WO2022130530A1 - Data processing device, x-ray device with same mounted therein, and data processing method - Google Patents

Data processing device, x-ray device with same mounted therein, and data processing method Download PDF

Info

Publication number
WO2022130530A1
WO2022130530A1 PCT/JP2020/046940 JP2020046940W WO2022130530A1 WO 2022130530 A1 WO2022130530 A1 WO 2022130530A1 JP 2020046940 W JP2020046940 W JP 2020046940W WO 2022130530 A1 WO2022130530 A1 WO 2022130530A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
ray
substance
dimensional
data processing
Prior art date
Application number
PCT/JP2020/046940
Other languages
French (fr)
Japanese (ja)
Inventor
勉 山河
修一郎 山本
Original Assignee
株式会社ジョブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジョブ filed Critical 株式会社ジョブ
Priority to PCT/JP2020/046940 priority Critical patent/WO2022130530A1/en
Publication of WO2022130530A1 publication Critical patent/WO2022130530A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a data processing device that processes X-ray transmission data of an object imaged by using continuous X-rays, an X-ray device equipped with the data processing device, and a data processing method.
  • the present invention is a data processing apparatus for processing X-ray transmission data collected using a photon counting type X-ray detector and evaluating the properties of an object such as bone mineral quantification.
  • bone density measurement bone mineral quantification
  • osteoporosis measures the density of bone in the human body for the prevention and treatment of osteoporosis. Preventing this osteoporosis is also an important factor in extending healthy life expectancy.
  • Bone density indicates how much minerals such as calcium are present in bone, and bone quality is the microstructure of bone, the speed of bone turnover, the presence or absence of microfractures, and calcification. It is an index showing the state of calcium and the state of collagen.
  • the DEXA (dual-energy X-ray absorptiometry) method, the ultrasonic method, and the MD (MD) method are often used for the diagnosis of osteoporosis.
  • the DEXA method uses two types of X-rays with different energies to measure bone density (bone mineral content) based on the difference information between the X-ray transmission data after the two types of X-rays have passed through the bone. It is a method.
  • the ultrasonic method is a method of irradiating the heel and shin bones with ultrasonic waves and measuring the bone density from the reflected information.
  • the bone density of the hand is measured by simultaneously X-raying the bones of the hand and aluminum plates (reference substances) of different thicknesses and comparing the concentrations of the bones and the aluminum plates on the X-ray images taken. It is a method to do.
  • the presence or absence of fracture or deformation, the presence or absence of osteoporosis (decrease in bone density), and the like can be confirmed from the X-ray photograph by the X-ray examination.
  • the measurement of bone quality is generally performed by evaluating the rate of bone metabolism by a blood test or a urine test using a bone metabolism marker. It was
  • Patent Document 1 An example of such an osteoporosis diagnostic method is known as described in Patent Document 1.
  • the method described in Patent Document 1 belongs to the DEXA method and is disclosed as an X-ray diagnostic imaging apparatus. According to one aspect thereof, an X-ray beam having two types of high and low average energies is used.
  • a difference image generation unit that generates a difference image from each X-ray image taken, a detection unit that detects a lumbar region from the difference image, and a transverse protrusion region and a soft tissue region from the periphery of the lumbar spine, and a detected soft tissue region. It includes a correction unit that corrects the pixel value of the lumbar region based on the pixel value of the tissue region, and a bone density calculation unit that calculates the bone density based on the corrected lumbar region. It was
  • this diagnostic method is a diagnostic method that utilizes the fact that the degree of attenuation of the bone component of X-rays differs depending on the energy.
  • Patent Document 2 International Publication No. WO 2016/171186 A1 Publication (International Publication Date: October 27, 2016) regarding this photon counting type X-ray detection. Proposing a law.
  • an image of an object is created from the count values detected by a photon counting type X-ray detector, a region of interest is set on the image, and a background of a substance existing in the region of interest in the image is created. Delete the pixel information that becomes. Further, for each of a plurality of energy regions of continuous X-rays in the region of interest, the transmission characteristic when X-rays are transmitted through the substance based on the count value for each pixel is expressed as a vector quantity, and the vector quantity is used as the vector quantity. Compute unique and unique information. It was
  • the above-mentioned vector quantity has the linear attenuation coefficient of ⁇ 1 . , ⁇ 2 and ⁇ 3 are represented as a three-dimensional vector in a three-dimensional space having each dimension.
  • averaging processing is performed such as calculating the position of the center of gravity of the distribution for each set of scattering points, and the vector connecting the position of the center of gravity and the origin of the coordinates is obtained from the set distribution.
  • the direction of this representative three-dimensional vector is peculiar to the substance or the property of the substance from the viewpoint of the attenuation of continuous X-rays. That is, the method of Patent Gazette 2 compares the vector direction with a reference value measured / calculated using a known phantom in advance or a reference value calculated theoretically, thereby determining the type and properties of the substance. It was possible to identify (estimate, evaluate). Further, in the method of Patent Publication Document 2, the dimension to be processed is not limited to three dimensions, but is a method applicable to two or more dimensions.
  • the energy spectrum of photons forming continuous X-rays is divided into, for example, three energy regions, and the line attenuation coefficient corresponding to the effective energy of each energy region is ⁇ 1 , ⁇ 2 .
  • the vector of the three-dimensional space with ⁇ 3 as each dimension is obtained. Therefore, when the physical meaning of this 3D vector is applied to the evaluation of bone, the direction and size of this 3D vector is one of the indicators showing the state of bone including bone quality and bone density (bone mineral content). It is considered to be one.
  • the degree of attenuation of the X-ray photon passing through the tissue of the substance differs depending on the energy level of the X-ray photon, but the substance has the same name. Even if there is, if the composition constituting it is different, it can be considered as a different substance from the viewpoint of X-ray attenuation.
  • the above-mentioned three-dimensional vector can be used. The directions are different from each other. That is, it can be said that the direction and size of the vector are one of the indexes showing not only the amount of bone mineral but also the difference in composition and composition (that is, the difference in bone quality) constituting the bone.
  • bone mineral is an inorganic bone mineral, and it is known that hydroxyapatite is a chemical substance.
  • bone is composed only of hard tissue (corresponding to bone mineral)).
  • the region of interest is set in the bone portion reflected in the X-ray image.
  • soft tissues such as skin and muscle and hard tissues of bones are present in the X-ray path leading to each pixel of the X-ray detector forming the region. Therefore, the X-ray detector collects count values depending on the attenuation coefficient and thickness of soft and hard tissues.
  • the present invention has been made in view of the above-mentioned substance identification in the conventional photon counting type X-ray detection, even when the target is substantially composed of two kinds of known substances A and B.
  • the properties of the substance A of interest can be obtained with simpler calculations and more accuracy, and information on the properties of the substance of interest, such as bone density and bone quality, can be provided from multiple perspectives. It is an object of the present invention to provide a data processing device suitable for photon counting type X-ray detection, a data processing method, and an X-ray device equipped with or mounted thereof.
  • continuous X-rays containing n (n is two or more positive integers) different energy regions are related to the transmission characteristics of the X-rays.
  • n is two or more positive integers
  • This data processing device includes an X-ray transmission image providing means that creates an X-ray image of the target based on the detection data detected by the X-ray detector and displays it on the monitor, and the X-ray transmission image display means displayed on the monitor.
  • ROI setting means for setting ROI (region of interest) in a portion of the X-ray image where the total thickness of the substances A and B is estimated to be constant in the direction of the X-ray path, and the n pieces.
  • a line attenuation vector calculation means that calculates a vector based on the detection data, and the substance B when it is assumed that the X-ray is transmitted through only one of the two types of substances A and B, the substance B.
  • the line includes a reference vector holding means that estimates or assumes and holds the n-dimensional reference vector corresponding to the line attenuation value, and the n-dimensional object vector corresponding to the line attenuation value equivalent only to the substance A. It is a data processing apparatus including a target vector calculation means for subtracting the n-dimensional reference vector from the n-dimensional line attenuation vector calculated by the attenuation vector calculation means. At this time, the data processing device may be provided with an arithmetic means for estimating or assuming a reference vector.
  • a data processing method is provided.
  • continuous X-rays containing n (n is a positive integer of 2 or more) different energy regions are composed of substantially two kinds of known substances A and B with respect to the transmission characteristics of the X-rays.
  • n is a positive integer of 2 or more
  • processing based on the detection data is performed.
  • an X-ray image of the target is created based on the detection data detected by the X-ray detector, displayed on the monitor, and displayed on the X-ray image displayed on the monitor.
  • ROI region of interest
  • the X-rays are set in each of the n energy regions.
  • One n-dimensional line attenuation vector corresponding to the line attenuation value when passing through the object and whose size is averaged over a plurality of the pixels forming the ROI is calculated based on the detection data.
  • the n-dimensional reference vector corresponding to the line attenuation value of the substance B is estimated or
  • the reference vector that is assumed and held is subtracted from the n-dimensional line attenuation vector calculated by the line attenuation vector calculation means, and the n corresponding to the line attenuation value equivalent only to the substance A. It is characterized by computing a dimensional object vector.
  • the data processing method includes an arithmetic process for estimating or assuming a reference vector.
  • This data processing device and data processing method can be mounted on a bone mineral quantifying device as an example.
  • the substance A is the bone (hard tissue) of the limbs of the subject
  • the substance B is the skin and muscle (soft tissue) thereof.
  • continuous X-rays containing n (n is a positive integer of 2 or more) different energy regions are derived from substantially two types of known substances A and B with respect to the transmission characteristics of the X-rays.
  • the X-rays irradiated to the target and transmitted through the target are processed based on the count value detected by the X-ray detector having a plurality of pixels.
  • an X-ray image of the target is created based on the count value and displayed on the monitor.
  • ROI region of interest
  • the size corresponds to the line attenuation value when the X-ray is transmitted through the object, and the size is averaged over the plurality of pixels forming the ROI.
  • One n-dimensional (n is a positive integer of 2 or more) line attenuation vector is calculated based on the count value.
  • the n-dimensional reference vector corresponding to the line attenuation value of the substance B when it is assumed that only one of the substances B is transmitted by the X-ray is the line attenuation vector.
  • the n-dimensional target vector corresponding to the line attenuation value equivalent only to the substance A is calculated.
  • the reference vector is set in advance theoretically or experimentally, or in the case of a subject capable of setting the ROI for the reference vector calculation (for example, the reference vector is composed of only the substance B on the X-ray path. (For example, when there is a place where the line is present) is appropriately calculated in real time or from one image by a method similar to the method for deriving the line attenuation vector.
  • the ROI is set in the portion where the total thickness of the substances A and B, which is a desired portion, is estimated to be constant, for example. Further, one n-dimensional line attenuation vector whose size is averaged over a plurality of pixels forming the ROI is calculated. This n-dimensional line attenuation vector reflects the X-ray transmission characteristic in which two substances A and B of different types are synthesized in the ROI.
  • the substance A is a tissue (hard tissue) of, for example, a bone part contained in a target (for example, a human limb), the substance B is a tissue of muscle and skin (soft tissue) of that part, and the target site is a bone part (substance A).
  • the muscle and skin tissues correspond to the parts that interfere with the diagnosis.
  • the information of the n-dimensional reference vector corresponding to the line attenuation value of the substance B and preset when it is assumed that the X-ray is transmitted through the substance B is stored in the memory in advance, for example. Since it can be easily calculated, the information of this reference vector is read from the memory or calculated.
  • this reference vector is subtracted from the n-dimensional line attenuation vector corresponding to the synthesized X-ray transmission characteristics of the two substances A and B.
  • an n-dimensional target vector corresponding to the line attenuation value equivalent only to the substance A can be obtained.
  • an objective vector showing X-ray attenuation of the substance A, for example, only the bone portion can be obtained.
  • This objective vector reflects the degree of attenuation of continuous X-ray photons with a continuous energy distribution from low to high energy as they pass through the tissue of the bone, so the density and quality of the bone. It is possible to collect count values that more accurately represent (characteristics).
  • the target vector reflecting the line attenuation of only the target substance A can be extracted with higher accuracy by a simple operation called vector subtraction.
  • the derivation of the target vector reflecting the line attenuation of only the target substance A can be easily and accurately performed by the vector operation for each region of interest.
  • a target vector of the substance A is obtained for each region of interest, and the length of the vector indicates, for example, the bone mass (bone density) per unit volume in the case of bone, and the vector of the vector. It is possible to provide information indicating the properties (states) of a more multifaceted substance for each region of interest, for example, the direction indicates the bone quality in the case of bone. Unlike the conventional process of providing information based only on bone density, it is possible to enrich the provided property information and meet the demands for diagnosis and treatment of osteoporosis, for example. This effect is similarly enjoyed in the data processing method and the X-ray apparatus according to the present invention.
  • the reference vector is i) estimated from the external size including the thickness of the X-ray irradiation site of the target, or the weight, or ii) statistically collected in advance and stored in a database.
  • It may be set by performing an operation on the assumption that it is equivalent to the line attenuation vector in the partial region of the portion that is only the substance B. Further, for example, if the direction of the reference vector exhibited by the portion of the substance B is known, the size thereof may be estimated from experiments or theoretical calculations and the information held in advance can be used. Therefore, in that case, the operation required for vector subtraction can be further simplified.
  • the direction of the reference vector itself may be stored experimentally and empirically in advance, and may be called when necessary. This makes the amount of operation of the reference vector extremely simple.
  • FIG. 1 is a block diagram illustrating an outline of an X-ray inspection system equipped with a data processing apparatus according to one embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an energy region and an X-ray energy spectrum set in a photon counting type detector.
  • FIG. 3 is a diagram illustrating the relationship between the single substance model and the photon count for each energy region.
  • FIG. 4 is a diagram illustrating the relationship between the plurality of substance models and the photon count for each energy region.
  • FIG. 5 is a flowchart illustrating an outline of the substance identification process and its preprocessing executed by the data processor.
  • FIG. 6 is a diagram illustrating a preprocessing for substance identification performed by a data processor.
  • FIG. 1 is a block diagram illustrating an outline of an X-ray inspection system equipped with a data processing apparatus according to one embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an energy region and an X-ray energy spectrum set in a photo
  • FIG. 7 is a schematic flow chart illustrating a central portion of substance identification performed by a data processor in this embodiment.
  • FIG. 8 is a diagram illustrating the generation of a three-dimensional vector of the amount of X-ray absorption from each pixel in the region of interest of the image for each energy region.
  • FIG. 9 is a schematic flowchart illustrating a process from the creation of a three-dimensional scatter plot to the presentation of identification information.
  • FIG. 10 is a partial flowchart illustrating the process of step S134 of FIG. 7 according to the above-described embodiment in more detail.
  • FIG. 11 is a perspective view schematically illustrating a normalized three-dimensional scatter plot.
  • FIG. 8 is a diagram illustrating the generation of a three-dimensional vector of the amount of X-ray absorption from each pixel in the region of interest of the image for each energy region.
  • FIG. 9 is a schematic flowchart illustrating a process from the creation of a three-dimensional scatter plot to the presentation of identification information.
  • FIG. 12 is a diagram illustrating the generation of a 3D vector from a substance-specific scatter point from a 3D scatter plot.
  • FIG. 13 is a diagram illustrating a process from setting an ROI to the bone of the back of the hand (finger) as an object to calculating one objective vector representing only the bone portion designated by the ROI.
  • FIG. 14 is a schematic flowchart illustrating a process of bone mineral quantification performed by a data processor.
  • FIG. 15 is a diagram illustrating the relationship between the cross section of the finger portion and the passing X-ray path.
  • FIG. 1 shows a schematic configuration of an X-ray inspection system.
  • This X-ray inspection system includes an X-ray inspection device 10 that functions as an X-ray device.
  • This X-ray inspection system also includes a data processing device for performing bone density measurement (bone mineral quantification) and a data processing device 12 equipped with and installed a data processing method according to one aspect of the present invention (see FIG. 1). ).
  • the data processing device 12 may be integrated as an element of a system for collecting X-ray data, or may be provided as a general-purpose computer separate from the X-ray data collection system in a stand-alone manner. In the case of the stand-alone method, the X-ray data collection system can be connected to, for example, via the Internet, and the computer can also be configured to read the X-ray collection data and execute the bone mineral quantification process.
  • this data processing device 12 may be pre-installed with other necessary programs so as to execute processing other than the processing for bone mineral quantification.
  • a data processing device 12 is communicably connected to the X-ray inspection device 10 via a communication line LN, and the data processing device 12 is connected to, for example, a control unit of the X-ray inspection device 10. It may be integrated or installed separately.
  • the X-ray inspection apparatus 10 is obtained by an X-ray image (reconstructed image or spot photography based on a laminography method) of the hand and foot (inspection target OB) of the patient (human body) as the subject. It is configured to perform bone mineral quantification based on an X-ray transmission image).
  • this device 10 may be provided as, for example, a non-destructive inspection system such as a foreign substance inspection of food by X-ray, or an X-ray panoramic radiography system for medical use. Bone mineral quantification can also be considered as an aspect of non-destructive testing in a broad sense.
  • the X-ray inspection apparatus 10 will be described as performing bone mineral quantification by a laminography method in which an X-ray beam is scanned by a relative movement between the X-ray beam and a subject. ..
  • the data processing device and data processing method for X-ray inspection are absorbed information (or attenuation information) when X-rays pass through a substance.
  • the basic element is to perform a process to identify (identify, discriminate, identify, or determine) the type and properties of the substance. In the following description, this process may be collectively referred to as "substance identification”.
  • the X-ray inspection device 10 has an object space OS that can virtually set an orthogonal coordinate system of the X, Y, and Z axes.
  • the Z-axis direction corresponds to the scan direction in the object space OS in the case of non-destructive inspection.
  • This device 10 has an X-ray beam having a predetermined cone angle ⁇ in the Z-axis direction and a predetermined fan angle ⁇ in a direction (Y-axis direction) along a cross section (XY plane) orthogonal to the scan direction.
  • An X-ray generator 23 including an X-ray tube 21 for generating XB and a collimator 22 is provided.
  • the X-ray tube 21 is, for example, a rotating anode X-ray tube having a point-shaped X-ray tube focal point F (focal diameter is, for example, 1.0 mm ⁇ ).
  • a driving high voltage for X-ray irradiation is supplied to the X-ray tube 21 from an X-ray high voltage device (not shown).
  • the X-ray inspection device 10 includes an X-ray detector 24 (hereinafter, also simply referred to as a detector) arranged so as to face the X-ray tube 21 at a certain distance.
  • the detector 24 is configured by connecting a plurality of modules in a line, whereby the detector 24 has an elongated rectangular X-ray incident window as a whole.
  • Each module is made by forming a detection layer made of a semiconductor material such as CdTe, CZT (CdZnTe) into, for example, 20 ⁇ 80 pixels (each pixel has a size of 0.2 mm ⁇ 0.2 mm), and is electrically operated from X-rays.
  • X-ray detection element It is a so-called direct conversion type X-ray detection element that directly converts to a signal.
  • a charged electrode and a collecting electrode are actually attached to both sides of the detection layer forming the plurality of pixels. A bias voltage is applied between these two electrodes.
  • the detector 24 regards X-rays as a collection of photons (photons) having various energies, and detects a photon counting type that can count the number of these photons for each energy region. It is a vessel. As this energy region, for example, as shown in FIG. 2, four energy regions Bin 1 to Bin 4 are set. Of course, the number of this energy region Bin may be a plurality.
  • the X-ray intensity is detected as the number of X-ray photons per unit time for each pixel and each energy region Bin (actually, the cumulative number of photons for a certain period of time is measured. ).
  • an electric pulse signal having a peak value corresponding to the energy value is generated on the collecting electrode corresponding to the pixel.
  • the peak value that is, the energy value of this electric pulse signal is classified for each predetermined energy region Bin by the measurement circuit in the stage after the collection electrode, and the count value is incremented by one.
  • This count value is collected as a cumulative value (digital value) at regular time intervals for each pixel and each energy region Bin.
  • This collection is performed by a data collection circuit 25 built as an ASIC layer on the lower surface of the detection layer of the detector 24.
  • the detector 24 and the data acquisition circuit 25 constitute a detection unit 26. Therefore, X-ray transmission data (frame data) is sent from the detection unit 26, that is, the data acquisition circuit 25, to the data processing device 12 at a constant image transfer rate (frame rate).
  • the frame is a data transfer unit, for example, a frame in which data collected at a fixed time in each pixel is collected like a still image.
  • An example of an X-ray inspection system having such a configuration is shown in, for example, Japanese Patent Application Laid-Open No. 2007-136163, International Publication No. WO 2007/110465 A1, and WO 2013/047778 A1. Further, an example of the photon counting type detector 24 described above is also shown in, for example, International Publication WO 2012/144589 A1.
  • the inspection target OB is the head of the subject.
  • the pair of the X-ray generator 23 and the detector 24 rotates and moves around the head in a state of facing each other, for example, sandwiching the head.
  • a scan structure relating to this X-ray panoramic photography is also shown in, for example, Japanese Patent Application Laid-Open No. 2007-136163.
  • Bone quantification is not necessarily limited to the bones of the limbs, but is performed on bones of various parts of the body. Therefore, the jaw of the subject is also one of the targets for bone mineral quantification.
  • the data processing device 12 receives X-ray transmission data (frame data) from the X-ray inspection device 10 via the communication line LN.
  • the data processing device 12 processes the X-ray transmission data to form an inspection target itself, and information specific to the type or property of the substance in the site of interest of the inspection target. It is configured to be able to acquire (unique information), detect whether or not other substances such as foreign substances are present in the inspection target, and perform bone mineral quantification. [Acquisition of specific information on substances and data processing for bone mineral quantification] Hereinafter, the configuration of the data processing device 12 and its operation will be described based on the bone mineral quantification performed together with the substance identification.
  • the data processing device 12 is configured by a computer system CP as an example.
  • the computer system CP itself may be a computer system having a known arithmetic function, and includes an interface (I / O) 31 connected to the detection unit 26 via a communication line LN.
  • This interface 31 has a buffer memory 32, a ROM (read-only memory) 33 (functions as a “Non-transitory computer readable medium”), a RAM (random access memory) 34, and a CPU (central processing unit) via the internal bus B.
  • a data processor 35 (the device may be simply referred to as a processor or a computer), an image memory 36, an input unit 37, and a display unit 38 are communicably connected to each other.
  • the ROM 33 stores in advance a computer-readable substance identification and bone mineral quantification program, and the data processor 35 reads the program into its own work area and executes it.
  • the buffer memory 32 is used to temporarily store the frame data sent from the detection unit 26.
  • the RAM 34 is used to temporarily store the data required for the calculation at the time of the calculation of the data processor 35.
  • the image memory 36 is composed of, for example, an SSD (solid state device) or an HDD (hard disk drive), and is used to store various image data and information processed by the data processor 35.
  • the input device 37 and the display device 38 function as a man-machine interface with the user, and the input device 37 receives input information from the user.
  • the display 38 can display an image or the like under the control of the data processor 35.
  • An interface unit for obtaining information from the outside is configured by an interface 31, an input device 37, and a display device 38.
  • X-rays (fan-shaped beam X-rays) emitted from the X-ray tube 21 pass through the subject OB, and the transmitted X-rays are collected by the detector 24 under the photon counting method (photon counting method).
  • photon counting method photon counting method
  • the general profile of the spectrum is shown.
  • a threshold value TH is set in order to divide the energy on the horizontal axis into a plurality of energy regions Bin.
  • four thresholds TH 1 , TH 2 , TH 3 , and TH 4 are given as appropriate reference voltage values to the comparator (not shown), thereby the first to first usable.
  • the energy regions of 3 are set to Bin 1 , Bin 2 , and Bin 3.
  • the energy below the first energy region Bin 1 belongs to an energy region that is noisy and cannot be measured, while the fourth energy region Bin 4 located above the highest threshold value TH 4 is a photon count. Not used as it is not involved in. Therefore, in the case of this example, the first to third energy regions Bin 1 , Bin 2 , and Bin 3 are used for photon counting, excluding the uppermost and lowest energy regions.
  • the shape of the frequency profile shown in FIG. 2 is also determined by the type of the anode material of the X-ray tube 21 and the tube voltage, and usually, as shown in the figure, the count of the second energy region Bin 2 is the largest. Therefore, the threshold value TH is appropriately determined in consideration of the balance of the count values (frequency, count) for each energy region.
  • These four threshold values TH 1 to TH 4 are set as voltage threshold values to the comparator for each pixel of the detector 24 in the ASIC forming the data acquisition circuit 25. Therefore, the X-ray photons are counted for each pixel and each energy region.
  • the number of threshold values TH for each pixel may be any number as long as it is three or more.
  • the number of threshold THs is three, then the number of energy regions used is two. Further, when the counting component contained in Bin 4 is considered to be zero, the value of Bin 3 + Bin 4 can be used instead of the counting of Bin 3 without setting TH 4 . In this case, any positive integer may be used as long as the number of threshold values TH for each pixel is two or more. Therefore, in this case, if the number of threshold THs is 3, the number n (positive integer) of the energy regions used is 2.
  • Counting information can be obtained for each pixel forming the X-ray incident surface of the detector 24 and for each energy region Bin. Therefore, when the inspection target OB is relatively moved, the count value of each pixel in each energy region Bin can be multiplied by an appropriate weighting coefficient to perform shift & add, or the inspection target OB can be stationary. In this case, if the count value of each pixel in each energy region Bin is simply added to each pixel in each energy region Bin, X-ray transmission data (frame data) in each energy region Bin can be obtained. Further, among these three energy regions Bin 1 to Bin 3 , the count values of any two or all energy regions Bin are multiplied by an appropriate weighting coefficient and added to the pixels at the same position to obtain one frame. It may be X-ray transmission data.
  • the number of X-ray photons is collected for each pixel in each energy region Bin, and it can be used for image creation in consideration of the contribution of photon energy to the pixels. It has an advantage over the collection of conventional integral type X-ray transmission data. It was
  • the substance (the substance in the part to be inspected in the inspection target OB: the substance that forms the inspection target itself or the substance other than the inspection target) It is appropriate to consider whether it is made up of a single tissue or multiple tissues, and consider the X-ray absorption of each tissue.
  • X-rays are skin / muscle (part B in FIG. Since it permeates in the order of 15 A part) and muscle / skin (B part in FIG. 15), there are two parts as a general name, soft tissue by "skin / muscle” and hard tissue by bone. Can be roughly divided into.
  • a substance consists of a single tissue (single substance model)
  • the substances of the A portion and the B portion are the same, and as shown in FIG. 3 (A), the first, second, and third energy regions Bin.
  • the linear attenuation coefficients representing 1 , Bin 2 , and Bin 3 are set to ⁇ 1 , ⁇ 2 , and ⁇ 3 (cm -1 ), respectively.
  • This line attenuation coefficient is an index showing the inherent transmission characteristics of a substance with respect to X-rays.
  • a model in which X-rays are incident on a substance having a line attenuation coefficient of ⁇ 1 , ⁇ 2 , ⁇ 3 and a thickness of t (cm), which are different for each energy region Bin, is represented as shown in the figure. That is, the incident X-ray doses (number of photons) Cl 1 , C l 2 , and Cl 3 receive attenuation depending on the thickness t with the line attenuation coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , respectively, and the output X-ray dose (photons).
  • C o2 C l2 x e- ⁇ 2t
  • Co3 C l3 x e- ⁇ 3t ... (1) It can be expressed as.
  • the material has a thickness ta and a line attenuation coefficient from the viewpoint of its X-ray attenuation.
  • the layer structure is such that a layer of ⁇ ia , a layer having a thickness t b and a linear attenuation coefficient ⁇ ib , ..., A layer having a thickness t n and a linear attenuation coefficient ⁇ in are laminated.
  • the subscript i takes a value of 1 to 3 and corresponds to the subscript of Bin 1 to Bin 3.
  • the first to third energy regions Bin As shown in FIG. 4 (A), the first to third energy regions Bin.
  • C o2 C l2 ⁇ e - ⁇ 2ata ⁇ ... ⁇ e - ⁇ 2ntn
  • C o3 C l3 ⁇ e ⁇ 3 ata ⁇ ... ⁇ e ⁇ 3ntn ... (3) It can be expressed as.
  • the output X-dose (photon number) C oi is C with respect to the incident of the X-dose (photon number) C li .
  • It can be expressed as.
  • the data processor 35 executes a predetermined program to identify substances and quantify bone minerals according to the procedure shown in FIG.
  • the data processor 35 may be configured to perform only bone mineral quantification.
  • the data processor 35 determines, for example, whether or not to interactively or automatically acquire an image with the user (step S1), and waits until the timing of image acquisition.
  • the frame data is transferred from the detector unit 26 to the buffer memory 32 and saved, or the image acquisition is automatically determined in the buffer memory 32 regardless of whether or not the image acquisition is determined.
  • the frame data that has been transferred and already stored is called to, for example, the RAM 34 (step S2).
  • this frame data includes frame data FD 1 , FD 2 , and FD 3 of the count values of X-ray photons having energies belonging to each of the three energy regions Bin 1 , Bin 2 , and Bin 3.
  • the frame data FD all of the count value of the X-ray photon in the entire energy region Bin all (Bin 1 + Bin 2 + Bin 3 ).
  • the data processor 35 determines whether to perform substance identification and / or bone mineral quantification interactively with the user or in response to an automatic instruction (step S3). It waits until such an instruction is given, and ends the process when there is an end command (step S4). [Creating a focused image]
  • step S3 When it is determined in step S3 that the substance is identified and / or the bone mineral is quantified (step S3, YES), the data processor 35 interactively or automatically with the user, for example, intersects with the test target OB.
  • the cross section to be used is specified (step S5).
  • the user specifies the height Hc from the detector 24 via the input device 37.
  • the height in the height direction (Y-axis direction) of the inspection target OB for example, the instep of the hand or foot
  • the cross section of the height HC corresponding to the center in the height direction of the inspection target OB may be specified.
  • the detection unit 26 since the detection unit 26 is located below the bed BD, the height Hc is also taken into consideration for the height of the gap between the bed BD and the detection surface of the detector 24 of the detection unit 26.
  • HC H BD + H OB / 2.
  • Hc HBD .
  • step S5 when it is desired to automatically specify the cross section of the inspection target OB, in step S5, it is specified that the focal plane of all pixels for optimal focusing is set for each pixel instead of the height Hc as the cross section designation information. Is done.
