WO2022130789A1 - Cause inference system and cause inference method - Google Patents

Cause inference system and cause inference method Download PDF

Info

Publication number
WO2022130789A1
WO2022130789A1 PCT/JP2021/039278 JP2021039278W WO2022130789A1 WO 2022130789 A1 WO2022130789 A1 WO 2022130789A1 JP 2021039278 W JP2021039278 W JP 2021039278W WO 2022130789 A1 WO2022130789 A1 WO 2022130789A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
model
maintenance knowledge
component
abnormal event
Prior art date
Application number
PCT/JP2021/039278
Other languages
French (fr)
Japanese (ja)
Inventor
露 韓
智昭 蛭田
晋也 湯田
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Publication of WO2022130789A1 publication Critical patent/WO2022130789A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a cause estimation system and a cause estimation method for estimating the cause of an abnormal event of equipment or equipment.
  • the equipment condition monitoring system described in Patent Document 1 makes it possible to estimate anomalous parameters from plant measured values and to estimate faulty equipment from anomalous parameters.
  • the equipment status monitoring system stores equipment deterioration models that model the relationship between the normal measurement value database that stores plant measurement values when the plant equipment is normal and the parameters that affect the equipment failure.
  • a model database, a device failure probability database in which the device failure probability is stored, and a device failure record database in which the device failure record is stored are provided, and the probability calculated from the database is set to set the physical model.
  • the presence or absence of abnormality is determined by comparing the measured value of the plant with the measured value at normal time, and the abnormality parameter is estimated, and the faulty equipment is estimated from the abnormality parameter using the physical model.
  • a physical model (network model used for estimating the cause of failure) in which a prior probability of failure and a conditional probability are set is prepared for each device to estimate the failed device. Used for. Therefore, even if the equipment and devices have the same configuration, if the models are different, it is necessary to prepare different physical models. Further, even if a common physical model is created between models of devices having the same configuration, the physical model cannot be updated if the internal causal relationship of the physical model is found to be different between the models.
  • the present invention has been made in view of such a background, and it is an object of the present invention to provide a cause estimation system and a cause estimation method capable of estimating a failure cause corresponding to a model based on a network model common to all models. And.
  • the cause estimation system checks the relationship between an abnormal event of equipment and a failure of a component provided in the equipment, and a check for confirming whether or not the failure and the failure have occurred. It occurs in a common maintenance knowledge network that shows the relationship with items, a model table that associates the model of the equipment with the type of the component provided in the equipment of the model, the type of the component, and the type of the component.
  • a network generation unit that performs information processing using a failure table associated with a failure is provided, and the network generation unit receives the abnormal event and the model of the equipment in which the abnormal event has occurred, and the common maintenance knowledge.
  • the failure of the component related to the abnormal event and the check item for confirming the occurrence of the failure are specified from the received abnormal event, and the maintenance corresponding to the abnormal event is performed.
  • Generate a knowledge network refer to the model table, identify the type of component provided in the model of the equipment from the received equipment model, refer to the failure table, and associate it with the specified component type. Failures that do not include the above are removed from the maintenance knowledge network corresponding to the abnormal event, and check items that are different from the check items for confirming the occurrence of failures that remain unremoved are further removed.
  • Generate a maintenance knowledge network corresponding to the abnormal event and the model of the equipment are further removed.
  • the cause estimation system is a check item for confirming the relationship between an abnormal event of equipment or equipment (hereinafter, also simply referred to as equipment) and the failure that causes the abnormal event, and whether or not the failure and the failure have occurred. It is equipped with a common maintenance knowledge network (also referred to simply as a maintenance knowledge network) that shows the relationship between the two.
  • a failure is a failure of a component constituting the equipment (hereinafter, also referred to as a failure mode).
  • the cause estimation system stores as a model table whether or not there is a component for each equipment model, and whether or not a failure mode has occurred in a component of a different type (model number) for the same component but for each model. Further, the common maintenance knowledge network is given a probability that a failure mode will occur and a probability that a check item for confirming whether or not the failure mode has occurred will be abnormal when the failure mode occurs. Therefore, the common maintenance knowledge network can be regarded as a Bayesian network for estimating the cause of an abnormal event.
  • the cause estimation system receives notifications of the occurrence of an abnormal event and the model of the equipment in which the abnormal event has occurred, and generates a maintenance knowledge network corresponding to the abnormal event and the model.
  • the cause estimation system has a check item for confirming the relationship between the abnormal event that has occurred and the failure that causes the abnormal event, and the failure that causes the abnormal event and whether or not the failure has occurred.
  • the cause estimation system extracts only the part related to the abnormal event that has occurred from the common maintenance knowledge network, and generates the maintenance knowledge network corresponding to the abnormal event.
  • the cause estimation system removes from the maintenance knowledge network corresponding to the abnormal event the failure mode that does not occur in the component that the model does not have or the component of the type that the model has, and the maintenance knowledge corresponding to the model. Create a network.
  • the maintenance knowledge network corresponding to the abnormal event the maintenance knowledge network corresponding to the model in which the abnormal event occurred is generated. This is a maintenance knowledge network that responds to abnormal events and models.
  • the cause estimation system accepts the normality / abnormality of the check items from the equipment maintenance personnel and estimates the failure of the component that causes the abnormal event using the probability calculation method of the Bayesian network (when the component is in the failure mode). Calculate a certain probability) and present it to the maintenance staff.
  • the cause estimation system has a function of comparing the cause of the failure investigated by the maintenance personnel with the estimated cause, calculating the matching rate, and changing the common maintenance knowledge network and the probability information.
  • the cause estimation system is equipped with a common maintenance knowledge network for estimating the cause of abnormal events common to all models. Therefore, it is not necessary to create a maintenance knowledge network for each model, and the creation cost can be reduced. In addition, it has a model table, and it is possible to generate an abnormal event and a maintenance knowledge network corresponding to the model from the common maintenance knowledge network, and use this as a Bayesian network to estimate the cause of the abnormal event (component in failure mode). Will be.
  • FIG. 1 is an overall configuration diagram of the cause estimation system 10 according to the first embodiment.
  • the cause estimation system 10 includes a maintenance knowledge network generation device 100, a cause estimation device 200, and a maintenance knowledge update device 400 that can communicate with each other.
  • FIG. 2 is a functional block diagram of the maintenance knowledge network generation device 100 according to the first embodiment.
  • the maintenance knowledge network generation device 100 includes a control unit 110, a storage unit 120, a communication unit 130, and an input / output unit 140.
  • the communication unit 130 transmits / receives communication data to / from other devices including the cause estimation device 300 and the maintenance knowledge update device 400.
  • User interface devices such as a display, keyboard, and mouse are connected to the input / output unit 140.
  • the storage unit 120 is composed of storage devices such as ROM (Read Only Memory), RAM (Random Access Memory), and SSD (Solid State Drive).
  • the maintenance knowledge database 121, the model specification database 122, the probability information database 123, and the program 128 are stored in the storage unit 120.
  • the program 128 includes a description of the procedure of the maintenance knowledge network generation process corresponding to the abnormal event (see FIG. 10 described later) and the maintenance knowledge network generation process corresponding to the model (see FIG. 14 described later).
  • the maintenance knowledge database 121 includes a maintenance knowledge table 210 (see FIG. 3 described later), and stores maintenance knowledge such as a maintenance manual and an FT diagram (Fault Tree Diagram).
  • FIG. 3 is a data structure diagram of the maintenance knowledge table 210 according to the first embodiment.
  • the maintenance knowledge table 210 stores check items (inspection items) for determining an abnormal event, a cause of the abnormal event, and whether or not a causative event has occurred.
  • the maintenance knowledge table 210 is tabular data, and one row (record) is an abnormal event 211, a functional failure 212, a component 213, and a component identification information 214 (described as a component ID (Identifier) in FIG. 3). Includes failure mode 215 and column (attribute) of check item 216.
  • Abnormal event 211 is a symptom of an abnormality that occurs in the equipment.
  • the functional failure 212 is a functional failure that causes the abnormal event 211.
  • the number of functional failures 212 that cause one abnormal event 211 is not limited to one.
  • Component 213 is a component of equipment in which a functional failure 212 occurs.
  • the number of functional failures 212 that can occur in one component 213 is not limited to one.
  • the component identification information 214 is the identification information of the component 213.
  • the failure mode 215 (also referred to simply as a failure) is a failure phenomenon of the component 213 in which the functional failure 212 occurs.
  • the number of failure modes 215 that can cause one functional failure 212 is not limited to one.
  • Check item 216 (inspection item) is a place to check / inspect / confirm the equipment status such as sensor data, environment, and component status of the equipment.
  • the content of the check item 216 is a phenomenon that can occur when a failure mode occurs, and is a place to check whether or not this phenomenon has occurred.
  • the number of check items 216 corresponding to one failure mode 215 is not limited to one.
  • the maintenance knowledge network shows this relationship in the form of a network.
  • the maintenance knowledge table 210 shows the maintenance knowledge network for all abnormal events and all models.
  • the maintenance knowledge network related to all these abnormal events and models is also referred to as the common maintenance knowledge network.
  • FIG. 11 described later is a maintenance knowledge network limited to one abnormal event "temperature rise”, and is a maintenance knowledge network corresponding to the abnormal event.
  • the causative node is also referred to as a parent node, and the resulting node is also referred to as a child node.
  • Model specification database stores maintenance knowledge depending on the model of the equipment.
  • the model specification database 122 stores the model table 220 (see FIG. 4 described later) and the failure mode table 230 (see FIG. 5 described later).
  • FIG. 4 is a data configuration diagram of the model table 220 according to the first embodiment.
  • the model table 220 shows the model number (type) of the component provided in the equipment for each model.
  • the model table 220 is tabular data, and one row (record) includes component identification information 221 (described as component ID in FIG. 4), component 222, and columns (attributes) of models 223 to 225.
  • the component identification information 221 and the component 222 correspond to the component identification information 214 (see FIG. 3) and the component 213, respectively, and indicate the components.
  • Models 223 to 225 indicate model numbers (types) of components included in model A, model B, and model C, respectively. For models that do not have components, it is set to "0".
  • the model number is "C1-2" in the model A, and the model C is not installed.
  • FIG. 5 is a data configuration diagram of the failure mode table 230 according to the first embodiment.
  • the failure mode table 230 shows the possibility of failure mode occurring in the components of each model number.
  • the failure mode table 230 is tabular data, and one row (record) is component identification information 231 (denoted as component ID in FIG. 5), component 232, model number 233, and failure mode 234 to 236 (FIG. 5). 3 Includes columns (attributes) of failure mode 215).
  • the component identification information 231 and the component 232 correspond to the component identification information 214 (see FIG. 3) and the component 213, respectively, and indicate the components.
  • Model number 233 is the model number of the component (see models 223 to 225 in FIG. 4).
  • failure modes 234 to 236 include “heat exchanger design failure” and the like, “1” means that a failure mode may occur, and “0” means that there is no possibility. For example, for the "heat exchanger” whose model number 233 is "C1-2”, the heat exchanger is dirty or has a failure mode, but a design failure failure mode does not occur.
  • the probability information database 123 stores the probability information given to the maintenance knowledge network.
  • the probability information database 123 stores a failure mode occurrence probability table 240 (see FIG. 6 below), a failure detection probability table 250 (see FIG. 7 below), and a child node abnormality occurrence probability table 260 (see FIG. 8 below). do.
  • FIG. 6 is a data configuration diagram of the failure mode occurrence probability table 240 according to the first embodiment.
  • the failure mode occurrence probability table 240 stores the prior probability that the failure mode will occur.
  • the failure mode occurrence probability table 240 is tabular data, and one row (record) includes columns (attributes) of failure mode 241 and state 242, and probability 243.
  • the failure mode 241 corresponds to the failure mode of the component (see the failure mode 215 shown in FIG. 3).
  • "Y" in state 242 indicates that the component is in failure mode 241 (state) and "N” is not in failure mode 241 (state).
  • the probability 243 indicates the probability (prior probability) of the state 242 of the failure mode 241.
  • the failure mode occurrence probability table 240 shown in FIG. 6 shows that the probability of a heat exchanger design failure is 50%.
  • the probability 243 may be set for each of the failure modes 241. Further, the probability may be calculated and set based on the actual data. For example, in the failure history, the number of occurrences of the failure mode may be divided by the total number to set the probability that the failure mode will occur (state 242 is "Y").
  • FIG. 7 is a data configuration diagram of the failure detection probability table 250 according to the first embodiment.
  • the failure detection probability table 250 stores the probability that the child node is abnormal or normal when the state of the parent node occurs.
  • the failure detection probability table 250 is tabular data, and one row (record) contains columns (attributes) of a parent node 251 and a parent node state 252, a child node 253, a child node state 254, and a probability 255. include.
  • the parent node state 252 indicates whether or not the failure mode that is the parent node 251 has occurred (“Y”) (“N”).
  • the child node state 254 indicates whether the check item (see the check item 216 shown in FIG. 3), which is the child node 253, is “normal” or “abnormal”.
  • the probability 255 indicates the probability that the child node 253 is in the child node state 254 when the parent node 251 is in the parent node state 252.
  • the probability 255 As shown in FIG. 7, when the failure mode that is the parent node occurs (the state of the node in the failure mode that is the parent node is the failure mode), the check item of the child node becomes abnormal.
  • the probability (the state of the node of the check item that is a child node is abnormal) may be set to 100%, and the probability of becoming normal may be set to 0%. Further, the probability may be calculated and set based on the actual data. For example, the history of occurrence of the failure mode that becomes the parent node 251 may be extracted from the failure history, and the number of abnormal / normal check items in the child node may be divided by the number of extracted history to set.
  • FIG. 8 is a data configuration diagram of the child node abnormality occurrence probability table 260 according to the first embodiment.
  • the child node abnormality occurrence probability table 260 stores the probability that the child node (check item) is abnormal / normal when no abnormality has occurred in the parent node (failure mode).
  • the child node abnormality occurrence probability table 260 is tabular data, and one row (record) includes a child node 261 and a child node state 262, and a column (attribute) of the probability 263.
  • the child node state 262 indicates the state (normal / abnormal) of the child node 261.
  • the probability 263 indicates the probability that the child node 261 is in the child node state 262.
  • the probability of becoming abnormal may be set to 0%, and the probability of becoming abnormal may be set to 100%. Further, the probability may be calculated and set based on the actual data. For example, from the failure history, the history in which the failure mode that is the parent node 251 (see FIG. 7) has not occurred is extracted, and the number of abnormal / normal check items in the child node is divided by the number of extracted history and set. You may.
  • the control unit 110 includes a network generation unit 111.
  • the network generation unit 111 receives the matter information (see FIG. 9 to be described later) and generates a maintenance knowledge network (see FIG. 11 to be described later) corresponding to the abnormal event included in the matter information (see FIG. 10 to be described later). Subsequently, the network generation unit 111 generates a maintenance knowledge network corresponding to the model included in the matter information from the maintenance knowledge network corresponding to the abnormal event (see FIG. 14 described later).
  • the maintenance knowledge network corresponding to the model also corresponds to the abnormal event, and is the maintenance knowledge network corresponding to the abnormal event and the model.
  • FIG. 9 is a data structure diagram of the project information 500 according to the first embodiment.
  • the matter information 500 includes identification information of the matter information 500 (described as a matter ID in FIG. 9), an abnormal event, and a model of equipment in which the abnormal event has occurred.
  • FIG. 10 is a flowchart of the maintenance knowledge network generation process corresponding to the abnormal event according to the first embodiment. Every time the matter information 500 is received, the network generation unit 111 executes the maintenance knowledge network generation process corresponding to the abnormal event included in the matter information 500, and generates the maintenance knowledge network corresponding to the abnormal event included in the matter information. In other words, the network generation unit 111 has an abnormal event included in the matter information 500 from the maintenance knowledge (common maintenance knowledge network, see the maintenance knowledge table 210 shown in FIG. 3) related to each abnormal event stored in the storage unit 120. Extract the maintenance knowledge network corresponding to.
  • the maintenance knowledge common maintenance knowledge network, see the maintenance knowledge table 210 shown in FIG. 3
  • the network generation unit 111 receives the matter information 500 (see FIG. 9).
  • the matter information 500 may be input by a maintenance worker from a user interface device connected to the input / output unit 140 (see FIG. 2), or may be received by the communication unit 130 as communication data.
  • the network generation unit 111 generates network identification information (described as a network ID in FIG. 10) to be allocated to the maintenance knowledge network corresponding to the abnormal event to be generated from now on.
  • the network generation unit 111 generates the maintenance knowledge network 510 (see FIG. 11 described later) corresponding to the abnormal event included in the matter information 500.
  • the generation procedure will be described while explaining the maintenance knowledge network 510.
  • FIG. 11 is a diagram showing a configuration of a maintenance knowledge network 510 corresponding to an abnormal event according to the first embodiment.
  • the maintenance knowledge network 510 (hereinafter, also simply referred to as the maintenance knowledge network 510) corresponding to this abnormal event includes an abnormal event of the equipment (see the abnormal event 211 shown in FIG. 3) and a failure of a component provided in the equipment (see the failure mode 215). ), And the relationship between the failure and the check item (see check item 216) for confirming whether or not the failure has occurred.
  • the maintenance knowledge table 210 shows the maintenance knowledge network (common maintenance knowledge network) for all abnormal events, while the maintenance knowledge network 510 shows the maintenance corresponding to the abnormal events shown in the matter information 500. It is a knowledge network. Specifically, the maintenance knowledge network 510 includes four node groups 511 to 514.
  • the node group 511 includes a node of an abnormal event.
  • the abnormal event included in the matter information 500 is "temperature rise", and the node group 511 includes only the node of "temperature rise”.
  • the matter information includes a plurality of abnormal events
  • the node group 511 includes the nodes of the plurality of abnormal events.
  • the network generation unit 111 searches for and acquires the abnormal event 211 included in the matter information 500 by searching for the abnormal event 211 in the maintenance knowledge table 210 (see FIG. 3), and uses it as the node for the abnormal event in the maintenance knowledge network 510.
  • the node group 512 includes a node with a functional failure.
  • a functional failure is the cause of an abnormal event, and is connected by an arrow (directed link) from the node (parent node) of the abnormal event to the node (child node) of the abnormal event.
  • the network generation unit 111 searches the maintenance knowledge table 210 (see FIG. 3) for a record in which the abnormal event 211 is a child node (node of the abnormal event), and determines the functional failure 212 included in the record as a functional failure. Let it be a node. Even if the same functional failure is included in a plurality of records, only one node is used for the functional failure.
  • the node group 513 includes a node in a failure mode.
  • the failure mode is the cause of the functional failure and is connected by an arrow pointing from the node (parent node) of the failure mode to the node (child node) of the functional failure.
  • the network generation unit 111 searches the maintenance knowledge table 210 (see FIG. 3) for a record in which the functional failure 212 is a child node (functional failure node), and sets the failure mode 215 included in the record to the failure mode. Let it be a node. Even if the same failure mode is included in a plurality of records, the number of nodes in the failure mode is one.
  • the node group 514 includes the node of the check item.
  • the check items are the result of the failure mode, and are connected by an arrow from the node (parent node) of the failure mode to the node (child node) of the check item.
  • the network generation unit 111 searches for a record in which the failure mode 215 is the parent node (failure mode node) in the maintenance knowledge table 210 (see FIG. 3), and checks the check item 216 included in the record as a check item. Let it be a node. Even if the same check item is included in a plurality of records, the number of check item nodes is one.
  • the status of the node for example, whether or not a failure mode has occurred and whether the check items are normal / abnormal can be set. At the moment, it is set that the event has occurred only for the node of the abnormal event (see the double strikethrough of "No" included in the node of temperature rise).
  • the network generation unit 111 generates the network configuration information of the maintenance knowledge network 510.
  • the network configuration information includes a node information table 520 (see FIG. 12 below) and a link information table 530 (see FIG. 13 below).
  • FIG. 12 is a data configuration diagram of the node information table 520 according to the first embodiment.
  • the node information table 520 stores information related to the nodes constituting the maintenance knowledge network 510 (see FIG. 11).
  • the node information table 520 is tabular data, and one row (record) includes node information 521, type 522, component identification information 523, and a column (attribute) of state 524.
  • the node information 521 is the content (name, label) of the node.
  • Type 522 is a node type and is any one of "abnormal event", “functional failure”, “failure mode", and "check item”.
  • the component identification information 523 indicates identification information (see component identification information 214 in FIG. 3) of the component in which the failure mode has occurred when the type 522 is "functional failure” or "failure mode”.
  • the state 524 indicates the state of the node, and indicates, for example, whether the check item is "normal” or "abnormal”.
  • FIG. 13 is a data structure diagram of the link information table 530 according to the first embodiment.
  • the link information table 530 stores information related to links (arrows, directed links) constituting the maintenance knowledge network 510.
  • the link information table 530 is tabular data, and one row (record) shows a link having a parent node 531 as a parent node and a child node 532 as a child node.
  • the maintenance knowledge table 210 shown in FIG. 3 shows a shared maintenance knowledge network including various abnormal events 211.
  • the node information table 520 shown in FIG. 12 and the link information table 530 shown in FIG. 13 show a maintenance knowledge network corresponding to the abnormal event that has occurred shown in the matter information 500 (see FIG. 9).
  • the received abnormal event (case information 500 shown in FIG. 9) is referred to with reference to the common maintenance knowledge network (maintenance knowledge table 210 shown in FIG. 3).
  • the failure of the component related to the abnormal event (see the abnormal event 211) (see the failure mode 215) and the check item for confirming whether or not the failure has occurred (see the check item 216) are specified.
  • the network generation unit 111 After the network generation unit 111 generates the maintenance knowledge network 510 (see FIG. 11) corresponding to the abnormal event in step S103, the network configuration information of the maintenance knowledge network 510 corresponding to this abnormal event is generated in step S104. Generate.
  • the network generation unit 111 may execute steps S103 and S104 in parallel. Specifically, each time a node is added to the maintenance knowledge network 510, the network generation unit 111 adds a record of node information corresponding to the node information table 520 and link information with an existing node to the link information table 530. You may do so.
  • FIG. 14 is a flowchart of the maintenance knowledge network generation process corresponding to the model according to the first embodiment.
  • a process of changing (updating) the maintenance knowledge network 510 corresponding to the abnormal event common to all models to the maintenance knowledge network corresponding to the model in which the abnormal event has occurred will be described with reference to FIG. Since the maintenance knowledge network corresponding to this (abnormal event occurred) model also corresponds to the abnormal event, it is also referred to as the maintenance knowledge network corresponding to the abnormal event and the model.
  • the network generation unit 111 refers to the model information of the matter information 500 (see FIG. 9) and changes to the maintenance knowledge network corresponding to the model.
  • step S131 the network generation unit 111 starts the process of executing steps S132 to S137 for each functional failure node included in the node group 512 (see FIG. 11).
  • step S132 the network generation unit 111 determines whether or not the model has a component that causes a functional failure. If the network generation unit 111 is provided (step S132 ⁇ yes), it proceeds to step S134, and if it is not provided (step S132 ⁇ no), it proceeds to step S133.
  • the component in which the functional failure occurs can be obtained by referring to the component identification information 214 of the record in which the functional failure 212 is the functional failure in the record of the maintenance knowledge table 210 (see FIG. 3). Further, whether or not the model has a component can be determined by referring to the model table 220 (see FIG. 4).
  • step S133 the network generation unit 111 deletes the information related to the node of the functional failure and the node of the failure mode which is the parent node of the node of the functional failure from the node information table 520. Further, the network generation unit 111 deletes the link information related to the deleted node from the link information table 530.
  • step S134 the network generation unit 111 starts the process of executing steps S135 to S136 for each failed node that is the parent node of the functionally failed node. If the node with the functional failure is deleted in step S133, the processes of steps S134 to S137 will not be executed.
  • step S135 the network generation unit 111 determines whether or not a failure mode occurs in the component of the model number provided in the model.
  • the network generation unit 111 proceeds to step S137 if it occurs (step S135 ⁇ yes), and proceeds to step S136 if it does not occur (step S135 ⁇ no).
  • Whether or not a failure mode occurs can be determined by referring to the failure modes 234 to 236 in the record of the model number of the component provided in the model with the model number 233 in the record of the failure mode table 230 (see FIG. 5).
  • step S136 the network generation unit 111 deletes the information related to the node in the failure mode from the node information table 520. Further, the network generation unit 111 deletes the link information related to the deleted node from the link information table 530.
  • step S137 if the network generation unit 111 executes the processes of steps S135 to S136 for all the failure mode nodes that are the parent nodes of the functional failure nodes, the process proceeds to step S138. If there is an unprocessed failure mode node, the network generation unit 111 executes the processing of steps S135 to S136 for the failure mode node.
  • step S138 if the network generation unit 111 executes the processes of steps S132 to S137 for all the functionally failed nodes included in the node group 512 (see FIG. 11), the process proceeds to step S139. If there is an unprocessed functional failure node, the network generation unit 111 executes the processing of steps S132 to S137 for the functional failure node. As described above, in steps S131 to S138, the network generation unit 111 refers to the model table 220 (see FIG. 4) and specifies the type of the component provided in the model of the equipment from the received equipment model. Then, with reference to the failure mode table 230 (see FIG. 5), a failure (see failure modes 234 to 236) that does not include an association with the specified component type can be detected from the maintenance knowledge network corresponding to the abnormal event. Remove.
  • step S139 the network generation unit 111 deletes the node of the functional failure or the failure mode, and deletes the information related to the node of the check item that is not linked from the node information table 520.
  • the check items (unlinked check items) that are different from the check items for confirming the occurrence of the failure (failure mode) that remains without being removed are further removed, and the abnormal event and the relevant item are removed.
  • the node information table 520 and the link information table 530 indicate the maintenance knowledge network corresponding to the model in which the abnormal event has occurred.
  • the node information table 520 and the link information table 530 before the start of this process show the maintenance knowledge network corresponding to the abnormal event shown in the matter information 500.
  • the component mounted on the model shown in the case information 500 and the result of extracting the failure occurring in the component are the maintenance knowledge network corresponding to the model.
  • the node information table 520 and the link information table 530 at the end of step S139 indicate the maintenance knowledge network corresponding to this model, and indicate the abnormal event and the maintenance knowledge network corresponding to the model.
  • step S140 the network generation unit 111 selects related records from the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), and the child node abnormality occurrence probability table 260 (see FIG. 8). get. Specifically, the network generation unit 111 acquires a record of the failure mode occurrence probability table 240 in which the failure mode 241 is included in the failure mode remaining without being deleted in the node information table 520. Further, the network generation unit 111 is a record of the failure detection probability table 250, in which the parent node 251 is included in the failure mode remaining without being deleted, and the child node 253 is a check item remaining without being deleted. Get the records included. Further, the network generation unit 111 acquires the record included in the check items remaining without being deleted by the child node 261 in the record of the child node abnormality occurrence probability table 260.
  • step S141 the network generation unit 111 generated the matter information 500 (see FIG. 9), the maintenance knowledge network corresponding to the abnormal event and the model, the probability information acquired in step S140, and step S102 (see FIG. 10).
  • the network identification information is transmitted to the cause estimation device 300.
  • the maintenance knowledge network corresponding to the abnormal event and the model is the maintenance knowledge network shown in the node information table 520 (see FIG. 12) and the link information table 530 (see FIG. 13).
  • This maintenance knowledge network is a maintenance knowledge network corresponding to the abnormal event shown in the case information 500 and further corresponding to the model shown in the case information 500. Further, by adding probability information, this maintenance knowledge network becomes a Bayesian network.
  • the maintenance knowledge table 210 (see FIG. 3, common maintenance knowledge network) stores failure modes and functional failures, functional failures and abnormal events, and the causal relationship between failure modes and check items as model-independent maintenance knowledge.
  • the network generation unit 111 refers to the maintenance knowledge table 210 and generates a maintenance knowledge network common to all models corresponding to the abnormal events included in the received matter information 500 (see FIG. 9) (see FIG. 10).
  • the model number of the component provided in the model is stored in the model table 220 (see FIG. 4).
  • the failure mode table 230 (see FIG. 5) stores the failure modes that occur in the components for each model number.
  • the network generation unit 111 refers to the model table 220 and the failure mode table 230, and supports the model included in the matter information 500 while deleting the node and the link from the maintenance knowledge network common to all models corresponding to the generated abnormal event. Generate a maintenance knowledge network.
  • This maintenance knowledge network is a maintenance knowledge network corresponding to abnormal events and models.
  • the failure mode occurrence probability table 240 (see FIG. 6) stores the prior probability that the failure mode will occur.
  • the failure detection probability table 250 (see FIG. 7) stores the probability that the child node is abnormal or normal when the state of the parent node occurs.
  • the child node abnormality occurrence probability table 260 (see FIG. 8) stores the probability that the child node (check item) is abnormal / normal when no abnormality has occurred in the parent node (failure mode).
  • the network generation unit 111 acquires the probability information related to the maintenance knowledge network corresponding to the model from the failure mode occurrence probability table 240, the failure detection probability table 250, and the child node abnormality occurrence probability table 260, and converts them into abnormal events and models. It is transmitted to the cause estimation device 300 (see FIG. 1) together with the corresponding maintenance knowledge network.
  • the maintenance knowledge network generator 100 includes a common maintenance knowledge network for estimating the cause of an abnormal event common to all models, it is necessary to prepare maintenance knowledge (maintenance knowledge table 210) which is the basis of the maintenance knowledge network for each model. There is no. Therefore, the maintenance personnel can reduce the cost of preparing the maintenance knowledge.
  • maintenance knowledge table 210 which is the basis of the maintenance knowledge network for each model.
  • the maintenance personnel can reduce the cost of preparing the maintenance knowledge.
  • the cause estimation device 300 receives the maintenance knowledge network corresponding to the model to which the probability information is given from the maintenance knowledge network generation device 100.
  • the cause estimation device 300 estimates the cause of the abnormal event by acquiring the state (normal / abnormal) of the check items included in the maintenance knowledge network from the maintenance personnel and calculating the probability of occurrence of the failure mode of the component.
  • FIG. 15 is a functional block diagram of the cause estimation device 300 according to the first embodiment.
  • the cause estimation device 300 includes a control unit 310, a storage unit 320, a communication unit 330, and an input / output unit 340.
  • the communication unit 330 transmits / receives communication data to / from other devices including the maintenance knowledge network generation device 100 and the maintenance knowledge update device 400.
  • User interface devices such as a display, keyboard, and mouse are connected to the input / output unit 340.
  • the storage unit 320 is composed of storage devices such as ROM, RAM, and SSD.
  • the maintenance knowledge network database 350 and the program 328 are stored in the storage unit 320.
  • the program 328 includes a description of the procedure of the cause estimation process (see FIG. 16 described later).
  • the maintenance knowledge network database 350 stores the matter information received from the maintenance knowledge network generator 100, the maintenance knowledge network corresponding to the abnormal event and the model included in the matter information, the probability information related to the maintenance knowledge network, and the network identification information. Will be done.
  • the description will be continued on the premise (assuming) that the maintenance knowledge network 510 (see FIG. 11) is output from the maintenance knowledge network generator 100.
  • This premise is a premise for explaining the cause estimation device 300 with reference to FIG. Specifically, in the maintenance knowledge network generation process corresponding to the model (see FIG. 14), it is premised that all the components are installed in the received model and the failure mode occurs in the component. Because of this premise, the node is not removed in the maintenance knowledge network generation process corresponding to the model, and the maintenance knowledge network 510 corresponding to the abnormal event becomes the maintenance knowledge network corresponding to the abnormal event and the model.
  • the maintenance knowledge network 510 in the maintenance knowledge network database 350 is given the probability information acquired in step S140 (see FIG. 14), and can be regarded as a Bayesian network.
  • the control unit 310 includes a probability calculation unit 311, a cause estimation unit 312, an estimation result display unit 313, and a check result acquisition unit 314.
  • the probability calculation unit 311 calculates the probability of the Bayesian network. Specifically, the probability calculation unit 311 refers to the network configuration information (see step S139 in FIG. 14) and the probability information (see step S140) of the maintenance knowledge network 510 stored in the maintenance knowledge network database 350, and refers to the Basian network. Calculate the probability of the node of.
  • the cause estimation unit 312 inquires of the maintenance personnel and acquires the status (normal / abnormal) of the chuck items included in the node group 514 of the maintenance knowledge network 510. Subsequently, the cause estimation unit 312 requests the probability calculation unit 311 to acquire the probability of occurrence of the failure mode.
  • the estimation result display unit 313 displays an estimation result display screen 620 (see FIG. 18 described later) including a maintenance knowledge network in which the display state of the node is changed according to the occurrence probability of the failure mode.
  • the check result acquisition unit 314 acquires the cause failure mode selected by the maintenance personnel and transmits it to the maintenance knowledge update device 400 (see FIG. 1).
  • FIG. 16 is a flowchart of the cause estimation process according to the first embodiment.
  • the cause estimation unit 312 acquires the check items of the maintenance knowledge network in the maintenance knowledge network database 350. Subsequently, the cause estimation unit 312 displays a check item on the display connected to the input / output unit 340, and prompts the maintenance personnel to check the check item and input the result. The maintenance personnel check (inspect, inspect) the sensor data and component status in the check items, and input the results.
  • step S202 the cause estimation unit 312 acquires the check result input by the maintenance personnel.
  • step S203 the cause estimation unit 312 sets the probability of the check item from the check result and generates a Bayesian network for cause estimation. For example, when the data of the "sensor 1" shows an abnormal value, the cause estimation unit 312 sets the probability of the "abnormal" state in the node information of the sensor 1 (see the node information table 520 shown in FIG. 12) to 100%. The probability of the "normal" state is set to 0%.
  • step S204 the cause estimation unit 312 requests the probability calculation unit 311 to acquire the probability of failure occurrence (state 524 is “Y”) in the node in the failure mode (see the node information table 520 described in FIG. 12).
  • the probability calculation unit 311 calculates the probability of the node in the failure mode, and outputs the calculation result in the form of the calculation result table 610 (see FIG. 17 described later). Further, the cause estimation unit 312 allocates the estimation result identification information to the check result and the calculation result table 610 acquired in step S202.
  • FIG. 17 is a data configuration diagram of the failure mode calculation result table 610 according to the first embodiment.
  • the calculation result table 610 is tabular data, and one row shows the probability of each state of the node and includes columns (attributes) of failure mode 611, state 612, and probability 613.
  • the failure mode 611 and the state 612 correspond to the node information 521 and the state 524 whose type 522 in the node information table 520 (see FIG. 12) is the "failure mode", respectively.
  • the probability 613 indicates the probability that the failure mode 611 is in the state 612.
  • the estimation result display unit 313 displays the maintenance knowledge network on the estimation result display screen 620 (see FIG. 18 described later) according to the probability of the calculation result.
  • FIG. 18 is a screen configuration diagram of the estimation result display screen 620 according to the first embodiment. In the center of the estimation result display screen 620, a network substantially similar to the maintenance knowledge network 510 (see FIG. 11) is displayed. The difference from the maintenance knowledge network 510 will be described below. In the node of the check item, the result of the check input by the maintenance personnel (see step S202 in FIG. 16) is displayed.
  • the abnormality among the "normal / abnormal" of the node is erased by the double strikethrough, and if the result is abnormal, the normal among the "normal / abnormal” is erased.
  • the node of the check item that was abnormal is highlighted (in FIG. 18, the node is hatched and described).
  • the node of the failure mode the node is highlighted based on the calculation result of the probability of the failure mode (see FIG. 17). More specifically, the higher the failure mode occurrence probability (probability 613 of the record in which the state 612 is "Y" in the calculation result table 610 shown in FIG. 17), the more conspicuously the highlight is displayed. In addition, nodes with functional failures that have a high probability of failure are also highlighted.
  • the maintenance worker selects the failure mode that he / she considers to be the cause of the abnormal event, and presses the selection button 621 arranged at the node of the failure mode.
  • the "selection result input" button 622 arranged at the lower side of the estimation result display screen 620 may be pressed, and the failure mode may be input from the displayed selection result input screen (not shown). ..
  • the failure mode selected by the maintenance personnel is not limited to one, and may be multiple.
  • the check result acquisition unit 314 acquires the failure mode selected by the maintenance personnel.
  • the check result acquisition unit 314 along with the selected failure mode, sets the matter information, the maintenance knowledge network corresponding to the abnormal event and the model stored in the maintenance knowledge network database 350 (see FIG. 15), and the maintenance knowledge network.
  • the probability information, the network identification information, the check result acquired in step S202, the calculation result table 610 (see FIG. 17), and the estimation result identification information are transmitted to the maintenance knowledge update device 400.
  • the maintenance knowledge update device 400 includes case information, a selected failure mode, a maintenance knowledge network corresponding to an abnormal event and a model, probability information related to the maintenance knowledge network, network identification information, check results, calculation result table 610, and estimation.
  • the result identification information is stored in the maintenance work report database 450 (see FIG. 19 described later).
  • the cause estimation device 300 acquires the check results of the check items included in the maintenance knowledge network corresponding to the abnormal event and the model. Next, the cause estimation device 300 calculates the probability of the node in the failure mode by using the acquired check result and the maintenance knowledge network as the Bayesian network. On the estimation result display screen 620 (see FIG. 18), the cause estimation device 300 emphasizes and displays the node having the higher probability of the calculation result among the nodes of the maintenance knowledge network. By looking at the estimation result display screen 620, the maintenance personnel can confirm which failure mode has a high probability of failure. In addition, the maintenance personnel can understand what kind of functional failure has occurred and led to an abnormal event due to the occurrence of the failure mode.
  • the maintenance knowledge update device 400 (see FIG. 1) was acquired from the cause estimation device 300 as a Bayesian network in the maintenance knowledge network corresponding to the abnormal event (provided with probability information) and the model, or in step S202 (see FIG. 16). The state of the check item, the calculated probability (calculation result table 610 shown in FIG. 17), and the like are received.
  • the maintenance knowledge update device 400 acquires a determined cause (which component had what failure (failure mode)) from the maintenance personnel who investigated the cause of the abnormal event.
  • the maintenance knowledge update device 400 compares the cause estimated at a predetermined timing with the confirmed cause, displays the update instruction screen 640 (see FIG. 21 described later), and accepts the update instruction of maintenance knowledge and probability information. , Perform the update.
  • FIG. 19 is a functional block diagram of the maintenance knowledge updating device 400 according to the first embodiment.
  • the maintenance knowledge update device 400 includes a control unit 410, a storage unit 420, a communication unit 430, and an input / output unit 440.
  • the communication unit 430 transmits / receives communication data to / from other devices including the maintenance knowledge network generation device 100 and the cause estimation device 300.
  • User interface devices such as a display, keyboard, and mouse are connected to the input / output unit 440.
  • the storage unit 420 is composed of storage devices such as ROM, RAM, and SSD.
  • the maintenance work report database 450 and the program 428 are stored in the storage unit 420.
  • the program 428 includes a description of the procedure of the maintenance knowledge update process (see FIG. 25 described later).
  • case information, maintenance knowledge network corresponding to abnormal events and models, network identification information, probability information given to the maintenance knowledge network corresponding to abnormal events and models as a Basian network, and maintenance personnel are input.
  • the check result, the probability information calculated from the check result and the Basian network (see FIG. 17), the estimation result identification information, and the failure mode selected as the cause by the maintenance personnel are associated and stored (step shown in FIG. 16). See S206).
  • the maintenance work report database 450 stores the cause of the abnormality acquired by the abnormality cause acquisition unit 411, which will be described later.
  • the control unit 410 includes an abnormality cause acquisition unit 411, an update detection unit 412, an update instruction reception unit 413, and an update execution unit 414.
  • the abnormality cause acquisition unit 411 the maintenance personnel perform maintenance work, acquire the finally confirmed (finally confirmed) abnormality cause, and associate it with the case information, the estimation result identification information, etc., and add it to the maintenance work report database 450. save.
  • the update detection unit 412 monitors the data in the maintenance work report database 450 for a predetermined length of time, compares the cause (failure mode) estimated by the cause estimation device 300 with the finally confirmed abnormal cause, and evaluates the estimation result.
  • Generate table 630 (see Figure 20 below).
  • the update detection unit 412 calculates the match rate (the rate at which the result 635 is "match" in the estimation result evaluation table 630) and outputs it to the update instruction reception unit 413 described later.
  • FIG. 20 is a data structure diagram of the estimation result evaluation table 630 according to the first embodiment.
  • the estimation result evaluation table 630 is for comparing the cause (failure mode) of the abnormal event generated for each matter information and the abnormal event estimated using the maintenance knowledge network corresponding to the model with the finally confirmed cause. It is data.
  • the estimation result evaluation table 630 is tabular data, and one row (record) includes network identification information 631, estimation result identification information 632 (described as estimation result ID in FIG. 20), estimation cause 633, and final confirmation. Includes columns (attributes) for cause 634 and result 635.
  • the network identification information 631 is identification information (see step S102 in FIG. 10) allocated to the maintenance knowledge network corresponding to the abnormal event and the model.
  • the network identification information 631 is identification information stored in the maintenance work report database 450 for a predetermined length of time.
  • the estimation result identification information 632 is the estimation result identification information stored in association with the network identification information 631 in the maintenance work report database 450.
  • the estimation result identification information 632 is identification information (see step S204 in FIG. 16) assigned to the probability calculation result of the failure mode that causes the abnormal event estimated by the cause estimation device 300.
  • the probable cause 633 is the failure mode 611 in which the state 612 is "Y” and the probability 613 is the maximum in the calculation result table 610 (see FIG. 17) associated with the estimation result identification information 632 in the maintenance work report database 450.
  • the final confirmed cause 634 is the final confirmed abnormality cause (see the abnormality cause acquisition unit 411 shown in FIG. 19) associated with the estimation result identification information 632 in the maintenance work report database 450.
  • the result 635 indicates whether or not the probable cause 633 and the final confirmed cause 634 match. When the result 635 is "match", it means that the estimation of the cause estimation device 300 is correct, and the network configuration of the maintenance knowledge network as a Bayesian network and the given probability information are appropriate.
  • the update instruction receiving unit 413 displays the update instruction screen 640 (see FIG. 21 described later) including the estimation result evaluation table 630 (see FIG. 20), and receives the update instruction from the maintenance personnel. It is desirable that the maintenance personnel who issue renewal instructions are veteran maintenance personnel who are familiar with the equipment.
  • FIG. 21 is a screen configuration diagram of the update instruction screen 640 according to the first embodiment.
  • the match rate and the estimation result evaluation table 630 are displayed.
  • the estimation result is displayed.
  • the estimation result is information related to the probability calculation of the Bayesian network including the check result acquired in step S202 (see FIG. 16) and the calculation result table 610 (see FIG. 17).
  • the maintenance knowledge including the maintenance knowledge table 210 is displayed.
  • the "model specification display” button is pressed, specification information for each model including the model table 220 (see FIG. 4) and the failure mode table 230 (see FIG. 5) is displayed.
  • the "Probability information display” button is pressed, the probability of including the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), and the child node abnormality occurrence probability table 260 (see FIG. 8). Information is displayed.
  • the update instruction receiving unit 413 outputs the update instruction content input and approved by the maintenance personnel to the update execution unit 414.
  • the format of the update instruction content for each of maintenance knowledge, model specifications, and probability information will be described.
  • FIG. 22 is a data configuration diagram of the maintenance knowledge update instruction content 650 according to the first embodiment.
  • the update instruction content 650 includes the update instruction content of the maintenance knowledge table 210 (see FIG. 3).
  • the update instruction content 650 is tabular data, and one row (record) includes columns (attributes) of process 651, position 652, and content 653.
  • the process 651 indicates the type of process, and includes "addition", “update”, and “deletion”.
  • the position 652 indicates the position to be updated in the maintenance knowledge table 210.
  • the content 653 is a content to be added when the process 651 is "addition", and a content to be updated (rewritten) when the process 651 is "update”.
  • the record for which the process 651 is "addition” indicates the update to add the record to the first row of the maintenance knowledge table 210.
  • the abnormal event 211, functional failure 212, component 213, component identification information 214, failure mode 215, and check item 216 of the record are "temperature rise”, “insufficient heat exchanger capacity”, “heat exchanger”, and “heat exchanger”, respectively. "C1”, "heat exchanger design failure” and “appearance damage status”.
  • FIG. 23 is a data configuration diagram of the update instruction content 660 of the model specification according to the first embodiment.
  • the update instruction content 660 includes the update instruction content of the model table 220 (see FIG. 4) or the failure mode table 230 (see FIG. 5).
  • the update instruction content 660 is tabular data, and one row (record) includes a process 661, a table 662, a position 663, and a column (attribute) of the content 664.
  • Table 662 indicates a table to be updated, and is a "model” indicating a model table 220 or a "failure mode” indicating a failure mode table 230.
  • the process 661, the position 663, and the content 664 are the same as the process 651, the position 652, and the content 653 of the update instruction content 650 (see FIG. 22), respectively.
  • FIG. 24 is a data configuration diagram of the probability information update instruction content 670 according to the first embodiment.
  • the update instruction content 670 uses data used for updating the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), or the child node abnormality occurrence probability table 260 (see FIG. 8). show.
  • the update execution unit 414 which will be described later, updates the failure mode occurrence probability table 240, the failure detection probability table 250, or the child node abnormality occurrence probability table 260 based on the indicated data.
  • the update instruction content 670 is tabular data, and one row (record) is selection 671, network identification information 672 (described as network ID in FIG. 24), and estimation result identification information 673 (estimation result in FIG. 24). ID), probable cause 674, final confirmed cause 675, and result 676 columns (attributes).
  • the network identification information 672, the estimation result identification information 673, the estimation cause 674, the final confirmed cause 675, and the result 676 are the network identification information 631 in the estimation result evaluation table 630 (see FIG. 20), the estimation result identification information 632, and the estimation cause 633. , Final confirmed cause 634, and result 635, respectively.
  • Selection 671 indicates whether or not the record is used for updating (“Y”) (“N”).
  • the update execution unit 414 has a maintenance knowledge table 210 (see FIG. 3), a model table 220 (see FIG. 4), and a failure mode table 230 (see FIG. 5) based on the update instruction contents 650, 660, and 670. ),
  • the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), or the child node abnormality occurrence probability table 260 (see FIG. 8) is updated.
  • the update execution unit 414 updates the maintenance knowledge table 210, the model table 220, and the failure mode table 230 based on the instructions in the update instruction contents 650 and 660 directly.
  • the update execution unit 414 for example, adds a row in the table or updates the contents of the item shown at the position 652,663.
  • the update execution unit 414 updates the failure mode occurrence probability table 240, the failure detection probability table 250, or the child node abnormality occurrence probability table 260 according to the record in which the selection 671 is "Y" in the record of the update instruction content 670.
  • the update execution unit 414 updates, for example, so that the relationship shown by the record in the failure detection probability table 250 (see FIG. 7) matches the relationship shown by the selected record.
  • the relationship shown by the record in the failure detection probability table 250 is a causal relationship between the failure mode and the check item shown in the record having a high probability 255.
  • the relationship indicated by the selected record is the relationship between the failure mode (final confirmed cause 675) related to the record and the check item that is abnormal (see step S202 in FIG. 16), and the check item is determined by the final confirmed cause 675. It is a causal relationship that the abnormality of.
  • the update execution unit 414 may update the probability information based on the selected record, for example, by using a method of Bayesian update.
  • FIG. 25 is a flowchart of the update process performed by the update execution unit 414 according to the first embodiment.
  • the update execution unit 414 proceeds to step S302 if the update instruction content is an instruction to update the probability information (step S301 ⁇ YES), and proceeds to step S303 if the update instruction content is not probability information (step S301 ⁇ NO).
  • the probability information is a failure mode occurrence probability table 240 (see FIG. 6), a failure detection probability table 250 (see FIG. 7), or a child node abnormality occurrence probability table 260 (see FIG. 8).
  • the update execution unit 414 updates the probability information based on the update instruction content 670 (see FIG. 24).
  • step S303 the update execution unit 414 proceeds to step S304 if the update instruction contents 650 and 660 are approved by the approver (step S303 ⁇ YES), and ends the update process if there is no approval (step S303 ⁇ NO).
  • step S304 the update execution unit 414 proceeds to step S305 if the update instruction content is maintenance knowledge update instruction content 650 (step S304 ⁇ YES), and if the update instruction content is not maintenance knowledge update instruction content 650 (step S304 ⁇ NO).
  • step S305 the update execution unit 414 updates the maintenance knowledge table 210 based on the update instruction content 650.
  • step S306 the update execution unit 414 updates the model table 220 or the failure mode table 230 based on the update instruction content 660.
  • the maintenance knowledge update device 400 calculates the match rate between the cause estimation result (failure mode with the maximum probability) of the cause estimation device 300 and the cause of the final confirmation, and displays it together with the match / mismatch situation (described in FIG. 21). Refer to the update instruction screen 640). By referring to the match / mismatch situation, the maintenance staff can consider where the problem lies in the maintenance knowledge, model specifications, and probability information, and in turn, instruct to update this information. You will be able to.
  • the maintenance knowledge is divided into a model-specific maintenance knowledge table 210 (see FIG. 3), a model-dependent maintenance knowledge model table 220 (see FIG. 4), and a failure mode table 230 (see FIG. 5). Therefore, it becomes possible to update the maintenance knowledge separately for the update common to all models and the update related to each model. As a result, the maintainability of maintenance knowledge is improved.
  • the probability information is updated based on the cause of the final confirmed anomalous event (component failure mode). By reflecting the abnormal event that actually occurred and the cause as the final confirmed fact, the probability information is changed to the numerical value suitable for the reality, and the accuracy of the cause estimation is improved.
  • Second Embodiment >> In the first embodiment, the maintenance personnel check / inspect / inspect the check items and input the check items to the cause estimation device 300 (see step S202 in FIG. 16). In the second embodiment, the cause estimation device 300A (see FIG. 26 described later) receives the sensor data and determines whether the check item is normal or abnormal.
  • FIG. 26 is a functional block diagram of the cause estimation device 300A according to the second embodiment.
  • the event recognition model 360 is added to the storage unit 320, and the event recognition unit 315 is added to the control unit 310 as compared with the cause estimation device 300 (see FIG. 15) of the first embodiment.
  • the communication unit 330 receives sensor data (acquired value, sensor value) from a sensor that acquires the state of equipment (physical quantities such as temperature, pressure, and flow rate).
  • the event recognition model 360 is a machine learning model for classifying sensor data, and is a machine learning model that uses a classification method such as a clustering method such as k-means.
  • the event recognition model 360 is, for example, a model that classifies one or more sensor data into a normal state or an abnormal state.
  • the sensor data is classified based on a feature amount such as a maximum value or a change amount of the sensor data in a certain width period, in addition to the value itself.
  • FIG. 27 is a graph 710 for explaining the classification of sensor data using the event recognition model 360 according to the second embodiment.
  • the axis of the graph 710 is a feature amount of one or a plurality of sensors according to "check item 1" (see FIG. 28 described later), which is one of the check items.
  • the graph 710 is a graph having two axes (features), but may be a graph having one or three or more axes.
  • the data group 711 (group) is a collection (cluster) of sensor data having similar feature quantities, and is a collection of sensor data when "check item 1" is in the normal state.
  • the data group 712 is a collection of sensor data having similar feature quantities, and is a collection of sensor data when "check item 1" is in an abnormal state.
  • FIG. 28 is a table 720 for explaining the classification of sensor data using the event recognition model 360 according to the second embodiment.
  • One row (record) of table 720 shows one data group on graph 710 (see FIG. 27) and contains columns (attributes) of group identification information 721, check item 722, state 723, and feature data 724.
  • the group identification information 721 is the identification information of the data group.
  • the check item 722 is a check item related to the sensor data.
  • the state 723 indicates whether the data group is "normal” or "abnormal” for the check item 722.
  • the feature data 724 is a feature of the data group and indicates, for example, a range (region, for example, the coordinates and radius of the center) in the graph 710 of the data group.
  • the record in which the group identification information 721 is "1" corresponds to the data group 711, and is a record indicating the data group in which the "check item 1" is "normal".
  • the event recognition unit 315 receives the sensor data and uses the event recognition model 360 to determine whether the check item is normal or abnormal. Specifically, the event recognition unit 315 receives the sensor data and calculates the feature amount. Next, the event recognition unit 315 searches for which feature data 724 in the table 720 (see FIG. 28) the calculated feature amount corresponds to, and outputs the check items 722 and the state 723 of the corresponding records. The output check items 722 and state 723 are used in place of the check result (see step S202) input by the maintenance personnel in the cause estimation process (see FIG. 16).
  • the cause estimation device 300A acquires sensor data on behalf of the maintenance personnel and determines whether the check items are normal or abnormal. Maintenance personnel do not need to check / inspect check items or enter check results. Therefore, when an abnormal event occurs, the check result can be accurately input in a short time without any trouble, and the estimation result of the cause of the abnormal event can be obtained.
  • the event recognition unit 315 determines whether the check item is normal / abnormal from the sensor data using the event recognition model 360. In other words, the event recognition unit 315 determines which of the data groups 711 and 712 (see FIG. 27) contains the sensor data, and determines whether the check item is normal or abnormal. However, it is expected that sensor data (new data group) that is not included in any of the data groups 711 and 712 will appear with the operation of the equipment.
  • FIG. 29 is a diagram for explaining a new data group 713 appearing in the graph 710B according to the third embodiment.
  • the sensor data included in the data group 713 is not included in the data group 711 corresponding to the existing normal state or the data group 712 corresponding to the abnormal state. Therefore, the event recognition unit 315 in the second embodiment cannot determine normality / abnormality, and the event recognition model 360 needs to be updated.
  • the third embodiment when a new data group appears, it is detected and the maintenance knowledge is updated according to the instruction of the maintenance staff.
  • the cause estimation device 300B (not shown) according to the third embodiment is the same as the cause estimation device 300A according to the second embodiment. However, the cause estimation device 300B updates the table 720 (see FIG. 28) in response to the instruction of the maintenance knowledge update device 400B (see FIG. 30 described later).
  • FIG. 30 is a functional block diagram of the maintenance knowledge updating device 400B according to the third embodiment.
  • FIG. 30 information and functions added in comparison with the maintenance knowledge updating device 400 (see FIG. 19) according to the first embodiment will be described.
  • the maintenance work report database 450B contains the event recognition model 360 (see table 720 shown in FIG. 28) and the output data of the event recognition unit 315 received from the cause estimation device 300B. A certain check result (normal / abnormal check item) is stored.
  • the maintenance work report database 450B also stores sensor data (also referred to as new data group candidate data) that was received from the cause estimation device 300B and was desired to be determined to be normal or abnormal.
  • the update detection unit 412B detects a new data group and notifies the update instruction reception unit 413B.
  • the update instruction receiving unit 413B displays the update instruction screen 640B (FIG. 32 described later), and receives maintenance knowledge from maintenance personnel and an update instruction of the event recognition model 360.
  • the update execution unit 414B transmits the update instruction of the event recognition model 360 to the cause estimation device 300B according to the update instruction.
  • FIG. 31 is a flowchart of the event recognition model update process according to the third embodiment.
  • the event recognition model update process is executed at a predetermined timing, for example, periodically.
  • the update detection unit 412B calculates the feature amount of the new data group candidate data.
  • the new data group candidate data will be described as a black triangle shown in Graph 710B (see FIG. 29).
  • step S302 the update detection unit 412B determines whether the new data group candidate data includes the new data group.
  • the update detection unit 412B proceeds to step S303 if a new data group is included (step S302 ⁇ YES), and ends the event recognition model update process if it is not included (step S302 ⁇ NO).
  • the update detection unit 412B is new if, for example, in the graph 710B, a predetermined number or more of new data group candidate data is included in a predetermined size range (area) and the distance from other data groups is a predetermined value or more. Judge that the data group is included. In the following, the description will be continued assuming that the data group 713 is a new data group.
  • the update detection unit 412B includes an abnormal event (case information) at the time when the data group 713 is acquired, a maintenance knowledge network corresponding to the abnormal event and the model, and probability information related to the maintenance knowledge network. Acquires network identification information, check results input by maintenance personnel (not obtained from sensor data), calculation result table, estimation result identification information, final confirmed cause of abnormality, and so on.
  • the update detection unit 412B generates an estimation result evaluation table 630 (see FIG. 20) from the related information acquired in step S303, calculates a match rate, and outputs it to the update instruction reception unit 413B.
  • the update instruction receiving unit 413B displays the update instruction screen 640B (FIG. 32 described later) and receives maintenance knowledge from the maintenance staff and the update instruction of the event recognition model 360.
  • FIG. 32 is a screen configuration diagram of the update instruction screen 640B according to the third embodiment.
  • An "event recognition model display” button and an “event recognition model update” button are added as compared with the update instruction screen 640 (see FIG. 21) according to the first embodiment.
  • the graph 710B (see FIG. 29) and the table 720 (see FIG. 28) including the new data group 713 are displayed.
  • the check items 722 and the state 723 of the records in the table 720 corresponding to the new data group 713 are blank.
  • the group identification information 721 includes new group identification information, and the feature data 724 contains feature data corresponding to the data group 713.
  • the maintenance staff will consider the updated contents while looking at the maintenance knowledge, specification information for each model, probability information, and event recognition model.
  • the maintenance worker presses the "event recognition model update” button and inputs the check items 722 and the state 723 of the displayed table 720.
  • step S306 the update execution unit 414B updates the maintenance knowledge, the model specification, and the probability information according to the update instruction in the same manner as the update execution unit 414 of the first embodiment.
  • the table 720 updated in step S305 is transmitted to the cause estimation device 300B, and the cause estimation device 300B updates the table 720 stored by itself.
  • the maintenance knowledge update device 400B detects this data group and updates the update instruction screen 640B including an estimation result evaluation table related to the cause estimation of the related abnormal event ( (See FIG. 32) is displayed.
  • the maintenance staff considers whether to add the new data group to the state of the check item and whether to update the maintenance knowledge and the probability information, and inputs the instruction. In this way, even if a new data group appears, the accuracy of estimating the cause of the abnormal event can be maintained and improved.
  • the maintenance staff examines the maintenance knowledge, the model specifications, and the updated contents of the probability information, and inputs the instruction. Since it is a human instruction, it is possible that updates / changes may be omitted or inconsistencies may occur. In the fourth embodiment, such omissions and contradictions are reduced by utilizing the asset knowledge.
  • FIG. 33 is a functional block diagram of the maintenance knowledge updating device 400C according to the fourth embodiment.
  • the asset knowledge database 460 is added to the storage unit 420 as compared with the maintenance knowledge update device 400 (see FIG. 19) of the first embodiment.
  • FIG. 34 is a data structure diagram of the asset knowledge database 460 according to the fourth embodiment.
  • the asset knowledge database 460 stores data such as maintenance knowledge analysis results.
  • the asset knowledge database 460 is, for example, a FMEA (Failure Mode and Effects Analysis) sheet, which includes information such as failure mode, functional failure, and influence, and the causal relationship of the information is clear.
  • FMEA Failure Mode and Effects Analysis
  • the asset knowledge database 460 is tabular data, and one row (record) is a column of causally related components 461, functional failure 462, failure mode 463, failure effect 464, cause 465, and inspection item 466. Includes (attribute).
  • the component 461, the functional failure 462, the failure mode 463, the failure effect 464, and the inspection item 466 are the component 213, the functional failure 212, the failure mode 215, the abnormal event 211, and the check item 216 of the maintenance knowledge table 210 (see FIG. 3), respectively. It corresponds to.
  • One record can also be regarded as a causal relationship between anomalous events, malfunctions, failure modes, and check items.
  • the update instruction receiving unit 413C inspects the asset knowledge database 460 for omissions or inconsistencies when the maintenance personnel add a node or a link to the maintenance knowledge network. For example, when an instruction to add a failure mode to a component is received, the update instruction receiving unit 413C inspects whether the failure mode has been added to another component of the same type. As a result of the inspection, if there is a component that has not been added, the update instruction receiving unit 413C displays a warning. Alternatively, the update instruction receiving unit 413C may display a message suggesting addition.
  • the update instruction receiving unit 413C when an instruction to update a functional failure, a failure mode, and the two causal relationships is received, does the update instruction receiving unit 413C contradict the relationship between the functional failure 462 and the failure mode 463 included in the asset knowledge database 460? inspect. If a contradiction is found as a result of the inspection, the update instruction receiving unit 413C displays a warning including the content of the contradiction. In addition, the update instruction receiving unit 413C has a causal relationship between an abnormal event and a functional failure that is not included in the asset knowledge database 460, a causal relationship between a functional failure and a failure mode, a causal relationship between an abnormal event and a failure mode, and a failure mode.
  • the update instruction screen displayed by the update instruction receiving unit 413C includes an "asset knowledge display" button for displaying the contents of the asset knowledge database 460.
  • the maintenance knowledge updating device 400C can detect omissions and inconsistencies in the updated contents. As a result, maintenance personnel can easily determine the renewal work and reduce renewals including inconsistencies and omissions. In addition, since the message for adding the failure mode of the component can be displayed, the content that may need to be updated can be presented, so that the update instruction is efficiently supported.
  • Update detection unit When the update detection unit detects that the match rate (see the result 635 in FIG. 20) is lower than the predetermined value or a new data group (see the data group 713 in FIG. 29), the update detection unit notifies the maintenance personnel of this. You may.
  • the check items are normal / abnormal binary values, but the check items are not limited to this.
  • the check items for the damage status of the component may be three or more stages such as “none”, “within 5 mm”, “within 10 mm”, and “more than 10 mm", or may be numerical values.
  • the maintenance knowledge network generator 100 generates a maintenance knowledge network corresponding to an abnormal event (see FIG. 10) and then generates a maintenance knowledge network corresponding to the abnormal event and the model (see FIG. 14). ing.
  • the maintenance knowledge network generation device 100 may generate the maintenance knowledge network corresponding to the abnormal event and the model without generating the maintenance knowledge network corresponding to the abnormal event.
  • the maintenance knowledge network generator 100 refers to the maintenance knowledge table 210 (see FIG. 3) excluding the records of the components not provided in the model and the records including the failure mode that does not occur in the components provided in the model.
  • a maintenance knowledge network corresponding to a model may be generated to generate a maintenance knowledge network corresponding to an abnormal event and a model.
  • the maintenance knowledge network described above includes check items for checking the state of the failure mode of the component.
  • the cause estimation system may use a maintenance knowledge network that does not include check items and relationships (links) between check items and components.
  • the component that causes the abnormal event may be presented together with the magnitude of the possibility of failure. If the equipment configuration is simple and it is easy to determine whether or not a component has failed, it is possible to present components with a high possibility of failure and streamline maintenance personnel's response work even if there are no check items. ..
  • the above-mentioned maintenance knowledge network shows a causal relationship that the cause of the abnormal event is a functional failure and the cause of the functional failure is a failure mode. It may be a maintenance knowledge network in which there is no functional failure and the cause of the abnormal event is the failure mode.
  • the update instruction screen 640B includes the estimation result evaluation table 630 (see FIG. 20), but may not be included. It is assumed that the update of the table 720 (see FIG. 28) showing the event recognition model 360 (see FIG. 26) and the update of the maintenance knowledge table 210 and the like are obvious without referring to the estimation result evaluation table 630.
  • the update instruction screen 640B that does not include the estimation result evaluation table 630 may be used.
  • the cause estimation system 10 is composed of a maintenance knowledge network generation device 100, a cause estimation device 300, and a maintenance knowledge update device 400, but may be one device.
  • the cause estimation system 10 may be used for estimating the cause of a failure in office equipment, home appliances, etc., in addition to equipment, equipment, and machines installed in plants and facilities.
  • the failure mode and the abnormal event have a causal relationship with a functional failure sandwiched between them. There may be a causal relationship in which there is no functional failure and the failure mode and the abnormal event are directly linked.
  • the maintenance knowledge network is a Bayesian network to which probability information is given, but it is not necessary to have probability information.
  • the cause estimation system estimates the failure mode of all the components that may be the cause for the abnormal event regardless of the possibility.
  • the present invention can take various other embodiments, and further, various changes such as omission and replacement can be made without departing from the gist of the present invention.
  • These embodiments and variations thereof are included in the scope and gist of the invention described in the present specification and the like, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Abstract

A network generation unit (111) of this cause inference system refers to a shared maintenance knowledge network (maintenance knowledge table (210)), and specifies, on the basis of an abnormal event, failure in a component related to the abnormal event, and checking items for checking the propriety of occurrence of the failure, thereby generating a maintenance knowledge network corresponding to the abnormal event. Next, the network generation unit (111) refers to a machine type table (220) to specify, on the basis of a machine type of a facility, a type of a component provided to the machine type of the facility, refers to a failure mode table 230 to remove, from the maintenance knowledge network corresponding to the abnormal event, failure which is not associated with the specified type of the component, and further removes remaining failure and unrelated checking items, thereby generating a maintenance knowledge network corresponding to the abnormal event and the machine type of the facility.

Description

原因推定システムおよび原因推定方法Cause estimation system and cause estimation method
 本発明は、設備や機器の異常事象の原因を推定する原因推定システムおよび原因推定方法に関する。 The present invention relates to a cause estimation system and a cause estimation method for estimating the cause of an abnormal event of equipment or equipment.
 プラントや施設などに置かれる設備や機器の正常動作を保つためには保守作業が必須である。また、設備や機器に異常(異常事象、故障)が発生した場合には、その原因を速やかに特定して対処することが求められる。
 特許文献1に記載の機器状態監視システムは、プラント計測値から異常パラメータを推定し、異常パラメータから故障機器を推定することを可能としている。当該機器状態監視システムは、プラント機器が正常なときのプラント計測値を格納した正常時計測値データベースと、機器故障時に影響のあるパラメータとの関係をモデル化した機器劣化モデルが格納された機器劣化モデルデータベースと、機器の故障確率が格納された機器故障確率データベースと、機器の故障記録が格納された機器故障記録データベースとを備え、前記データベースから計算される確率を設定して物理モデルを設定し、プラントの計測値と正常時計測値と比較して異常の有無の判定と異常パラメータの推定をして、前記物理モデルを用いて前記異常パラメータから故障機器を推定する。
Maintenance work is essential to maintain the normal operation of equipment and devices placed in plants and facilities. In addition, when an abnormality (abnormal event, failure) occurs in equipment or equipment, it is required to promptly identify the cause and deal with it.
The equipment condition monitoring system described in Patent Document 1 makes it possible to estimate anomalous parameters from plant measured values and to estimate faulty equipment from anomalous parameters. The equipment status monitoring system stores equipment deterioration models that model the relationship between the normal measurement value database that stores plant measurement values when the plant equipment is normal and the parameters that affect the equipment failure. A model database, a device failure probability database in which the device failure probability is stored, and a device failure record database in which the device failure record is stored are provided, and the probability calculated from the database is set to set the physical model. , The presence or absence of abnormality is determined by comparing the measured value of the plant with the measured value at normal time, and the abnormality parameter is estimated, and the faulty equipment is estimated from the abnormality parameter using the physical model.
特開2020-009080号公報Japanese Unexamined Patent Publication No. 2020-909080
 特許文献1に記載の機器状態監視システムでは、故障の事前確率と条件付確率とが設定された物理モデル(故障原因推定に用いられるネットワークモデル)は、機器ごとに準備されて、故障機器の推定に用いられる。このため、同様な構成の設備や機器であっても機種が異なると、別の物理モデルを用意する必要がある。また、同様な構成の機器の機種間で共通な物理モデルを作成したとしても、物理モデルの内部の因果関係に機種間での違いが判明した場合には、物理モデルの更新ができなくなる。 In the device condition monitoring system described in Patent Document 1, a physical model (network model used for estimating the cause of failure) in which a prior probability of failure and a conditional probability are set is prepared for each device to estimate the failed device. Used for. Therefore, even if the equipment and devices have the same configuration, if the models are different, it is necessary to prepare different physical models. Further, even if a common physical model is created between models of devices having the same configuration, the physical model cannot be updated if the internal causal relationship of the physical model is found to be different between the models.
 本発明は、このような背景を鑑みてなされたものであり、機種共通のネットワークモデルに基づいて機種に対応した故障原因の推定を可能とする原因推定システムおよび原因推定方法を提供することを課題とする。 The present invention has been made in view of such a background, and it is an object of the present invention to provide a cause estimation system and a cause estimation method capable of estimating a failure cause corresponding to a model based on a network model common to all models. And.
 上記した課題を解決するため、本発明に係る原因推定システムは、設備の異常事象と当該設備に備わるコンポーネントの故障との関係、および、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワークと、前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルとを用いて情報処理を行うネットワーク生成部を備え、前記ネットワーク生成部は、前記異常事象と、当該異常事象が発生した設備の機種とを受け取り、前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障と、当該故障の発生の当否を確認するためのチェック項目とを特定して、当該異常事象に対応した保守知識ネットワークを生成し、前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し、前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去し、除去されずに残った故障の発生の当否を確認するためのチェック項目とは異なるチェック項目を、さらに除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成する。 In order to solve the above-mentioned problems, the cause estimation system according to the present invention checks the relationship between an abnormal event of equipment and a failure of a component provided in the equipment, and a check for confirming whether or not the failure and the failure have occurred. It occurs in a common maintenance knowledge network that shows the relationship with items, a model table that associates the model of the equipment with the type of the component provided in the equipment of the model, the type of the component, and the type of the component. A network generation unit that performs information processing using a failure table associated with a failure is provided, and the network generation unit receives the abnormal event and the model of the equipment in which the abnormal event has occurred, and the common maintenance knowledge. With reference to the network, the failure of the component related to the abnormal event and the check item for confirming the occurrence of the failure are specified from the received abnormal event, and the maintenance corresponding to the abnormal event is performed. Generate a knowledge network, refer to the model table, identify the type of component provided in the model of the equipment from the received equipment model, refer to the failure table, and associate it with the specified component type. Failures that do not include the above are removed from the maintenance knowledge network corresponding to the abnormal event, and check items that are different from the check items for confirming the occurrence of failures that remain unremoved are further removed. Generate a maintenance knowledge network corresponding to the abnormal event and the model of the equipment.
 本発明によれば、機種共通のネットワークモデルに基づいて機種に対応した故障原因の推定を可能とする原因推定システムおよび原因推定方法を提供することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a cause estimation system and a cause estimation method that enable estimation of a failure cause corresponding to a model based on a network model common to all models. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
第1の実施形態に係る原因推定システムの全体構成図である。It is an overall block diagram of the cause estimation system which concerns on 1st Embodiment. 第1の実施形態に係る保守知識ネットワーク生成装置の機能ブロック図である。It is a functional block diagram of the maintenance knowledge network generation apparatus which concerns on 1st Embodiment. 第1の実施形態に係る保守知識テーブルのデータ構成図である。It is a data structure diagram of the maintenance knowledge table which concerns on 1st Embodiment. 第1の実施形態に係る機種テーブルのデータ構成図である。It is a data structure diagram of the model table which concerns on 1st Embodiment. 第1の実施形態に係る故障モードテーブルのデータ構成図である。It is a data structure diagram of the failure mode table which concerns on 1st Embodiment. 第1の実施形態に係る故障モード発生確率テーブルのデータ構成図である。It is a data structure diagram of the failure mode occurrence probability table which concerns on 1st Embodiment. 第1の実施形態に係る故障検知確率テーブルのデータ構成図である。It is a data structure diagram of the failure detection probability table which concerns on 1st Embodiment. 第1の実施形態に係る子ノード異常発生確率テーブルのデータ構成図である。It is a data structure diagram of the child node abnormality occurrence probability table which concerns on 1st Embodiment. 第1の実施形態に係る案件情報のデータ構成図である。It is a data composition diagram of the case information which concerns on 1st Embodiment. 第1の実施形態に係る異常事象に対応した保守知識ネットワーク生成処理のフローチャートである。It is a flowchart of maintenance knowledge network generation processing corresponding to the abnormal event which concerns on 1st Embodiment. 第1の実施形態に係る異常事象に対応した保守知識ネットワークの構成を示す図である。It is a figure which shows the structure of the maintenance knowledge network corresponding to the abnormal event which concerns on 1st Embodiment. 第1の実施形態に係るノード情報テーブルのデータ構成図である。It is a data structure diagram of the node information table which concerns on 1st Embodiment. 第1の実施形態に係るリンク情報テーブルのデータ構成図である。It is a data structure diagram of the link information table which concerns on 1st Embodiment. 第1の実施形態に係る機種に対応した保守知識ネットワーク生成処理のフローチャートである。It is a flowchart of maintenance knowledge network generation processing corresponding to the model which concerns on 1st Embodiment. 第1の実施形態に係る原因推定装置の機能ブロック図である。It is a functional block diagram of the cause estimation apparatus which concerns on 1st Embodiment. 第1の実施形態に係る原因推定処理のフローチャートである。It is a flowchart of the cause estimation process which concerns on 1st Embodiment. 第1の実施形態に係る故障モードの計算結果テーブルのデータ構成図である。It is a data block diagram of the calculation result table of the failure mode which concerns on 1st Embodiment. 第1の実施形態に係る推定結果表示画面の画面構成図である。It is a screen block diagram of the estimation result display screen which concerns on 1st Embodiment. 第1の実施形態に係る保守知識更新装置の機能ブロック図である。It is a functional block diagram of the maintenance knowledge update device which concerns on 1st Embodiment. 第1の実施形態に係る推定結果評価テーブルのデータ構成図である。It is a data composition diagram of the estimation result evaluation table which concerns on 1st Embodiment. 第1の実施形態に係る更新指示画面の画面構成図である。It is a screen block diagram of the update instruction screen which concerns on 1st Embodiment. 第1の実施形態に係る保守知識の更新指示内容のデータ構成図である。It is a data structure diagram of the content of the update instruction of maintenance knowledge which concerns on 1st Embodiment. 第1の実施形態に係る機種仕様の更新指示内容のデータ構成図である。It is a data structure diagram of the update instruction content of the model specification which concerns on 1st Embodiment. 第1の実施形態に係る確率情報の更新指示内容のデータ構成図である。It is a data composition diagram of the update instruction content of the probability information which concerns on 1st Embodiment. 第1の実施形態に係る更新実行部が行う更新処理のフローチャートである。It is a flowchart of the update process performed by the update execution unit which concerns on 1st Embodiment. 第2の実施形態に係る原因推定装置の機能ブロック図である。It is a functional block diagram of the cause estimation apparatus which concerns on 2nd Embodiment. 第2の実施形態に係るイベント認識モデルを用いたセンサデータの分類を説明するためのグラフである。It is a graph for demonstrating the classification of the sensor data using the event recognition model which concerns on 2nd Embodiment. 第2の実施形態に係るイベント認識モデルを用いたセンサデータの分類を説明するためのテーブルである。It is a table for demonstrating the classification of the sensor data using the event recognition model which concerns on 2nd Embodiment. 第3の実施形態に係り、グラフに現れた新たなデータ群を説明するための図である。It is a figure for demonstrating the new data group which appeared in the graph with respect to the 3rd Embodiment. 第3の実施形態に係る保守知識更新装置の機能ブロック図である。It is a functional block diagram of the maintenance knowledge update device which concerns on 3rd Embodiment. 第3の実施形態に係るイベント認識モデル更新処理のフローチャートである。It is a flowchart of the event recognition model update process which concerns on 3rd Embodiment. 第3の実施形態に係る更新指示画面の画面構成図である。It is a screen block diagram of the update instruction screen which concerns on 3rd Embodiment. 第4の実施形態に係る保守知識更新装置の機能ブロック図である。It is a functional block diagram of the maintenance knowledge update device which concerns on 4th Embodiment. 第4の実施形態に係るアセット知識データベースのデータ構成図である。It is a data structure diagram of the asset knowledge database which concerns on 4th Embodiment.
≪原因推定システムの概要≫
 原因推定システムは、設備や機器(以下、単に設備とも記す)の異常事象と当該異常事象の原因となる故障との関係、および、故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワーク(単に保守知識ネットワークとも記す)を備える。故障とは、設備を構成するコンポーネントの故障(以下、故障モードとも記す)である。
≪Overview of cause estimation system≫
The cause estimation system is a check item for confirming the relationship between an abnormal event of equipment or equipment (hereinafter, also simply referred to as equipment) and the failure that causes the abnormal event, and whether or not the failure and the failure have occurred. It is equipped with a common maintenance knowledge network (also referred to simply as a maintenance knowledge network) that shows the relationship between the two. A failure is a failure of a component constituting the equipment (hereinafter, also referred to as a failure mode).
 原因推定システムは、設備の機種ごとにコンポ―ネットの有無や、同じコンポ―ネットでも機種で異なる種別(型番)のコンポーネントにおける故障モード発生の当否を機種テーブルとして記憶している。また、共通保守知識ネットワークには、故障モードが発生する確率や、故障モードが発生した場合に当該故障モードの発生の当否を確認するためのチェック項目が異常となる確率が付与されている。このため、共通保守知識ネットワークは、異常事象の原因を推定するベイジアンネットワーク(Bayesian Network)と見なすことができる。 The cause estimation system stores as a model table whether or not there is a component for each equipment model, and whether or not a failure mode has occurred in a component of a different type (model number) for the same component but for each model. Further, the common maintenance knowledge network is given a probability that a failure mode will occur and a probability that a check item for confirming whether or not the failure mode has occurred will be abnormal when the failure mode occurs. Therefore, the common maintenance knowledge network can be regarded as a Bayesian network for estimating the cause of an abnormal event.
 原因推定システムは、異常事象の発生と異常事象が発生した設備の機種の通知を受け付けて、当該異常事象および当該機種に対応した保守知識ネットワークを生成する。詳しくは、原因推定システムは、発生した異常事象と当該異常事象の原因となる故障との関係、および、当該異常事象の原因となる故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す、異常事象に対応した保守知識ネットワークを生成する。換言すれば、原因推定システムは、共通保守知識ネットワークから、発生した異常事象に関係する部分だけを抜き出して、異常事象に対応した保守知識ネットワークを生成する。 The cause estimation system receives notifications of the occurrence of an abnormal event and the model of the equipment in which the abnormal event has occurred, and generates a maintenance knowledge network corresponding to the abnormal event and the model. Specifically, the cause estimation system has a check item for confirming the relationship between the abnormal event that has occurred and the failure that causes the abnormal event, and the failure that causes the abnormal event and whether or not the failure has occurred. Generate a maintenance knowledge network corresponding to an abnormal event that shows the relationship between. In other words, the cause estimation system extracts only the part related to the abnormal event that has occurred from the common maintenance knowledge network, and generates the maintenance knowledge network corresponding to the abnormal event.
 次に、原因推定システムは、異常事象に対応した保守知識ネットワークから、当該機種には備わっていないコンポーネントや当該機種に備わる種別のコンポーネントでは発生しない故障モードを取り除いて、当該機種に対応した保守知識ネットワークを生成する。換言すれば、異常事象に対応した保守知識ネットワークから、異常事象が発生した機種に対応した保守知識ネットワークを生成する。これが、異常事象および機種に対応した保守知識ネットワークである。 Next, the cause estimation system removes from the maintenance knowledge network corresponding to the abnormal event the failure mode that does not occur in the component that the model does not have or the component of the type that the model has, and the maintenance knowledge corresponding to the model. Create a network. In other words, from the maintenance knowledge network corresponding to the abnormal event, the maintenance knowledge network corresponding to the model in which the abnormal event occurred is generated. This is a maintenance knowledge network that responds to abnormal events and models.
 原因推定システムは、設備の保全員からチェック項目の正常/異常を受け付けて、ベイジアンネットワークの確率算出手法を用いて異常事象の原因となるコンポ―ネットの故障を推定(コンポーネントが故障モードの状態である確率を算出)して、保全員に提示する。また、原因推定システムは、保全員が調査した故障の原因と、推定した原因とを比較して一致率を算出し、さらに共通保守知識ネットワークや確率情報を変更する機能を備える。 The cause estimation system accepts the normality / abnormality of the check items from the equipment maintenance personnel and estimates the failure of the component that causes the abnormal event using the probability calculation method of the Bayesian network (when the component is in the failure mode). Calculate a certain probability) and present it to the maintenance staff. In addition, the cause estimation system has a function of comparing the cause of the failure investigated by the maintenance personnel with the estimated cause, calculating the matching rate, and changing the common maintenance knowledge network and the probability information.
 原因推定システムは、機種共通の異常事象の原因を推定するための共通保守知識ネットワークを備える。このため、機種ごとに保守知識ネットワークを作成する必要がなくなり、作成コストを削減することができる。また、機種テーブルを備え、共通保守知識ネットワークから異常事象および機種に対応した保守知識ネットワークを生成し、これをベイジアンネットワークとして用いて異常事象の原因(故障モードにあるコンポーネント)を推定することができるようになる。 The cause estimation system is equipped with a common maintenance knowledge network for estimating the cause of abnormal events common to all models. Therefore, it is not necessary to create a maintenance knowledge network for each model, and the creation cost can be reduced. In addition, it has a model table, and it is possible to generate an abnormal event and a maintenance knowledge network corresponding to the model from the common maintenance knowledge network, and use this as a Bayesian network to estimate the cause of the abnormal event (component in failure mode). Will be.
 機種のコンポーネントを変更したり、機種を追加したりする場合には、機種テーブルを更新することで対応できる。また、共通保守知識ネットワークを見直す際には、機種ごとに見直す必要がない。このため、原因推定に必要な知識データ(機種別の情報や確率情報を含めた保守知識ネットワーク)の保守性が高くなる。 When changing the component of a model or adding a model, it can be handled by updating the model table. Moreover, when reviewing the common maintenance knowledge network, it is not necessary to review each model. Therefore, the maintainability of the knowledge data (maintenance knowledge network including model-specific information and probability information) required for cause estimation is improved.
≪原因推定システムの構成≫
 図1は、第1の実施形態に係る原因推定システム10の全体構成図である。原因推定システム10は、相互に通信可能な保守知識ネットワーク生成装置100、原因推定装置200、および保守知識更新装置400を含んで構成される。
<< Configuration of cause estimation system >>
FIG. 1 is an overall configuration diagram of the cause estimation system 10 according to the first embodiment. The cause estimation system 10 includes a maintenance knowledge network generation device 100, a cause estimation device 200, and a maintenance knowledge update device 400 that can communicate with each other.
≪保守知識ネットワーク生成装置の構成≫
 図2は、第1の実施形態に係る保守知識ネットワーク生成装置100の機能ブロック図である。保守知識ネットワーク生成装置100は、制御部110、記憶部120、通信部130、および入出力部140を含んで構成される。通信部130は、原因推定装置300や保守知識更新装置400を含む他の装置と通信データを送受信する。入出力部140は、ディスプレイやキーボード、マウスなどのユーザインターフェイス機器が接続される。
<< Maintenance knowledge Network generator configuration >>
FIG. 2 is a functional block diagram of the maintenance knowledge network generation device 100 according to the first embodiment. The maintenance knowledge network generation device 100 includes a control unit 110, a storage unit 120, a communication unit 130, and an input / output unit 140. The communication unit 130 transmits / receives communication data to / from other devices including the cause estimation device 300 and the maintenance knowledge update device 400. User interface devices such as a display, keyboard, and mouse are connected to the input / output unit 140.
 記憶部120は、ROM(Read Only Memory)やRAM(Random Access Memory)、SSD(Solid State Drive)などの記憶機器から構成される。記憶部120には、保守知識データベース121、機種仕様データベース122、確率情報データベース123、およびプログラム128が記憶される。プログラム128は、異常事象に対応した保守知識ネットワーク生成処理(後記する図10参照)や機種に対応した保守知識ネットワーク生成処理(後記する図14参照)の手順の記述を含む。 The storage unit 120 is composed of storage devices such as ROM (Read Only Memory), RAM (Random Access Memory), and SSD (Solid State Drive). The maintenance knowledge database 121, the model specification database 122, the probability information database 123, and the program 128 are stored in the storage unit 120. The program 128 includes a description of the procedure of the maintenance knowledge network generation process corresponding to the abnormal event (see FIG. 10 described later) and the maintenance knowledge network generation process corresponding to the model (see FIG. 14 described later).
≪保守知識ネットワーク生成装置:保守知識データベース≫
 保守知識データベース121は、保守知識テーブル210(後記する図3参照)を含み、保全マニュアルやFT図(Fault Tree Diagram)などの保全知識を格納している。図3は、第1の実施形態に係る保守知識テーブル210のデータ構成図である。保守知識テーブル210は、異常事象や異常事象の原因、原因となる事象が発生しているか否かを判定するためのチェック項目(検査項目)を記憶する。保守知識テーブル210は、表形式のデータであって、1つの行(レコード)は、異常事象211、機能故障212、コンポーネント213、コンポーネント識別情報214(図3ではコンポーネンID(Identifier)と記載)、故障モード215、およびチェック項目216の列(属性)を含む。
≪Maintenance knowledge network generator: Maintenance knowledge database≫
The maintenance knowledge database 121 includes a maintenance knowledge table 210 (see FIG. 3 described later), and stores maintenance knowledge such as a maintenance manual and an FT diagram (Fault Tree Diagram). FIG. 3 is a data structure diagram of the maintenance knowledge table 210 according to the first embodiment. The maintenance knowledge table 210 stores check items (inspection items) for determining an abnormal event, a cause of the abnormal event, and whether or not a causative event has occurred. The maintenance knowledge table 210 is tabular data, and one row (record) is an abnormal event 211, a functional failure 212, a component 213, and a component identification information 214 (described as a component ID (Identifier) in FIG. 3). Includes failure mode 215 and column (attribute) of check item 216.
 異常事象211は、設備に発生する異常の症状である。機能故障212は、異常事象211の原因となる機能上の故障である。1つの異常事象211を引き起こす機能故障212は1つに限らない。
 コンポーネント213は、機能故障212が発生する設備のコンポーネントである。1つのコンポーネント213で発生する可能性がある機能故障212は1つとは限らない。コンポーネント識別情報214は、コンポーネント213の識別情報である。
Abnormal event 211 is a symptom of an abnormality that occurs in the equipment. The functional failure 212 is a functional failure that causes the abnormal event 211. The number of functional failures 212 that cause one abnormal event 211 is not limited to one.
Component 213 is a component of equipment in which a functional failure 212 occurs. The number of functional failures 212 that can occur in one component 213 is not limited to one. The component identification information 214 is the identification information of the component 213.
 故障モード215(単に故障とも記す)は、機能故障212が発生するコンポーネント213の故障現象である。1つの機能故障212を引き起こす可能性がある故障モード215は1つとは限らない。
 チェック項目216(検査項目)は、設備に備わるセンサデータや環境、コンポーネントの状態など設備の状況をチェック/検査/確認する個所である。チェック項目216の内容は、故障モードが発生する場合に発生しうる現象であって、この現象が発生したかどうかをチェックする個所である。1つの故障モード215に対応するチェック項目216は1つとは限らない。
The failure mode 215 (also referred to simply as a failure) is a failure phenomenon of the component 213 in which the functional failure 212 occurs. The number of failure modes 215 that can cause one functional failure 212 is not limited to one.
Check item 216 (inspection item) is a place to check / inspect / confirm the equipment status such as sensor data, environment, and component status of the equipment. The content of the check item 216 is a phenomenon that can occur when a failure mode occurs, and is a place to check whether or not this phenomenon has occurred. The number of check items 216 corresponding to one failure mode 215 is not limited to one.
 機能故障と異常事象、故障モードと機能故障、および、故障モードとチェック項目は、原因と結果の関係(因果関係)である。この関係をネットワークの形で示したものが保守知識ネットワークである。保守知識テーブル210が示すのは、全ての異常事象および全ての機種に係る保守知識ネットワークである。この全ての異常事象および機種に係る保守知識ネットワークを共通保守知識ネットワークとも記す。また、後記する図11に記載したのは、1つの異常事象である「気温上昇」に限定した保守知識ネットワークであって、異常事象に対応した保守知識ネットワークである。なお、保守知識ネットワークにおいて、原因となるノードを親ノード、結果となるノードを子ノードとも記す。 Functional failure and abnormal event, failure mode and functional failure, and failure mode and check items are the relationship between cause and effect (causal relationship). The maintenance knowledge network shows this relationship in the form of a network. The maintenance knowledge table 210 shows the maintenance knowledge network for all abnormal events and all models. The maintenance knowledge network related to all these abnormal events and models is also referred to as the common maintenance knowledge network. Further, FIG. 11 described later is a maintenance knowledge network limited to one abnormal event "temperature rise", and is a maintenance knowledge network corresponding to the abnormal event. In the maintenance knowledge network, the causative node is also referred to as a parent node, and the resulting node is also referred to as a child node.
≪保守知識ネットワーク生成装置:機種仕様データベース≫
 図2に戻って、機種仕様データベース122は、設備の機種に依存する保全知識を格納している。機種仕様データベース122は、機種テーブル220(後記する図4参照)および故障モードテーブル230(後記する図5参照)を記憶する。
≪Maintenance knowledge network generator: Model specification database≫
Returning to FIG. 2, the model specification database 122 stores maintenance knowledge depending on the model of the equipment. The model specification database 122 stores the model table 220 (see FIG. 4 described later) and the failure mode table 230 (see FIG. 5 described later).
 図4は、第1の実施形態に係る機種テーブル220のデータ構成図である。機種テーブル220は、設備に備わるコンポ―ネットの型番(種別)を機種別に示す。機種テーブル220は、表形式のデータであって、1つの行(レコード)は、コンポーネント識別情報221(図4ではコンポーネントIDと記載)、コンポーネント222、機種223~225の列(属性)を含む。 FIG. 4 is a data configuration diagram of the model table 220 according to the first embodiment. The model table 220 shows the model number (type) of the component provided in the equipment for each model. The model table 220 is tabular data, and one row (record) includes component identification information 221 (described as component ID in FIG. 4), component 222, and columns (attributes) of models 223 to 225.
 コンポーネント識別情報221およびコンポーネント222は、それぞれコンポーネント識別情報214(図3参照)およびコンポーネント213にそれぞれ対応し、コンポーネントを示す。機種223~225は、それぞれ機種A、機種B、および機種Cに備わるコンポーネントの型番(種別)を示す。なお、コンポーネントを備えていない機種では「0」とする。コンポーネント識別情報221が「C1」である「熱交換器」のコンポーネントについて、機種Aでは型番は「C1_2」であり、機種Cは搭載していない。 The component identification information 221 and the component 222 correspond to the component identification information 214 (see FIG. 3) and the component 213, respectively, and indicate the components. Models 223 to 225 indicate model numbers (types) of components included in model A, model B, and model C, respectively. For models that do not have components, it is set to "0". Regarding the component of the "heat exchanger" whose component identification information 221 is "C1", the model number is "C1-2" in the model A, and the model C is not installed.
 図5は、第1の実施形態に係る故障モードテーブル230のデータ構成図である。故障モードテーブル230は、各型番のコンポーネントに故障モードが発生する可能性を示す。故障モードテーブル230は、表形式のデータであって、1つの行(レコード)は、コンポーネント識別情報231(図5ではコンポーネントIDと記載)、コンポーネント232、型番233、および故障モード234~236(図3記載の故障モード215参照)の列(属性)を含む。 FIG. 5 is a data configuration diagram of the failure mode table 230 according to the first embodiment. The failure mode table 230 shows the possibility of failure mode occurring in the components of each model number. The failure mode table 230 is tabular data, and one row (record) is component identification information 231 (denoted as component ID in FIG. 5), component 232, model number 233, and failure mode 234 to 236 (FIG. 5). 3 Includes columns (attributes) of failure mode 215).
 コンポーネント識別情報231およびコンポーネント232は、それぞれコンポーネント識別情報214(図3参照)およびコンポーネント213にそれぞれ対応し、コンポーネントを示す。型番233は、コンポーネントの型番(図4の機種223~225参照)である。
 図5では、故障モード234~236として「熱交換器設計不良」などを含み、「1」は故障モードが発生する可能性があり、「0」は可能性がないことを意味する。例えば、型番233が「C1_2」である「熱交換器」について、熱交換器の汚れ・つまりの故障モードは発生するが、設計不良の故障モードは発生しない。
The component identification information 231 and the component 232 correspond to the component identification information 214 (see FIG. 3) and the component 213, respectively, and indicate the components. Model number 233 is the model number of the component (see models 223 to 225 in FIG. 4).
In FIG. 5, failure modes 234 to 236 include “heat exchanger design failure” and the like, “1” means that a failure mode may occur, and “0” means that there is no possibility. For example, for the "heat exchanger" whose model number 233 is "C1-2", the heat exchanger is dirty or has a failure mode, but a design failure failure mode does not occur.
≪保守知識ネットワーク生成装置:確率情報データベース≫
 図2に戻って、確率情報データベース123は、保守知識ネットワークに付与される確率情報を格納している。確率情報データベース123は、故障モード発生確率テーブル240(後記する図6参照)、故障検知確率テーブル250(後記する図7参照)、および子ノード異常発生確率テーブル260(後記する図8参照)を記憶する。
≪Maintenance knowledge network generator: Probability information database≫
Returning to FIG. 2, the probability information database 123 stores the probability information given to the maintenance knowledge network. The probability information database 123 stores a failure mode occurrence probability table 240 (see FIG. 6 below), a failure detection probability table 250 (see FIG. 7 below), and a child node abnormality occurrence probability table 260 (see FIG. 8 below). do.
 図6は、第1の実施形態に係る故障モード発生確率テーブル240のデータ構成図である。故障モード発生確率テーブル240は、故障モードが発生する事前確率を記憶する。故障モード発生確率テーブル240は、表形式のデータであって、1つの行(レコード)は、故障モード241、状態242、および確率243の列(属性)を含む。 FIG. 6 is a data configuration diagram of the failure mode occurrence probability table 240 according to the first embodiment. The failure mode occurrence probability table 240 stores the prior probability that the failure mode will occur. The failure mode occurrence probability table 240 is tabular data, and one row (record) includes columns (attributes) of failure mode 241 and state 242, and probability 243.
 故障モード241は、コンポーネントの故障モード(図3記載の故障モード215参照)に対応する。状態242の「Y」は、コンポーネントが故障モード241(の状態)であり、「N」は故障モード241(の状態)ではないことを示す。確率243は、故障モード241の状態242である確率(事前確率)を示す。図6記載の故障モード発生確率テーブル240には、熱交換器の設計不良が発生する確率が50%であることが示されている。 The failure mode 241 corresponds to the failure mode of the component (see the failure mode 215 shown in FIG. 3). "Y" in state 242 indicates that the component is in failure mode 241 (state) and "N" is not in failure mode 241 (state). The probability 243 indicates the probability (prior probability) of the state 242 of the failure mode 241. The failure mode occurrence probability table 240 shown in FIG. 6 shows that the probability of a heat exchanger design failure is 50%.
 確率243としては、図6に示すように、故障モード241の当否それぞれ50%を設定してもよい。また、実績データに基づいて確率を計算して設定してもよい。例えば、故障履歴において、故障モードの発生件数を総件数で除して、当該故障モードが発生する(状態242が「Y」である)確率と設定してもよい。 As the probability 243, as shown in FIG. 6, 50% may be set for each of the failure modes 241. Further, the probability may be calculated and set based on the actual data. For example, in the failure history, the number of occurrences of the failure mode may be divided by the total number to set the probability that the failure mode will occur (state 242 is "Y").
 図7は、第1の実施形態に係る故障検知確率テーブル250のデータ構成図である。故障検知確率テーブル250は、親ノードの状態が発生した場合に、子ノードが異常または正常である確率を記憶する。故障検知確率テーブル250は、表形式のデータであって、1つの行(レコード)は、親ノード251、親ノード状態252、子ノード253、子ノード状態254、および確率255の列(属性)を含む。 FIG. 7 is a data configuration diagram of the failure detection probability table 250 according to the first embodiment. The failure detection probability table 250 stores the probability that the child node is abnormal or normal when the state of the parent node occurs. The failure detection probability table 250 is tabular data, and one row (record) contains columns (attributes) of a parent node 251 and a parent node state 252, a child node 253, a child node state 254, and a probability 255. include.
 親ノード状態252は、親ノード251である故障モードが発生している(「Y」)か否(「N」)かを示す。子ノード状態254は、子ノード253であるチェック項目(図3記載のチェック項目216参照)が「正常」であるか「異常」であるかを示す。確率255は、親ノード251が親ノード状態252である場合に、子ノード253が子ノード状態254である確率を示す。 The parent node state 252 indicates whether or not the failure mode that is the parent node 251 has occurred (“Y”) (“N”). The child node state 254 indicates whether the check item (see the check item 216 shown in FIG. 3), which is the child node 253, is “normal” or “abnormal”. The probability 255 indicates the probability that the child node 253 is in the child node state 254 when the parent node 251 is in the parent node state 252.
 確率255としては、図7に示すように、親ノードである故障モードが発生した(親ノードである故障モードのノードの状態が故障モードである)場合に、子ノードのチェック項目が異常となる(子ノードであるチェック項目のノードの状態が異常である)確率を100%であり、正常となる確率を0%であると設定してもよい。また、実績データに基づいて確率を計算して設定してもよい。例えば、故障履歴から、親ノード251となる故障モードが発生した履歴を抜き出し、子ノードあるチェック項目が異常/正常の件数を抜き出した履歴の件数で除して、設定してもよい。 As for the probability 255, as shown in FIG. 7, when the failure mode that is the parent node occurs (the state of the node in the failure mode that is the parent node is the failure mode), the check item of the child node becomes abnormal. The probability (the state of the node of the check item that is a child node is abnormal) may be set to 100%, and the probability of becoming normal may be set to 0%. Further, the probability may be calculated and set based on the actual data. For example, the history of occurrence of the failure mode that becomes the parent node 251 may be extracted from the failure history, and the number of abnormal / normal check items in the child node may be divided by the number of extracted history to set.
 図8は、第1の実施形態に係る子ノード異常発生確率テーブル260のデータ構成図である。子ノード異常発生確率テーブル260は、親ノード(故障モード)に異常が発生していないときに、子ノード(チェック項目)が異常/正常である確率を記憶する。子ノード異常発生確率テーブル260は、表形式のデータであって、1つの行(レコード)は、子ノード261、子ノード状態262、および確率263の列(属性)を含む。
 子ノード状態262は、子ノード261の状態(正常/異常)を示す。確率263は、子ノード261が子ノード状態262である確率を示す。
FIG. 8 is a data configuration diagram of the child node abnormality occurrence probability table 260 according to the first embodiment. The child node abnormality occurrence probability table 260 stores the probability that the child node (check item) is abnormal / normal when no abnormality has occurred in the parent node (failure mode). The child node abnormality occurrence probability table 260 is tabular data, and one row (record) includes a child node 261 and a child node state 262, and a column (attribute) of the probability 263.
The child node state 262 indicates the state (normal / abnormal) of the child node 261. The probability 263 indicates the probability that the child node 261 is in the child node state 262.
 確率263としては、図8に示すように、それぞれの子ノード261(チェック項目)について、異常となる確率を0%であり、異常となる確率を100%であると設定してもよい。また、実績データに基づいて確率を計算して設定してもよい。例えば、故障履歴から、親ノード251(図7参照)となる故障モードが発生していない履歴を抜き出し、子ノードあるチェック項目が異常/正常の件数を抜き出した履歴の件数で除して、設定してもよい。 As the probability 263, as shown in FIG. 8, for each child node 261 (check item), the probability of becoming abnormal may be set to 0%, and the probability of becoming abnormal may be set to 100%. Further, the probability may be calculated and set based on the actual data. For example, from the failure history, the history in which the failure mode that is the parent node 251 (see FIG. 7) has not occurred is extracted, and the number of abnormal / normal check items in the child node is divided by the number of extracted history and set. You may.
≪保守知識ネットワーク生成装置:ネットワーク生成部≫
 図2に戻って、制御部110には、ネットワーク生成部111が備わる。ネットワーク生成部111は、案件情報(後記する図9参照)を受け取って、案件情報に含まれる異常事象に対応した保守知識ネットワーク(後記する図11参照)を生成する(後記する図10参照)。続いて、ネットワーク生成部111は、異常事象に対応した保守知識ネットワークから、案件情報に含まれる機種に対応した保守知識ネットワークを生成する(後記する図14参照)。機種に対応した保守知識ネットワークは、異常事象にも対応しており、異常事象および機種に対応した保守知識ネットワークである。
≪Maintenance knowledge network generator: network generator≫
Returning to FIG. 2, the control unit 110 includes a network generation unit 111. The network generation unit 111 receives the matter information (see FIG. 9 to be described later) and generates a maintenance knowledge network (see FIG. 11 to be described later) corresponding to the abnormal event included in the matter information (see FIG. 10 to be described later). Subsequently, the network generation unit 111 generates a maintenance knowledge network corresponding to the model included in the matter information from the maintenance knowledge network corresponding to the abnormal event (see FIG. 14 described later). The maintenance knowledge network corresponding to the model also corresponds to the abnormal event, and is the maintenance knowledge network corresponding to the abnormal event and the model.
≪保守知識ネットワーク生成装置:異常事象に対応した保守知識ネットワーク生成処理≫
 図9は、第1の実施形態に係る案件情報500のデータ構成図である。案件情報500は、案件情報500の識別情報(図9では案件IDと記載)、異常事象、および異常事象が発生した設備の機種を含む。
≪Maintenance knowledge network generator: Maintenance knowledge network generation process corresponding to abnormal events≫
FIG. 9 is a data structure diagram of the project information 500 according to the first embodiment. The matter information 500 includes identification information of the matter information 500 (described as a matter ID in FIG. 9), an abnormal event, and a model of equipment in which the abnormal event has occurred.
 図10は、第1の実施形態に係る異常事象に対応した保守知識ネットワーク生成処理のフローチャートである。ネットワーク生成部111は、案件情報500を受け取るごとに案件情報500に含まれる異常事象に対応した保守知識ネットワーク生成処理を実行し、案件情報に含まれる異常事象に対応した保守知識ネットワークを生成する。換言すれば、ネットワーク生成部111は、記憶部120に記憶される各異常事象に係る保全知識(共通保守知識ネットワーク、図3記載の保守知識テーブル210参照)から、案件情報500に含まれる異常事象に対応した保守知識ネットワークを抽出する。 FIG. 10 is a flowchart of the maintenance knowledge network generation process corresponding to the abnormal event according to the first embodiment. Every time the matter information 500 is received, the network generation unit 111 executes the maintenance knowledge network generation process corresponding to the abnormal event included in the matter information 500, and generates the maintenance knowledge network corresponding to the abnormal event included in the matter information. In other words, the network generation unit 111 has an abnormal event included in the matter information 500 from the maintenance knowledge (common maintenance knowledge network, see the maintenance knowledge table 210 shown in FIG. 3) related to each abnormal event stored in the storage unit 120. Extract the maintenance knowledge network corresponding to.
 ステップS101においてネットワーク生成部111は、案件情報500(図9参照)を受け取る。案件情報500は、入出力部140(図2参照)に接続されたユーザインターフェイス機器から保全員によって入力されてもよいし、通信データとして通信部130が受信してもよい。
 ステップS102においてネットワーク生成部111は、これから生成される異常事象に対応した保守知識ネットワークに割り振るネットワーク識別情報(図10ではネットワークIDと記載)を生成する。
 ステップS103においてネットワーク生成部111は、案件情報500に含まれる異常事象に対応した保守知識ネットワーク510(後記する図11参照)を生成する。以下、保守知識ネットワーク510を説明しながら、生成手順を説明する。
In step S101, the network generation unit 111 receives the matter information 500 (see FIG. 9). The matter information 500 may be input by a maintenance worker from a user interface device connected to the input / output unit 140 (see FIG. 2), or may be received by the communication unit 130 as communication data.
In step S102, the network generation unit 111 generates network identification information (described as a network ID in FIG. 10) to be allocated to the maintenance knowledge network corresponding to the abnormal event to be generated from now on.
In step S103, the network generation unit 111 generates the maintenance knowledge network 510 (see FIG. 11 described later) corresponding to the abnormal event included in the matter information 500. Hereinafter, the generation procedure will be described while explaining the maintenance knowledge network 510.
 図11は、第1の実施形態に係る異常事象に対応した保守知識ネットワーク510の構成を示す図である。この異常事象に対応した保守知識ネットワーク510(以下、単に保守知識ネットワーク510とも記す)は、設備の異常事象(図3記載の異常事象211参照)と当該設備に備わるコンポーネントの故障(故障モード215参照)との関係、および、故障と当該故障の発生の当否を確認するためのチェック項目(チェック項目216参照)との関係を示すものである。保守知識テーブル210(図3参照)は、全ての異常事象に対する保守知識ネットワーク(共通保守知識ネットワーク)を示すのに対して、保守知識ネットワーク510は、案件情報500に示される異常事象に対応した保守知識ネットワークである。具体的には、保守知識ネットワーク510は、4つのノード群511~514を含む。 FIG. 11 is a diagram showing a configuration of a maintenance knowledge network 510 corresponding to an abnormal event according to the first embodiment. The maintenance knowledge network 510 (hereinafter, also simply referred to as the maintenance knowledge network 510) corresponding to this abnormal event includes an abnormal event of the equipment (see the abnormal event 211 shown in FIG. 3) and a failure of a component provided in the equipment (see the failure mode 215). ), And the relationship between the failure and the check item (see check item 216) for confirming whether or not the failure has occurred. The maintenance knowledge table 210 (see FIG. 3) shows the maintenance knowledge network (common maintenance knowledge network) for all abnormal events, while the maintenance knowledge network 510 shows the maintenance corresponding to the abnormal events shown in the matter information 500. It is a knowledge network. Specifically, the maintenance knowledge network 510 includes four node groups 511 to 514.
 ノード群511は、異常事象のノードを含む。案件情報500(図9参照)に含まれる異常事象は、「気温上昇」であり、ノード群511には、「気温上昇」のノードのみが含まれる。案件情報が複数の異常事象を含む場合には、ノード群511は複数の異常事象のノードを含む。ネットワーク生成部111は、案件情報500に含まれる異常事象を保守知識テーブル210(図3参照)の異常事象211を検索して取得し、保守知識ネットワーク510の異常事象のノードとする。 The node group 511 includes a node of an abnormal event. The abnormal event included in the matter information 500 (see FIG. 9) is "temperature rise", and the node group 511 includes only the node of "temperature rise". When the matter information includes a plurality of abnormal events, the node group 511 includes the nodes of the plurality of abnormal events. The network generation unit 111 searches for and acquires the abnormal event 211 included in the matter information 500 by searching for the abnormal event 211 in the maintenance knowledge table 210 (see FIG. 3), and uses it as the node for the abnormal event in the maintenance knowledge network 510.
 ノード群512は、機能故障のノードを含む。機能故障は異常事象の原因であり、機能故障のノード(親ノード)から異常事象のノード(子ノード)に向かう矢印(有向リンク)で結ばれる。1つの異常事象のノードを子ノードとする親ノードの機能故障は複数ある場合がある。ネットワーク生成部111は、保守知識テーブル210(図3参照)のなかで、異常事象211が子ノード(異常事象のノード)となるレコードを検索し、当該レコードに含まれる機能故障212を機能故障のノードとする。なお、複数のレコードに同じ機能故障が含まれても、機能故障のノードとしては、1つとする。 The node group 512 includes a node with a functional failure. A functional failure is the cause of an abnormal event, and is connected by an arrow (directed link) from the node (parent node) of the abnormal event to the node (child node) of the abnormal event. There may be multiple functional failures of the parent node whose child node is the node of one abnormal event. The network generation unit 111 searches the maintenance knowledge table 210 (see FIG. 3) for a record in which the abnormal event 211 is a child node (node of the abnormal event), and determines the functional failure 212 included in the record as a functional failure. Let it be a node. Even if the same functional failure is included in a plurality of records, only one node is used for the functional failure.
 ノード群513は、故障モードのノードを含む。故障モードは機能故障の原因であり、故障モードのノード(親ノード)から機能故障のノード(子ノード)に向かう矢印で結ばれる。1つの機能故障のノードを子ノードとする親ノードの故障モードが複数ある場合がある。ネットワーク生成部111は、保守知識テーブル210(図3参照)のなかで、機能故障212が子ノード(機能故障のノード)となるレコードを検索し、当該レコードに含まれる故障モード215を故障モードのノードとする。なお、複数のレコードに同じ故障モードが含まれても、故障モードのノードとしては、1つとする。 The node group 513 includes a node in a failure mode. The failure mode is the cause of the functional failure and is connected by an arrow pointing from the node (parent node) of the failure mode to the node (child node) of the functional failure. There may be a plurality of failure modes of a parent node having one functional failure node as a child node. The network generation unit 111 searches the maintenance knowledge table 210 (see FIG. 3) for a record in which the functional failure 212 is a child node (functional failure node), and sets the failure mode 215 included in the record to the failure mode. Let it be a node. Even if the same failure mode is included in a plurality of records, the number of nodes in the failure mode is one.
 ノード群514は、チェック項目のノードを含む。チェック項目は故障モードの結果であり、故障モードのノード(親ノード)からチェック項目のノード(子ノード)に向かう矢印で結ばれる。1つのチェック項目のノードを子ノードとする親ノードの故障モードは複数ある場合がある。1つの故障モードのノードを親ノードとする子ノードのチェック項目は複数ある場合がある。ネットワーク生成部111は、保守知識テーブル210(図3参照)のなかで、故障モード215が親ノード(故障モードのノード)となるレコードを検索し、当該レコードに含まれるチェック項目216をチェック項目のノードとする。なお、複数のレコードに同じチェック項目が含まれても、チェック項目のノードとしては、1つとする。 The node group 514 includes the node of the check item. The check items are the result of the failure mode, and are connected by an arrow from the node (parent node) of the failure mode to the node (child node) of the check item. There may be multiple failure modes of the parent node whose child node is the node of one check item. There may be multiple check items for a child node whose parent node is a node in one failure mode. The network generation unit 111 searches for a record in which the failure mode 215 is the parent node (failure mode node) in the maintenance knowledge table 210 (see FIG. 3), and checks the check item 216 included in the record as a check item. Let it be a node. Even if the same check item is included in a plurality of records, the number of check item nodes is one.
 各ノードには、当該ノードの状態、例えば故障モード発生の当否やチェック項目の正常/異常が設定可能となっている。現時点では、異常事象のノードについてのみ当否が判明して、発生したことが設定されている(気温上昇のノードに含まれる「No」の二重取り消し線参照)。 For each node, the status of the node, for example, whether or not a failure mode has occurred and whether the check items are normal / abnormal can be set. At the moment, it is set that the event has occurred only for the node of the abnormal event (see the double strikethrough of "No" included in the node of temperature rise).
 図10に戻って、ステップS104においてネットワーク生成部111は、保守知識ネットワーク510のネットワーク構成情報を生成する。ネットワーク構成情報は、ノード情報テーブル520(後記する図12参照)およびリンク情報テーブル530(後記する図13参照)を含む。 Returning to FIG. 10, in step S104, the network generation unit 111 generates the network configuration information of the maintenance knowledge network 510. The network configuration information includes a node information table 520 (see FIG. 12 below) and a link information table 530 (see FIG. 13 below).
 図12は、第1の実施形態に係るノード情報テーブル520のデータ構成図である。ノード情報テーブル520は、保守知識ネットワーク510(図11参照)を構成するノードに係る情報を記憶する。ノード情報テーブル520は、表形式のデータであって、1つの行(レコード)は、ノード情報521、種類522、コンポーネント識別情報523、および状態524の列(属性)を含む。 FIG. 12 is a data configuration diagram of the node information table 520 according to the first embodiment. The node information table 520 stores information related to the nodes constituting the maintenance knowledge network 510 (see FIG. 11). The node information table 520 is tabular data, and one row (record) includes node information 521, type 522, component identification information 523, and a column (attribute) of state 524.
 ノード情報521は、ノードの内容(名前、ラベル)である。種類522は、ノードの種類であって、「異常事象」、「機能故障」、「故障モード」、「チェック項目」の何れかである。コンポーネント識別情報523は、種類522が「機能故障」または「故障モード」の場合に、当該故障モードが発生したコンポーネントの識別情報(図3のコンポーネント識別情報214参照)を示す。状態524は、ノードの状態を示し、例えば、チェック項目が「正常」か「異常」かを示す。 The node information 521 is the content (name, label) of the node. Type 522 is a node type and is any one of "abnormal event", "functional failure", "failure mode", and "check item". The component identification information 523 indicates identification information (see component identification information 214 in FIG. 3) of the component in which the failure mode has occurred when the type 522 is "functional failure" or "failure mode". The state 524 indicates the state of the node, and indicates, for example, whether the check item is "normal" or "abnormal".
 図13は、第1の実施形態に係るリンク情報テーブル530のデータ構成図である。リンク情報テーブル530は、保守知識ネットワーク510を構成するリンク(矢印、有向リンク)に係る情報を記憶する。リンク情報テーブル530は、表形式のデータであって、1つの行(レコード)は、親ノード531を親ノード、子ノード532を子ノードとするリンクを示す。 FIG. 13 is a data structure diagram of the link information table 530 according to the first embodiment. The link information table 530 stores information related to links (arrows, directed links) constituting the maintenance knowledge network 510. The link information table 530 is tabular data, and one row (record) shows a link having a parent node 531 as a parent node and a child node 532 as a child node.
 図3記載の保守知識テーブル210は、様々な異常事象211を含んだ共有保守知識ネットワークを示す。これに対して、図12記載のノード情報テーブル520および図13記載のリンク情報テーブル530は、案件情報500(図9参照)に示される発生した異常事象に対応した保守知識ネットワークを示す。 The maintenance knowledge table 210 shown in FIG. 3 shows a shared maintenance knowledge network including various abnormal events 211. On the other hand, the node information table 520 shown in FIG. 12 and the link information table 530 shown in FIG. 13 show a maintenance knowledge network corresponding to the abnormal event that has occurred shown in the matter information 500 (see FIG. 9).
 以上に説明したように、異常事象に対応した保守知識ネットワーク生成処理では、共通保守知識ネットワーク(図3記載の保守知識テーブル210)を参照して、受け取った異常事象(図9記載の案件情報500参照)から当該異常事象(異常事象211参照)と関係するコンポーネントの故障(故障モード215参照)と、当該故障の発生の当否を確認するためのチェック項目(チェック項目216参照)とを特定して、異常事象に対応した保守知識ネットワークを生成する。 As described above, in the maintenance knowledge network generation process corresponding to the abnormal event, the received abnormal event (case information 500 shown in FIG. 9) is referred to with reference to the common maintenance knowledge network (maintenance knowledge table 210 shown in FIG. 3). (Refer to), the failure of the component related to the abnormal event (see the abnormal event 211) (see the failure mode 215) and the check item for confirming whether or not the failure has occurred (see the check item 216) are specified. , Generate a maintenance knowledge network corresponding to abnormal events.
 図10では、ネットワーク生成部111は、ステップS103において異常事象に対応した保守知識ネットワーク510(図11参照)を生成した後に、ステップS104においてこの異常事象に対応した保守知識ネットワーク510のネットワーク構成情報を生成する。ネットワーク生成部111は、ステップS103,S104を並行して実行してもよい。詳しくは、ネットワーク生成部111は、保守知識ネットワーク510にノードを追加するたびに、ノード情報テーブル520に対応するノードの情報のレコードを、リンク情報テーブル530に既存のノードとのリンク情報を追加するようにしてもよい。 In FIG. 10, after the network generation unit 111 generates the maintenance knowledge network 510 (see FIG. 11) corresponding to the abnormal event in step S103, the network configuration information of the maintenance knowledge network 510 corresponding to this abnormal event is generated in step S104. Generate. The network generation unit 111 may execute steps S103 and S104 in parallel. Specifically, each time a node is added to the maintenance knowledge network 510, the network generation unit 111 adds a record of node information corresponding to the node information table 520 and link information with an existing node to the link information table 530. You may do so.
≪保守知識ネットワーク生成装置:機種に対応した保守知識ネットワーク生成処理≫
 図14は、第1の実施形態に係る機種に対応した保守知識ネットワーク生成処理のフローチャートである。図14を参照しながら、機種共通の異常事象に対応した保守知識ネットワーク510を異常事象が発生した機種に対応した保守知識ネットワークに変更(更新)する処理を説明する。この(異常事象が発生した)機種に対応した保守知識ネットワークは、異常事象にも対応しているので、異常事象および機種に対応した保守知識ネットワークとも記す。
≪Maintenance knowledge network generator: Maintenance knowledge network generation process corresponding to the model≫
FIG. 14 is a flowchart of the maintenance knowledge network generation process corresponding to the model according to the first embodiment. A process of changing (updating) the maintenance knowledge network 510 corresponding to the abnormal event common to all models to the maintenance knowledge network corresponding to the model in which the abnormal event has occurred will be described with reference to FIG. Since the maintenance knowledge network corresponding to this (abnormal event occurred) model also corresponds to the abnormal event, it is also referred to as the maintenance knowledge network corresponding to the abnormal event and the model.
 機種テーブル220(図4参照)に示すように、機種によっては設備がコンポーネントを搭載していない。また、故障モードテーブル230(図5参照)に示すようにコンポーネントの種別(型番)によってはコンポーネントで故障モードが発生しない場合がある。ネットワーク生成部111は、案件情報500(図9参照)の機種情報を参照して、当該機種に対応した保守知識ネットワークに変更する。 As shown in the model table 220 (see Fig. 4), the equipment is not equipped with components depending on the model. Further, as shown in the failure mode table 230 (see FIG. 5), the failure mode may not occur in the component depending on the type (model number) of the component. The network generation unit 111 refers to the model information of the matter information 500 (see FIG. 9) and changes to the maintenance knowledge network corresponding to the model.
 ステップS131においてネットワーク生成部111は、ノード群512(図11参照)に含まれる機能故障のノードごとにステップS132~S137を実行する処理を開始する。
 ステップS132においてネットワーク生成部111は、機種が機能故障を発生するコンポーネントを備えているか否かを判断する。ネットワーク生成部111は、備えていれば(ステップS132→有)ステップS134に進み、備えていなければ(ステップS132→無)ステップS133に進む。機能故障が発生するコンポーネントは、保守知識テーブル210(図3参照)のレコードで機能故障212が機能故障であるレコードのコンポーネント識別情報214を参照すれば取得できる。また、機種がコンポーネントを備えているか否かは、機種テーブル220(図4参照)を参照すれば判断できる。
In step S131, the network generation unit 111 starts the process of executing steps S132 to S137 for each functional failure node included in the node group 512 (see FIG. 11).
In step S132, the network generation unit 111 determines whether or not the model has a component that causes a functional failure. If the network generation unit 111 is provided (step S132 → yes), it proceeds to step S134, and if it is not provided (step S132 → no), it proceeds to step S133. The component in which the functional failure occurs can be obtained by referring to the component identification information 214 of the record in which the functional failure 212 is the functional failure in the record of the maintenance knowledge table 210 (see FIG. 3). Further, whether or not the model has a component can be determined by referring to the model table 220 (see FIG. 4).
 ステップS133においてネットワーク生成部111は、機能故障のノード、および機能故障のノードの親ノードである故障モードのノードに係る情報をノード情報テーブル520から削除する。また、ネットワーク生成部111は、削除されたノードに係るリンク情報をリンク情報テーブル530から削除する。
 ステップS134においてネットワーク生成部111は、機能故障のノードの親ノードである故障ノードごとにステップS135~S136を実行する処理を開始する。なお、ステップS133で機能故障のノードが削除された場合には、ステップS134~S137の処理は実行されないことになる。
In step S133, the network generation unit 111 deletes the information related to the node of the functional failure and the node of the failure mode which is the parent node of the node of the functional failure from the node information table 520. Further, the network generation unit 111 deletes the link information related to the deleted node from the link information table 530.
In step S134, the network generation unit 111 starts the process of executing steps S135 to S136 for each failed node that is the parent node of the functionally failed node. If the node with the functional failure is deleted in step S133, the processes of steps S134 to S137 will not be executed.
 ステップS135においてネットワーク生成部111は、当該機種に備わる型番のコンポーネントにおいて、故障モードが発生するか否かを判断する。ネットワーク生成部111は、発生すれば(ステップS135→有)ステップS137に進み、発生しなければ(ステップS135→無)ステップS136に進む。故障モードが発生するか否かは、故障モードテーブル230(図5参照)のレコードで型番233が機種に備わるコンポーネントの型番のレコードにおける故障モード234~236を参照すれば判断できる。 In step S135, the network generation unit 111 determines whether or not a failure mode occurs in the component of the model number provided in the model. The network generation unit 111 proceeds to step S137 if it occurs (step S135 → yes), and proceeds to step S136 if it does not occur (step S135 → no). Whether or not a failure mode occurs can be determined by referring to the failure modes 234 to 236 in the record of the model number of the component provided in the model with the model number 233 in the record of the failure mode table 230 (see FIG. 5).
 ステップS136においてネットワーク生成部111は、故障モードのノードに係る情報をノード情報テーブル520から削除する。また、ネットワーク生成部111は、削除されたノードに係るリンク情報をリンク情報テーブル530から削除する。
 ステップS137においてネットワーク生成部111は、機能故障のノードの親ノードである全ての故障モードのノードについてステップS135~S136の処理を実行したならば、ステップS138に進む。ネットワーク生成部111は、未処理の故障モードのノードがあれば、当該故障モードのノードに対してステップS135~S136の処理を実行する。
In step S136, the network generation unit 111 deletes the information related to the node in the failure mode from the node information table 520. Further, the network generation unit 111 deletes the link information related to the deleted node from the link information table 530.
In step S137, if the network generation unit 111 executes the processes of steps S135 to S136 for all the failure mode nodes that are the parent nodes of the functional failure nodes, the process proceeds to step S138. If there is an unprocessed failure mode node, the network generation unit 111 executes the processing of steps S135 to S136 for the failure mode node.
 ステップS138においてネットワーク生成部111は、ノード群512(図11参照)に含まれる全ての機能故障のノードについてステップS132~S137の処理を実行したならば、ステップS139に進む。ネットワーク生成部111は、未処理の機能故障のノードがあれば、当該機能故障のノードに対してステップS132~S137の処理を実行する。
 ここまでに説明したように、ステップS131~S138において、ネットワーク生成部111は、機種テーブル220(図4参照)を参照して、受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し(ステップS132参照)、故障モードテーブル230(図5参照)を参照して、特定したコンポーネントの種別に関連付けを含まない故障(故障モード234~236参照)を異常事象に対応した保守知識ネットワークから除去する。
In step S138, if the network generation unit 111 executes the processes of steps S132 to S137 for all the functionally failed nodes included in the node group 512 (see FIG. 11), the process proceeds to step S139. If there is an unprocessed functional failure node, the network generation unit 111 executes the processing of steps S132 to S137 for the functional failure node.
As described above, in steps S131 to S138, the network generation unit 111 refers to the model table 220 (see FIG. 4) and specifies the type of the component provided in the model of the equipment from the received equipment model. Then, with reference to the failure mode table 230 (see FIG. 5), a failure (see failure modes 234 to 236) that does not include an association with the specified component type can be detected from the maintenance knowledge network corresponding to the abnormal event. Remove.
 ステップS139においてネットワーク生成部111は、機能故障や故障モードのノードが削除され、リンクされていないチェック項目のノードに係る情報をノード情報テーブル520から削除する。換言すれば、除去されずに残った故障(故障モード)の発生の当否を確認するためのチェック項目とは異なるチェック項目(リンクされていないチェック項目)を、さらに除去して、異常事象および当該設備の機種に対応した保守知識ネットワークを生成する。 In step S139, the network generation unit 111 deletes the node of the functional failure or the failure mode, and deletes the information related to the node of the check item that is not linked from the node information table 520. In other words, the check items (unlinked check items) that are different from the check items for confirming the occurrence of the failure (failure mode) that remains without being removed are further removed, and the abnormal event and the relevant item are removed. Generate a maintenance knowledge network corresponding to the model of equipment.
 この時点において、ノード情報テーブル520およびリンク情報テーブル530は、異常事象が発生した機種に対応した保守知識ネットワークを示すことになる。本処理が始まる前のノード情報テーブル520およびリンク情報テーブル530は、案件情報500に示される異常事象に対応した保守知識ネットワークを示していた。案件情報500に示される機種に搭載されるコンポーネント、および当該コンポーネントで発生する故障を抜き出した結果が、機種に対応した保守知識ネットワークである。ステップS139終了時点でのノード情報テーブル520およびリンク情報テーブル530が、この機種に対応した保守知識ネットワークを示しており、異常事象および機種に対応した保守知識ネットワークを示している。 At this point, the node information table 520 and the link information table 530 indicate the maintenance knowledge network corresponding to the model in which the abnormal event has occurred. The node information table 520 and the link information table 530 before the start of this process show the maintenance knowledge network corresponding to the abnormal event shown in the matter information 500. The component mounted on the model shown in the case information 500 and the result of extracting the failure occurring in the component are the maintenance knowledge network corresponding to the model. The node information table 520 and the link information table 530 at the end of step S139 indicate the maintenance knowledge network corresponding to this model, and indicate the abnormal event and the maintenance knowledge network corresponding to the model.
 ステップS140においてネットワーク生成部111は、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、および子ノード異常発生確率テーブル260(図8参照)から関連するレコードを取得する。詳しくは、ネットワーク生成部111は、故障モード発生確率テーブル240のレコードで、故障モード241が、ノード情報テーブル520において削除されずに残っている故障モードに含まれるレコードを取得する。また、ネットワーク生成部111は、故障検知確率テーブル250のレコードで、親ノード251が、削除されずに残っている故障モードに含まれ、子ノード253が、削除されずに残っているチェック項目に含まれるレコードを取得する。さらに、ネットワーク生成部111は、子ノード異常発生確率テーブル260のレコードで、子ノード261が、削除されずに残っているチェック項目に含まれるレコードを取得する。 In step S140, the network generation unit 111 selects related records from the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), and the child node abnormality occurrence probability table 260 (see FIG. 8). get. Specifically, the network generation unit 111 acquires a record of the failure mode occurrence probability table 240 in which the failure mode 241 is included in the failure mode remaining without being deleted in the node information table 520. Further, the network generation unit 111 is a record of the failure detection probability table 250, in which the parent node 251 is included in the failure mode remaining without being deleted, and the child node 253 is a check item remaining without being deleted. Get the records included. Further, the network generation unit 111 acquires the record included in the check items remaining without being deleted by the child node 261 in the record of the child node abnormality occurrence probability table 260.
 ステップS141においてネットワーク生成部111は、案件情報500(図9参照)と、異常事象および機種に対応した保守知識ネットワークと、ステップS140で取得した確率情報と、ステップS102(図10参照)で生成したネットワーク識別情報とを原因推定装置300に送信する。 In step S141, the network generation unit 111 generated the matter information 500 (see FIG. 9), the maintenance knowledge network corresponding to the abnormal event and the model, the probability information acquired in step S140, and step S102 (see FIG. 10). The network identification information is transmitted to the cause estimation device 300.
 なお、異常事象および機種に対応した保守知識ネットワークとは、ノード情報テーブル520(図12参照)およびリンク情報テーブル530(図13参照)で示される保守知識ネットワークのことである。この保守知識ネットワークは、案件情報500に示しされる異常事象に対応し、さらに、案件情報500に示される機種に対応した保守知識ネットワークである。さらに確率情報が付与されることにより、この保守知識ネットワークは、ベイジアンネットワークとなる。 The maintenance knowledge network corresponding to the abnormal event and the model is the maintenance knowledge network shown in the node information table 520 (see FIG. 12) and the link information table 530 (see FIG. 13). This maintenance knowledge network is a maintenance knowledge network corresponding to the abnormal event shown in the case information 500 and further corresponding to the model shown in the case information 500. Further, by adding probability information, this maintenance knowledge network becomes a Bayesian network.
≪保守知識ネットワーク生成装置の特徴≫
 保守知識テーブル210(図3参照、共通保守知識ネットワーク)には、機種に依存しない保全知識として、故障モードと機能故障、機能故障と異常事象、および、故障モードとチェック項目の因果関係が記憶される。ネットワーク生成部111は、保守知識テーブル210を参照して、受け取った案件情報500(図9参照)に含まれる異常事象に対応した機種共通の保守知識ネットワークを生成する(図10参照)。
≪Characteristics of maintenance knowledge network generator≫
The maintenance knowledge table 210 (see FIG. 3, common maintenance knowledge network) stores failure modes and functional failures, functional failures and abnormal events, and the causal relationship between failure modes and check items as model-independent maintenance knowledge. To. The network generation unit 111 refers to the maintenance knowledge table 210 and generates a maintenance knowledge network common to all models corresponding to the abnormal events included in the received matter information 500 (see FIG. 9) (see FIG. 10).
 機種テーブル220(図4参照)には、機種に備わるコンポーネントの型番が記憶される。故障モードテーブル230(図5参照)には、型番別にコンポーネントで発生する故障モードが記憶される。ネットワーク生成部111は、機種テーブル220および故障モードテーブル230を参照して、生成した異常事象に対応した機種共通の保守知識ネットワークからノードやリンクを削除しながら、案件情報500に含まれる機種に対応した保守知識ネットワークを生成する。この保守知識ネットワークは、異常事象および機種に対応した保守知識ネットワークである。 The model number of the component provided in the model is stored in the model table 220 (see FIG. 4). The failure mode table 230 (see FIG. 5) stores the failure modes that occur in the components for each model number. The network generation unit 111 refers to the model table 220 and the failure mode table 230, and supports the model included in the matter information 500 while deleting the node and the link from the maintenance knowledge network common to all models corresponding to the generated abnormal event. Generate a maintenance knowledge network. This maintenance knowledge network is a maintenance knowledge network corresponding to abnormal events and models.
 故障モード発生確率テーブル240(図6参照)には、故障モードが発生する事前確率が記憶される。故障検知確率テーブル250(図7参照)には、親ノードの状態が発生した場合に、子ノードが異常または正常である確率が記憶される。子ノード異常発生確率テーブル260(図8参照)には、親ノード(故障モード)に異常が発生していないときに、子ノード(チェック項目)が異常/正常である確率が記憶される。ネットワーク生成部111は、機種に対応した保守知識ネットワークに関連する確率情報を、故障モード発生確率テーブル240、故障検知確率テーブル250および子ノード異常発生確率テーブル260から取得して、異常事象および機種に対応した保守知識ネットワークとともに原因推定装置300(図1参照)に送信する。 The failure mode occurrence probability table 240 (see FIG. 6) stores the prior probability that the failure mode will occur. The failure detection probability table 250 (see FIG. 7) stores the probability that the child node is abnormal or normal when the state of the parent node occurs. The child node abnormality occurrence probability table 260 (see FIG. 8) stores the probability that the child node (check item) is abnormal / normal when no abnormality has occurred in the parent node (failure mode). The network generation unit 111 acquires the probability information related to the maintenance knowledge network corresponding to the model from the failure mode occurrence probability table 240, the failure detection probability table 250, and the child node abnormality occurrence probability table 260, and converts them into abnormal events and models. It is transmitted to the cause estimation device 300 (see FIG. 1) together with the corresponding maintenance knowledge network.
 保守知識ネットワーク生成装置100は、機種共通の異常事象の原因を推定するための共通保守知識ネットワークを備えるため、機種ごとに保守知識ネットワークの基となる保全知識(保守知識テーブル210)を準備する必要がない。このため、保全員は、保全知識を準備するコストを削減することができる。機種のコンポーネントを変更したり、機種を追加したりする場合には、機種テーブル220(図4参照)を更新することで対応できるようになる。また、保守知識ネットワークを見直す際には、機種ごとに見直す必要がない。このため、原因推定に必要な知識データの保守性が高くなる。 Since the maintenance knowledge network generator 100 includes a common maintenance knowledge network for estimating the cause of an abnormal event common to all models, it is necessary to prepare maintenance knowledge (maintenance knowledge table 210) which is the basis of the maintenance knowledge network for each model. There is no. Therefore, the maintenance personnel can reduce the cost of preparing the maintenance knowledge. When changing the components of a model or adding a model, it becomes possible to handle it by updating the model table 220 (see FIG. 4). Moreover, when reviewing the maintenance knowledge network, it is not necessary to review each model. Therefore, the maintainability of the knowledge data required for cause estimation is improved.
≪原因推定装置の概要≫
 原因推定装置300(図1参照)は、保守知識ネットワーク生成装置100から確率情報が付与された機種に対応した保守知識ネットワークを受信する。原因推定装置300は、保守知識ネットワークに含まれるチェック項目の状態(正常/異常)を保全員から取得して、コンポーネントの故障モードの発生確率を算出することで、異常事象の原因を推定する。
≪Overview of cause estimation device≫
The cause estimation device 300 (see FIG. 1) receives the maintenance knowledge network corresponding to the model to which the probability information is given from the maintenance knowledge network generation device 100. The cause estimation device 300 estimates the cause of the abnormal event by acquiring the state (normal / abnormal) of the check items included in the maintenance knowledge network from the maintenance personnel and calculating the probability of occurrence of the failure mode of the component.
≪原因推定装置の構成≫
 図15は、第1の実施形態に係る原因推定装置300の機能ブロック図である。原因推定装置300は、制御部310、記憶部320、通信部330、および入出力部340を含んで構成される。通信部330は、保守知識ネットワーク生成装置100や保守知識更新装置400を含む他の装置と通信データを送受信する。入出力部340は、ディスプレイやキーボード、マウスなどのユーザインターフェイス機器が接続される。
<< Configuration of cause estimation device >>
FIG. 15 is a functional block diagram of the cause estimation device 300 according to the first embodiment. The cause estimation device 300 includes a control unit 310, a storage unit 320, a communication unit 330, and an input / output unit 340. The communication unit 330 transmits / receives communication data to / from other devices including the maintenance knowledge network generation device 100 and the maintenance knowledge update device 400. User interface devices such as a display, keyboard, and mouse are connected to the input / output unit 340.
 記憶部320は、ROMやRAM、SSDなどの記憶機器から構成される。記憶部320には、保守知識ネットワークデータベース350、およびプログラム328が記憶される。プログラム328は、原因推定処理(後記する図16参照)の手順の記述を含む。保守知識ネットワークデータベース350には、保守知識ネットワーク生成装置100から受信した案件情報や案件情報に含まれる異常事象および機種に対応した保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報が格納される。 The storage unit 320 is composed of storage devices such as ROM, RAM, and SSD. The maintenance knowledge network database 350 and the program 328 are stored in the storage unit 320. The program 328 includes a description of the procedure of the cause estimation process (see FIG. 16 described later). The maintenance knowledge network database 350 stores the matter information received from the maintenance knowledge network generator 100, the maintenance knowledge network corresponding to the abnormal event and the model included in the matter information, the probability information related to the maintenance knowledge network, and the network identification information. Will be done.
 以下の説明では、保守知識ネットワーク生成装置100からは、保守知識ネットワーク510(図11参照)が出力されたという前提(仮定)で説明を続ける。この前提は、図11を参照して、原因推定装置300を説明しやするための前提である。
 詳しくは、機種に対応した保守知識ネットワーク生成処理(図14参照)では、受け取った機種では、全てのコンポーネントが搭載されていて、当該コンポーネントで故障モードが発生するという前提である。この前提のため、機種に対応した保守知識ネットワーク生成処理で、ノードは除去されず、異常事象に対応した保守知識ネットワーク510が、異常事象および機種に対応した保守知識ネットワークとなる。保守知識ネットワークデータベース350にある保守知識ネットワーク510には、ステップS140(図14参照)で取得された確率情報が付与されており、ベイジアンネットワークと見なすことができる。
In the following description, the description will be continued on the premise (assuming) that the maintenance knowledge network 510 (see FIG. 11) is output from the maintenance knowledge network generator 100. This premise is a premise for explaining the cause estimation device 300 with reference to FIG.
Specifically, in the maintenance knowledge network generation process corresponding to the model (see FIG. 14), it is premised that all the components are installed in the received model and the failure mode occurs in the component. Because of this premise, the node is not removed in the maintenance knowledge network generation process corresponding to the model, and the maintenance knowledge network 510 corresponding to the abnormal event becomes the maintenance knowledge network corresponding to the abnormal event and the model. The maintenance knowledge network 510 in the maintenance knowledge network database 350 is given the probability information acquired in step S140 (see FIG. 14), and can be regarded as a Bayesian network.
 制御部310は、確率計算部311、原因推定部312、推定結果表示部313、およびチェック結果取得部314を備える。確率計算部311は、ベイジアンネットワークの確率計算を行う。詳しくは、確率計算部311は、保守知識ネットワークデータベース350に記憶される保守知識ネットワーク510のネットワーク構成情報(図14記載のステップS139参照)や確率情報(ステップS140参照)を参照して、ベイジアンネットワークのノードの確率計算を行う。 The control unit 310 includes a probability calculation unit 311, a cause estimation unit 312, an estimation result display unit 313, and a check result acquisition unit 314. The probability calculation unit 311 calculates the probability of the Bayesian network. Specifically, the probability calculation unit 311 refers to the network configuration information (see step S139 in FIG. 14) and the probability information (see step S140) of the maintenance knowledge network 510 stored in the maintenance knowledge network database 350, and refers to the Basian network. Calculate the probability of the node of.
 原因推定部312は、保全員に問い合わせて、保守知識ネットワーク510のノード群514に含まれるチャック項目の状態(正常/異常)を取得する。続いて、原因推定部312は、確率計算部311に依頼して、故障モードの発生確率を取得する。
 推定結果表示部313は、故障モードの発生確率に応じてノードの表示容態を変えた保守知識ネットワークを含む推定結果表示画面620(後記する図18参照)を表示する。
 チェック結果取得部314は、保全員が選定した原因となる故障モードを取得して、保守知識更新装置400(図1参照)へ送信する。
The cause estimation unit 312 inquires of the maintenance personnel and acquires the status (normal / abnormal) of the chuck items included in the node group 514 of the maintenance knowledge network 510. Subsequently, the cause estimation unit 312 requests the probability calculation unit 311 to acquire the probability of occurrence of the failure mode.
The estimation result display unit 313 displays an estimation result display screen 620 (see FIG. 18 described later) including a maintenance knowledge network in which the display state of the node is changed according to the occurrence probability of the failure mode.
The check result acquisition unit 314 acquires the cause failure mode selected by the maintenance personnel and transmits it to the maintenance knowledge update device 400 (see FIG. 1).
≪原因推定装置:原因推定処理≫
 図16は、第1の実施形態に係る原因推定処理のフローチャートである。
 ステップS201において原因推定部312は、保守知識ネットワークデータベース350にある保守知識ネットワークのチェック項目を取得する。続いて、原因推定部312は、入出力部340に接続されるディスプレイにチェック項目を表示して、保全員に対して、チェック項目をチェックして、結果を入力するように促す。保全員は、チェック項目にあるセンサのデータやコンポーネントの状況をチェック(検査、点検)して、結果を入力する。
<< Cause estimation device: Cause estimation processing >>
FIG. 16 is a flowchart of the cause estimation process according to the first embodiment.
In step S201, the cause estimation unit 312 acquires the check items of the maintenance knowledge network in the maintenance knowledge network database 350. Subsequently, the cause estimation unit 312 displays a check item on the display connected to the input / output unit 340, and prompts the maintenance personnel to check the check item and input the result. The maintenance personnel check (inspect, inspect) the sensor data and component status in the check items, and input the results.
 ステップS202において原因推定部312は、保全員が入力したチェックの結果を取得する。
 ステップS203において原因推定部312は、チェックの結果からチェック項目の確率を設定して、原因推定用のベイジアンネットワークを生成する。例えば、「センサ1」のデータが異常値を示した場合、原因推定部312は、センサ1のノード情報(図12記載のノード情報テーブル520参照)において「異常」の状態の確率を100%、「正常」の状態の確率を0%と設定する。
In step S202, the cause estimation unit 312 acquires the check result input by the maintenance personnel.
In step S203, the cause estimation unit 312 sets the probability of the check item from the check result and generates a Bayesian network for cause estimation. For example, when the data of the "sensor 1" shows an abnormal value, the cause estimation unit 312 sets the probability of the "abnormal" state in the node information of the sensor 1 (see the node information table 520 shown in FIG. 12) to 100%. The probability of the "normal" state is set to 0%.
 ステップS204において原因推定部312は、確率計算部311に依頼して故障モードのノード(図12記載のノード情報テーブル520参照)における故障発生(状態524が「Y」)の確率を取得する。確率計算部311は、故障モードのノードの確率を計算し、計算結果を計算結果テーブル610(後記する図17参照)の形式で出力する。また、原因推定部312は、ステップS202で取得したチェック結果や計算結果テーブル610に対して推定結果識別情報を割り振る。 In step S204, the cause estimation unit 312 requests the probability calculation unit 311 to acquire the probability of failure occurrence (state 524 is “Y”) in the node in the failure mode (see the node information table 520 described in FIG. 12). The probability calculation unit 311 calculates the probability of the node in the failure mode, and outputs the calculation result in the form of the calculation result table 610 (see FIG. 17 described later). Further, the cause estimation unit 312 allocates the estimation result identification information to the check result and the calculation result table 610 acquired in step S202.
 図17は、第1の実施形態に係る故障モードの計算結果テーブル610のデータ構成図である。計算結果テーブル610は、表形式のデータであって、1つの行は、ノードの状態別の確率を示し、故障モード611、状態612、および確率613の列(属性)を含む。故障モード611と状態612とは、ノード情報テーブル520(図12参照)における種類522が「故障モード」であるノード情報521と状態524にそれぞれ対応する。確率613は、故障モード611が状態612である確率を示す。 FIG. 17 is a data configuration diagram of the failure mode calculation result table 610 according to the first embodiment. The calculation result table 610 is tabular data, and one row shows the probability of each state of the node and includes columns (attributes) of failure mode 611, state 612, and probability 613. The failure mode 611 and the state 612 correspond to the node information 521 and the state 524 whose type 522 in the node information table 520 (see FIG. 12) is the "failure mode", respectively. The probability 613 indicates the probability that the failure mode 611 is in the state 612.
 図16に戻って、ステップS205において推定結果表示部313は、推定結果表示画面620(後記する図18参照)に計算の結果の確率に応じて保守知識ネットワークを表示する。
 図18は、第1の実施形態に係る推定結果表示画面620の画面構成図である。推定結果表示画面620中央には、保守知識ネットワーク510(図11参照)とほぼ同様のネットワークが表示される。以下に保守知識ネットワーク510との違いについて説明する。
 チェック項目のノードにおいて、保全員が入力したチェックの結果(図16記載のステップS202参照)が表示されている。詳しくは、結果が正常であればノードの「正常/異常」のうち異常が二重取り消し線で消され、結果が異常であれば「正常/異常」のうち正常が消されている。また、異常であったチェック項目のノードがハイライト表示(図18ではノードをハッチングして記載)されている。
Returning to FIG. 16, in step S205, the estimation result display unit 313 displays the maintenance knowledge network on the estimation result display screen 620 (see FIG. 18 described later) according to the probability of the calculation result.
FIG. 18 is a screen configuration diagram of the estimation result display screen 620 according to the first embodiment. In the center of the estimation result display screen 620, a network substantially similar to the maintenance knowledge network 510 (see FIG. 11) is displayed. The difference from the maintenance knowledge network 510 will be described below.
In the node of the check item, the result of the check input by the maintenance personnel (see step S202 in FIG. 16) is displayed. Specifically, if the result is normal, the abnormality among the "normal / abnormal" of the node is erased by the double strikethrough, and if the result is abnormal, the normal among the "normal / abnormal" is erased. In addition, the node of the check item that was abnormal is highlighted (in FIG. 18, the node is hatched and described).
 故障モードのノードにおいて、故障モードの確率の計算結果(図17参照)に基づいてノードがハイライト表示されている。詳しくは、故障モードの発生確率(図17記載の計算結果テーブル610のなかで状態612が「Y」であるレコードの確率613)が高いほど、より目立つようにハイライト表示される。また、故障発生の確率が高い機能故障のノードもハイライト表示される。 In the node of the failure mode, the node is highlighted based on the calculation result of the probability of the failure mode (see FIG. 17). More specifically, the higher the failure mode occurrence probability (probability 613 of the record in which the state 612 is "Y" in the calculation result table 610 shown in FIG. 17), the more conspicuously the highlight is displayed. In addition, nodes with functional failures that have a high probability of failure are also highlighted.
 保全員は、自身が異常事象の原因と考える故障モードを選択し、当該故障モードのノードに配置された選択ボタン621を押下する。選択ボタン621の替わりに、推定結果表示画面620の下側に配置される「選定結果入力」ボタン622を押下し、表示される選択結果入力画面(不図示)から故障モードを入力してもよい。保全員が選択する故障モードは、1つに限らず、複数であってもよい。 The maintenance worker selects the failure mode that he / she considers to be the cause of the abnormal event, and presses the selection button 621 arranged at the node of the failure mode. Instead of the selection button 621, the "selection result input" button 622 arranged at the lower side of the estimation result display screen 620 may be pressed, and the failure mode may be input from the displayed selection result input screen (not shown). .. The failure mode selected by the maintenance personnel is not limited to one, and may be multiple.
 図16に戻って、ステップS206においてチェック結果取得部314は、保全員が選択した故障モードを取得する。次に、チェック結果取得部314は、選択された故障モードとともに、案件情報、保守知識ネットワークデータベース350(図15参照)に記憶される異常事象および機種に対応した保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報、ステップS202で取得したチェック結果、計算結果テーブル610(図17参照)、および推定結果識別情報を保守知識更新装置400へ送信する。保守知識更新装置400は、案件情報、選択された故障モード、異常事象および機種に対応した保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報、チェック結果、計算結果テーブル610、および推定結果識別情報を保守作業報告データベース450(後記する図19参照)に格納する。 Returning to FIG. 16, in step S206, the check result acquisition unit 314 acquires the failure mode selected by the maintenance personnel. Next, the check result acquisition unit 314, along with the selected failure mode, sets the matter information, the maintenance knowledge network corresponding to the abnormal event and the model stored in the maintenance knowledge network database 350 (see FIG. 15), and the maintenance knowledge network. The probability information, the network identification information, the check result acquired in step S202, the calculation result table 610 (see FIG. 17), and the estimation result identification information are transmitted to the maintenance knowledge update device 400. The maintenance knowledge update device 400 includes case information, a selected failure mode, a maintenance knowledge network corresponding to an abnormal event and a model, probability information related to the maintenance knowledge network, network identification information, check results, calculation result table 610, and estimation. The result identification information is stored in the maintenance work report database 450 (see FIG. 19 described later).
≪原因推定装置の特徴≫
 原因推定装置300は、異常事象および機種に対応した保守知識ネットワークに含まれるチェック項目のチェック結果を取得する。次に、原因推定装置300は、取得したチェック結果とベイジアンネットワークとして保守知識ネットワークとを用いて、故障モードのノードの確率を計算する。原因推定装置300は、推定結果表示画面620(図18参照)において、保守知識ネットワークのノードのなかで計算結果の確率が高いノードほど、より強調して表示する。
 保全員は、推定結果表示画面620を見ることで、どの故障モードが故障している確率が高いかを確認することができる。また、保全員は、故障モードが発生したことによって、どのような機能故障が発生して異常事象に至ったかを理解することができる。
≪Characteristics of cause estimation device≫
The cause estimation device 300 acquires the check results of the check items included in the maintenance knowledge network corresponding to the abnormal event and the model. Next, the cause estimation device 300 calculates the probability of the node in the failure mode by using the acquired check result and the maintenance knowledge network as the Bayesian network. On the estimation result display screen 620 (see FIG. 18), the cause estimation device 300 emphasizes and displays the node having the higher probability of the calculation result among the nodes of the maintenance knowledge network.
By looking at the estimation result display screen 620, the maintenance personnel can confirm which failure mode has a high probability of failure. In addition, the maintenance personnel can understand what kind of functional failure has occurred and led to an abnormal event due to the occurrence of the failure mode.
≪保守知識更新装置の概要≫
 保守知識更新装置400(図1参照)は、原因推定装置300からベイジアンネットワークとして(確率情報が付与された)異常事象および機種に対応した保守知識ネットワークやステップS202(図16参照)で取得されたチェック項目の状態、算出された確率(図17に記載の計算結果テーブル610)などを受信する。保守知識更新装置400は、異常事象の原因を調査した保全員から確定した原因(どのコンポーネントが何の故障(故障モード)だったか)を取得する。保守知識更新装置400は、所定のタイミングで推定された原因と確定した原因とを比較し、更新指示画面640(後記する図21参照)を表示して、保全知識や確率情報の更新指示を受け付け、更新を実行する。
≪Overview of maintenance knowledge updater≫
The maintenance knowledge update device 400 (see FIG. 1) was acquired from the cause estimation device 300 as a Bayesian network in the maintenance knowledge network corresponding to the abnormal event (provided with probability information) and the model, or in step S202 (see FIG. 16). The state of the check item, the calculated probability (calculation result table 610 shown in FIG. 17), and the like are received. The maintenance knowledge update device 400 acquires a determined cause (which component had what failure (failure mode)) from the maintenance personnel who investigated the cause of the abnormal event. The maintenance knowledge update device 400 compares the cause estimated at a predetermined timing with the confirmed cause, displays the update instruction screen 640 (see FIG. 21 described later), and accepts the update instruction of maintenance knowledge and probability information. , Perform the update.
≪保守知識更新装置の構成≫
 図19は、第1の実施形態に係る保守知識更新装置400の機能ブロック図である。保守知識更新装置400は、制御部410、記憶部420、通信部430、および入出力部440を含んで構成される。通信部430は、保守知識ネットワーク生成装置100や原因推定装置300を含む他の装置と通信データを送受信する。入出力部440は、ディスプレイやキーボード、マウスなどのユーザインターフェイス機器が接続される。
<< Configuration of maintenance knowledge updater >>
FIG. 19 is a functional block diagram of the maintenance knowledge updating device 400 according to the first embodiment. The maintenance knowledge update device 400 includes a control unit 410, a storage unit 420, a communication unit 430, and an input / output unit 440. The communication unit 430 transmits / receives communication data to / from other devices including the maintenance knowledge network generation device 100 and the cause estimation device 300. User interface devices such as a display, keyboard, and mouse are connected to the input / output unit 440.
 記憶部420は、ROMやRAM、SSDなどの記憶機器から構成される。記憶部420には、保守作業報告データベース450、およびプログラム428が記憶される。プログラム428は、保守知識更新処理(後記する図25参照)の手順の記述を含む。保守作業報告データベース450には、案件情報、異常事象および機種に対応した保守知識ネットワーク、ネットワーク識別情報、ベイジアンネットワークとして異常事象および機種に対応した保守知識ネットワークに付与された確率情報、保全員が入力したチェック結果、チェック結果とベイジアンネットワークとから算出された確率情報(図17参照)、推定結果識別情報、および保全員が原因として選択した故障モードが関連付けられて記憶される(図16記載のステップS206参照)。保守作業報告データベース450には、さらに後記する異常原因取得部411が取得する異常原因が記憶される。 The storage unit 420 is composed of storage devices such as ROM, RAM, and SSD. The maintenance work report database 450 and the program 428 are stored in the storage unit 420. The program 428 includes a description of the procedure of the maintenance knowledge update process (see FIG. 25 described later). In the maintenance work report database 450, case information, maintenance knowledge network corresponding to abnormal events and models, network identification information, probability information given to the maintenance knowledge network corresponding to abnormal events and models as a Basian network, and maintenance personnel are input. The check result, the probability information calculated from the check result and the Basian network (see FIG. 17), the estimation result identification information, and the failure mode selected as the cause by the maintenance personnel are associated and stored (step shown in FIG. 16). See S206). The maintenance work report database 450 stores the cause of the abnormality acquired by the abnormality cause acquisition unit 411, which will be described later.
 制御部410は、異常原因取得部411、更新検知部412、更新指示受付部413、および更新実行部414を備える。異常原因取得部411は、保全員が保全業務を行い、最終的に確定した(最終確定した)異常原因を取得して、案件情報や推定結果識別情報などと関連付けられて保守作業報告データベース450に保存する。
 更新検知部412は、所定長の期間の保守作業報告データベース450にあるデータを監視し、原因推定装置300が推定した原因(故障モード)と最終確定した異常原因とを比較して、推定結果評価テーブル630(後記する図20参照)を生成する。更新検知部412は、一致率(推定結果評価テーブル630において結果635が「一致」である割合)を算出して、後記する更新指示受付部413に出力する。
The control unit 410 includes an abnormality cause acquisition unit 411, an update detection unit 412, an update instruction reception unit 413, and an update execution unit 414. In the abnormality cause acquisition unit 411, the maintenance personnel perform maintenance work, acquire the finally confirmed (finally confirmed) abnormality cause, and associate it with the case information, the estimation result identification information, etc., and add it to the maintenance work report database 450. save.
The update detection unit 412 monitors the data in the maintenance work report database 450 for a predetermined length of time, compares the cause (failure mode) estimated by the cause estimation device 300 with the finally confirmed abnormal cause, and evaluates the estimation result. Generate table 630 (see Figure 20 below). The update detection unit 412 calculates the match rate (the rate at which the result 635 is "match" in the estimation result evaluation table 630) and outputs it to the update instruction reception unit 413 described later.
 図20は、第1の実施形態に係る推定結果評価テーブル630のデータ構成図である。推定結果評価テーブル630は、案件情報ごとに生成された異常事象および機種に対応した保守知識ネットワークを用いて推定された異常事象の原因(故障モード)と、最終確定した原因とを比較するためのデータである。推定結果評価テーブル630は、表形式のデータであって、1つの行(レコード)は、ネットワーク識別情報631、推定結果識別情報632(図20では推定結果IDと記載)、推定原因633、最終確定原因634、および結果635の列(属性)を含む。 FIG. 20 is a data structure diagram of the estimation result evaluation table 630 according to the first embodiment. The estimation result evaluation table 630 is for comparing the cause (failure mode) of the abnormal event generated for each matter information and the abnormal event estimated using the maintenance knowledge network corresponding to the model with the finally confirmed cause. It is data. The estimation result evaluation table 630 is tabular data, and one row (record) includes network identification information 631, estimation result identification information 632 (described as estimation result ID in FIG. 20), estimation cause 633, and final confirmation. Includes columns (attributes) for cause 634 and result 635.
 ネットワーク識別情報631は、異常事象および機種に対応した保守知識ネットワークに割り振られた識別情報(図10記載のステップS102参照)である。ネットワーク識別情報631は、保守作業報告データベース450のなかで所定長の期間に格納された識別情報である。
 推定結果識別情報632は、保守作業報告データベース450のなかでネットワーク識別情報631に関連付けられて記憶された推定結果識別情報である。推定結果識別情報632は、原因推定装置300が推定した異常事象の原因となる故障モードの確率計算結果に割り振られた識別情報(図16のステップS204参照)である。
The network identification information 631 is identification information (see step S102 in FIG. 10) allocated to the maintenance knowledge network corresponding to the abnormal event and the model. The network identification information 631 is identification information stored in the maintenance work report database 450 for a predetermined length of time.
The estimation result identification information 632 is the estimation result identification information stored in association with the network identification information 631 in the maintenance work report database 450. The estimation result identification information 632 is identification information (see step S204 in FIG. 16) assigned to the probability calculation result of the failure mode that causes the abnormal event estimated by the cause estimation device 300.
 推定原因633は、保守作業報告データベース450のなかで推定結果識別情報632に関連付けられた計算結果テーブル610(図17参照)のなかで状態612が「Y」で確率613が最大の故障モード611である。
 最終確定原因634は、保守作業報告データベース450のなかで推定結果識別情報632に関連付けられた最終確定した異常原因(図19記載の異常原因取得部411参照)である。
 結果635は、推定原因633と最終確定原因634とが一致するか否かを示す。結果635が「一致」であることは、原因推定装置300の推定が正しく、ベイジアンネットワークとしての保守知識ネットワークのネットワーク構成や付与された確率情報が適切であることを意味している。
The probable cause 633 is the failure mode 611 in which the state 612 is "Y" and the probability 613 is the maximum in the calculation result table 610 (see FIG. 17) associated with the estimation result identification information 632 in the maintenance work report database 450. be.
The final confirmed cause 634 is the final confirmed abnormality cause (see the abnormality cause acquisition unit 411 shown in FIG. 19) associated with the estimation result identification information 632 in the maintenance work report database 450.
The result 635 indicates whether or not the probable cause 633 and the final confirmed cause 634 match. When the result 635 is "match", it means that the estimation of the cause estimation device 300 is correct, and the network configuration of the maintenance knowledge network as a Bayesian network and the given probability information are appropriate.
 図19に戻って、更新指示受付部413は、推定結果評価テーブル630(図20参照)を含む更新指示画面640(後記する図21参照)を表示して、保全員から更新指示を受け付ける。なお、更新指示を出す保全員は、設備に詳しいベテラン保全員であることが望ましい。 Returning to FIG. 19, the update instruction receiving unit 413 displays the update instruction screen 640 (see FIG. 21 described later) including the estimation result evaluation table 630 (see FIG. 20), and receives the update instruction from the maintenance personnel. It is desirable that the maintenance personnel who issue renewal instructions are veteran maintenance personnel who are familiar with the equipment.
 図21は、第1の実施形態に係る更新指示画面640の画面構成図である。更新指示画面640には、一致率や推定結果評価テーブル630が表示される。「履歴表示」ボタンが押下されると、推定結果が表示される。推定結果とは、ステップS202(図16参照)で取得したチェック結果や計算結果テーブル610(図17参照)を含むベイジアンネットワークの確率計算に係る情報である。 FIG. 21 is a screen configuration diagram of the update instruction screen 640 according to the first embodiment. On the update instruction screen 640, the match rate and the estimation result evaluation table 630 are displayed. When the "History display" button is pressed, the estimation result is displayed. The estimation result is information related to the probability calculation of the Bayesian network including the check result acquired in step S202 (see FIG. 16) and the calculation result table 610 (see FIG. 17).
 「保守知識表示」ボダンが押下されると、保守知識テーブル210(図3参照)を含む保守知識が表示される。「機種仕様表示」ボタンが押下されると、機種テーブル220(図4参照)や故障モードテーブル230(図5参照)を含む機種別の仕様情報が表示される。「確率情報表示」ボタンが押下されると、故障モード発生確率テーブル240(図6参照)や故障検知確率テーブル250(図7参照)、子ノード異常発生確率テーブル260(図8参照)を含む確率情報が表示される。 When the "Maintenance knowledge display" button is pressed, the maintenance knowledge including the maintenance knowledge table 210 (see FIG. 3) is displayed. When the "model specification display" button is pressed, specification information for each model including the model table 220 (see FIG. 4) and the failure mode table 230 (see FIG. 5) is displayed. When the "Probability information display" button is pressed, the probability of including the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), and the child node abnormality occurrence probability table 260 (see FIG. 8). Information is displayed.
 (ベテラン)保全員は、保守知識、機種別の仕様情報、確率情報を見ながら、更新内容を検討する。保全員は、保守知識を更新する場合には、「保守知識更新」ボタンを押下し、表示される保守知識更新画面(不図示)に更新指示内容を入力する。保全員は、機種別の仕様情報を更新する場合には、「機種仕様更新」ボタンを押下し、表示される機種仕様更新画面(不図示)に更新指示内容を入力する。保全員は、確率情報を更新する場合には、「確率情報更新」ボタンを押下し、表示される確率情報更新画面(不図示)に更新指示内容を入力する。 (Veteran) maintenance personnel consider the updated contents while looking at maintenance knowledge, specification information for each model, and probability information. When updating the maintenance knowledge, the maintenance personnel press the "maintenance knowledge update" button and input the update instruction content on the displayed maintenance knowledge update screen (not shown). When updating the specification information for each model, the maintenance staff presses the "update model specification" button and inputs the update instruction content on the displayed model specification update screen (not shown). When updating the probability information, the maintenance worker presses the "probability information update" button and inputs the update instruction content on the displayed probability information update screen (not shown).
 「更新申請」ボタンが押下されると、管理者などの承認者に更新指示内容を含む更新申請が送付される。承認者が更新申請を承認すると更新指示内容に含まれる更新が実行される。確率情報の更新の場合、承認なしに更新が実行される。
 図19に戻って、更新指示受付部413は、保全員が入力し承認を得た更新指示内容を更新実行部414に出力する。以下、保守知識、機種仕様、および確率情報それぞれの更新指示内容の形式を説明する。
When the "renewal request" button is pressed, a renewal request including the content of the renewal instruction is sent to the approver such as the administrator. When the approver approves the renewal request, the renewal included in the renewal instruction content is executed. For probability information updates, the update is performed without approval.
Returning to FIG. 19, the update instruction receiving unit 413 outputs the update instruction content input and approved by the maintenance personnel to the update execution unit 414. Hereinafter, the format of the update instruction content for each of maintenance knowledge, model specifications, and probability information will be described.
 図22は、第1の実施形態に係る保守知識の更新指示内容650のデータ構成図である。更新指示内容650は、保守知識テーブル210(図3参照)の更新指示内容を含む。更新指示内容650は、表形式のデータであって、1つの行(レコード)は、処理651、位置652、および内容653の列(属性)を含む。
 処理651は、処理の種類を示し、「追加」、「更新」、「削除」がある。位置652は、保守知識テーブル210内の更新対象の位置を示す。内容653は、処理651が「追加」である場合には追加する内容であり、「更新」である場合には更新(書き換え)する内容である。
FIG. 22 is a data configuration diagram of the maintenance knowledge update instruction content 650 according to the first embodiment. The update instruction content 650 includes the update instruction content of the maintenance knowledge table 210 (see FIG. 3). The update instruction content 650 is tabular data, and one row (record) includes columns (attributes) of process 651, position 652, and content 653.
The process 651 indicates the type of process, and includes "addition", "update", and "deletion". The position 652 indicates the position to be updated in the maintenance knowledge table 210. The content 653 is a content to be added when the process 651 is "addition", and a content to be updated (rewritten) when the process 651 is "update".
 処理651が「追加」であるレコードは、保守知識テーブル210の1行目にレコードを追加する更新を示す。当該レコードの異常事象211、機能故障212、コンポーネント213、コンポーネント識別情報214、故障モード215、およびチェック項目216は、それぞれ「気温上昇」、「熱交換器能力不足」、「熱交換器」、「C1」、「熱交換器設計不良」および「外観破損状況」である。 The record for which the process 651 is "addition" indicates the update to add the record to the first row of the maintenance knowledge table 210. The abnormal event 211, functional failure 212, component 213, component identification information 214, failure mode 215, and check item 216 of the record are "temperature rise", "insufficient heat exchanger capacity", "heat exchanger", and "heat exchanger", respectively. "C1", "heat exchanger design failure" and "appearance damage status".
 図23は、第1の実施形態に係る機種仕様の更新指示内容660のデータ構成図である。更新指示内容660は、機種テーブル220(図4参照)または故障モードテーブル230(図5参照)の更新指示内容を含む。更新指示内容660は、表形式のデータであって、1つの行(レコード)は、処理661、テーブル662、位置663、および内容664の列(属性)を含む。テーブル662は、更新対象のテーブルを示し、機種テーブル220を示す「機種」、または故障モードテーブル230を示す「故障モード」である。処理661、位置663、および内容664は、更新指示内容650(図22参照)の処理651、位置652、および内容653とそれぞれ同様である。 FIG. 23 is a data configuration diagram of the update instruction content 660 of the model specification according to the first embodiment. The update instruction content 660 includes the update instruction content of the model table 220 (see FIG. 4) or the failure mode table 230 (see FIG. 5). The update instruction content 660 is tabular data, and one row (record) includes a process 661, a table 662, a position 663, and a column (attribute) of the content 664. Table 662 indicates a table to be updated, and is a "model" indicating a model table 220 or a "failure mode" indicating a failure mode table 230. The process 661, the position 663, and the content 664 are the same as the process 651, the position 652, and the content 653 of the update instruction content 650 (see FIG. 22), respectively.
 図24は、第1の実施形態に係る確率情報の更新指示内容670のデータ構成図である。更新指示内容670は、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、または子ノード異常発生確率テーブル260(図8参照)を更新するときに用いるデータを示す。後記する更新実行部414は、示されたデータに基づいて、故障モード発生確率テーブル240、故障検知確率テーブル250、または子ノード異常発生確率テーブル260を更新する。 FIG. 24 is a data configuration diagram of the probability information update instruction content 670 according to the first embodiment. The update instruction content 670 uses data used for updating the failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), or the child node abnormality occurrence probability table 260 (see FIG. 8). show. The update execution unit 414, which will be described later, updates the failure mode occurrence probability table 240, the failure detection probability table 250, or the child node abnormality occurrence probability table 260 based on the indicated data.
 更新指示内容670は、表形式のデータであって、1つの行(レコード)は、選択671、ネットワーク識別情報672(図24ではネットワークIDと記載)、推定結果識別情報673(図24では推定結果IDと記載)、推定原因674、最終確定原因675、および結果676の列(属性)を含む。ネットワーク識別情報672、推定結果識別情報673、推定原因674、最終確定原因675、および結果676は、推定結果評価テーブル630(図20参照)のネットワーク識別情報631、推定結果識別情報632、推定原因633、最終確定原因634、および結果635とそれぞれ同様である。選択671は、更新に当該レコードを用いる(「Y」)か否(「N」)かを示す。 The update instruction content 670 is tabular data, and one row (record) is selection 671, network identification information 672 (described as network ID in FIG. 24), and estimation result identification information 673 (estimation result in FIG. 24). ID), probable cause 674, final confirmed cause 675, and result 676 columns (attributes). The network identification information 672, the estimation result identification information 673, the estimation cause 674, the final confirmed cause 675, and the result 676 are the network identification information 631 in the estimation result evaluation table 630 (see FIG. 20), the estimation result identification information 632, and the estimation cause 633. , Final confirmed cause 634, and result 635, respectively. Selection 671 indicates whether or not the record is used for updating (“Y”) (“N”).
 図19に戻って、更新実行部414は、更新指示内容650,660,670に基づいて、保守知識テーブル210(図3参照)、機種テーブル220(図4参照)、故障モードテーブル230(図5参照)、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、または子ノード異常発生確率テーブル260(図8参照)を更新する。更新実行部414は、保守知識テーブル210、機種テーブル220、故障モードテーブル230については、更新指示内容650,660にある指示に直接基づいて更新する。更新実行部414は、例えば、テーブルの行を追加したり、位置652,663に示された項目の内容を更新したりする。 Returning to FIG. 19, the update execution unit 414 has a maintenance knowledge table 210 (see FIG. 3), a model table 220 (see FIG. 4), and a failure mode table 230 (see FIG. 5) based on the update instruction contents 650, 660, and 670. ), The failure mode occurrence probability table 240 (see FIG. 6), the failure detection probability table 250 (see FIG. 7), or the child node abnormality occurrence probability table 260 (see FIG. 8) is updated. The update execution unit 414 updates the maintenance knowledge table 210, the model table 220, and the failure mode table 230 based on the instructions in the update instruction contents 650 and 660 directly. The update execution unit 414, for example, adds a row in the table or updates the contents of the item shown at the position 652,663.
 更新実行部414は、更新指示内容670のレコードで選択671が「Y」であるレコードに従って、故障モード発生確率テーブル240、故障検知確率テーブル250、または子ノード異常発生確率テーブル260を更新する。更新実行部414は、例えば、故障検知確率テーブル250(図7参照)のレコードが示す関係と、選択されたレコードが示す関係とが整合するように更新する。ここで、故障検知確率テーブル250のレコードが示す関係とは、確率255が高いレコードに示される故障モードとチェック項目との間の因果関係のことである。選択されたレコードが示す関係とは、当該レコードに係る故障モード(最終確定原因675)と異常であるチェック項目(図16記載のステップS202参照)との関係であり、最終確定原因675によりチェック項目の異常が発生したという因果関係である。更新実行部414は、例えば、選択されたレコードに基づいて、例えばベイズ更新の手法を用いて確率情報を更新してもよい。 The update execution unit 414 updates the failure mode occurrence probability table 240, the failure detection probability table 250, or the child node abnormality occurrence probability table 260 according to the record in which the selection 671 is "Y" in the record of the update instruction content 670. The update execution unit 414 updates, for example, so that the relationship shown by the record in the failure detection probability table 250 (see FIG. 7) matches the relationship shown by the selected record. Here, the relationship shown by the record in the failure detection probability table 250 is a causal relationship between the failure mode and the check item shown in the record having a high probability 255. The relationship indicated by the selected record is the relationship between the failure mode (final confirmed cause 675) related to the record and the check item that is abnormal (see step S202 in FIG. 16), and the check item is determined by the final confirmed cause 675. It is a causal relationship that the abnormality of. The update execution unit 414 may update the probability information based on the selected record, for example, by using a method of Bayesian update.
 図25は、第1の実施形態に係る更新実行部414が行う更新処理のフローチャートである。
 ステップS301において更新実行部414は、更新指示内容が確率情報を更新する指示であれば(ステップS301→YES)ステップS302に進み、確率情報でなければ(ステップS301→NO)ステップS303に進む。確率情報とは、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、または子ノード異常発生確率テーブル260(図8参照)である。
 ステップS302において更新実行部414は、更新指示内容670(図24参照)に基づいて確率情報を更新する。
FIG. 25 is a flowchart of the update process performed by the update execution unit 414 according to the first embodiment.
In step S301, the update execution unit 414 proceeds to step S302 if the update instruction content is an instruction to update the probability information (step S301 → YES), and proceeds to step S303 if the update instruction content is not probability information (step S301 → NO). The probability information is a failure mode occurrence probability table 240 (see FIG. 6), a failure detection probability table 250 (see FIG. 7), or a child node abnormality occurrence probability table 260 (see FIG. 8).
In step S302, the update execution unit 414 updates the probability information based on the update instruction content 670 (see FIG. 24).
 ステップS303において更新実行部414は、更新指示内容650,660に承認者の承認があれば(ステップS303→YES)ステップS304に進み、承認がなければ(ステップS303→NO)更新処理を終える。
 ステップS304において更新実行部414は、更新指示内容が保守知識の更新指示内容650であれば(ステップS304→YES)ステップS305に進み、保守知識の更新指示内容650でなければ(ステップS304→NO)ステップS306に進む。
 ステップS305において更新実行部414は、更新指示内容650に基づいて保守知識テーブル210を更新する。
 ステップS306において更新実行部414は、更新指示内容660に基づいて機種テーブル220、または故障モードテーブル230を更新する。
In step S303, the update execution unit 414 proceeds to step S304 if the update instruction contents 650 and 660 are approved by the approver (step S303 → YES), and ends the update process if there is no approval (step S303 → NO).
In step S304, the update execution unit 414 proceeds to step S305 if the update instruction content is maintenance knowledge update instruction content 650 (step S304 → YES), and if the update instruction content is not maintenance knowledge update instruction content 650 (step S304 → NO). The process proceeds to step S306.
In step S305, the update execution unit 414 updates the maintenance knowledge table 210 based on the update instruction content 650.
In step S306, the update execution unit 414 updates the model table 220 or the failure mode table 230 based on the update instruction content 660.
≪保守知識更新装置の特徴≫
 保守知識更新装置400は、原因推定装置300の原因推定結果(確率が最大の故障モード)と最終確定の原因との一致率を算出し、一致/不一致の状況と合わせて表示する(図21記載の更新指示画面640参照)。
 保全員は、一致/不一致の状況を参照することで、保守知識や機種仕様、確率情報のどこに問題があるか検討することができるようになり、延いては、これらの情報の更新を指示することができるようになる。
≪Characteristics of maintenance knowledge updater≫
The maintenance knowledge update device 400 calculates the match rate between the cause estimation result (failure mode with the maximum probability) of the cause estimation device 300 and the cause of the final confirmation, and displays it together with the match / mismatch situation (described in FIG. 21). Refer to the update instruction screen 640).
By referring to the match / mismatch situation, the maintenance staff can consider where the problem lies in the maintenance knowledge, model specifications, and probability information, and in turn, instruct to update this information. You will be able to.
 保守知識は、機種共通の保守知識テーブル210(図3参照)と、機種依存の保守知識である機種テーブル220(図4参照)および故障モードテーブル230(図5参照)とに分かれている。このため、機種共通の更新と、個々の機種に係る更新とに分けて、保守知識を更新することができるようになる。結果として、保守知識の保守性が向上する。
 確率情報は、最終確定した異常事象の原因(コンポーネントの故障モード)に基づいて更新される。現実に発生した異常事象とその最終確定した事実としての原因を反映することで、確率情報が現実に合った数値に変更され、延いては原因推定の精度が向上するようになる。
The maintenance knowledge is divided into a model-specific maintenance knowledge table 210 (see FIG. 3), a model-dependent maintenance knowledge model table 220 (see FIG. 4), and a failure mode table 230 (see FIG. 5). Therefore, it becomes possible to update the maintenance knowledge separately for the update common to all models and the update related to each model. As a result, the maintainability of maintenance knowledge is improved.
The probability information is updated based on the cause of the final confirmed anomalous event (component failure mode). By reflecting the abnormal event that actually occurred and the cause as the final confirmed fact, the probability information is changed to the numerical value suitable for the reality, and the accuracy of the cause estimation is improved.
≪第2の実施形態≫
 第1の実施形態では、保全員がチェック項目をチェック/検査/点検して、原因推定装置300に入力している(図16記載のステップS202参照)。第2の実施形態では、原因推定装置300A(後記する図26参照)がセンサデータを受信してチェック項目の正常/異常を判定する。
<< Second Embodiment >>
In the first embodiment, the maintenance personnel check / inspect / inspect the check items and input the check items to the cause estimation device 300 (see step S202 in FIG. 16). In the second embodiment, the cause estimation device 300A (see FIG. 26 described later) receives the sensor data and determines whether the check item is normal or abnormal.
≪第2の実施形態:原因推定装置の構成≫
 図26は、第2の実施形態に係る原因推定装置300Aの機能ブロック図である。第1の実施形態の原因推定装置300(図15参照)と比較して、記憶部320にイベント認識モデル360が追加され、制御部310にイベント認識部315が追加される。また、通信部330は、設備の状態(温度や圧力、流量などの物理量)を取得するセンサからセンサデータ(取得した値、センサ値)を受信する。
<< Second Embodiment: Configuration of Cause Estimating Device >>
FIG. 26 is a functional block diagram of the cause estimation device 300A according to the second embodiment. The event recognition model 360 is added to the storage unit 320, and the event recognition unit 315 is added to the control unit 310 as compared with the cause estimation device 300 (see FIG. 15) of the first embodiment. Further, the communication unit 330 receives sensor data (acquired value, sensor value) from a sensor that acquires the state of equipment (physical quantities such as temperature, pressure, and flow rate).
 イベント認識モデル360は、センサデータを分類するための機械学習モデルであって、例えばk-meansなどのクラスタリング手法などの分類手法を用いる機械学習モデルである。イベント認識モデル360は、例えば、1つまたは複数のセンサデータを、正常の状態、または、異常の状態に分類するモデルである。センサデータは、値そのものの他に、例えば一定幅の期間におけるセンサデータの最大値や変化量などの特徴量に基づいて分類される。 The event recognition model 360 is a machine learning model for classifying sensor data, and is a machine learning model that uses a classification method such as a clustering method such as k-means. The event recognition model 360 is, for example, a model that classifies one or more sensor data into a normal state or an abnormal state. The sensor data is classified based on a feature amount such as a maximum value or a change amount of the sensor data in a certain width period, in addition to the value itself.
 図27は、第2の実施形態に係るイベント認識モデル360を用いたセンサデータの分類を説明するためのグラフ710である。グラフ710の軸は、チェック項目の1つである「チェック項目1」(後記する図28参照)に係る1つまたは複数のセンサの特徴量である。グラフ710は、2つの軸(特徴量)のグラフであるが、1つまたは3つ以上の軸があるグラフであってもよい。データ群711(グループ)は、特徴量が近いセンサデータの集まり(クラスタ)であり、「チェック項目1」が正常状態であるときのセンサデータの集まりである。データ群712は、特徴量が近いセンサデータの集まりであり、「チェック項目1」が異常状態であるときのセンサデータの集まりである。 FIG. 27 is a graph 710 for explaining the classification of sensor data using the event recognition model 360 according to the second embodiment. The axis of the graph 710 is a feature amount of one or a plurality of sensors according to "check item 1" (see FIG. 28 described later), which is one of the check items. The graph 710 is a graph having two axes (features), but may be a graph having one or three or more axes. The data group 711 (group) is a collection (cluster) of sensor data having similar feature quantities, and is a collection of sensor data when "check item 1" is in the normal state. The data group 712 is a collection of sensor data having similar feature quantities, and is a collection of sensor data when "check item 1" is in an abnormal state.
 図28は、第2の実施形態に係るイベント認識モデル360を用いたセンサデータの分類を説明するためのテーブル720である。テーブル720の1つの行(レコード)は、グラフ710(図27参照)上の1つのデータ群を示し、グループ識別情報721、チェック項目722、状態723、および特徴データ724の列(属性)を含む。
 グループ識別情報721は、データ群の識別情報である。チェック項目722は、センサデータが係るチェック項目である。状態723は、データ群がチェック項目722について「正常」か「異常」かを示す。特徴データ724は、データ群の特徴であって例えば、データ群のグラフ710における範囲(領域、例えば中心の座標と半径)を示す。グループ識別情報721が「1」であるレコードは、データ群711に対応し、「チェック項目1」が「正常」であるデータ群を示すレコードである。
FIG. 28 is a table 720 for explaining the classification of sensor data using the event recognition model 360 according to the second embodiment. One row (record) of table 720 shows one data group on graph 710 (see FIG. 27) and contains columns (attributes) of group identification information 721, check item 722, state 723, and feature data 724. ..
The group identification information 721 is the identification information of the data group. The check item 722 is a check item related to the sensor data. The state 723 indicates whether the data group is "normal" or "abnormal" for the check item 722. The feature data 724 is a feature of the data group and indicates, for example, a range (region, for example, the coordinates and radius of the center) in the graph 710 of the data group. The record in which the group identification information 721 is "1" corresponds to the data group 711, and is a record indicating the data group in which the "check item 1" is "normal".
 図26に戻って、イベント認識部315は、センサデータを受け取って、イベント認識モデル360を用いて、チェック項目が正常か異常かを判断する。詳しくは、イベント認識部315は、センサデータを受信して特徴量を算出する。次に、イベント認識部315は、算出した特徴量がテーブル720(図28参照)のどの特徴データ724に対応するか探索し、対応するレコードのチェック項目722と状態723とを出力する。出力されたチェック項目722と状態723とは、原因推定処理(図16参照)において、保全員によって入力されるチェック結果(ステップS202参照)の替わりとして用いられる。 Returning to FIG. 26, the event recognition unit 315 receives the sensor data and uses the event recognition model 360 to determine whether the check item is normal or abnormal. Specifically, the event recognition unit 315 receives the sensor data and calculates the feature amount. Next, the event recognition unit 315 searches for which feature data 724 in the table 720 (see FIG. 28) the calculated feature amount corresponds to, and outputs the check items 722 and the state 723 of the corresponding records. The output check items 722 and state 723 are used in place of the check result (see step S202) input by the maintenance personnel in the cause estimation process (see FIG. 16).
≪第2の実施形態の特徴≫
 原因推定装置300Aは、保全員に替わってセンサデータを取得して、チェック項目の正常/異常を判断する。保全員は、チェック項目のチェック/検査やチェック結果を入力する必要がなくなる。このため、異常事象が発生した場合に、手間をかけず、短時間で、正確にチェック結果が入力され、異常事象の原因の推定結果を得ることができるようになる。
<< Features of the second embodiment >>
The cause estimation device 300A acquires sensor data on behalf of the maintenance personnel and determines whether the check items are normal or abnormal. Maintenance personnel do not need to check / inspect check items or enter check results. Therefore, when an abnormal event occurs, the check result can be accurately input in a short time without any trouble, and the estimation result of the cause of the abnormal event can be obtained.
≪第3の実施形態≫
 第2の実施形態では、イベント認識部315は、イベント認識モデル360を用いてセンサデータからチェック項目の正常/異常を判断する。換言すれば、イベント認識部315は、センサデータがデータ群711,712(図27参照)の何れに含まれるかを判断して、チェック項目の正常/異常を判断する。しかしながら、設備の運用にともない、データ群711,712の何れにも含まれていないセンサデータ(新たなデータ群)が出現することが想定される。
<< Third Embodiment >>
In the second embodiment, the event recognition unit 315 determines whether the check item is normal / abnormal from the sensor data using the event recognition model 360. In other words, the event recognition unit 315 determines which of the data groups 711 and 712 (see FIG. 27) contains the sensor data, and determines whether the check item is normal or abnormal. However, it is expected that sensor data (new data group) that is not included in any of the data groups 711 and 712 will appear with the operation of the equipment.
 図29は、第3の実施形態に係り、グラフ710Bに現れた新たなデータ群713を説明するための図である。データ群713に含まれるセンサデータは、既存の正常な状態に相当するデータ群711にも、異常な状態に相当するデータ群712にも含まれていない。このため、第2の実施形態におけるイベント認識部315は、正常/異常を判断できず、イベント認識モデル360の更新が必要となる。第3の実施形態では、新たなデータ群が出現した場合に、これを検知し、保全員の指示により保守知識を更新する。
 第3の実施形態に係る原因推定装置300B(不図示)は、第2の実施形態に係る原因推定装置300Aと同様である。但し、原因推定装置300Bは、保守知識更新装置400B(後記する図30参照)の指示を受けてテーブル720(図28参照)を更新する。
FIG. 29 is a diagram for explaining a new data group 713 appearing in the graph 710B according to the third embodiment. The sensor data included in the data group 713 is not included in the data group 711 corresponding to the existing normal state or the data group 712 corresponding to the abnormal state. Therefore, the event recognition unit 315 in the second embodiment cannot determine normality / abnormality, and the event recognition model 360 needs to be updated. In the third embodiment, when a new data group appears, it is detected and the maintenance knowledge is updated according to the instruction of the maintenance staff.
The cause estimation device 300B (not shown) according to the third embodiment is the same as the cause estimation device 300A according to the second embodiment. However, the cause estimation device 300B updates the table 720 (see FIG. 28) in response to the instruction of the maintenance knowledge update device 400B (see FIG. 30 described later).
≪第3の実施形態:保守知識更新装置の構成≫
 図30は、第3の実施形態に係る保守知識更新装置400Bの機能ブロック図である。以下、第1の実施形態に係る保守知識更新装置400(図19参照)と比較して追加される情報や機能を説明する。
<< Third Embodiment: Configuration of maintenance knowledge updating device >>
FIG. 30 is a functional block diagram of the maintenance knowledge updating device 400B according to the third embodiment. Hereinafter, information and functions added in comparison with the maintenance knowledge updating device 400 (see FIG. 19) according to the first embodiment will be described.
 保守作業報告データベース450Bには、第1の実施形態で説明した情報に加えて、原因推定装置300Bから受け取ったイベント認識モデル360(図28記載のテーブル720参照)、イベント認識部315の出力データであるチェック結果(チェック項目の正常/異常)が記憶される。保守作業報告データベース450Bには、さらに、原因推定装置300Bから受け取った正常でも異常とも判断されたかったセンサデータ(新データ群候補データとも記す)が記憶される。 In addition to the information described in the first embodiment, the maintenance work report database 450B contains the event recognition model 360 (see table 720 shown in FIG. 28) and the output data of the event recognition unit 315 received from the cause estimation device 300B. A certain check result (normal / abnormal check item) is stored. The maintenance work report database 450B also stores sensor data (also referred to as new data group candidate data) that was received from the cause estimation device 300B and was desired to be determined to be normal or abnormal.
 更新検知部412Bは、新たなデータ群を検知して、更新指示受付部413Bへ通知する。更新指示受付部413Bは、更新指示画面640B(後記する図32)を表示して、保全員からの保守知識やイベント認識モデル360の更新指示を受け付ける。更新実行部414Bは、更新指示に従って、イベント認識モデル360の更新指示を原因推定装置300Bに送信する。 The update detection unit 412B detects a new data group and notifies the update instruction reception unit 413B. The update instruction receiving unit 413B displays the update instruction screen 640B (FIG. 32 described later), and receives maintenance knowledge from maintenance personnel and an update instruction of the event recognition model 360. The update execution unit 414B transmits the update instruction of the event recognition model 360 to the cause estimation device 300B according to the update instruction.
 図31は、第3の実施形態に係るイベント認識モデル更新処理のフローチャートである。イベント認識モデル更新処理は、所定のタイミング、例えば、定期的に実行される。
 ステップS301において更新検知部412Bは、新データ群候補データの特徴量を算出する。以下では、新データ群候補データは、グラフ710B(図29参照)に示される黒い三角形であるとして説明を続ける。
FIG. 31 is a flowchart of the event recognition model update process according to the third embodiment. The event recognition model update process is executed at a predetermined timing, for example, periodically.
In step S301, the update detection unit 412B calculates the feature amount of the new data group candidate data. In the following, the new data group candidate data will be described as a black triangle shown in Graph 710B (see FIG. 29).
 ステップS302において更新検知部412Bは、新データ群候補データに新たなデータ群が含まれるか判断する。更新検知部412Bは、新しいデータ群が含まれれば(ステップS302→YES)ステップS303に進み、含まれていなければ(ステップS302→NO)イベント認識モデル更新処理を終える。更新検知部412Bは、例えば、グラフ710Bにおいて所定の大きさの範囲(領域)内に所定数以上の新データ群候補データが含まれ、他のデータ群との距離が所定値以上であれば新しいデータ群が含まると判断する。以下では、データ群713が新しいデータ群であるとして説明を続ける。 In step S302, the update detection unit 412B determines whether the new data group candidate data includes the new data group. The update detection unit 412B proceeds to step S303 if a new data group is included (step S302 → YES), and ends the event recognition model update process if it is not included (step S302 → NO). The update detection unit 412B is new if, for example, in the graph 710B, a predetermined number or more of new data group candidate data is included in a predetermined size range (area) and the distance from other data groups is a predetermined value or more. Judge that the data group is included. In the following, the description will be continued assuming that the data group 713 is a new data group.
 ステップS303において更新検知部412Bは、関連情報として、データ群713が取得された時点における異常事象(案件情報)や当該異常事象および機種に対応する保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報、保全員が入力した(センサデータから得られない)チェック結果、計算結果テーブル、推定結果識別情報、最終確定した異常原因などを取得する。
 ステップS304において更新検知部412Bは、ステップS303で取得した関連情報から推定結果評価テーブル630(図20参照)を生成し、一致率を算出して、更新指示受付部413Bに出力する。
 ステップS305において更新指示受付部413Bは、更新指示画面640B(後記する図32)を表示して、保全員からの保守知識やイベント認識モデル360の更新指示を受け付ける。
In step S303, the update detection unit 412B, as related information, includes an abnormal event (case information) at the time when the data group 713 is acquired, a maintenance knowledge network corresponding to the abnormal event and the model, and probability information related to the maintenance knowledge network. Acquires network identification information, check results input by maintenance personnel (not obtained from sensor data), calculation result table, estimation result identification information, final confirmed cause of abnormality, and so on.
In step S304, the update detection unit 412B generates an estimation result evaluation table 630 (see FIG. 20) from the related information acquired in step S303, calculates a match rate, and outputs it to the update instruction reception unit 413B.
In step S305, the update instruction receiving unit 413B displays the update instruction screen 640B (FIG. 32 described later) and receives maintenance knowledge from the maintenance staff and the update instruction of the event recognition model 360.
 図32は、第3の実施形態に係る更新指示画面640Bの画面構成図である。第1の実施形態に係る更新指示画面640(図21参照)と比較して、「イベント認識モデル表示」ボタンおよび「イベント認識モデル更新」ボタンが追加される。
 「イベント認識モデル表示」ボダンが押下されると、新しいデータ群713を含むグラフ710B(図29参照)やテーブル720(図28参照)が表示される。なお、新しいデータ群713に対応するテーブル720のレコードのチェック項目722および状態723は空欄である。グループ識別情報721には新しいグループ識別情報が含まれ、特徴データ724にはデータ群713に対応する特徴データが含まれている。
FIG. 32 is a screen configuration diagram of the update instruction screen 640B according to the third embodiment. An "event recognition model display" button and an "event recognition model update" button are added as compared with the update instruction screen 640 (see FIG. 21) according to the first embodiment.
When the "Event recognition model display" button is pressed, the graph 710B (see FIG. 29) and the table 720 (see FIG. 28) including the new data group 713 are displayed. The check items 722 and the state 723 of the records in the table 720 corresponding to the new data group 713 are blank. The group identification information 721 includes new group identification information, and the feature data 724 contains feature data corresponding to the data group 713.
 保全員は、保守知識、機種別の仕様情報、確率情報、イベント認識モデルを見ながら、更新内容を検討する。保全員は、イベント認識モデルを更新する場合には、「イベント認識モデル更新」ボタンを押下し、表示されるテーブル720のチェック項目722および状態723に入力する。 The maintenance staff will consider the updated contents while looking at the maintenance knowledge, specification information for each model, probability information, and event recognition model. When updating the event recognition model, the maintenance worker presses the "event recognition model update" button and inputs the check items 722 and the state 723 of the displayed table 720.
 図31に戻って、ステップS306において更新実行部414Bは、第1の実施形態の更新実行部414と同様に更新指示に従って保守知識、機種仕様、確率情報を更新する。イベント認識モデルについては、ステップS305で更新されたテーブル720を原因推定装置300Bに送信し、原因推定装置300Bは、自身が記憶するテーブル720を更新する。 Returning to FIG. 31, in step S306, the update execution unit 414B updates the maintenance knowledge, the model specification, and the probability information according to the update instruction in the same manner as the update execution unit 414 of the first embodiment. For the event recognition model, the table 720 updated in step S305 is transmitted to the cause estimation device 300B, and the cause estimation device 300B updates the table 720 stored by itself.
≪第3の実施形態:保守知識更新装置の特徴≫
 設備の運用にともない、新しいデータ群が現れた場合に、保守知識更新装置400Bは、このデータ群を検知して、関連する異常事象の原因推定に係る推定結果評価テーブルを含む更新指示画面640B(図32参照)を表示する。保全員は、新しいデータ群をチェック項目の状態に加えるか否か、また、保守知識や確率情報を更新するか否かを検討して、指示を入力する。このようにして、新しいデータ群が現れても異常事象の原因推定の精度を維持、向上することができる。
<< Third Embodiment: Features of the maintenance knowledge updating device >>
When a new data group appears due to the operation of the equipment, the maintenance knowledge update device 400B detects this data group and updates the update instruction screen 640B including an estimation result evaluation table related to the cause estimation of the related abnormal event ( (See FIG. 32) is displayed. The maintenance staff considers whether to add the new data group to the state of the check item and whether to update the maintenance knowledge and the probability information, and inputs the instruction. In this way, even if a new data group appears, the accuracy of estimating the cause of the abnormal event can be maintained and improved.
≪第4の実施形態≫
 第1の実施形態では、保全員が保守知識や機種仕様、確率情報の更新内容を検討して、指示を入力している。人による指示なので、更新/変更の漏れや矛盾が生じることが考えられる。第4の実施形態では、アセット知識を利用することで、このような漏れや矛盾を削減する。
<< Fourth Embodiment >>
In the first embodiment, the maintenance staff examines the maintenance knowledge, the model specifications, and the updated contents of the probability information, and inputs the instruction. Since it is a human instruction, it is possible that updates / changes may be omitted or inconsistencies may occur. In the fourth embodiment, such omissions and contradictions are reduced by utilizing the asset knowledge.
 図33は、第4の実施形態に係る保守知識更新装置400Cの機能ブロック図である。第1の実施形態の保守知識更新装置400(図19参照)と比較して、記憶部420にアセット知識データベース460が追加される。
 図34は、第4の実施形態に係るアセット知識データベース460のデータ構成図である。アセット知識データベース460は、保守知識分析結果などのデータを格納している。アセット知識データベース460は、例えば、FMEA(Failure Mode and Effects Analysis)シートであって、故障モード、機能故障、影響などの情報を含み、情報の因果関係が明確である。
FIG. 33 is a functional block diagram of the maintenance knowledge updating device 400C according to the fourth embodiment. The asset knowledge database 460 is added to the storage unit 420 as compared with the maintenance knowledge update device 400 (see FIG. 19) of the first embodiment.
FIG. 34 is a data structure diagram of the asset knowledge database 460 according to the fourth embodiment. The asset knowledge database 460 stores data such as maintenance knowledge analysis results. The asset knowledge database 460 is, for example, a FMEA (Failure Mode and Effects Analysis) sheet, which includes information such as failure mode, functional failure, and influence, and the causal relationship of the information is clear.
 アセット知識データベース460は、表形式のデータであって、1つの行(レコード)は、因果関係のあるコンポーネント461、機能故障462、故障モード463、故障影響464、原因465、および検査項目466の列(属性)を含む。コンポーネント461、機能故障462、故障モード463、故障影響464、および検査項目466は、それぞれ保守知識テーブル210(図3参照)のコンポーネント213、機能故障212、故障モード215、異常事象211、チェック項目216に対応している。1つのレコードは、異常事象、機能故障、故障モード、およびチェック項目の因果関係と見なすことも可能である。 The asset knowledge database 460 is tabular data, and one row (record) is a column of causally related components 461, functional failure 462, failure mode 463, failure effect 464, cause 465, and inspection item 466. Includes (attribute). The component 461, the functional failure 462, the failure mode 463, the failure effect 464, and the inspection item 466 are the component 213, the functional failure 212, the failure mode 215, the abnormal event 211, and the check item 216 of the maintenance knowledge table 210 (see FIG. 3), respectively. It corresponds to. One record can also be regarded as a causal relationship between anomalous events, malfunctions, failure modes, and check items.
 図33に戻って、更新指示受付部413Cは、保全員が、保守知識ネットワークにノードやリンクを追加するときに、アセット知識データベース460を参照して漏れや矛盾がないか検査する。
 例えば、コンポーネントに故障モードを追加する指示を受け付けると、更新指示受付部413Cは、同種類の他のコンポーネントにも故障モードを追加されているかを検査する。検査した結果、追加されていないコンポーネントがある場合には、更新指示受付部413Cは、警告を表示する。または、更新指示受付部413Cは、追加を提示するメッセージを表示してもよい。
Returning to FIG. 33, the update instruction receiving unit 413C inspects the asset knowledge database 460 for omissions or inconsistencies when the maintenance personnel add a node or a link to the maintenance knowledge network.
For example, when an instruction to add a failure mode to a component is received, the update instruction receiving unit 413C inspects whether the failure mode has been added to another component of the same type. As a result of the inspection, if there is a component that has not been added, the update instruction receiving unit 413C displays a warning. Alternatively, the update instruction receiving unit 413C may display a message suggesting addition.
 また、例えば、機能故障や故障モード、当該2つの因果関係を更新する指示を受け付けると、更新指示受付部413Cは、アセット知識データベース460に含まれる機能故障462および故障モード463の関係と矛盾しないか検査する。検査した結果、矛盾を発見すると、更新指示受付部413Cは、矛盾の内容を含む警告を表示する。
 また、更新指示受付部413Cは、アセット知識データベース460に含まれていない異常事象と機能故障との因果関係、機能故障と故障モードとの因果関係、異常事象と故障モードとの因果関係、故障モードとチェック項目との因果関係、コンポーネントの種別(型番)と当該コンポーネントの種別で発生する故障との関係を追加する指示を受けると、警告するようにしてもよい。
 なお、更新指示受付部413Cが表示する更新指示画面には、アセット知識データベース460の内容を表示する「アセット知識表示」ボタンが含まれる。
Further, for example, when an instruction to update a functional failure, a failure mode, and the two causal relationships is received, does the update instruction receiving unit 413C contradict the relationship between the functional failure 462 and the failure mode 463 included in the asset knowledge database 460? inspect. If a contradiction is found as a result of the inspection, the update instruction receiving unit 413C displays a warning including the content of the contradiction.
In addition, the update instruction receiving unit 413C has a causal relationship between an abnormal event and a functional failure that is not included in the asset knowledge database 460, a causal relationship between a functional failure and a failure mode, a causal relationship between an abnormal event and a failure mode, and a failure mode. You may be warned when you receive an instruction to add a causal relationship between the item and the check item, and a relationship between the component type (model number) and the failure that occurs in the component type.
The update instruction screen displayed by the update instruction receiving unit 413C includes an "asset knowledge display" button for displaying the contents of the asset knowledge database 460.
≪保守知識更新装置の特徴≫
 保全員が入力した保守知識や機種仕様の更新内容について、アセット知識データベース460(図34参照)と照合することで、保守知識更新装置400Cは、更新内容の漏れや矛盾を検知できる。延いては、保全員は、更新作業の判断をしやすくなり、矛盾や漏れを含んだ更新を減少させることができる。また、コンポーネントの故障モード追加の提示メッセージを表示できるため、更新の必要性がある可能性を持つ内容を提示できるため、更新指示を効率的にサポートする。
≪Characteristics of maintenance knowledge updater≫
By collating the maintenance knowledge and the updated contents of the model specifications input by the maintenance personnel with the asset knowledge database 460 (see FIG. 34), the maintenance knowledge updating device 400C can detect omissions and inconsistencies in the updated contents. As a result, maintenance personnel can easily determine the renewal work and reduce renewals including inconsistencies and omissions. In addition, since the message for adding the failure mode of the component can be displayed, the content that may need to be updated can be presented, so that the update instruction is efficiently supported.
≪変形例:更新検知部≫
 更新検知部は、一致率(図20の結果635参照)が所定値より低いことや新しいデータ群(図29のデータ群713参照)を検知した場合には、これを保全員に報知するようにしてもよい。
<< Modification example: Update detection unit >>
When the update detection unit detects that the match rate (see the result 635 in FIG. 20) is lower than the predetermined value or a new data group (see the data group 713 in FIG. 29), the update detection unit notifies the maintenance personnel of this. You may.
≪変形例:チェック項目≫
 上記した実施形態では、チェック項目は正常/異常の2値であったが、これに限るものではない。例えば、コンポーネントの破損状況のチェック項目について、「なし」、「5mm以内」、「10mm以内」、「10mm超」などの3段階以上であってもよいし、数値であってもよい。
≪Transformation example: Check items≫
In the above-described embodiment, the check items are normal / abnormal binary values, but the check items are not limited to this. For example, the check items for the damage status of the component may be three or more stages such as "none", "within 5 mm", "within 10 mm", and "more than 10 mm", or may be numerical values.
≪変形例:機種に対応した保守知識ネットワークの生成≫
 上記した実施形態では、保守知識ネットワーク生成装置100は、異常事象に対応した保守知識ネットワークを生成(図10参照)した後に、異常事象および機種に対応した保守知識ネットワークを生成(図14参照)している。保守知識ネットワーク生成装置100は、異常事象に対応した保守知識ネットワークを生成することなしに、異常事象および機種に対応した保守知識ネットワークを生成するようにしてもよい。例えば、保守知識ネットワーク生成装置100は、機種に備えられていないコンポーネントのレコードや、機種に備わるコンポーネントでは発生しない故障モードを含んだレコードを除いた保守知識テーブル210(図3参照)を参照しながら機種に対応した保守知識ネットワークを生成して、異常事象および機種に対応した保守知識ネットワークを生成するようにしてもよい。
<< Modification example: Generation of maintenance knowledge network corresponding to the model >>
In the above-described embodiment, the maintenance knowledge network generator 100 generates a maintenance knowledge network corresponding to an abnormal event (see FIG. 10) and then generates a maintenance knowledge network corresponding to the abnormal event and the model (see FIG. 14). ing. The maintenance knowledge network generation device 100 may generate the maintenance knowledge network corresponding to the abnormal event and the model without generating the maintenance knowledge network corresponding to the abnormal event. For example, the maintenance knowledge network generator 100 refers to the maintenance knowledge table 210 (see FIG. 3) excluding the records of the components not provided in the model and the records including the failure mode that does not occur in the components provided in the model. A maintenance knowledge network corresponding to a model may be generated to generate a maintenance knowledge network corresponding to an abnormal event and a model.
≪変形例:保守知識ネットワーク≫
 上記した保守知識ネットワークは、コンポーネントの故障モードの状態を確認するためのチェック項目を含む。原因推定システムは、チェック項目、およびチェック項目とコンポーネントとの関係(リンク)を含まない保守知識ネットワークを用いるようにしてもよい。換言すれば、機種に応じて異常事象の原因となるコンポーネントを故障の可能性の大小とあわせて提示するようにしてもよい。設備の構成が単純であり、コンポーネントの故障の有無が簡単に判明する場合には、チェック項目がなくても、故障の可能性の高いコンポーネントを提示すること、保全員の対応作業を効率化できる。
 また、上記した保守知識ネットワークは、異常事象の原因は機能故障であり、機能故障の原因は故障モードであるという因果関係を示す。機能故障がなく、異常事象の原因は故障モードであるという保守知識ネットワークであってもよい。
≪Variation example: Maintenance knowledge network≫
The maintenance knowledge network described above includes check items for checking the state of the failure mode of the component. The cause estimation system may use a maintenance knowledge network that does not include check items and relationships (links) between check items and components. In other words, depending on the model, the component that causes the abnormal event may be presented together with the magnitude of the possibility of failure. If the equipment configuration is simple and it is easy to determine whether or not a component has failed, it is possible to present components with a high possibility of failure and streamline maintenance personnel's response work even if there are no check items. ..
Further, the above-mentioned maintenance knowledge network shows a causal relationship that the cause of the abnormal event is a functional failure and the cause of the functional failure is a failure mode. It may be a maintenance knowledge network in which there is no functional failure and the cause of the abnormal event is the failure mode.
≪変形例:更新指示画面≫
 更新指示画面640Bは、推定結果評価テーブル630(図20参照)を含んでいるが、含まなくてもよい。推定結果評価テーブル630を参照するまでもなく、イベント認識モデル360(図26参照)を示すテーブル720(図28参照)の更新や保守知識テーブル210などの更新が明らかな場合も想定される。推定結果評価テーブル630を含まない更新指示画面640Bであってもよい。
≪Transformation example: Update instruction screen≫
The update instruction screen 640B includes the estimation result evaluation table 630 (see FIG. 20), but may not be included. It is assumed that the update of the table 720 (see FIG. 28) showing the event recognition model 360 (see FIG. 26) and the update of the maintenance knowledge table 210 and the like are obvious without referring to the estimation result evaluation table 630. The update instruction screen 640B that does not include the estimation result evaluation table 630 may be used.
≪その他変形例≫
 以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。例えば、原因推定システム10は、保守知識ネットワーク生成装置100、原因推定装置300、および保守知識更新装置400から構成されているが、1つの装置であってもよい。原因推定システム10は、プラントや施設に置かれる設備や機器、機械の他に、事務機器や家電などにおける故障の原因推定に用いられてもよい。
≪Other variants≫
Although some embodiments of the present invention have been described above, these embodiments are merely examples and do not limit the technical scope of the present invention. For example, the cause estimation system 10 is composed of a maintenance knowledge network generation device 100, a cause estimation device 300, and a maintenance knowledge update device 400, but may be one device. The cause estimation system 10 may be used for estimating the cause of a failure in office equipment, home appliances, etc., in addition to equipment, equipment, and machines installed in plants and facilities.
 上記した実施形態では、故障モードと異常事象とは、間に機能故障を挟んだ因果関係である。機能故障がなく、故障モードと異常事象とが直接に結び付く因果関係であってもよい。
 保守知識ネットワークは確率情報が付与されたベイジアンネットワークであるが、確率情報がなくてもよい。この場合、原因推定システムは、異常事象に対して、原因の可能性のある全てのコンポーネントの故障モードを、可能性の大小を問わずに推定することになる。
In the above-described embodiment, the failure mode and the abnormal event have a causal relationship with a functional failure sandwiched between them. There may be a causal relationship in which there is no functional failure and the failure mode and the abnormal event are directly linked.
The maintenance knowledge network is a Bayesian network to which probability information is given, but it is not necessary to have probability information. In this case, the cause estimation system estimates the failure mode of all the components that may be the cause for the abnormal event regardless of the possibility.
 本発明はその他の様々な実施形態を取ることが可能であり、さらに、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができる。これら実施形態やその変形は、本明細書等に記載された発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The present invention can take various other embodiments, and further, various changes such as omission and replacement can be made without departing from the gist of the present invention. These embodiments and variations thereof are included in the scope and gist of the invention described in the present specification and the like, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
10  原因推定システム
100 保守知識ネットワーク生成装置
111 ネットワーク生成部
121 保守知識データベース
122 機種仕様データベース
123 確率情報データベース
210 保守知識テーブル(共通保守知識ネットワーク)
211 異常事象
215 故障モード(コンポーネントの故障)
216 チェック項目
220 機種テーブル
222 コンポーネント
223,224,225 機種(機種に設備に備わるコンポーネント222の型番(種別))
230 故障モードテーブル(故障テーブル)
233 型番(種別)
234,235,236 故障モード(発生する故障)
240 故障モード発生確率テーブル
250 故障検知確率テーブル
260 子ノード異常発生確率テーブル
300,300A 原因推定装置
311 確率計算部
312 原因推定部
313 推定結果表示部
314 チェック結果取得部
315 イベント認識部
350 保守知識ネットワークデータベース
360 イベント認識モデル
400,400B,400C 保守知識更新装置
411 異常原因取得部
412 更新検知部
413 更新指示受付部
414 更新実行部
450 保守作業報告データベース
460 アセット知識データベース
500 案件情報
510 保守知識ネットワーク(異常事象に対応した保守知識ネットワーク)
520 ノード情報テーブル(リンク情報テーブル530と合わせて異常事象に対応した保守知識ネットワーク、図14記載の機種に対応した保守知識ネットワーク生成処理後は異常事象および機種に対応した保守知識ネットワーク)
530 リンク情報テーブル(ノード情報テーブル520と合わせて異常事象に対応した保守知識ネットワーク、図14記載の機種に対応した保守知識ネットワーク生成処理後は異常事象および機種に対応した保守知識ネットワーク)
640,640B 更新指示画面
10 Cause estimation system 100 Maintenance knowledge network generator 111 Network generator 121 Maintenance knowledge database 122 Model specification database 123 Probability information database 210 Maintenance knowledge table (common maintenance knowledge network)
211 Abnormal event 215 Failure mode (component failure)
216 Check item 220 Model table 222 Component 223, 224, 225 Model (Model number (type) of component 222 provided in the equipment of the model)
230 Failure mode table (failure table)
233 Model number (type)
234,235,236 Failure mode (failure that occurs)
240 Failure mode occurrence probability table 250 Failure detection probability table 260 Child node error occurrence probability table 300, 300A Cause estimation device 311 Probability calculation unit 312 Cause estimation unit 313 Estimation result display unit 314 Check result acquisition unit 315 Event recognition unit 350 Maintenance knowledge network Database 360 Event recognition model 400, 400B, 400C Maintenance knowledge update device 411 Abnormality cause acquisition unit 412 Update detection unit 413 Update instruction reception unit 414 Update execution unit 450 Maintenance work report database 460 Asset knowledge database 500 Matter information 510 Maintenance knowledge network (abnormality) Maintenance knowledge network corresponding to the event)
520 node information table (maintenance knowledge network corresponding to abnormal events together with link information table 530, maintenance knowledge network corresponding to the model shown in FIG. 14 Maintenance knowledge network corresponding to abnormal events and models after generation processing)
530 link information table (maintenance knowledge network corresponding to abnormal events together with node information table 520, maintenance knowledge network corresponding to the model shown in FIG. 14 Maintenance knowledge network corresponding to abnormal events and models after generation processing)
640,640B update instruction screen

Claims (11)

  1.  設備の異常事象と当該設備に備わるコンポーネントの故障との関係、および、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワークと、
     前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、
     前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルと
     を用いて情報処理を行うネットワーク生成部を備え、
     前記ネットワーク生成部は、
     前記異常事象と、当該異常事象が発生した設備の機種とを受け取り、
     前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障と、当該故障の発生の当否を確認するためのチェック項目とを特定して、当該異常事象に対応した保守知識ネットワークを生成し、
     前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し、
     前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去し、
     除去されずに残った故障の発生の当否を確認するためのチェック項目とは異なるチェック項目を、さらに除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成する
     ことを特徴とする原因推定システム。
    A common maintenance knowledge network that shows the relationship between an abnormal event of equipment and a failure of a component provided in the equipment, and the relationship between the failure and a check item for confirming whether or not the failure has occurred.
    A model table that associates the model of the equipment with the type of the component provided in the equipment of the model,
    It is provided with a network generator that performs information processing using a failure table that associates the type of the component with the failure that occurs in the type of the component.
    The network generator
    Receive the abnormal event and the model of the equipment in which the abnormal event occurred.
    With reference to the common maintenance knowledge network, the failure of the component related to the abnormality event and the check item for confirming the occurrence of the failure are specified from the received abnormality event, and the abnormality event is specified. Generate a maintenance knowledge network corresponding to
    With reference to the model table, specify the type of component provided in the model of the equipment from the model of the received equipment.
    With reference to the failure table, failures that are not associated with the identified component type are removed from the maintenance knowledge network corresponding to the abnormal event.
    It is characterized by further removing check items that are different from the check items for confirming the occurrence of failures that remain unremoved, and creating a maintenance knowledge network corresponding to the abnormal event and the model of the equipment. Cause estimation system.
  2.  原因推定部を、さらに備え、
     前記ネットワーク生成部は、
     前記故障が発生する確率と、当該故障が発生したときに当該故障の発生の当否を確認するためのチェック項目が異常となる確率とを含む確率情報を参照して、
     前記異常事象および前記設備の機種に対応した保守知識ネットワークに、前記故障が発生する確率と、前記故障が発生したときに当該故障の発生の当否を確認するためのチェック項目が異常となる確率とを付与し、
     前記原因推定部は、前記チェック項目の異常の当否を受け取り、前記故障が発生した確率を算出する
     ことを特徴とする請求項1に記載の原因推定システム。
    Further equipped with a cause estimation unit,
    The network generator
    With reference to the probability information including the probability that the failure will occur and the probability that the check item for confirming the occurrence of the failure will be abnormal when the failure occurs, refer to the probability information.
    The probability that the failure will occur in the maintenance knowledge network corresponding to the abnormal event and the model of the equipment, and the probability that the check items for confirming the occurrence of the failure will be abnormal when the failure occurs. And
    The cause estimation system according to claim 1, wherein the cause estimation unit receives whether or not the check item is abnormal and calculates the probability that the failure has occurred.
  3.  前記異常事象の原因となった前記故障を受け取り、当該故障と前記原因推定部が算出した確率が最大である故障との一致率を算出し、当該一致率が所定値より低い場合に報知する更新検知部を、さらに備える
     ことを特徴とする請求項2に記載の原因推定システム。
    An update that receives the failure that caused the abnormal event, calculates the matching rate between the failure and the failure with the maximum probability calculated by the cause estimation unit, and notifies when the matching rate is lower than a predetermined value. The cause estimation system according to claim 2, further comprising a detection unit.
  4.  更新指示受付部と更新実行部とを、さらに備え、
     前記更新指示受付部は、
     前記異常事象の原因となった前記故障と、前記原因推定部が算出した確率が最大である故障との比較表を含む更新指示画面を表示し、
     前記共通保守知識ネットワーク、前記機種テーブル、前記故障テーブル、および、前記確率情報のなかの何れか少なくとも1つの変更の指示を受け付け、
     前記更新実行部は、
     前記更新指示受付部が受け付けた変更を行う
     ことを特徴とする請求項3に記載の原因推定システム。
    Further equipped with an update instruction reception unit and an update execution unit,
    The update instruction reception unit
    Display an update instruction screen including a comparison table between the failure that caused the abnormal event and the failure that has the maximum probability calculated by the cause estimation unit.
    Accepting at least one change instruction from the common maintenance knowledge network, the model table, the failure table, and the probability information,
    The update execution unit is
    The cause estimation system according to claim 3, wherein the update instruction receiving unit makes a change received.
  5.  イベント認識部を、さらに備え、
     前記チェック項目は、前記設備に備わるセンサから取得されたセンサ値に基づいて前記チェック項目の異常の当否が確認されるチェック項目であり、
     前記イベント認識部は、前記センサ値に基づいて前記チェック項目の異常の当否を判断して、前記原因推定部に出力する
     ことを特徴とする請求項2に記載の原因推定システム。
    Further equipped with an event recognition unit,
    The check item is a check item for confirming whether or not the check item is abnormal based on the sensor value acquired from the sensor provided in the equipment.
    The cause estimation system according to claim 2, wherein the event recognition unit determines whether or not the check item is abnormal based on the sensor value and outputs the error to the cause estimation unit.
  6.  前記イベント認識部は、前記センサ値の特徴量を用いて前記センサ値をデータ群に分類して前記チェック項目の異常の当否を判断する
     ことを特徴とする請求項5に記載の原因推定システム。
    The cause estimation system according to claim 5, wherein the event recognition unit classifies the sensor values into a data group using the feature amount of the sensor values and determines whether or not the check items are abnormal.
  7.  更新検知部を、さらに備え、
     前記更新検知部は、何れの前記データ群にも分類されないセンサ値が取得された場合に報知する
     ことを特徴とする請求項6に記載の原因推定システム。
    Equipped with an update detector
    The cause estimation system according to claim 6, wherein the update detection unit notifies when a sensor value that is not classified into any of the data groups is acquired.
  8.  更新指示受付部と更新実行部とを、さらに備え、
     前記更新指示受付部は、
     何れの前記データ群にも分類されないセンサ値が取得された場合に、
     新しいデータ群を追加する指示、前記共通保守知識ネットワークを変更する指示、前記機種テーブルを変更する指示、前記故障テーブルを変更する指示、および、前記確率情報を変更する指示のなかの何れか少なくとも1つの指示を受け付け、
     前記更新実行部は、
     前記更新指示受付部が受け付けた指示を実行する
     ことを特徴とする請求項7に記載の原因推定システム。
    Further equipped with an update instruction reception unit and an update execution unit,
    The update instruction reception unit
    When a sensor value that is not classified in any of the above data groups is acquired,
    At least one of an instruction to add a new data group, an instruction to change the common maintenance knowledge network, an instruction to change the model table, an instruction to change the failure table, and an instruction to change the probability information. Accepting one instruction,
    The update execution unit is
    The cause estimation system according to claim 7, wherein the update instruction receiving unit executes the received instruction.
  9.  前記更新指示受付部は、
     前記コンポーネントと前記故障と前記異常事象と前記チェック項目とが関連付けられて記憶されるアセット知識データベースを参照して、
     前記共通保守知識ネットワークを変更する指示が、前記アセット知識データベースに含まれていない、前記異常事象と当該異常事象の原因である前記設備のコンポーネントの故障との関係の追加を含む場合、
     前記共通保守知識ネットワークを変更する指示が、前記アセット知識データベースに含まれていない、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係の追加を含む場合、
     前記故障テーブルを変更する指示が、前記アセット知識データベースに含まれていない、前記コンポーネントの種別と当該コンポーネントの種別で発生する故障との追加を含む場合、および、
     前記故障テーブルを変更する指示が、前記アセット知識データベースに含まれる前記コンポーネントの種別と当該コンポーネントの種別で発生する故障との追加を含み、当該指示が当該コンポーネントの種別とは異なる種別のコンポーネントで発生する当該故障の追加を含まず、前記アセット知識データベースが前記異なる種別のコンポーネントで発生する当該故障を含む場合、のなかの何れか少なくとも1つの場合に、警告を報知する
     ことを特徴とする請求項4または8に記載の原因推定システム。
    The update instruction reception unit
    Refer to the asset knowledge database in which the component, the failure, the abnormal event, and the check item are associated and stored.
    When the instruction to change the common maintenance knowledge network includes the addition of a relationship between the anomalous event and the failure of a component of the equipment that is the cause of the anomalous event, which is not included in the asset knowledge database.
    When the instruction to change the common maintenance knowledge network includes the addition of a relationship between the failure and a check item for confirming whether or not the failure has occurred, which is not included in the asset knowledge database.
    When the instruction to change the failure table includes the addition of the component type and the failure that occurs in the component type, which is not included in the asset knowledge database, and
    The instruction to change the failure table includes the addition of the component type included in the asset knowledge database and the failure that occurs in the component type, and the instruction occurs in a component of a type different from the component type. The claim is characterized in that it does not include the addition of the failure, and if the asset knowledge database contains the failure that occurs in the different type of component, the warning is notified in at least one of the cases. The cause estimation system according to 4 or 8.
  10.  設備の異常事象と当該設備に備わるコンポーネントの故障との関係を示す共通保守知識ネットワークと、
     前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、
     前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルと
     を用いて情報処理を行うネットワーク生成部を備え、
     前記ネットワーク生成部は、
     前記異常事象と、当該異常事象が発生した設備の機種とを受け取り、
     前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障を特定して、当該異常事象に対応した保守知識ネットワークを生成し、
     前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し、
     前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成する
     ことを特徴とする原因推定システム。
    A common maintenance knowledge network that shows the relationship between abnormal events in equipment and failures of components in the equipment.
    A model table that associates the model of the equipment with the type of the component provided in the equipment of the model,
    It is provided with a network generator that performs information processing using a failure table that associates the type of the component with the failure that occurs in the type of the component.
    The network generator
    Receive the abnormal event and the model of the equipment in which the abnormal event occurred.
    With reference to the common maintenance knowledge network, the failure of the component related to the abnormal event is identified from the received abnormal event, and the maintenance knowledge network corresponding to the abnormal event is generated.
    With reference to the model table, specify the type of component provided in the model of the equipment from the model of the received equipment.
    With reference to the failure table, failures that are not associated with the specified component type are removed from the maintenance knowledge network corresponding to the abnormal event, and the maintenance knowledge network corresponding to the abnormal event and the model of the equipment is removed. A cause estimation system characterized by producing.
  11.  原因推定システムの原因推定方法であって、
     前記原因推定システムの記憶部には、
     設備の異常事象と当該設備に備わるコンポーネントの故障との関係、および、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワークと、
     前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、
     前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルとが記憶され、
     前記異常事象と、当該異常事象が発生した設備の機種とを受け取るステップと
     前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障と、当該故障の発生の当否を確認するためのチェック項目とを特定して、当該異常事象に対応した保守知識ネットワークを生成するステップと
     前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定するステップと
     前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去するステップと
     除去されずに残った故障の発生の当否を確認するためのチェック項目とは異なるチェック項目を、さらに除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成するステップとを実行する
     ことを特徴とする原因推定方法。
    It is a cause estimation method of the cause estimation system.
    In the storage unit of the cause estimation system,
    A common maintenance knowledge network that shows the relationship between an abnormal event of equipment and a failure of a component provided in the equipment, and the relationship between the failure and a check item for confirming whether or not the failure has occurred.
    A model table that associates the model of the equipment with the type of the component provided in the equipment of the model,
    The failure table that associates the type of the component with the failure that occurs in the type of the component is stored.
    With reference to the step of receiving the abnormal event and the model of the equipment in which the abnormal event occurred and the common maintenance knowledge network, the failure of the component related to the abnormal event from the received abnormal event and the failure of the failure Specify the check items for confirming the correctness of the occurrence, refer to the step to generate the maintenance knowledge network corresponding to the abnormal event and the model table, and change the model of the received equipment to the model of the equipment. Steps to identify the type of component to be provided and the step to remove failures that are not related to the specified component type from the maintenance knowledge network corresponding to the abnormal event by referring to the failure table, and remain unremoved. It is characterized by further removing the check items that are different from the check items for confirming the correctness of the occurrence of the failure, and executing the step of generating the maintenance knowledge network corresponding to the abnormal event and the model of the equipment. Cause estimation method.
PCT/JP2021/039278 2020-12-17 2021-10-25 Cause inference system and cause inference method WO2022130789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-209719 2020-12-17
JP2020209719A JP2022096546A (en) 2020-12-17 2020-12-17 Cause estimation system and cause estimation method

Publications (1)

Publication Number Publication Date
WO2022130789A1 true WO2022130789A1 (en) 2022-06-23

Family

ID=82059748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039278 WO2022130789A1 (en) 2020-12-17 2021-10-25 Cause inference system and cause inference method

Country Status (2)

Country Link
JP (1) JP2022096546A (en)
WO (1) WO2022130789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117593705A (en) * 2023-11-29 2024-02-23 南京顺恒环保科技发展有限公司 Intelligent operation and maintenance management system and method for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075923A (en) * 1998-09-03 2000-03-14 Yamatake Corp Abnormality diagnostic device
JP2009020787A (en) * 2007-07-13 2009-01-29 Tosoh Corp Plant safety management system
JP2010122847A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Method and system for diagnosing abnormality of apparatus
JP2019204302A (en) * 2018-05-24 2019-11-28 株式会社日立製作所 Maintenance work supporting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075923A (en) * 1998-09-03 2000-03-14 Yamatake Corp Abnormality diagnostic device
JP2009020787A (en) * 2007-07-13 2009-01-29 Tosoh Corp Plant safety management system
JP2010122847A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Method and system for diagnosing abnormality of apparatus
JP2019204302A (en) * 2018-05-24 2019-11-28 株式会社日立製作所 Maintenance work supporting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117593705A (en) * 2023-11-29 2024-02-23 南京顺恒环保科技发展有限公司 Intelligent operation and maintenance management system and method for vehicle

Also Published As

Publication number Publication date
JP2022096546A (en) 2022-06-29

Similar Documents

Publication Publication Date Title
JP5129725B2 (en) Device abnormality diagnosis method and system
JP2017076385A (en) Distributed industrial performance monitoring and analytics platform
US20050043922A1 (en) Analysing events
JP2017076387A (en) Source-independent queries in distributed type industrial system
JP2017076386A (en) Distributed type industrial performance monitoring and analysis
JP2017079057A (en) Distributed industrial performance monitoring and analytics
EP3125172B1 (en) Data supply chain components configuration reliability analysis
US10996160B2 (en) Mitigating asset damage via asset data analysis and processing
JP5200970B2 (en) Quality control system, quality control device and quality control program
CN113597634A (en) Process mapping and monitoring using artificial intelligence
CN110968061B (en) Equipment fault early warning method and device, storage medium and computer equipment
US20180253664A1 (en) Decision aid system and method for the maintenance of a machine with learning of a decision model supervised by expert opinion
US20170024400A1 (en) Method for automatic processing of a number of protocol files of an automation system
WO2022130789A1 (en) Cause inference system and cause inference method
CN110337640B (en) Methods, systems, and media for problem alert aggregation and identification of suboptimal behavior
CN112182233A (en) Knowledge base for storing equipment fault records and method and system for assisting in locating equipment fault by using knowledge base
JP2014063337A (en) Anomaly detection system and recording medium
US11415958B2 (en) Data extracting apparatus, data extracting method, and recording medium
JP2022034392A (en) Fault diagnosis device, fault diagnosis method, and learning completed model
EP3540542B1 (en) Method and apparatus for providing an instantiated industrial semantic model for an industrial infrastructure
JP2011192201A (en) Remote maintenance system and remote maintenance method
JP5034447B2 (en) Data transmission system
JP4691285B2 (en) Product usage environment information collection and analysis equipment
JP2005071200A (en) Manufacturing information management program
JP2017204107A (en) Data analytic method, and system and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906153

Country of ref document: EP

Kind code of ref document: A1