load W is loaded on the pallet P.
  3つのパレットPのうち最も上方に位置するパレットPとフォーク26との上下方向の位置合わせを行う場合、操作者はリフト操作部35を操作することでフォーク26を上昇させる。リフト動作中には、制御装置61によるリフト動作の補助が禁止されている。このため、操作者によるリフト操作部35の操作によってフォーク26の上下方向の位置は定まる。図6に示す状態では、操作者の操作では、フォーク26とパレットPとの間に上下方向に対する位置ずれが生じている。操作者は、この状態でリーチ操作部37を操作することでリーチアウト動作を開始する。 When vertically aligning the pallet P located at the uppermost position of the three pallets P with the fork 26, the operator raises the fork 26 by operating the lift operation unit 35. During the lift operation, assistance for the lift operation by the control device 61 is prohibited. Therefore, the position of the fork 26 in the vertical direction is determined by the operation of the lift operation unit 35 by the operator. In the state shown in FIG. 6, in the operation of the operator, a positional shift in the vertical direction occurs between the fork 26 and the pallet P. The operator starts the reach-out operation by operating the reach operation unit 37 in this state.
  図7に示すように、リーチアウト動作が開始されることで制御装置61はリフト動作を補助するリフト補助制御を行う。図7に示す例では、図6に示す状態から、フォーク26を所定量A1上昇させている。これにより、フォーク26とパレットPとの上下方向の位置ずれが小さくなる。操作者がリフト操作部35の操作を終えた時点でフォーク26とパレットPとの上下方向の位置ずれが生じている場合であっても、リーチアウト動作中に位置ずれが解消される。 As shown in FIG. 7, when the reach-out operation is started, the control device 61 performs lift assist control to assist the lift operation. In the example shown in FIG. 7, the fork 26 is raised by a predetermined amount A1 from the state shown in FIG. As a result, the vertical positional deviation between the fork 26 and the pallet P is reduced. Even if the position shift between the fork 26 and the pallet P in the vertical direction occurs when the operator finishes the operation of the lift operation unit 35, the position shift is eliminated during the reach-out operation.
  3つのパレットPのうち最も上方に位置するパレットPとフォーク26との傾きを合わせる場合、操作者はティルト操作部36を操作することでフォーク26を傾動させる。図8に示す状態では、操作者の操作による操作では、フォーク26とパレットPとの間に傾きのずれが生じている。操作者は、この状態でリーチ操作部37を操作することでリーチアウト動作を開始する。 When adjusting the inclination of the pallet P located at the uppermost position of the three pallets P and the fork 26, the operator tilts the fork 26 by operating the tilt operation unit 36. In the state shown in FIG. 8, a deviation in inclination occurs between the fork 26 and the pallet P in the operation by the operator. The operator starts the reach-out operation by operating the reach operation unit 37 in this state.
  図9に示すように、リーチアウト動作が開始されることで制御装置61はティルト動作を補助するティルト補助制御を行う。図9に示す例では、図8に示す状態からフォーク26を所定角度θ1後傾させている。これにより、フォーク26とパレットPとの傾きのずれが小さくなる。操作者がティルト操作部36の操作を終えた時点でフォーク26とパレットPとの傾きのずれが生じている場合であっても、リーチアウト動作中に傾きのずれが解消される。 As shown in FIG. 9, when the reach-out operation is started, the control device 61 performs tilt assist control to assist the tilt operation. In the example shown in FIG. 9, the fork 26 is tilted backward by a predetermined angle θ1 from the state shown in FIG. As a result, the deviation of the inclination between the fork 26 and the pallet P becomes small. Even if the tilt of the fork 26 and the pallet P is misaligned when the operator finishes the operation of the tilt operation unit 36, the misalignment of the fork 26 and the pallet P is eliminated during the reach-out operation.
  第1実施形態の効果について説明する。
  (1-1)操作部34の操作による荷役動作が行われている場合、当該荷役動作と同一の荷役動作に対する補助が禁止される。操作者が操作部34を操作している場合に、当該操作部34による荷役動作が制御装置61によって制限されることが抑制される。例えば、操作者がリフト操作部35を操作しているにも関わらず自動でリフト動作が停止したり、操作者がティルト操作部36を操作しているにも関わらず自動でティルト動作が停止することが抑制される。操作者の操作が制御装置61によって制限されないため、操作者の違和感が軽減されるとともに、フォークリフト10の操作性の低下を抑制できる。
The effect of the first embodiment will be described.
(1-1) When a cargo handling operation is performed by the operation of the operation unit 34, assistance for the same cargo handling operation as the cargo handling operation is prohibited. When the operator is operating the operation unit 34, it is suppressed that the cargo handling operation by the operation unit 34 is restricted by the control device 61. For example, the lift operation is automatically stopped even though the operator is operating the lift operation unit 35, or the tilt operation is automatically stopped even though the operator is operating the tilt operation unit 36. Is suppressed. Since the operation of the operator is not restricted by the control device 61, the discomfort of the operator can be reduced and the deterioration of the operability of the forklift 10 can be suppressed.
  (1-2)制御装置61は、リフト操作部35の操作によりリフト動作を行っている場合には、リフト補助制御を行わない。リフト操作部35の操作によるリフト動作が制御装置61の補助によって制限されることが抑制される。 (1-2) When the control device 61 is performing the lift operation by operating the lift operation unit 35, the control device 61 does not perform the lift assist control. It is suppressed that the lift operation by the operation of the lift operation unit 35 is restricted by the assistance of the control device 61.
  (1-3)制御装置61は、ティルト操作部36の操作によりティルト動作を行っている場合には、ティルト補助制御を行わない。ティルト操作部36の操作によるティルト動作が制御装置61の補助によって制限されることが抑制される。 (1-3) When the tilt operation is performed by the operation of the tilt operation unit 36, the control device 61 does not perform the tilt assist control. It is suppressed that the tilt operation by the operation of the tilt operation unit 36 is restricted by the assistance of the control device 61.
  (1-4)制御装置61は、フォーク26が荷役対象に近付く過程でフォーク26と荷役対象との位置合わせのずれが小さくなるように油圧機構45を制御する。フォーク26を荷役対象に近付ける段階では、操作者がフォーク26と荷役対象との位置合わせを終えていると想定される。操作者がフォーク26と荷役対象との位置合わせを終えた後に、この位置合わせにより生じたずれを小さくすることで、位置合わせを終えていないにも関わらず制御装置61による補助が行われることを抑制できる。 (1-4) The control device 61 controls the hydraulic mechanism 45 so that the misalignment between the fork 26 and the cargo handling target becomes small in the process of the fork 26 approaching the cargo handling target. At the stage of bringing the fork 26 closer to the cargo handling target, it is assumed that the operator has completed the alignment between the fork 26 and the cargo handling target. After the operator finishes the alignment between the fork 26 and the cargo handling target, by reducing the deviation caused by this alignment, the control device 61 assists even though the alignment has not been completed. Can be suppressed.
  (第2実施形態)
  フォークリフトの第2実施形態について説明する。以下の説明では、第1実施形態と同様の箇所についての説明を省略し、第1実施形態との相違点について説明する。
(Second Embodiment)
A second embodiment of the forklift will be described. In the following description, the description of the same parts as those of the first embodiment will be omitted, and the differences from the first embodiment will be described.
  図10に示すように、荷役装置21は、サイドシフト装置80を備える。サイドシフト装置80は、フォーク26を左右方向に移動させるものである。本実施形態のサイドシフト装置80は、2つのフォーク26同士の間隔を維持した状態で、2つのフォーク26の両方を左右方向に移動させるものである。 As shown in FIG. 10, the cargo handling device 21 includes a side shift device 80. The side shift device 80 moves the fork 26 in the left-right direction. The side shift device 80 of the present embodiment moves both of the two forks 26 in the left-right direction while maintaining the distance between the two forks 26.
  サイドシフト装置80は、リフトブラケット25に取り付けられている。リフトブラケット25は、2つのフィンガーバー71,72を備える。2つのフィンガーバー71,72は、上下方向に間隔を空けて設けられている。 The side shift device 80 is attached to the lift bracket 25. The lift bracket 25 includes two finger bars 71 and 72. The two finger bars 71 and 72 are provided at intervals in the vertical direction.
  サイドシフト装置80は、シフター81と、シフトシリンダ86と、を備える。
  シフター81は、2つのフィンガーバー71,72に対して左右に移動可能に設けられている。シフター81は、2つのシフターバー82,83と、2つのシフターバー82,83を連結する2つの連結部材84,85と、を備える。2つのシフターバー82,83は、上下方向に間隔を空けて設けられている。2つの連結部材84,85は、左右方向に間隔を空けて設けられている。連結部材84,85は、シフターバー82,83の端部同士を連結している。シフターバー82,83には、フォーク26が連結されている。
The side shift device 80 includes a shifter 81 and a shift cylinder 86.
The shifter 81 is provided so as to be movable to the left and right with respect to the two finger bars 71 and 72. The shifter 81 includes two shifter bars 82, 83 and two connecting members 84, 85 that connect the two shifter bars 82, 83. The two shifter bars 82 and 83 are provided at intervals in the vertical direction. The two connecting members 84 and 85 are provided at intervals in the left-right direction. The connecting members 84 and 85 connect the ends of the shifter bars 82 and 83 to each other. A fork 26 is connected to the shifter bars 82 and 83.
  シフトシリンダ86は、油圧シリンダである。シフトシリンダ86への作動油の給排によってシフター81は左右方向に移動する。シフター81とともにフォーク26も左右方向に移動する。 The shift cylinder 86 is a hydraulic cylinder. The shifter 81 moves in the left-right direction by supplying and discharging the hydraulic oil to the shift cylinder 86. The fork 26 also moves in the left-right direction together with the shifter 81.
  図11に示すように、操作部34は、サイドシフト操作部38を含む。フォークリフト10は、サイドシフトセンサ90を備える。検出部46は、シフト量センサ91を含む。
  サイドシフト操作部38は、操作者によって操作される。本実施形態のサイドシフト操作部38はレバーである。サイドシフト操作部38は、中立位置から前傾又は後傾する。サイドシフト操作部38は、フォーク26を左右方向に移動させる際に操作される。
As shown in FIG. 11, the operation unit 34 includes a side shift operation unit 38. The forklift 10 includes a side shift sensor 90. The detection unit 46 includes a shift amount sensor 91.
The side shift operation unit 38 is operated by an operator. The side shift operation unit 38 of this embodiment is a lever. The side shift operation unit 38 tilts forward or backward from the neutral position. The side shift operation unit 38 is operated when the fork 26 is moved in the left-right direction.
  サイドシフトセンサ90は、サイドシフト操作部38の操作量を検出する。サイドシフトセンサ90は、サイドシフト操作部38の操作量に応じた電気信号を出力する。サイドシフトセンサ90によってサイドシフト操作部38の操作量が検出されていれば、サイドシフト操作部38が操作されているといえる。サイドシフトセンサ90によってサイドシフト操作部38の操作量が検出されていなければ、サイドシフト操作部38が操作されていないといえる。サイドシフトセンサ90の検出結果は、サイドシフト操作部38が操作されているか否かを示す情報といえる。 The side shift sensor 90 detects the amount of operation of the side shift operation unit 38. The side shift sensor 90 outputs an electric signal according to the amount of operation of the side shift operation unit 38. If the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90, it can be said that the side shift operation unit 38 is being operated. If the operation amount of the side shift operation unit 38 is not detected by the side shift sensor 90, it can be said that the side shift operation unit 38 is not operated. The detection result of the side shift sensor 90 can be said to be information indicating whether or not the side shift operation unit 38 is operated.
  シフト量センサ91は、シフト量を検出する。シフト量とは、サイドシフト装置80によりフォーク26が左右方向に移動している量である。シフト量は、例えば、2つのフォーク26同士の中心位置と、リフトブラケット25の左右方向の中心位置とが一致している状態を基準とした場合の基準からの移動量である。 The shift amount sensor 91 detects the shift amount. The shift amount is an amount in which the fork 26 is moved in the left-right direction by the side shift device 80. The shift amount is, for example, the amount of movement from the reference when the center position of the two forks 26 and the center position of the lift bracket 25 in the left-right direction coincide with each other.
  制御装置61は、サイドシフトセンサ90の検出結果に応じて荷役装置21にサイドシフト動作を行わせる。第2実施形態の荷役動作は、フォーク26を左右方向に移動させるサイドシフト動作を含む。サイドシフト操作部38は、サイドシフト動作に対応している。 The control device 61 causes the cargo handling device 21 to perform a side shift operation according to the detection result of the side shift sensor 90. The cargo handling operation of the second embodiment includes a side shift operation of moving the fork 26 in the left-right direction. The side shift operation unit 38 corresponds to the side shift operation.
  制御装置61は、補助制御として、サイドシフト動作を補助するサイドシフト補助制御を行う。以下、サイドシフト補助制御について説明する。第1実施形態と同様に、一例として、フォーク26にパレットを積載する荷取り作業を行う際のサイドシフト補助制御について説明を行う。 The control device 61 performs side shift auxiliary control as an auxiliary control to assist the side shift operation. Hereinafter, the side shift auxiliary control will be described. Similar to the first embodiment, as an example, a side shift auxiliary control when performing a loading operation for loading a pallet on a fork 26 will be described.
  サイドシフト補助制御は、例えば、サイドシフト動作の開始を条件として開始される。制御装置61は、サイドシフトセンサ90によってサイドシフト操作部38の操作量が検出されていればサイドシフト動作を開始する。制御装置61は、これに伴いサイドシフト補助制御を開始する。サイドシフト補助制御は、所定の制御周期で繰り返し行われる。 The side shift auxiliary control is started, for example, on condition that the side shift operation is started. The control device 61 starts the side shift operation if the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90. The control device 61 starts side shift auxiliary control accordingly. The side shift auxiliary control is repeatedly performed in a predetermined control cycle.
  図12に示すように、ステップS41において、制御装置61は、パレットのワールド座標を取得する。パレットのワールド座標は画像処理装置52から取得することができる。 As shown in FIG. 12, in step S41, the control device 61 acquires the world coordinates of the pallet. The world coordinates of the palette can be obtained from the image processing device 52.
  次に、ステップS42において、制御装置61は、フォーク26とパレットとの位置ずれが生じているか否かを判定する。サイドシフト補助制御において、フォーク26とパレットとの位置ずれとは、フォーク26とパレットとの左右方向に対する相対的な位置ずれである。詳細にいえば、2つのフォーク26同士の中心位置とパレットの左右方向の中心位置との左右方向に対するずれがフォーク26とパレットとの左右方向に対する相対的な位置ずれである。 Next, in step S42, the control device 61 determines whether or not the position of the fork 26 and the pallet is displaced. In the side shift auxiliary control, the positional deviation between the fork 26 and the pallet is a relative positional deviation between the fork 26 and the pallet in the left-right direction. More specifically, the deviation between the center position of the two forks 26 and the center position in the left-right direction of the pallet in the left-right direction is the relative positional deviation between the fork 26 and the pallet in the left-right direction.
  フォーク26とパレットとの位置ずれが生じているか否かは、2つのフォーク26同士の中心位置を示すX座標と、パレットのX座標とに基づいて判定することができる。2つのフォーク26同士の中心位置を示すX座標は、ワールド座標系の原点と一致している。パレットのX座標から、パレットの左右方向の中心位置を示すX座標は導出可能である。制御装置61は、2つのフォーク26同士の中心位置を示すX座標と、パレットの左右方向の中心位置を示すX座標との差をフォーク26とパレットとの位置ずれ量とみなす。制御装置61は、フォーク26とパレットとの位置ずれ量が閾値未満であれば位置ずれが生じていないと判定する。制御装置61は、フォーク26とパレットとの位置ずれ量が閾値以上であれば位置ずれが生じていると判定する。ステップS42の判定結果が否定の場合、制御装置61はサイドシフト補助制御を終了する。ステップS42の判定結果が肯定の場合、制御装置61は、ステップS43の処理を行う。 Whether or not the position of the fork 26 and the pallet is misaligned can be determined based on the X coordinate indicating the center position of the two forks 26 and the X coordinate of the pallet. The X coordinate indicating the center position of the two forks 26 coincides with the origin of the world coordinate system. From the X coordinate of the palette, the X coordinate indicating the center position in the left-right direction of the palette can be derived. The control device 61 regards the difference between the X coordinate indicating the center position of the two forks 26 and the X coordinate indicating the center position in the left-right direction of the pallet as the amount of misalignment between the fork 26 and the pallet. If the amount of misalignment between the fork 26 and the pallet is less than the threshold value, the control device 61 determines that no misalignment has occurred. If the amount of misalignment between the fork 26 and the pallet is equal to or greater than the threshold value, the control device 61 determines that the misalignment has occurred. If the determination result in step S42 is negative, the control device 61 ends the side shift auxiliary control. If the determination result in step S42 is affirmative, the control device 61 performs the process of step S43.
  ステップS43において、制御装置61は、サイドシフト動作中か否かを判定する。言い換えれば、制御装置61は、サイドシフト動作が停止されたか否かを判定する。制御装置61は、サイドシフトセンサ90によってサイドシフト操作部38の操作量が検出されていればサイドシフト動作中であると判定する。制御装置61は、サイドシフトセンサ90によってサイドシフト操作部38の操作量が検出されていなければサイドシフト動作中ではないと判定する。ステップS43の判定結果が肯定の場合、制御装置61はステップS51の処理を行う。ステップS43の判定結果が否定の場合、制御装置61はステップS44の処理を行う。 In step S43, the control device 61 determines whether or not the side shift operation is in progress. In other words, the control device 61 determines whether or not the side shift operation has been stopped. If the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90, the control device 61 determines that the side shift operation is in progress. The control device 61 determines that the side shift operation is not in progress unless the operation amount of the side shift operation unit 38 is detected by the side shift sensor 90. If the determination result in step S43 is affirmative, the control device 61 performs the process of step S51. If the determination result in step S43 is negative, the control device 61 performs the process of step S44.
  ステップS44は、ステップS4と同様の処理である。ステップS44の判定結果が否定の場合、制御装置61はサイドシフト補助制御を終了する。ステップS44の判定結果が肯定の場合、制御装置61はステップS45の処理を行う。 Step S44 is the same process as step S4. If the determination result in step S44 is negative, the control device 61 ends the side shift auxiliary control. If the determination result in step S44 is affirmative, the control device 61 performs the process of step S45.
  ステップS45において、制御装置61は、サイドシフト動作を補助するサイドシフト補助制御を行う。サイドシフト補助制御とは、制御装置61がフォーク26とパレットとの左右方向の位置ずれを小さくするように荷役装置21の制御を行うことである。制御装置61は、リーチアウト動作中に、位置ずれを小さくするように制御を行う。制御装置61は、油圧機構45を制御することでフォーク26を左右方向に移動させる。例えば、制御装置61は、フォーク26とパレットとの位置ずれ量が閾値未満になるようにフォーク26を左右方向に移動させる。制御装置61は、フォーク26とパレットとの位置ずれ量が閾値未満になると、フォーク26の左右方向への移動を停止する。ステップS45の処理を行うことで、制御装置61は、補助制御を行う補助部及びサイドシフト補助制御を行うサイドシフト補助部を備えているといえる。 In step S45, the control device 61 performs side shift assist control to assist the side shift operation. The side shift auxiliary control is to control the cargo handling device 21 so that the control device 61 reduces the positional deviation between the fork 26 and the pallet in the left-right direction. The control device 61 controls so as to reduce the misalignment during the reach-out operation. The control device 61 moves the fork 26 in the left-right direction by controlling the hydraulic mechanism 45. For example, the control device 61 moves the fork 26 in the left-right direction so that the amount of misalignment between the fork 26 and the pallet is less than the threshold value. When the amount of misalignment between the fork 26 and the pallet becomes less than the threshold value, the control device 61 stops the fork 26 from moving in the left-right direction. By performing the process of step S45, it can be said that the control device 61 includes an auxiliary unit for performing auxiliary control and a side shift auxiliary unit for performing side shift auxiliary control.
  ステップS51において、制御装置61は、サイドシフト補助制御を禁止するサイドシフト禁止制御を行う。即ち、サイドシフト動作中には、フォーク26とパレットとの位置ずれを小さくするように制御装置61による補助が行われることが禁止される。サイドシフト補助制御では、フォーク26とパレットとの位置ずれ量が閾値未満になると、フォーク26の左右方向への移動が停止する。サイドシフト補助制御を禁止することで、サイドシフト動作中に自動でフォーク26が停止することが抑制されている。ステップS51の処理を行うことで、制御装置61は、禁止制御を行う禁止部及びサイドシフト禁止制御を行うサイドシフト禁止部を備えているといえる。 In step S51, the control device 61 performs side shift prohibition control that prohibits side shift auxiliary control. That is, during the side shift operation, it is prohibited to assist the control device 61 so as to reduce the positional deviation between the fork 26 and the pallet. In the side shift auxiliary control, when the amount of misalignment between the fork 26 and the pallet becomes less than the threshold value, the fork 26 stops moving in the left-right direction. By prohibiting the side shift auxiliary control, it is suppressed that the fork 26 is automatically stopped during the side shift operation. By performing the process of step S51, it can be said that the control device 61 includes a prohibition unit for performing prohibition control and a side shift prohibition unit for performing side shift prohibition control.
  第2実施形態の作用について説明する。
  図13に示すように、パレットPの荷取りを行う際には、フォーク26とパレットPとが互いに向かい合うようにフォークリフト10を移動させる。フォーク26とパレットPとの間に左右方向に対する相対的な位置ずれが生じている場合、操作者はサイドシフト操作部38を操作することでフォーク26を左右方向に移動させる。サイドシフト動作中には、制御装置61によるサイドシフト補助制御が禁止されている。このため、操作者によるサイドシフト操作部38の操作によってフォーク26の左右方向の位置は定まる。図13に示す状態では、操作者の操作では、フォーク26とパレットPとの間に左右方向に対する位置ずれが生じている。操作者は、この状態でリーチ操作部37を操作することでリーチアウト動作を開始する。
The operation of the second embodiment will be described.
As shown in FIG. 13, when loading the pallet P, the forklift 10 is moved so that the fork 26 and the pallet P face each other. When the position shift relative to the left-right direction occurs between the fork 26 and the pallet P, the operator operates the side shift operation unit 38 to move the fork 26 in the left-right direction. During the side shift operation, the side shift auxiliary control by the control device 61 is prohibited. Therefore, the position of the fork 26 in the left-right direction is determined by the operation of the side shift operation unit 38 by the operator. In the state shown in FIG. 13, in the operation of the operator, a positional shift in the left-right direction occurs between the fork 26 and the pallet P. The operator starts the reach-out operation by operating the reach operation unit 37 in this state.
  図14に示すように、リーチアウト動作が開始されることで制御装置61はサイドシフト補助制御を行う。図14に示す例では、図13に示す状態から、フォーク26を所定量A2右方に移動させている。これにより、フォーク26とパレットPとの左右方向の位置ずれが小さくなる。操作者がサイドシフト操作部38の操作を終えた時点でフォーク26とパレットPとの左右方向の位置ずれが生じている場合であっても、リーチアウト動作中に位置ずれが解消される。 As shown in FIG. 14, the control device 61 performs side shift auxiliary control when the reach-out operation is started. In the example shown in FIG. 14, the fork 26 is moved to the right of A2 by a predetermined amount from the state shown in FIG. As a result, the positional deviation between the fork 26 and the pallet P in the left-right direction is reduced. Even if the position shift between the fork 26 and the pallet P in the left-right direction occurs when the operator finishes the operation of the side shift operation unit 38, the position shift is eliminated during the reach-out operation.
  第2実施形態の効果について説明する。第2実施形態では、第1実施形態の効果に加えて以下の効果を得ることができる。
  (2-1)制御装置61は、サイドシフト操作部38の操作によりサイドシフト動作を行っている場合には、サイドシフト補助制御を行わない。サイドシフト操作部38の操作によるサイドシフト動作が制御装置61の補助によって制限されることが抑制される。
The effect of the second embodiment will be described. In the second embodiment, the following effects can be obtained in addition to the effects of the first embodiment.
(2-1) When the side shift operation is performed by the operation of the side shift operation unit 38, the control device 61 does not perform the side shift auxiliary control. It is suppressed that the side shift operation by the operation of the side shift operation unit 38 is restricted by the assistance of the control device 61.
  各実施形態は、以下のように変更して実施することができる。実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
  ○各実施形態において、制御装置61によるリフト補助制御は、リフト動作中に禁止されていればよく、リーチアウト動作中とは異なるタイミングで行われてもよい。例えば、ステップS4の判定を省略して、ステップS3の判定が否定になったタイミングで制御装置61によるリフト補助制御が行われてもよい。制御装置61によるリフト補助制御は、ティルト動作中、又はサイドシフト動作中に行われてもよい。
Each embodiment can be modified and implemented as follows. The embodiments and the following modifications can be implemented in combination with each other within a technically consistent range.
○ In each embodiment, the lift assist control by the control device 61 may be prohibited during the lift operation, and may be performed at a timing different from that during the reach-out operation. For example, the lift assist control by the control device 61 may be performed at the timing when the determination in step S4 is omitted and the determination in step S3 is negative. The lift assist control by the control device 61 may be performed during the tilt operation or the side shift operation.
  ○各実施形態において、制御装置61によるティルト補助制御は、ティルト動作中に禁止されていればよく、リーチアウト動作中とは異なるタイミングで行われてもよい。例えば、ステップS24の判定を省略して、ステップS23の判定が否定になったタイミングで制御装置61によるティルト動作の補助が行われてもよい。制御装置61によるティルト補助制御は、リフト動作中、又はサイドシフト動作中に行われてもよい。 ○ In each embodiment, the tilt assist control by the control device 61 may be prohibited during the tilt operation, and may be performed at a timing different from that during the reach-out operation. For example, the determination in step S24 may be omitted, and the tilt operation may be assisted by the control device 61 at the timing when the determination in step S23 becomes negative. The tilt assist control by the control device 61 may be performed during the lift operation or the side shift operation.
  ○第2実施形態において、制御装置61によるサイドシフト補助制御は、サイドシフト動作中に禁止されていればよく、リーチアウト動作中とは異なるタイミングで行われてもよい。例えば、ステップS44の判定を省略して、ステップS43の判定が否定になったタイミングで制御装置61によるサイドシフト補助制御が行われてもよい。制御装置61によるサイドシフト補助制御は、リフト動作中、又はティルト動作中に行われてもよい。 ○ In the second embodiment, the side shift auxiliary control by the control device 61 may be prohibited during the side shift operation, and may be performed at a timing different from that during the reach out operation. For example, the determination in step S44 may be omitted, and the side shift auxiliary control may be performed by the control device 61 at the timing when the determination in step S43 is negative. The side shift auxiliary control by the control device 61 may be performed during the lift operation or the tilt operation.
  ○第1実施形態において、制御装置61は、補助制御としてティルト補助制御及びリフト補助制御のうちいずれかを行ってもよい。第2実施形態において、制御装置61は、補助制御としてサイドシフト補助制御のみを行ってもよい。即ち、制御装置61は、ティルト補助制御、リフト補助制御及びサイドシフト補助制御のうち少なくとも1つを行えばよい。 ○ In the first embodiment, the control device 61 may perform either tilt assist control or lift assist control as auxiliary control. In the second embodiment, the control device 61 may perform only the side shift auxiliary control as the auxiliary control. That is, the control device 61 may perform at least one of tilt assist control, lift assist control, and side shift assist control.
  ○各実施形態において、荷役対象は、荷置き場であってもよい。荷役対象が荷置き場であっても、荷置き場のワールド座標及び傾きから、フォーク26と荷役対象とのずれを導出することができる。従って、荷役対象がパレットの場合と同様に、制御装置61は、荷役動作の補助を行うことができる。 ○ In each embodiment, the cargo handling target may be a loading place. Even if the cargo handling target is a cargo handling area, the deviation between the fork 26 and the cargo handling object can be derived from the world coordinates and inclination of the cargo handling area. Therefore, the control device 61 can assist the cargo handling operation as in the case where the cargo handling target is the pallet.
  ○各実施形態において、フォークリフト10は、遠隔操作されるものであってもよい。この場合、操作者は、フォークリフト10から離れた遠隔地でフォークリフト10の操作を行う。操作者は、遠隔地に設けられた操作端末を操作する。操作端末としては、専用の装置を用いることもできるし、タブレット端末などの携帯通信端末を用いることもできる。操作端末は、フォークリフト10を操作する操作部と、操作部の操作量を検出する操作量検出部と、通信装置と、を備える。操作部は、レバー等の物理的な部材であってもよいし、操作部として機能するシンボルをタッチパネルに表示したものであってもよい。操作端末が、操作部として機能するシンボルをタッチパネルに表示する場合、タッチパネルの操作によってフォークリフト10の荷役動作が行われる。例えば、タッチパネル上での操作者のタップ操作やスライド操作によってフォークリフト10の荷役動作が行われる。この場合、操作量はタップ回数やスライド量であり、タッチパネルが操作量検出部として機能する。通信装置は、予め定められたフォーマットでデータを生成し、このデータをフォークリフト10に送信するものである。通信装置は、操作部の操作量等、操作部が操作されているか否かを制御装置61が判定できる情報を送信する。 ○ In each embodiment, the forklift 10 may be remotely controlled. In this case, the operator operates the forklift 10 at a remote location away from the forklift 10. The operator operates an operation terminal provided at a remote location. As the operation terminal, a dedicated device can be used, or a mobile communication terminal such as a tablet terminal can be used. The operation terminal includes an operation unit for operating the forklift 10, an operation amount detection unit for detecting the operation amount of the operation unit, and a communication device. The operation unit may be a physical member such as a lever, or may be a touch panel displaying a symbol functioning as the operation unit. When the operation terminal displays a symbol functioning as an operation unit on the touch panel, the cargo handling operation of the forklift 10 is performed by operating the touch panel. For example, the cargo handling operation of the forklift 10 is performed by the operator's tap operation or slide operation on the touch panel. In this case, the operation amount is the number of taps and the slide amount, and the touch panel functions as the operation amount detection unit. The communication device generates data in a predetermined format and transmits this data to the forklift 10. The communication device transmits information such as the amount of operation of the operation unit so that the control device 61 can determine whether or not the operation unit is being operated.
  フォークリフト10は、車載通信装置を備える。車載通信装置は、通信装置から送信されたデータを受信して制御装置61に出力する。制御装置61は、通信装置から送信されたデータに従いフォークリフト10を動作させる。制御装置61は、操作部の操作に応じて荷役装置21の制御を行う。制御装置61は、通信装置から送信されたデータから、操作部が操作されているか否かを判定する。この場合。車載通信装置が取得部として機能しているといえる。制御装置61は、操作部が操作されている場合、当該操作部の操作により荷役装置21が行う荷役動作と同一の荷役動作に対する補助制御を禁止する禁止制御を行う。 The forklift 10 includes an in-vehicle communication device. The in-vehicle communication device receives the data transmitted from the communication device and outputs the data to the control device 61. The control device 61 operates the forklift 10 according to the data transmitted from the communication device. The control device 61 controls the cargo handling device 21 according to the operation of the operation unit. The control device 61 determines whether or not the operation unit is operated from the data transmitted from the communication device. in this case. It can be said that the in-vehicle communication device functions as an acquisition unit. When the operation unit is operated, the control device 61 performs prohibition control for prohibiting auxiliary control for the same cargo handling operation as the cargo handling operation performed by the cargo handling device 21 by the operation of the operation unit.
  ○各実施形態において、フォークリフト10がカウンタ式の場合、リーチアウト動作に代えて、フォークリフト10を前進させることで荷取り又は荷置きを行ってもよい。制御装置61は、フォークリフト10の前進中に荷役動作の補助を行ってもよい。この場合であっても、フォーク26が荷役対象に近付く過程で荷役動作の補助が行われるといえる。 ○ In each embodiment, when the forklift 10 is a counter type, the forklift 10 may be advanced for loading or unloading instead of the reach-out operation. The control device 61 may assist the cargo handling operation while the forklift 10 is advancing. Even in this case, it can be said that the cargo handling operation is assisted in the process of the fork 26 approaching the cargo handling target.
  ○各実施形態において、フォークリフト10は、カメラ51に代えて、ToF(Time of Flight)カメラ、LIDAR(Laser Imaging Detection and Ranging)、ミリ波レーダー又はステレオカメラを備えていてもよい。ToFカメラ、LIDAR、ミリ波レーダー及びステレオカメラは、ワールド座標系における3次元座標を計測することができる装置である。これらの装置を用いた場合であっても、荷役対象のワールド座標と傾きとを導出することができる。従って、実施形態と同様の制御を行うことができる。 ○ In each embodiment, the forklift 10 may include a ToF (Time of Flight) camera, a LIDAR (Laser Imaging Detection and Ringing), a millimeter-wave radar, or a stereo camera instead of the camera 51. ToF cameras, LIDARs, millimeter-wave radars, and stereo cameras are devices that can measure three-dimensional coordinates in the world coordinate system. Even when these devices are used, the world coordinates and inclination of the cargo handling target can be derived. Therefore, the same control as in the embodiment can be performed.
  ○各実施形態において、フォークリフト10は、カメラ51によって撮像中の映像が写る表示部を備えていてもよい。
  ○第2実施形態において、サイドシフト装置80は、2つのフォーク26の間隔が変化する装置であってもよい。
○ In each embodiment, the forklift 10 may include a display unit on which an image being captured by the camera 51 is captured.
○ In the second embodiment, the side shift device 80 may be a device in which the distance between the two forks 26 changes.
  ○各実施形態において、制御装置61が画像処理装置52として機能してもよい。即ち、制御装置61と画像処理装置52とは、同一の装置であってもよい。 ○ In each embodiment, the control device 61 may function as the image processing device 52. That is, the control device 61 and the image processing device 52 may be the same device.
 P…荷役対象としてのパレット
 10…フォークリフト
 21…荷役装置
 26…フォーク
 34…操作部
 35…リフト操作部
 36…ティルト操作部
 38…サイドシフト操作部
 61…取得部、補助部、禁止部、リフト補助部、リフト禁止部、ティルト補助部、ティルト禁止部、サイドシフト補助部、及びサイドシフト禁止部としての制御装置
 

 
P ... Pallet as a cargo handling object 10 ... Forklift 21 ... Cargo handling device 26 ... Fork 34 ... Operation unit 35 ... Lift operation unit 36 ... Tilt operation unit 38 ... Side shift operation unit 61 ... Acquisition unit, auxiliary unit, prohibition unit, lift assistance A control device as a unit, a lift prohibition unit, a tilt assist unit, a tilt prohibition unit, a side shift assist unit, and a side shift prohibition unit.

Claims (5)

  1.   フォークを有する荷役装置と、
      ティルト動作、リフト動作、及びサイドシフト動作の少なくとも1つを含む荷役動作を前記荷役装置に行わせるように構成された制御装置と、
      前記荷役動作を前記荷役装置に行わせる際に操作される操作部であって操作者によって操作される操作部が操作されているか否かを示す情報を取得する取得部と、を備え、
      前記制御装置は、
      前記操作者による前記フォークと荷役対象との位置合わせのずれを小さくするように前記荷役装置の制御を行うことで、前記操作者の補助を行う補助制御と、
      前記操作部が操作されている場合、当該操作部の操作により前記荷役装置が行う前記荷役動作と同一の前記荷役動作に対する前記補助制御を禁止する禁止制御と、を行うことを特徴とするフォークリフト。
    A cargo handling device with a fork,
    A control device configured to cause the cargo handling device to perform a cargo handling operation including at least one of a tilt operation, a lift operation, and a side shift operation.
    It is provided with an operation unit operated when the cargo handling operation is performed by the cargo handling device, and an acquisition unit for acquiring information indicating whether or not the operation unit operated by the operator is operated.
    The control device is
    Auxiliary control that assists the operator by controlling the cargo handling device so as to reduce the misalignment between the fork and the cargo handling target by the operator.
    When the operation unit is operated, the forklift is characterized in that the operation of the operation unit performs a prohibition control for prohibiting the auxiliary control for the same cargo handling operation as the cargo handling operation performed by the cargo handling device.
  2.   前記荷役動作は、前記リフト動作を含み、
      前記操作部は、前記リフト動作に対応するリフト操作部を含み、
      前記補助制御は、前記フォークと前記荷役対象との上下方向に対する相対的な位置ずれが小さくなるように前記操作者の補助を行うように構成されたリフト補助制御を含み、
      前記禁止制御は、前記リフト操作部の操作により前記リフト動作が行われている場合、前記リフト補助制御を禁止するリフト禁止制御を含む請求項1に記載のフォークリフト。
    The cargo handling operation includes the lift operation.
    The operation unit includes a lift operation unit corresponding to the lift operation.
    The auxiliary control includes a lift auxiliary control configured to assist the operator so that the relative positional deviation between the fork and the cargo handling target in the vertical direction is small.
    The forklift according to claim 1, wherein the prohibition control includes a lift prohibition control that prohibits the lift assist control when the lift operation is performed by the operation of the lift operation unit.
  3.   前記荷役動作は、前記ティルト動作を含み、
      前記操作部は、前記ティルト動作に対応するティルト操作部を含み、
      前記補助制御は、前記フォークと前記荷役対象との前後方向に対する相対的な傾きのずれが小さくなるように前記操作者の補助を行うように構成されたティルト補助制御を含み、
      前記禁止制御は、前記ティルト操作部の操作により前記ティルト動作が行われている場合、前記ティルト補助制御を禁止するティルト禁止制御を含む請求項1又は請求項2に記載のフォークリフト。
    The cargo handling operation includes the tilt operation.
    The operation unit includes a tilt operation unit corresponding to the tilt operation.
    The auxiliary control includes a tilt assist control configured to assist the operator so that the relative tilt deviation between the fork and the cargo handling target in the front-rear direction is small.
    The forklift according to claim 1 or 2, wherein the prohibition control includes a tilt prohibition control that prohibits the tilt assist control when the tilt operation is performed by the operation of the tilt operation unit.
  4.   前記荷役動作は、前記サイドシフト動作を含み、
      前記操作部は、前記サイドシフト動作に対応するサイドシフト操作部を含み、
      前記補助制御は、前記フォークと前記荷役対象との左右方向に対する相対的な位置ずれが小さくなるように前記操作者の補助を行うように構成されたサイドシフト補助制御を含み、
      前記禁止制御は、前記サイドシフト操作部の操作により前記サイドシフト動作が行われている場合、前記サイドシフト補助制御を禁止するサイドシフト禁止制御を含む請求項1~請求項3のうちいずれか一項に記載のフォークリフト。
    The cargo handling operation includes the side shift operation.
    The operation unit includes a side shift operation unit corresponding to the side shift operation.
    The auxiliary control includes a side shift auxiliary control configured to assist the operator so that the relative positional deviation between the fork and the cargo handling target in the left-right direction is small.
    The prohibition control is any one of claims 1 to 3 including a side shift prohibition control that prohibits the side shift auxiliary control when the side shift operation is performed by the operation of the side shift operation unit. The forklift described in the section.
  5.   前記補助制御は、前記フォークが前記荷役対象に近付く過程で前記操作者の補助を行う請求項1~請求項4のうちいずれか一項に記載のフォークリフト。
     

     
    The forklift according to any one of claims 1 to 4, wherein the auxiliary control assists the operator in the process of the fork approaching the cargo handling target.


PCT/JP2021/042571 2020-12-15 2021-11-19 Forklift WO2022130896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020207817A JP7435432B2 (en) 2020-12-15 2020-12-15 forklift
JP2020-207817 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022130896A1 true WO2022130896A1 (en) 2022-06-23

Family

ID=82058741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042571 WO2022130896A1 (en) 2020-12-15 2021-11-19 Forklift

Country Status (2)

Country Link
JP (1) JP7435432B2 (en)
WO (1) WO2022130896A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305626A (en) * 1999-04-23 2000-11-02 Honda Motor Co Ltd Automatic traveling vehicle
JP2016193690A (en) * 2015-04-01 2016-11-17 株式会社ジェイテクト Automatic steering device
JP2018026150A (en) * 2012-03-23 2018-02-15 グーグル エルエルシー Detection of lane marking
JP2019089382A (en) * 2017-11-13 2019-06-13 株式会社デンソー Automatic operation control device, and automatic operation control method for vehicle
JP2019189029A (en) * 2018-04-25 2019-10-31 株式会社デンソー Vehicle control device
JP2020050302A (en) * 2018-09-28 2020-04-02 日立オートモティブシステムズ株式会社 In-vehicle electronic control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900942B2 (en) 2002-01-23 2007-04-04 株式会社豊田自動織機 Automatic position control device for cargo handling equipment in industrial vehicles, industrial vehicle and automatic position control method for cargo handling equipment
JP4578859B2 (en) 2004-05-26 2010-11-10 日本輸送機株式会社 Fork swing prevention device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305626A (en) * 1999-04-23 2000-11-02 Honda Motor Co Ltd Automatic traveling vehicle
JP2018026150A (en) * 2012-03-23 2018-02-15 グーグル エルエルシー Detection of lane marking
JP2016193690A (en) * 2015-04-01 2016-11-17 株式会社ジェイテクト Automatic steering device
JP2019089382A (en) * 2017-11-13 2019-06-13 株式会社デンソー Automatic operation control device, and automatic operation control method for vehicle
JP2019189029A (en) * 2018-04-25 2019-10-31 株式会社デンソー Vehicle control device
JP2020050302A (en) * 2018-09-28 2020-04-02 日立オートモティブシステムズ株式会社 In-vehicle electronic control system

Also Published As

Publication number Publication date
JP7435432B2 (en) 2024-02-21
JP2022094746A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
EP3624578B1 (en) System and method for automatic connection between a tractor and an implement
JP7103077B2 (en) Remote control system for forklifts
WO2003062127A1 (en) Position control device and position control method of stevedoring apparatus in industrial vehicle
JP3921968B2 (en) Position detection method and position detection apparatus
EP3393852B1 (en) Guidance system and method for providing guidance
JP7215394B2 (en) Operation support device for cargo handling vehicle
WO2020039817A1 (en) Loading operation assistance device for forklift
JP2003034496A (en) Announcing device for cargo handling support in industrial vehicle and industrial vehicle
JP2019202877A (en) Remote control system for industrial vehicle
JP2020015571A (en) Operation supporting control device of forklift and operation supporting system of forklift
WO2021075438A1 (en) Operation assistance device for cargo-handling vehicle
WO2022130896A1 (en) Forklift
JP2020109030A (en) Determination device, determination method and program
JP3900942B2 (en) Automatic position control device for cargo handling equipment in industrial vehicles, industrial vehicle and automatic position control method for cargo handling equipment
JP5017191B2 (en) Device for assisting parking
JP4961643B2 (en) Cargo handling control device and industrial vehicle in industrial vehicle
JP3858703B2 (en) Cargo work support device for industrial vehicle and industrial vehicle
JP7087737B2 (en) Remote control system for forklifts
WO2020085068A1 (en) Remote control system for forklift
JP2022098320A (en) Work support device for forklift
JP2003155199A (en) Voice annunciator for industrial vehicle and industrial vehicle
JP2022017613A (en) Remote control system of forklift
JP3900887B2 (en) Industrial vehicle work mode switching device and industrial vehicle
US20240104768A1 (en) Article detection device, calibration method, and article detection method
JP2003089500A (en) Loading lever and industrial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906259

Country of ref document: EP

Kind code of ref document: A1