  • the height of the focal plane of all pixels is not always constant, and in order to achieve optimum focusing for each pixel, there are many cases where the height is different for each pixel although it intersects the inspection target OB. ..
  • Such a method for creating an all-pixel focal plane is exemplified in, for example, US Pat. No. 8,433,033 and PCT / JP2010 / 62842. A laminography method (or tomosynthesis method) is used to prepare these examples.
  • the data processor 35 creates a tomographic image of the designated cross-section using, for example, a plurality of frame data FD all for the entire energy region Bin all (step S6).
  • a laminography method in which a plurality of frame data FD alls are superimposed on each other and pixels are added while shifting with a shift amount corresponding to the height Hc. You can create it below.
  • a tomographic image (laminography image) IM all is created in which the optimum focusing position is adjusted to the specified height Hc (see FIG. 6).
  • This tomographic image IM all is also one of the in-focus images, although the in-focus position is limited to the height Hc.
  • the focal plane of all pixels of the inspection target OB when it is specified to set the focal plane of all pixels of the inspection target OB, all the pixels are used among the collected frame data, for example, a plurality of frame data FD all belonging to the total energy region Bin all .
  • the in-focus image IM all ⁇ is created under the laminography method (see FIG. 6).
  • the inspected OB is reflected in this all-pixel in-focus image IM all ⁇ , and the all-pixel in-focus image IM all ′ is a tomographic image optimized for each pixel in the height direction or the X-ray irradiation direction. It is a statue. Examples of this tomographic image include those described in US Pat. No.
  • the data processor 35 uses the frame data FD 1 , FD 2 , and FD 3 collected from the three energy regions Bin 1 , Bin 2 , and Bin 3 , respectively, and uses the specified height Hc, or, for example, all pixels.
  • Tomographic images are sequentially created under the laminography method according to the average height of the focal surface (steps S7, S8, S9).
  • a total of three in-focus images IM 1 , IM 2 , and IM 3 for each energy region are created.
  • the order in which these three in-focus images IM 1 , IM 2 , and IM 3 are created is arbitrary.
  • these three in-focus images IM 1 , IM 2 , and IM 3 may also be created as all-pixel in-focus images in the same manner as described above. [Setting the area of interest]
  • the data processor 35 interactively or automatically sets the region of interest ROI with the user on the all-pixel focused image IM all (step S10).
  • This region of interest ROI is assumed to be composed of the same substance in the inspection target OB reflected in the in-focus image IM all , for example, when identifying the type of the substance forming the inspection target OB.
  • a region of interest ROI of appropriate size surrounding the portion is set. In the case of foreign body detection or lesion identification, a region of interest ROI of appropriate size is set to surround the suspected or pathologically suspected area (see FIG. 6).
  • the part that is presumed to be the same "skin / muscle" and "bone” in the direction of the X-ray path (for example, the second joint part of the index finger) is minute.
  • a rectangular area of interest ROI is set (see FIG. 13 (A) described later).
  • This region of interest ROI does not necessarily have to be rectangular and may be amorphous.
  • the region of interest ROI is determined on this all-pixel in-focus image IM all , the region of interest ROI is similarly set on the three in-focus images IM 1 , IM 2 , and IM 3 for each energy region using this region information. (See FIG. 6). [Background estimation and background deletion]
  • the data processor 35 estimates the pixel component (background component) that is the background in the region of interest ROI on the focused image IM all (step S11).
  • this background component is determined by what kind of identification information is desired.
  • the background components are often a bed and air. It is a known component including.
  • the component of the OB to be inspected itself is added to the known components as the background component of the foreign substance or the lesion. If the information of this background component is known, it is set as a fixed value and subtracted from the ROI of each of the three in-focus images IM 1 , IM 2 , and IM 3 for each energy region (step S12).
  • this estimation method it may be estimated by an appropriate method, for example, by an interpolation method from pixel values at arbitrary plurality of positions separated from each other, including only the background component outside the region of interest in the X-ray path. It was
  • the main purpose of the above-mentioned pretreatment is to set the ROI of the region of interest in each of the focused images IM 1 , IM 2 , and IM 3 for each of the three energy regions and to remove the background component thereof. Therefore, instead of creating an all-pixel in-focus image IM all in the entire energy region, an image sufficient for estimating the background component, that is, an in-focus image IM 1 , IM 2 , or IM 3 can be used instead. good. In this case, it is possible to indirectly estimate the background component such as the in-focus image that was not directly used for the background component estimation by using the estimated background component database or the like. [Main processing of substance identification]
  • the data processor 35 performs the main processing for substance identification (step S13).
  • This main treatment is also used as a part of the bone mineral quantification treatment described later, and is performed as shown in FIG. 7. ⁇ Calculation of line attenuation value ⁇ t>
  • the data processor 35 calculates the line attenuation value ⁇ t using the pixel values surrounded by the region of interest ROI and the background component removed in each of the three focused images IM 1 , IM 2 , and IM 3 (FIG. 7). , Step S131).
  • is the linear attenuation coefficient of the substance (also simply referred to as the attenuation coefficient)
  • t is the thickness of the substance along the X-ray irradiation direction.
  • ln means to take the natural logarithm.
  • the line attenuation value ⁇ t can be calculated.
  • the number of emitted photons Coi is the number of photons detected by the detector 24 for each energy region and for each pixel.
  • Cli is the number of photons of X-rays incident under the same conditions as the actual X-ray examination, and is, for example, a preset known value. Of course, it may be a value estimated at the time of substance identification in consideration of fluctuations in actual X-ray inspection conditions each time.
  • Beam hardening is a phenomenon in which low-energy photons are absorbed more than high-energy photons when continuous X-rays pass through a substance, and as a result, the average (effective) energy shifts to the higher energy side. be.
  • This beam hardening occurs, artifacts occur and the pixel values of the reconstructed image become inaccurate.
  • Beam hardening occurs to varying degrees and depends on the thickness of the material (the thicker the beam hardening, the greater the beam hardening). Therefore, it is desirable to correct the line attenuation value ⁇ t for each energy region and each pixel based on the correction processing method described in, for example, International Publication No. WO 2017/069286 A1 which the applicant has already applied for.
  • the beam hardening correction function for correcting the hardening is stored in advance in the storage unit as the correction information. Therefore, if the generalized target function and the information regarding the residual of the specified effective atomic number in the range of the predetermined effective atomic number are possessed, the beam hardening correction function can be calculated by the above procedure. Therefore, even if the range of the effective atomic number set in advance is wider, the calculation amount does not have to be proportional to the range in calculating the beam hardening correction function. That is, the beam hardening can be corrected with a smaller computational load for an object having an element having an effective atomic number Z eff in a wider range.
  • the soft tissues of the breast and limbs can be regarded as being composed of a simpler substance, and an instrument used for compressing or fixing the imaging part is used. Even in this case, since the flat plate structure and the material are known, the accuracy of background removal is good, and this line attenuation value ⁇ t can be calculated more accurately. Further, even in the non-destructive inspection of foods and the like, if the background component can be estimated appropriately as described above, the line attenuation value ⁇ t can be calculated accurately from the pixel information after the background component is removed.
  • the data processor 35 picks up and vectorizes the line attenuation value ⁇ t of each pixel forming the ROI of interest in the focused images IM 1 to IM 3 of the above-mentioned three energy regions Bin 1 to Bin 3 . (Step S132: see FIG. 8).
  • a three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) is created for each pixel (see FIG. 8). Since this 3D line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) still contains the thickness t and density factors, this vector itself is an X-ray derived from the thickness t and density. It only indicates the amount of attenuation and cannot be a substance-specific index. This is because, as in the case of X-ray scanogram and X-ray simple radiography, since the thickness t is unknown, it is not possible to obtain the substance-specific ray attenuation coefficients ⁇ 1 , ⁇ 2 , and ⁇ 3 for X-rays.
  • the moving speed of the belt conveyor used for the examination may be high and the X-ray irradiation area may be passed immediately, and the patient exposure dose for diagnosis may be reduced.
  • the X-ray dose is limited.
  • the count value of photons in each pixel collected for inspection or diagnosis becomes small, only one three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) is sufficient. , It is difficult to obtain information specific to a substance because it is buried in other noise components.
  • the substance identification is performed by normalizing this three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) and treating it as a set.
  • each three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) is normalized (or standardized) to a unit length (length 1) by the following equation (7), and the thickness is t.
  • a three-dimensional mass attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ) that does not include the factor of the substance density is created (step S133).
  • this normalization is to make the lengths of each three-dimensional mass attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ) uniform, and the length does not necessarily have to be 1, and is multiplied by an appropriate coefficient. It may be any length combined.
  • each three-dimensional mass is at the coordinate origin. If the start point of the attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ) is placed (step S134), the position coordinates of the end point will be the substance-specific information (material type, properties) that causes a change in ⁇ ′ . Information).
  • the vector quantity indicating the X-ray attenuation is treated as a three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) before normalization, and the three-dimensional mass after normalization. It is treated as an attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ).
  • all the processes are performed in three dimensions, but the same applies even if they are two-dimensional.
  • step S134 for example, as shown in FIG. 10, the coordinate data of the orthogonal three axes representing the mass line attenuation coefficients ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ , which are stored in advance in the ROM 33, are spatially generated.
  • Read (S134-1) for (for display), for example, when the length of the mass attenuation vector is 1, a partial spherical surface passing through the length of the three orthogonal axes 1 is set in the memory space (step S134-2).
  • each three-dimensional mass attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ) is arranged (also referred to as a dot or mapping) on this partial spherical surface from the origin O (step S134-3).
  • the three-dimensional tilt information of the three-dimensional mass attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ) for each pixel changes depending on the type and properties of the substance in the three-dimensional space set in step S134-1. It can also be said to be spray data that represents (virtually) information unique to a substance.
  • a set of dimensional tilt information (that is, a scatter point) is also called a "three-dimensional scatter diagram”. That is, if the substance changes, the inclination of the three-dimensional mass attenuation vector ( ⁇ 1 ′ , ⁇ 2 ′ , ⁇ 3 ′ ) changes, and the three-dimensional position (position of the scattering point) pointed to by the tip also changes.
  • the three-dimensional position information reflects the distribution of X-ray photon energy before and after passing through the inspection target OB.
  • the data processor 35 sets the length of each three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) for each pixel to (( ⁇ 1 t) 2 + ( ⁇ 2 t) 2 ). + ( ⁇ 3 t) 2 ) 1/2 ... (8)
  • the amount represented by this formula (8) is the amount of X-ray absorption (or X-ray attenuation; since the absorption of X-rays is the largest in the X-ray imaging region, it is described as "absorption” hereafter. ), which is also useful as complementary information for substance identification, and forms a pixel value as a substitute image for a conventional absorption image. Therefore, an image is created in which the value obtained by gradation of the absorption amount is used as the pixel value (step S135).
  • the length of this three-dimensional line attenuation vector is called the "absorption vector length” that corresponds to the pseudo (virtually) X-ray attenuation value, and the image using this as the pixel value is the "absorption vector length image (or pseudo).
  • Absorption image) This absorption vector length image is a stable image because it does not easily depend on the shape of the incident energy spectrum of X-rays, and comprehensively reflects each line attenuation value ⁇ t. As a result, this absorption vector length image becomes an image with high contrast.
  • the absorption vector length image may be stored in the image memory 36 and displayed on the display 38 when necessary. In particular, it is possible to obtain a characteristic image for a substance having a large mass and strong X-ray beam hardening.
  • the data processor 35 stores the above-mentioned three-dimensional scatter diagram data as substance-specific information and the absorption vector length image as supplementary information for substance identification in the image memory 36 (FIG. 5, step S14), and is necessary. Accordingly, they are presented to the user, for example, via the display 38 (step S15).
  • This process of displaying and analyzing the substance-specific information is executed, for example, as part of step S15 described above.
  • the data processor 35 displays the above-mentioned substance-specific information in response to an instruction from the user, for example. Specifically, a sphere surface with a radius of 1 centered on the origin is set in a three-dimensional coordinate space having each element ⁇ 1 ′ , ⁇ 2 ′ , and ⁇ 3 ′ of the three-dimensional mass attenuation vector as three axes (Fig.). 9, step S31).
  • the set of end points on this mapped sphere surface is a set of substance-specific scatter points based on the substance-specific information. Therefore, even if substances having different thicknesses t between pixels are to be inspected, a set of scatter points that does not depend on the factor of the thickness t can be obtained.
  • FIG. 11 schematically shows an example in which a set of scatter points is set as a three-dimensional scatter plot and dots are made on a part of a normalized sphere surface (a part of the same surface).
  • the data processor 35 then groups the scatter points guided for all or part of each pixel forming the region of interest ROI, for example, as shown in FIG. 12 (A) (see dotted box: step S33). , As shown in the figure (B), the center of gravity position GR of the grouped scatter points is calculated (step S34). Next, as shown in FIG. 3C, the vector V obj connecting the center of gravity position GR of each scatter point group and the origin is calculated (step S35).
  • the scope of grouping can be changed as appropriate depending on the content of the analysis. That is, all the scatter points guided to all the pixels forming the region of interest ROI may be grouped, or once all the scatter points are grouped, the scatter is statistically irregular (largely separated from the position of the center of gravity). You may remove the dots and then regroup them. Alternatively, if the ROI range is not appropriate and multiple substances are spread in the in-plane direction of the pixel, the scatter points will naturally spread or be separated, so that grouping can be performed at close scatter points.
  • the ROI may be reset to, or the user or the automatic determination software may specify the grouping target range on the scatter point to perform grouping.
  • the type and properties of the substance are identified or specified by comparing the vector V obj with the reference data held in advance (step S36).
  • the reference data for example, as a storage table
  • the three-dimensional inclination of the vector V obj measured in advance according to the type and properties of the substance is stored together with the allowable width. Therefore, the substance can be identified depending on whether or not the slope of the calculated vector V obj falls within the allowable range, and the vector information that becomes noise can be excluded.
  • the identified information is stored (step S37).
  • This vector V obj corresponds to an average vector obtained by averaging the directions of the three-dimensional line attenuation vectors ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) of each of the plurality of pixels forming the region of interest ROI (however, its length). Is normalized).
  • the three-dimensional scatter plot and the absorption vector length image can be presented and provided in various modes.
  • the data processor 35 may display the three-dimensional scatter diagram and the absorption vector length image separately on the display 38, or first display the three-dimensional scatter diagram and supplementarily display the absorption vector upon request from the user. A long image may be displayed, and vice versa.
  • the range of grouping of scatter points may be redesignated or the range of ROI may be redesignated on the screen once displayed.
  • the process of FIG. 14 is executed by the data processor 35.
  • the finger FG of the hand (for example, the portion between the second joint and the third joint, “skin / muscle, bone” has already been performed in step S10 described above.
  • the region of interest ROI is set in the tomographic image IM ALL of the designated cross section (a place that matches the plural material model of ", muscle / skin") (see FIGS. 13 (A) and 13 (B)).
  • the three-dimensional line attenuation vectors ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) in each pixel PX of this region of interest ROI are calculated (see FIG. 13 (C)). ..
  • This three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) is n-dimensional (here, three-dimensional) calculated by the pixel-specific vector calculation means functionally configured by steps S131 and S132 described above. ) Corresponds to the space vector.
  • the data processor 35 when performing bone mineral quantification, performs the three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 t) of each pixel PX of the region of interest ROI by the calculation of steps S31 to S35 described above.
  • the information indicating the vector V obj (however, the length is normalized), which is the average vector of each of the scatter point groups obtained by using the above, is called from the image memory 36 to the own work area (step S52: FIG. 13). See (D)).
  • X-ray path IBn FIG. 15
  • X-rays are transmitted in the order of "skin / muscle B part, bone A part, muscle / skin B part".
  • the vector V obj forms one group of scattering points determined by the synthetic characteristics of all the substances existing on the X-ray path IBn (however, it has a spread due to noise). From the vector V obj , the direction of the representative vector (three-dimensional mass attenuation vector) representing the region of interest ROI can be known.
  • the data processor 35 reads data indicating the absorption vector length forming the absorption vector length image already calculated for each pixel PX of the region of interest ROI from the image memory 36 into its own work area in step S135 (step S53). ).
  • this absorption vector length corresponds to the length of the three-dimensional line attenuation vector according to the above definition, and is the length of the X-ray transmitted through "skin / muscle, bone, muscle / skin”. Approximately corresponds to pseudo (virtual) X-ray attenuation values.
  • the data processor 35 calculates the average value of the absorption vector lengths for each read pixel PX (step S54). As a result, the average value of the lengths of the three-dimensional line attenuation vectors of the plurality of pixels PX forming the region of interest ROI can be found.
  • the data processor 35 uses a three-dimensional vector having the direction of the vector obtained in step S52 and the average value of the absorption vector length obtained in step S54 as a three-dimensional representative vector (three-dimensional) representing the region of interest ROI.
  • the average of the line attenuation vector; hereinafter referred to as a three-dimensional representative vector) is calculated as V obj-d (step S55: see FIG. 13 (E)).
  • the three-dimensional line attenuation vector ( ⁇ 1 t, ⁇ 2 t, ⁇ 3 ). It is also possible to use the vector averaging method of averaging each element of the three-dimensional line attenuation vector itself for a plurality of pixels forming the grouping region described above for t).
  • this three-dimensional representative vector V obj-d is the total when the soft tissue of "skin / muscle B", the hard tissue of "bone A”, and the "skin / muscle B" are sequentially transmitted. Contains X-ray attenuation information.
  • the information desired for bone mineral quantification is information on the bone itself surrounded by skin and muscle (bone density, bone mass). From this point of view, this 3D representative vector V obj-d contains extra X-ray attenuation information due to skin and muscle.
  • the data processor 35 reads out, for example, the three-dimensional reference vector V ref set and stored in advance in the ROM 33 (see FIG. 13 (F): step S56).
  • This three-dimensional reference vector V ref is a three-dimensional equivalent to the line attenuation value of the skin and muscle when it is assumed that X-rays are transmitted only through the skin and muscle (see the path IP shown by the virtual line in FIG. 15). It is a reference vector of, and is estimated and measured in advance. Instead of this preliminary estimation / measurement, at almost the same time when calculating the three-dimensional representative vector V obj-d , the ROI: It is also possible to set the ROI ref (see FIG. 13 (A)) and calculate the three-dimensional reference vector V ref in the same manner as the above-mentioned calculation of the three-dimensional representative vector.
  • this 3D reference vector V ref is i) estimated from the external size including the thickness of the target X-ray irradiation site or weight, or ii) statistically collected in advance and stored in the database.
  • the 3D reference vector V which is considered to be equivalent to the line attenuation vector in the partial region of the target imaging site, which is only the skin and muscles, and is obtained and stored in advance.
  • Call ref three dimensions have dimensions of ⁇ 1 t, ⁇ 2 t, ⁇ 3 t), or, as mentioned above, iv) a partial region of the subject's imaging site that is only the skin / muscle (3D).
  • this three-dimensional reference vector V ref is usually considerably smaller than that of the three-dimensional representative vector V obj-d , but it is an amount that must be surely excluded in order to perform accurate bone mineral quantification. Is.
  • the data processor 35 subtracts the reference vector V ref on the three-dimensional coordinates from the representative vector V obj-d that represents the region of interest ROI that has already been obtained (step S57).
  • a three-dimensional vector V obj-d ′ that substantially reflects the X-ray attenuation information of only the target finger bone A can be obtained.
  • This three-dimensional vector V obj-d ⁇ is called an objective vector. Therefore, this objective vector V obj- d'represents the entire area of interest ROI set on the tomographic image of the designated cross section of the finger FG, has an average line attenuation value as the vector length, and is a mass attenuation vector.
  • this objective vector V obj- d' is information that reflects the state of bone mass and bone quality when quantifying bone mineral through the bone of a finger.
  • the length of the target vector V obj-d ′ strongly reflects the bone mass (bone mineral content) only in the bone region, and the vector direction is that of the bone. It is presumed that it strongly reflects the bone quality of only the site.
  • the data processor 35 performs a process of visualizing the vector length and vector direction of the above-mentioned target vector V obj-d ′ to display and save the data, or presents only the data of the bone mineral quantification result. Do that (step S58).
  • This visualization provides easy-to-read bone mineral quantification information to an image interpreter or a patient, and color imaging, its display, and quantification are typical.
  • the image in foreign matter detection, it is possible to display the image as an effective atomic number image by displaying the image in color.
  • a substance other than the substance of the product may be displayed in color. Foreign matter can be detected.
  • the three-dimensional line attenuation vector ( ⁇ 1 t) of each pixel PX obtained by the photon counting type X-ray detection which has already been proposed by the present inventors.
  • ⁇ 2 t, ⁇ 3 t can be used to more accurately quantify bone information (bone mass (bone mineral content), bone quality) for bone diagnosis, which is also an aspect of searching for the properties of substances.
  • a subject OB eg, a patient
  • A bone (hard tissue)
  • B skin / muscle (soft tissue)
  • an X-ray image of the target OB is created based on the counted value and displayed on the display 38.
  • ROI region of interest
  • ROI is set for the same bone portion in the direction of the X-ray path.
  • each of the three energy regions corresponds to the line attenuation value when the X-ray passes through the object
  • the three-dimensional space vector (three-dimensional line attenuation vector) of each of the plurality of pixels is a photon. It is calculated based on the counting data. Further, the three-dimensional representative vector V obj-d representing the ROI is calculated by averaging the directions and sizes of the space vectors of each of the plurality of pixels.
  • the three-dimensional reference vector Vref corresponding to the line subtraction value of the substance B equivalent to the line subtraction value when it is assumed that one of the substances B is transmitted by X-rays is of interest.
  • the target vector V obj-d ′ equivalent only to the substance A corrected by the subtraction is obtained, at which time the reference vector V ref is theoretically or It is set (estimated / evaluated) in advance by experiments, etc., and is kept readable.
  • the portion composed of only the substance B from the X-ray image of the target OB displayed on the display 38 is set as the region of interest ROI ref for the reference vector determination, and the determination thereof is performed.
  • the correlation information of the thickness of the material B of the ROI part and the ROI ref part may be actually measured or statistically determined and retained from the previous experiment). Therefore, the magnitude of the three-dimensional line attenuation vector of the ROI ref portion may be adjusted to estimate or calculate the reference vector (three-dimensional line attenuation vector V ref of only the substance B of the ROI portion).
  • the target vector V obj- d' is used. It can be calculated analytically.
  • the above-mentioned objective vector V obj-d' reflects the degree of attenuation of continuous X-ray photons having a continuous energy distribution from low energy to high energy as they pass through the tissue of the bone part. It is possible to collect count values that more accurately represent the density and condition (property) of bone quality. Moreover, even if the ROI portion contains the substances A and B, the target vector reflecting the line attenuation of only the target substance A can be extracted with higher accuracy by a simple operation called vector subtraction.
  • the target vector reflecting the line attenuation of only the target substance A can be easily and accurately performed by the vector calculation for each region of interest.
  • an objective vector indicating at least the properties of the substance A can be obtained for each region of interest, so that the length or direction of the vector is the bone mass or It can provide more multifaceted information about bone quality. Unlike the conventional process of providing information based only on bone density, it is possible to enrich the provided property information and meet the demands for diagnosis and treatment of osteoporosis, for example.
  • the information of the 3D reference vector can be stored in advance by a relatively simple method. That is, as described above, i) estimate from the external size or weight including the thickness of the target X-ray irradiation site, or ii) read from the reference table statistically collected in advance and compiled into a database. iii) Set by calling a reference vector that is considered to be equivalent to the line attenuation vector in a partial region that is only the substance B in the imaging site of the target and is obtained and stored in advance. It's fine. In this case, the operation required for vector subtraction (that is, the operation for obtaining the reference vector) can be further simplified.
  • the direction itself of the 3D reference vector may be stored in advance with the direction information that has been empirically acquired, and may be called when necessary. This makes the amount of operation of the reference vector extremely simple.
  • the thickness of the OB to be inspected is appropriately measured and used for estimation or calculation of the 3D line attenuation vector (representative vector) V obj-d or the 3D reference vector V ref , depending on the application situation, it may be used. Although the amount of calculation increases, on the other hand, the quantitative accuracy can be improved. ⁇ Other effects>
  • the region of interest is set in the focused tomographic image (image) of the cross section (or uneven cross section) of the inspection target OB, and from the image, the substance of interest (likely the inspection target or foreign matter) existing in the region of interest.
  • the pixel information background component
  • the unique transmission characteristic of the substance of interest to X-rays is unique to each pixel. Calculated as information. Since this unique information does not depend on the thickness t of the substance, the type and properties of the substance of interest can be identified or specified based on this information. For example, a substance can be identified by comparing the calculated eigeninformation with known eigeninformation (known eigenvector information unique to a substance (information having a certain permissible range)) held in advance. ..
  • the area of interest can be selected as long as the type and properties of the substance do not change. It may be set to an appropriate size regardless of the change in the size.
  • substance identification can be performed with higher accuracy and its reliability is improved.
  • This scatter point represents the three-dimensional slope information (that is, the specific information of the substance) of the vector. Therefore, just by looking at the state of this scatter point, it is possible to determine whether the inspection target OB is, for example, metal or something else, and whether the inspection target OB has something different (foreign matter, etc.). It is easy to grasp visually and quantitatively by adding information such as the state of (what ratio of muscle and fat is) by finding the center of gravity of the scatter point with variation.
  • an absorption vector length image is also obtained.
  • the present inventors have stated that this absorption vector length image is less dependent on the energy spectrum shape of the irradiated X-ray than the conventional X-ray absorption image, and that the thickness of the muscle and cartilage is gradually changed. I'm checking using.
  • the spectrum shape is, for example, as illustrated in FIG. 2, a spectrum shape in which the counting frequency of X-ray photons in the energy region Bin 2 in the middle is higher than that on both sides thereof.
  • this absorption vector length image is more robust to X-ray irradiation conditions such as X-ray tube voltage because the shape dependence of the energy spectrum is small, has good image contrast, and is proportional to the line attenuation value ⁇ t. Then, the line attenuation value ⁇ t of all energy bands (the noise is superimposed on each pixel and the line attenuation value of each energy band reflecting the quantization noise existing in the count value for each energy band) is averaged. Since it is effective, noise is reduced.
  • ⁇ Modification example> Further, another modification of a method of actually measuring the thickness of the target OB to improve the evaluation accuracy of the bone diagnosis of the substance B will be described.
  • each three-dimensional line attenuation vector can be expressed as follows.
  • V obj-d ' ⁇ t-V ref , so it can be expressed as follows for each element of the vector using the equations (A.1) to (A.3).
  • ⁇ 1obj-d't 1 ⁇ 1 t -- ⁇ 1ref t 2 ....
  • ⁇ 2obj-d't 1 ⁇ 2 t -- ⁇ 2ref t 2 ....
  • ⁇ 3obj-d't 1 ⁇ 3 t -- ⁇ 3ref t 2 .... (A.6)
  • t t 1 + t 2 .... (A.7)
  • the relationship between the thickness t 3 of the substance B in the region of interest ROI ref and the thickness t 2 of the substance B in the region of interest ROI when the line attenuation coefficient of the three-dimensional reference vector is determined is clarified.
  • t 3 since t 3 is actually measured, t 2 is known.
  • ⁇ 1ref , ⁇ 2ref , and ⁇ 3ref are known from the calculation of the region of interest ROI ref , in that case, independent equations (A.4) to (A.7) exist and are unknown.
  • There are four variables of ⁇ 1obj-d ', ⁇ 2obj-d ', ⁇ 3obj-d ', and t 1 There are four variables of ⁇ 1obj-d ', ⁇ 2obj-d ', ⁇ 3obj-d ', and t 1 , which can be solved a priori.
  • the region of interest ROI and ROI ref are designed to photograph the same region even if the patient changes, and the data is accumulated to accumulate the region of interest. It is desirable to statistically process the relationship between the thickness t 3 of the substance B in the ROI ref portion and the thickness t 2 of the substance B in the region of interest ROI so that it can be estimated accurately. More directly, the direction of X-ray photography may be changed to directly measure the thickness t 1 of the finger bone (substance A). In this case, even if t 2 is not estimated, there are four unknown variables, which can be solved a priori.
  • the X-ray examination system of the above-described embodiment is provided as a system specialized in bone mineral quantification
  • the data processing device 12 is provided as a data processing device specialized in bone mineral quantification.
  • X-ray inspection system X-ray inspection device equipped with a data processing device: X-ray inspection device that implements the data processing method
  • Computer system data processing device
  • X-ray tube 24
  • Detector 25
  • Data acquisition circuit 26
  • Detection unit 12
  • Data processing device 32
  • Buffer memory storage means
  • ROM 34
  • RAM 35
  • data processor CPU
  • Image memory storage means
  • Input device 38

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

According to the present invention, even when an object is substantially composed of two kinds of known materials A, B, the properties (bone density, bone quality, etc.) of the material A, which is one of the two materials and attracts attention, are obtained more accurately through simpler calculation. An X-ray image of the object, which is displayed on a monitor (38), is processed on the basis of photon counting data detected by a detector (25). On the X-ray image, in a direction of the path of the X-ray, an ROI (region of interest) is set in a portion in which the materials A (e.g. bone), B (e.g. "skin/muscle") are estimated to be present. An n-dimensional spatial vector (n is a positive integer of 2 or greater) of each of a plurality of pixels of the X-ray detector is calculated on the basis of the photon counting data, the spatial vectors corresponding to X-ray attenuation values in n respective energy regions of the X-ray when the X-ray passes through the object. The direction and magnitude of the spatial vector of each of the plurality of pixels are averaged and a representative vector, which represents the ROI, is calculated. An n-dimensional reference vector corresponding to the X-ray attenuation values of the material B is subtracted from an n-dimensional objective vector corresponding to X-ray attenuation values equivalent only to the material A.

Description

データ処理装置、そのデータ処理装置を搭載したX線装置、及びデータ処理方法Data processing device, X-ray device equipped with the data processing device, and data processing method
 本発明は、連続X線を用いて撮像した対象物のX線透過データを処理するデータ処理装置、そのデータ処理装置を搭載したX線装置、及びデータ処理方法に関する。特に、本発明は、光子計数(フォトンカウンティング)型のX線検出器を用いて収集されたX線透過データを処理して、骨塩定量など、対象物の性状を評価するためのデータ処理装置、そのデータ処理装置を搭載したX線装置、及びデータ処理方法に関する。 The present invention relates to a data processing device that processes X-ray transmission data of an object imaged by using continuous X-rays, an X-ray device equipped with the data processing device, and a data processing method. In particular, the present invention is a data processing apparatus for processing X-ray transmission data collected using a photon counting type X-ray detector and evaluating the properties of an object such as bone mineral quantification. , An X-ray apparatus equipped with the data processing apparatus, and a data processing method.
 近年、X線を用いて対象物の種類や性状を特定したいという要望は随所でみられる。その一例として、骨粗鬆症の予防や治療のため、人体の骨の密度を測定する骨密度測定(骨塩定量)がある。この骨粗鬆症を予防することは、健康寿命を伸ばすためにも重要な要素である。 In recent years, there have been many requests to identify the type and properties of objects using X-rays. One example is bone density measurement (bone mineral quantification), which measures the density of bone in the human body for the prevention and treatment of osteoporosis. Preventing this osteoporosis is also an important factor in extending healthy life expectancy.
 この骨粗鬆症診断では、骨の強さを判定するための代表的な指標である骨密度(骨塩量)のほか、最近では骨質をも重視するようになってきている。骨密度(骨塩量)は骨の中にカルシウム等のミネラルがどの程度あるかを示すものであり、骨質は骨の微細構造、骨代謝回転の速さ、微小骨折の有無、及び、石灰化の状態、コラーゲンの状態を示す、一つの指標である。 In this osteoporosis diagnosis, in addition to bone density (bone mineral content), which is a typical index for determining bone strength, recently, bone quality has also been emphasized. Bone density (bone mineral content) indicates how much minerals such as calcium are present in bone, and bone quality is the microstructure of bone, the speed of bone turnover, the presence or absence of microfractures, and calcification. It is an index showing the state of calcium and the state of collagen.
 この骨粗鬆症診断には、従来、DEXA(dual-energyX-ray absorptiometry:デクサ)法、超音波法、MD(エムディ)法が多く用いられている。DEXA法は、エネルギーの異なる2種類のX線を使って、その2種類のX線が骨を透過したあとのX線透過データ同士の差分情報に基づいて骨密度(骨塩量)を測定する手法である。超音波法は、踵や脛の骨に超音波を照射してその反射情報から骨密度を測定する手法である。MD法は、手の骨と厚さの異なるアルミニウム板(基準物質)とを同時にX線撮影し、撮影されたX線画像上で骨とアルミニウム板との濃度を比較することにより骨密度を測定する手法である。また、レントゲン検査によっても、そのX線写真から骨折や変形の有無、骨粗鬆化(骨密度の低下)の有無等の状態を確認できる。一方、骨質を測定するには、一般に、骨代謝マーカを用いた血液検査や尿検査により、骨の新陳代謝の速度を評価することで行われる。  Conventionally, the DEXA (dual-energy X-ray absorptiometry) method, the ultrasonic method, and the MD (MD) method are often used for the diagnosis of osteoporosis. The DEXA method uses two types of X-rays with different energies to measure bone density (bone mineral content) based on the difference information between the X-ray transmission data after the two types of X-rays have passed through the bone. It is a method. The ultrasonic method is a method of irradiating the heel and shin bones with ultrasonic waves and measuring the bone density from the reflected information. In the MD method, the bone density of the hand is measured by simultaneously X-raying the bones of the hand and aluminum plates (reference substances) of different thicknesses and comparing the concentrations of the bones and the aluminum plates on the X-ray images taken. It is a method to do. In addition, the presence or absence of fracture or deformation, the presence or absence of osteoporosis (decrease in bone density), and the like can be confirmed from the X-ray photograph by the X-ray examination. On the other hand, the measurement of bone quality is generally performed by evaluating the rate of bone metabolism by a blood test or a urine test using a bone metabolism marker. It was
 このような骨粗鬆症診断法の一例は、特許文献1に記載のものが知られている。この特許文献1に記載の手法は、DEXA法に属するもので、X線画像診断装置として開示されており、その一態様によれば、高低2種類の異なる平均エネルギーを有するX線ビームを用いて撮影された各X線画像から差分画像を生成する差分画像生成部と、前記差分画像から腰椎領域を検出するとともに腰椎周辺部から横突起領域及び軟部組織領域を検出する検出部と、検出した軟部組織領域の画素値を基準として前記腰椎領域の画素値を補正する補正部と、補正した腰椎領域に基づき骨密度を算出する骨密度算出部と、を備えている。  An example of such an osteoporosis diagnostic method is known as described in Patent Document 1. The method described in Patent Document 1 belongs to the DEXA method and is disclosed as an X-ray diagnostic imaging apparatus. According to one aspect thereof, an X-ray beam having two types of high and low average energies is used. A difference image generation unit that generates a difference image from each X-ray image taken, a detection unit that detects a lumbar region from the difference image, and a transverse protrusion region and a soft tissue region from the periphery of the lumbar spine, and a detected soft tissue region. It includes a correction unit that corrects the pixel value of the lumbar region based on the pixel value of the tissue region, and a bone density calculation unit that calculates the bone density based on the corrected lumbar region. It was
 つまり、この診断法は、X線の骨成分での減弱度合がエネルギーの違いよって異なることを利用した診断法である。 In other words, this diagnostic method is a diagnostic method that utilizes the fact that the degree of attenuation of the bone component of X-rays differs depending on the energy.
 ところで、本発明者等は、既に、この光子計数型のX線検出に関して、特許文献2(国際公開番号WO 2016/171186 A1公報(国際公開日:2016年10月27日)に記載のデータ処理法を提案している。 By the way, the present inventors have already described the data processing described in Patent Document 2 (International Publication No. WO 2016/171186 A1 Publication (International Publication Date: October 27, 2016) regarding this photon counting type X-ray detection. Proposing a law.
 この提案によれば、光子計数型のX線検出器により検出された計数値から対象物の画像を作成し、その画像上で関心領域を設定し、その画像において関心領域に存在する物質の背景となる画素情報を削除する。さらに、関心領域における連続X線の複数のエネルギー領域のそれぞれ毎に、画素毎の計数値に基づいて物質をX線が透過したときの透過特性をベクトル量として表し、このベクトル量から当該物質に固有の固有情報を演算する。  According to this proposal, an image of an object is created from the count values detected by a photon counting type X-ray detector, a region of interest is set on the image, and a background of a substance existing in the region of interest in the image is created. Delete the pixel information that becomes. Further, for each of a plurality of energy regions of continuous X-rays in the region of interest, the transmission characteristic when X-rays are transmitted through the substance based on the count value for each pixel is expressed as a vector quantity, and the vector quantity is used as the vector quantity. Compute unique and unique information. It was
 連続X線のエネルギー領域を例えば3つとし、その各エネルギー領域の実効エネルギーに対応した線減弱係数をμ、μ、μとすると、上述したベクトル量は、その線減弱係数をμ、μ、μを各次元とする3次元空間において3次元のベクトルとして表される。 Assuming that the energy regions of continuous X-rays are, for example, three and the linear attenuation coefficients corresponding to the effective energy of each energy region are μ 1 , μ 2 , and μ 3 , the above-mentioned vector quantity has the linear attenuation coefficient of μ 1 . , Μ 2 and μ 3 are represented as a three-dimensional vector in a three-dimensional space having each dimension.
 勿論、統計ノイズや物質の厚さtの影響によって、関心領域を成す複数の画素それぞれの3次元ベクトルの方向はばらつき、ベクトルの長さもばらつくことで、座標原点を始点としたベクトルの終点は3次元的に広がりを持ちながら散布される。このため特許文献2の手法においては、まず物質の厚さtの要因を排除するため、全部の3次元ベクトルを正規化し、かつ、その正規化された長さを半径とする球状の散布面に、座標原点とを結ぶベクトル先端(終点)の位置(散布点)として表示させる。その上で、統計ノイズの影響を除去するため、散布点の集合毎に分布の重心位置を演算する等、平均化処理を行って、その重心位置と座標原点とを繋ぐベクトルを、その集合分布を代表する3次元ベクトルとして設定する。この代表3次元ベクトルの方向は、連続X線の減弱の観点からは、物質固有又は物質の性状に固有のものである。つまり、この特許公報2の手法は、そのベクトル方向を、予め既知のファントムを用いて測定・演算した参照値、又は理論的に演算した参照値と比較することによって、その物質の種類や性状を同定(推定、評価)できるというものであった。また、特許公報文献2の手法における、処理すべき次元は、3次元に限定されるものではなく、2次元以上の次元に適用可能な手法であった。 Of course, due to the influence of statistical noise and the thickness t of the material, the direction of the three-dimensional vector of each of the plurality of pixels forming the region of interest varies, and the length of the vector also varies, so that the end point of the vector starting from the coordinate origin is 3 It is sprayed while having a dimensional expanse. Therefore, in the method of Patent Document 2, first, in order to eliminate the factor of the thickness t of the material, all the three-dimensional vectors are normalized, and the spherical spray surface having the normalized length as the radius is used. , Displayed as the position (scattering point) of the vector tip (end point) connecting the coordinate origin. Then, in order to eliminate the influence of statistical noise, averaging processing is performed such as calculating the position of the center of gravity of the distribution for each set of scattering points, and the vector connecting the position of the center of gravity and the origin of the coordinates is obtained from the set distribution. Is set as a representative three-dimensional vector. The direction of this representative three-dimensional vector is peculiar to the substance or the property of the substance from the viewpoint of the attenuation of continuous X-rays. That is, the method of Patent Gazette 2 compares the vector direction with a reference value measured / calculated using a known phantom in advance or a reference value calculated theoretically, thereby determining the type and properties of the substance. It was possible to identify (estimate, evaluate). Further, in the method of Patent Publication Document 2, the dimension to be processed is not limited to three dimensions, but is a method applicable to two or more dimensions.
日本国特開2017-131427号公報Japanese Patent Application Laid-Open No. 2017-131427 国際公開第2016/171186号International Publication No. 2016/171186
 <特許文献1について> <About Patent Document 1>
 しかしながら、上述した特許文献1に代表される、従来のDEXA法は、高低2種類のX線のエネルギー情報の差を利用して骨密度(骨塩量)を測定するだけであり、骨質という、骨粗鬆症の診断や治療において昨今、注目されている要素を加味できていない。したがって、このDEXA法は、骨粗鬆症の診断、治療に対する近年の要求を完全には満たしていないものである。
 <特許文献2について>
However, the conventional DEXA method represented by the above-mentioned Patent Document 1 only measures the bone density (bone mineral content) by utilizing the difference in the energy information of two types of high and low X-rays, and is called bone quality. In the diagnosis and treatment of osteoporosis, the factors that have been attracting attention these days have not been taken into consideration. Therefore, this DEXA method does not completely meet the recent demands for the diagnosis and treatment of osteoporosis.
<About Patent Document 2>
 一方で、前述した特許文献2においては、連続X線を成す光子のエネルギースペクトラムを例えば3つのエネルギー領域に分割して、その各エネルギー領域の実効エネルギーに対応した線減弱係数をμ、μ、μを各次元とする3次元空間のベクトルまで求めている。したがって、この3次元ベクトルが持つ物理的な意味を骨の評価に当てはめると、この3次元ベクトルの方向及び大きさは、骨質と骨密度(骨塩量)を含む骨の状態を示す指標の一つであると考えられる。 On the other hand, in the above-mentioned Patent Document 2, the energy spectrum of photons forming continuous X-rays is divided into, for example, three energy regions, and the line attenuation coefficient corresponding to the effective energy of each energy region is μ 1 , μ 2 . , Even the vector of the three-dimensional space with μ 3 as each dimension is obtained. Therefore, when the physical meaning of this 3D vector is applied to the evaluation of bone, the direction and size of this 3D vector is one of the indicators showing the state of bone including bone quality and bone density (bone mineral content). It is considered to be one.
 その理由は、呼称が同じ物質(例えば、骨)であっても、その物質の組織を通過するX線光子の減弱度合は、そのX線光子のエネルギーの高低によって異なるが、呼称が同じ物質であっても、それを構成する組成が異なれば、X線減弱の観点からは、異種の物質と考えることができるからである。例えば、低いエネルギーのX線光子の減弱に比して、高いエネルギーのX線光子の減弱が大きい骨とそうでない骨とでは、同じ“骨”という物質であっても、前述の3次元ベクトルの方向は互いに異なる。つまり、ベクトルの方向及び大きさは、骨塩量のみならず、骨を構成する組成や成分の違い(つまり、骨質の違い)をも示す指標の一つであると言える。 The reason is that even if the substance has the same name (for example, bone), the degree of attenuation of the X-ray photon passing through the tissue of the substance differs depending on the energy level of the X-ray photon, but the substance has the same name. Even if there is, if the composition constituting it is different, it can be considered as a different substance from the viewpoint of X-ray attenuation. For example, in bones where the attenuation of high-energy X-ray photons is larger than that of low-energy X-ray photons, and bones where the attenuation is not, even if the substance is the same "bone", the above-mentioned three-dimensional vector can be used. The directions are different from each other. That is, it can be said that the direction and size of the vector are one of the indexes showing not only the amount of bone mineral but also the difference in composition and composition (that is, the difference in bone quality) constituting the bone.
 しかしながら、この特許文献2で提案される、物質厚さtに依存しない3次元ベクトルの散布図を用いたとしても、また、吸収ベクトル長画像と呼ばれる、正規化しない3次元ベクトルの長さ情報だけを用いたとしても、骨粗鬆症の診断や治療に要求される、骨密度及び骨質の計測や評価には物足りない。すなわち、そのままでは、共に精度良いものではない。 However, even if the scatter diagram of the three-dimensional vector that does not depend on the material thickness t, which is proposed in Patent Document 2, is used, only the length information of the non-normalized three-dimensional vector called the absorption vector length image is used. Is not sufficient for the measurement and evaluation of bone density and bone quality required for the diagnosis and treatment of osteoporosis. That is, neither is accurate as it is.
 例えば、手をX線撮影して、その部分に写り込んでいる骨の骨塩定量(骨塩とは無機質の骨ミネラルを言い、化学物質としてはハイドロキシアパタイトであることが知られている)を行うことを考える(説明の都合上、骨は硬組織(骨塩に相当)からのみで構成されるとする)。この場合、そのX線画像に写り込んだ骨部分に関心領域を設定する。その領域を成すX線検出器の各画素へ至るX線パスには、皮膚・筋肉などの軟組織と骨部分の硬組織との両方が存在している。このため、X線検出器では軟組織と硬組織の減弱係数と厚さに依存した計数値が収集される。このため、この計数値から前述した3次元ベクトルを演算したとしても、硬組織(骨塩)による減弱特性を正確に反映した3次元ベクトルを求めることはできない。したがって、それに基づいた骨塩定量を、より高い精度で行うことは困難である。 For example, take an X-ray image of your hand to determine the amount of bone mineral in the bone (bone mineral is an inorganic bone mineral, and it is known that hydroxyapatite is a chemical substance). Consider doing (for convenience of explanation, bone is composed only of hard tissue (corresponding to bone mineral)). In this case, the region of interest is set in the bone portion reflected in the X-ray image. Both soft tissues such as skin and muscle and hard tissues of bones are present in the X-ray path leading to each pixel of the X-ray detector forming the region. Therefore, the X-ray detector collects count values depending on the attenuation coefficient and thickness of soft and hard tissues. Therefore, even if the above-mentioned three-dimensional vector is calculated from this count value, it is not possible to obtain a three-dimensional vector that accurately reflects the attenuation characteristic of hard tissue (bone mineral). Therefore, it is difficult to perform bone mineral quantification based on it with higher accuracy.
 なお、上述した問題点は、骨塩定量を例示してX線一般撮影領域における骨粗鬆診断について述べてきたが、対象物の種類や形状を特定したいという所謂、物質同定の分野を俯瞰してみると、必ずしもX線一般撮影の分野に限定される話ではない。例えば、歯科での骨塩定量や食品の異物を検査する場合であっても、X線パス上に2つの減弱係数が異なりかつそれぞれの厚さの不明な物質が存在する場合に、それらの物質のうちの注目している物質1つの性状を簡単に同定することは難しい。 The above-mentioned problems have been described for osteoporosis diagnosis in the X-ray general radiography area by exemplifying bone mineral quantification, but a bird's-eye view of the so-called substance identification field in which it is desired to specify the type and shape of an object. Looking at it, it is not necessarily limited to the field of general X-ray photography. For example, even when quantifying bone minerals in dentistry or inspecting foreign substances in food, if there are substances with different attenuation factors and unknown thickness on the X-ray path, those substances It is difficult to easily identify the properties of one of the substances of interest.
 そこで、本発明は、従来の光子計数型のX線検出における上述した物質同定に鑑みてなされたもので、対象が実質的に2種類の既知の物質A,Bから成る場合であっても、その一方の注目している物質Aの性状を、より簡単な演算で且つより精度良く、さらに、骨密度及び骨質などのように、その注目している物質の性状の情報をより多面的に提供することができる、光子計数型のX線検出に適したデータ処理装置、データ処理方法、及びそれらを搭載又は実装してX線装置を提供することを、その目的とする。 Therefore, the present invention has been made in view of the above-mentioned substance identification in the conventional photon counting type X-ray detection, even when the target is substantially composed of two kinds of known substances A and B. On the other hand, the properties of the substance A of interest can be obtained with simpler calculations and more accuracy, and information on the properties of the substance of interest, such as bone density and bone quality, can be provided from multiple perspectives. It is an object of the present invention to provide a data processing device suitable for photon counting type X-ray detection, a data processing method, and an X-ray device equipped with or mounted thereof.
 上記目的を達成するため、本発明の一態様に係るデータ処理装置は、n個(nは2以上の正の整数)の互いに異なるエネルギー領域を含む連続X線が、当該X線の透過特性に関して実質的に2種類の既知の物質A,Bから成る対象に照射され、当該対象を透過した前記X線が、複数の画素を有するX線検出器により検出データとして検出されるときに、当該検出データに基づく処理を行う。このデータ処理装置は、前記X線検出器により検出された前記検出データに基づき前記対象のX線像を作成してモニタ上に表示するX線透過像提供手段と、前記モニタに表示された前記X線像上で、前記X線のパスの方向において前記物質A,Bの合計の厚さが一定と推定される部分にROI(region of interest)を設定するROI設定手段と、前記n個のエネルギー領域のそれぞれにおいて前記X線の前記対象を透過するときの線減弱値に相当し、且つ、前記ROIを成す複数の前記画素に渡って大きさが平均化された1つのn次元の線減弱ベクトルを前記検出データに基づいて演算する線減弱ベクトル演算手段と、前記2種類の物質A,Bのうち、一方の物質Bのみを前記X線が透過したと仮定したときの、当該物質Bの線減弱値に相当する前記n次元の参照ベクトルを推定又は仮定して保持する参照ベクトル保持手段と、前記物質Aのみに等価な前記線減弱値に相当する前記n次元の目的ベクトルを、前記線減弱ベクトル演算手段により演算された前記n次元の線減弱ベクトルから前記n次元の参照ベクトルを減算する目的ベクトル演算手段と、を備えたことを特徴とするデータ処理装置、である。このとき、当該データ処理装置に、参照ベクトルを推定または仮定する演算手段を備えることもできる。 In order to achieve the above object, in the data processing apparatus according to one aspect of the present invention, continuous X-rays containing n (n is two or more positive integers) different energy regions are related to the transmission characteristics of the X-rays. When an object composed of substantially two types of known substances A and B is irradiated and the X-rays transmitted through the object are detected as detection data by an X-ray detector having a plurality of pixels, the detection is performed. Performs data-based processing. This data processing device includes an X-ray transmission image providing means that creates an X-ray image of the target based on the detection data detected by the X-ray detector and displays it on the monitor, and the X-ray transmission image display means displayed on the monitor. ROI setting means for setting ROI (region of interest) in a portion of the X-ray image where the total thickness of the substances A and B is estimated to be constant in the direction of the X-ray path, and the n pieces. One n-dimensional line attenuation corresponding to the line attenuation value when the X-ray is transmitted through the object in each of the energy regions and whose size is averaged over a plurality of the pixels forming the ROI. A line attenuation vector calculation means that calculates a vector based on the detection data, and the substance B when it is assumed that the X-ray is transmitted through only one of the two types of substances A and B, the substance B. The line includes a reference vector holding means that estimates or assumes and holds the n-dimensional reference vector corresponding to the line attenuation value, and the n-dimensional object vector corresponding to the line attenuation value equivalent only to the substance A. It is a data processing apparatus including a target vector calculation means for subtracting the n-dimensional reference vector from the n-dimensional line attenuation vector calculated by the attenuation vector calculation means. At this time, the data processing device may be provided with an arithmetic means for estimating or assuming a reference vector.
 また、本発明に係る別の態様として、データ処理方法が提供される。このデータ処理方法は、n個(nは2以上の正の整数)の互いに異なるエネルギー領域を含む連続X線が、当該X線の透過特性に関して実質的に2種類の既知の物質A,Bから成る対象に照射され、当該対象を透過した前記X線が、複数の画素を有するX線検出器により検出データとして検出されるときに、当該検出データに基づく処理を行う。このデータ処理方法によれば、前記X線検出器により検出された前記検出データに基づき前記対象のX線像を作成してモニタ上に表示し、前記モニタに表示された前記X線像上で、前記X線のパスの方向において前記物質A,Bの合計の厚さが一定と推定される部分にROI(region of interest)を設定し、前記n個のエネルギー領域のそれぞれにおいて前記X線の前記対象を透過するときの線減弱値に相当し、且つ、前記ROIを成す複数の前記画素に渡って大きさが平均化された1つのn次元の線減弱ベクトルを前記検出データに基づいて演算し、前記2種類の物質A,Bのうち、一方の物質Bのみを前記X線が透過したと仮定したときの、当該物質Bの線減弱値に相当する前記n次元の参照ベクトルを推定又は仮定して保持している当該参照ベクトルを、前記線減弱ベクトル演算手段により演算された前記n次元の線減弱ベクトルから減算して、前記物質Aのみに等価な前記線減弱値に相当する前記n次元の目的ベクトルを演算する、ことを特徴とする。このとき、好適には、当該データ処理方法に、参照ベクトルを推定または仮定する演算処理が含まれる。 Further, as another aspect of the present invention, a data processing method is provided. In this data processing method, continuous X-rays containing n (n is a positive integer of 2 or more) different energy regions are composed of substantially two kinds of known substances A and B with respect to the transmission characteristics of the X-rays. When the X-ray that has been irradiated to the target and has passed through the target is detected as detection data by an X-ray detector having a plurality of pixels, processing based on the detection data is performed. According to this data processing method, an X-ray image of the target is created based on the detection data detected by the X-ray detector, displayed on the monitor, and displayed on the X-ray image displayed on the monitor. , ROI (region of interest) is set in the portion where the total thickness of the substances A and B is estimated to be constant in the direction of the X-ray path, and the X-rays are set in each of the n energy regions. One n-dimensional line attenuation vector corresponding to the line attenuation value when passing through the object and whose size is averaged over a plurality of the pixels forming the ROI is calculated based on the detection data. Then, when it is assumed that the X-rays pass through only one of the two types of substances A and B, the n-dimensional reference vector corresponding to the line attenuation value of the substance B is estimated or The reference vector that is assumed and held is subtracted from the n-dimensional line attenuation vector calculated by the line attenuation vector calculation means, and the n corresponding to the line attenuation value equivalent only to the substance A. It is characterized by computing a dimensional object vector. At this time, preferably, the data processing method includes an arithmetic process for estimating or assuming a reference vector.
 このデータ処理装置及びデータ処理方法を、一例として、骨塩定量装置に搭載することができる。その場合の一例として、物質Aは被検体の手足の骨(硬組織)であり、物質Bはその皮膚及び筋肉(軟組織)である。 This data processing device and data processing method can be mounted on a bone mineral quantifying device as an example. As an example in that case, the substance A is the bone (hard tissue) of the limbs of the subject, and the substance B is the skin and muscle (soft tissue) thereof.
 本発明によれば、n個(nは2以上の正の整数)の互いに異なるエネルギー領域を含む連続X線が、当該X線の透過特性に関して実質的に2種類の既知の物質A,Bから成る対象に照射され、当該対象を透過した前記X線が、複数の画素を有するX線検出器により検出された計数値に基づく処理が行われる。 According to the present invention, continuous X-rays containing n (n is a positive integer of 2 or more) different energy regions are derived from substantially two types of known substances A and B with respect to the transmission characteristics of the X-rays. The X-rays irradiated to the target and transmitted through the target are processed based on the count value detected by the X-ray detector having a plurality of pixels.
 より具体的には、前記計数値に基づき前記対象のX線像が作成されてモニタ上に表示される。このモニタに表示されたX線像上で、X線のパスの方向において前記物質A,Bの合計の厚さが、例えば一定と推定される部分にROI(region of interest:関心領域)が設定される。さらに、前記n個のエネルギー領域のそれぞれにおいて、前記X線の前記対象を透過するときの線減弱値に相当し、且つ、前記ROIを成す複数の前記画素に渡って大きさが平均化された1つのn次元(nは2以上の正の整数)の線減弱ベクトルが前記計数値に基づいて演算される。前記2種類の物質A,Bのうち、一方の物質Bのみを前記X線が透過したと仮定したときの当該物質Bの線減弱値に相当する前記n次元の参照ベクトルを、前記線減弱ベクトル演算手段により演算された前記n次元の線減弱ベクトルから減算して、前記物質Aのみに等価な前記線減弱値に相当する前記n次元の目的ベクトルが演算される。このとき、参照ベクトルは、理論的に又は実験等によって事前に設定されているか、参照ベクトル演算用のROI設定が可能な被写体の場合(例えば、前記X線パス上に物質Bのみで構成されている場所が存在する場合など)は、リアルタイムにあるいは1枚の画像の中から、前記線減弱ベクトルの導出方法と類似の方法により、適宜演算される。 More specifically, an X-ray image of the target is created based on the count value and displayed on the monitor. On the X-ray image displayed on this monitor, ROI (region of interest) is set in the part where the total thickness of the substances A and B is estimated to be constant in the direction of the X-ray path, for example. Will be done. Further, in each of the n energy regions, the size corresponds to the line attenuation value when the X-ray is transmitted through the object, and the size is averaged over the plurality of pixels forming the ROI. One n-dimensional (n is a positive integer of 2 or more) line attenuation vector is calculated based on the count value. Of the two types of substances A and B, the n-dimensional reference vector corresponding to the line attenuation value of the substance B when it is assumed that only one of the substances B is transmitted by the X-ray is the line attenuation vector. By subtracting from the n-dimensional line attenuation vector calculated by the calculation means, the n-dimensional target vector corresponding to the line attenuation value equivalent only to the substance A is calculated. At this time, the reference vector is set in advance theoretically or experimentally, or in the case of a subject capable of setting the ROI for the reference vector calculation (for example, the reference vector is composed of only the substance B on the X-ray path. (For example, when there is a place where the line is present) is appropriately calculated in real time or from one image by a method similar to the method for deriving the line attenuation vector.
 このため、連続X線を照射して得たX線像上で、所望の部分である、物質A,Bの合計の厚さが、例えば一定と推定される部分にROIが設定される。さらに、そのROIを成す複数の画素に渡って大きさが平均化された1つのn次元の線減弱ベクトルが演算される。このn次元の線減弱ベクトルは、そのROIにおいて種類の異なる2つの物質A,Bが合成されたX線透過特性を反映したものになる。 Therefore, on the X-ray image obtained by irradiating continuous X-rays, the ROI is set in the portion where the total thickness of the substances A and B, which is a desired portion, is estimated to be constant, for example. Further, one n-dimensional line attenuation vector whose size is averaged over a plurality of pixels forming the ROI is calculated. This n-dimensional line attenuation vector reflects the X-ray transmission characteristic in which two substances A and B of different types are synthesized in the ROI.
 そこで、物質Aを対象(例えば人の手足)に含まれる例えば骨部分の組織(硬組織)とし、物質Bをその部分の筋肉及び皮膚の組織(軟組織)とし、目的部位は骨部分(物質Aの存在する部分)であるとする。この場合、筋肉及び皮膚の組織は診断に邪魔な部分に相当する。しかし、この物質BをX線が透過したと仮定したときの、当該物質Bの線減弱値に相当し且つ予め設定された前記n次元の参照ベクトルの情報が予め例えばメモリに保持されているか、容易に演算できるので、この参照ベクトルの情報をメモリから読み出すか演算する。さらに、この参照ベクトルが、前記2つの物質A,Bの合成されたX線透過特性に相当するn次元の線減弱ベクトルから減算される。これにより、前記物質Aのみに等価な線減弱値に相当するn次元の目的ベクトルが得られる。 Therefore, the substance A is a tissue (hard tissue) of, for example, a bone part contained in a target (for example, a human limb), the substance B is a tissue of muscle and skin (soft tissue) of that part, and the target site is a bone part (substance A). The part where is present). In this case, the muscle and skin tissues correspond to the parts that interfere with the diagnosis. However, whether the information of the n-dimensional reference vector corresponding to the line attenuation value of the substance B and preset when it is assumed that the X-ray is transmitted through the substance B is stored in the memory in advance, for example. Since it can be easily calculated, the information of this reference vector is read from the memory or calculated. Further, this reference vector is subtracted from the n-dimensional line attenuation vector corresponding to the synthesized X-ray transmission characteristics of the two substances A and B. As a result, an n-dimensional target vector corresponding to the line attenuation value equivalent only to the substance A can be obtained.
 このため、物質Aである、例えば骨部分のみのX線減弱を示す目的ベクトルが得られる。この目的ベクトルは、低いエネルギーから高いエネルギーまで連続するエネルギー分布を持つ連続X線の光子が骨部分の組織を通過するときの減弱度合を反映しているので、その骨部分の密度や骨質の状態(性状)をより的確に表した計数値を収集できる。そのうえ、ROI部分に物質A,B双方が含まれるとしても、目的とする物質Aのみの線減弱を反映した目的ベクトルをベクトル減算という容易な演算によって、より高精度に抽出できる。 Therefore, an objective vector showing X-ray attenuation of the substance A, for example, only the bone portion, can be obtained. This objective vector reflects the degree of attenuation of continuous X-ray photons with a continuous energy distribution from low to high energy as they pass through the tissue of the bone, so the density and quality of the bone. It is possible to collect count values that more accurately represent (characteristics). Moreover, even if both substances A and B are included in the ROI portion, the target vector reflecting the line attenuation of only the target substance A can be extracted with higher accuracy by a simple operation called vector subtraction.
 つまり、従来の場合、物質A、Bの種類(骨とか筋肉とか概念的な種類)は既知であり且つそれらの合計厚さが一定だったとしても、それぞれのX線パス方向の厚さは不明であるとともに異なる2つのX線透過特性の物質が存在しているため、目的とする物質AのみのX線減弱に基づくベクトル情報を簡単な演算で且つ精度良く求めることは困難であった。 That is, in the conventional case, even if the types of substances A and B (conceptual types such as bone and muscle) are known and the total thickness thereof is constant, the thickness in the X-ray path direction of each is unknown. However, since there are two substances having different X-ray transmission characteristics, it is difficult to obtain vector information based on the X-ray attenuation of only the target substance A by simple calculation and with high accuracy.
 しかしながら、本願発明によれば、目的とする物質Aのみの線減弱を反映した目的ベクトルの導出を、関心領域毎のベクトル演算により簡単に、且つ、精度良く行うことができる。 However, according to the present invention, the derivation of the target vector reflecting the line attenuation of only the target substance A can be easily and accurately performed by the vector operation for each region of interest.
 また、本願発明によれば、関心領域毎に物質Aの目的ベクトルが得られ、そのベクトルの長さが、例えば骨の場合には単位体積当たりの骨量(骨密度)を示し、そのベクトルの方向が、例えば骨の場合には骨質を示す、など、関心領域毎に、より多面的な物質の性状(状態)を示す情報を提供することができる。従来のように、骨密度だけに基づく情報を提供する処理とは異なり、提供する性状情報の豊富化を図り、例えば骨粗鬆症の診断・治療の求められている要求に応えることができる。
 この作用効果は、本願発明に係るデータ処理方法及びX線装置においても同様に享受される。
Further, according to the present invention, a target vector of the substance A is obtained for each region of interest, and the length of the vector indicates, for example, the bone mass (bone density) per unit volume in the case of bone, and the vector of the vector. It is possible to provide information indicating the properties (states) of a more multifaceted substance for each region of interest, for example, the direction indicates the bone quality in the case of bone. Unlike the conventional process of providing information based only on bone density, it is possible to enrich the provided property information and meet the demands for diagnosis and treatment of osteoporosis, for example.
This effect is similarly enjoyed in the data processing method and the X-ray apparatus according to the present invention.
 ここで好適には、前記参照ベクトルは、i)前記対象の前記X線照射する部位の厚さを含む外形サイズ、または、重量から推定する、又は、ii)予め統計的に収集してデータベース化した参照表から読み込む、iii)前記対象の撮影部位の内の前記物質Bのみである部分領域において前記線減弱ベクトルと同等である(物質Bのみなので、この領域内では前記線減弱ベクトル=参照ベクトル=物質Bのみの線減弱ベクトル)と見做されて事前に求められ保存されている参照ベクトルを呼び出す、もしくは、前記物質Aを含む関心領域の線減弱ベクトルを計測する際に同時に前記対象の撮影部位の内の前記物質Bのみである部分領域において前記線減弱ベクトルと同等であると見做して演算することにより設定することでよい。また、例えば、物質Bの部分が呈する参照ベクトルの方向が判れば、その大きさは実験や理論計算から推定して予め保持していた情報を使うことができる場合がある。このため、その場合ベクトル減算に必要な演算を更に簡単化できる。 Here, preferably, the reference vector is i) estimated from the external size including the thickness of the X-ray irradiation site of the target, or the weight, or ii) statistically collected in advance and stored in a database. Read from the reference table, iii) The line attenuation vector is equivalent to the line attenuation vector in the partial region of the target imaging site that is only the substance B (since it is only substance B, the line attenuation vector = reference vector in this region). = Call the reference vector obtained and stored in advance, which is regarded as the line attenuation vector of only substance B), or when measuring the line attenuation vector of the region of interest including the substance A, the subject is photographed at the same time. It may be set by performing an operation on the assumption that it is equivalent to the line attenuation vector in the partial region of the portion that is only the substance B. Further, for example, if the direction of the reference vector exhibited by the portion of the substance B is known, the size thereof may be estimated from experiments or theoretical calculations and the information held in advance can be used. Therefore, in that case, the operation required for vector subtraction can be further simplified.
 さらに、参照ベクトルの方向自体も実験的、経験的に取得していた方向情報を事前に保有しておいて、必要なときに呼び出すようにしてもよい。これにより、参照ベクトルの演算量が極めて簡単になる。 Furthermore, the direction of the reference vector itself may be stored experimentally and empirically in advance, and may be called when necessary. This makes the amount of operation of the reference vector extremely simple.
 添付図面において、
図1は、本発明の1つの実施形態に係る、データ処理装置を搭載したX線検査システムの概要を説明するブロック図である。 図2は、光子計数型検出器に設定したエネルギー領域とX線エネルギースペクトラムの一例を説明する図である。 図3は、単一物質モデルとエネルギー領域別の光子計数との関係を説明する図である。 図4は、複数物質モデルとエネルギー領域別の光子計数との関係を説明する図である。 図5は、データプロセッサにより実行される、物質同定の処理及びその前処理の概要を説明するフローチャートである。 図6は、データプロセッサにより実行される物質同定の前処理を説明する図である。 図7は、本実施形態においてデータプロセッサにより実行される物質同定の中心部分を説明する概略フローチャートである。 図8は、エネルギー領域毎の画像の関心領域の各画素から、X線吸収量の3次元ベクトルの生成を説明する図である。 図9は、3次元散布図の作成から同定情報の提示までの処理を説明する概略フローチャート。 図10は、前述した実施形態に係る図7のステップS134の処理をより詳細に説明する部分フローチャートである。 図11は、正規化された3次元散布図を模式的に説明する斜視図である。 図12は、3次元散布図から物質固有の散布点からの3次元ベクトルの生成を説明する図である。 図13は、対象物として手の甲(指)の骨へのROI設定から、そのROIで指定された骨部分のみを代表する1つの目的ベクトルを演算するまでの過程を説明する図である。 図14は、データプロセッサが実行する骨塩定量の処理を説明する概略フローチャートである。 図15は、指部分の断面と通過するX線パスの関係を説明する図である。
In the attached drawing
FIG. 1 is a block diagram illustrating an outline of an X-ray inspection system equipped with a data processing apparatus according to one embodiment of the present invention. FIG. 2 is a diagram illustrating an example of an energy region and an X-ray energy spectrum set in a photon counting type detector. FIG. 3 is a diagram illustrating the relationship between the single substance model and the photon count for each energy region. FIG. 4 is a diagram illustrating the relationship between the plurality of substance models and the photon count for each energy region. FIG. 5 is a flowchart illustrating an outline of the substance identification process and its preprocessing executed by the data processor. FIG. 6 is a diagram illustrating a preprocessing for substance identification performed by a data processor. FIG. 7 is a schematic flow chart illustrating a central portion of substance identification performed by a data processor in this embodiment. FIG. 8 is a diagram illustrating the generation of a three-dimensional vector of the amount of X-ray absorption from each pixel in the region of interest of the image for each energy region. FIG. 9 is a schematic flowchart illustrating a process from the creation of a three-dimensional scatter plot to the presentation of identification information. FIG. 10 is a partial flowchart illustrating the process of step S134 of FIG. 7 according to the above-described embodiment in more detail. FIG. 11 is a perspective view schematically illustrating a normalized three-dimensional scatter plot. FIG. 12 is a diagram illustrating the generation of a 3D vector from a substance-specific scatter point from a 3D scatter plot. FIG. 13 is a diagram illustrating a process from setting an ROI to the bone of the back of the hand (finger) as an object to calculating one objective vector representing only the bone portion designated by the ROI. FIG. 14 is a schematic flowchart illustrating a process of bone mineral quantification performed by a data processor. FIG. 15 is a diagram illustrating the relationship between the cross section of the finger portion and the passing X-ray path.
 以下、添付図面を参照して、本発明に係る、X線検査用のデータ処理装置及びデータ処理方法の実施形態を説明し、そのデータ処理装置を搭載したX線検査装置を変形例として説明する。
 [実施形態]
Hereinafter, embodiments of a data processing device and a data processing method for X-ray inspection according to the present invention will be described with reference to the attached drawings, and an X-ray inspection device equipped with the data processing device will be described as a modified example. ..
[Embodiment]
 まず、図1~図15を参照し、1つの実施形態として、本発明の一態様に係るX線検査用のデータ処理装置及びデータ処理方法を説明する。図1は、X線検査システムの概略構成を示す。このX線検査システムは、X線装置として機能するX線検査装置10を備える。 First, with reference to FIGS. 1 to 15, a data processing apparatus and a data processing method for X-ray inspection according to one embodiment of the present invention will be described as one embodiment. FIG. 1 shows a schematic configuration of an X-ray inspection system. This X-ray inspection system includes an X-ray inspection device 10 that functions as an X-ray device.
 このX線検査システムは、本発明の一態様に係る、骨密度測定(骨塩定量)を行うためのデータ処理装置及びデータ処理方法を搭載及びインストールしたデータ処理装置12をも備える(図1参照)。このデータ処理装置12は、X線データを収集するシステムの一要素として一体に組み込んでもよいし、X線データ収集システムとは別個の汎用のコンピュータとしてスタンドアロン方式で設けてもよい。スタンドアロン方式の場合には、X線データ収集システムとは例えばインターネットを介して接続可能の構成とし、かかるコンピュータはX線収集データを読み込んで骨塩定量の処理を実行するようにも構成できる。 This X-ray inspection system also includes a data processing device for performing bone density measurement (bone mineral quantification) and a data processing device 12 equipped with and installed a data processing method according to one aspect of the present invention (see FIG. 1). ). The data processing device 12 may be integrated as an element of a system for collecting X-ray data, or may be provided as a general-purpose computer separate from the X-ray data collection system in a stand-alone manner. In the case of the stand-alone method, the X-ray data collection system can be connected to, for example, via the Internet, and the computer can also be configured to read the X-ray collection data and execute the bone mineral quantification process.
 なお、このデータ処理装置12は、骨塩定量のための処理以外の処理をも実行するように、必要な他のプログラムを事前にインストールしておいてもよい。 Note that this data processing device 12 may be pre-installed with other necessary programs so as to execute processing other than the processing for bone mineral quantification.
 さらに、このX線検査システムにおける、骨塩定量を行う機能的な構成及び作用効果を除くと、本出願人が既に開示している公報「WO 2016/171186 A1」(発明の名称:X線検査用のデータ処理装置及びデータ処理方法、並びに、その装置を搭載したX線検査装置、出願人:株式会社ジョブ)に記載の装置と同様に構成できる。但し、本実施形態においては、X線ビームをコリメータと共にスキャンすることは必ずしも必須ではなく、スキャンをしないで一回のX線照射に依るスポット撮影(単純撮影)であってもよい。 Further, except for the functional configuration and action / effect for quantifying bone minerals in this X-ray inspection system, the publication "WO 2016/171186 A1" (title of the invention: X-ray inspection) already disclosed by the present applicant. It can be configured in the same manner as the device described in (Applicant: Job Co., Ltd.), a data processing device and a data processing method for the purpose, and an X-ray inspection device equipped with the device. However, in the present embodiment, it is not always essential to scan the X-ray beam together with the collimator, and spot photography (simple photography) may be performed by one X-ray irradiation without scanning.
 また、本実施形態に係る骨塩定量は、本出願人が既に提案している、所謂、物質同定と併用して行うことが有効である。このため、本実施形態の説明において、X線検査システムの構成、物質同定の処理、及び、骨塩定量の処理の順に、順番に説明する。
 <X線検査システムの構成>
Further, it is effective to perform the bone mineral quantification according to the present embodiment in combination with the so-called substance identification already proposed by the present applicant. Therefore, in the description of this embodiment, the configuration of the X-ray inspection system, the substance identification process, and the bone mineral quantification process will be described in order.
<Configuration of X-ray inspection system>
 図1に示すように、X線検査装置10にはデータ処理装置12が通信ラインLNを介して通信可能に接続されているが、このデータ処理装置12はX線検査装置10の例えば制御部と一体に組込まれていてもよいし、別体で設置されていてもよい。 As shown in FIG. 1, a data processing device 12 is communicably connected to the X-ray inspection device 10 via a communication line LN, and the data processing device 12 is connected to, for example, a control unit of the X-ray inspection device 10. It may be integrated or installed separately.
 X線検査装置10は、本実施形態では、被検者としての患者(人体)の手、足(検査対象OB)のX線画像(ラミノグラフィー法に基づく再構成画像又はスポット撮影で得られるX線透過画像)に基づき骨塩定量を行うように構成されている。勿論、この装置10を例えば、X線による食品の異物検査等の非破壊検査システム、又は、医用のX線パノラマ撮影システムとして提供してもよい。骨塩定量も広義には、非破壊検査の一態様と考えることができる。 In the present embodiment, the X-ray inspection apparatus 10 is obtained by an X-ray image (reconstructed image or spot photography based on a laminography method) of the hand and foot (inspection target OB) of the patient (human body) as the subject. It is configured to perform bone mineral quantification based on an X-ray transmission image). Of course, this device 10 may be provided as, for example, a non-destructive inspection system such as a foreign substance inspection of food by X-ray, or an X-ray panoramic radiography system for medical use. Bone mineral quantification can also be considered as an aspect of non-destructive testing in a broad sense.
 以下、本実施形態に係るX線検査装置10は、X線ビームと被検体との間での相対的な移動によってX線ビームをスキャンさせるラミノグラフィー法による骨塩定量を行うものとして説明する。 Hereinafter, the X-ray inspection apparatus 10 according to the present embodiment will be described as performing bone mineral quantification by a laminography method in which an X-ray beam is scanned by a relative movement between the X-ray beam and a subject. ..
 非破壊検査の一態様である骨塩定量を行う場合、本実施形態に係るX線検査用のデータ処理装置及びデータ処理方法は、X線が物質を透過するときの吸収情報(あるいは減弱情報)に基づき、その物質の種類や性状を同定(特定、弁別、識別、或いは決定とも言える)する処理を行うことを基本要素としている。以下の説明において、この処理を総括的に「物質同定」と呼ぶこともある。 When performing bone mineral quantification, which is one aspect of non-destructive inspection, the data processing device and data processing method for X-ray inspection according to this embodiment are absorbed information (or attenuation information) when X-rays pass through a substance. Based on the above, the basic element is to perform a process to identify (identify, discriminate, identify, or determine) the type and properties of the substance. In the following description, this process may be collectively referred to as "substance identification".
 このX線検査装置10は、図1に示すように、仮想的に、X、Y、Z軸の直交座標系を設定できるオブジェクト空間OSを有する。このうち、Z軸方向は、非破壊検査の場合にオブジェクト空間OSにおいてスキャン方向に相当させる。この装置10は、Z軸方向に所定のコーン角θを有し、且つ当該スキャン方向に直交する断面(XY面)に沿った方向(Y軸方向)に所定のファン角βを有するX線ビームXBを発生するX線管21及びコリメータ22を備えたX線発生器23を備える。X線管21は、点状のX線管焦点F(焦点径は例えば1.0mmφ)を有する、例えば回転陽極X線管である。このX線管21には、図示しないX線高電圧装置からX線照射のための駆動用高電圧が供給される。 As shown in FIG. 1, the X-ray inspection device 10 has an object space OS that can virtually set an orthogonal coordinate system of the X, Y, and Z axes. Of these, the Z-axis direction corresponds to the scan direction in the object space OS in the case of non-destructive inspection. This device 10 has an X-ray beam having a predetermined cone angle θ in the Z-axis direction and a predetermined fan angle β in a direction (Y-axis direction) along a cross section (XY plane) orthogonal to the scan direction. An X-ray generator 23 including an X-ray tube 21 for generating XB and a collimator 22 is provided. The X-ray tube 21 is, for example, a rotating anode X-ray tube having a point-shaped X-ray tube focal point F (focal diameter is, for example, 1.0 mmφ). A driving high voltage for X-ray irradiation is supplied to the X-ray tube 21 from an X-ray high voltage device (not shown).
 さらに、X線検査装置10は、X線管21に一定距離だけ離間して対向可能に配置されたX線検出器24(以下、単に検出器とも呼ぶ)を備える。検出器24は、複数のモジュールをライン状に繋いで構成され、これにより、検出器24は、その全体として、細長い矩形状のX線入射窓を有する。各モジュールは、CdTe,CZT(CdZnTe)などの半導体材料から成る検出層を例えば20×80個の画素(各画素は0.2mm×0.2mmのサイズを持つ)に成形した、X線から電気信号に直接変換する、所謂、直接変換型のX線検出要素である。この複数の画素を成す検出層の両面には、図示しないが、実際には荷電電極と収集電極とが貼設されている。この両電極間にバイアス電圧が印加される。 Further, the X-ray inspection device 10 includes an X-ray detector 24 (hereinafter, also simply referred to as a detector) arranged so as to face the X-ray tube 21 at a certain distance. The detector 24 is configured by connecting a plurality of modules in a line, whereby the detector 24 has an elongated rectangular X-ray incident window as a whole. Each module is made by forming a detection layer made of a semiconductor material such as CdTe, CZT (CdZnTe) into, for example, 20 × 80 pixels (each pixel has a size of 0.2 mm × 0.2 mm), and is electrically operated from X-rays. It is a so-called direct conversion type X-ray detection element that directly converts to a signal. Although not shown, a charged electrode and a collecting electrode are actually attached to both sides of the detection layer forming the plurality of pixels. A bias voltage is applied between these two electrodes.
 この検出器24は、X線を様々なエネルギーを有する光子(フォトン)の集合であると見做して、それらの光子の個数をエネルギー領域別に計数可能な光子計数型(photon counting type)の検出器である。このエネルギー領域としては、例えば図2に示すように、4つのエネルギー領域Bin~Binが設定されている。勿論、このエネルギー領域Binの数は複数であればよい。 The detector 24 regards X-rays as a collection of photons (photons) having various energies, and detects a photon counting type that can count the number of these photons for each energy region. It is a vessel. As this energy region, for example, as shown in FIG. 2, four energy regions Bin 1 to Bin 4 are set. Of course, the number of this energy region Bin may be a plurality.
 この検出器24では、その画素毎に、且つ、エネルギー領域Bin毎に、X線強度が、単位時間当たりのX線のフォトン数として検出される(実際には一定時間の累積フォトン数を計測する)。1個のフォトンがある画素に入射すると、そのエネルギー値に応じた波高値の電気パルス信号がその画素に対応する収集電極に発生する。この電気パルス信号の波高値、すなわちエネルギー値は、収集電極より後段の計測回路により、所定のエネルギー領域Bin毎に分類され、その計数値が1つ増える。この計数値は一定時間毎の累積値(デジタル値)として画素毎且つそのエネルギー領域Bin毎に収集される。 In this detector 24, the X-ray intensity is detected as the number of X-ray photons per unit time for each pixel and each energy region Bin (actually, the cumulative number of photons for a certain period of time is measured. ). When one photon is incident on a pixel, an electric pulse signal having a peak value corresponding to the energy value is generated on the collecting electrode corresponding to the pixel. The peak value, that is, the energy value of this electric pulse signal is classified for each predetermined energy region Bin by the measurement circuit in the stage after the collection electrode, and the count value is incremented by one. This count value is collected as a cumulative value (digital value) at regular time intervals for each pixel and each energy region Bin.
 この収集は、検出器24の検出層の下面にASIC層として作り込まれているデータ収集回路25により行われる。検出器24及びデータ収集回路25により、検出ユニット26が構成されている。このため、検出ユニット26、即ちデータ収集回路25から一定の画像転送速度(フレームレート)でX線透過データ(フレームデータ)がデータ処理装置12に送られる。なお、フレームとは、データ転送単位で、例えば、各画素で一定時間に収集されたデータを静止画のようにまとめたものをいう。 This collection is performed by a data collection circuit 25 built as an ASIC layer on the lower surface of the detection layer of the detector 24. The detector 24 and the data acquisition circuit 25 constitute a detection unit 26. Therefore, X-ray transmission data (frame data) is sent from the detection unit 26, that is, the data acquisition circuit 25, to the data processing device 12 at a constant image transfer rate (frame rate). The frame is a data transfer unit, for example, a frame in which data collected at a fixed time in each pixel is collected like a still image.
 このような構成を持つX線検査システムの一例は、例えば特開2007-136163、国際公開公報WO 2007/110465 A1、同WO 2013/047778 A1に示されている。また、上述した光子計数型検出器24の例も、例えば国際公開公報WO 2012/144589 A1に示されている。 An example of an X-ray inspection system having such a configuration is shown in, for example, Japanese Patent Application Laid-Open No. 2007-136163, International Publication No. WO 2007/110465 A1, and WO 2013/047778 A1. Further, an example of the photon counting type detector 24 described above is also shown in, for example, International Publication WO 2012/144589 A1.
 なお、このX線検査システムを例えば歯科用のX線パノラマ撮影に使用する場合、検査対象OBは被検者の頭部である。その場合、X線発生器23及び検出器24の対は、その頭部の周囲において例えば頭部を挟んで互いに対向した状態で回転移動する。このX線パノラマ撮影に関するスキャン構造も、例えば特開2007-136163に示されている。骨塩定量は必ずしも手足の骨に限らず、体内の様々な部位の骨で実施される。このため、被検者の顎部も骨塩定量の対象の一つである。 When this X-ray inspection system is used for, for example, dental X-ray panoramic radiography, the inspection target OB is the head of the subject. In that case, the pair of the X-ray generator 23 and the detector 24 rotates and moves around the head in a state of facing each other, for example, sandwiching the head. A scan structure relating to this X-ray panoramic photography is also shown in, for example, Japanese Patent Application Laid-Open No. 2007-136163. Bone quantification is not necessarily limited to the bones of the limbs, but is performed on bones of various parts of the body. Therefore, the jaw of the subject is also one of the targets for bone mineral quantification.
 さらに、データ処理装置12は、X線検査装置10から通信ラインLNを介してX線透過データ(フレームデータ)を受信する。 Further, the data processing device 12 receives X-ray transmission data (frame data) from the X-ray inspection device 10 via the communication line LN.
 このデータ処理装置12は、以下に詳述するように、このX線透過データを処理して検査対象それ自体を成す物質やその検査対象の注目部位に在る物質の種類又は性状に固有の情報(固有情報)を取得し、更には検査対象に異物等の他の物質が存在しているか否かを検出したり、骨塩定量を行ったりすることができるように構成されている。
[物質の固有情報の取得、及び、骨塩定量のためのデータ処理]
 以下、データ処理装置12の構成及びその動作を、物質同定と共に行う骨塩定量に基づいて説明する。
As described in detail below, the data processing device 12 processes the X-ray transmission data to form an inspection target itself, and information specific to the type or property of the substance in the site of interest of the inspection target. It is configured to be able to acquire (unique information), detect whether or not other substances such as foreign substances are present in the inspection target, and perform bone mineral quantification.
[Acquisition of specific information on substances and data processing for bone mineral quantification]
Hereinafter, the configuration of the data processing device 12 and its operation will be described based on the bone mineral quantification performed together with the substance identification.
 データ処理装置12は、一例として、コンピュータシステムCPにより構成される。このコンピュータシステムCP自体は、図1に示すように、公知の演算機能を持つコンピュータシステムであってよく、検出ユニット26に通信ラインLNを介して接続されたインターフェース(I/O)31を備える。このインターフェース31には、内部バスBを介して、バッファメモリ32、ROM(read-only memory)33(“Non-transitorycomputer readable medium”として機能する)、RAM(random access memory)34、CPU(centralprocessing unit)を備えたデータプロセッサ35(このデバイスの呼称は、単にプロセッサ又はコンピュータなどであってもよい)、画像メモリ36、入力器37、及び表示器38が互いに通信可能に接続されている。 The data processing device 12 is configured by a computer system CP as an example. As shown in FIG. 1, the computer system CP itself may be a computer system having a known arithmetic function, and includes an interface (I / O) 31 connected to the detection unit 26 via a communication line LN. This interface 31 has a buffer memory 32, a ROM (read-only memory) 33 (functions as a “Non-transitory computer readable medium”), a RAM (random access memory) 34, and a CPU (central processing unit) via the internal bus B. A data processor 35 (the device may be simply referred to as a processor or a computer), an image memory 36, an input unit 37, and a display unit 38 are communicably connected to each other.
 ROM33には、コンピュータ読出し可能な物質同定及び骨塩定量のプログラムが予め格納されており、データプロセッサ35がそのプログラムを自分のワークエリアに読み出して実行する。バッファメモリ32は、検出ユニット26から送られてきたフレームデータを一時的に保管するために使用される。RAM34は、データプロセッサ35の演算時に、演算に必要なデータを一時的に記憶するために使用される。 The ROM 33 stores in advance a computer-readable substance identification and bone mineral quantification program, and the data processor 35 reads the program into its own work area and executes it. The buffer memory 32 is used to temporarily store the frame data sent from the detection unit 26. The RAM 34 is used to temporarily store the data required for the calculation at the time of the calculation of the data processor 35.
 画像メモリ36は、例えば、SSD(ソリッドステートデバイス)やHDD(ハードディスクドライブ)で構成され、データプロセッサ35により処理された各種の画像データや情報を保管するために使用される。入力器37及び表示器38は、ユーザとの間のマン・マシンインターフェースとして機能し、このうち、入力器37はユーザからの入力情報を受け付ける。表示器38は、データプロセッサ35の制御下において画像等を表示することができる。インターフェース31、入力器37、及び表示器38により外部からの情報(例えばユーザからの情報)を入手するインターフェース部が構成される。
・光子計数法によるデータの収集と物質モデルとの関係
The image memory 36 is composed of, for example, an SSD (solid state device) or an HDD (hard disk drive), and is used to store various image data and information processed by the data processor 35. The input device 37 and the display device 38 function as a man-machine interface with the user, and the input device 37 receives input information from the user. The display 38 can display an image or the like under the control of the data processor 35. An interface unit for obtaining information from the outside (for example, information from a user) is configured by an interface 31, an input device 37, and a display device 38.
・ Relationship between data collection by photon counting method and material model
 次に、X線管21から照射されたX線(ファン状のビームX線)が被検体OBを透過し、その透過X線が光子計数(フォトンカウンティング)法の下で検出器24により収集(計数)されるときの物質モデル毎のデータ収集の概念を図2~4を用いて説明する。 Next, X-rays (fan-shaped beam X-rays) emitted from the X-ray tube 21 pass through the subject OB, and the transmitted X-rays are collected by the detector 24 under the photon counting method (photon counting method). The concept of data collection for each substance model at the time of counting) will be described with reference to FIGS. 2 to 4.
 図2に、横軸にX線のエネルギー[keV]をとり、縦軸にX線を成す光子(フォトン)の入射頻度(カウント)をとったときの、X線検出器で測定されたX線スペクトルの一般的なプロファイルを示す。光子計数の場合、周知の如く、横軸のエネルギーを複数のエネルギー領域Binに分けるために閾値THが設定される。この図2の例では、4つの閾値TH,TH,TH,THが比較器(図示せず)への適宜な基準電圧値として与えられ、これにより、使用可能な第1~第3のエネルギー領域Bin,Bin,Binが設定される。なお、第1のエネルギー領域Binよりも下のエネルギーはノイズが多く計測不能なエネルギー領域に属し、一方、最上位の閾値THよりも上側に位置する第4のエネルギー領域Binは光子計数には関与しないとして、使用されない。このため、この例の場合、最上位及び最下位のエネルギー領域を除く、第1~第3の3つのエネルギー領域Bin,Bin,Binが光子計数に使用される。 In FIG. 2, X-rays measured by an X-ray detector when the horizontal axis is the X-ray energy [keV] and the vertical axis is the incident frequency (count) of photons forming X-rays. The general profile of the spectrum is shown. In the case of photon counting, as is well known, a threshold value TH is set in order to divide the energy on the horizontal axis into a plurality of energy regions Bin. In the example of FIG. 2, four thresholds TH 1 , TH 2 , TH 3 , and TH 4 are given as appropriate reference voltage values to the comparator (not shown), thereby the first to first usable. The energy regions of 3 are set to Bin 1 , Bin 2 , and Bin 3. The energy below the first energy region Bin 1 belongs to an energy region that is noisy and cannot be measured, while the fourth energy region Bin 4 located above the highest threshold value TH 4 is a photon count. Not used as it is not involved in. Therefore, in the case of this example, the first to third energy regions Bin 1 , Bin 2 , and Bin 3 are used for photon counting, excluding the uppermost and lowest energy regions.
 この図2に示す頻度のプロファイルの形状はX線管21の陽極材の種類や管電圧によっても決まり、通常、図示の如く、第2のエネルギー領域Binのカウントが一番大きくなる。このため、エネルギー領域毎の計数値(頻度、カウント)のバランスを考慮して適宜に閾値THが決められる。この4つの閾値TH~THは、データ収集回路25を成すASICにおいて検出器24の画素毎に比較器への電圧閾値として設定される。このため、X線光子は、画素毎に且つエネルギー領域毎に計数される。勿論、各画素に閾値THの数は3つ以上であれば任意の数でよい。閾値THの数が3つであれば、使用されるエネルギー領域の数は2つである。さらに、Binに含まれる計数成分がゼロと見なされる場合には、Binの計数に変えて、THを設定せずにBin+Binの値を用いることもできる。この場合には、各画素に閾値THの数は2つ以上であれば任意の正の整数でよい。したがって、この場合は、閾値THの数が3つであれば、使用されるエネルギー領域の数n(正の整数)は2つである。 The shape of the frequency profile shown in FIG. 2 is also determined by the type of the anode material of the X-ray tube 21 and the tube voltage, and usually, as shown in the figure, the count of the second energy region Bin 2 is the largest. Therefore, the threshold value TH is appropriately determined in consideration of the balance of the count values (frequency, count) for each energy region. These four threshold values TH 1 to TH 4 are set as voltage threshold values to the comparator for each pixel of the detector 24 in the ASIC forming the data acquisition circuit 25. Therefore, the X-ray photons are counted for each pixel and each energy region. Of course, the number of threshold values TH for each pixel may be any number as long as it is three or more. If the number of threshold THs is three, then the number of energy regions used is two. Further, when the counting component contained in Bin 4 is considered to be zero, the value of Bin 3 + Bin 4 can be used instead of the counting of Bin 3 without setting TH 4 . In this case, any positive integer may be used as long as the number of threshold values TH for each pixel is two or more. Therefore, in this case, if the number of threshold THs is 3, the number n (positive integer) of the energy regions used is 2.
 この計数値からX線透過画像(濃度画像)を作成するときには、様々な形態を採ることができる。検出器24のX線入射面を成す画素毎に、且つ、エネルギー領域Bin毎に計数情報が得られる。このため、検査対象OBを相対的に移動させる場合にはエネルギー領域Bin毎の各画素の計数値に適宜な重み係数を掛けてシフト加算(shift & add)をすれば、あるいは検査対象OBを静止させている場合にはエネルギー領域Bin毎の各画素の計数値をエネルギー領域Bin毎の各画素に単純加算すれば、その各エネルギー領域BinのX線透過データ(フレームデータ)が得られる。また、この3つのエネルギー領域Bin~Binのうち、任意の2つ又は全てのエネルギー領域Binの計数値に適宜な重み係数を掛けて、同じ位置の画素に対して加算し、1フレームのX線透過データとしてもよい。 When creating an X-ray transmission image (density image) from this count value, various forms can be taken. Counting information can be obtained for each pixel forming the X-ray incident surface of the detector 24 and for each energy region Bin. Therefore, when the inspection target OB is relatively moved, the count value of each pixel in each energy region Bin can be multiplied by an appropriate weighting coefficient to perform shift & add, or the inspection target OB can be stationary. In this case, if the count value of each pixel in each energy region Bin is simply added to each pixel in each energy region Bin, X-ray transmission data (frame data) in each energy region Bin can be obtained. Further, among these three energy regions Bin 1 to Bin 3 , the count values of any two or all energy regions Bin are multiplied by an appropriate weighting coefficient and added to the pixels at the same position to obtain one frame. It may be X-ray transmission data.
 このように、エネルギー領域Bin毎にX線光子数を画素毎に収集し、画素への光子エネルギーの寄与度を勘案して画像作成等へ利用可能であるため、用途に応じ自在にエネルギー強調画像を作成でき、従来の積分型のX線透過データの収集に対する優位性がある。  In this way, the number of X-ray photons is collected for each pixel in each energy region Bin, and it can be used for image creation in consideration of the contribution of photon energy to the pixels. It has an advantage over the collection of conventional integral type X-ray transmission data. It was
 さて、この光子計数法を物質同定に適用する場合、物質(検査対象OBの検査したい部位にある物質:検査対象自身を成す物質であることも、検査対象以外の物質であることもある)が単一の組織からできているのか、複数の組織からできているのかに分けて考え、各組織のX線吸収を考慮することが妥当である。例えば、手足の骨から骨塩定量を行う場合、後述する図15に一点鎖線IBnで示すように、X線は皮膚・筋肉(図15のB部分)、骨(海綿骨、皮質骨)(図15のA部分)、筋肉・皮膚(図15のB部分)の順に透過するので、一般的な呼称としての物質としては、「皮膚・筋肉」による軟組織と、骨による硬組織との2つの部位に大別できる。
(i)物質が単一の組織から成る場合(単一物質モデル)
By the way, when this photon counting method is applied to substance identification, the substance (the substance in the part to be inspected in the inspection target OB: the substance that forms the inspection target itself or the substance other than the inspection target) It is appropriate to consider whether it is made up of a single tissue or multiple tissues, and consider the X-ray absorption of each tissue. For example, when bone mineral is quantified from the bones of the limbs, as shown by the one-point chain line IBn in FIG. 15, which will be described later, X-rays are skin / muscle (part B in FIG. Since it permeates in the order of 15 A part) and muscle / skin (B part in FIG. 15), there are two parts as a general name, soft tissue by "skin / muscle" and hard tissue by bone. Can be roughly divided into.
(I) When a substance consists of a single tissue (single substance model)
 この単一物質モデルの場合、例えば図15で言えば、A部分とB部分の物質は同一であり、図3(A)に示すように、第1、第2、及び第3のエネルギー領域Bin、Bin、Binそれぞれを代表する線減弱係数はμ、μ、μ(cm-1)とおける。この線減弱係数は、物質のX線に対する固有の透過特性を示す指標である。 In the case of this single substance model, for example, in FIG. 15, the substances of the A portion and the B portion are the same, and as shown in FIG. 3 (A), the first, second, and third energy regions Bin. The linear attenuation coefficients representing 1 , Bin 2 , and Bin 3 are set to μ 1 , μ 2 , and μ 3 (cm -1 ), respectively. This line attenuation coefficient is an index showing the inherent transmission characteristics of a substance with respect to X-rays.
 このエネルギー領域Bin毎に異なる線減弱係数μ、μ、μを持ち且つ厚さt(cm)の物質にX線が入射するときのモデルは、図示の如く表される。つまり、入射するX線量(光子数)Cl1,Cl2,Cl3がそれぞれ線減弱係数μ、μ、μと厚さtに依存する減弱を受けて、その出力するX線量(光子数)Co1,Co2,Co3
o1=Cl1×e-μ1t
o2=Cl2×e-μ2t
o3=Cl3×e-μ3t
                     … (1)
と表すことができる。
A model in which X-rays are incident on a substance having a line attenuation coefficient of μ 1 , μ 2 , μ 3 and a thickness of t (cm), which are different for each energy region Bin, is represented as shown in the figure. That is, the incident X-ray doses (number of photons) Cl 1 , C l 2 , and Cl 3 receive attenuation depending on the thickness t with the line attenuation coefficients μ 1 , μ 2 , μ 3 , respectively, and the output X-ray dose (photons). Number) Co1 , Co2 , and Co3 are Co1 = C l1 x e- μ1t
C o2 = C l2 x e- μ2t
Co3 = C l3 x e- μ3t
… (1)
It can be expressed as.
 このため、単一組織から成る単一物質モデルの場合、図3(B)に示すように、X線量(光子数)Cliが、線減弱係数μ,厚さtの物質に入射すると、その出力X線量(光子数)Coi
oi=Cli×e-μit
(i=1~3)
                   … (2)
と表すことができる。
(ii)物質が複数の組織から成る場合(複数物質モデル)
Therefore, in the case of a single substance model consisting of a single structure, as shown in FIG. 3 (B), when the X-dose (photon number) Cli is incident on a substance having a linear attenuation coefficient μ i and a thickness t, Its output X dose (number of photons) Coi is Coi = Cli × e- μit
(I = 1-3)
… (2)
It can be expressed as.
(Ii) When a substance consists of multiple tissues (multiple substance model)
 この複数物質モデル(n個の組織が層状に重なっているモデル)の場合、そのX線減弱の観点からみると、図4(B)に示すように、物質は厚さt且つ線減弱係数μiaの層、厚さt且つ線減弱係数μibの層、…、厚さt且つ線減弱係数μinの層が積層された層構造であると言える。(添え字iは、1~3の値を取り、Bin~Binの添え字に対応している。)そこで、図4(A)に示すように、第1~第3のエネルギー領域Bin~Binそれぞれを代表する線減弱係数は各層ごとに線減弱係数が異なることを勘案すると、μ1a、…、μ1n;μ2a、…、μ2n;μ3a、…、μ3n(cm-1)と書ける。このエネルギー領域Bin毎に異なる線減弱係数μ1a、…、μ1n;μ2a、…、μ2n;μ3a、…、μ3nを層状に持ち且つ層厚さt,…,t(cm)の物質にX線が入射するときのモデルは、図示の如く表される。つまり、入射するX線量(光子数)Cl1,Cl2,Cl3がそれぞれ線減弱係数μ1a、…、μ1n;μ2a、…、μ2n;μ3a、…、μ3n且つそれぞれ厚さt,…,tに依存する減弱を受けて、その出力するX線量(光子数)Co1,Co2,Co3
o1=Cl1×e-μ1ata× … ×e-μ1ntn
o2=Cl2×e-μ2ata× … ×e-μ2ntn
o3=Cl3×e-μ3ata× … ×e-μ3ntn
                                          … (3)
と表すことができる。
In the case of this multi-material model (a model in which n structures are layered), as shown in FIG. 4B, the material has a thickness ta and a line attenuation coefficient from the viewpoint of its X-ray attenuation. It can be said that the layer structure is such that a layer of μ ia , a layer having a thickness t b and a linear attenuation coefficient μ ib , ..., A layer having a thickness t n and a linear attenuation coefficient μ in are laminated. (The subscript i takes a value of 1 to 3 and corresponds to the subscript of Bin 1 to Bin 3. ) Therefore, as shown in FIG. 4 (A), the first to third energy regions Bin. Considering that the line attenuation coefficient representing each of 1 to Bin 3 is different for each layer, μ 1a , ..., μ 1n ; μ 2a , ..., μ 2n ; μ 3a , ..., μ 3n (cm). -1 ) can be written. The line attenuation coefficient μ 1a , ..., μ 1n ; μ 2a , ..., μ 2n ; μ 3a , ... The model when X-rays are incident on the substance of) is represented as shown in the figure. That is, the incident X-ray doses (number of photons) C l1 , Cl2 , and Cl3 have linear attenuation coefficients μ 1a , ..., μ 1n ; μ 2a , ..., μ 2n ; μ 3a , ..., μ 3n , respectively, and their thicknesses. Due to the attenuation depending on ta, ..., t n , the output X-ray dose (photon number) Co1 , Co2, and Co3 are Co1 = C l1 × e −μ1at a × × e −μ1ntn .
C o2 = C l2 × e -μ2ata ×… × e -μ2ntn
C o3 = C l3 × e −μ3 ata ×… × e −μ3ntn
… (3)
It can be expressed as.
 このため、複数の組成から成る複数物質モデルの場合、図4(B)に示すように、X線量(光子数)Cliの入射に対して、その出力X線量(光子数)Coi
oi=Cli×e-μiata× … ×e-μintn
 (i=1~3)
                                          … (4)
と表すことができる。
[処理手順]
Therefore, in the case of a multi-material model consisting of a plurality of compositions, as shown in FIG. 4 (B), the output X-dose (photon number) C oi is C with respect to the incident of the X-dose (photon number) C li . oi = C li × e- μiata ×… × e -μintn
(I = 1-3)
… (4)
It can be expressed as.
[Processing procedure]
 上述した物質モデルによる光子計測と線減弱値μtとの関係を前提にして、データ処理装置12により実行される物質同定及び骨塩定量の処理を説明する。データ処理装置12では、そのデータプロセッサ35が所定のプログラムを実行することにより、図5に示す手順に沿って物質同定及び骨塩定量を行う。勿論、データプロセッサ35は骨塩定量のみを実施するように構成してもよい。
[前処理]
On the premise of the relationship between the photon measurement by the above-mentioned substance model and the line attenuation value μt, the substance identification and bone mineral quantification processing executed by the data processing apparatus 12 will be described. In the data processing apparatus 12, the data processor 35 executes a predetermined program to identify substances and quantify bone minerals according to the procedure shown in FIG. Of course, the data processor 35 may be configured to perform only bone mineral quantification.
[Preprocessing]
 まず、データプロセッサ35は、例えばユーザとの間でインターラクティブに又は自動的に画像取得を行うか否かを判断し(ステップS1)、画像取得のタイミングまで待機する。画像取得が判断された場合(ステップS1,YES)、検出器ユニット26からバッファメモリ32にフレームデータを転送して保存されているか、画像取得の判断の可否に関わらず自動的にバッファメモリ32に転送され既に保存されているフレームデータを例えばRAM34に呼び出す(ステップS2)。このフレームデータは、図6に模式的に示す如く、3つのエネルギー領域Bin、Bin,Binそれぞれに属するエネルギーを持つX線光子の計数値のフレームデータFD,FD,FDと、全エネルギー領域Binall(Bin+Bin+Bin)のX線光子の計数値のフレームデータFDallとから成る。 First, the data processor 35 determines, for example, whether or not to interactively or automatically acquire an image with the user (step S1), and waits until the timing of image acquisition. When the image acquisition is determined (steps S1, YES), the frame data is transferred from the detector unit 26 to the buffer memory 32 and saved, or the image acquisition is automatically determined in the buffer memory 32 regardless of whether or not the image acquisition is determined. The frame data that has been transferred and already stored is called to, for example, the RAM 34 (step S2). As schematically shown in FIG. 6, this frame data includes frame data FD 1 , FD 2 , and FD 3 of the count values of X-ray photons having energies belonging to each of the three energy regions Bin 1 , Bin 2 , and Bin 3. , The frame data FD all of the count value of the X-ray photon in the entire energy region Bin all (Bin 1 + Bin 2 + Bin 3 ).
 次いで、データプロセッサ35はユーザとの間でインターラクティブに、又は、自動指示に応じて物質同定及び/又は骨塩定量を行うか否かを判断する(ステップS3)。かかる指示があるまで待機し、終了の指令があるときには処理を終わる(ステップS4)。
[合焦画像の作成]
Next, the data processor 35 determines whether to perform substance identification and / or bone mineral quantification interactively with the user or in response to an automatic instruction (step S3). It waits until such an instruction is given, and ends the process when there is an end command (step S4).
[Creating a focused image]
 ステップS3において物質同定及び/又は骨塩定量を行うと判断された場合(ステップS3,YES)、データプロセッサ35はユーザとの間でインターラクティブに、又は、自動的に、例えば、検査対象OBと交差する断面を指定する(ステップS5)。 When it is determined in step S3 that the substance is identified and / or the bone mineral is quantified (step S3, YES), the data processor 35 interactively or automatically with the user, for example, intersects with the test target OB. The cross section to be used is specified (step S5).
 一例として、インターラクティブに断面の位置を指定する場合、図1に示すように、検出器24からの高さHcをユーザが入力器37を介して指定する例が挙げられる。例えば、図1においてX線透過性の材料形成された例えば寝台BDに載せられた検査対象OB(例えば手や足の甲)の高さ方向(Y軸方向)の高さがHOB又はそれ以上であることが判っている場合、その検査対象OBの高さ方向におけるほぼ中心に相当する高さHの断面を指定すればよい。勿論、この例の場合、検出ユニット26は寝台BDの下側に位置するので、その寝台BDと検出ユニット26の検出器24の検出面との間の隙間分の高さも考慮して高さHcが指定される。すなわちH=HBD+HOB/2として指定できる。検査対象OBの高さが不明又はばらつきがあるときには、高さHcを寝台BDの面の高さに設定しておいてもよい。この場合は、H=HBDとして指定できる。 As an example, when the position of the cross section is interactively specified, as shown in FIG. 1, the user specifies the height Hc from the detector 24 via the input device 37. For example, in FIG. 1, the height in the height direction (Y-axis direction) of the inspection target OB (for example, the instep of the hand or foot) placed on the bed BD formed of the X-ray permeable material is HOB or higher. If it is known that the cross section of the height HC corresponding to the center in the height direction of the inspection target OB may be specified. Of course, in the case of this example, since the detection unit 26 is located below the bed BD, the height Hc is also taken into consideration for the height of the gap between the bed BD and the detection surface of the detector 24 of the detection unit 26. Is specified. That is, it can be specified as HC = H BD + H OB / 2. When the height of the OB to be inspected is unknown or uneven, the height Hc may be set to the height of the surface of the bed BD. In this case, it can be specified as HC = HBD .
 一方、検査対象OBの断面を自動的に指定したい場合、ステップS5においては断面の指定情報として、高さHcではなく、画素毎に最適焦点化を図る全画素合焦面を設定する旨の指定がなされる。この場合、この全画素合焦面の高さは必ずしも一定ではなく、画素毎に最適焦点化を図るため、検査対象OBに交差するものの画素毎に高さが異なる凸凹を伴っていることが多い。このような全画素合焦面の作成法は、例えば米国特許第8,433,033やPCT/JP2010/62842に例示されている。これらの例示に係る作成にはラミノグラフィー法(又はトモシンセシス法)が使用されている。 On the other hand, when it is desired to automatically specify the cross section of the inspection target OB, in step S5, it is specified that the focal plane of all pixels for optimal focusing is set for each pixel instead of the height Hc as the cross section designation information. Is done. In this case, the height of the focal plane of all pixels is not always constant, and in order to achieve optimum focusing for each pixel, there are many cases where the height is different for each pixel although it intersects the inspection target OB. .. Such a method for creating an all-pixel focal plane is exemplified in, for example, US Pat. No. 8,433,033 and PCT / JP2010 / 62842. A laminography method (or tomosynthesis method) is used to prepare these examples.
 このように断面指定が終わると、データプロセッサ35は指定断面の断層像を、例えば全ネルギー領域Binallに対する複数のフレームデータFDallを用いて作成する(ステップS6)。 When the cross-section designation is completed in this way, the data processor 35 creates a tomographic image of the designated cross-section using, for example, a plurality of frame data FD all for the entire energy region Bin all (step S6).
 一定の高さHcが指定されている場合には、その高さHcに相当するシフト量を以ってシフトしながら、複数のフレームデータFDallを相互に重ねて画素加算するラミノグラフィー法の下で作成すればよい。これにより、最適焦点化の位置を指定高さHcに合わせた断層像(ラミノグラフィー像)IMallが作成される(図6参照)。この断層像IMallも合焦の位置が高さHcに限定されてはいるが、合焦画像の1つである。 When a certain height Hc is specified, a laminography method in which a plurality of frame data FD alls are superimposed on each other and pixels are added while shifting with a shift amount corresponding to the height Hc. You can create it below. As a result, a tomographic image (laminography image) IM all is created in which the optimum focusing position is adjusted to the specified height Hc (see FIG. 6). This tomographic image IM all is also one of the in-focus images, although the in-focus position is limited to the height Hc.
 一方、検査対象OBの全画素合焦面を設定する旨の指定がなされている場合、収集したフレームデータの中の、例えば全エネルギー領域Binallに属する複数のフレームデータFDallを用いて全画素合焦画像IMall´がラミノグラフィー法の下で作成される(図6参照)。この全画素合焦画像IMall´には検査対象OBが写り込んでおり、かつ、その全画素合焦画像IMall´は高さ方向又はX線照射方向において画素毎に最適焦点化された断層像である。この断層像の例として、例えば前述の作成法と同様に、米国特許第8,433,033やPCT/JP2010/62842に記載のものが挙げられる。この公報記載の作成法は、歯科用について例示しているが、この作成法により作成された湾曲した擬似的な3次元画像を2次元画像に変換することで、本実施形態で使用可能な合焦画像としての2次元断層像が作成される。この2次元断層像は、全画素合焦という処理を経ている分、合焦の度合が前述した高さ一定の合焦画像IMallよりも精緻である。本実施形態では何れの合焦画像であってもよいので、以下、単に合焦画像IMallとして説明する。 On the other hand, when it is specified to set the focal plane of all pixels of the inspection target OB, all the pixels are used among the collected frame data, for example, a plurality of frame data FD all belonging to the total energy region Bin all . The in-focus image IM all ´ is created under the laminography method (see FIG. 6). The inspected OB is reflected in this all-pixel in-focus image IM all ´, and the all-pixel in-focus image IM all ′ is a tomographic image optimized for each pixel in the height direction or the X-ray irradiation direction. It is a statue. Examples of this tomographic image include those described in US Pat. No. 8,433,033 and PCT / JP2010 / 62842, as in the above-mentioned preparation method. Although the preparation method described in this publication exemplifies for dental use, it can be used in the present embodiment by converting a curved pseudo-three-dimensional image created by this preparation method into a two-dimensional image. A two-dimensional tomographic image is created as a focal image. This two-dimensional tomographic image is more precise than the above-mentioned in-focus image IM all with a constant height because it has undergone a process of focusing on all pixels. Since any in-focus image may be used in the present embodiment, the in-focus image IM all will be described below.
 続いて、データプロセッサ35は、3つのエネルギー領域Bin、Bin,Binから収集されたフレームデータFD,FD,FDそれぞれを用い、前記指定高さHc、又は、例えば全画素合焦面の平均の高さに応じて、ラミノグラフィー法の下で断層像を順次作成する(ステップS7,S8,S9)。これにより、図6に模式的に示す如く、エネルギー領域別の合計3つの合焦画像IM,IM,IMが作成される。この3つの合焦画像IM,IM,IMの作成順は任意である。勿論、この3つの合焦画像IM,IM,IMも、上述と同様に、全画素合焦画像として作成してもよい。
[関心領域の設定]
Subsequently, the data processor 35 uses the frame data FD 1 , FD 2 , and FD 3 collected from the three energy regions Bin 1 , Bin 2 , and Bin 3 , respectively, and uses the specified height Hc, or, for example, all pixels. Tomographic images are sequentially created under the laminography method according to the average height of the focal surface (steps S7, S8, S9). As a result, as schematically shown in FIG. 6, a total of three in-focus images IM 1 , IM 2 , and IM 3 for each energy region are created. The order in which these three in-focus images IM 1 , IM 2 , and IM 3 are created is arbitrary. Of course, these three in-focus images IM 1 , IM 2 , and IM 3 may also be created as all-pixel in-focus images in the same manner as described above.
[Setting the area of interest]
 次いで、データプロセッサ35は全画素合焦画像IMall上で、ユーザとの間でインターラクティブに又は自動的に関心領域ROIを設定する(ステップS10)。この関心領域ROIは、例えば、検査対象OBを成す物質の種類を同定する場合には、合焦画像IMallに写り込んでいる検査対象OBの中の同一物質で構成されていると想定される部分(厚さは変わってもよい)を囲む適宜なサイズの関心領域ROIが設定される。異物検出や病変部特定の場合には、その疑いがある箇所又は病理学に疑わしい箇所を囲むように適宜なサイズの関心領域ROIが設定される(図6参照)。 Next, the data processor 35 interactively or automatically sets the region of interest ROI with the user on the all-pixel focused image IM all (step S10). This region of interest ROI is assumed to be composed of the same substance in the inspection target OB reflected in the in-focus image IM all , for example, when identifying the type of the substance forming the inspection target OB. A region of interest ROI of appropriate size surrounding the portion (thickness may vary) is set. In the case of foreign body detection or lesion identification, a region of interest ROI of appropriate size is set to surround the suspected or pathologically suspected area (see FIG. 6).
 詳しくは、骨塩定量の場合には、X線のパスの方向において同一の「皮膚・筋肉」及び「骨」であると推定される部分(例えば人差し指の第2関節部分)に)、微小な矩形状の関心領域ROIが設定される(後述する図13(A)参照)。この関心領域ROIは、例えば5mm×5mm程度のサイズであり、画素サイズが200μm×200μmであれば、画素が5×5=25個分のサイズになる。この関心領域ROIは必ずしも矩形でなくてもよく、不定形であってもよい。 Specifically, in the case of bone mineral quantification, the part that is presumed to be the same "skin / muscle" and "bone" in the direction of the X-ray path (for example, the second joint part of the index finger) is minute. A rectangular area of interest ROI is set (see FIG. 13 (A) described later). This region of interest ROI has a size of, for example, about 5 mm × 5 mm, and if the pixel size is 200 μm × 200 μm, the size of the pixel is 5 × 5 = 25 pixels. This region of interest ROI does not necessarily have to be rectangular and may be amorphous.
 この全画素合焦画像IMall上で関心領域ROIが決まると、この領域情報を使ってエネルギー領域別の3つの合焦画像IM,IM,IM上においても同様に関心領域ROIが設定される(図6参照)。
[背景推定及び背景削除]
When the region of interest ROI is determined on this all-pixel in-focus image IM all , the region of interest ROI is similarly set on the three in-focus images IM 1 , IM 2 , and IM 3 for each energy region using this region information. (See FIG. 6).
[Background estimation and background deletion]
 次いで、データプロセッサ35は合焦画像IMall上で関心領域ROIにおける背景となる画素成分(背景成分)を推定する(ステップS11)。この背景成分は、前述したように、求めたい同定情報が何かによって決まる。物質の種類や性状を同定又は特定する場合、及び、本実施形態のようにX線スキャンにより骨塩定量を行う場合(X線スポット撮影でもよい)、背景成分は、多くは、寝台及び空気を含む既知成分である。異物の種類や病変部の状態を同定(推定)する場合には、それらの既知成分に、検査対象OB自体の成分が異物又は病変部の背景成分として加わる。この背景成分の情報は既知である場合には、それを固定値として、エネルギー領域別の3つの合焦画像IM,IM,IMそれぞれの関心領域ROIから減算される(ステップS12)。 Next, the data processor 35 estimates the pixel component (background component) that is the background in the region of interest ROI on the focused image IM all (step S11). As described above, this background component is determined by what kind of identification information is desired. When identifying or specifying the type and properties of a substance, and when performing bone mineral quantification by X-ray scanning as in the present embodiment (X-ray spot photography may be used), the background components are often a bed and air. It is a known component including. When identifying (estimating) the type of foreign substance or the state of the lesion, the component of the OB to be inspected itself is added to the known components as the background component of the foreign substance or the lesion. If the information of this background component is known, it is set as a fixed value and subtracted from the ROI of each of the three in-focus images IM 1 , IM 2 , and IM 3 for each energy region (step S12).
 一方、背景成分の量が不明である場合には、その背景成分を推定する必要がある。この推定法としては、適宜な手法、例えば関心領域外側かつ背景成分のみをX線パスに含む、相互に離間した任意の複数の位置の画素値から補間法によって推定すればよい。  On the other hand, if the amount of background component is unknown, it is necessary to estimate the background component. As this estimation method, it may be estimated by an appropriate method, for example, by an interpolation method from pixel values at arbitrary plurality of positions separated from each other, including only the background component outside the region of interest in the X-ray path. It was
 なお、上述した前処理は、3つのエネルギー領域別の合焦画像IM,IM,IMそれぞれに関心領域ROIを設定し且つその背景成分を除去することが主な目的である。このため、全エネルギー領域の全画素合焦画像IMallを作成せずに、背景成分を推定するに足る画像、つまり、合焦画像IM,IM,IMの何れかで代替させてもよい。この場合、推定された背景成分のデータベース等を使用し、背景成分推定に直接使用されなかった合焦画像等の背景成分を間接的に推定するようにできる。
[物質同定のメイン処理]
The main purpose of the above-mentioned pretreatment is to set the ROI of the region of interest in each of the focused images IM 1 , IM 2 , and IM 3 for each of the three energy regions and to remove the background component thereof. Therefore, instead of creating an all-pixel in-focus image IM all in the entire energy region, an image sufficient for estimating the background component, that is, an in-focus image IM 1 , IM 2 , or IM 3 can be used instead. good. In this case, it is possible to indirectly estimate the background component such as the in-focus image that was not directly used for the background component estimation by using the estimated background component database or the like.
[Main processing of substance identification]
 上述のように前処理が終わると、データプロセッサ35は物質同定のためのメインの処理を行う(ステップS13)。このメインの処理は、後述する骨塩定量の処理の一部としても利用されるもので、図7に示すように行われる。
<線減弱値μtの演算>
When the preprocessing is completed as described above, the data processor 35 performs the main processing for substance identification (step S13). This main treatment is also used as a part of the bone mineral quantification treatment described later, and is performed as shown in FIG. 7.
<Calculation of line attenuation value μt>
 まず、データプロセッサ35は、3つの合焦画像IM,IM,IMそれぞれにおいて関心領域ROIで囲まれ且つ背景成分が削除された画素値を用いて線減弱値μtを演算する(図7、ステップS131)。ここで、μは物質の線減弱係数(単に、減弱係数とも呼ばれる)であり、tは物質のX線照射方向に沿った厚さである。 First, the data processor 35 calculates the line attenuation value μt using the pixel values surrounded by the region of interest ROI and the background component removed in each of the three focused images IM 1 , IM 2 , and IM 3 (FIG. 7). , Step S131). Here, μ is the linear attenuation coefficient of the substance (also simply referred to as the attenuation coefficient), and t is the thickness of the substance along the X-ray irradiation direction.
 前述した単一物質モデル及び複数物質モデルにおいて、各エネルギー領域Bin(i=1~3)に対して、画素毎に、線減弱値μtは式(2)、(4)を変形した下記の式から演算される。
μt=lnCli-lnCoi
(i=1~3:単一物質モデルの場合)
                                 … (5)
Figure JPOXMLDOC01-appb-M000001

(i=1~3、j=a~n:複数物質モデルの場合)
                                 … (6)
ここで、lnは自然対数を採ることを意味している。
In the above-mentioned single substance model and multiple substance model, the line attenuation value μt is the following modified equations (2) and (4) for each pixel for each energy region Bin i (i = 1 to 3). Calculated from the formula.
μ it = lnC li -lnC oi
(I = 1-3: In the case of a single substance model)
… (5)
Figure JPOXMLDOC01-appb-M000001

(I = 1 to 3, j = a to n: in the case of multiple substance models)
… (6)
Here, ln means to take the natural logarithm.
 このため、物質に入射(入力)した光子数と物質から出射(出力)した光子数が判れば、線減弱値μtは演算できる。出射光子数Coiは検出器24によりエネルギー領域別に且つ画素毎に検出された光子数である。Cliは実際のX線検査と同じ条件の下で入射するX線のフォトン数であり、例えば、予め設定されている既知の値である。勿論、その都度、実際のX線検査条件の変動を考慮して物質同定時に推定した値であってもよい。 Therefore, if the number of photons incident (input) on the substance and the number of photons emitted (output) from the substance are known, the line attenuation value μt can be calculated. The number of emitted photons Coi is the number of photons detected by the detector 24 for each energy region and for each pixel. Cli is the number of photons of X-rays incident under the same conditions as the actual X-ray examination, and is, for example, a preset known value. Of course, it may be a value estimated at the time of substance identification in consideration of fluctuations in actual X-ray inspection conditions each time.
 なお、線減弱値μtは、ビームハードニング(線質硬化)現象の影響を受けていることが通常であるから、その補正処理をしたうえで、後述のベクトル演算を行うことが望ましい。ビームハードニングとは、連続X線が物質を通過するときに低エネルギーの光子の方が高エネルギーの光子より多く吸収され、結果的に平均(実効)エネルギーがエネルギーの高い側にシフトする現象である。このビームハードニングが生じると、アーチファクトが発生したり、再構成した画像の画素値を不正確にものにしたりする。ビームハードニングは程度の差こそあれ生じるもので、物質の厚みにも依存している(厚い程、ビームハードニングが大きくなる)。このため、本出願人が既に出願している、例えば、国際公開番号WO 2017/069286 A1に記載の補正処理法に基づき、線減弱値μtをエネルギー領域別に且つ画素毎に補正することが望ましい。 Since the line attenuation value μt is usually affected by the beam hardening phenomenon, it is desirable to perform the vector calculation described later after performing the correction process. Beam hardening is a phenomenon in which low-energy photons are absorbed more than high-energy photons when continuous X-rays pass through a substance, and as a result, the average (effective) energy shifts to the higher energy side. be. When this beam hardening occurs, artifacts occur and the pixel values of the reconstructed image become inaccurate. Beam hardening occurs to varying degrees and depends on the thickness of the material (the thicker the beam hardening, the greater the beam hardening). Therefore, it is desirable to correct the line attenuation value μt for each energy region and each pixel based on the correction processing method described in, for example, International Publication No. WO 2017/069286 A1 which the applicant has already applied for.
 特に、上記ビームハードニングを補正する手法として、本出願人は、既に、国際公開番号WO 2019/083014 A1に記載の手法を採用してもよい。この手法は、より高精度なビームハードニング補正を、より広範囲な実効原子番号Zeffの元素を持つ対象まで低演算負荷で行い、より定量的なX線画像の提示に寄与することを目的として提案されている。 In particular, as a method for correcting the above beam hardening, the applicant may already adopt the method described in International Publication No. WO 2019/083014 A1. This method aims to contribute to the presentation of more quantitative X-ray images by performing more accurate beam hardening correction to objects with a wider range of elements with effective atomic number Z eff with a low computational load. Proposed.
 この補正手法は様々な態様で提案されているが、その一態様によれば、所望範囲(Zmin~Zmax)の実効原子番号から所望の実効原子番号(例えばZm=7)を指定し、この指定された実効原子番号(例えばZm=7)の元素から成る物質に単色X線が照射されたと仮定したときの前記2次元座標上の直線を目標関数として設定する。さらに、2次元座標上で、横軸方向に目標関数の傾き(μ/ρ)を乗算して、複数の実効原子番号(例えばZ=5~14)それぞれの複数の曲線を当該実効原子番号の変数であるとして一般化する。さらに、この一般化された複数の曲線の中から、指定された実効原子番号(例えばZm=7)の元素の曲線を指定し、この指定曲線と他の曲線との残差に基づく、前記ビームハードニングを補正するためのビームハードニング補正関数を前記補正情報として、記憶部に事前に記憶する。このため、一般化された目標関数と、所定の実効原子番号の範囲において指定した実効原子番号の残差に関する情報を保有していれば、上述の手順で、ビームハードニング補正関数を演算できる。したがって、予め設定する実効原子番号の範囲をより広く持っていても、ビームハードニング補正関数を演算する上で、その広さに比例したほどの演算量にならなくて済む。つまり、より広範囲な実効原子番号Zeffの元素を持つ対象物について、より少ない演算負荷でビームハードニング補正できる。 This correction method has been proposed in various aspects. According to one aspect, a desired effective atomic number (for example, Zm = 7) is specified from an effective atomic number in a desired range (Zmin to Zmax), and this designation is made. Assuming that a substance composed of an element having an effective atomic number (for example, Zm = 7) is irradiated with monochromatic X-rays, a straight line on the two-dimensional coordinates is set as a target function. Further, on the two-dimensional coordinates, the slope of the target function (μ / ρ) is multiplied in the horizontal axis direction, and a plurality of curves of each of the plurality of effective atomic numbers (for example, Z = 5 to 14) are obtained. Generalize as a variable. Further, from the plurality of generalized curves, a curve of the element having a designated effective atomic number (for example, Zm = 7) is designated, and the beam is based on the residual of this designated curve and another curve. The beam hardening correction function for correcting the hardening is stored in advance in the storage unit as the correction information. Therefore, if the generalized target function and the information regarding the residual of the specified effective atomic number in the range of the predetermined effective atomic number are possessed, the beam hardening correction function can be calculated by the above procedure. Therefore, even if the range of the effective atomic number set in advance is wider, the calculation amount does not have to be proportional to the range in calculating the beam hardening correction function. That is, the beam hardening can be corrected with a smaller computational load for an object having an element having an effective atomic number Z eff in a wider range.
 なお、医療検査の場合、乳房や手足の軟部組織では、より単純化された物質から構成されていると見做すことができ、さらに、その撮影部の圧迫又は固定に用いる器具が使用される場合であっても平板構造かつ材質が既知であるため、背景除去の精度が良く、この線減弱値μtはより精度良く演算可能である。また、食品などの非破壊検査においても、前述のように背景成分を適宜に推定できれば、その背景成分を除去した後の画素情報から線減弱値μtは精度良く演算可能である。 In the case of medical examination, the soft tissues of the breast and limbs can be regarded as being composed of a simpler substance, and an instrument used for compressing or fixing the imaging part is used. Even in this case, since the flat plate structure and the material are known, the accuracy of background removal is good, and this line attenuation value μt can be calculated more accurately. Further, even in the non-destructive inspection of foods and the like, if the background component can be estimated appropriately as described above, the line attenuation value μt can be calculated accurately from the pixel information after the background component is removed.
 次いで、データプロセッサ35は、上述した3つのエネルギー領域Bin~Binの合焦画像IM~IMにおいて、それらの関心領域ROIを成す各画素の線減弱値μtをピックアップし、ベクトル化する(ステップS132:図8参照)。 Next, the data processor 35 picks up and vectorizes the line attenuation value μt of each pixel forming the ROI of interest in the focused images IM 1 to IM 3 of the above-mentioned three energy regions Bin 1 to Bin 3 . (Step S132: see FIG. 8).
 つまり、各画素について3次元の線減弱ベクトル(μt、μt、μt)を作成する(図8参照)。この3次元線減弱ベクトル(μt、μt、μt)には未だ厚さt及び密度のファクタが含まれているので、このベクトル自体は厚さt及び密度に由来するX線減弱量を示しているに過ぎず、物質固有の指標になり得ない。それは、X線スキャノグラムやX線単純撮影と同様に、厚みtが未知のため、X線に対する物質固有の線減弱係数μ、μ、μを求めることができないからである。さらに、X線を用いた検査や診断の応用では、検査に使用するベルトコンベアの移動速度が速くX線の照射領域をすぐに通り過ぎてしまうことがあり、また、診断のための患者被ばく量低減の目的から、X線量が制限される。このような場合には、検査や診断のために収集された各画素における光子の計数値が少なくなるため、1つの3次元線減弱ベクトル(μt、μt、μt)だけでは、他のノイズ成分に埋もれて、物質固有の情報を求めることは困難である。 That is, a three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) is created for each pixel (see FIG. 8). Since this 3D line attenuation vector (μ 1 t, μ 2 t, μ 3 t) still contains the thickness t and density factors, this vector itself is an X-ray derived from the thickness t and density. It only indicates the amount of attenuation and cannot be a substance-specific index. This is because, as in the case of X-ray scanogram and X-ray simple radiography, since the thickness t is unknown, it is not possible to obtain the substance-specific ray attenuation coefficients μ 1 , μ 2 , and μ 3 for X-rays. Furthermore, in the application of X-ray examination and diagnosis, the moving speed of the belt conveyor used for the examination may be high and the X-ray irradiation area may be passed immediately, and the patient exposure dose for diagnosis may be reduced. For the purpose of, the X-ray dose is limited. In such a case, since the count value of photons in each pixel collected for inspection or diagnosis becomes small, only one three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) is sufficient. , It is difficult to obtain information specific to a substance because it is buried in other noise components.
 そこで、この3次元線減弱ベクトル(μt、μt、μt)を正規化し且つそれを集合で扱うことで物質同定を行う。 Therefore, the substance identification is performed by normalizing this three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) and treating it as a set.
 まず、各3次元線減弱ベクトル(μt、μt、μt)を下記の式(7)によって単位長さ(長さ1)に正規化(又は規格化)し、厚さt及び物質密度のファクタが入らない3次元質量減弱ベクトル(μ ´、μ ´、μ ´)を作成する(ステップS133)。
(μ ´、μ ´、μ ´
=(μt、μt、μt)/((μt)+(μt)+(μt)1/2
=(μ、μ、μ)/(μ 1/2  …(7)
First, each three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) is normalized (or standardized) to a unit length (length 1) by the following equation (7), and the thickness is t. And a three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ) that does not include the factor of the substance density is created (step S133).
1 ' , μ 2 ' , μ 3 ' )
= (Μ 1 t, μ 2 t, μ 3 t) / ((μ 1 t) 2 + (μ 2 t) 2 + (μ 3 t) 2 ) 1/2
= (Μ 1 , μ 2 , μ 3 ) / (μ 1 2 + μ 2 2 + μ 3 2 ) 1/2 … (7)
 勿論、この正規化は各3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の長さを揃えることであり、必ずしも長さ=1でなくてもよく、適宜の係数を掛け合わせた任意の長さでもよい。 Of course, this normalization is to make the lengths of each three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ) uniform, and the length does not necessarily have to be 1, and is multiplied by an appropriate coefficient. It may be any length combined.
 このように正規化することで厚さt及び密度のファクタは消えるので、線減弱係数μ、μ、μを互いに直交軸とする3次元座標上で、その座標原点に各3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の始点を置けば(ステップS134)、その終点の位置座標はμ´に変化を生じせしめるような物質固有の情報(物質の種類、性状の情報)を表していることになる。 By normalizing in this way, the thickness t and density factors disappear, so on the three-dimensional coordinates whose linear attenuation coefficients μ 1 , μ 2 , and μ 3 are orthogonal to each other, each three-dimensional mass is at the coordinate origin. If the start point of the attenuation vector (μ 1 , μ 2 , μ 3 ) is placed (step S134), the position coordinates of the end point will be the substance-specific information (material type, properties) that causes a change in μ . Information).
 このように本実施形態では、X線減弱を示すベクトル量を、正規化前には3次元線減弱ベクトル(μt、μt、μt)として扱い、正規化後には3次元質量減弱ベクトル(μ ´、μ ´、μ ´)として扱うようにしている。本実施形態では何れも3次元で処理しているが、2次元であっても同様である。 As described above, in the present embodiment, the vector quantity indicating the X-ray attenuation is treated as a three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) before normalization, and the three-dimensional mass after normalization. It is treated as an attenuation vector (μ 1 , μ 2 , μ 3 ). In this embodiment, all the processes are performed in three dimensions, but the same applies even if they are two-dimensional.
 このステップS134における処理は、例えば、図10に示すように、ROM33に予め格納されていた、質量線減弱係数μ ´、μ ´、μ ´を表す直交3軸の座標データを空間生成(表示用)のために読み出し(S134-1)、例えば質量減弱ベクトルの長さが1の場合、この直交3軸の長さ=1を通る部分球面をメモリ空間に設定し(ステップS134-2)、この部分球面に、原点Oから各3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の先端を配置(打点又はマッピングとも呼ばれる)する(ステップS134-3)。 In the process of this step S134, for example, as shown in FIG. 10, the coordinate data of the orthogonal three axes representing the mass line attenuation coefficients μ 1 , μ 2 , μ 3 , which are stored in advance in the ROM 33, are spatially generated. Read (S134-1) for (for display), for example, when the length of the mass attenuation vector is 1, a partial spherical surface passing through the length of the three orthogonal axes = 1 is set in the memory space (step S134-2). ), The tip of each three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ) is arranged (also referred to as a dot or mapping) on this partial spherical surface from the origin O (step S134-3).
 なお、各画素に対する3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の3次元傾き情報は、ステップS134-1で設定した3次元空間において物質の種類や性状によって変化する、物質固有の情報を擬似的に(仮想的に)表す散布データとも言える。このため、この3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の先端が指し示す位置、即ち、3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の3次元傾き情報(つまり、散布点)の集合を「3次元散布図」とも呼んでいる。つまり、物質が変われば、3次元質量減弱ベクトル(μ ´、μ ´、μ ´)の傾きが変わり、その先端が指し示す3次元位置(散布点の位置)も変わるからであり、その3次元位置の情報が検査対象OBを透過する前後のX線フォトンのエネルギーの分布を反映している。 The three-dimensional tilt information of the three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ) for each pixel changes depending on the type and properties of the substance in the three-dimensional space set in step S134-1. It can also be said to be spray data that represents (virtually) information unique to a substance. Therefore, the position pointed to by the tip of the three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ), that is, the three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ) 3 A set of dimensional tilt information (that is, a scatter point) is also called a "three-dimensional scatter diagram". That is, if the substance changes, the inclination of the three-dimensional mass attenuation vector (μ 1 , μ 2 , μ 3 ) changes, and the three-dimensional position (position of the scattering point) pointed to by the tip also changes. The three-dimensional position information reflects the distribution of X-ray photon energy before and after passing through the inspection target OB.
 さらに、データプロセッサ35は、各画素に対して、各3次元線減弱ベクトル(μt、μt、μt)の長さを
 ((μt)+(μt)+(μt)1/2  …(8)
Further, the data processor 35 sets the length of each three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) for each pixel to ((μ 1 t) 2 + (μ 2 t) 2 ). + (Μ 3 t) 2 ) 1/2 ... (8)
 として演算する。この式(8)で表される量は、X線吸収量(またはX線減弱量;X線の撮影領域ではX線の吸収が減弱に与える中で最も大きいので、以降、“吸収”と記載)に対応するもので、これも物質同定の補完情報として有用であり、また従来の吸収画像の代替画像としての画素値を成す。このため、この吸収量を階調化した値を画素値とする画像を作成する(ステップS135)。この3次元線減弱ベクトルの長さは擬似的に(仮想的に)X線減弱値に対応する「吸収ベクトル長」と呼ばれ、これを画素値とした画像は「吸収ベクトル長画像(又は擬似吸収画像)」とも呼ばれている。この吸収ベクトル長画像は、X線の入射エネルギースペクトラムの形状に依存し難いことから安定した画像であり、各線減弱値μtを総合的に反映している。この結果、この吸収ベクトル長画像はコントラストの強い画像になる。この吸収ベクトル長画像を画像メモリ36に保管しておいて、必要なときに表示器38で表示するようにしてもよい。特にX線のビームハードニングが強い質量の大きな物質に対して特徴的な画像を得ることができる。 Calculate as. The amount represented by this formula (8) is the amount of X-ray absorption (or X-ray attenuation; since the absorption of X-rays is the largest in the X-ray imaging region, it is described as "absorption" hereafter. ), Which is also useful as complementary information for substance identification, and forms a pixel value as a substitute image for a conventional absorption image. Therefore, an image is created in which the value obtained by gradation of the absorption amount is used as the pixel value (step S135). The length of this three-dimensional line attenuation vector is called the "absorption vector length" that corresponds to the pseudo (virtually) X-ray attenuation value, and the image using this as the pixel value is the "absorption vector length image (or pseudo). Absorption image) ”. This absorption vector length image is a stable image because it does not easily depend on the shape of the incident energy spectrum of X-rays, and comprehensively reflects each line attenuation value μt. As a result, this absorption vector length image becomes an image with high contrast. The absorption vector length image may be stored in the image memory 36 and displayed on the display 38 when necessary. In particular, it is possible to obtain a characteristic image for a substance having a large mass and strong X-ray beam hardening.
 最後に、データプロセッサ35は、上述した3次元散布図のデータを物質固有情報として、また吸収ベクトル長画像を物質同定の補完情報として画像メモリ36に保存し(図5、ステップS14)、必要に応じて、それらを例えば表示器38を介してユーザに提示する(ステップS15)。 Finally, the data processor 35 stores the above-mentioned three-dimensional scatter diagram data as substance-specific information and the absorption vector length image as supplementary information for substance identification in the image memory 36 (FIG. 5, step S14), and is necessary. Accordingly, they are presented to the user, for example, via the display 38 (step S15).
 以上のように、光子計数型の検出器24により収集されたエネルギー領域別のX線光子計数値に基づいて、検査対象OBの厚さに無関係に物質固有の情報を取得することができる。これは以下に説明する物質固有情報の表示及び解析と組み合わせると大いなる優位性を発揮する。
 [物質固有情報の表示及び解析の一例]
As described above, based on the X-ray photon counting value for each energy region collected by the photon counting type detector 24, it is possible to acquire the substance-specific information regardless of the thickness of the inspection target OB. This has a great advantage when combined with the display and analysis of substance-specific information described below.
[Example of display and analysis of substance-specific information]
 この物質固有情報の表示及び解析の処理は、例えば前述したステップS15の一環として実行される。データプロセッサ35は、例えばユーザから指示に応えて、上述した物質固有情報を表示する。具体的には、3次元質量減弱ベクトルの各要素μ ´、μ ´、μ ´を3軸とする3次元座標空間に原点を中心とする半径=1の球表面を設定する(図9、ステップS31)。 This process of displaying and analyzing the substance-specific information is executed, for example, as part of step S15 described above. The data processor 35 displays the above-mentioned substance-specific information in response to an instruction from the user, for example. Specifically, a sphere surface with a radius of 1 centered on the origin is set in a three-dimensional coordinate space having each element μ 1 , μ 2 , and μ 3 of the three-dimensional mass attenuation vector as three axes (Fig.). 9, step S31).
 次いで、各画素の3次元質量減弱ベクトル(μ ´、μ ´、μ ´)から成る3次元散布図をその3次元座標空間の原点を始点とし、その終点を、一例として、同一面として機能する球表面上(半径=1に正規化された球面)にマッピング(打点)して表示する(ステップS32)。このマッピングされた球表面上の終点の集合は物質固有の情報に基づく、物質固有の散布点の集合となる。このため、たとえ画素間で厚さtが互いに異なる物質が検査対象であったとしても、その厚さtのファクタには依存しない散布点の集合が得られる。 Next, a three-dimensional scatter diagram consisting of three-dimensional mass attenuation vectors (μ 1 , μ 2 , μ 3 ) of each pixel is set as a starting point of the origin of the three-dimensional coordinate space, and the ending point is taken as an example of the same surface. It is mapped (dotted) on the surface of a sphere (a spherical surface normalized to a radius = 1) and displayed (step S32). The set of end points on this mapped sphere surface is a set of substance-specific scatter points based on the substance-specific information. Therefore, even if substances having different thicknesses t between pixels are to be inspected, a set of scatter points that does not depend on the factor of the thickness t can be obtained.
 図11に、この散布点の集合を3次元散布図として、正規化された球表面の一部(同一面の一部)に打点した例を模式的に示す。 FIG. 11 schematically shows an example in which a set of scatter points is set as a three-dimensional scatter plot and dots are made on a part of a normalized sphere surface (a part of the same surface).
 次いで、データプロセッサ35は、図12(A)に示すように、例えば関心領域ROIを成す各画素の全部または一部に対して導かれた散布点をグループ化し(点線の囲み参照:ステップS33)、同図(B)に示すように、グループ分けされた散布点の重心位置GRを演算する(ステップS34)。次いで、同図(C)に示すように、各散布点グループの重心位置GRと原点とを結ぶベクトルVobjを演算する(ステップS35)。 The data processor 35 then groups the scatter points guided for all or part of each pixel forming the region of interest ROI, for example, as shown in FIG. 12 (A) (see dotted box: step S33). , As shown in the figure (B), the center of gravity position GR of the grouped scatter points is calculated (step S34). Next, as shown in FIG. 3C, the vector V obj connecting the center of gravity position GR of each scatter point group and the origin is calculated (step S35).
 グループ化については、分析内容により、適宜その範囲を変更できる。すなわち、関心領域ROIを成す各画素の全部に対して導かれた散布点をすべてグルーピングしても良いし、一旦すべてグルーピングした後、統計的にイレギュラーな(前記重心位置から大きく離間する)散布点を除去してから再グループ化するなどしても良い。あるいはROIの範囲が適切でなく、画素の面内方向に複数物質が広がっている場合には、当然に散布点が広がったり、離間したりするので、近接した散布点でグループ化が可能なようにROIを設定し直すか、ユーザまたは自動判定ソフトウェアが散布点上でグループ化対象範囲を指定して、グループ化を行っても良い。 The scope of grouping can be changed as appropriate depending on the content of the analysis. That is, all the scatter points guided to all the pixels forming the region of interest ROI may be grouped, or once all the scatter points are grouped, the scatter is statistically irregular (largely separated from the position of the center of gravity). You may remove the dots and then regroup them. Alternatively, if the ROI range is not appropriate and multiple substances are spread in the in-plane direction of the pixel, the scatter points will naturally spread or be separated, so that grouping can be performed at close scatter points. The ROI may be reset to, or the user or the automatic determination software may specify the grouping target range on the scatter point to perform grouping.
 次いで、このベクトルVobjを予め保有している基準データに比較して、物質の種類や性状を同定又は特定する(ステップS36)。基準データには、例えば記憶テーブルとして、予め物質の種類や性状に応じて測定したベクトルVobjの3次元傾きが許容幅と共に記憶されている。このため、演算したベクトルVobjの傾きがその許容幅に入るか否かで物質同定を行うことができるとともに、ノイズとなるベクトル情報を排除できる。同定された情報は保存される(ステップS37)。 Next, the type and properties of the substance are identified or specified by comparing the vector V obj with the reference data held in advance (step S36). In the reference data, for example, as a storage table, the three-dimensional inclination of the vector V obj measured in advance according to the type and properties of the substance is stored together with the allowable width. Therefore, the substance can be identified depending on whether or not the slope of the calculated vector V obj falls within the allowable range, and the vector information that becomes noise can be excluded. The identified information is stored (step S37).
 このベクトルVobjは、関心領域ROIを成す複数の画素それぞれの3次元線減弱ベクトル(μt、μt、μt)の方向を平均化した平均ベクトルに相当する(但し、その長さは正規化されている)。 This vector V obj corresponds to an average vector obtained by averaging the directions of the three-dimensional line attenuation vectors (μ 1 t, μ 2 t, μ 3 t) of each of the plurality of pixels forming the region of interest ROI (however, its length). Is normalized).
 なお、前述したステップS15において、3次元散布図及び吸収ベクトル長画像は様々な態様で提示・提供できる。例えば、データプロセッサ35は、3次元散布図及び吸収ベクトル長画像を表示器38に分割表示してもよいし、最初に3次元散布図を表示し、ユーザから要請に応じて補助的に吸収ベクトル長画像を表示させるようにしてもよく、またその逆でも良い。また、ユーザからの要求により、一旦表示した画面上で、散布点のグループ化の範囲を再指定したり、ROIの範囲を再指定したりしてもよい。
<骨塩定量>
In step S15 described above, the three-dimensional scatter plot and the absorption vector length image can be presented and provided in various modes. For example, the data processor 35 may display the three-dimensional scatter diagram and the absorption vector length image separately on the display 38, or first display the three-dimensional scatter diagram and supplementarily display the absorption vector upon request from the user. A long image may be displayed, and vice versa. Further, at the request of the user, the range of grouping of scatter points may be redesignated or the range of ROI may be redesignated on the screen once displayed.
<Bone mineral quantification>
 例えば被検者の手の甲OB(指)において骨塩定量を行う場合、図14の処理がデータプロセッサ35により実行される。 For example, when bone mineral quantification is performed on the back OB (finger) of the subject's hand, the process of FIG. 14 is executed by the data processor 35.
 図14のステップS51でYES、即ち、骨塩定量を行う場合、既に、前述したステップS10において手の指FG(例えば、第2関節と第3関節の間の部分で、「皮膚・筋肉、骨、筋肉・皮膚」の複数物質モデルに合致する場所)の指定断面の断層像IMALLに関心領域ROIが設定されている(図13(A)、(B)参照)。ここでは、既に前述したステップ132において、この関心領域ROIの各画素PXにおける3次元線減弱ベクトル(μt、μt、μt)が演算されている(図13(C)参照)。この3次元線減弱ベクトル(μt、μt、μt)は、前述したステップS131,S132により機能的に構成される画素別ベクトル演算手段により演算されるn次元(ここでは3次元)の空間ベクトルに相当する。 When YES, that is, bone mineral quantification is performed in step S51 of FIG. 14, the finger FG of the hand (for example, the portion between the second joint and the third joint, “skin / muscle, bone” has already been performed in step S10 described above. The region of interest ROI is set in the tomographic image IM ALL of the designated cross section (a place that matches the plural material model of ", muscle / skin") (see FIGS. 13 (A) and 13 (B)). Here, in step 132 already described above, the three-dimensional line attenuation vectors (μ 1 t, μ 2 t, μ 3 t) in each pixel PX of this region of interest ROI are calculated (see FIG. 13 (C)). .. This three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) is n-dimensional (here, three-dimensional) calculated by the pixel-specific vector calculation means functionally configured by steps S131 and S132 described above. ) Corresponds to the space vector.
 そこで、データプロセッサ35は、骨塩定量を行う場合、前述したステップS31~S35の演算により関心領域ROIの各画素PXの前記3次元線減弱ベクトル(μt、μt、μt)を利用して求めた散布点グループそれぞれの平均ベクトルであるベクトルVobj(但し、長さは正規化されている)を示す情報を画像メモリ36から自分のワークエリアに呼び出す(ステップS52:図13(D)参照)。この骨塩定量の場合、X線パスIBn(図15)に示すように、「皮膚・筋肉のB部分、骨のA部分、筋肉・皮膚のB部分」の順にX線が透過するので、上記ベクトルVobjはそのX線パスIBn上に存在する物質全部の合成特性で決まる1つの散布点グループを成す(但し、ノイズに因る広がりを持つ)。ベクトルVobjにより、関心領域ROIを代表する代表ベクトル(3次元質量減弱ベクトル)の方向が判る。 Therefore, when performing bone mineral quantification, the data processor 35 performs the three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 t) of each pixel PX of the region of interest ROI by the calculation of steps S31 to S35 described above. The information indicating the vector V obj (however, the length is normalized), which is the average vector of each of the scatter point groups obtained by using the above, is called from the image memory 36 to the own work area (step S52: FIG. 13). See (D)). In the case of this bone mineral quantification, as shown in the X-ray path IBn (FIG. 15), X-rays are transmitted in the order of "skin / muscle B part, bone A part, muscle / skin B part". The vector V obj forms one group of scattering points determined by the synthetic characteristics of all the substances existing on the X-ray path IBn (however, it has a spread due to noise). From the vector V obj , the direction of the representative vector (three-dimensional mass attenuation vector) representing the region of interest ROI can be known.
 さらに、データプロセッサ35は、ステップS135で関心領域ROIの各画素PXについて既に演算していた吸収ベクトル長画像を成す吸収ベクトル長を示すデータを、画像メモリ36から自分のワークエリアに読み出す(ステップS53)。この吸収ベクトル長は、骨塩定量の場合、前述した定義に従えば、3次元線減弱ベクトルの長さに相当するもので、「皮膚・筋肉、骨、筋肉・皮膚」を透過したX線の擬似的な(仮想的な)X線減弱値におおよそ対応する。 Further, the data processor 35 reads data indicating the absorption vector length forming the absorption vector length image already calculated for each pixel PX of the region of interest ROI from the image memory 36 into its own work area in step S135 (step S53). ). In the case of bone mineral quantification, this absorption vector length corresponds to the length of the three-dimensional line attenuation vector according to the above definition, and is the length of the X-ray transmitted through "skin / muscle, bone, muscle / skin". Approximately corresponds to pseudo (virtual) X-ray attenuation values.
 そこで、データプロセッサ35は、読み出した各画素PXに対する吸収ベクトル長の平均値を演算する(ステップS54)。これにより、関心領域ROIを成す複数画素PXの3次元線減弱ベクトルの長さの平均値が判る。 Therefore, the data processor 35 calculates the average value of the absorption vector lengths for each read pixel PX (step S54). As a result, the average value of the lengths of the three-dimensional line attenuation vectors of the plurality of pixels PX forming the region of interest ROI can be found.
 したがって、データプロセッサ35は、ステップS52で求めていたベクトルの方向とステップS54で求めていた吸収ベクトル長の平均値とを持つ3次元ベクトルを、関心領域ROIを代表する3次元代表ベクトル(3次元線減弱ベクトルの平均;以下、3次元代表ベクトルと呼ぶ)Vobj-dとして演算する(ステップS55:図13(E)参照)。 Therefore, the data processor 35 uses a three-dimensional vector having the direction of the vector obtained in step S52 and the average value of the absorption vector length obtained in step S54 as a three-dimensional representative vector (three-dimensional) representing the region of interest ROI. The average of the line attenuation vector; hereinafter referred to as a three-dimensional representative vector) is calculated as V obj-d (step S55: see FIG. 13 (E)).
 なお、このステップS55で実施し得る、3次元代表ベクトル(3次元線減弱ベクトルの平均)Vobj-dを演算する変形例として、3次元線減弱ベクトル(μt、μt、μt)を前述したグループ化領域を成す複数の画素について、3次元線減弱ベクトルそのものの要素ごとに平均するベクトル平均手法を用いることもできる。 As a modification for calculating the three-dimensional representative vector (average of the three-dimensional line attenuation vector) V obj-d that can be carried out in this step S55, the three-dimensional line attenuation vector (μ 1 t, μ 2 t, μ 3 ). It is also possible to use the vector averaging method of averaging each element of the three-dimensional line attenuation vector itself for a plurality of pixels forming the grouping region described above for t).
 この3次元代表ベクトルVobj-dは、図15からも判るように、「皮膚・筋肉B」の軟組織、「骨A」の硬組織、及び「皮膚・筋肉B」を順に透過したときのトータルのX線減弱情報を含んでいる。一方で、骨塩定量で欲しい情報は、皮膚及び筋肉で囲まれた骨自体の情報(骨密度、骨量)である。この観点からすれば、この3次元代表ベクトルVobj-dには、皮膚及び筋肉に因る余分なX線減弱情報を含んでいる。 As can be seen from FIG. 15, this three-dimensional representative vector V obj-d is the total when the soft tissue of "skin / muscle B", the hard tissue of "bone A", and the "skin / muscle B" are sequentially transmitted. Contains X-ray attenuation information. On the other hand, the information desired for bone mineral quantification is information on the bone itself surrounded by skin and muscle (bone density, bone mass). From this point of view, this 3D representative vector V obj-d contains extra X-ray attenuation information due to skin and muscle.
 そこで、データプロセッサ35により、例えばROM33に予め設定・保存されている3次元参照ベクトルVrefが読み出される(図13(F)参照:ステップS56)。この3次元参照ベクトルVrefは、皮膚及び筋肉のみをX線が透過したと仮定したときの(図15の仮想線で示すパスIP参照)、当該皮膚及び筋肉の線減弱値に等価な3次元の参照ベクトルであり、予め推定・測定されている。なお、この事前の推定・測定に代えて、3次元代表ベクトルVobj-dを演算する際にほぼ同時に、X線が「皮膚・筋肉B」のみを透過していると思われる部分にROI:ROIref(図13(A)参照)を設定し、前述した3次元代表ベクトルの演算と同様に、3次元参照ベクトルVrefを演算することもできる。 Therefore, the data processor 35 reads out, for example, the three-dimensional reference vector V ref set and stored in advance in the ROM 33 (see FIG. 13 (F): step S56). This three-dimensional reference vector V ref is a three-dimensional equivalent to the line attenuation value of the skin and muscle when it is assumed that X-rays are transmitted only through the skin and muscle (see the path IP shown by the virtual line in FIG. 15). It is a reference vector of, and is estimated and measured in advance. Instead of this preliminary estimation / measurement, at almost the same time when calculating the three-dimensional representative vector V obj-d , the ROI: It is also possible to set the ROI ref (see FIG. 13 (A)) and calculate the three-dimensional reference vector V ref in the same manner as the above-mentioned calculation of the three-dimensional representative vector.
 具体的には、この3次元参照ベクトルVrefは、i)対象のX線照射する部位の厚さを含む外形サイズ、または、重量から推定する、又は、ii)予め統計的に収集してデータベース化した参照表から読み込む、iii)対象の撮影部位の内の皮膚・筋肉のみである部分領域において線減弱ベクトルと同等であると見做されて事前に求められ保存されている3次元参照ベクトルVref(3次元は、μt、μt、μtの次元を持つ)を呼び出す、又は、前述したように、iv)対象の撮影部位の内の皮膚・筋肉のみである部分領域(例えば、ROIrefで示す領域(図13(A)、図15参照)において線減弱ベクトルと同等であると見做して3次元参照ベクトルVrefを演算する、ことにより設定される。このうち、項目ivに示した演算を行う場合には、画像データの読み書きが必要で、ROM33からの読み出したデータだけではなく、当然にRAM34も使用し、データプロセッサ35により演算が行われる。 Specifically, this 3D reference vector V ref is i) estimated from the external size including the thickness of the target X-ray irradiation site or weight, or ii) statistically collected in advance and stored in the database. Read from the converted reference table, iii) The 3D reference vector V, which is considered to be equivalent to the line attenuation vector in the partial region of the target imaging site, which is only the skin and muscles, and is obtained and stored in advance. Call ref (three dimensions have dimensions of μ 1 t, μ 2 t, μ 3 t), or, as mentioned above, iv) a partial region of the subject's imaging site that is only the skin / muscle (3D). For example, it is set by calculating the three-dimensional reference vector V ref on the assumption that it is equivalent to the line attenuation vector in the region indicated by ROI ref (see FIGS. 13 (A) and 15). When performing the calculation shown in item iv, it is necessary to read and write the image data, and not only the data read from the ROM 33 but also the RAM 34 is naturally used, and the calculation is performed by the data processor 35.
 なお、この3次元参照ベクトルVrefの大きさは、通常、3次元代表ベクトルVobj-dのそれよりも相当に小さいが、精度良い骨塩定量を行う上では確実に排除しなければならない量である。 The size of this three-dimensional reference vector V ref is usually considerably smaller than that of the three-dimensional representative vector V obj-d , but it is an amount that must be surely excluded in order to perform accurate bone mineral quantification. Is.
 そこで、データプロセッサ35により、既に求められている関心領域ROIを代表する代表ベクトルVobj-dから参照ベクトルVrefを3次元座標上で減算する(ステップS57)。このベクトル減算により、実質的に、目的とする指の骨AのみのX線減弱情報を反映した3次元ベクトルVobj-d´が求められる。この3次元ベクトルVobj-d´を目的ベクトルと呼ぶ。したがって、この目的ベクトルVobj-d´は、指FGの指定断面の断層像上に設定した関心領域ROIの全体を代表し、平均線減弱値をベクトル長さとして持ち、かつ、質量減弱ベクトルの情報を反映した3次元ベクトル方向を持つ。このため、この目的ベクトルVobj-d´は、指の骨を介して骨塩定量を行う場合に、骨量や骨質の状態を反映した情報である。具体的には、発明者らが実施したシミュレーションによれば、目的ベクトルVobj-d´の長さが骨の部位のみの骨量(骨塩量)を強く反映するとともに、ベクトル方向が骨の部位のみの骨質を強く反映する、ものと推定される。 Therefore, the data processor 35 subtracts the reference vector V ref on the three-dimensional coordinates from the representative vector V obj-d that represents the region of interest ROI that has already been obtained (step S57). By this vector subtraction, a three-dimensional vector V obj-d ′ that substantially reflects the X-ray attenuation information of only the target finger bone A can be obtained. This three-dimensional vector V obj-d ´ is called an objective vector. Therefore, this objective vector V obj- d'represents the entire area of interest ROI set on the tomographic image of the designated cross section of the finger FG, has an average line attenuation value as the vector length, and is a mass attenuation vector. It has a three-dimensional vector direction that reflects information. Therefore, this objective vector V obj- d'is information that reflects the state of bone mass and bone quality when quantifying bone mineral through the bone of a finger. Specifically, according to the simulation conducted by the inventors, the length of the target vector V obj-d ′ strongly reflects the bone mass (bone mineral content) only in the bone region, and the vector direction is that of the bone. It is presumed that it strongly reflects the bone quality of only the site.
 次いで、データプロセッサ35は、上述した目的ベクトルVobj-d´のベクトル長さ及びベクトル方向を可視化する処理を行って表示・データ保存をしたり、骨塩定量結果のデータのみを提示したりすることを行う(ステップS58)。この可視化は読影医や患者に見易い骨塩定量情報を提供するもので、カラー画像化及びその表示、並びに、数値化が典型的のものである。 Next, the data processor 35 performs a process of visualizing the vector length and vector direction of the above-mentioned target vector V obj-d ′ to display and save the data, or presents only the data of the bone mineral quantification result. Do that (step S58). This visualization provides easy-to-read bone mineral quantification information to an image interpreter or a patient, and color imaging, its display, and quantification are typical.
 なお、特に、異物検出において、画像をカラー化して表示することにより、実効原子番号画像として表示することが可能である。例えば、比較的均一(同一物質例えば、チョコレート、シリアル、ミルクの粉など)な商品などの中に異物が混入するような場合に、その商品の物質以外をカラー表示してもよく、これにより、異物検出が可能になる。
<作用効果>
In particular, in foreign matter detection, it is possible to display the image as an effective atomic number image by displaying the image in color. For example, when a foreign substance is mixed in a product having a relatively uniform substance (for example, chocolate, cereal, milk powder, etc.), a substance other than the substance of the product may be displayed in color. Foreign matter can be detected.
<Action effect>
 このように、本実施形態に係るX線検査システムによれば、本発明者等が既に提案している、光子計数型X線検出によって得られる各画素PXの3次元線減弱ベクトル(μt、μt、μt)を利用して、物質の性状探索の一態様でもある骨診断のための骨情報(骨量(骨塩量)、骨質)をより精度よく定量できる。 As described above, according to the X-ray inspection system according to the present embodiment, the three-dimensional line attenuation vector (μ 1 t) of each pixel PX obtained by the photon counting type X-ray detection, which has already been proposed by the present inventors. , Μ 2 t, μ 3 t) can be used to more accurately quantify bone information (bone mass (bone mineral content), bone quality) for bone diagnosis, which is also an aspect of searching for the properties of substances.
 本実施形態によれば、連続X線の透過特性に関して実質的に2種類の既知の物質A(骨(硬組織)),B(皮膚・筋肉(軟組織))から成る対象OB(例えば、患者の手又は足の甲)に照射され、当該対象を透過したX線が、複数の画素を有する検出器24により検出された、3つのX線エネルギー領域Bin~Binそれぞれにおける計数値に基づく処理が行われる。 According to this embodiment, a subject OB (eg, a patient) consisting of substantially two types of known substances A (bone (hard tissue)) and B (skin / muscle (soft tissue)) with respect to the transmission characteristics of continuous X-rays. Processing based on the count values in each of the three X-ray energy regions Bin 1 to Bin 3 in which the X-rays irradiated to the instep of the hand or foot and transmitted through the object are detected by the detector 24 having a plurality of pixels. Is done.
 具体的には、その計数値に基づき対象OBのX線像が作成されて表示器38に表示される。この表示器38に表示されたX線像上で、X線のパスの方向において同一の骨の部分にROI(region of interest)が設定される。 Specifically, an X-ray image of the target OB is created based on the counted value and displayed on the display 38. On the X-ray image displayed on the display 38, ROI (region of interest) is set for the same bone portion in the direction of the X-ray path.
 さらに、3つのエネルギー領域のそれぞれにて前記X線の前記対象を透過するときの線減弱値に相当し、且つ、前記複数の画素それぞれの3次元の空間ベクトル(3次元線減弱ベクトル)が光子計数データに基づき演算される。さらに、複数の画素それぞれの前記空間ベクトルの方向及び大きさを平均化してROIを代表する3次元代表ベクトルVobj-dが演算される。2種類の物質A,Bのうち、一方の物質BをX線が透過したと仮定したときの、線減弱値に等価な当該物質Bの線減弱値に相当する3次元参照ベクトルVrefが、関心領域ROIの代表ベクトルVobj-dから減算されて、当該減算により補正された物質Aのみに等価な目的ベクトルVobj-d´が得られる、このとき、参照ベクトルVrefは、理論的に又は実験等によって事前に設定(推定・評価)され、読出し可能に保持されている。 Further, each of the three energy regions corresponds to the line attenuation value when the X-ray passes through the object, and the three-dimensional space vector (three-dimensional line attenuation vector) of each of the plurality of pixels is a photon. It is calculated based on the counting data. Further, the three-dimensional representative vector V obj-d representing the ROI is calculated by averaging the directions and sizes of the space vectors of each of the plurality of pixels. Of the two types of substances A and B, the three-dimensional reference vector Vref corresponding to the line subtraction value of the substance B equivalent to the line subtraction value when it is assumed that one of the substances B is transmitted by X-rays is of interest. Subtracting from the representative vector V obj-d of the region ROI, the target vector V obj-d ′ equivalent only to the substance A corrected by the subtraction is obtained, at which time the reference vector V ref is theoretically or It is set (estimated / evaluated) in advance by experiments, etc., and is kept readable.
 この参照ベクトルVrefの決定は、表示器38に表示された対象OBのX線像の中から物質Bのみで構成される部分を参照ベクトル決定のための関心領域ROIrefとして設定して、その部分の3次元線減弱ベクトルを算出した後に、ROI部分とROIref部分の物質Bの厚さの相関情報(実測でも良いし、事前の実験から統計的に決定され、保持されていてもよい)から、ROIref部分の3次元線減弱ベクトルの大きさを調整して、参照ベクトル(ROI部分の物質Bのみの3次元線減弱ベクトルVref)を推定または演算するようにしても良い。特に、実測で3次元の代表ベクトルVobj-dを算出した部分の対象OBの厚さと、参照ベクトルVrefを算出した部分の対象OBの厚さとが判れば、目的ベクトルVobj-d’を解析的に算出できる。 In the determination of the reference vector V ref , the portion composed of only the substance B from the X-ray image of the target OB displayed on the display 38 is set as the region of interest ROI ref for the reference vector determination, and the determination thereof is performed. After calculating the 3D line attenuation vector of the part, the correlation information of the thickness of the material B of the ROI part and the ROI ref part (may be actually measured or statistically determined and retained from the previous experiment). Therefore, the magnitude of the three-dimensional line attenuation vector of the ROI ref portion may be adjusted to estimate or calculate the reference vector (three-dimensional line attenuation vector V ref of only the substance B of the ROI portion). In particular, if the thickness of the target OB in the part where the three-dimensional representative vector V obj-d is calculated by actual measurement and the thickness of the target OB in the part where the reference vector V ref is calculated are known, the target vector V obj- d'is used. It can be calculated analytically.
 上述した目的ベクトルVobj-d’は、低いエネルギーから高いエネルギーまで連続するエネルギー分布を持つ連続X線の光子が骨部分の組織を通過するときの減弱度合を反映しているので、その骨部分の密度や骨質の状態(性状)をより的確に表した計数値を収集できる。そのうえ、ROI部分に物質A,Bが含まれるとしても、目的とする物質Aのみの線減弱を反映した目的ベクトルをベクトル減算という容易な演算によって、より高精度に抽出できる。 The above-mentioned objective vector V obj-d'reflects the degree of attenuation of continuous X-ray photons having a continuous energy distribution from low energy to high energy as they pass through the tissue of the bone part. It is possible to collect count values that more accurately represent the density and condition (property) of bone quality. Moreover, even if the ROI portion contains the substances A and B, the target vector reflecting the line attenuation of only the target substance A can be extracted with higher accuracy by a simple operation called vector subtraction.
 つまり、従来の場合、物質A、Bの種類は既知であり且つそれらの合計厚さが一定だったとしても、それぞれのX線パス方向の厚さは不明であるとともに異なる2つの物質が存在しているため、目的とする物質AのみのX線減弱に基づくベクトル情報を簡単な演算で且つ精度良く求めることが困難であった。 That is, in the conventional case, even if the types of substances A and B are known and their total thickness is constant, the thickness in the X-ray path direction of each is unknown and there are two different substances. Therefore, it is difficult to obtain the vector information based on the X-ray attenuation of only the target substance A by simple calculation and with high accuracy.
 しかしながら、本実施形態によれば、目的とする物質Aのみの線減弱を反映した目的ベクトルを、関心領域毎のベクトル演算により簡単に、且つ、精度良く行うことができる。 However, according to the present embodiment, the target vector reflecting the line attenuation of only the target substance A can be easily and accurately performed by the vector calculation for each region of interest.
 また、本実施形態によれば、骨診断(骨塩定量も含む)を行う場合、関心領域毎に物質Aの少なくとも性状を示す目的ベクトルが得られるので、そのベクトルの長さや方向が骨量や骨質に関する、より多面的な情報を提供することができる。従来のように、骨密度だけに基づく情報を提供する処理とは異なり、提供する性状情報の豊富化を図り、例えば骨粗鬆症の診断・治療の求められている要求に応えることができる。 Further, according to the present embodiment, when performing bone diagnosis (including bone mineral quantification), an objective vector indicating at least the properties of the substance A can be obtained for each region of interest, so that the length or direction of the vector is the bone mass or It can provide more multifaceted information about bone quality. Unlike the conventional process of providing information based only on bone density, it is possible to enrich the provided property information and meet the demands for diagnosis and treatment of osteoporosis, for example.
 さらに、3次元参照ベクトルの情報は、比較的に簡単な手法で事前の保有しておくこともできる。つまり、前述したように、i)対象のX線照射する部位の厚さを含む外形サイズ、または、重量から推定する、又は、ii)予め統計的に収集してデータベース化した参照表から読み込む、iii)前記対象の撮影部位の内の前記物質Bのみである部分領域において前記線減弱ベクトルと同等であると見做されて事前に求められ保存されている参照ベクトルを呼び出す、ことにより設定することでよい。この場合には、ベクトル減算に必要な演算(即ち、参照ベクトルを求めるための演算)を更に簡単化できる。 Furthermore, the information of the 3D reference vector can be stored in advance by a relatively simple method. That is, as described above, i) estimate from the external size or weight including the thickness of the target X-ray irradiation site, or ii) read from the reference table statistically collected in advance and compiled into a database. iii) Set by calling a reference vector that is considered to be equivalent to the line attenuation vector in a partial region that is only the substance B in the imaging site of the target and is obtained and stored in advance. It's fine. In this case, the operation required for vector subtraction (that is, the operation for obtaining the reference vector) can be further simplified.
 さらに、3次元参照ベクトルの方向自体も経験的に取得していた方向情報を事前に保有しておいて、必要なときに呼び出すようにしてもよい。これにより、参照ベクトルの演算量が極めて簡単になる。 Furthermore, the direction itself of the 3D reference vector may be stored in advance with the direction information that has been empirically acquired, and may be called when necessary. This makes the amount of operation of the reference vector extremely simple.
 また、さらに検査対象OBの厚さを適宜に実測して、3次元線減弱ベクトル(代表ベクトル)Vobj-dや3次元参照ベクトルVrefの推定や演算に使用すれば、適用の状況により、演算量は増えるものの、一方で定量精度を向上させることができる。
<その他の作用効果>
Further, if the thickness of the OB to be inspected is appropriately measured and used for estimation or calculation of the 3D line attenuation vector (representative vector) V obj-d or the 3D reference vector V ref , depending on the application situation, it may be used. Although the amount of calculation increases, on the other hand, the quantitative accuracy can be improved.
<Other effects>
 上述した骨塩定量の作用効果のほかに、本実施形態に係るX線検査システムによれば、各種の作用効果が得られる。 In addition to the above-mentioned action and effect of bone mineral quantification, various actions and effects can be obtained according to the X-ray inspection system according to the present embodiment.
 まず、検査対象OBの断面(又は凹凸のある断面)の焦点化された断層像(画像)に関心領域が設定されるとともに、その画像から、関心領域に存在する関心物質(検査対象や異物らしいもの)の背景となる画素情報(背景成分)が除去される。この除去後の断層像のデータとX線エネルギー領域毎且つ関心領域の画素毎の計数値とに基づいて、関心物質のX線に対する固有の透過特性(例えば線減弱係数μ)が画素毎に固有情報として演算される。この固有情報は、物質の厚さtに依存しないので、これに基づいて関心物質の種類や性状を同定又は特定することができる。例えば、演算された固有情報を、予め保有しておいた既知の固有情報(物質固有の既知である固有ベクトル情報(一定の許容範囲を持つ情報))と比較することで、物質同定が可能になる。 First, the region of interest is set in the focused tomographic image (image) of the cross section (or uneven cross section) of the inspection target OB, and from the image, the substance of interest (likely the inspection target or foreign matter) existing in the region of interest. The pixel information (background component) that is the background of the object is removed. Based on the data of the tomographic image after this removal and the count value for each X-ray energy region and each pixel in the region of interest, the unique transmission characteristic of the substance of interest to X-rays (for example, the line attenuation coefficient μ) is unique to each pixel. Calculated as information. Since this unique information does not depend on the thickness t of the substance, the type and properties of the substance of interest can be identified or specified based on this information. For example, a substance can be identified by comparing the calculated eigeninformation with known eigeninformation (known eigenvector information unique to a substance (information having a certain permissible range)) held in advance. ..
 また、関心領域の設定次第で、検査対象の全体や一部まで物質同定したい範囲を調整することができる。このときに、この固有情報は厚さtに影響されない物質の種類や性状(状態)に固有の情報として得られるので、関心領域は物質の種類や性状が変化しない場所を選びさえすれば、厚さの変化に関わらず適宜な広さに設定すればよい。従来の物質同定と異なり、物質同定に不要な情報となる背景成分を除去してから固有情報を求めるので、物質同定をより精度高く行うことができ、その信頼性も向上する。 Also, depending on the setting of the area of interest, it is possible to adjust the range in which the substance is to be identified to the whole or part of the inspection target. At this time, since this unique information can be obtained as information unique to the type and properties (state) of the substance that is not affected by the thickness t, the area of interest can be selected as long as the type and properties of the substance do not change. It may be set to an appropriate size regardless of the change in the size. Unlike conventional substance identification, since background components that are unnecessary information for substance identification are removed and then unique information is obtained, substance identification can be performed with higher accuracy and its reliability is improved.
 さらに具体的には、エネルギー領域別の、線減弱係数μからなるベクトルを正規化して球体面上に3次元散布図を提示可能である。この散布点(スペクトラム)は、かかるベクトルの3次元傾き情報(すなわち物質の固有情報)を表している。このため、この散布点の状態を見ただけで、検査対象OBが例えば金属なのかそれ以外のものか、検査対象OBにそれとは別のもの(異物等)があるか否か、検査対象OBの状態(筋肉と脂肪がどのような割合なのか、などの情報をばらつきのある散布点の重心を求め付加することで、視覚的にも定量的にも把握し易い。 More specifically, it is possible to normalize the vector consisting of the line attenuation coefficient μ for each energy region and present a three-dimensional scatter plot on the spherical surface. This scatter point (spectrum) represents the three-dimensional slope information (that is, the specific information of the substance) of the vector. Therefore, just by looking at the state of this scatter point, it is possible to determine whether the inspection target OB is, for example, metal or something else, and whether the inspection target OB has something different (foreign matter, etc.). It is easy to grasp visually and quantitatively by adding information such as the state of (what ratio of muscle and fat is) by finding the center of gravity of the scatter point with variation.
 また、3次元散布図を得る過程において、吸収ベクトル長画像のデータも得られる。本発明者等は、この吸収ベクトル長画像は、従来のX線吸収画像に比べて、照射されるX線のエネルギースペクトラム形状にそれほど依存しないことを、筋肉と軟骨の厚みを徐々に変えたファントムを使って確認している。スペクトラム形状とは、例えば図2に例示したように、真ん中のエネルギー領域BinにおけるX線光子の計数頻度がその両隣のそれよりも高いというスペクトラム形状のことである。本実施形態の場合、前述した実施形態に係る式(8)の処理を行っているので、スペクトラム形状に依存するX線吸収の違いが生じにくく、また線減弱係数が最も大きい低エネルギー側の計数頻度の画像への影響が安定するためであると考えられる。 In addition, in the process of obtaining a three-dimensional scatter plot, data of an absorption vector length image is also obtained. The present inventors have stated that this absorption vector length image is less dependent on the energy spectrum shape of the irradiated X-ray than the conventional X-ray absorption image, and that the thickness of the muscle and cartilage is gradually changed. I'm checking using. The spectrum shape is, for example, as illustrated in FIG. 2, a spectrum shape in which the counting frequency of X-ray photons in the energy region Bin 2 in the middle is higher than that on both sides thereof. In the case of this embodiment, since the processing of the equation (8) according to the above-described embodiment is performed, the difference in X-ray absorption depending on the spectrum shape is unlikely to occur, and the counting on the low energy side having the largest linear attenuation coefficient. This is thought to be because the effect of frequency on the image is stable.
 このため、この吸収ベクトル長画像は、エネルギースペクトラムの形状依存性が少ない分、X線管電圧等のX線照射条件に対してよりロバストであり、画像コントラストが良く、且つ線減弱値μtに比例し、すべてのエネルギー帯域の線減弱値μt(エネルギー帯ごとの計数値に存在する量子化ノイズを反映して各画素、各エネルギー帯の線減弱値にもノイズが重畳される)を平均化する効果があるためノイズが少なくなる。
<変形例>
 さらに、対象OBの厚さを実測して、物質Bの骨診断の評価精度を上げる方法を別の変形例を説明する。
Therefore, this absorption vector length image is more robust to X-ray irradiation conditions such as X-ray tube voltage because the shape dependence of the energy spectrum is small, has good image contrast, and is proportional to the line attenuation value μt. Then, the line attenuation value μt of all energy bands (the noise is superimposed on each pixel and the line attenuation value of each energy band reflecting the quantization noise existing in the count value for each energy band) is averaged. Since it is effective, noise is reduced.
<Modification example>
Further, another modification of a method of actually measuring the thickness of the target OB to improve the evaluation accuracy of the bone diagnosis of the substance B will be described.
 図15に模式的に示すように、対象OBのうち、線減弱ベクトルを演算する関心領域ROIにおける複数物質の実測厚さをt、そのうち目的ベクトルに演算する対象である物質Aの厚さをt1、参照ベクトルに対応する物質Bの厚さをt2(=t21+t22)とする。すると、それぞれの3次元線減弱ベクトルは次のように表すことができる。
ROIの3次元線減弱ベクトル:
μt=(μt、μt、μt)  ‥‥(A.1)
3次元参照ベクトル:
Vref=μref2=(μ1ref2、μ2ref2、μ3ref2)  ‥‥(A.2)
3次元目的ベクトル:
As schematically shown in FIG. 15, among the target OBs, the measured thicknesses of a plurality of substances in the region of interest ROI for which the line attenuation vector is calculated are t, and the thickness of the substance A to be calculated for the target vector is t. 1. Let the thickness of the substance B corresponding to the reference vector be t 2 (= t 21 + t 22 ). Then, each three-dimensional line attenuation vector can be expressed as follows.
ROI 3D line attenuation vector:
μt = (μ 1 t, μ 2 t, μ 3 t) ‥‥ (A.1)
3D reference vector:
V ref = μ ref t 2 = (μ 1 ref t 2 , μ 2 ref t 2 , μ 3 ref t 2 ) ‥‥ (A.2)
3D objective vector:
Vobj-d’=μobj-d’t1 =(μ1obj-d’t1、μ2obj-d’t1、μ3obj-d’t1)  
‥(A.3)
V obj-d '= μ obj- d't 1 = (μ 1obj- d't 1 , μ 2obj- d't 1 , μ 3obj-d't 1 )
‥ (A.3)
ここで、定義より、Vobj-d’=μt- Vref であったので、(A.1)~(A.3)式を用いて、ベクトルの要素毎に、次のように表すことができる。
μ1obj-d’t1 = μt - μ1ref2   ‥‥(A.4)
μ2obj-d’t1 = μt - μ2ref2   ‥‥(A.5)
μ3obj-d’t1 = μt - μ3ref2   ‥‥(A.6)
 さらに、複数物質モデルの仮定から、次の関係がある。
  t = t1 + t2 ‥‥(A.7)
Here, from the definition, V obj-d '= μt-V ref , so it can be expressed as follows for each element of the vector using the equations (A.1) to (A.3). can.
μ 1obj-d't 1 = μ 1 t --μ 1ref t 2 ‥‥ (A.4)
μ 2obj-d't 1 = μ 2 t --μ 2ref t 2 ‥‥ (A.5)
μ 3obj-d't 1 = μ 3 t --μ 3ref t 2 ‥‥ (A.6)
Furthermore, from the assumption of the multi-material model, there is the following relationship.
t = t 1 + t 2 ‥‥ (A.7)
 ここで、3次元参照ベクトルの線減弱係数を決定した時の、関心領域ROIrefの部分の物質Bの厚さtと関心領域ROIの部分の物質Bの厚さtの関係性が明らかな場合、tは実測しているので、tが既知となる。さらに、関心領域ROIrefの部分の演算から、μ1ref、μ2ref、μ3refが既知となっているので、その場合、独立の方程式(A.4)~(A.7)が存在し、未知の変数はμ1obj-d’、 μ2obj-d’、 μ3obj-d’、 t1の4つであり、演繹的に解くことができる。 Here, the relationship between the thickness t 3 of the substance B in the region of interest ROI ref and the thickness t 2 of the substance B in the region of interest ROI when the line attenuation coefficient of the three-dimensional reference vector is determined is clarified. In this case, since t 3 is actually measured, t 2 is known. Furthermore, since μ 1ref , μ 2ref , and μ 3ref are known from the calculation of the region of interest ROI ref , in that case, independent equations (A.4) to (A.7) exist and are unknown. There are four variables of μ 1obj-d ', μ 2obj-d ', μ 3obj-d ', and t 1 , which can be solved a priori.
 したがって、例えば、人の手(ROI部分は指)を撮影する場合は、関心領域ROIとROIrefは患者が変わっても同じような部位を撮影するようにして、データを蓄積して、関心領域ROIrefの部分の物質Bの厚さtと関心領域ROIの部分の物質Bの厚さtの関係性を統計的に処理し、精度よく推定できるようにしておくことが望ましい。より直接的には、X線撮影の向きを変えて、指の骨(物質A)の厚さt1を直接測るようにしても良い。この場合、tを推定しなくても、未知変数は4つとなり、演繹的に解くことができる。 Therefore, for example, when photographing a human hand (the ROI part is a finger), the region of interest ROI and ROI ref are designed to photograph the same region even if the patient changes, and the data is accumulated to accumulate the region of interest. It is desirable to statistically process the relationship between the thickness t 3 of the substance B in the ROI ref portion and the thickness t 2 of the substance B in the region of interest ROI so that it can be estimated accurately. More directly, the direction of X-ray photography may be changed to directly measure the thickness t 1 of the finger bone (substance A). In this case, even if t 2 is not estimated, there are four unknown variables, which can be solved a priori.
 本発明は、例えば、骨塩定量を実施する構成のみを採用してもよい。つまり、前述した実施形態のX線検査システムは骨塩定量に特化したシステムとして提供され、データ処理装置12は骨塩定量に特化したデータ処理装置として提供される。 In the present invention, for example, only a configuration for carrying out bone mineral quantification may be adopted. That is, the X-ray examination system of the above-described embodiment is provided as a system specialized in bone mineral quantification, and the data processing device 12 is provided as a data processing device specialized in bone mineral quantification.
 以上、本発明に係るデータ処理装置、データ処理方法、及びX線検査装置の様々な態様について説明したが、本発明は勿論、上述した例に限定されるものではなく、特許請求の範囲の要旨を逸脱しない範囲で更に様々な態様に変更可能なものである。 Although various aspects of the data processing apparatus, the data processing method, and the X-ray inspection apparatus according to the present invention have been described above, the present invention is, of course, not limited to the above-mentioned examples, and the gist of the claims. It can be changed to various modes without departing from the above.
10 X線検査システム(データ処理装置を搭載したX線検査装置:データ処理方法を実施するX線検査装置)
12 コンピュータシステム(データ処理装置)
21 X線管
24 検出器
25 データ収集回路
26 検出ユニット
12 データ処理装置
32 バッファメモリ(記憶手段)
33 ROM
34 RAM
35 データプロセッサ(CPU)
36 画像メモリ(記憶手段)
37 入力器
38 表示器
OB 検査対象(対象物)
10 X-ray inspection system (X-ray inspection device equipped with a data processing device: X-ray inspection device that implements the data processing method)
12 Computer system (data processing device)
21 X-ray tube 24 Detector 25 Data acquisition circuit 26 Detection unit 12 Data processing device 32 Buffer memory (storage means)
33 ROM
34 RAM
35 data processor (CPU)
36 Image memory (storage means)
37 Input device 38 Display device OB Inspection target (object)

Claims (11)

  1.  n個(nは2以上の正の整数)の互いに異なるエネルギー領域を含む連続X線が、当該X線の透過特性に関して実質的に2種類の物質A,Bから成る対象に照射され、当該対象を透過した前記X線が、複数の画素を有するX線検出器により光子計数データとして検出されるときに、当該光子計数データに基づく処理を行うデータ処理装置において、
     前記X線検出器により検出された前記光子計数データに基づき前記対象のX線像を作成してモニタ上に表示するX線像表示手段と、
     前記モニタに表示された前記X線像上で、前記X線のパスの方向において前記物質A,Bが存在すると推定される部分にROI(region of interest:関心領域)を設定するROI設定手段と、
     前記n個のエネルギー領域のそれぞれにて前記X線の前記対象を透過するときの線減弱値に相当し、且つ、前記複数の画素それぞれの、当該n個の次元の空間ベクトルを前記光子計数データに基づき演算する画素別ベクトル演算手段と、
     前記複数の画素それぞれの前記空間ベクトルの方向及び大きさを平均化して前記ROIを代表する代表ベクトルを演算する代表ベクトル演算手段と、
     前記2種類の物質A,Bのうち、一方の物質Bを前記X線が透過したと仮定したときの、前記線減弱値に等価な当該物質Bの線減弱値に相当する前記n次元の参照ベクトルを推定又は仮定して保持する参照ベクトル保持手段と、
     前記物質Aのみに等価な前記線減弱値に相当する前記n次元の目的ベクトルから、前記n次元の参照ベクトルを減算して、当該減算により補正された目的ベクトルを取得する目的ベクトル取得手段と、
     を備えたことを特徴とするデータ処理装置。
    Continuous X-rays containing n (n is a positive integer of 2 or more) different energy regions are applied to an object consisting of substantially two kinds of substances A and B with respect to the transmission characteristics of the X-rays. In a data processing device that performs processing based on the photon counting data when the X-ray transmitted through the X-ray is detected as photon counting data by an X-ray detector having a plurality of pixels.
    An X-ray image display means that creates an X-ray image of the target based on the photon count data detected by the X-ray detector and displays it on a monitor.
    An ROI setting means for setting an ROI (region of interest) in a portion of the X-ray image displayed on the monitor where the substances A and B are presumed to be present in the direction of the X-ray path. ,
    The photon count data corresponds to the line attenuation value when the X-ray is transmitted through the object in each of the n energy regions, and the space vector of the n dimensions of each of the plurality of pixels is obtained. Vector calculation means for each pixel that calculates based on
    A representative vector calculation means for averaging the directions and sizes of the space vectors of each of the plurality of pixels to calculate a representative vector representing the ROI.
    The n-dimensional reference corresponding to the line attenuation value of the substance B equivalent to the line attenuation value when it is assumed that the X-ray is transmitted through one of the two types of substances A and B. A reference vector holding means that estimates or assumes a vector and holds it,
    An objective vector acquisition means for acquiring an objective vector corrected by the subtraction by subtracting the n-dimensional reference vector from the n-dimensional objective vector corresponding to the line attenuation value equivalent only to the substance A.
    A data processing device characterized by being equipped with.
  2.  前記n次元の参照ベクトルを推定又は仮定するための参照ベクトル演算手段を備えたことを特徴とする請求項1に記載のデータ処理装置。 The data processing apparatus according to claim 1, further comprising a reference vector calculation means for estimating or assuming the n-dimensional reference vector.
  3.  前記代表ベクトル演算手段は、
     前記複数の画素それぞれの前記空間ベクトルの大きさを正規化した分布を求め、その分布の重心位置から前記代表ベクトルの方向を演算する方向演算手段と、
     前記複数の画素それぞれの前記空間ベクトルの大きさであるベクトル長画素値又は平均ベクトル長画素値を平均して前記代表ベクトルの大きさを設定する大きさ設定手段と、
     を備えることを特徴とする請求項1又は請求項2に記載のデータ処理装置。
    The representative vector calculation means is
    A direction calculation means for obtaining a distribution obtained by normalizing the magnitude of the space vector of each of the plurality of pixels and calculating the direction of the representative vector from the position of the center of gravity of the distribution.
    A size setting means for setting the size of the representative vector by averaging the vector length pixel value or the average vector length pixel value, which is the size of the space vector of each of the plurality of pixels.
    The data processing apparatus according to claim 1 or 2, wherein the data processing apparatus is provided.
  4.  前記補正された目的ベクトルの情報に基づき画像データを作成する画像データ作成手段と、
     前記画像データ作成手段により作成された画像データを画像として表示する画像表示手段と、を備えたことを特徴とする請求項1~3の何れか一項に記載のデータ処理装置。
    An image data creation means for creating image data based on the corrected target vector information, and an image data creation means.
    The data processing apparatus according to any one of claims 1 to 3, further comprising an image display means for displaying image data created by the image data creation means as an image.
  5.  前記対象は人又動物の手又は足であり、
     前記物質Aは、その手又は足の指の骨部分の組織であり、
     前記物質Bは、その手又は指の筋肉及び皮膚の組織であり、
     前記画像データ作成手段は、前記骨部分の前記目的ベクトルの情報から当該骨部分の骨密度の情報を表す画像データを作成するように構成されている、ことを特徴とする請求項4に記載のデータ処理装置。
    The subject is the hand or foot of a human or animal,
    The substance A is the tissue of the bone portion of the hand or toe.
    The substance B is a tissue of the muscle and skin of the hand or finger.
    The fourth aspect of claim 4, wherein the image data creating means is configured to create image data representing information on the bone density of the bone portion from the information of the target vector of the bone portion. Data processing device.
  6.  前記参照ベクトル演算手段は、前記参照ベクトルを、i)前記対象の前記X線照射する部位の厚さを含む外形サイズまたは重量から推定する、ii)予め統計的に収集してデータベース化した参照表から読み込む、iii)前記対象の撮影部位の内の前記物質Bのみである部分領域において前記線減弱ベクトルと同等であると見做されて事前に求められ保存されている参照ベクトルを呼び出す、又は、iv)対象の撮影部位の内の前記物質Bのみである部分領域において線減弱ベクトルと同等であると見做して演算する、ことを特徴とする請求項2~5の何れか一項に記載のデータ処理装置。 The reference vector calculation means estimates the reference vector from the external size or weight including the thickness of the X-ray irradiation site of the target, ii) a reference table statistically collected in advance and compiled into a database. Read from, iii) Call the pre-obtained and stored reference vector that is considered to be equivalent to the line attenuation vector in the partial region of the subject imaging site that is only the substance B, or iv) The invention according to any one of claims 2 to 5, wherein the calculation is performed on the assumption that it is equivalent to the line attenuation vector in the partial region of the target imaged portion, which is only the substance B. Data processing device.
  7.  前記n次元は3次元である、ことを特徴とする請求項1~6の何れか一項に記載のデータ処理装置。 The data processing apparatus according to any one of claims 1 to 6, wherein the n-dimensional is three-dimensional.
  8.  請求項1~7の何れか一項に記載のデータ処理装置を一体に組み込んだ、又は通信により協働可能に組み込んだことを特徴とX線装置。 The X-ray device is characterized in that the data processing device according to any one of claims 1 to 7 is integrally incorporated or is incorporated in a collaborative manner by communication.
  9.  n個(nは2以上の正の整数)の互いに異なるエネルギー領域を含む連続X線が、当該X線の透過特性に関して実質的に2種類の既知の物質A,Bから成る対象に照射され、当該対象を透過した前記X線が、複数の画素を有するX線検出器により検出データとして検出されるときに、当該検出データ基づく処理を行うデータ処理方法において、
     前記X線検出器により検出された前記光子計数データに基づき前記対象のX線像を作成してモニタ上に表示させ、
     前記モニタに表示された前記X線像上で、前記X線のパスの方向において前記物質A,Bが存在すると推定される部分にROI(region of interest)を設定し、
     前記n個のエネルギー領域のそれぞれにて前記X線の前記対象を透過するときの線減弱値に相当し、且つ、前記複数の画素それぞれの、当該n個の次元の空間ベクトルを前記光子計数データに基づき演算し、
     前記複数の画素それぞれの前記空間ベクトルの方向及び大きさを平均化して前記ROIを代表する代表ベクトルを演算し、
     前記2種類の物質A,Bのうち、一方の物質Bを前記X線が透過したと仮定したときの、予め推定又は評価して保持している、前記線減弱値に等価な当該物質Bの線減弱値に相当する前記n次元の参照ベクトルが、前記物質Aのみに等価な前記線減弱値に相当する前記n次元の目的ベクトルから減算され、当該減算により補正された目的ベクトルが得られる、
     ことを特徴とするデータ処理方法。
    Continuous X-rays containing n (n is a positive integer of 2 or more) different energy regions are applied to an object consisting of substantially two known substances A and B with respect to the transmission characteristics of the X-rays. In a data processing method that performs processing based on the detected data when the X-ray transmitted through the target is detected as detection data by an X-ray detector having a plurality of pixels.
    An X-ray image of the target is created based on the photon count data detected by the X-ray detector and displayed on a monitor.
    On the X-ray image displayed on the monitor, ROI (region of interest) is set in the portion where the substances A and B are presumed to be present in the direction of the X-ray path.
    The photon count data corresponds to the line attenuation value when the X-ray is transmitted through the object in each of the n energy regions, and the space vector of the n dimensions of each of the plurality of pixels is obtained. Calculated based on
    The direction and size of the space vector of each of the plurality of pixels are averaged to calculate a representative vector representing the ROI.
    Of the two types of substances A and B, the substance B equivalent to the line subtraction value held in advance estimated or evaluated when it is assumed that the X-ray has transmitted through one of the substances B. The n-dimensional reference vector corresponding to the line attenuation value is subtracted from the n-dimensional target vector corresponding to the line attenuation value equivalent only to the substance A, and the target vector corrected by the subtraction is obtained.
    A data processing method characterized by that.
  10.  前記参照ベクトルは、事前に用意されている前記n次元のベクトル情報であって、
    i)前記対象の前記X線照射する部位の厚さを含む外形サイズまたは重量から推定する、又は、ii)予め統計的に収集してデータベース化した参照表から読み込む、iii)前記対象の撮影部位の内の前記物質Bのみである部分領域において前記線減弱ベクトルと同等であると見做されて事前に求められ保存されている情報から読み出す、又は、iv)対象の撮影部位の内の前記物質Bのみである部分領域において線減弱ベクトルと同等であると見做して演算する、ことを特徴とする請求項9に記載のデータ処理方法。
    The reference vector is the n-dimensional vector information prepared in advance, and is
    i) Estimate from the external size or weight including the thickness of the X-ray irradiation site of the target, or ii) Read from the reference table statistically collected in advance and compiled into a database, iii) The imaging site of the target In the partial region that is only the substance B in the above, it is considered to be equivalent to the line attenuation vector and is read out from the information obtained and stored in advance, or iv) the substance in the imaging site of the target. The data processing method according to claim 9, wherein the calculation is performed on the assumption that the partial region is only B, which is equivalent to the line attenuation vector.
  11.  前記n次元は3次元である、ことを特徴とする請求項9又は請求項10に記載のデータ処理方法。 The data processing method according to claim 9, wherein the n-dimensional is three-dimensional.
PCT/JP2020/046940 2020-12-16 2020-12-16 Data processing device, x-ray device with same mounted therein, and data processing method WO2022130530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046940 WO2022130530A1 (en) 2020-12-16 2020-12-16 Data processing device, x-ray device with same mounted therein, and data processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046940 WO2022130530A1 (en) 2020-12-16 2020-12-16 Data processing device, x-ray device with same mounted therein, and data processing method

Publications (1)

Publication Number Publication Date
WO2022130530A1 true WO2022130530A1 (en) 2022-06-23

Family

ID=82059269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046940 WO2022130530A1 (en) 2020-12-16 2020-12-16 Data processing device, x-ray device with same mounted therein, and data processing method

Country Status (1)

Country Link
WO (1) WO2022130530A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049615A1 (en) * 2001-12-10 2003-06-19 Osteomate Aps Method and apparatus for establishing an osteoporosis measure
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus
JP2011250969A (en) * 2010-06-02 2011-12-15 Fujifilm Corp Apparatus, method, and program for energy subtraction processing
WO2016171186A1 (en) * 2015-04-20 2016-10-27 株式会社ジョブ Data processing device and data processing method for x-ray examination, and x-ray examination apparatus provided with said device
WO2018212217A1 (en) * 2017-05-16 2018-11-22 株式会社ジョブ Data processing device and data processing method for x-ray inspection, and x-ray inspecting device with said device mounted therein
WO2020241669A1 (en) * 2019-05-27 2020-12-03 ダイヤトレンド株式会社 Data processing device and data processing method for processing x-ray detection data and x-ray inspection apparatus provided with device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049615A1 (en) * 2001-12-10 2003-06-19 Osteomate Aps Method and apparatus for establishing an osteoporosis measure
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus
JP2011250969A (en) * 2010-06-02 2011-12-15 Fujifilm Corp Apparatus, method, and program for energy subtraction processing
WO2016171186A1 (en) * 2015-04-20 2016-10-27 株式会社ジョブ Data processing device and data processing method for x-ray examination, and x-ray examination apparatus provided with said device
WO2018212217A1 (en) * 2017-05-16 2018-11-22 株式会社ジョブ Data processing device and data processing method for x-ray inspection, and x-ray inspecting device with said device mounted therein
WO2020241669A1 (en) * 2019-05-27 2020-12-03 ダイヤトレンド株式会社 Data processing device and data processing method for processing x-ray detection data and x-ray inspection apparatus provided with device and method

Similar Documents

Publication Publication Date Title
JP6740216B2 (en) Data processing device and data processing method for X-ray inspection, and X-ray inspection device equipped with the device
JP7161212B2 (en) Data processing device and data processing method in X-ray inspection, and X-ray inspection device equipped with the device
CN110770607B (en) Method and device for processing photon counting type X-ray detection data and X-ray device
US7660381B2 (en) Scatter compensation in an X-ray system
US7885373B2 (en) System and method for quantitative imaging of chemical composition to decompose multiple materials
CN107257660B (en) Method for determining physiological state in body scanning
JPWO2018235823A1 (en) X-ray device, X-ray inspection method, and data processing device
US7801350B2 (en) Method for absorptiometry radiographic imaging using a three-dimensional generic model
US8517608B1 (en) System and method for calibration of CT scanners and display of images in density units without the use of water phantoms
EP2858571A1 (en) Integration of quantitative calibration systems in computed tomography scanners
KR20080069591A (en) Scatter correction
JP4468352B2 (en) Reconstruction of local patient dose in computed tomography
EP2578155A1 (en) X-ray calibration device
KR20200102414A (en) Local X-ray bone density tomography method
WO2022130530A1 (en) Data processing device, x-ray device with same mounted therein, and data processing method
CN109416833A (en) Calcium content is determined according to spectrum CT data
JP7348642B2 (en) Data processing device, X-ray device equipped with the data processing device, and data processing method
Suzana et al. Analysis of Variation of Tin Filter on Noise Values in CT Scan Mastoid Protocol Using CT Scan Single Source: Phantom Study
Zannoni et al. Evaluation of CT accuracy in orthopaedic implants geometry reconstruction
Ben-Zvi et al. Effect of object location on the density measurement and hounsfield conversion in a NewTom 3G cone-beam computed tomography unit
Horney et al. Projection Data and Scanograms in X-ray Computed Tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP