WO2022130597A1 - 推定装置、推定方法、推定プログラム、生成装置、及び、推定システム - Google Patents
推定装置、推定方法、推定プログラム、生成装置、及び、推定システム Download PDFInfo
- Publication number
- WO2022130597A1 WO2022130597A1 PCT/JP2020/047317 JP2020047317W WO2022130597A1 WO 2022130597 A1 WO2022130597 A1 WO 2022130597A1 JP 2020047317 W JP2020047317 W JP 2020047317W WO 2022130597 A1 WO2022130597 A1 WO 2022130597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- probability
- estimation
- learning
- group
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000004364 calculation method Methods 0.000 claims abstract description 31
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 31
- 201000010099 disease Diseases 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 22
- 208000035473 Communicable disease Diseases 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 11
- 208000015181 infectious disease Diseases 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 6
- 108010048233 Procalcitonin Proteins 0.000 claims description 5
- 230000006399 behavior Effects 0.000 claims description 5
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 claims description 5
- 238000009534 blood test Methods 0.000 claims description 4
- 238000002591 computed tomography Methods 0.000 claims description 4
- 238000011976 chest X-ray Methods 0.000 claims description 3
- 230000036760 body temperature Effects 0.000 description 18
- 238000004891 communication Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 210000004698 lymphocyte Anatomy 0.000 description 10
- 210000000440 neutrophil Anatomy 0.000 description 10
- 238000012549 training Methods 0.000 description 7
- 206010037660 Pyrexia Diseases 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 208000025721 COVID-19 Diseases 0.000 description 4
- 208000036142 Viral infection Diseases 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 230000009385 viral infection Effects 0.000 description 4
- 102100032752 C-reactive protein Human genes 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 206010011224 Cough Diseases 0.000 description 2
- 208000000059 Dyspnea Diseases 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 2
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 2
- 206010068319 Oropharyngeal pain Diseases 0.000 description 2
- 201000007100 Pharyngitis Diseases 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 208000025371 Taste disease Diseases 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 206010025482 malaise Diseases 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 235000019669 taste disorders Nutrition 0.000 description 2
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 208000001528 Coronaviridae Infections Diseases 0.000 description 1
- 208000019202 Orthocoronavirinae infectious disease Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Definitions
- the present invention relates to an estimation device, an estimation method, an estimation program, a generation device, and an estimation system.
- an estimation device that estimates whether or not a predetermined event occurs in a target based on a plurality of information representing a plurality of different properties of the target.
- the estimation device described in Patent Document 1 has been learned with a plurality of information representing each of a plurality of properties (for example, history of diseases suffered in the past, symptoms, test results, etc.) of the person to be estimated. Based on the model, it is estimated whether or not the estimation target has a predetermined disease.
- the trained model is a plurality of information representing a plurality of properties of the learning target for each of a person who is a plurality of learning targets different from each other, and whether or not the learning target is suffering from a predetermined disease. It is generated by learning teacher data that contains information that represents.
- One of the objects of the present invention is to estimate with high accuracy whether or not a predetermined event occurs in an object.
- the estimation device estimates whether or not a predetermined event occurs in the target based on a plurality of information representing a plurality of different properties of the target.
- the plurality of properties include a first property group and a second property group.
- the estimation device includes a probability calculation unit and an estimation unit.
- the probability calculation unit calculates the first probability that an event will occur in the estimation target based on the first information group representing the first property group of the estimation target and the first trained model, and the estimation target first. Based on the second information group representing the two property groups and the second trained model, the second probability that an event will occur in the estimation target is calculated.
- the estimation unit estimates whether or not an event occurs in the estimation target based on the calculated first probability and the calculated second probability.
- the first trained model includes, for each of a plurality of different learning objects, a first information group representing the first property group of the learning target, and information indicating whether or not an event has occurred in the learning target. Generated by learning teacher data.
- the second trained model is calculated based on the first information group representing the first property group of the trained object and the first trained model for each of the plurality of trained objects. For each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the target, the second information group representing the second property group of the selective learning target and the selection. It is generated by learning teacher data including information indicating whether or not an event has occurred in the learning target.
- the estimation method estimates whether or not a predetermined event occurs in the target based on a plurality of information representing a plurality of different properties of the target.
- the plurality of properties include a first property group and a second property group.
- the estimation method is Based on the first information group representing the first property group of the estimation target and the first trained model, the first probability that an event will occur in the estimation target is calculated. Based on the second information group representing the second property group of the estimation target and the second trained model, the second probability that an event will occur in the estimation target is calculated. It includes estimating whether or not an event occurs in the estimation target based on the calculated first probability and the calculated second probability.
- the first trained model includes, for each of a plurality of different learning objects, a first information group representing the first property group of the learning target, and information indicating whether or not an event has occurred in the learning target. Generated by learning teacher data.
- the second trained model is calculated based on the first information group representing the first property group of the trained object and the first trained model for each of the plurality of trained objects. For each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the target, the second information group representing the second property group of the selective learning target and the selection. It is generated by learning teacher data including information indicating whether or not an event has occurred in the learning target.
- the estimation program causes the computer to perform a process of estimating whether or not a predetermined event occurs in the target based on a plurality of information representing a plurality of different properties of the target.
- the plurality of properties include a first property group and a second property group.
- the above process is Based on the first information group representing the first property group of the estimation target and the first trained model, the first probability that an event will occur in the estimation target is calculated. Based on the second information group representing the second property group of the estimation target and the second trained model, the second probability that an event will occur in the estimation target is calculated. It includes estimating whether or not an event occurs in the estimation target based on the calculated first probability and the calculated second probability.
- the first trained model includes, for each of a plurality of different learning objects, a first information group representing the first property group of the learning target, and information indicating whether or not an event has occurred in the learning target. Generated by learning teacher data.
- the second trained model is calculated based on the first information group representing the first property group of the trained object and the first trained model for each of the plurality of trained objects. For each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the target, the second information group representing the second property group of the selective learning target and the selection. It is generated by learning teacher data including information indicating whether or not an event has occurred in the learning target.
- the generator is a trained model used to estimate whether a given event occurs in a subject based on multiple pieces of information representing different properties of the subject. Generate.
- the plurality of properties include a first property group and a second property group.
- the generation device includes a first model generation unit and a second model generation unit.
- the first model generation unit includes, for each of a plurality of different learning objects, a first information group representing the first property group of the learning target, and information indicating whether or not an event has occurred in the learning target.
- the first trained model is generated by training the teacher data.
- the second model generation unit is calculated based on the first information group representing the first property group of the learning target and the first trained model for each of the plurality of learning targets. For each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the target, the second information group representing the second property group of the selective learning target and the selection.
- a second trained model is generated by learning teacher data including information indicating whether or not an event has occurred in the learning target.
- the estimation system estimates whether or not a predetermined event occurs in the target based on a plurality of information representing a plurality of different properties of the target.
- the plurality of properties include a first property group and a second property group.
- the estimation system includes a first model generation unit, a second model generation unit, a probability calculation unit, and an estimation unit.
- the first model generation unit includes, for each of a plurality of different learning objects, a first information group representing the first property group of the learning target, and information indicating whether or not an event has occurred in the learning target.
- the first trained model is generated by training the teacher data.
- the second model generation unit is calculated based on the first information group representing the first property group of the learning target and the first trained model for each of the plurality of learning targets. For each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the target, the second information group representing the second property group of the selective learning target and the selection.
- a second trained model is generated by learning teacher data including information indicating whether or not an event has occurred in the learning target.
- the probability calculation unit calculates and estimates the first probability that an event will occur in the estimation target based on the first information group representing the first property group of the estimation target and the generated first trained model.
- the second probability that an event will occur in the estimation target is calculated based on the second information group representing the second property group of the target and the generated second trained model.
- the estimation unit estimates whether or not an event occurs in the estimation target based on the calculated first probability and the calculated second probability.
- the estimation system of the first embodiment estimates whether or not a predetermined event occurs in the target based on a plurality of information representing a plurality of different properties of the target.
- the plurality of properties include a first property group and a second property group.
- the estimation system includes a first model generation unit, a second model generation unit, a probability calculation unit, and an estimation unit.
- the first model generation unit includes, for each of a plurality of different learning objects, a first information group representing the first property group of the learning target, and information indicating whether or not an event has occurred in the learning target.
- the first trained model is generated by training the teacher data.
- the second model generation unit was calculated based on the first information group representing the first property group of the learning target and the generated first trained model for each of the plurality of learning targets.
- a second information group representing the second property group of the selective learning target for each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the learning target, and
- a second trained model is generated by learning teacher data including information indicating whether or not an event has occurred in the selective learning target.
- the probability calculation unit calculates the first probability that an event will occur in the estimation target based on the first information group representing the first property group of the estimation target and the generated first trained model, and the probability calculation unit concerned. Based on the second information group representing the second property group of the estimation target and the generated second trained model, the second probability that an event occurs in the estimation target is calculated.
- the estimation unit estimates whether or not an event occurs in the estimation target based on the calculated first probability and the calculated second probability.
- the first probability that an event will occur in the estimation target can be calculated with high accuracy by appropriately selecting the first property group.
- the second trained model is generated based on the second property group of the selective learning target selected based on the first probability. Therefore, based on the correlation between the second property group of the target and the presence or absence of an event in the subject, while suppressing the influence of the correlation between the first property group of the subject and the presence or absence of an event in the subject. , The second probability that an event will occur in the estimation target is calculated. As a result, the second probability can be calculated with high accuracy.
- the estimation system it is estimated whether or not an event occurs in the estimation target based on the first probability and the second probability. As described above, since the first probability and the second probability are calculated with high accuracy, it is possible to estimate with high accuracy whether or not an event occurs in the estimation target according to the estimation system. Next, the estimation system of the first embodiment will be described in more detail.
- the estimation system 1 includes a generation device 10 and an estimation device 20.
- the generation device 10 and the estimation device 20 are communicably connected to each other via the communication line NW.
- the communication line NW may include a transmission line for wireless communication.
- Each of the generation device 10 and the estimation device 20 is an information processing device or a computer.
- the generator 10 may be a server computer, a desktop computer, a laptop computer, a tablet computer, a smartphone, or the like.
- the estimation device 20 may be a desktop computer, a laptop computer, a tablet computer, a smartphone, or the like.
- the generation device 10 may be composed of a plurality of devices connected to each other so as to be able to communicate with each other.
- the generation device 10 includes a processing device 11, a storage device 12, an input device 13, an output device 14, and a communication device 15 connected to each other via the bus BU1.
- the processing device 11 controls the storage device 12, the input device 13, the output device 14, and the communication device 15 by executing the program stored in the storage device 12. As a result, the processing device 11 realizes the functions described later.
- the processing device 11 is a CPU (Central Processing Unit).
- the processing device 11 may include an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), or a DSP (Digital Signal Processor) in place of the CPU or in addition to the CPU.
- MPU Micro Processing Unit
- GPU Graphics Processing Unit
- DSP Digital Signal Processor
- the storage device 12 includes a volatile memory and a non-volatile memory.
- the storage device 12 includes at least one of a RAM (Random Access Memory), a ROM (Read Only Memory), a semiconductor memory, an organic memory, an HDD (Hard Disk Drive), and an SSD (Solid State Drive).
- the input device 13 inputs information from the outside of the generation device 10.
- the input device 13 includes a keyboard and a mouse.
- the input device 13 may include a microphone.
- the output device 14 outputs information to the outside of the generation device 10.
- the output device 14 includes a display.
- the output device 14 may include a speaker.
- the generation device 10 may include a touch panel type display that constitutes both the input device 13 and the output device 14.
- the communication device 15 communicates with an external device of the generation device 10.
- the communication device 15 includes a card-type or on-board type network adapter or network interface.
- the estimation device 20 includes a processing device 21, a storage device 22, an input device 23, an output device 24, and a communication device 25, which are connected to each other via the bus BU2.
- the processing device 21, the storage device 22, the input device 23, the output device 24, and the communication device 25 are the same as the processing device 11, the storage device 12, the input device 13, the output device 14, and the communication device 15 of the generation device 10. Each has the functions of.
- the generation device 10 generates a trained model (in this example, the first trained model and the second trained model).
- the trained model estimates whether or not a predetermined event occurs in the target based on the information of the number of property groups representing the properties of the target having different number of property groups (multiple in this example). Used for.
- the functions of the generation device 10 include a learning target information storage unit 110, a model generation unit 120, a parameter group storage unit 130, a threshold group determination unit 140, and a threshold group storage unit 150. ,including.
- the learning target information storage unit 110 stores teacher data for each of a plurality of different targets.
- the teacher data includes target information including information on the number of property groups representing the properties of different property groups of the target, and whether or not a predetermined event has occurred in the target (in other words, whether or not an event has occurred). Includes event occurrence information and.
- the target used in the generation device 10 is also represented as a learning target. Further, the target information used in the generation device 10 is also represented as learning target information.
- the target is a person.
- the event is the affliction of a given disease.
- the disease is an infectious disease.
- the infectious disease is a viral infection called COVID-19.
- the target information includes information on the number of property groups (in other words, information group) representing each property (in other words, the property group) of a person having different property groups.
- the properties of the number of property groups include the first property group and the second property group.
- the first property group consists of the number of properties of the first property group (14 in this example).
- the properties of the first property group included in the first property group include age, gender, history of respiratory-related diseases, history of diabetes / heart disease and hypertension-related diseases, and others. History of illness, presence or absence of close contact, presence or absence of fever, body temperature at the first visit, presence or absence of sore throat, presence or absence of cough, presence or absence of sputum, presence or absence of dyspnea, presence or absence of general malaise, and presence or absence of taste disorder Is.
- the presence or absence of fever is determined to be fever when the body temperature is equal to or higher than a predetermined threshold body temperature (37 ° C. in this example), and no fever when the body temperature is lower than the threshold body temperature.
- the threshold body temperature may be a temperature different from 37 ° C (for example, 37.5 ° C or the like).
- the first property group may include other properties (for example, the presence or absence of an olfactory disorder, etc.). Further, the first property group may include only a part of the properties of the number of the first property groups.
- each property included in the first property group is a property that a person can recognize by himself / herself.
- the first property group represents a person's background and symptoms.
- the second property group consists of the number of properties of the second property group (12 in this example).
- the properties of the second property group included in the second property group are the findings of SpO 2 (Oxygen Saturation of Peripheral Artery, in other words, percutaneous arterial oxygen saturation) and CT (Computed Tomografy) test.
- CRP C-Reactive Protein, in other words, C-reactive
- the white blood cell count, neutrophil%, neutrophil count, lymphocyte%, lymphocyte count, neutrophil / lymphocyte, CRP value, LDH value, and PCT value are values in a blood test.
- Neutrophil% represents the ratio of neutrophils to leukocytes.
- Lymphocyte% represents the ratio of lymphocytes to white blood cells.
- Neutrophils / lymphocytes represent the ratio of neutrophils to lymphocytes.
- the second property group may include other properties. Further, the second property group may include only a part of the properties of the number of the second property groups.
- each of the properties of the number of the second property group included in the second property group corresponds to the test result.
- each property included in the second property group is a property based on an examination at a medical institution.
- the second property group represents the test result of a person.
- each of the information on the number of property groups included in the target information represents the property numerically.
- a person is represented by "0" and a person is represented by "1".
- information indicating a history of diseases related to the respiratory organs, a history of diseases related to diabetes / heart disease and hypertension, and a history of other diseases shall not have such a history. Is represented by "0", and having the relevant medical history is represented by "1".
- information indicating the presence or absence of fever, the presence or absence of sore throat, the presence or absence of cough, the presence or absence of sputum, the presence or absence of dyspnea, the presence or absence of general malaise, and the presence or absence of taste disorder do not have the symptom. This is represented by “0", and having the symptom is represented by "1". Further, for example, the information representing each of the findings of the CT examination and the findings of the chest X-ray examination is indicated by "0" indicating that there is no such finding and by "1" indicating that the finding is present.
- the information indicating the presence or absence of close contact is indicated by "3" indicating that the person has experienced the three-csed state including the infected person, and "2” indicating that the person has experienced the three-csed state in the infected area.
- “1” indicates that the person has experienced the three-csed state in an area other than the above, and "0” indicates that the person has not experienced the three-csed state.
- the infected person is a person suffering from the above-mentioned infectious disease.
- the three-csed state is a state in which ventilation is poor and conversation or vocalization is performed up close in a space where a large number of people gather.
- the infected area is an area where the prevalence of the above-mentioned infectious disease is higher than a predetermined reference value.
- the information indicating the presence or absence of close contact is determined based on the presence or absence of infected persons, the degree of ventilation, the density of people, the intensity or frequency of conversation or vocalization, and the prevalence of infectious diseases in the area. Will be done. Information indicating the presence or absence of close contact is determined based on the presence or absence of infected persons, the degree of ventilation, the density of people, the intensity or frequency of conversation or vocalization, and a part of the prevalence of infectious diseases in the area. May be good.
- the information indicating the presence or absence of close contact may be indicated by "1” indicating that the person has experienced the three-dense state, and may be indicated by "0” that the person has not experienced the three-dense state.
- the information indicating the presence or absence of close contact does not correspond to the close contact specified in the "Proactive Epidemiological Survey Implementation Guidelines for Patients with New Coronavirus Infectious Diseases" by the National Institute of Infectious Diseases Infectious Disease Epidemiology Center. , And it may be represented by “1” that it corresponds to the close contact person.
- the target may be an animal other than a human, a plant, or the like.
- the event may be the occurrence of a disaster, the occurrence of an accident, the occurrence of an incident, or the like.
- the target may be a facility, a building, a city, an organization, a company, or the like.
- the target may be an article (for example, transportation equipment, electrical equipment, information equipment, etc.).
- the event may be a failure or damage of the article.
- the target may be the provision of services (for example, electricity supply, gas supply, water supply, communication service, etc.).
- the event may be the occurrence of a failure (eg, interruption or suspension of service provision).
- the model generation unit 120 generates a trained model (in this example, the first trained model and the second trained model).
- the model generation unit 120 includes a first model generation unit 121 and a second model generation unit 122.
- the first model generation unit 121 generates the first trained model based on a plurality of teacher data stored in the learning target information storage unit 110.
- the first model generation unit 121 has, for each of the plurality of teacher data, the first information group among the learning target information included in the teacher data, and the occurrence of an event included in the teacher data.
- the first trained model is generated by learning the information.
- the first information group is composed of information on the number of first property groups included in the first property group, which represents the properties of the first property group, among the learning target information.
- Equation 1 may be referred to as a logistic regression equation or a sigmoid function.
- M represents the number of first property groups.
- M represents an integer of 2 or more.
- a 0 to a M represent M + 1 parameters, respectively.
- M + 1 parameters a 0 to a M constitute the first parameter group.
- P 1 represents the first probability.
- the first probability is the probability that an event will occur in the learning target based on the first information group representing the first property group of the learning target and the first trained model.
- R 1 to RM each represent information on the number of first property groups constituting the first information group.
- the first model generation unit 121 generates the first trained model by determining the first parameter groups a0 to aM using the nonlinear gradient method (for example, the generalized nonlinear simplified gradient method). do.
- the first model generation unit 121 may determine the first parameter groups a0 to aM by using a gradient method other than the generalized nonlinear reduced gradient method.
- the parameter group storage unit 130 stores the first parameter groups a 0 to a M determined by the first model generation unit 121.
- the threshold group determination unit 140 is first based on the first parameter groups a0 to aM stored in the parameter group storage unit 130 and a plurality of teacher data stored in the learning target information storage unit 110. Determine the threshold.
- the first threshold is the upper limit of the first probability, which is expected to indicate that no event occurs with sufficiently high accuracy.
- the threshold group determination unit 140 is a teacher data (in other words, an event) including event occurrence information indicating that an event has occurred among a plurality of teacher data stored in the learning target information storage unit 110.
- the first probability is calculated for each of the generated teacher data) based on the equation 1 and the first parameter groups a0 to aM stored in the parameter group storage unit 130.
- the threshold group determination unit 140 determines a value obtained by subtracting a predetermined margin from the calculated minimum value of the first probability as the first threshold value.
- a range that is equal to or greater than the first threshold value and less than or equal to 1 corresponds to an undecided range.
- the threshold group determination unit 140 has a first threshold value such that the ratio of the number of event occurrence teacher data for which the first probability smaller than the first threshold value is calculated to the total number of event occurrence teacher data is equal to or less than a predetermined threshold value. May be determined. Further, the threshold group determination unit 140 may determine the first threshold value based on the value input by the user of the generation device 10.
- the threshold group storage unit 150 stores the first threshold value determined by the threshold group determination unit 140.
- the second model generation unit 122 generates a second trained model based on a plurality of teacher data stored in the learning target information storage unit 110.
- the second model generation unit 122 stores the equation 1 and the first parameter group storage unit 130 for each of the plurality of teacher data stored in the learning target information storage unit 110.
- the first probability is calculated based on the parameter groups a 0 to a M.
- the second model generation unit 122 has a first threshold value in which the calculated first probability of the plurality of teacher data stored in the learning target information storage unit 110 is stored in the threshold group storage unit 150. Select the teacher data above. In this example, the fact that the first probability is equal to or greater than the first threshold value corresponds to the fact that the first probability is within the undecided range. In this example, the selection of the teacher data for the learning target corresponds to the selection of the learning target, and the selected learning target corresponds to the selective learning target.
- the second model generation unit 122 has, for each of the selected teacher data, the second information group among the learning target information included in the teacher data, and the event occurrence information included in the teacher data.
- a second trained model is generated by training.
- the second information group is composed of information on the number of the second property group, which is included in the second property group and represents the properties of the number of the second property group, among the learning target information.
- Equation 2 may be referred to as a logistic regression equation or a sigmoid function.
- N represents the number of second property groups.
- N represents an integer of 2 or more.
- b 0 to b N represent N + 1 parameters, respectively.
- N + 1 parameters b 0 to b N constitute a second parameter group.
- P 2 represents the second probability.
- the second probability is the probability that an event will occur in the learning target based on the second information group representing the second property group of the learning target and the second trained model.
- S 1 to SN each represent information on the number of second property groups constituting the second information group.
- the second model generation unit 122 generates the second trained model by determining the second parameter group b 0 to b N using the non-linear gradient method (for example, the generalized non-linear reduced gradient method). do.
- the second model generation unit 122 may determine the second parameter group b 0 to b N by using a gradient method other than the generalized nonlinear reduced gradient method.
- the parameter group storage unit 130 stores the second parameter groups b 0 to b N determined by the second model generation unit 122.
- the threshold group determination unit 140 is a second based on the second parameter group b 0 to b N stored in the parameter group storage unit 130 and a plurality of teacher data stored in the learning target information storage unit 110. Determine the threshold.
- the second threshold is the upper limit of the second probability, which is expected to indicate that no event occurs with sufficiently high accuracy.
- the second threshold value may be the lower limit of the second probability, which is expected to indicate that an event occurs with sufficiently high accuracy.
- the threshold group determination unit 140 has the equation 1 and the first parameter stored in the parameter group storage unit 130 for each of the event occurrence teacher data stored in the learning target information storage unit 110.
- the first probability is calculated based on the groups a 0 to a M.
- the calculated first probability of the event occurrence teacher data stored in the learning target information storage unit 110 is equal to or higher than the first threshold stored in the threshold group storage unit 150. Select the event occurrence teacher data that is.
- the threshold group determination unit 140 is based on the mathematical formula 2 and the second parameter group b 0 to b N stored in the parameter group storage unit 130 for each of the selected event occurrence teacher data. Calculate the second probability. The threshold group determination unit 140 determines a value obtained by subtracting a predetermined margin from the calculated minimum value of the second probability as the second threshold value.
- the threshold group determination unit 140 is set so that the ratio of the number of event occurrence teacher data for which the second probability smaller than the second threshold is calculated to the number of selected event occurrence teacher data is equal to or less than a predetermined threshold value.
- a second threshold may be determined. Further, the threshold group determination unit 140 may determine the second threshold value based on the value input by the user of the generation device 10.
- the threshold group storage unit 150 stores the second threshold value determined by the threshold group determination unit 140.
- the estimation device 20 represents the properties of the trained model generated by the generation device 10 (in this example, the first trained model and the second trained model) and the properties of the estimation target having different property groups. Based on the information on the number of property groups, it is estimated whether or not an event occurs in the estimation target.
- the functions of the estimation device 20 include an estimation target information receiving unit 210, a parameter group storage unit 220, a threshold group storage unit 230, a probability calculation unit 240, and an estimation unit 250. include.
- the estimation target information receiving unit 210 receives the estimation target information input by the user of the estimation device 20.
- the estimation target information includes information on the number of property groups representing the properties of the property groups different from each other of the estimation target. Similar to the learning target information, the estimation target information includes the first information group and the second property group, which are included in the first property group and consist of the information of the first property group representing the properties of the first property group, respectively. It includes a second information group including information on the number of second property groups, which represents the properties of the second property group, respectively.
- the parameter group storage unit 220 receives and receives the first parameter groups a 0 to a M and the second parameter groups b 0 to b N stored in the parameter group storage unit 130 of the generation device 10 from the generation device 10.
- the first parameter group a 0 to a M and the second parameter group b 0 to b N are stored.
- the parameter group storage unit 220 receives the first parameter groups a 0 to a M and the second parameter groups b 0 to b N input by the user of the estimation device 20, and the accepted first parameter groups a 0 to You may store a M and the second parameter group b 0 to b N.
- the threshold group storage unit 230 receives the first threshold value and the second threshold value stored in the threshold value group storage unit 150 of the generation device 10 from the generation device 10, and stores the received first threshold value and second threshold value.
- the threshold group storage unit 230 may receive the first threshold value and the second threshold value input by the user of the estimation device 20 and store the accepted first threshold value and the second threshold value.
- the probability calculation unit 240 includes a first probability calculation unit 241 and a second probability calculation unit 242.
- the first probability calculation unit 241 includes the first information group included in the estimation target information received by the estimation target information reception unit 210, the equation 1, and the first parameter group a0 stored in the parameter group storage unit 220.
- the first probability is calculated based on ⁇ a M.
- the second probability calculation unit 242 is accepted by the estimation target information reception unit 210.
- the second probability is calculated based on the second information group included in the estimation target information, the formula 2, and the second parameter groups b 0 to b N stored in the parameter group storage unit 220.
- the estimation unit 250 determines whether or not an event occurs in the estimation target based on the first probability calculated by the first probability calculation unit 241 and the second probability calculated by the second probability calculation unit 242. presume.
- the estimation unit 250 does not generate an event in the estimation target when the first probability calculated by the first probability calculation unit 241 is smaller than the first threshold value stored in the threshold group storage unit 230. I presume.
- the first probability calculated by the first probability calculation unit 241 is equal to or higher than the first threshold value stored in the threshold group storage unit 230, and is calculated by the second probability calculation unit 242. If the second probability is smaller than the second threshold stored in the threshold group storage unit 230, it is estimated that no event occurs in the estimation target.
- the first probability calculated by the first probability calculation unit 241 is equal to or higher than the first threshold value stored in the threshold group storage unit 230, and is calculated by the second probability calculation unit 242.
- the second probability is equal to or higher than the second threshold stored in the threshold group storage unit 230, it is estimated that an event occurs in the estimation target.
- the generation device 10 executes the process shown in FIG. 6 in order to generate the first trained model and the second trained model. Specifically, the generation device 10 uses each of the plurality of learning targets (in this example, the plurality of teacher data stored in the storage device 12) as processing targets one by one in the first loop processing (step S101). -Step S103) is executed.
- the plurality of learning targets in this example, the plurality of teacher data stored in the storage device 12
- the generation device 10 includes the first information group of the learning target information included in the training target information for the learning target to be processed, the event occurrence information included in the teacher data, the equation 1, and the equation 1. Based on the above, learning using the non-linear gradient method for determining the first parameter group a 0 to a M is performed (step S102).
- the generation device 10 executes the first loop processing for all the learning targets, and then proceeds to step S104, and the first parameter group a 0 to a M determined as a result of the learning in the first loop processing. Is stored in the storage device 12 (step S104).
- the generation device 10 has a first threshold value based on the first parameter groups a0 to aM stored in the storage device 12, the equation 1, and a plurality of teacher data stored in the storage device 12. Is determined, and the determined first threshold value is stored in the storage device 12 (step S105).
- the generation device 10 uses the second loop processing (steps S106 to S110) in which each of the plurality of learning targets (in this example, the plurality of teacher data stored in the storage device 12) are sequentially used as processing targets. ) Is executed.
- the generation device 10 has the first information group of the learning target information included in the teacher data for the learning target to be processed, the equation 1, and the first parameter stored in the storage device 12.
- the first probability is calculated based on the groups a 0 to a M (step S107).
- the generation device 10 determines whether or not the calculated first probability is within the undecided range (step S108). In this example, the generation device 10 determines whether or not the calculated first probability is equal to or higher than the first threshold value stored in the storage device 12.
- the generation device 10 determines "Yes" in step S108, and the second of the learning target information included in the teacher data for the learning target to be processed. Based on the information group, the event occurrence information included in the teacher data, and the equation 2, learning using the non-linear gradient method for determining the second parameter group b 0 to b N is performed (step S109). ).
- the generation device 10 determines "No" in step S108, and proceeds to step S110 without performing the above learning for the learning target to be processed. move on.
- the generation device 10 executes the second loop processing for all the learning targets, and then proceeds to step S111, and the second parameter group b 0 to b N determined as a result of the learning in the second loop processing. Is stored in the storage device 12 (step S111).
- the generation device 10 includes the first parameter group a 0 to a M , the second parameter group b 0 to b N , the first threshold value, the formula 1, and the formula 2 stored in the storage device 12.
- a second threshold value is determined based on the plurality of teacher data stored in the storage device 12, and the determined second threshold value is stored in the storage device 12 (step S112). In this way, the generator 10 executes the process shown in FIG.
- the estimation device 20 executes a process (not shown) from the generation device 10, so that the first parameter group a 0 to a M , the second parameter group b 0 to b N , the first threshold value, and the second threshold value are executed.
- the acquired first parameter group a 0 to a M , the second parameter group b 0 to b N , the first threshold value, and the second threshold value are stored in the storage device 22.
- the estimation device 20 has a property group number representing the properties of the first trained model and the second trained model generated by the generation device 10 and the property groups of the estimation target, which are different from each other. In order to estimate whether or not an event occurs in the estimation target based on the information, the process shown in FIG. 7 is executed.
- the estimation device 20 waits until the estimation target information is received (“No” determination in step S201).
- the estimation device 20 accepts the input estimation target information.
- the estimation device 20 determines "Yes” in step S201 and proceeds to step S202.
- the estimation device 20 determines the first probability based on the first information group included in the received estimation target information, the mathematical formula 1, and the first parameter groups a0 to aM stored in the storage device 22. Calculate (step S202).
- the estimation device 20 determines whether or not the calculated first probability is smaller than the first threshold value stored in the storage device 22 (step S203). When the calculated first probability is smaller than the first threshold value, the estimation device 20 determines "Yes" in step S203, and estimates that no event occurs in the estimation target (step S204).
- the estimation device 20 determines "No" in step S203, proceeds to step S205, and sets the second information group included in the received estimation target information.
- the second probability is calculated based on the mathematical formula 2 and the second parameter groups b 0 to b N stored in the storage device 22 (step S205).
- the estimation device 20 determines whether or not the calculated second probability is smaller than the second threshold value stored in the storage device 22 (step S206). When the calculated second probability is smaller than the second threshold value, the estimation device 20 determines "Yes" in step S206, and estimates that no event occurs in the estimation target (step S207).
- the estimation device 20 determines "No" in step S206, and estimates that an event will occur in the estimation target (step S208). In this way, the estimation device 20 executes the process shown in FIG. 7.
- the estimation system 1 of the first embodiment estimates whether or not a predetermined event occurs in the target based on a plurality of information representing a plurality of different properties of the target.
- the plurality of properties include a first property group and a second property group.
- the estimation system 1 includes a first model generation unit 121, a second model generation unit 122, a probability calculation unit 240, and an estimation unit 250.
- the first model generation unit 121 provides, for each of a plurality of learning targets different from each other, a first information group representing the first property group of the learning target and information indicating whether or not an event has occurred in the learning target.
- the first trained model is generated by training the teacher data including it.
- the second model generation unit 122 is calculated based on the first information group representing the first property group of the learning target and the generated first trained model for each of the plurality of learning targets. Further, for each of the selective learning targets selected from the plurality of learning targets based on the first probability that an event occurs in the learning target, a second information group representing the second property group of the selective learning target, A second trained model is generated by learning teacher data including information indicating whether or not an event has occurred in the selective learning target.
- the probability calculation unit 240 calculates the first probability that an event will occur in the estimation target based on the first information group representing the first property group of the estimation target and the generated first trained model, and also calculates the first probability.
- the second probability that an event will occur in the estimation target is calculated based on the second information group representing the second property group of the estimation target and the generated second trained model.
- the estimation unit 250 estimates whether or not an event occurs in the estimation target based on the calculated first probability and the calculated second probability.
- the estimation system 1 there may be a relatively strong correlation between a specific property group included in a plurality of properties of a target and the presence or absence of an event in the target.
- the first probability that an event will occur in the estimation target can be calculated with high accuracy by appropriately selecting the first property group.
- the second trained model is generated based on the second property group of the selective learning target selected based on the first probability. Therefore, based on the correlation between the second property group of the target and the presence or absence of an event in the subject, while suppressing the influence of the correlation between the first property group of the subject and the presence or absence of an event in the subject. , The second probability that an event will occur in the estimation target is calculated. As a result, the second probability can be calculated with high accuracy.
- the estimation system 1 it is estimated whether or not an event occurs in the estimation target based on the first probability and the second probability. As described above, since the first probability and the second probability are calculated with high accuracy, it is possible to estimate with high accuracy whether or not an event occurs in the estimation target according to the estimation system 1.
- the probability calculation unit 240 calculates the second probability when the calculated first probability is within the undecided range.
- the estimation unit 250 estimates that no event will occur in the estimation target when the calculated first probability is smaller than the undecided range, and when the calculated first probability is larger than the undecided range, in the estimation target.
- the calculated first probability is within the undecided range, and the calculated second probability is smaller than the threshold value (in this example, the second threshold value)
- the event occurs in the estimation target. It is estimated that no event will occur in the estimation target if the calculated first probability is within the undecided range and the calculated second probability is larger than the threshold value (in this example, the second threshold value). do.
- the learning target whose calculated first probability is within the undecided range among the plurality of learning targets is selected as the selective learning target.
- the probability that the estimation that an event will occur in the estimation target is correct is sufficiently high.
- the probability that the estimation that the event does not occur in the estimation target is correct is sufficiently high.
- the estimation system 1 by appropriately setting the undecided range, the correlation between the first property group of the estimation target and the presence / absence of the occurrence of the event in the estimation target and the second property group of the estimation target.
- the correlation with the presence or absence of an event in the estimation target can be reflected with high accuracy in the estimation of whether or not an event occurs in the estimation target. As a result, it is possible to estimate with high accuracy whether or not an event occurs in the estimation target.
- the first trained model uses the first parameter groups a0 to aM consisting of M + 1 parameters, and has a first probability P1 and a first information group R.
- the relationship between 1 to RM is expressed by the formula 1.
- the first parameter group a 0 to a M can be determined by using the gradient method. Therefore, the first trained model can be easily generated. Further, according to this first trained model, it is possible to estimate with high accuracy whether or not an event occurs in the target.
- the second trained model uses the second parameter group b 0 to b N composed of N + 1 parameters, and has a second probability P 2 and a second information group S.
- the relationship between 1 to SN is expressed by the formula 2.
- the second parameter group b 0 to b N can be determined by using the gradient method. Therefore, the second trained model can be easily generated. Further, according to this second trained model, it is possible to estimate with high accuracy whether or not an event occurs in the target.
- the target is a person.
- the first property group includes at least one of the history of past illnesses and the history of past behavior.
- the second property group contains the test results.
- the event is the affliction of a given disease.
- the history of past actions includes the presence or absence of close contact.
- the test results include at least one of CT scan findings, chest x-ray findings, and blood test procalcitonin levels.
- the disease is an infectious disease.
- the information indicating the presence or absence of close contact includes the presence or absence of a person suffering from an infectious disease, the degree of ventilation, the density of people, the intensity or frequency of conversation or vocalization, and the area. It is determined based on at least one of the prevalence of infectious diseases.
- diseases in which the degree of ventilation, the density of people, the intensity or frequency of conversation or vocalization, or the prevalence of infectious diseases in the area and whether or not a person has the disease have a relatively strong correlation examples of this type of disease include infectious diseases such as a viral infection called COVID-19. Therefore, according to the estimation system 1, it is possible to estimate with high accuracy whether or not the person to be estimated has this kind of disease.
- (First Example) 8 and 9 show the relationship between the presence / absence of the occurrence of an event and the presence / absence of an actual event estimated by the estimation system 1 of the first embodiment.
- black circles indicate that an event has actually occurred, and white circles indicate that an event has not actually occurred.
- FIG. 8 shows the relationship between the first probability calculated by the estimation system 1 and the body temperature of the estimation target for each of the 61 estimation targets.
- the first threshold is 0.2.
- 12 are estimation targets whose calculated first probability is smaller than the first threshold value. No event has actually occurred in any of these 12 estimation targets.
- FIG. 9 shows the second probability calculated by the estimation system 1 for each of the 49 estimation targets for which the calculated first probability is equal to or higher than the first threshold value among the 61 estimation targets, and the estimation target. Represents the relationship with the body temperature of.
- the second threshold is 0.4.
- 12 are estimation targets whose calculated second probability is smaller than the second threshold value. No event has actually occurred in any of these 12 estimation targets. Therefore, according to the estimation system 1 of the first embodiment, it is possible to estimate with high accuracy whether or not an event occurs in the estimation target.
- FIG. 10 shows the relationship between the presence / absence of the occurrence of an event and the presence / absence of an actual event estimated by the estimation system of the first comparative example. Also in FIG. 10, a black circle indicates that an event has actually occurred, and a white circle indicates that an event has not actually occurred.
- the estimation system of the first comparative example performs estimation using only one trained model.
- the estimation system of the first comparative example generates a trained model by learning the learning target information included in the teacher data and the event occurrence information included in the teacher data for each of the plurality of teacher data. do.
- the estimation system of the first comparative example calculates the probability that an event will occur in the estimation target based on the estimation target information of the estimation target and the generated trained model.
- FIG. 10 shows the relationship between the probability calculated by the estimation system of the first comparative example and the body temperature of the estimation target for each of the same 61 estimation targets as in FIGS. 8 and 9.
- the calculated probability reflects the presence or absence of the occurrence of an actual event is lower than that of the estimation system 1 of the first embodiment. ..
- FIG. 11 shows the relationship between the presence / absence of the occurrence of an event and the presence / absence of an actual event estimated by the estimation system of the second comparative example. Also in FIG. 11, the black circle indicates that the event has actually occurred, and the white circle indicates that the event has not actually occurred.
- the estimation system of the second comparative example performs estimation using only one trained model.
- the estimation system of the second comparative example learns the second information group of the learning target information included in the teacher data and the event occurrence information included in the teacher data for each of the plurality of teacher data. By doing so, a trained model is generated.
- the estimation system of the second comparative example calculates the probability that an event will occur in the estimation target based on the second information group included in the estimation target information of the estimation target and the generated trained model.
- FIG. 11 shows the relationship between the probability calculated by the estimation system of the second comparative example and the body temperature of the estimation target for each of the same 61 estimation targets as in FIGS. 8 and 9.
- the calculated probability reflects the presence or absence of the occurrence of an actual event is lower than that of the estimation system 1 of the first embodiment. ..
- the undecided range is a range that is equal to or higher than the first threshold value.
- the undecided range may be a range that is equal to or greater than the first lower threshold value and is equal to or less than the first upper threshold value.
- the first lower threshold is the upper limit of the first probability, which is expected to indicate that the event does not occur with sufficiently high accuracy.
- the first upper threshold is the lower limit of the first probability, which is expected to indicate that an event occurs with sufficiently high accuracy.
- the threshold group determination unit 140 uses a mathematical formula for each of the teacher data including the event occurrence information indicating that an event has occurred among the plurality of teacher data stored in the learning target information storage unit 110.
- the first probability is calculated based on 1 and the first parameter groups a0 to aM stored in the parameter group storage unit 130, and a predetermined margin is calculated from the minimum value of the calculated first probability.
- the subtracted value may be determined as the first lower threshold.
- the threshold group determination unit 140 refers to each of the teacher data including the event occurrence information indicating that the event did not occur among the plurality of teacher data stored in the learning target information storage unit 110.
- the first probability is calculated based on the formula 1 and the first parameter groups a0 to aM stored in the parameter group storage unit 130, and a predetermined margin is set in the maximum value of the calculated first probability.
- the value to which the amount is added may be determined as the first upper threshold.
- the estimation device 20 executes the process of FIG. 12 instead of the process of FIG. 7.
- the process of FIG. 12 is a process in which the processes of steps S203 to S204 of the processes of FIG. 7 are replaced with the processes of steps S301A to S304A.
- the estimation device 20 executes the processes of steps S201 to S202 as in the first embodiment. Next, the estimation device 20 determines whether or not the calculated first probability is larger than the first upper threshold value stored in the storage device 22 (step S301A). When the calculated first probability is larger than the first upper threshold value, the estimation device 20 determines "Yes" in step S301A, and estimates that an event will occur in the estimation target (step S302A).
- the estimation device 20 determines "No" in step S301A, proceeds to step S303A, and stores the calculated first probability in the storage device 22. It is determined whether or not it is smaller than the first lower threshold value (step S303A). When the calculated first probability is smaller than the first lower threshold value, the estimation device 20 determines "Yes" in step S303A, and estimates that no event occurs in the estimation target (step S304A).
- the estimation device 20 determines "No" in step S303A, proceeds to step S205, and steps S205 to step S205 as in the first embodiment.
- the process of S208 is executed.
- the same operations and effects as those of the estimation system 1 of the first embodiment are exhibited.
- FIG. 13 shows the relationship between the first probability calculated by the estimation system 1 and the body temperature of the estimation target for each of the 64 estimation targets.
- the first lower threshold is 0.2 and the first upper threshold is 0.8.
- 11 are estimation targets whose calculated first probability is smaller than the first lower threshold value. No event has actually occurred in any of these 11 estimation targets.
- FIG. 14 shows the estimation system 1 for each of the 20 estimation targets whose calculated first probability is equal to or greater than the first lower threshold value and equal to or less than the first upper threshold value among the 64 estimation targets. It represents the relationship between the calculated second probability and the estimated body temperature.
- the second threshold is 0.4.
- estimation targets 8 estimation targets have a calculated second probability smaller than the second threshold value. No event has actually occurred in any of these eight estimation targets.
- estimation system 1 of the first modification of the first embodiment it is possible to estimate with high accuracy whether or not an event occurs in the estimation target.
- the undecided range is a range that is equal to or higher than the first threshold value.
- the undecided range may be a range which is equal to or less than the first threshold value.
- the first threshold is the lower limit of the first probability, which is expected to indicate that an event occurs with sufficiently high accuracy.
- the estimation system 1 of the first embodiment includes a generation device 10 and an estimation device 20.
- the estimation system 1 of another modification of the first embodiment is an information processing device or a generation device 10 in which the generation device 10 and the estimation device 20 are integrally configured instead of the generation device 10 and the estimation device 20. And an information processing device having both functions of the estimation device 20 may be provided. In this case, the overlapping function between the generation device 10 and the estimation device 20 may be omitted.
- the estimation system 1 of the first embodiment estimates whether or not an event occurs in the estimation target based on the two trained models.
- the estimation system 1 of another modification of the first embodiment determines whether or not an event occurs in the estimation target based on U (U represents an integer of 3 or more) trained models. You may estimate.
- the plurality of properties include the first property group to the U property group.
- the estimation system 1 generates a first trained model and a second trained model as in the first embodiment.
- the estimation system 1 has the u-th property of the learning target information included in the teacher data whose u- (u represents an integer of 2 to U) -1 probability is within the u-1 undetermined range.
- the learning target information included in the teacher data in which the u-probability is calculated based on the u-th information group representing the group and the u-learned model, and the calculated u-probability is within the u-undetermined range.
- a u + 1 trained model is generated based on the u + 1 information group representing the u + 1 property group of.
- the estimation system 1 estimates whether or not an event occurs in the estimation target by performing the following processing.
- (1) Set the initial value of v to 1.
- the v-probability is calculated based on the v-information group representing the v-property group included in the estimation target information and the v-learned model.
- (3) When the calculated v-probability is smaller than the v-undetermined range, it is estimated that no event occurs in the estimation target.
- the calculated v-probability is larger than the v-undetermined range, it is estimated that an event occurs in the estimation target.
- Estimating system 10 Generation device 11 Processing device 12 Storage device 14 Output device 15 Communication device 13 Input device 110 Learning target information storage unit 120 Model generation unit 121 First model generation unit 122 Second model generation unit 130 Parameter group storage unit 140 Threshold Group determination unit 150 Threshold group storage unit 20 Estimator 21 Processing device 22 Storage device 23 Input device 24 Output device 25 Communication device 210 Estimate target information reception unit 220 Parameter group storage unit 230 Threshold group storage unit 240 Probability calculation unit 241 First probability Calculation unit 242 Second probability calculation unit 250 Estimating unit BU1 bus BU2 bus NW communication line
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
推定装置20は、対象の、複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象の発生の有無を推定する。確率算出部240は、推定対象の第1性状群を表す第1情報群と第1学習済みモデルとに基づいて事象が発生する第1確率を算出し、推定対象の第2性状群を表す第2情報群と第2学習済みモデルとに基づいて事象が発生する第2確率を算出する。推定部250は、第1確率と第2確率とに基づいて事象の発生の有無を推定する。第1学習済みモデルは、学習対象の第1情報群を含む教師データを学習することにより生成される。第2学習済みモデルは、第1確率に基づいて選択される選択学習対象の第2情報群を含む教師データを学習することにより生成される。
Description
本発明は、推定装置、推定方法、推定プログラム、生成装置、及び、推定システムに関する。
対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する推定装置が知られている。例えば、特許文献1に記載の推定装置は、推定対象である人の複数の性状(例えば、過去に罹患した疾病の履歴、症状、又は、検査結果等)をそれぞれ表す複数の情報と、学習済みモデルと、に基づいて、当該推定対象が所定の疾病に罹患しているか否かを推定する。
学習済みモデルは、互いに異なる複数の学習対象である人のそれぞれに対して、当該学習対象の複数の性状をそれぞれ表す複数の情報、及び、当該学習対象が所定の疾病に罹患しているか否かを表す情報を含む教師データを学習することにより生成される。
しかしながら、人の複数の性状は、互いに比較的弱い相関を有することが多い。また、人の複数の性状と、当該人が所定の疾病に罹患しているか否かと、も比較的弱い相関を有することが多い。このため、比較的多い数の教師データを学習することにより学習済みモデルが生成された場合であっても、推定対象である人が所定の疾病に罹患しているか否かを十分に高い精度にて推定できないことがある、という課題があった。なお、この種の課題は、人が所定の疾病に罹患する事象以外の事象の発生の有無を推定する場合においても同様に生じ得る。
本発明の目的の一つは、対象において所定の事象が発生するか否かを高い精度にて推定することである。
一つの側面では、推定装置は、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する。
上記複数の性状は、第1性状群と、第2性状群と、を含む。
推定装置は、確率算出部と、推定部と、を備える。
確率算出部は、推定対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出するとともに、推定対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出する。
推定部は、算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
推定装置は、確率算出部と、推定部と、を備える。
確率算出部は、推定対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出するとともに、推定対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出する。
推定部は、算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
第1学習済みモデルは、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより生成される。
第2学習済みモデルは、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて上記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより生成される。
他の一つの側面では、推定方法は、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する。
上記複数の性状は、第1性状群と、第2性状群と、を含む。
推定方法は、
推定対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出し、
推定対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出し、
算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する、ことを含む。
推定方法は、
推定対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出し、
推定対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出し、
算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する、ことを含む。
第1学習済みモデルは、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより生成される。
第2学習済みモデルは、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて上記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより生成される。
他の一つの側面では、推定プログラムは、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する処理をコンピュータに実行させる。
上記複数の性状は、第1性状群と、第2性状群と、を含む。
上記処理は、
推定対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出し、
推定対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出し、
算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する、ことを含む。
上記処理は、
推定対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出し、
推定対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出し、
算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する、ことを含む。
第1学習済みモデルは、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより生成される。
第2学習済みモデルは、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて上記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより生成される。
他の一つの側面では、生成装置は、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定するために用いられる学習済みモデルを生成する。
上記複数の性状は、第1性状群と、第2性状群と、を含む。
生成装置は、第1モデル生成部と、第2モデル生成部と、を備える。
第1モデル生成部は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
生成装置は、第1モデル生成部と、第2モデル生成部と、を備える。
第1モデル生成部は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
第2モデル生成部は、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて上記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第2学習済みモデルを生成する。
他の一つの側面では、推定システムは、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する。
上記複数の性状は、第1性状群と、第2性状群と、を含む。
推定システムは、第1モデル生成部と、第2モデル生成部と、確率算出部と、推定部と、を備える。
第1モデル生成部は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
推定システムは、第1モデル生成部と、第2モデル生成部と、確率算出部と、推定部と、を備える。
第1モデル生成部は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
第2モデル生成部は、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて上記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第2学習済みモデルを生成する。
確率算出部は、推定対象の第1性状群を表す第1情報群と、生成された第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出するとともに、推定対象の第2性状群を表す第2情報群と、生成された第2学習済みモデルと、に基づいて、推定対象において事象が発生する第2確率を算出する。
推定部は、算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
推定部は、算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
対象において所定の事象が発生するか否かを高い精度にて推定できる。
以下、本発明の、推定装置、推定方法、推定プログラム、生成装置、及び、推定システムに関する各実施形態について図1乃至図14を参照しながら説明する。
<第1実施形態>
(概要)
第1実施形態の推定システムは、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する。上記複数の性状は、第1性状群と、第2性状群と、を含む。
(概要)
第1実施形態の推定システムは、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて対象において所定の事象が発生するか否かを推定する。上記複数の性状は、第1性状群と、第2性状群と、を含む。
推定システムは、第1モデル生成部と、第2モデル生成部と、確率算出部と、推定部と、を備える。
第1モデル生成部は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
第1モデル生成部は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
第2モデル生成部は、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、生成された第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて当該複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第2学習済みモデルを生成する。
確率算出部は、推定対象の第1性状群を表す第1情報群と、生成された第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出するとともに、当該推定対象の第2性状群を表す第2情報群と、生成された第2学習済みモデルと、に基づいて、当該推定対象において事象が発生する第2確率を算出する。
推定部は、算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
ところで、対象の複数の性状に含まれる特定の性状群と、当該対象における事象の発生の有無と、が比較的強い相関を有する場合がある。この場合、上記推定システムによれば、第1性状群を適切に選択することにより、推定対象において事象が発生する第1確率を高い精度にて算出できる。
更に、上記推定システムにおいて、第2学習済みモデルは、第1確率に基づいて選択される選択学習対象の第2性状群に基づいて生成される。従って、対象の第1性状群と当該対象における事象の発生の有無との相関が及ぼす影響を抑制しながら、当該対象の第2性状群と当該対象における事象の発生の有無との相関に基づいて、推定対象において事象が発生する第2確率が算出される。この結果、第2確率を高い精度にて算出できる。
加えて、上記推定システムにおいて、第1確率及び第2確率に基づいて、推定対象において事象が発生するか否かが推定される。上述のように、第1確率及び第2確率が高い精度にて算出されるので、上記推定システムによれば、推定対象において事象が発生するか否かを高い精度にて推定できる。
次に、第1実施形態の推定システムについて、より詳細に説明する。
次に、第1実施形態の推定システムについて、より詳細に説明する。
(構成)
図1に表されるように、推定システム1は、生成装置10と、推定装置20と、を備える。生成装置10と、推定装置20と、は、通信回線NWを介して互いに通信可能に接続される。通信回線NWは、無線通信の伝送路を含んでいてもよい。
図1に表されるように、推定システム1は、生成装置10と、推定装置20と、を備える。生成装置10と、推定装置20と、は、通信回線NWを介して互いに通信可能に接続される。通信回線NWは、無線通信の伝送路を含んでいてもよい。
生成装置10、及び、推定装置20のそれぞれは、情報処理装置、又は、コンピュータである。例えば、生成装置10は、サーバ型コンピュータ、デスクトップ型コンピュータ、ラップトップ型コンピュータ、タブレット型コンピュータ、又は、スマートフォン等であってよい。例えば、推定装置20は、デスクトップ型コンピュータ、ラップトップ型コンピュータ、タブレット型コンピュータ、又は、スマートフォン等であってよい。なお、生成装置10は、互いに通信可能に接続された複数の装置により構成されていてもよい。
図2に表されるように、生成装置10は、バスBU1を介して互いに接続された、処理装置11、記憶装置12、入力装置13、出力装置14、及び、通信装置15を備える。
処理装置11は、記憶装置12に記憶されているプログラムを実行することにより、記憶装置12、入力装置13、出力装置14、及び、通信装置15を制御する。これにより、処理装置11は、後述する機能を実現する。
処理装置11は、記憶装置12に記憶されているプログラムを実行することにより、記憶装置12、入力装置13、出力装置14、及び、通信装置15を制御する。これにより、処理装置11は、後述する機能を実現する。
本例では、処理装置11は、CPU(Central Processing Unit)である。なお、処理装置11は、CPUに代えて、又は、CPUに加えて、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、又は、DSP(Digital Signal Processor)を含んでもよい。
本例では、記憶装置12は、揮発性メモリと不揮発性メモリとを含む。例えば、記憶装置12は、RAM(Random Access Memory)、ROM(Read Only Memory)、半導体メモリ、有機メモリ、HDD(Hard Disk Drive)、及び、SSD(Solid State Drive)の少なくとも1つを含む。
入力装置13は、生成装置10の外部から情報を入力する。本例では、入力装置13は、キーボード及びマウスを備える。なお、入力装置13は、マイクロフォンを備えてもよい。
出力装置14は、生成装置10の外部に情報を出力する。本例では、出力装置14は、ディスプレイを備える。なお、出力装置14は、スピーカを備えてもよい。
なお、生成装置10は、入力装置13及び出力装置14の両方を構成するタッチパネル式のディスプレイを備えてもよい。
出力装置14は、生成装置10の外部に情報を出力する。本例では、出力装置14は、ディスプレイを備える。なお、出力装置14は、スピーカを備えてもよい。
なお、生成装置10は、入力装置13及び出力装置14の両方を構成するタッチパネル式のディスプレイを備えてもよい。
通信装置15は、生成装置10の外部の装置と通信する。本例では、通信装置15は、カード型、又は、オンボード型の、ネットワークアダプタ、又は、ネットワークインタフェースを備える。
図3に表されるように、推定装置20は、バスBU2を介して互いに接続された、処理装置21、記憶装置22、入力装置23、出力装置24、及び、通信装置25を備える。処理装置21、記憶装置22、入力装置23、出力装置24、及び、通信装置25は、生成装置10の処理装置11、記憶装置12、入力装置13、出力装置14、及び、通信装置15と同様の機能をそれぞれ有する。
(機能)
生成装置10は、学習済みモデル(本例では、第1学習済みモデル、及び、第2学習済みモデル)を生成する。学習済みモデルは、対象の、互いに異なる性状群数(本例では、複数)の性状をそれぞれ表す性状群数の情報に基づいて、当該対象において所定の事象が発生するか否かを推定するために用いられる。
生成装置10は、学習済みモデル(本例では、第1学習済みモデル、及び、第2学習済みモデル)を生成する。学習済みモデルは、対象の、互いに異なる性状群数(本例では、複数)の性状をそれぞれ表す性状群数の情報に基づいて、当該対象において所定の事象が発生するか否かを推定するために用いられる。
図4に表されるように、生成装置10の機能は、学習対象情報記憶部110と、モデル生成部120と、パラメータ群記憶部130と、閾値群決定部140と、閾値群記憶部150と、を含む。
学習対象情報記憶部110は、互いに異なる複数の対象のそれぞれに対する教師データを記憶する。教師データは、対象の、互いに異なる性状群数の性状をそれぞれ表す性状群数の情報を含む対象情報と、当該対象において所定の事象が発生したか否か(換言すると、事象の発生の有無)を表す事象発生情報と、を含む。
なお、生成装置10において用いられる対象は、学習対象とも表される。また、生成装置10において用いられる対象情報は、学習対象情報とも表される。
なお、生成装置10において用いられる対象は、学習対象とも表される。また、生成装置10において用いられる対象情報は、学習対象情報とも表される。
本例では、対象は、人である。本例では、事象は、所定の疾病の罹患である。本例では、疾病は、感染症である。本例では、感染症は、COVID-19と呼ばれるウイルス感染症である。
本例では、対象情報は、人の、互いに異なる性状群数の性状(換言すると、性状群)をそれぞれ表す性状群数の情報(換言すると、情報群)を含む。本例では、性状群数の性状は、第1性状群と、第2性状群と、を含む。
第1性状群は、第1性状群数(本例では、14個)の性状からなる。本例では、第1性状群に含まれる、第1性状群数の性状は、年齢、性別、呼吸器に関連する疾病の既往歴、糖尿病・心疾患及び高血圧に関連する疾病の既往歴、その他の疾病の既往歴、濃厚接触の有無、発熱の有無、初診時の体温、咽頭痛の有無、咳嗽の有無、喀痰の有無、呼吸困難の有無、全身倦怠感の有無、及び、味覚障害の有無である。
本例では、発熱の有無は、体温が所定の閾値体温(本例では、37℃)以上である場合に発熱が有り、体温が閾値体温よりも低い場合に発熱が無い、と判定される。なお、閾値体温は、37℃と異なる温度(例えば、37.5℃等)であってもよい。また、第1性状群は、他の性状(例えば、嗅覚障害の有無等)を含んでいてもよい。また、第1性状群は、上記第1性状群数の性状の一部のみを含んでいてもよい。
本例では、呼吸器に関連する疾病の既往歴、糖尿病・心疾患及び高血圧に関連する疾病の既往歴、及び、その他の疾病の既往歴は、過去に罹患した疾病の履歴に対応する。また、本例では、濃厚接触の有無は、過去の行動の履歴に対応する。
本例では、第1性状群に含まれる各性状は、人が自ら認識できる性状である。換言すると、第1性状群は、人の背景及び症状を表す。
本例では、第1性状群に含まれる各性状は、人が自ら認識できる性状である。換言すると、第1性状群は、人の背景及び症状を表す。
第2性状群は、第2性状群数(本例では、12個)の性状からなる。本例では、第2性状群に含まれる、第2性状群数の性状は、SpO2(Oxygen Saturation of Peripheral Artery、換言すると、経皮的動脈血酸素飽和度)、CT(Computed Tomography)検査の所見、胸部X線検査の所見、白血球数、好中球%、好中球数、リンパ球%、リンパ球数、好中球/リンパ球、CRP(C-Reactive Protein、換言すると、C-反応性蛋白)値、LDH(Lactate Dehydrogenase、換言すると、乳酸脱水素酵素)値、及び、PCT(Procalcitonin、換言すると、プロカルシトニン)値を含む。
白血球数、好中球%、好中球数、リンパ球%、リンパ球数、好中球/リンパ球、CRP値、LDH値、及び、PCT値は、血液検査における値である。好中球%は、白血球に対する好中球の割合を表す。リンパ球%は、白血球に対するリンパ球の割合を表す。好中球/リンパ球は、リンパ球に対する好中球の割合を表す。なお、第2性状群は、他の性状を含んでいてもよい。また、第2性状群は、上記第2性状群数の性状の一部のみを含んでいてもよい。
本例では、第2性状群に含まれる、第2性状群数の性状のそれぞれは、検査結果に対応する。本例では、第2性状群に含まれる各性状は、医療機関における検査に基づく性状である。換言すると、第2性状群は、人の検査結果を表す。
本例では、対象情報に含まれる性状群数の情報のそれぞれは、性状を数値により表す。例えば、性別を表す情報は、人が男性であることを「0」により表し、人が女性であることを「1」により表す。また、例えば、呼吸器に関連する疾病の既往歴、糖尿病・心疾患及び高血圧に関連する疾病の既往歴、及び、その他の疾病の既往歴のそれぞれを表す情報は、当該既往歴を有しないことを「0」により表し、当該既往歴を有することを「1」により表す。
また、例えば、発熱の有無、咽頭痛の有無、咳嗽の有無、喀痰の有無、呼吸困難の有無、全身倦怠感の有無、及び、味覚障害の有無のそれぞれを表す情報は、当該症状を有しないことを「0」により表し、当該症状を有することを「1」により表す。
また、例えば、CT検査の所見、及び、胸部X線検査の所見のそれぞれを表す情報は、当該所見が無いことを「0」により表し、当該所見が有ることを「1」により表す。
また、例えば、CT検査の所見、及び、胸部X線検査の所見のそれぞれを表す情報は、当該所見が無いことを「0」により表し、当該所見が有ることを「1」により表す。
また、例えば、濃厚接触の有無を表す情報は、感染者を含む三密状態を経験したことを「3」により表し、感染地域において三密状態を経験したことを「2」により表し、感染地域以外の地域において三密状態を経験したことを「1」により表し、三密状態を経験していないことを「0」により表す。
本例では、感染者は、上記感染症に罹患している人である。本例では、三密状態は、換気が悪く、且つ、多数の人が集まる空間において、間近で会話又は発声が行われる状態である。本例では、感染地域は、上記感染症の罹患率が所定の基準値よりも高い地域である。
換言すると、本例では、濃厚接触の有無を表す情報は、感染者の有無、換気の程度、人の密度、会話又は発声の強度又は頻度、及び、地域における感染症の罹患率に基づいて決定される。なお、濃厚接触の有無を表す情報は、感染者の有無、換気の程度、人の密度、会話又は発声の強度又は頻度、及び、地域における感染症の罹患率の一部に基づいて決定されてもよい。
なお、濃厚接触の有無を表す情報は、三密状態を経験したことを「1」により表し、三密状態を経験していないことを「0」により表してもよい。また、濃厚接触の有無を表す情報は、国立感染症研究所感染症疫学センターにより、「新型コロナウイルス感染症患者に対する積極的疫学調査実施要領」において定められる濃厚接触者に該当しないことを「0」により表し、当該濃厚接触者に該当することを「1」により表してもよい。
なお、対象は、人以外の動物、又は、植物等であってもよい。また、事象は、災害の発生、事故の発生、又は、事件の発生等であってもよい。この場合、対象は、施設、建築物、都市、団体、又は、企業等であってもよい。また、対象は、物品(例えば、輸送機器、電気機器、又は、情報機器等)であってもよい。この場合、事象は、物品の故障又は破損等であってもよい。また、対象は、サービス(例えば、電気の供給、ガスの供給、水の供給、又は、通信サービス等)の提供であってもよい。この場合、事象は、障害(例えば、サービスの提供の中断又は休止等)の発生であってもよい。
モデル生成部120は、学習済みモデル(本例では、第1学習済みモデル、及び、第2学習済みモデル)を生成する。モデル生成部120は、第1モデル生成部121と、第2モデル生成部122と、を含む。
第1モデル生成部121は、学習対象情報記憶部110に記憶されている複数の教師データに基づいて、第1学習済みモデルを生成する。
具体的には、第1モデル生成部121は、複数の教師データのそれぞれに対して、当該教師データに含まれる学習対象情報のうちの第1情報群、及び、当該教師データに含まれる事象発生情報を学習することにより第1学習済みモデルを生成する。第1情報群は、学習対象情報のうちの、第1性状群に含まれる、第1性状群数の性状をそれぞれ表す第1性状群数の情報からなる。
数式1において、Mは、第1性状群数を表す。本例では、Mは、2以上の整数を表す。a0~aMは、M+1個のパラメータをそれぞれ表す。M+1個のパラメータa0~aMは、第1パラメータ群を構成する。P1は、第1確率を表す。第1確率は、学習対象の第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、当該学習対象において事象が発生する確率である。R1~RMは、第1情報群を構成する第1性状群数の情報をそれぞれ表す。
本例では、第1モデル生成部121は、非線形勾配法(例えば、一般化非線形簡約勾配法)を用いて第1パラメータ群a0~aMを決定することにより、第1学習済みモデルを生成する。なお、第1モデル生成部121は、一般化非線形簡約勾配法以外の勾配法を用いて第1パラメータ群a0~aMを決定してもよい。
パラメータ群記憶部130は、第1モデル生成部121により決定された第1パラメータ群a0~aMを記憶する。
閾値群決定部140は、パラメータ群記憶部130に記憶されている第1パラメータ群a0~aMと、学習対象情報記憶部110に記憶されている複数の教師データと、に基づいて第1閾値を決定する。本例では、第1閾値は、事象が発生しないことを第1確率が十分に高い精度にて表すことが期待される、第1確率の上限値である。
具体的には、閾値群決定部140は、学習対象情報記憶部110に記憶されている複数の教師データのうちの、事象が発生したことを表す事象発生情報を含む教師データ(換言すると、事象発生教師データ)のそれぞれに対して、数式1と、パラメータ群記憶部130に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する。閾値群決定部140は、算出された第1確率の最小値から、所定の余裕量を減じた値を第1閾値として決定する。本例では、第1閾値以上であり、且つ、1以下である範囲は、未定範囲に対応する。
なお、閾値群決定部140は、第1閾値よりも小さい第1確率が算出される事象発生教師データの数の、事象発生教師データの総数に対する割合が所定の閾値以下となるように第1閾値を決定してもよい。また、閾値群決定部140は、生成装置10のユーザにより入力された値に基づいて第1閾値を決定してもよい。
閾値群記憶部150は、閾値群決定部140により決定された第1閾値を記憶する。
第2モデル生成部122は、学習対象情報記憶部110に記憶されている複数の教師データに基づいて、第2学習済みモデルを生成する。
具体的には、第2モデル生成部122は、学習対象情報記憶部110に記憶されている複数の教師データのそれぞれに対して、数式1と、パラメータ群記憶部130に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する。
更に、第2モデル生成部122は、学習対象情報記憶部110に記憶されている複数の教師データのうちの、算出された第1確率が、閾値群記憶部150に記憶されている第1閾値以上である教師データを選択する。本例では、第1確率が第1閾値以上であることは、第1確率が未定範囲内であることに対応する。本例では、学習対象に対する教師データが選択されることは、当該学習対象が選択されることに対応するとともに、選択された学習対象は、選択学習対象に対応する。
加えて、第2モデル生成部122は、選択された教師データのそれぞれに対して、当該教師データに含まれる学習対象情報のうちの第2情報群、及び、当該教師データに含まれる事象発生情報を学習することにより第2学習済みモデルを生成する。第2情報群は、学習対象情報のうちの、第2性状群に含まれる、第2性状群数の性状をそれぞれ表す第2性状群数の情報からなる。
数式2において、Nは、第2性状群数を表す。本例では、Nは、2以上の整数を表す。b0~bNは、N+1個のパラメータをそれぞれ表す。N+1個のパラメータb0~bNは、第2パラメータ群を構成する。P2は、第2確率を表す。第2確率は、学習対象の第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、当該学習対象において事象が発生する確率である。S1~SNは、第2情報群を構成する第2性状群数の情報をそれぞれ表す。
本例では、第2モデル生成部122は、非線形勾配法(例えば、一般化非線形簡約勾配法)を用いて第2パラメータ群b0~bNを決定することにより、第2学習済みモデルを生成する。なお、第2モデル生成部122は、一般化非線形簡約勾配法以外の勾配法を用いて第2パラメータ群b0~bNを決定してもよい。
パラメータ群記憶部130は、第2モデル生成部122により決定された第2パラメータ群b0~bNを記憶する。
閾値群決定部140は、パラメータ群記憶部130に記憶されている第2パラメータ群b0~bNと、学習対象情報記憶部110に記憶されている複数の教師データと、に基づいて第2閾値を決定する。本例では、第2閾値は、事象が発生しないことを第2確率が十分に高い精度にて表すことが期待される、第2確率の上限値である。なお、第2閾値は、事象が発生することを第2確率が十分に高い精度にて表すことが期待される、第2確率の下限値であってもよい。
具体的には、閾値群決定部140は、学習対象情報記憶部110に記憶されている事象発生教師データのそれぞれに対して、数式1と、パラメータ群記憶部130に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する。
更に、閾値群決定部140は、学習対象情報記憶部110に記憶されている事象発生教師データのうちの、算出された第1確率が、閾値群記憶部150に記憶されている第1閾値以上である事象発生教師データを選択する。
更に、閾値群決定部140は、選択された事象発生教師データのそれぞれに対して、数式2と、パラメータ群記憶部130に記憶されている第2パラメータ群b0~bNと、に基づいて第2確率を算出する。閾値群決定部140は、算出された第2確率の最小値から、所定の余裕量を減じた値を第2閾値として決定する。
なお、閾値群決定部140は、第2閾値よりも小さい第2確率が算出される事象発生教師データの数の、選択された事象発生教師データの数に対する割合が所定の閾値以下となるように第2閾値を決定してもよい。また、閾値群決定部140は、生成装置10のユーザにより入力された値に基づいて第2閾値を決定してもよい。
閾値群記憶部150は、閾値群決定部140により決定された第2閾値を記憶する。
推定装置20は、生成装置10により生成された学習済みモデル(本例では、第1学習済みモデル、及び、第2学習済みモデル)と、推定対象の、互いに異なる性状群数の性状をそれぞれ表す性状群数の情報と、に基づいて、当該推定対象において事象が発生するか否かを推定する。
図5に表されるように、推定装置20の機能は、推定対象情報受付部210と、パラメータ群記憶部220と、閾値群記憶部230と、確率算出部240と、推定部250と、を含む。
推定対象情報受付部210は、推定装置20のユーザにより入力された推定対象情報を受け付ける。
推定対象情報は、推定対象の、互いに異なる性状群数の性状をそれぞれ表す性状群数の情報を含む。推定対象情報は、学習対象情報と同様に、第1性状群に含まれる、第1性状群数の性状をそれぞれ表す第1性状群数の情報からなる第1情報群と、第2性状群に含まれる、第2性状群数の性状をそれぞれ表す第2性状群数の情報からなる第2情報群と、を含む。
推定対象情報は、推定対象の、互いに異なる性状群数の性状をそれぞれ表す性状群数の情報を含む。推定対象情報は、学習対象情報と同様に、第1性状群に含まれる、第1性状群数の性状をそれぞれ表す第1性状群数の情報からなる第1情報群と、第2性状群に含まれる、第2性状群数の性状をそれぞれ表す第2性状群数の情報からなる第2情報群と、を含む。
パラメータ群記憶部220は、生成装置10のパラメータ群記憶部130に記憶されている第1パラメータ群a0~aM及び第2パラメータ群b0~bNを生成装置10から受信し、受信された第1パラメータ群a0~aM及び第2パラメータ群b0~bNを記憶する。
なお、パラメータ群記憶部220は、推定装置20のユーザにより入力された第1パラメータ群a0~aM及び第2パラメータ群b0~bNを受け付け、受け付けられた第1パラメータ群a0~aM及び第2パラメータ群b0~bNを記憶していてもよい。
なお、パラメータ群記憶部220は、推定装置20のユーザにより入力された第1パラメータ群a0~aM及び第2パラメータ群b0~bNを受け付け、受け付けられた第1パラメータ群a0~aM及び第2パラメータ群b0~bNを記憶していてもよい。
閾値群記憶部230は、生成装置10の閾値群記憶部150に記憶されている第1閾値及び第2閾値を生成装置10から受信し、受信された第1閾値及び第2閾値を記憶する。
なお、閾値群記憶部230は、推定装置20のユーザにより入力された第1閾値及び第2閾値を受け付け、受け付けられた第1閾値及び第2閾値を記憶していてもよい。
なお、閾値群記憶部230は、推定装置20のユーザにより入力された第1閾値及び第2閾値を受け付け、受け付けられた第1閾値及び第2閾値を記憶していてもよい。
確率算出部240は、第1確率算出部241と、第2確率算出部242と、を含む。
第1確率算出部241は、推定対象情報受付部210により受け付けられた推定対象情報に含まれる第1情報群と、数式1と、パラメータ群記憶部220に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する。
第1確率算出部241は、推定対象情報受付部210により受け付けられた推定対象情報に含まれる第1情報群と、数式1と、パラメータ群記憶部220に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する。
第2確率算出部242は、第1確率算出部241により算出された第1確率が、閾値群記憶部230に記憶されている第1閾値よりも小さい場合、推定対象情報受付部210により受け付けられた推定対象情報に含まれる第2情報群と、数式2と、パラメータ群記憶部220に記憶されている第2パラメータ群b0~bNと、に基づいて第2確率を算出する。
推定部250は、第1確率算出部241により算出された第1確率と、第2確率算出部242により算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
具体的には、推定部250は、第1確率算出部241により算出された第1確率が、閾値群記憶部230に記憶されている第1閾値よりも小さい場合、推定対象において事象が発生しないと推定する。
また、推定部250は、第1確率算出部241により算出された第1確率が、閾値群記憶部230に記憶されている第1閾値以上であり、且つ、第2確率算出部242により算出された第2確率が、閾値群記憶部230に記憶されている第2閾値よりも小さい場合、推定対象において事象が発生しないと推定する。
また、推定部250は、第1確率算出部241により算出された第1確率が、閾値群記憶部230に記憶されている第1閾値以上であり、且つ、第2確率算出部242により算出された第2確率が、閾値群記憶部230に記憶されている第2閾値以上である場合、推定対象において事象が発生すると推定する。
(動作)
次に、推定システム1の動作について、図6及び図7を参照しながら説明する。
本例では、生成装置10は、第1学習済みモデル、及び、第2学習済みモデルを生成するため、図6に表される処理を実行する。
具体的には、生成装置10は、複数の学習対象(本例では、記憶装置12に記憶されている複数の教師データ)のそれぞれを1つずつ順に処理対象として用いる第1ループ処理(ステップS101~ステップS103)を実行する。
次に、推定システム1の動作について、図6及び図7を参照しながら説明する。
本例では、生成装置10は、第1学習済みモデル、及び、第2学習済みモデルを生成するため、図6に表される処理を実行する。
具体的には、生成装置10は、複数の学習対象(本例では、記憶装置12に記憶されている複数の教師データ)のそれぞれを1つずつ順に処理対象として用いる第1ループ処理(ステップS101~ステップS103)を実行する。
第1ループ処理において、生成装置10は、処理対象である学習対象に対する教師データに含まれる学習対象情報のうちの第1情報群と、当該教師データに含まれる事象発生情報と、数式1と、に基づいて、第1パラメータ群a0~aMを決定するための、非線形勾配法を用いた学習を行う(ステップS102)。
そして、生成装置10は、学習対象のすべてに対して、第1ループ処理を実行した後、ステップS104へ進み、第1ループ処理における学習の結果として決定された第1パラメータ群a0~aMを記憶装置12に記憶させる(ステップS104)。
次いで、生成装置10は、記憶装置12に記憶されている第1パラメータ群a0~aMと、数式1と、記憶装置12に記憶されている複数の教師データと、に基づいて第1閾値を決定し、決定された第1閾値を記憶装置12に記憶させる(ステップS105)。
次いで、生成装置10は、複数の学習対象(本例では、記憶装置12に記憶されている複数の教師データ)のそれぞれを1つずつ順に処理対象として用いる第2ループ処理(ステップS106~ステップS110)を実行する。
第2ループ処理において、生成装置10は、処理対象である学習対象に対する教師データに含まれる学習対象情報のうちの第1情報群と、数式1と、記憶装置12に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する(ステップS107)。
次いで、生成装置10は、算出された第1確率が未定範囲内であるか否かを判定する(ステップS108)。本例では、生成装置10は、算出された第1確率が、記憶装置12に記憶されている第1閾値以上であるか否かを判定する。
算出された第1確率が未定範囲内である場合、生成装置10は、ステップS108にて「Yes」と判定し、処理対象である学習対象に対する教師データに含まれる学習対象情報のうちの第2情報群と、当該教師データに含まれる事象発生情報と、数式2と、に基づいて、第2パラメータ群b0~bNを決定するための、非線形勾配法を用いた学習を行う(ステップS109)。
一方、算出された第1確率が未定範囲内でない場合、生成装置10は、ステップS108にて「No」と判定し、処理対象である学習対象に対して上記学習を行うことなく、ステップS110へ進む。
そして、生成装置10は、学習対象のすべてに対して、第2ループ処理を実行した後、ステップS111へ進み、第2ループ処理における学習の結果として決定された第2パラメータ群b0~bNを記憶装置12に記憶させる(ステップS111)。
次いで、生成装置10は、記憶装置12に記憶されている、第1パラメータ群a0~aM、第2パラメータ群b0~bN、及び、第1閾値と、数式1と、数式2と、記憶装置12に記憶されている複数の教師データと、に基づいて第2閾値を決定し、決定された第2閾値を記憶装置12に記憶させる(ステップS112)。
このようにして、生成装置10は、図6に表される処理を実行する。
このようにして、生成装置10は、図6に表される処理を実行する。
また、推定装置20は、図示されない処理を実行することにより、生成装置10から、第1パラメータ群a0~aM、第2パラメータ群b0~bN、第1閾値、及び、第2閾値を取得し、取得された、第1パラメータ群a0~aM、第2パラメータ群b0~bN、第1閾値、及び、第2閾値を記憶装置22に記憶させる。
本例では、推定装置20は、生成装置10により生成された、第1学習済みモデル、及び、第2学習済みモデルと、推定対象の、互いに異なる性状群数の性状をそれぞれ表す性状群数の情報と、に基づいて、当該推定対象において事象が発生するか否かを推定するため、図7に表される処理を実行する。
具体的には、推定装置20は、推定対象情報を受け付けるまで待機する(ステップS201の「No」判定)。
推定装置20のユーザにより推定対象情報が入力された場合、推定装置20は、入力された推定対象情報を受け付ける。これにより、推定装置20は、ステップS201にて「Yes」と判定し、ステップS202へ進む。
推定装置20のユーザにより推定対象情報が入力された場合、推定装置20は、入力された推定対象情報を受け付ける。これにより、推定装置20は、ステップS201にて「Yes」と判定し、ステップS202へ進む。
推定装置20は、受け付けられた推定対象情報に含まれる第1情報群と、数式1と、記憶装置22に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出する(ステップS202)。
次いで、推定装置20は、算出された第1確率が、記憶装置22に記憶されている第1閾値よりも小さいか否かを判定する(ステップS203)。
算出された第1確率が第1閾値よりも小さい場合、推定装置20は、ステップS203にて「Yes」と判定し、推定対象において事象が発生しないと推定する(ステップS204)。
算出された第1確率が第1閾値よりも小さい場合、推定装置20は、ステップS203にて「Yes」と判定し、推定対象において事象が発生しないと推定する(ステップS204)。
算出された第1確率が第1閾値以上である場合、推定装置20は、ステップS203にて「No」と判定し、ステップS205へ進み、受け付けられた推定対象情報に含まれる第2情報群と、数式2と、記憶装置22に記憶されている第2パラメータ群b0~bNと、に基づいて第2確率を算出する(ステップS205)。
次いで、推定装置20は、算出された第2確率が、記憶装置22に記憶されている第2閾値よりも小さいか否かを判定する(ステップS206)。
算出された第2確率が第2閾値よりも小さい場合、推定装置20は、ステップS206にて「Yes」と判定し、推定対象において事象が発生しないと推定する(ステップS207)。
算出された第2確率が第2閾値よりも小さい場合、推定装置20は、ステップS206にて「Yes」と判定し、推定対象において事象が発生しないと推定する(ステップS207)。
算出された第2確率が第2閾値以上である場合、推定装置20は、ステップS206にて「No」と判定し、推定対象において事象が発生すると推定する(ステップS208)。
このようにして、推定装置20は、図7に表される処理を実行する。
このようにして、推定装置20は、図7に表される処理を実行する。
以上、説明したように、第1実施形態の推定システム1は、対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて当該対象において所定の事象が発生するか否かを推定する。複数の性状は、第1性状群と、第2性状群と、を含む。
推定システム1は、第1モデル生成部121と、第2モデル生成部122と、確率算出部240と、推定部250と、を備える。
第1モデル生成部121は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
第1モデル生成部121は、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群、及び、当該学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する。
第2モデル生成部122は、上記複数の学習対象のそれぞれに対して、当該学習対象の第1性状群を表す第1情報群と、生成された第1学習済みモデルと、に基づいて算出された、当該学習対象において事象が発生する第1確率に基づいて当該複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の第2性状群を表す第2情報群、及び、当該選択学習対象における事象の発生の有無を表す情報を含む教師データを学習することにより第2学習済みモデルを生成する。
確率算出部240は、推定対象の第1性状群を表す第1情報群と、生成された第1学習済みモデルと、に基づいて、推定対象において事象が発生する第1確率を算出するとともに、当該推定対象の第2性状群を表す第2情報群と、生成された第2学習済みモデルと、に基づいて、当該推定対象において事象が発生する第2確率を算出する。
推定部250は、算出された第1確率と、算出された第2確率と、に基づいて、推定対象において事象が発生するか否かを推定する。
ところで、対象の複数の性状に含まれる特定の性状群と、当該対象における事象の発生の有無と、が比較的強い相関を有する場合がある。この場合、推定システム1によれば、第1性状群を適切に選択することにより、推定対象において事象が発生する第1確率を高い精度にて算出できる。
更に、推定システム1において、第2学習済みモデルは、第1確率に基づいて選択される選択学習対象の第2性状群に基づいて生成される。従って、対象の第1性状群と当該対象における事象の発生の有無との相関が及ぼす影響を抑制しながら、当該対象の第2性状群と当該対象における事象の発生の有無との相関に基づいて、推定対象において事象が発生する第2確率が算出される。この結果、第2確率を高い精度にて算出できる。
加えて、推定システム1において、第1確率及び第2確率に基づいて、推定対象において事象が発生するか否かが推定される。上述のように、第1確率及び第2確率が高い精度にて算出されるので、推定システム1によれば、推定対象において事象が発生するか否かを高い精度にて推定できる。
更に、第1実施形態の推定システム1において、確率算出部240は、算出された第1確率が未定範囲内である場合、第2確率の算出を行う。
加えて、推定部250は、算出された第1確率が未定範囲よりも小さい場合、推定対象において事象が発生しないと推定し、算出された第1確率が未定範囲よりも大きい場合、推定対象において事象が発生すると推定し、算出された第1確率が未定範囲内であり、且つ、算出された第2確率が閾値(本例では、第2閾値)よりも小さい場合、推定対象において事象が発生しないと推定し、算出された第1確率が未定範囲内であり、且つ、算出された第2確率が閾値(本例では、第2閾値)よりも大きい場合、推定対象において事象が発生すると推定する。
加えて、推定部250は、算出された第1確率が未定範囲よりも小さい場合、推定対象において事象が発生しないと推定し、算出された第1確率が未定範囲よりも大きい場合、推定対象において事象が発生すると推定し、算出された第1確率が未定範囲内であり、且つ、算出された第2確率が閾値(本例では、第2閾値)よりも小さい場合、推定対象において事象が発生しないと推定し、算出された第1確率が未定範囲内であり、且つ、算出された第2確率が閾値(本例では、第2閾値)よりも大きい場合、推定対象において事象が発生すると推定する。
更に、第2学習済みモデルは、複数の学習対象のうちの、算出された第1確率が未定範囲内である学習対象が選択学習対象として選択される。
ところで、推定対象に対して算出された第1確率が比較的高い場合、当該推定対象において事象が発生するとの推定が正しい確率が十分に高くなる。同様に、推定対象に対して算出された第1確率が比較的低い場合、当該推定対象において事象が発生しないとの推定が正しい確率が十分に高くなる。
従って、推定システム1によれば、未定範囲を適切に設定することにより、推定対象の第1性状群と当該推定対象における事象の発生の有無との相関と、当該推定対象の第2性状群と当該推定対象における事象の発生の有無との相関と、を当該推定対象において事象が発生するか否かの推定に高い精度にて反映できる。この結果、推定対象において事象が発生するか否かを高い精度にて推定できる。
更に、第1実施形態の推定システム1において、第1学習済みモデルは、M+1個のパラメータからなる第1パラメータ群a0~aMを用いて、第1確率P1と、第1情報群R1~RMと、の関係が数式1により表される。
これによれば、勾配法を用いて第1パラメータ群a0~aMを決定できる。従って、第1学習済みモデルを容易に生成できる。更に、この第1学習済みモデルによれば、対象において事象が発生するか否かを高い精度にて推定できる。
更に、第1実施形態の推定システム1において、第2学習済みモデルは、N+1個のパラメータからなる第2パラメータ群b0~bNを用いて、第2確率P2と、第2情報群S1~SNと、の関係が数式2により表される。
これによれば、勾配法を用いて第2パラメータ群b0~bNを決定できる。従って、第2学習済みモデルを容易に生成できる。更に、この第2学習済みモデルによれば、対象において事象が発生するか否かを高い精度にて推定できる。
更に、第1実施形態の推定システム1において、対象は、人である。加えて、第1性状群は、過去に罹患した疾病の履歴、及び、過去の行動の履歴の少なくとも1つを含む。更に、第2性状群は、検査結果を含む。加えて、事象は、所定の疾病の罹患である。
人が過去に罹患した疾病の履歴、又は、人の過去の行動の履歴と、人が疾病に罹患しているか否かと、が比較的強い相関を有するとともに、人の検査結果と、人が疾病に罹患しているか否かと、が比較的強い相関を有する疾病が存在する。例えば、この種の疾病として、COVID-19と呼ばれるウイルス感染症等の感染症が挙げられる。従って、推定システム1によれば、推定対象である人がこの種の疾病に罹患しているか否かを高い精度にて推定できる。
更に、第1実施形態の推定システム1において、過去の行動の履歴は、濃厚接触の有無を含む。加えて、検査結果は、CT検査の所見、胸部X線検査の所見、及び、血液検査のプロカルシトニン値の少なくとも1つを含む。更に、疾病は、感染症である。
濃厚接触の有無と、人が疾病に罹患しているか否かと、が比較的強い相関を有するとともに、CT検査の所見、胸部X線検査の所見、又は、血液検査のプロカルシトニン値と、人が疾病に罹患しているか否かと、が比較的強い相関を有する疾病が存在する。例えば、この種の疾病として、COVID-19と呼ばれるウイルス感染症等の感染症が挙げられる。従って、推定システム1によれば、推定対象である人がこの種の疾病に罹患しているか否かを高い精度にて推定できる。
更に、第1実施形態の推定システム1において、濃厚接触の有無を表す情報は、感染症に罹患した人の有無、換気の程度、人の密度、会話又は発声の強度又は頻度、及び、地域における感染症の罹患率、の少なくとも1つに基づいて決定される。
換気の程度、人の密度、会話又は発声の強度又は頻度、又は、地域における感染症の罹患率と、人が疾病に罹患しているか否かと、が比較的強い相関を有する疾病が存在する。例えば、この種の疾病として、COVID-19と呼ばれるウイルス感染症等の感染症が挙げられる。従って、推定システム1によれば、推定対象である人がこの種の疾病に罹患しているか否かを高い精度にて推定できる。
(第1実施例)
図8及び図9は、第1実施形態の推定システム1により推定された、事象の発生の有無と、実際の事象の発生の有無と、の関係を表す。図8及び図9において、黒丸は、実際に事象が発生していることを表し、白丸は、実際に事象が発生していないことを表す。
図8及び図9は、第1実施形態の推定システム1により推定された、事象の発生の有無と、実際の事象の発生の有無と、の関係を表す。図8及び図9において、黒丸は、実際に事象が発生していることを表し、白丸は、実際に事象が発生していないことを表す。
図8は、61個の推定対象のそれぞれに対する、推定システム1により算出された第1確率と、推定対象の体温と、の関係を表す。本例では、第1閾値は、0.2である。
61個の推定対象のうちの、算出された第1確率が第1閾値よりも小さい推定対象は、12個である。この12個の推定対象は、いずれも、実際に事象が発生していない。
図9は、61個の推定対象のうちの、算出された第1確率が第1閾値以上である、49個の推定対象のそれぞれに対する、推定システム1により算出された第2確率と、推定対象の体温と、の関係を表す。本例では、第2閾値は、0.4である。
上記49個の推定対象のうちの、算出された第2確率が第2閾値よりも小さい推定対象は、12個である。この12個の推定対象は、いずれも、実際に事象が発生していない。
従って、第1実施形態の推定システム1によれば、推定対象において事象が発生するか否かを高い精度にて推定できる。
従って、第1実施形態の推定システム1によれば、推定対象において事象が発生するか否かを高い精度にて推定できる。
図10は、第1比較例の推定システムにより推定された、事象の発生の有無と、実際の事象の発生の有無と、の関係を表す。図10においても、黒丸は、実際に事象が発生していることを表し、白丸は、実際に事象が発生していないことを表す。
第1比較例の推定システムは、1つの学習済みモデルのみを用いて推定を行う。第1比較例の推定システムは、複数の教師データのそれぞれに対して、当該教師データに含まれる学習対象情報、及び、当該教師データに含まれる事象発生情報を学習することにより学習済みモデルを生成する。
第1比較例の推定システムは、推定対象の推定対象情報と、生成された学習済みモデルと、に基づいて、当該推定対象において事象が発生する確率を算出する。
図10は、図8及び図9と同じ61個の推定対象のそれぞれに対する、第1比較例の推定システムにより算出された確率と、推定対象の体温と、の関係を表す。図10に表されるように、第1比較例の推定システムは、第1実施形態の推定システム1と比較して、算出された確率が、実際の事象の発生の有無を反映する程度が低い。
図11は、第2比較例の推定システムにより推定された、事象の発生の有無と、実際の事象の発生の有無と、の関係を表す。図11においても、黒丸は、実際に事象が発生していることを表し、白丸は、実際に事象が発生していないことを表す。
第2比較例の推定システムは、1つの学習済みモデルのみを用いて推定を行う。第2比較例の推定システムは、複数の教師データのそれぞれに対して、当該教師データに含まれる学習対象情報のうちの第2情報群、及び、当該教師データに含まれる事象発生情報を学習することにより学習済みモデルを生成する。
第2比較例の推定システムは、推定対象の推定対象情報に含まれる第2情報群と、生成された学習済みモデルと、に基づいて、当該推定対象において事象が発生する確率を算出する。
図11は、図8及び図9と同じ61個の推定対象のそれぞれに対する、第2比較例の推定システムにより算出された確率と、推定対象の体温と、の関係を表す。図11に表されるように、第2比較例の推定システムは、第1実施形態の推定システム1と比較して、算出された確率が、実際の事象の発生の有無を反映する程度が低い。
(第1変形例)
ところで、第1実施形態の推定システム1において、未定範囲は、第1閾値以上である範囲である。なお、第1実施形態の第1変形例の推定システム1において、未定範囲は、第1下側閾値以上であり、且つ、第1上側閾値以下である範囲であってもよい。
ところで、第1実施形態の推定システム1において、未定範囲は、第1閾値以上である範囲である。なお、第1実施形態の第1変形例の推定システム1において、未定範囲は、第1下側閾値以上であり、且つ、第1上側閾値以下である範囲であってもよい。
第1下側閾値は、事象が発生しないことを第1確率が十分に高い精度にて表すことが期待される、第1確率の上限値である。
第1上側閾値は、事象が発生することを第1確率が十分に高い精度にて表すことが期待される、第1確率の下限値である。
第1上側閾値は、事象が発生することを第1確率が十分に高い精度にて表すことが期待される、第1確率の下限値である。
この場合、閾値群決定部140は、学習対象情報記憶部110に記憶されている複数の教師データのうちの、事象が発生したことを表す事象発生情報を含む教師データのそれぞれに対して、数式1と、パラメータ群記憶部130に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出し、算出された第1確率の最小値から、所定の余裕量を減じた値を第1下側閾値として決定してよい。
同様に、閾値群決定部140は、学習対象情報記憶部110に記憶されている複数の教師データのうちの、事象が発生しなかったことを表す事象発生情報を含む教師データのそれぞれに対して、数式1と、パラメータ群記憶部130に記憶されている第1パラメータ群a0~aMと、に基づいて第1確率を算出し、算出された第1確率の最大値に、所定の余裕量を加えた値を第1上側閾値として決定してよい。
また、この場合、推定装置20は、図7の処理に代えて、図12の処理を実行する。図12の処理は、図7の処理のうちの、ステップS203~ステップS204の処理を、ステップS301A~ステップS304Aの処理に置換した処理である。
推定装置20は、第1実施形態と同様に、ステップS201~ステップS202の処理を実行する。
次いで、推定装置20は、算出された第1確率が、記憶装置22に記憶されている第1上側閾値よりも大きいか否かを判定する(ステップS301A)。
算出された第1確率が第1上側閾値よりも大きい場合、推定装置20は、ステップS301Aにて「Yes」と判定し、推定対象において事象が発生すると推定する(ステップS302A)。
次いで、推定装置20は、算出された第1確率が、記憶装置22に記憶されている第1上側閾値よりも大きいか否かを判定する(ステップS301A)。
算出された第1確率が第1上側閾値よりも大きい場合、推定装置20は、ステップS301Aにて「Yes」と判定し、推定対象において事象が発生すると推定する(ステップS302A)。
算出された第1確率が第1上側閾値以下である場合、推定装置20は、ステップS301Aにて「No」と判定し、ステップS303Aへ進み、算出された第1確率が、記憶装置22に記憶されている第1下側閾値よりも小さいか否かを判定する(ステップS303A)。
算出された第1確率が第1下側閾値よりも小さい場合、推定装置20は、ステップS303Aにて「Yes」と判定し、推定対象において事象が発生しないと推定する(ステップS304A)。
算出された第1確率が第1下側閾値よりも小さい場合、推定装置20は、ステップS303Aにて「Yes」と判定し、推定対象において事象が発生しないと推定する(ステップS304A)。
算出された第1確率が第1下側閾値以上である場合、推定装置20は、ステップS303Aにて「No」と判定し、ステップS205へ進み、第1実施形態と同様に、ステップS205~ステップS208の処理を実行する。
以上、説明したように、第1実施形態の第1変形例の推定システム1によれば、第1実施形態の推定システム1と同様の作用及び効果が奏される。
(第2実施例)
図13及び図14は、図8及び図9と異なる推定対象に対して、第1実施形態の第1変形例の推定システム1により推定された、事象の発生の有無と、実際の事象の発生の有無と、の関係を表す。図13においても、黒丸は、実際に事象が発生していることを表し、白丸は、実際に事象が発生していないことを表す。
図13及び図14は、図8及び図9と異なる推定対象に対して、第1実施形態の第1変形例の推定システム1により推定された、事象の発生の有無と、実際の事象の発生の有無と、の関係を表す。図13においても、黒丸は、実際に事象が発生していることを表し、白丸は、実際に事象が発生していないことを表す。
図13は、64個の推定対象のそれぞれに対する、推定システム1により算出された第1確率と、推定対象の体温と、の関係を表す。本例では、第1下側閾値は、0.2であり、且つ、第1上側閾値は、0.8である。
64個の推定対象のうちの、算出された第1確率が第1下側閾値よりも小さい推定対象は、11個である。この11個の推定対象は、いずれも、実際に事象が発生していない。
図14は、64個の推定対象のうちの、算出された第1確率が第1下側閾値以上であり且つ第1上側閾値以下である、20個の推定対象のそれぞれに対する、推定システム1により算出された第2確率と、推定対象の体温と、の関係を表す。本例では、第2閾値は、0.4である。
上記20個の推定対象のうちの、算出された第2確率が第2閾値よりも小さい推定対象は、8個である。この8個の推定対象は、いずれも、実際に事象が発生していない。
このように、第1実施形態の第1変形例の推定システム1によれば、推定対象において事象が発生するか否かを高い精度にて推定できる。
このように、第1実施形態の第1変形例の推定システム1によれば、推定対象において事象が発生するか否かを高い精度にて推定できる。
(その他の変形例)
ところで、第1実施形態の推定システム1において、未定範囲は、第1閾値以上である範囲である。なお、第1実施形態の他の変形例の推定システム1において、未定範囲は、第1閾値以下である範囲であってもよい。この場合、第1閾値は、事象が発生することを第1確率が十分に高い精度にて表すことが期待される、第1確率の下限値である。
ところで、第1実施形態の推定システム1において、未定範囲は、第1閾値以上である範囲である。なお、第1実施形態の他の変形例の推定システム1において、未定範囲は、第1閾値以下である範囲であってもよい。この場合、第1閾値は、事象が発生することを第1確率が十分に高い精度にて表すことが期待される、第1確率の下限値である。
また、第1実施形態の推定システム1は、生成装置10及び推定装置20を備える。なお、第1実施形態の他の変形例の推定システム1は、生成装置10及び推定装置20に代えて、生成装置10及び推定装置20が一体に構成された情報処理装置、又は、生成装置10及び推定装置20の両方の機能を有する情報処理装置を備えていてもよい。この場合、生成装置10及び推定装置20の間で重複する機能は、省略されてよい。
また、第1実施形態の推定システム1は、2個の学習済みモデルに基づいて、推定対象において事象が発生するか否かを推定する。なお、第1実施形態の他の変形例の推定システム1は、U(Uは、3以上の整数を表す。)個の学習済みモデルに基づいて、推定対象において事象が発生するか否かを推定してもよい。
この場合、複数の性状は、第1性状群乃至第U性状群を含む。推定システム1は、第1実施形態と同様に、第1学習済みモデル及び第2学習済みモデルを生成する。加えて、推定システム1は、第u(uは、2乃至Uの整数を表す。)-1確率が第u-1未定範囲内である教師データに含まれる学習対象情報のうちの第u性状群を表す第u情報群と、第u学習済みモデルと、に基づいて第u確率を算出し、算出された第u確率が第u未定範囲内である教師データに含まれる学習対象情報のうちの第u+1性状群を表す第u+1情報群に基づいて、第u+1学習済みモデルを生成する。
この場合、推定システム1は、下記の処理を行うことにより、推定対象において事象が発生するか否かを推定する。
(1)vの初期値を1に設定する。
(2)推定対象情報に含まれる第v性状群を表す第v情報群と、第v学習済みモデルと、に基づいて第v確率を算出する。
(3)算出された第v確率が第v未定範囲よりも小さい場合、推定対象において事象が発生しないと推定する。
(4)算出された第v確率が第v未定範囲よりも大きい場合、推定対象において事象が発生すると推定する。
(5)算出された第v確率が第v未定範囲内である場合、vに1を加算し、vがU-1以下である場合、(2)~(5)の処理を再び行い、vがUである場合、(6)~(7)の処理を行う。
(6)推定対象情報に含まれる第U性状群を表す第U情報群と、第U学習済みモデルと、に基づいて第U確率を算出する。
(7)算出された第U確率が第U閾値よりも小さい場合、推定対象において事象が発生しないと推定し、算出された第U確率が第U閾値以上である場合、推定対象において事象が発生すると推定する。
(1)vの初期値を1に設定する。
(2)推定対象情報に含まれる第v性状群を表す第v情報群と、第v学習済みモデルと、に基づいて第v確率を算出する。
(3)算出された第v確率が第v未定範囲よりも小さい場合、推定対象において事象が発生しないと推定する。
(4)算出された第v確率が第v未定範囲よりも大きい場合、推定対象において事象が発生すると推定する。
(5)算出された第v確率が第v未定範囲内である場合、vに1を加算し、vがU-1以下である場合、(2)~(5)の処理を再び行い、vがUである場合、(6)~(7)の処理を行う。
(6)推定対象情報に含まれる第U性状群を表す第U情報群と、第U学習済みモデルと、に基づいて第U確率を算出する。
(7)算出された第U確率が第U閾値よりも小さい場合、推定対象において事象が発生しないと推定し、算出された第U確率が第U閾値以上である場合、推定対象において事象が発生すると推定する。
なお、本発明は、上述した実施形態に限定されない。例えば、上述した実施形態に、本発明の趣旨を逸脱しない範囲内において当業者が理解し得る様々な変更が加えられてよい。
1 推定システム
10 生成装置
11 処理装置
12 記憶装置
14 出力装置
15 通信装置
13 入力装置
110 学習対象情報記憶部
120 モデル生成部
121 第1モデル生成部
122 第2モデル生成部
130 パラメータ群記憶部
140 閾値群決定部
150 閾値群記憶部
20 推定装置
21 処理装置
22 記憶装置
23 入力装置
24 出力装置
25 通信装置
210 推定対象情報受付部
220 パラメータ群記憶部
230 閾値群記憶部
240 確率算出部
241 第1確率算出部
242 第2確率算出部
250 推定部
BU1 バス
BU2 バス
NW 通信回線
10 生成装置
11 処理装置
12 記憶装置
14 出力装置
15 通信装置
13 入力装置
110 学習対象情報記憶部
120 モデル生成部
121 第1モデル生成部
122 第2モデル生成部
130 パラメータ群記憶部
140 閾値群決定部
150 閾値群記憶部
20 推定装置
21 処理装置
22 記憶装置
23 入力装置
24 出力装置
25 通信装置
210 推定対象情報受付部
220 パラメータ群記憶部
230 閾値群記憶部
240 確率算出部
241 第1確率算出部
242 第2確率算出部
250 推定部
BU1 バス
BU2 バス
NW 通信回線
Claims (11)
- 対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて前記対象において所定の事象が発生するか否かを推定する推定装置であって、
前記複数の性状は、第1性状群と、第2性状群と、を含み、
推定対象の前記第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第1確率を算出するとともに、前記推定対象の前記第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第2確率を算出する確率算出部と、
前記算出された第1確率と、前記算出された第2確率と、に基づいて、前記推定対象において前記事象が発生するか否かを推定する推定部と、
を備え、
前記第1学習済みモデルは、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群、及び、当該学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより生成され、
前記第2学習済みモデルは、前記複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群と、前記第1学習済みモデルと、に基づいて算出された、当該学習対象において前記事象が発生する第1確率に基づいて前記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の前記第2性状群を表す第2情報群、及び、当該選択学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより生成される、推定装置。 - 請求項1に記載の推定装置であって、
前記確率算出部は、前記算出された第1確率が未定範囲内である場合、前記第2確率の算出を行い、
前記推定部は、前記算出された第1確率が前記未定範囲よりも小さい場合、前記推定対象において前記事象が発生しないと推定し、前記算出された第1確率が前記未定範囲よりも大きい場合、前記推定対象において前記事象が発生すると推定し、前記算出された第1確率が前記未定範囲内であり、且つ、前記算出された第2確率が閾値よりも小さい場合、前記推定対象において前記事象が発生しないと推定し、前記算出された第1確率が前記未定範囲内であり、且つ、前記算出された第2確率が前記閾値よりも大きい場合、前記推定対象において前記事象が発生すると推定し、
前記第2学習済みモデルは、前記複数の学習対象のうちの、前記算出された第1確率が前記未定範囲内である学習対象が前記選択学習対象として選択される、推定装置。 - 請求項1乃至請求項4のいずれか一項に記載の推定装置であって、
前記対象は、人であり、
前記第1性状群は、過去に罹患した疾病の履歴、及び、過去の行動の履歴の少なくとも1つを含み、
前記第2性状群は、検査結果を含み、
前記事象は、所定の疾病の罹患である、推定装置。 - 請求項5に記載の推定装置であって、
前記過去の行動の履歴は、濃厚接触の有無を含み、
前記検査結果は、CT(Computed Tomography)検査の所見、胸部X線検査の所見、及び、血液検査のプロカルシトニン値の少なくとも1つを含み、
前記疾病は、感染症である、推定装置。 - 請求項6に記載の推定装置であって、
前記濃厚接触の有無を表す情報は、前記感染症に罹患した人の有無、換気の程度、人の密度、会話又は発声の強度又は頻度、及び、地域における前記感染症の罹患率、の少なくとも1つに基づいて決定される、推定装置。 - 対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて前記対象において所定の事象が発生するか否かを推定する推定方法であって、
前記複数の性状は、第1性状群と、第2性状群と、を含み、
推定対象の前記第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第1確率を算出し、
前記推定対象の前記第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第2確率を算出し、
前記算出された第1確率と、前記算出された第2確率と、に基づいて、前記推定対象において前記事象が発生するか否かを推定する、
ことを含み、
前記第1学習済みモデルは、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群、及び、当該学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより生成され、
前記第2学習済みモデルは、前記複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群と、前記第1学習済みモデルと、に基づいて算出された、当該学習対象において前記事象が発生する第1確率に基づいて前記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の前記第2性状群を表す第2情報群、及び、当該選択学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより生成される、推定方法。 - 対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて前記対象において所定の事象が発生するか否かを推定する処理をコンピュータに実行させる推定プログラムであって、
前記複数の性状は、第1性状群と、第2性状群と、を含み、
前記処理は、
推定対象の前記第1性状群を表す第1情報群と、第1学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第1確率を算出し、
前記推定対象の前記第2性状群を表す第2情報群と、第2学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第2確率を算出し、
前記算出された第1確率と、前記算出された第2確率と、に基づいて、前記推定対象において前記事象が発生するか否かを推定する、
ことを含み、
前記第1学習済みモデルは、互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群、及び、当該学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより生成され、
前記第2学習済みモデルは、前記複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群と、前記第1学習済みモデルと、に基づいて算出された、当該学習対象において前記事象が発生する第1確率に基づいて前記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の前記第2性状群を表す第2情報群、及び、当該選択学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより生成される、推定プログラム。 - 対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて前記対象において所定の事象が発生するか否かを推定するために用いられる学習済みモデルを生成する生成装置であって、
前記複数の性状は、第1性状群と、第2性状群と、を含み、
互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群、及び、当該学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する第1モデル生成部と、
前記複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群と、前記第1学習済みモデルと、に基づいて算出された、当該学習対象において前記事象が発生する第1確率に基づいて前記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の前記第2性状群を表す第2情報群、及び、当該選択学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより第2学習済みモデルを生成する第2モデル生成部と、
を備える、生成装置。 - 対象の、互いに異なる複数の性状をそれぞれ表す複数の情報に基づいて前記対象において所定の事象が発生するか否かを推定する推定システムであって、
前記複数の性状は、第1性状群と、第2性状群と、を含み、
互いに異なる複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群、及び、当該学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより第1学習済みモデルを生成する第1モデル生成部と、
前記複数の学習対象のそれぞれに対して、当該学習対象の前記第1性状群を表す第1情報群と、前記第1学習済みモデルと、に基づいて算出された、当該学習対象において前記事象が発生する第1確率に基づいて前記複数の学習対象から選択される選択学習対象のそれぞれに対して、当該選択学習対象の前記第2性状群を表す第2情報群、及び、当該選択学習対象における前記事象の発生の有無を表す情報を含む教師データを学習することにより第2学習済みモデルを生成する第2モデル生成部と、
推定対象の前記第1性状群を表す第1情報群と、前記生成された第1学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第1確率を算出するとともに、前記推定対象の前記第2性状群を表す第2情報群と、前記生成された第2学習済みモデルと、に基づいて、前記推定対象において前記事象が発生する第2確率を算出する確率算出部と、
前記算出された第1確率と、前記算出された第2確率と、に基づいて、前記推定対象において前記事象が発生するか否かを推定する推定部と、
を備える、推定システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/047317 WO2022130597A1 (ja) | 2020-12-18 | 2020-12-18 | 推定装置、推定方法、推定プログラム、生成装置、及び、推定システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/047317 WO2022130597A1 (ja) | 2020-12-18 | 2020-12-18 | 推定装置、推定方法、推定プログラム、生成装置、及び、推定システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022130597A1 true WO2022130597A1 (ja) | 2022-06-23 |
Family
ID=82057491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/047317 WO2022130597A1 (ja) | 2020-12-18 | 2020-12-18 | 推定装置、推定方法、推定プログラム、生成装置、及び、推定システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022130597A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012118775A (ja) * | 2010-12-01 | 2012-06-21 | Nec Casio Mobile Communications Ltd | 食中毒管理システム、食中毒管理方法および食中毒管理プログラム |
JP2013533977A (ja) * | 2010-07-14 | 2013-08-29 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション | 大腸癌の診断 |
WO2018155447A1 (ja) * | 2017-02-21 | 2018-08-30 | 一般社団法人ブレインインパクト | 脳情報解析装置及び脳情報模倣演算装置 |
JP2019519019A (ja) * | 2016-08-31 | 2019-07-04 | バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド | テキストタイプを識別する方法、装置及びデバイス |
JP2020146180A (ja) * | 2019-03-13 | 2020-09-17 | 株式会社中京メディカル | 円錐角膜判定装置及びプログラム |
-
2020
- 2020-12-18 WO PCT/JP2020/047317 patent/WO2022130597A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013533977A (ja) * | 2010-07-14 | 2013-08-29 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション | 大腸癌の診断 |
JP2012118775A (ja) * | 2010-12-01 | 2012-06-21 | Nec Casio Mobile Communications Ltd | 食中毒管理システム、食中毒管理方法および食中毒管理プログラム |
JP2019519019A (ja) * | 2016-08-31 | 2019-07-04 | バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド | テキストタイプを識別する方法、装置及びデバイス |
WO2018155447A1 (ja) * | 2017-02-21 | 2018-08-30 | 一般社団法人ブレインインパクト | 脳情報解析装置及び脳情報模倣演算装置 |
JP2020146180A (ja) * | 2019-03-13 | 2020-09-17 | 株式会社中京メディカル | 円錐角膜判定装置及びプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Doppala et al. | A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques | |
CN113539408B (zh) | 一种医学报告生成方法、模型的训练方法、装置及设备 | |
Masum et al. | Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management | |
US8417541B1 (en) | Multi-stage model for predicting probabilities of mortality in adult critically ill patients | |
Gupta et al. | Probabilistic graphical modeling for estimating risk of coronary artery disease: applications of a flexible machine-learning method | |
CN113012803A (zh) | 计算机设备、系统、可读存储介质及医学数据分析方法 | |
Bradley et al. | Addressing selection bias in the UK Biobank neurological imaging cohort | |
US20150074019A1 (en) | Health guidance receiver selection condition generation support device | |
Rapolu et al. | A time-dependent seird model for forecasting the covid-19 transmission dynamics | |
CN111523593A (zh) | 用于分析医学影像的方法和装置 | |
WO2022130597A1 (ja) | 推定装置、推定方法、推定プログラム、生成装置、及び、推定システム | |
Muzoğlu et al. | Detection of COVID‐19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods | |
US20220328187A1 (en) | Condition predicting apparatus, condition predicting method, computer program, and recording medium | |
Chakraborty et al. | Theta autoregressive neural network model for COVID-19 outbreak predictions | |
Ahuja et al. | Samgep: A novel method for prediction of phenotype event times using the electronic health record | |
Lee et al. | Network dependence and confounding by network structure lead to invalid inference | |
CN115966314A (zh) | 一种数据处理方法、装置、电子设备及存储介质 | |
JP2006053628A (ja) | 発症リスク算出システム及びプログラム | |
Ogunyemi et al. | Combining geometric and probabilistic reasoning for computer-based penetrating-trauma assessment | |
Chhikara et al. | Privacy Aware Question-Answering System for Online Mental Health Risk Assessment | |
KR102536982B1 (ko) | 문진표를 이용한 인공지능 기반의 질병 예측 방법 및 장치 | |
Sun et al. | Assessing the prognostic utility of clinical and radiomic features for COVID-19 patients admitted to ICU: Challenges and lessons learned | |
Santos | Parameter Estimation for a Modified SEIR Model of the COVID-19 Dynamics in the Philippines using Genetic Algorithm | |
Swain et al. | A support system for coronary artery disease detection using a deep dense neural network | |
US12027273B2 (en) | Interactive graphical system for estimating body measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20965984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20965984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |