WO2022129710A1 - Distributed vibration trap device, particularly for a stator or casing of a rotating electrical machine - Google Patents

Distributed vibration trap device, particularly for a stator or casing of a rotating electrical machine Download PDF

Info

Publication number
WO2022129710A1
WO2022129710A1 PCT/FR2021/051924 FR2021051924W WO2022129710A1 WO 2022129710 A1 WO2022129710 A1 WO 2022129710A1 FR 2021051924 W FR2021051924 W FR 2021051924W WO 2022129710 A1 WO2022129710 A1 WO 2022129710A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
damping
pvd
mode
stator
Prior art date
Application number
PCT/FR2021/051924
Other languages
French (fr)
Inventor
Olivier Sauvage
Gaël CHEVALLIER
Emeline SADOULET-REBOUL
Kévin JABOVISTE
Original Assignee
Psa Automobiles Sa
Centre National De La Recherche Scientifique
Ecole Nationale Superieure De Mécanique & Des Microtechniques
Université de Franche-Comté
Université De Technologie De Belford-Montbeliard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa, Centre National De La Recherche Scientifique, Ecole Nationale Superieure De Mécanique & Des Microtechniques, Université de Franche-Comté, Université De Technologie De Belford-Montbeliard filed Critical Psa Automobiles Sa
Publication of WO2022129710A1 publication Critical patent/WO2022129710A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/116Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/108Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/02Mode of stressing of basic spring or damper elements or devices incorporating such elements the stressing resulting in flexion of the spring
    • F16F2236/027Mode of stressing of basic spring or damper elements or devices incorporating such elements the stressing resulting in flexion of the spring of strip- or leg-type springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/022Springs leaf-like, e.g. of thin, planar-like metal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention generally relates to the passive filtering of noise and vibrations emitted by a generally cylindrical type structure such as a stator or a casing of a rotating electrical machine. More particularly, the invention relates to a distributed vibration trap device intended to equip a structure of the cylindrical type, such as a stator of a rotating electrical machine, in particular an electric traction motor in an electric vehicle, but not exclusively.
  • the electric motor in operation is a source of annoying vibrations and noises which is likely to alter the acoustic comfort of the passengers.
  • the noises generated by the electric motor are often of the so-called "siren” type, with multiple frequency harmonics, and are potentially very unpleasant for the passengers of the vehicle.
  • the “siren” noises are linked to the electromagnetic operation of the electric motor, which produces dynamic stresses on its mechanical structure. The mechanical structure of the electric motor then vibrates under the effect of these dynamic forces and radiates noise.
  • the specific vibratory behavior of the stator In an electric motor and, more generally, in a rotating electric machine, the specific vibratory behavior of the stator, generally having an approximately cylindrical shape, is very influential on the vibro-acoustic behavior of the machine. This proper vibrational behavior, with the proper modes and the proper frequencies associated with it, determines the possible resonances of the structure.
  • a stator ST of a rotary electric traction machine as used in an electric traction system of a motor vehicle, is represented by way of example in Fig.1.
  • this stator ST can be seen, to the first order, as a portion of cylinder emitting vibrations essentially by its outer circumferential surface SEC, outer circumferential surface which is extended and coupled with the ambient air.
  • Other vibrations transmitted to the body of the vehicle via the suspension elements of the machine can also cause a nuisance for the passengers of the vehicle.
  • the specific vibration modes of the latter can be categorized according to a conventional nomenclature in which the number of antinodes and nodes vibration is counted in one direction.
  • different eigenmodes from “0” to “3”, are represented and correspond to vibratory deformations in the radial direction.
  • These modes “0” to “3” are the first of a series of eigenmodes characterized in the radial direction.
  • the following eigenmodes “1”, “2” and “3” of Fig.2 have at least one high point and one low point of vibration in the radial direction and are ovalization and out-of-phase ovalization modes, and a triangular mode, respectively.
  • a vibrational mode can result from the combination of several eigenmodes in different directions.
  • a clean mode "i" of the family of clean modes in the radial direction of the stator can appear simultaneously with another clean mode "j" belonging to a family of clean modes in the longitudinal direction of the stator.
  • compound eigenmode i, j
  • the terms -- eigenmode "0" -- used in the present application in fact covers a plurality of compound eigenmodes denoted by (0, j).
  • Fig.3 shows by way of example, in three-dimensional representation, a vibration mode comprising a natural mode "0" and in which the deformations have amplitudes which vary between a central zone ZC and end zones ZE of the stator.
  • mode "0” In electrical machines used in automobiles, the natural frequency of mode "0" is generally quite high in the audible spectrum, of the order of one to several kilohertz (kHz), i.e. in a frequency range where human hearing acuity is maximum. In the modal vibratory behavior of the stator, it is this natural mode "0" which generates the most difficulties, with a "siren” type noise, and which is difficult to filter in practice.
  • kHz kilohertz
  • a usual solution is to use layers of viscoelastic damping materials which are prestressed between more rigid layers according to a technique called “sandwiches” or “constrained layers”.
  • the damping of vibrations and a concomitant reduction in noise are obtained here thanks to the shear that the viscoelastic material undergoes when the stator deforms according to the targeted natural mode.
  • this solution has the following main drawbacks: a) It is not very effective for the eigenbreath mode "0" because the deformations generated in this mode do not cause, or relatively little, shear in the viscoelastic layers, which reduces substantially the damping capacity; b) The elastomers usually used for the viscoelastic layers provide a damping effect which varies with the temperature, because their moduli of elasticity are very sensitive to it, which ultimately leads to a performance drift in the reduction of vibrations depending on the operating conditions of the rotating electric machine; c) The damping behavior of these elastomers is also very sensitive to the level of prestress. This requires precise assembly of the sandwiches, with low tolerances which are difficult to guarantee in mass production and generates significant costs.
  • each beater is formed of a damping elastic blade and a flyweight, the blade having one end fixed to the stator and a free end carrying the flyweight.
  • each beater is formed of a damping elastic blade assembled to a mass-forming portion and the assembly thus formed is fixed to the stator at both ends.
  • the device with two beaters proposed by JP5806057B2 has the disadvantage of introducing two secondary resonances close to the initial resonance frequency to be processed, on either side of the latter, which can prove to be very troublesome when the rev range of operation is extended, which is the case with a rotating electrical machine.
  • Another drawback of this two beater device lies in the practical need to use a material with high intrinsic damping for the elastic blade of the beater in order to obtain a satisfactory result, which poses problems of implementation, cost and stability over time of the performance obtained.
  • vibration traps with several elementary resonators called “MTMD”, for “Multiple Tuned Mass Damper” in English, are also known, such as that disclosed by document WO2016/177961 A1 and designed to be mounted on a rotating structure. like a rotating shaft.
  • MTMD Multiple Tuned Mass Damper
  • an "MTMD” vibration trap has the advantage of an efficiency that extends over a range of frequencies.
  • the frequencies of the various elementary resonators must be precisely adjusted in order to obtain a distribution of frequencies allowing the desired result to be achieved.
  • the couplings between the different elementary resonators must also be adjusted for an optimal result. Replacing one or more flippers with an MTMD-type vibration trap can be wise to avoid the aforementioned major drawbacks of introducing secondary resonance and using material with high intrinsic damping.
  • the invention relates to a distributed vibration trap device intended to be mounted on an outer circumferential surface of a structure of the cylindrical type, the device being of the so-called "MTMD” type and comprising a plurality of elementary distributed resonators spatially on the outer circumferential surface and having natural frequencies included in a determined frequency distribution.
  • the device comprises a grid formed from a material having a property of elasticity and provided with a plurality of fixing points forming damping blocks, the grid comprising a plurality of crosspieces in which are formed the plurality elementary resonators, each brace having a central vibration zone and arms each supporting a fixing point at its end, and each brace having a stiffness/mass ratio which is adjusted to obtain the desired natural frequency.
  • the determined frequency distribution covers a determined interval of frequencies comprising the resonance frequency associated with the "0" mode, called breathing mode, of the cylindrical-type structure.
  • the length of the determined interval of frequencies is between 0.5% and 100% of the value of the resonance frequency associated with mode 0 called breathing.
  • the frequency distribution is linear and regular around the resonance frequency associated with the "0" mode, called breathing mode, of the cylindrical-type structure.
  • the spider comprises at least one part modified by removal or addition of material, allowing an adjustment of the natural frequency of the elementary resonator.
  • the fixing points forming damping blocks comprise a damping material.
  • This damping material provides the dissipation function to the elementary resonators.
  • the damping material is selected so as to obtain an effective damping of the elementary resonators of the order of one to ten%.
  • the damping material is an adhesive material.
  • the grid is a metallic grid.
  • the grid is obtained from a metal sheet.
  • the grid has a rectangular mesh and cross braces.
  • the invention also relates to a cylindrical type structure comprising a distributed vibration trap device, as described briefly above, mounted on a circumferential outer surface, and a rotating electric machine comprising the distributed vibration trap device mounted on a surface outer circumferential of a stator of the machine.
  • Fig.1 is a perspective view of a stator of a rotary electric traction machine of the type present in an electric vehicle.
  • Fig.2 schematically shows different eigenmodes of vibration occurring radially in a generally cylindrical structure like the stator of Fig.1.
  • Fig.3 shows, in three-dimensional representation, an example of natural breathing mode “0” in a stator, in which deformations occur whose amplitudes vary in the longitudinal direction.
  • Fig.4 is a simplified perspective view of a generally cylindrical structure, such as a stator, equipped with a distributed vibration trap device of the invention.
  • Fig.5 is a simplified cross-sectional view showing a functionally equivalent diagram of a generally cylindrical structure, such as a stator, equipped with a distributed vibration trap device of the invention.
  • Fig.6 is a top plan view of a grid used to fabricate the distributed vibration trap device of Fig.4.
  • Fig.7 is a plan view of an elementary resonator included in the distributed vibration trap device of Fig.4.
  • Fig.8 is a sectional view of the elementary resonator of Fig.7.
  • Fig.9 is a sectional view showing various modifications made to an elementary resonator spider to adjust its natural frequency.
  • the PVD distributed vibration trap device is here mounted on a stator ST, represented schematically, which forms a generally cylindrical structure.
  • the stator ST is for example that of a rotating electrical machine, such as an electric traction motor in a electric vehicle.
  • the PVD device is designed to cover the outer circumferential surface SEC of the ST stator, partially or entirely depending on the application.
  • the distributed vibration trap device PVD is generally presented as a grid GR which is curved and fixed on the outer circumferential surface SEC of the stator ST. Typically, the PVD device is fixed by bonding to the SEC surface, by fixing points PF, as will appear more clearly subsequently.
  • a plurality of elementary resonators RE juxtaposed next to each other are formed from crosspieces CR of grid GR.
  • the PVD distributed vibration trap device is a device of the “MTMD” type formed by the plurality of juxtaposed elementary resonators RE and is designed to preferentially process the natural breathing mode “0”, but not exclusively.
  • the juxtaposed RE elementary resonators have between them frequency tunings or detunings which are optimized as a whole for the overall efficiency of the PVD device.
  • the PVD device may comprise one or several tens of elementary resonators RE, and preferably a few hundred elementary resonators RE for a better result.
  • the plurality of elementary resonators RE are spatially distributed over the outer circumferential surface.
  • the elementary resonators RE are each functionally equivalent to a “mass-spring-damper” device having its own resonant frequency.
  • adjacent resonators REn and RE(n+1) can be tuned to different resonant natural frequencies FPn and FP(n+1).
  • the vibratory displacement DV of an elementary resonator RE takes place essentially in the radial direction DR of the stator ST, following the normal to the outer circumferential surface SEC.
  • the plurality of elementary resonators RE provide an optimal frequency distribution of resonance frequencies covering a determined interval of frequencies centered substantially on the resonance frequency of the natural breathing mode “0” to be processed.
  • the length of the determined interval of frequencies can be between 0.5% and 100% of the value of the resonance frequency associated with mode 0 called breathing. For example for a "0" mode at 4000Hz, this gives an interval of length, in other words a spread going from 20 Hz (i.e. [3990-4010] Hz if centred) to 4000Hz (i.e. [2000 - 6000] Hz if centred) .
  • the spatial distribution of the resonators RE on the outer circumferential surface SEC and the distribution of the associated eigenfrequencies will be determined optimally depending on the applications.
  • the GR grid used in this particular embodiment to form the PVD distributed vibration trap device is shown flat in Fig.6.
  • This GR grid is made of a material having a property of elasticity. Typically, it is made from a metal sheet, by material removal techniques known for mass production, such as cutting, stamping, forging, foundry or others.
  • the material of the grid GR will be chosen essentially according to the characteristics of elasticity and mass sought for the resonators. Steels and other metals may typically be chosen for the GR grid material.
  • the grid GR of the PVD device is made with a rectangular mesh, more precisely, a square mesh here.
  • the grid GR comprises a plurality of first and second ribbons, RB1 and RB2, arranged perpendicularly.
  • Each crosspiece CR is formed by a crossing between a first ribbon RB1 and a second ribbon RB2 at a central crossing point PC.
  • the attachment points PF are regularly distributed in the first and second ribbons RB1 and RB2.
  • An attachment point PF is arranged in each portion of the strips RB1 and RB2 between two adjacent central crossing points PC, at the level of the midpoint between the two adjacent points PC.
  • the spider CR comprises a central vibration zone CC including the central crossing point PC and four arms BR projecting in a cross from the central vibration zone CC.
  • the arms BR of a spider CR are formed by the portions of the strips RB1, RB2, between the central vibration zone CC and the four fixing points PF.
  • the attachment points PF are thus supported at the ends of the arms BR which are distant from the central crossing point PC.
  • the attachment points PF each here comprise a through hole OR drilled in the ribbon RB1, RB2, and a point of glue forming a PA fixing damping block.
  • the through-hole OR helps with a more robust mechanical fixing between the tape RB1, RB2, and the shock-absorbing block of fixing PA.
  • PA fixing dampers are made here of an adhesive material with a low intrinsic loss factor, such as epoxy resin, Araldite® glue and others. PA fixing damping blocks provide structural damping and are able to withstand low amplitude deformations without alteration.
  • the damping pads of fixing PA make it possible to obtain an individual damping of each of the elementary resonators RE.
  • a low effective modal damping of the order of one to a few percent (%), will be sufficient for the RE resonators to operate with good efficiency.
  • this characteristic of low effective modal damping of RE resonators makes it possible to dispense with the use of an elastomer with a high intrinsic loss factor, in favor of resins, glues and other materials with a low loss factor. intrinsic loss and which offer the advantage of a more convenient practical use and more stability in particular in temperature and humidity.
  • the damping required in the invention is approximately one order of magnitude lower than that required for one or more “TMD” beaters.
  • the PA fixing damper blocks could be made of an organic material having a minimal intrinsic loss factor, then taking advantage of friction as a source dissipation to give the RE resonators an effective modal damping of the order of one to a few percent (%).
  • the vibration is established in the central zone of vibration CC of the spider CR having a certain mass.
  • the central vibration zone CC vibrates perpendicularly to the outer circumferential surface SEC, in the radial direction DR of the stator ST.
  • the elastic stiffness necessary for the vibration of the central vibration zone CC is provided by the arms BR of the spider CR.
  • the PA fixing damping pads allow the crosspiece CR to be raised in relation to the SEC surface, which provides a clearance space ED under the crosspiece CR for the vibration of the central vibration zone CC.
  • each attachment point PF is pooled for the attachment of two adjacent crosspieces CR and thus participates in the aforementioned damping function for the two corresponding adjacent resonators RE.
  • a grid having a mesh pattern other than a rectangular pattern and leading to another type of spider, different from a cross spider, could be used in certain embodiments of the invention.
  • the optimal frequency distribution of the PVD distributed vibration trap device is determined by various vibration calculations known to those skilled in the art. An approximately linear and regular frequency distribution is generally sought for the PVD device, on either side of the natural frequency of the natural breathing mode “0” to be processed. In the PVD device, the calculated frequency distribution is obtained by adjusting the natural frequency FP of each of the resonators RE.
  • Examples E1 to E4 in Fig.9 illustrate different methods that can be used for adjusting the natural frequencies FP of the resonators RE. In general, this adjustment can be obtained by adding or removing material in the crosspiece CR, but not exclusively.
  • the natural frequency FP1 of a resonator RE1 is adjusted by adding material AM to the central vibration zone CC of its spider CR1, so as to increase the mass of the central vibration zone CC.
  • examples E2 to E4 removals of material are made in the arms BR of the crosspieces CR2 to CR4 of the resonators RE2 to RE4 to adjust the natural frequencies FP2 to FP4 thereof, respectively, in particular by modifying the stiffness of the arms BR.
  • notches EH are made in two arms BR of cross brace CR2.
  • the same reduction profile of the initial width LA of the arms BR of the spider CR3 is obtained by removing material.
  • the removal of material in the arms BR of the spider CR3 are carried out in a similar way to example E3, except at the junction of these with the central zone of vibration CC where different curvatures CB1 and CB2 are introduced.
  • the different shapes of the arms of the crosspieces are obtained by modifying the arms which are initially identical for having been obtained in a grid, such as that of FIG. 6, Manufactured uniform pattern and mesh. It will be noted that, in other embodiments, different arm shapes may be produced during the manufacture of the grid, for example, by using punch tools having slightly different patterns from one another.
  • the elementary resonators of the vibration trap device of the invention may take different forms insofar as they behave as a whole like an “MTMD” device with respect to one or more eigenmodes of breathing “0” of the generally cylindrical structure to be treated.
  • the invention is of great interest for dealing with the noise pollution which comes from a machine, in particular from an electric traction motor in an electric vehicle.
  • the machine contains internal mechanisms which are the primary sources of noise and vibration. These primary sources of noise and vibration set in motion a casing of the machine, or stator, which radiates and/or transmits noise. Reducing noise and vibration at the very level of primary sources is not always possible given certain engineering constraints or limitations imposed by physics. It is then relevant to reduce the vibrations as close as possible to the primary sources, as is possible thanks to the distributed vibration trap device according to the invention.
  • the "0" natural breathing mode is a mode that is potentially very emissive and known by those skilled in the art as being difficult to process by devices attached externally to a casing. Indeed, the swelling/dilation movements generated in this “0” mode are the opposite of the shearing movements which allow effective treatment by known solutions of the viscoelastic sandwich type having a vibration damping function. Unlike these known solutions, the distributed vibration trap device according to the invention provides real damped elementary traps capable of processing the noises and vibrations originating from the swelling/dilation movements of the “0” mode.
  • the distributed vibration trap device according to the invention is effective for automotive applications in which frequencies typically of a few hundred to a few thousand Hertz must be processed.
  • the vibration trap device of the invention can be designed so as to also provide damping of one or more other natural modes of the generally cylindrical structure, thus providing an additional reduction in vibrations and harmful noise.
  • the processing of these other eigenmodes will be obtained by a shearing effect of the prestressed material of the fixing damper blocks in the elementary resonators.
  • the vibration trap device of the invention has less sensitivity to manufacturing dispersions and drifts due to operating conditions, such as temperature, humidity and others.
  • the added masses are potentially less important and it is possible to eliminate harmful secondary resonances.
  • vibration trap device of the invention lies in the fact that it can be manufactured with inexpensive materials. In addition, the cost of implementing the device of the invention is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

The device (PVD) is intended to be mounted on a circumferential external surface (SEC) of a cylindrical structure, such as a stator (ST) of a rotating electrical machine, the device being of the so-called "MTMD" type and comprising a plurality of elementary resonators (RE) which have natural frequencies (FP) within a predetermined frequency distribution. According to the invention, the device comprises a grid (GRD) which is made from a material having a resilience property and which is provided with a plurality of attachment points (PF) which form damping slabs (PA), the grid comprising a plurality of lattices (CR) in which the elementary resonators are formed, each lattice having a central vibration zone (CC) and arms (BR) which each support an attachment point at the end thereof, and each lattice having a rigidity/mass ratio which is adjusted in order to obtain the desired natural frequency.

Description

DESCRIPTION DESCRIPTION
TITRE DE L'INVENTION : DISPOSITIF DE PIÈGE À VIBRATIONS DISTRIBUÉ NOTAMMENT POUR UN STATOR, OU CARTER, DE MACHINE ÉLECTRIQUE TOURNANTE TITLE OF THE INVENTION: VIBRATION TRAP DEVICE DISTRIBUTED IN PARTICULAR FOR A STATOR, OR CASING, OF A ROTATING ELECTRIC MACHINE
La présente invention revendique la priorité de la demande française N ° 2013418 déposée le 17.12.2020 dont le contenu (texte, dessins et revendications) est ici incorporé par reference The present invention claims the priority of French application N ° 2013418 filed on 17.12.2020, the content (text, drawings and claims) of which is incorporated herein by reference.
La présente invention concerne de manière générale le filtrage passif des bruits et vibrations émis par une structure de type globalement cylindrique telle qu’un stator ou un carter d’une machine électrique tournante. Plus particulièrement, l'invention se rapporte à un dispositif de piège à vibrations distribué destiné à équiper une structure de type cylindrique, comme un stator d’une machine électrique tournante, notamment un moteur électrique de traction dans un véhicule électrique, mais pas exclusivement.The present invention generally relates to the passive filtering of noise and vibrations emitted by a generally cylindrical type structure such as a stator or a casing of a rotating electrical machine. More particularly, the invention relates to a distributed vibration trap device intended to equip a structure of the cylindrical type, such as a stator of a rotating electrical machine, in particular an electric traction motor in an electric vehicle, but not exclusively.
Dans un véhicule électrique, le moteur électrique en fonctionnement est une source de vibrations et de bruits gênants qui est de nature à altérer le confort acoustique des passagers. Les bruits générés par le moteur électrique sont souvent du type dit « sirène », avec de multiples harmoniques fréquentielles, et sont potentiellement très désagréables pour les passagers du véhicule. Les bruits de « sirène » sont liés au fonctionnement électromagnétique du moteur électrique, fonctionnement qui produit des efforts dynamiques sur la structure mécanique de celui-ci. La structure mécanique du moteur électrique vibre alors sous l’effet de ces efforts dynamiques et rayonne du bruit. In an electric vehicle, the electric motor in operation is a source of annoying vibrations and noises which is likely to alter the acoustic comfort of the passengers. The noises generated by the electric motor are often of the so-called "siren" type, with multiple frequency harmonics, and are potentially very unpleasant for the passengers of the vehicle. The “siren” noises are linked to the electromagnetic operation of the electric motor, which produces dynamic stresses on its mechanical structure. The mechanical structure of the electric motor then vibrates under the effect of these dynamic forces and radiates noise.
Dans un moteur électrique et, plus généralement, dans une machine électrique tournante, le comportement vibratoire propre du stator, ayant généralement une forme approximativement cylindrique, est très influent sur le comportement vibro-acoustique de la machine. Ce comportement vibratoire propre, avec les modes propres et les fréquences propres qui lui sont associés, détermine les résonances possibles de la structure. In an electric motor and, more generally, in a rotating electric machine, the specific vibratory behavior of the stator, generally having an approximately cylindrical shape, is very influential on the vibro-acoustic behavior of the machine. This proper vibrational behavior, with the proper modes and the proper frequencies associated with it, determines the possible resonances of the structure.
Un stator ST d’une machine électrique tournante de traction, telle qu’utilisée dans un système de traction électrique d’un véhicule automobile, est représentée à titre d’exemple à la Fig.1. Sur le plan vibro-acoustique, ce stator ST peut être vu, au premier ordre, comme une portion de cylindre émettant des vibrations essentiellement par sa surface extérieure circonférentielle SEC, surface extérieure circonférentielle qui est étendue et couplée avec l’air ambiant. D’autres vibrations transmises à la caisse du véhicule via des éléments de suspension de la machine peuvent provoquer également une nuisance pour les passagers du véhicule. A stator ST of a rotary electric traction machine, as used in an electric traction system of a motor vehicle, is represented by way of example in Fig.1. On the vibro-acoustic level, this stator ST can be seen, to the first order, as a portion of cylinder emitting vibrations essentially by its outer circumferential surface SEC, outer circumferential surface which is extended and coupled with the ambient air. Other vibrations transmitted to the body of the vehicle via the suspension elements of the machine can also cause a nuisance for the passengers of the vehicle.
En référence aussi aux Figs.2 et 3, compte-tenu de la forme globalement cylindrique du stator d’une machine électrique tournante, les modes vibratoires propres de celui- ci peuvent être catégorisés suivant une nomenclature classique dans laquelle le nombre des ventres et noeuds de vibrations est compté suivant une direction. A la Fig.2, différents modes propres, de « 0 » à « 3 », sont représentés et correspondent à des déformations vibratoires dans la direction radiale. Ces modes « 0 » à « 3 » sont les premiers d’une série de modes propres caractérisés dans la direction radiale. Le mode propre « 0 », dit mode de « respiration » ou « breathing mode » en anglais, correspond à une déformation vibratoire radiale qui est uniforme. Les modes propres suivants « 1 », « 2 » et « 3 » de la Fig.2 présentent au moins un point haut et un point bas de vibration selon la direction radiale et sont des modes d’ovalisation et d’ovalisation déphasée, et un mode triangulaire, respectivement.With reference also to Figs.2 and 3, given the generally cylindrical shape of the stator of a rotating electrical machine, the specific vibration modes of the latter can be categorized according to a conventional nomenclature in which the number of antinodes and nodes vibration is counted in one direction. In Fig.2, different eigenmodes, from “0” to “3”, are represented and correspond to vibratory deformations in the radial direction. These modes "0" to "3" are the first of a series of eigenmodes characterized in the radial direction. The proper mode "0", called "breathing" mode or "breathing mode" in English, corresponds to a radial vibratory deformation which is uniform. The following eigenmodes “1”, “2” and “3” of Fig.2 have at least one high point and one low point of vibration in the radial direction and are ovalization and out-of-phase ovalization modes, and a triangular mode, respectively.
Plus généralement, un mode vibratoire peut résulter de la combinaison de plusieurs modes propres dans différentes directions. Ainsi, un mode propre « i » de la famille de modes propres dans la direction radiale du stator pourra apparaître simultanément avec une autre mode propre « j » appartenant à une famille de modes propres dans la direction longitudinale du stator. On parle alors de mode propre composé (i, j). On comprendra donc que les termes -- mode propre « 0 » -- utilisés dans la présente demande recouvre en fait une pluralité de modes propres de respiration composés notés (0, j). More generally, a vibrational mode can result from the combination of several eigenmodes in different directions. Thus, a clean mode "i" of the family of clean modes in the radial direction of the stator can appear simultaneously with another clean mode "j" belonging to a family of clean modes in the longitudinal direction of the stator. One then speaks of compound eigenmode (i, j). It will therefore be understood that the terms -- eigenmode "0" -- used in the present application in fact covers a plurality of compound eigenmodes denoted by (0, j).
La Fig.3 montre à titre d’exemple, en représentation tridimensionnelle, un mode vibratoire comprenant un mode propre « 0 » et dans lequel les déformations ont des amplitudes qui varient entre une zone centrale ZC et des zones d’extrémités ZE du stator. Fig.3 shows by way of example, in three-dimensional representation, a vibration mode comprising a natural mode "0" and in which the deformations have amplitudes which vary between a central zone ZC and end zones ZE of the stator.
Dans les machines électriques utilisées dans l’automobile, la fréquence propre du mode « 0 » est généralement assez élevée dans le spectre audible, de l’ordre d’un à plusieurs kilohertz (kHz), c’est-à-dire dans une gamme de fréquences où l’acuité auditive humaine est maximum. Dans le comportement vibratoire modal du stator, c’est ce mode propre « 0 » qui génère le plus de difficultés, avec un bruit de type « sirène », et qui est difficile à filtrer en pratique. In electrical machines used in automobiles, the natural frequency of mode "0" is generally quite high in the audible spectrum, of the order of one to several kilohertz (kHz), i.e. in a frequency range where human hearing acuity is maximum. In the modal vibratory behavior of the stator, it is this natural mode "0" which generates the most difficulties, with a "siren" type noise, and which is difficult to filter in practice.
Dans l’état de la technique, il est connu différentes solutions pour réduire, notamment par amortissement, les vibrations dans une structure telle qu’un stator. In the state of the art, various solutions are known for reducing, in particular by damping, the vibrations in a structure such as a stator.
Une solution usuelle est d’utiliser des couches de matériaux amortissants viscoélastiques qui sont précontraintes entre des couches plus rigides selon une technique dite de « sandwichs » ou « constrained layers » en anglais. L’amortissement des vibrations et une diminution concomitante du bruit sont ici obtenus grâce au cisaillement que subit le matériau viscoélastique lorsque le stator se déforme selon le mode propre ciblé. Cette solution présente cependant les principaux inconvénients suivants : a) Elle est peu efficace pour le mode propre de respiration « 0 » car les déformations engendrées dans ce mode n’occasionnent pas, ou relativement peu, de cisaillement dans les couches viscoélastiques, ce qui réduit substantiellement la capacité d’amortissement ; b) Les élastomères utilisés habituellement pour les couches viscoélastiques procurent un effet amortissant qui varie avec la température, car leur modules d’élasticité y sont très sensibles, ce qui entraîne in fine une dérive de performance dans la réduction des vibrations selon les conditions de fonctionnement de la machine électrique tournante ; c) Le comportement d’amortissement de ces élastomères est également très sensible au niveau de précontrainte. Cela impose un montage précis des sandwichs, avec de faibles tolérances qui sont difficile à garantir dans une production en grande série et génère des coûts importants. A usual solution is to use layers of viscoelastic damping materials which are prestressed between more rigid layers according to a technique called “sandwiches” or “constrained layers”. The damping of vibrations and a concomitant reduction in noise are obtained here thanks to the shear that the viscoelastic material undergoes when the stator deforms according to the targeted natural mode. However, this solution has the following main drawbacks: a) It is not very effective for the eigenbreath mode "0" because the deformations generated in this mode do not cause, or relatively little, shear in the viscoelastic layers, which reduces substantially the damping capacity; b) The elastomers usually used for the viscoelastic layers provide a damping effect which varies with the temperature, because their moduli of elasticity are very sensitive to it, which ultimately leads to a performance drift in the reduction of vibrations depending on the operating conditions of the rotating electric machine; c) The damping behavior of these elastomers is also very sensitive to the level of prestress. This requires precise assembly of the sandwiches, with low tolerances which are difficult to guarantee in mass production and generates significant costs.
Une autre solution de l’état de la technique consiste à utiliser des pièges à vibrations. Un piège à vibrations simple et bien connu est le piège dit « batteur », ou « TMD >> pour « Tuned Mass Damper >> en anglais, qui fonctionnellement est un dispositif du type « masse-ressort-amortisseur >>. Le document JP5806057B2 divulgue l’utilisation dans une machine électrique tournante de deux batteurs montés sur la surface extérieure circonférentielle de la machine. Les deux batteurs sont montés avec un décalage angulaire, de façon à correspondre à un nœud et à un anti-nœud du mode vibratoire de la machine. Dans une première forme de réalisation, chaque batteur est formé d’une lame élastique amortissante et d’une masselotte, la lame ayant une extrémité fixée sur le stator et une extrémité libre portant la masselotte. Dans une autre forme de réalisation, chaque batteur est formé d’une lame élastique amortissante assemblée à une portion formant masse et l’ensemble ainsi formé est fixé au stator en deux extrémités. Another state-of-the-art solution consists of using vibration traps. A simple and well-known vibration trap is the so-called "beater" trap, or "TMD" for "Tuned Mass Damper" in English, which functionally is a device of the "mass-spring-damper" type. Document JP5806057B2 discloses the use in a rotating electric machine of two beaters mounted on the outer circumferential surface of the machine. The two beaters are mounted with an angular offset, so as to correspond to a node and an anti-node of the vibration mode of the machine. In a first embodiment, each beater is formed of a damping elastic blade and a flyweight, the blade having one end fixed to the stator and a free end carrying the flyweight. In another embodiment, each beater is formed of a damping elastic blade assembled to a mass-forming portion and the assembly thus formed is fixed to the stator at both ends.
Le dispositif à deux batteurs proposé par JP5806057B2 présente l’inconvénient d’introduire deux résonances secondaires proches de la fréquence de résonance initiale à traiter, de part et d’autre de cette dernière, qui peuvent s’avérer très gênantes lorsque la plage de régimes de fonctionnement est étendue, ce qui est le cas avec une machine électrique tournante. Un autre inconvénient de ce dispositif à deux batteurs réside dans la nécessité en pratique d’utiliser un matériau à fort amortissement intrinsèque pour la lame élastique du batteur afin d’obtenir un résultat satisfaisant, ce qui pose des problèmes de mise en œuvre, de coût et de stabilité dans le temps de la performance obtenue. The device with two beaters proposed by JP5806057B2 has the disadvantage of introducing two secondary resonances close to the initial resonance frequency to be processed, on either side of the latter, which can prove to be very troublesome when the rev range of operation is extended, which is the case with a rotating electrical machine. Another drawback of this two beater device lies in the practical need to use a material with high intrinsic damping for the elastic blade of the beater in order to obtain a satisfactory result, which poses problems of implementation, cost and stability over time of the performance obtained.
Par ailleurs, il est connu aussi des pièges à vibrations à plusieurs résonateurs élémentaires dits « MTMD >>, pour « Multiple Tuned Mass Damper » en anglais, comme celui divulgué par le document WO2016/177961 A1 et conçu pour être monté sur une structure rotative comme un arbre rotatif. Par rapport à un simple batteur, un piège à vibrations « MTMD » présente l’avantage d’une efficacité qui s’étend sur une plage de fréquences. Dans un piège à vibrations « MTMD », les fréquences des différents résonateurs élémentaires doivent être réglées précisément afin d’obtenir une distribution des fréquences permettant d’atteindre le résultat recherché. Les couplages entre les différents résonateurs élémentaires doivent également être réglés pour un résultat optimal. Le remplacement d’un ou plusieurs batteurs par un piège à vibrations de type MTMD peut s’avérer judicieux pour éviter les inconvénients majeurs susmentionnés d’introduction de résonance secondaire et d’utilisation de matériau à fort amortissement intrinsèque. Furthermore, vibration traps with several elementary resonators called “MTMD”, for “Multiple Tuned Mass Damper” in English, are also known, such as that disclosed by document WO2016/177961 A1 and designed to be mounted on a rotating structure. like a rotating shaft. Compared to a simple beater, an "MTMD" vibration trap has the advantage of an efficiency that extends over a range of frequencies. In an “MTMD” vibration trap, the frequencies of the various elementary resonators must be precisely adjusted in order to obtain a distribution of frequencies allowing the desired result to be achieved. The couplings between the different elementary resonators must also be adjusted for an optimal result. Replacing one or more flippers with an MTMD-type vibration trap can be wise to avoid the aforementioned major drawbacks of introducing secondary resonance and using material with high intrinsic damping.
Il est souhaitable de fournir un dispositif de piège à vibrations de type « MTMD » adapté pour équiper une structure de type globalement cylindrique, comme un stator de machine électrique tournante, et procurant une réduction efficace des vibrations dues à la résonance en respiration de la structure, ainsi qu’un coût réduit et une mise en œuvre aisée pour une fabrication en grande série, et une bonne robustesse face aux disparités et dérives. Selon un premier aspect, l’invention concerne un dispositif de piège à vibrations distribué destiné à se monter sur une surface extérieure circonférentielle d’une structure de type cylindrique, le dispositif étant du type dit « MTMD » et comprenant une pluralité de résonateurs élémentaires distribués spatialement sur la surface extérieure circonférentielle et ayant des fréquences propres comprises dans une distribution fréquentielle déterminée. Conformément à l’invention, le dispositif comprend une grille formée d’un matériau ayant une propriété d’élasticité et munie d’une pluralité de points de fixation formant des pavés amortisseurs, la grille comportant une pluralité de croisillons dans lesquels sont formés la pluralité de résonateurs élémentaires, chaque croisillon ayant une zone centrale de vibration et des bras supportant chacun un point de fixation à son extrémité, et chaque croisillon ayant un rapport raideur/masse qui est ajusté pour l’obtention de la fréquence propre voulue. It is desirable to provide a vibration trap device of the "MTMD" type suitable for equipping a structure of the generally cylindrical type, such as a stator of a rotating electrical machine, and providing an effective reduction of the vibrations due to the resonance in breathing of the structure. , as well as reduced cost and easy implementation for mass production, and good robustness in the face of disparities and drifts. According to a first aspect, the invention relates to a distributed vibration trap device intended to be mounted on an outer circumferential surface of a structure of the cylindrical type, the device being of the so-called "MTMD" type and comprising a plurality of elementary distributed resonators spatially on the outer circumferential surface and having natural frequencies included in a determined frequency distribution. According to the invention, the device comprises a grid formed from a material having a property of elasticity and provided with a plurality of fixing points forming damping blocks, the grid comprising a plurality of crosspieces in which are formed the plurality elementary resonators, each brace having a central vibration zone and arms each supporting a fixing point at its end, and each brace having a stiffness/mass ratio which is adjusted to obtain the desired natural frequency.
Selon une forme de réalisation particulière, la distribution fréquentielle déterminée couvre un intervalle déterminé de fréquences comprenant la fréquence de résonance associée au mode « 0 » dit de respiration de la structure de type cylindrique. According to a particular embodiment, the determined frequency distribution covers a determined interval of frequencies comprising the resonance frequency associated with the "0" mode, called breathing mode, of the cylindrical-type structure.
Selon une forme de réalisation particulière, la longueur de l’intervalle déterminé de fréquences est comprise entre 0,5 % et 100 % de la valeur de la fréquence de résonance associée au mode 0 dit de respiration. According to a particular embodiment, the length of the determined interval of frequencies is between 0.5% and 100% of the value of the resonance frequency associated with mode 0 called breathing.
Selon une forme de réalisation particulière, la distribution fréquentielle est linéaire et régulière autour de la fréquence de résonance associée au mode « 0 » dit de respiration de la structure de type cylindrique. According to a particular embodiment, the frequency distribution is linear and regular around the resonance frequency associated with the "0" mode, called breathing mode, of the cylindrical-type structure.
Selon une forme de réalisation particulière, le croisillon comprend au moins une partie modifiée par retrait ou ajout de matière, autorisant un ajustement de la fréquence propre du résonateur élémentaire. According to a particular embodiment, the spider comprises at least one part modified by removal or addition of material, allowing an adjustment of the natural frequency of the elementary resonator.
Selon une autre forme de réalisation particulière, les points de fixation formant des pavés amortisseurs comprennent un matériau amortissant. Ce matériau amortissant apporte la fonction de dissipation aux résonateurs élémentaires. According to another particular embodiment, the fixing points forming damping blocks comprise a damping material. This damping material provides the dissipation function to the elementary resonators.
Selon encore une autre forme de réalisation particulière, le matériau amortissant est sélectionné de façon à obtenir un amortissement effectif des résonateurs élémentaires de l’ordre de un à dix %. According to yet another particular embodiment, the damping material is selected so as to obtain an effective damping of the elementary resonators of the order of one to ten%.
Selon encore une autre forme de réalisation particulière, le matériau amortissant est un matériau adhésif. According to yet another particular embodiment, the damping material is an adhesive material.
Selon encore une autre forme de réalisation particulière, la grille est une grille métallique. According to yet another particular embodiment, the grid is a metallic grid.
Selon encore une autre forme de réalisation particulière, la grille est obtenue à partir d’une feuille métallique. According to yet another particular embodiment, the grid is obtained from a metal sheet.
Selon encore une autre forme de réalisation particulière, la grille a un maillage rectangulaire et des croisillons en croix. L’invention concerne aussi une structure de type cylindrique comprenant un dispositif de piège à vibrations distribué, comme décrit brièvement ci-dessus, monté sur une surface extérieure circonférentielle, et une machine électrique tournante comprenant le dispositif de piège à vibrations distribué monté sur une surface extérieure circonférentielle d’un stator de la machine. According to yet another particular embodiment, the grid has a rectangular mesh and cross braces. The invention also relates to a cylindrical type structure comprising a distributed vibration trap device, as described briefly above, mounted on a circumferential outer surface, and a rotating electric machine comprising the distributed vibration trap device mounted on a surface outer circumferential of a stator of the machine.
D’autres avantages et caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description détaillée ci-dessous de plusieurs formes de réalisation particulières de l’invention, en référence aux dessins annexés, dans lesquels : Other advantages and characteristics of the present invention will appear more clearly on reading the detailed description below of several particular embodiments of the invention, with reference to the appended drawings, in which:
[Fig.1 ] La Fig.1 est une vue en perspective d’un stator de machine électrique tournante de traction du type présent dans un véhicule électrique. [Fig.1] Fig.1 is a perspective view of a stator of a rotary electric traction machine of the type present in an electric vehicle.
[Fig.2] La Fig.2 montre schématiquement différents modes propres de vibration se produisant radialement dans une structure globalement cylindrique comme le stator de la Fig.1 . [Fig.2] Fig.2 schematically shows different eigenmodes of vibration occurring radially in a generally cylindrical structure like the stator of Fig.1.
[Fig.3] La Fig.3 montre, en représentation tridimensionnelle, un exemple de mode propre de respiration « 0 » dans un stator, dans lequel interviennent des déformations dont les amplitudes varient dans la direction longitudinale. [Fig.3] Fig.3 shows, in three-dimensional representation, an example of natural breathing mode “0” in a stator, in which deformations occur whose amplitudes vary in the longitudinal direction.
[Fig.4] La Fig.4 est une vue simplifiée en perspective d’une structure globalement cylindrique, telle qu’un stator, équipée d’un dispositif de piège à vibrations distribué de l’invention. [Fig.4] Fig.4 is a simplified perspective view of a generally cylindrical structure, such as a stator, equipped with a distributed vibration trap device of the invention.
[Fig.5] La Fig.5 est une vue simplifiée en coupe transversale montrant un schéma fonctionnellement équivalent d’une structure globalement cylindrique, telle qu’un stator, équipée d’un dispositif de piège à vibrations distribué de l’invention. [Fig.5] Fig.5 is a simplified cross-sectional view showing a functionally equivalent diagram of a generally cylindrical structure, such as a stator, equipped with a distributed vibration trap device of the invention.
[Fig.6] La Fig.6 est une vue plane de dessus d’une grille utilisée pour la fabrication du dispositif de piège à vibrations distribué de la Fig.4. [Fig.6] Fig.6 is a top plan view of a grid used to fabricate the distributed vibration trap device of Fig.4.
[Fig.7] La Fig.7 est une vue plane d’un résonateur élémentaire compris dans le dispositif de piège à vibrations distribué de la Fig.4. [Fig.7] Fig.7 is a plan view of an elementary resonator included in the distributed vibration trap device of Fig.4.
[Fig.8] La Fig.8 est une vue en coupe du résonateur élémentaire de la Fig.7. [Fig.8] Fig.8 is a sectional view of the elementary resonator of Fig.7.
[Fig.9] La Fig.9 est une vue en coupe montrant différentes modifications apportées à un croisillon de résonateur élémentaire pour ajuster sa fréquence propre. [Fig.9] Fig.9 is a sectional view showing various modifications made to an elementary resonator spider to adjust its natural frequency.
En référence aux Figs.4 à 9, il est maintenant décrit ci-dessous une forme de réalisation particulière d’un dispositif de piège à vibrations distribué PVD selon l’invention. With reference to Figs.4 to 9, there is now described below a particular embodiment of a PVD distributed vibration trap device according to the invention.
En référence plus particulièrement à la Fig.4, le dispositif de piège à vibrations distribué PVD est ici monté sur un stator ST, représenté schématiquement, qui forme une structure globalement cylindrique. Le stator ST est par exemple celui d’une machine électrique tournante, comme un moteur électrique de traction dans un véhicule électrique. Le dispositif PVD est conçu pour recouvrir la surface extérieure circonférentielle SEC du stator ST, partiellement ou en totalité selon l’application.Referring more particularly to FIG. 4, the PVD distributed vibration trap device is here mounted on a stator ST, represented schematically, which forms a generally cylindrical structure. The stator ST is for example that of a rotating electrical machine, such as an electric traction motor in a electric vehicle. The PVD device is designed to cover the outer circumferential surface SEC of the ST stator, partially or entirely depending on the application.
Le dispositif de piège à vibrations distribué PVD se présente globalement comme une grille GR qui est courbée et fixée sur la surface extérieure circonférentielle SEC du stator ST. Typiquement, le dispositif PVD est fixé par collage sur la surface SEC, par des points de fixation PF, comme cela apparaîtra plus clairement par la suite. Une pluralité de résonateurs élémentaires RE juxtaposés les uns à côté des autres sont formés à partir des croisillons CR de la grille GR. The distributed vibration trap device PVD is generally presented as a grid GR which is curved and fixed on the outer circumferential surface SEC of the stator ST. Typically, the PVD device is fixed by bonding to the SEC surface, by fixing points PF, as will appear more clearly subsequently. A plurality of elementary resonators RE juxtaposed next to each other are formed from crosspieces CR of grid GR.
Le dispositif de piège à vibrations distribué PVD est un dispositif de type « MTMD » formé par la pluralité de résonateurs élémentaires RE juxtaposés et est conçu pour traiter préférentiellement le mode propre de respiration « 0 », mais pas exclusivement. Les résonateurs élémentaires RE juxtaposés ont entre eux des accordages ou des désaccordages fréquentiels qui sont optimisés dans leur ensemble pour l’efficacité globale du dispositif PVD. Ainsi, selon les applications, le dispositif PVD pourra comprendre une ou plusieurs dizaines de résonateurs élémentaires RE, et de préférence quelques centaines de résonateurs élémentaires RE pour un meilleur résultat. La pluralité de résonateurs élémentaires RE sont distribués spatialement sur la surface extérieure circonférentielle. The PVD distributed vibration trap device is a device of the “MTMD” type formed by the plurality of juxtaposed elementary resonators RE and is designed to preferentially process the natural breathing mode “0”, but not exclusively. The juxtaposed RE elementary resonators have between them frequency tunings or detunings which are optimized as a whole for the overall efficiency of the PVD device. Thus, depending on the applications, the PVD device may comprise one or several tens of elementary resonators RE, and preferably a few hundred elementary resonators RE for a better result. The plurality of elementary resonators RE are spatially distributed over the outer circumferential surface.
En référence aussi à la Fig.5, les résonateurs élémentaires RE sont fonctionnellement équivalents chacun à un dispositif « masse-ressort-amortisseur » ayant sa fréquence propre de résonance. Ainsi, des résonateurs adjacents REn et RE(n+1 ) pourront être accordés sur des fréquences propre de résonance différentes FPn et FP(n+1 ). Le déplacement vibratoire DV d’un résonateur élémentaire RE se fait essentiellement dans la direction radiale DR du stator ST, suivant la normale à la surface extérieure circonférentielle SEC. La pluralité des résonateurs élémentaires RE procurent une distribution fréquentielle optimale de fréquences de résonance couvrant un intervalle déterminé de fréquences centré sensiblement sur la fréquence de résonance du mode propre de respiration « 0 » à traiter. La longueur de l’intervalle déterminé de fréquences peut être compris entre 0,5 % et 100 % de la valeur de la fréquence de résonance associée au mode 0 dit de respiration. Par exemple pour un mode « 0 » à 4000Hz, cela donne un intervalle de longueur, autrement dit un étalement allant de 20 Hz (soit [3990-4010] Hz si centré) à 4000Hz (soit [2000 - 6000] Hz si centré). La répartition spatiale des résonateurs RE sur la surface extérieure circonférentielle SEC et la distribution des fréquences propres associées seront déterminées de manière optimale en fonction des applications. With reference also to FIG. 5, the elementary resonators RE are each functionally equivalent to a “mass-spring-damper” device having its own resonant frequency. Thus, adjacent resonators REn and RE(n+1) can be tuned to different resonant natural frequencies FPn and FP(n+1). The vibratory displacement DV of an elementary resonator RE takes place essentially in the radial direction DR of the stator ST, following the normal to the outer circumferential surface SEC. The plurality of elementary resonators RE provide an optimal frequency distribution of resonance frequencies covering a determined interval of frequencies centered substantially on the resonance frequency of the natural breathing mode “0” to be processed. The length of the determined interval of frequencies can be between 0.5% and 100% of the value of the resonance frequency associated with mode 0 called breathing. For example for a "0" mode at 4000Hz, this gives an interval of length, in other words a spread going from 20 Hz (i.e. [3990-4010] Hz if centred) to 4000Hz (i.e. [2000 - 6000] Hz if centred) . The spatial distribution of the resonators RE on the outer circumferential surface SEC and the distribution of the associated eigenfrequencies will be determined optimally depending on the applications.
La grille GR utilisée dans cette forme de réalisation particulière pour former le dispositif de piège à vibrations distribué PVD est montrée à plat à la Fig.6. Cette grille GR est fabriquée dans un matériau ayant une propriété d’élasticité. Typiquement, elle est réalisée à partir d’une feuille métallique, par des techniques de retrait de matière connues pour la fabrication en grande série, telles que découpe, matriçage, forge, fonderie ou autres. Le matériau de la grille GR sera choisi essentiellement en fonction des caractéristiques d’élasticité et de masse recherchées pour les résonateurs. Des aciers et d’autres métaux pourront typiquement être choisis pour le matériau de la grille GR. Comme mieux visible à la Fig.6, dans l’exemple de réalisation décrit, la grille GR du dispositif PVD est réalisée avec un maillage rectangulaire, plus précisément, un maillage carré ici. La grille GR comprend une pluralité de premiers et deuxièmes rubans, RB1 et RB2, agencés perpendiculairement. Chaque croisillon CR est formé par un croisement entre un premier ruban RB1 et un deuxième ruban RB2 en un point central de croisement PC. Les points de fixation PF sont régulièrement répartis dans les premiers et deuxièmes rubans RB1 et RB2. Un point de fixation PF est aménagé dans chaque portion des rubans RB1 et RB2 entre deux points centraux de croisement PC adjacents, au niveau du point médian entre les deux points PC adjacents. The GR grid used in this particular embodiment to form the PVD distributed vibration trap device is shown flat in Fig.6. This GR grid is made of a material having a property of elasticity. Typically, it is made from a metal sheet, by material removal techniques known for mass production, such as cutting, stamping, forging, foundry or others. The material of the grid GR will be chosen essentially according to the characteristics of elasticity and mass sought for the resonators. Steels and other metals may typically be chosen for the GR grid material. As best seen in FIG. 6, in the example embodiment described, the grid GR of the PVD device is made with a rectangular mesh, more precisely, a square mesh here. The grid GR comprises a plurality of first and second ribbons, RB1 and RB2, arranged perpendicularly. Each crosspiece CR is formed by a crossing between a first ribbon RB1 and a second ribbon RB2 at a central crossing point PC. The attachment points PF are regularly distributed in the first and second ribbons RB1 and RB2. An attachment point PF is arranged in each portion of the strips RB1 and RB2 between two adjacent central crossing points PC, at the level of the midpoint between the two adjacent points PC.
En référence à la Fig.7 montrant un résonateur RE en vue de dessus, le croisillon CR comprend une zone centrale de vibration CC incluant le point central de croisement PC et quatre bras BR se projetant en croix depuis la zone centrale de vibration CC. Les bras BR d’un croisillon CR sont formés par les portions des rubans RB1 , RB2, entre la zone centrale de vibration CC et les quatre points de fixation PF. Les points de fixation PF sont ainsi supportés aux extrémités des bras BR qui sont distantes du point central de croisement PC. With reference to FIG. 7 showing a resonator RE in plan view, the spider CR comprises a central vibration zone CC including the central crossing point PC and four arms BR projecting in a cross from the central vibration zone CC. The arms BR of a spider CR are formed by the portions of the strips RB1, RB2, between the central vibration zone CC and the four fixing points PF. The attachment points PF are thus supported at the ends of the arms BR which are distant from the central crossing point PC.
En référence aussi à la Fig.8 montrant une vue en coupe AA du résonateur RE de la Fig.7, les points de fixation PF comprennent chacun ici un orifice traversant OR percé dans le ruban RB1 , RB2, et un point de colle formant un pavé amortisseur de fixation PA. L’orifice traversant OR aide à une fixation mécanique plus robuste entre le ruban RB1 , RB2, et le pavé amortisseur de fixation PA. With reference also to Fig.8 showing a sectional view AA of the resonator RE of Fig.7, the attachment points PF each here comprise a through hole OR drilled in the ribbon RB1, RB2, and a point of glue forming a PA fixing damping block. The through-hole OR helps with a more robust mechanical fixing between the tape RB1, RB2, and the shock-absorbing block of fixing PA.
Les pavés amortisseurs de fixation PA sont fait ici d’un matériau adhésif à faible facteur de perte intrinsèque, tel que résine époxy, colle Araldite® et autres. Les pavés amortisseurs de fixation PA procure un amortissement structural et sont capables de supporter des déformations de faible amplitude sans altération. The PA fixing dampers are made here of an adhesive material with a low intrinsic loss factor, such as epoxy resin, Araldite® glue and others. PA fixing damping blocks provide structural damping and are able to withstand low amplitude deformations without alteration.
Dans l’invention, les pavés amortisseurs de fixation PA permettent d’obtenir un amortissement individuel de chacun des résonateurs élémentaires RE. On notera qu’un amortissement modal effectif faible, de l’ordre d’un à quelques pourcents (%), sera suffisant pour que les résonateurs RE fonctionnent avec une bonne efficacité. Dans l’invention, cette caractéristique d’amortissement modal effectif faible des résonateurs RE permet de se passer de l’utilisation d’un élastomère avec un facteur de perte intrinsèque élevé, au profit de résines, colles et autres matériaux avec un faible facteur de perte intrinsèque et qui offrent l’avantage d’une utilisation pratique plus commode et plus de stabilité notamment en température et humidité. In the invention, the damping pads of fixing PA make it possible to obtain an individual damping of each of the elementary resonators RE. It should be noted that a low effective modal damping, of the order of one to a few percent (%), will be sufficient for the RE resonators to operate with good efficiency. In the invention, this characteristic of low effective modal damping of RE resonators makes it possible to dispense with the use of an elastomer with a high intrinsic loss factor, in favor of resins, glues and other materials with a low loss factor. intrinsic loss and which offer the advantage of a more convenient practical use and more stability in particular in temperature and humidity.
A titre de comparaison, l’amortissement requis dans l’invention est plus faible d’environ un ordre de grandeur par rapport à celui requis pour un ou plusieurs batteurs « TMD ». By way of comparison, the damping required in the invention is approximately one order of magnitude lower than that required for one or more “TMD” beaters.
En variante, dans le cas où l’influence de la température doit être fortement limitée, les pavés amortisseurs de fixation PA pourront être faits dans un matériau organique ayant un facteur de perte intrinsèque minimal, en mettant alors à profit le frottement en tant que source de dissipation pour octroyer aux résonateurs RE un amortissement modal effectif de l’ordre d’un à quelques pourcents (%). Dans le résonateur RE, la vibration s’établit dans la zone centrale de vibration CC du croisillon CR ayant une certaine masse. La zone centrale de vibration CC vibre perpendiculairement à la surface extérieure circonférentielle SEC, suivant la direction radiale DR du stator ST. La raideur élastique nécessaire à la vibration de la zone centrale de vibration CC est procurée par les bras BR du croisillon CR. Les pavés amortisseurs de fixation PA autorisent une surélévation du croisillon CR par rapport à la surface SEC, ce qui procure un espace de dégagement ED sous le croisillon CR pour la vibration de la zone centrale de vibration CC. As a variant, in the case where the influence of the temperature must be greatly limited, the PA fixing damper blocks could be made of an organic material having a minimal intrinsic loss factor, then taking advantage of friction as a source dissipation to give the RE resonators an effective modal damping of the order of one to a few percent (%). In the resonator RE, the vibration is established in the central zone of vibration CC of the spider CR having a certain mass. The central vibration zone CC vibrates perpendicularly to the outer circumferential surface SEC, in the radial direction DR of the stator ST. The elastic stiffness necessary for the vibration of the central vibration zone CC is provided by the arms BR of the spider CR. The PA fixing damping pads allow the crosspiece CR to be raised in relation to the SEC surface, which provides a clearance space ED under the crosspiece CR for the vibration of the central vibration zone CC.
Outre leur fonction de fixation mécanique de la grille GR sur la surface extérieure circonférentielle SEC du stator ST, les points de fixation PF avec leurs pavés amortisseurs de fixation PA remplissent une fonction d’amortissement dans les résonateurs RE. Dans cet exemple de réalisation, chaque point de fixation PF est mutualisé pour la fixation de deux croisillons CR adjacents et participe ainsi à la fonction d’amortissement susmentionnée pour les deux résonateurs RE adjacents correspondants. In addition to their function of mechanical fixing of the grid GR on the outer circumferential surface SEC of the stator ST, the fixing points PF with their damping pads of fixing PA perform a damping function in the resonators RE. In this exemplary embodiment, each attachment point PF is pooled for the attachment of two adjacent crosspieces CR and thus participates in the aforementioned damping function for the two corresponding adjacent resonators RE.
En variante, une grille ayant un motif de maillage autre qu’un motif rectangulaire et conduisant à un autre type de croisillon, différent d’un croisillon en croix, pourra être utilisée dans certaines formes de réalisation de l’invention. As a variant, a grid having a mesh pattern other than a rectangular pattern and leading to another type of spider, different from a cross spider, could be used in certain embodiments of the invention.
La distribution fréquentielle optimale du dispositif de piège à vibrations distribué PVD est déterminée par différents calculs de vibrations connus de l’homme du métier. Une distribution fréquentielle approximativement linéaire et régulière est généralement recherchée pour le dispositif PVD, de part et d’autre de la fréquence propre du mode propre de respiration « 0 » à traiter. Dans le dispositif PVD, la distribution fréquentielle calculée est obtenue en ajustant la fréquence propre FP de chacun des résonateurs RE. The optimal frequency distribution of the PVD distributed vibration trap device is determined by various vibration calculations known to those skilled in the art. An approximately linear and regular frequency distribution is generally sought for the PVD device, on either side of the natural frequency of the natural breathing mode “0” to be processed. In the PVD device, the calculated frequency distribution is obtained by adjusting the natural frequency FP of each of the resonators RE.
Bien entendu, si plusieurs modes propres de respiration « 0 » (plusieurs fréquences propres) sont présents et doivent être traités, plusieurs distributions fréquentielles correspondantes seront calculées et implantées dans le dispositif de piège à vibrations distribué PVD. Of course, if several "0" natural breathing modes (several natural frequencies) are present and must be processed, several corresponding frequency distributions will be calculated and implemented in the PVD distributed vibration trap device.
Pour accorder les résonateurs RE à leur fréquence propre, on pourra procéder typiquement par retrait ou ajout de matière dans les croisillons CR, mais pas exclusivement. On agira à la fois sur la distribution des raideurs des croisillons et la distribution de masse pour régler la distribution fréquentielle, sachant que la fréquence propre d’un croisillon évolue sensiblement comme le rapport raideur/masse. Ainsi, une modification des dimensions des bras BR des croisillons permet de déterminer des rapports de raideur/masse différents et, consécutivement, des fréquences propres différentes. Préférentiellement, c’est la largeur des bras BR, ou leur profil de largeur, qui sera modifiée, plutôt que leur épaisseur dont la modification peut poser plus de difficultés. To tune the resonators RE to their own frequency, it is possible to proceed typically by removing or adding material in the crosspieces CR, but not exclusively. We will act both on the distribution of the stiffnesses of the spiders and the mass distribution to adjust the frequency distribution, knowing that the natural frequency of a spider evolves substantially like the stiffness/mass ratio. Thus, a modification of the dimensions of the arms BR of the braces makes it possible to determine different stiffness/mass ratios and, consequently, different natural frequencies. Preferably, it is the width of the arms BR, or their width profile, which will be modified, rather than their thickness, the modification of which may pose more difficulties.
Les exemples E1 à E4 à la Fig.9 illustrent différentes méthodes qui pourront être utilisées pour l’ajustement des fréquences propres FP des résonateurs RE. De manière générale, cet ajustement pourra être obtenu par ajout ou retrait de matière dans le croisillon CR, mais pas exclusivement. Dans l’exemple E1 , la fréquence propre FP1 d’un résonateur RE1 est ajustée par un apport de matière AM réalisé dans la zone centrale de vibration CC de son croisillon CR1 , de façon à accroître la masse de la zone centrale de vibration CC. Examples E1 to E4 in Fig.9 illustrate different methods that can be used for adjusting the natural frequencies FP of the resonators RE. In general, this adjustment can be obtained by adding or removing material in the crosspiece CR, but not exclusively. In example E1, the natural frequency FP1 of a resonator RE1 is adjusted by adding material AM to the central vibration zone CC of its spider CR1, so as to increase the mass of the central vibration zone CC.
Dans les exemples E2 à E4, des retraits de matière sont réalisés dans les bras BR des croisillons CR2 à CR4 des résonateurs RE2 à RE4 pour ajuster les fréquences propres FP2 à FP4 de ceux-ci, respectivement, notamment par modification de la raideur des bras BR. Dans l’exemple E2, des échancrures EH sont réalisées dans deux bras BR du croisillon CR2. Dans l’exemple E3, un même profil de réduction de la largeur initiale LA des bras BR du croisillon CR3 est obtenu par retrait de matière. Dans l’exemple E4, les retraits de matière dans les bras BR du croisillon CR3 sont réalisées de façon analogue à l’exemple E3, excepté à la jonction de ceux-ci avec la zone centrale de vibration CC où des courbures différentes CB1 et CB2 sont introduites. In examples E2 to E4, removals of material are made in the arms BR of the crosspieces CR2 to CR4 of the resonators RE2 to RE4 to adjust the natural frequencies FP2 to FP4 thereof, respectively, in particular by modifying the stiffness of the arms BR. In example E2, notches EH are made in two arms BR of cross brace CR2. In example E3, the same reduction profile of the initial width LA of the arms BR of the spider CR3 is obtained by removing material. In example E4, the removal of material in the arms BR of the spider CR3 are carried out in a similar way to example E3, except at the junction of these with the central zone of vibration CC where different curvatures CB1 and CB2 are introduced.
Dans les exemples décrits ci-dessus, les différentes formes des bras des croisillons, autorisant la distribution optimale de fréquences propres des résonateurs, sont obtenues par modification des bras qui sont initialement identiques pour avoir été obtenus dans une grille, comme celle de la Fig.6, fabriquée des motif et maillage uniformes. On notera que, dans d’autres formes de réalisation, différentes formes de bras pourront être réalisées lors de la fabrication de la grille, par exemple, en utilisant des outils emporte-pièce ayant des motifs légèrement différents les uns des autres.In the examples described above, the different shapes of the arms of the crosspieces, allowing the optimum distribution of natural frequencies of the resonators, are obtained by modifying the arms which are initially identical for having been obtained in a grid, such as that of FIG. 6, Manufactured uniform pattern and mesh. It will be noted that, in other embodiments, different arm shapes may be produced during the manufacture of the grid, for example, by using punch tools having slightly different patterns from one another.
De manière générale, les résonateurs élémentaires du dispositif de piège à vibrations de l’invention pourront prendre différentes formes dans la mesure où ils se comportent dans leur ensemble comme un dispositif « MTMD » vis-à-vis d’un ou plusieurs modes propres de respiration « 0 » de la structure globalement cylindrique à traiter. In general, the elementary resonators of the vibration trap device of the invention may take different forms insofar as they behave as a whole like an “MTMD” device with respect to one or more eigenmodes of breathing “0” of the generally cylindrical structure to be treated.
L’invention est d’un grand intérêt pour traiter les nuisances sonores qui proviennent d’une machine, notamment d’un moteur électrique de traction dans un véhicule électrique. La machine contient des mécanismes internes qui sont les sources primaires de bruits et vibrations. Ces sources primaires de bruits et vibrations mettent en mouvement un carter de la machine, ou stator, qui rayonne et/ou transmet du bruit. La réduction des bruits et vibrations au niveau même des sources primaires n’est pas toujours possible compte-tenu de certaines contraintes d’ingénierie ou de limitations imposées par la physique. Il est alors pertinent de réduire les vibrations au plus près des sources primaires comme cela est possible grâce au dispositif de piège à vibrations distribué selon l’invention. The invention is of great interest for dealing with the noise pollution which comes from a machine, in particular from an electric traction motor in an electric vehicle. The machine contains internal mechanisms which are the primary sources of noise and vibration. These primary sources of noise and vibration set in motion a casing of the machine, or stator, which radiates and/or transmits noise. Reducing noise and vibration at the very level of primary sources is not always possible given certain engineering constraints or limitations imposed by physics. It is then relevant to reduce the vibrations as close as possible to the primary sources, as is possible thanks to the distributed vibration trap device according to the invention.
Le mode propre de respiration « 0 » est un mode potentiellement très émissif et connu par l’homme du métier comme étant difficile à traiter par des dispositifs rapportés extérieurement sur un carter. En effet, les mouvements de gonflement/dilatation générés dans ce mode « 0 » sont à l’opposé des mouvements de cisaillement qui autorisent un traitement efficace par des solutions connues de type sandwichs viscoélastiques ayant une fonction d’amortissement vibratoire. À la différence de ces solutions connues, le dispositif de piège à vibrations distribué selon l’invention fournit de véritables pièges élémentaires amortis capables de traiter les bruits et vibrations provenant des mouvements de gonflement/dilatation du mode « 0 ». Le dispositif de piège à vibrations distribué selon l’invention est efficace pour les applications automobiles dans lesquelles des fréquences typiquement de quelques centaines à quelques milliers de Hertz doivent être traitées. The "0" natural breathing mode is a mode that is potentially very emissive and known by those skilled in the art as being difficult to process by devices attached externally to a casing. Indeed, the swelling/dilation movements generated in this “0” mode are the opposite of the shearing movements which allow effective treatment by known solutions of the viscoelastic sandwich type having a vibration damping function. Unlike these known solutions, the distributed vibration trap device according to the invention provides real damped elementary traps capable of processing the noises and vibrations originating from the swelling/dilation movements of the “0” mode. The distributed vibration trap device according to the invention is effective for automotive applications in which frequencies typically of a few hundred to a few thousand Hertz must be processed.
Par ailleurs, outre le traitement efficace du mode propre de respiration « 0 », le dispositif de piège à vibrations de l’invention peut être conçu de manière à fournir aussi un amortissement d’un ou plusieurs autres modes propres de la structure globalement cylindrique, apportant ainsi une réduction supplémentaire des vibrations et bruits néfastes. Le traitement de ces autres modes propres sera obtenu par un effet de cisaillement du matériau précontraint des pavés amortisseurs de fixation dans les résonateurs élémentaires. Moreover, in addition to the effective processing of the "0" natural breathing mode, the vibration trap device of the invention can be designed so as to also provide damping of one or more other natural modes of the generally cylindrical structure, thus providing an additional reduction in vibrations and harmful noise. The processing of these other eigenmodes will be obtained by a shearing effect of the prestressed material of the fixing damper blocks in the elementary resonators.
Comparativement à un batteur TMD classique, le dispositif de piège à vibrations de l’invention a une sensibilité moindre aux dispersions de fabrication et aux dérives dues aux conditions de fonctionnement, telles que la température, l’humidité et autres. Par ailleurs, les masses ajoutées sont potentiellement moins importantes et il est possible d’éliminer les résonances secondaires nuisibles. Compared to a conventional TMD beater, the vibration trap device of the invention has less sensitivity to manufacturing dispersions and drifts due to operating conditions, such as temperature, humidity and others. In addition, the added masses are potentially less important and it is possible to eliminate harmful secondary resonances.
Un autre avantage appréciable du dispositif de piège à vibrations de l’invention réside dans le fait qu’il peut être fabriqué avec des matériaux peu coûteux. De plus, le coût de mise en oeuvre du dispositif de l’invention est réduit. Another appreciable advantage of the vibration trap device of the invention lies in the fact that it can be manufactured with inexpensive materials. In addition, the cost of implementing the device of the invention is reduced.
L’invention ne se limite pas aux formes de réalisation particulières qui ont été décrites ici à titre d’exemple. L’homme du métier, selon les applications de l’invention, pourra apporter différentes modifications et variantes entrant dans le champ de protection de l’invention. The invention is not limited to the particular embodiments which have been described here by way of example. The person skilled in the art, depending on the applications of the invention, may make various modifications and variants falling within the scope of protection of the invention.

Claims

REVENDICATIONS
1. Dispositif de piège à vibrations distribué (PVD) destiné à se monter sur une surface extérieure circonférentielle (SEC) d’une structure de type cylindrique (ST), ledit dispositif (PVD) étant du type dit « MTMD » comprenant une pluralité de résonateurs élémentaires (RE) distribués spatialement sur la surface extérieure circonférentielle (SEC) et ayant des fréquences propres (FP) comprises dans une distribution fréquentielle déterminée, caractérisé en ce qu’il comprend une grille (GR) formée d’un matériau ayant une propriété d’élasticité et munie d’une pluralité de points de fixation (PF) formant des pavés amortisseurs (PA), ladite grille comportant une pluralité de croisillons (CR) dans lesquels sont formés ladite pluralité de résonateurs élémentaires (RE), chaque dit croisillon (CR) ayant une zone centrale de vibration (CC) et des bras (BR) supportant chacun un dit point de fixation (PF) à son extrémité, et chaque dit croisillon (CR) ayant un rapport raideur/masse qui est ajusté pour l’obtention de la fréquence propre (PF) voulue. 1. Distributed vibration trap device (PVD) intended to be mounted on a circumferential outer surface (SEC) of a cylindrical-type structure (ST), said device (PVD) being of the so-called "MTMD" type comprising a plurality of elementary resonators (RE) spatially distributed on the outer circumferential surface (SEC) and having natural frequencies (FP) included in a determined frequency distribution, characterized in that they comprise a grid (GR) formed from a material having a of elasticity and provided with a plurality of fixing points (PF) forming damping blocks (PA), the said grid comprising a plurality of crosspieces (CR) in which the said plurality of elementary resonators (RE) are formed, each said crosspiece (CR) having a central vibration zone (CC) and arms (BR) each supporting a said attachment point (PF) at its end, and each said spider (CR) having a stiffness/mass ratio which is adjusted for r obtaining the desired natural frequency (PF).
2. Dispositif selon la revendication 1 , caractérisé en ce que la distribution fréquentielle déterminée couvre un intervalle déterminé de fréquences comprenant la fréquence de résonance associée au mode « 0 » dit de respiration de la structure de type cylindrique. 2. Device according to claim 1, characterized in that the determined frequency distribution covers a determined interval of frequencies comprising the resonant frequency associated with the "0" mode called breathing mode of the cylindrical type structure.
3. Dispositif selon la revendication 2, caractérisé en ce que la longueur de l’intervalle déterminé de fréquences est comprise entre 0,5 % et 100 % de la valeur de la fréquence de résonance associée au mode 0 dit de respiration. 3. Device according to claim 2, characterized in that the length of the determined interval of frequencies is between 0.5% and 100% of the value of the resonant frequency associated with mode 0 called breathing.
4. Dispositif selon l’une des revendications précédentes, caractérisé en ce que la distribution fréquentielle est linéaire et régulière autour de la fréquence de résonance associée au mode « 0 » dit de respiration de la structure de type cylindrique. 4. Device according to one of the preceding claims, characterized in that the frequency distribution is linear and regular around the resonance frequency associated with the "0" mode, called breathing mode, of the cylindrical-type structure.
5. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le dispositif (PVD) comprend au moins une dizaine de résonateurs élémentaires (RE). 5. Device according to one of the preceding claims, characterized in that the device (PVD) comprises at least ten elementary resonators (RE).
6. Dispositif selon l’une des revendications précédentes, caractérisé en ce qu’un dit croisillon (CR) comprend au moins une partie modifiée (CC, BR) par retrait ou ajout de matière, autorisant un ajustement de la fréquence propre (FP) dudit résonateur élémentaire (RE). 6. Device according to one of the preceding claims, characterized in that a said spider (CR) comprises at least one modified part (CC, BR) by removing or adding material, allowing an adjustment of the natural frequency (FP) of said elementary resonator (RE).
7. Dispositif selon l’une des revendications précédentes, caractérisé en ce que lesdits points de fixation (FP) formant des pavés amortisseurs (PA) comprennent un matériau amortissant. 7. Device according to one of the preceding claims, characterized in that said fixing points (FP) forming damping blocks (PA) comprise a damping material.
8. Dispositif selon la revendication 7, caractérisé en ce que ledit matériau amortissant est sélectionné de façon à obtenir un amortissement effectif desdits résonateurs élémentaires (RE) de l’ordre de un à dix %. 8. Device according to claim 7, characterized in that said damping material is selected so as to obtain an effective damping of said elementary resonators (RE) of the order of one to ten%.
9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que ledit matériau amortissant est un matériau adhésif. 9. Device according to claim 7 or 8, characterized in that said damping material is an adhesive material.
10. Dispositif selon l’une quelconque des revendications précédentes, caractérisé en ce ladite grille (GR) est une grille métallique. 10. Device according to any one of the preceding claims, characterized in that said grid (GR) is a metal grid.
11. Dispositif selon la revendication précédente, caractérisé en ce ladite grille (GR) est obtenue à partir d’une feuille métallique. 11. Device according to the preceding claim, characterized in that said grid (GR) is obtained from a metal sheet.
12. Dispositif selon l’une quelconque des revendications précédentes, caractérisé en ce ladite grille a un maillage rectangulaire et des croisillons en croix (CR). 12. Device according to any one of the preceding claims, characterized in that said grid has a rectangular mesh and cross braces (CR).
13. Structure de type cylindrique (ST) caractérisée en ce qu’elle comprend un dispositif de piège à vibrations distribué (PVD) selon l’une quelconque des revendications précédentes monté sur une surface extérieure circonférentielle (SEC) de la structure. Machine électrique tournante caractérisée en ce qu’elle comprend un dispositif de piège à vibrations distribué (PVD) selon l’une quelconque des revendications 1 à 12 monté sur une surface extérieure circonférentielle (SEC) d’un stator (ST) de ladite machine. 13. Cylindrical type structure (ST) characterized in that it comprises a distributed vibration trap device (PVD) according to any one of preceding claims mounted on a circumferential outer surface (SEC) of the structure. Rotating electrical machine characterized in that it comprises a distributed vibration trap device (PVD) according to any one of Claims 1 to 12 mounted on a circumferential outer surface (SEC) of a stator (ST) of the said machine.
PCT/FR2021/051924 2020-12-17 2021-11-03 Distributed vibration trap device, particularly for a stator or casing of a rotating electrical machine WO2022129710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013418A FR3118110A1 (en) 2020-12-17 2020-12-17 VIBRATION TRAP DEVICE DISTRIBUTED IN PARTICULAR FOR A STATOR, OR CASING, OF A ROTATING ELECTRIC MACHINE
FRFR2013418 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022129710A1 true WO2022129710A1 (en) 2022-06-23

Family

ID=75690323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051924 WO2022129710A1 (en) 2020-12-17 2021-11-03 Distributed vibration trap device, particularly for a stator or casing of a rotating electrical machine

Country Status (2)

Country Link
FR (1) FR3118110A1 (en)
WO (1) WO2022129710A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151881A4 (en) * 2020-05-12 2024-07-03 Nok Corp Vibration damper, vibration damping apparatus, mounting method of vibration damper, and vibration damping method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013418A1 (en) 1968-07-20 1970-04-03 Daikin Ind Ltd
JPS586057B2 (en) 1976-04-05 1983-02-02 フオ−ド・モ−タ−・カンパニ− Sonic flow vaporizer with fuel distribution device
US4373608A (en) * 1979-12-20 1983-02-15 General Electric Company Tuned sound barriers
JPH0552237A (en) * 1991-08-20 1993-03-02 Kobe Steel Ltd Vibration controling device
EP0394180B1 (en) * 1989-04-18 1993-11-24 United Technologies Corporation Roll vibration absorber
JP2006291996A (en) * 2005-04-06 2006-10-26 Toshiba Corp Vibration damping device for machine structure
DE102012100697A1 (en) * 2012-01-27 2013-08-01 Vem Sachsenwerk Gmbh Arrangement for noise reduction of large electric machine, has vibration damper that is formed as adapted spring-mass system with closed vibration damper spring
FR2995740A1 (en) * 2012-09-20 2014-03-21 Renault Sa Stator for electric machine, has cylindrical part comprising external surface, and two distinct rigid elements separated by damping elastic material, where two rigid elements form rotor that is fixed at external surface of cylindrical part
JP2014096951A (en) * 2012-11-12 2014-05-22 Mitsubishi Electric Corp Rotary electric machine
WO2016177961A1 (en) 2015-05-04 2016-11-10 Peugeot Citroen Automobiles Sa Vibrating-trap device with distributed resonators
DE102016104594A1 (en) * 2016-03-14 2017-09-14 Vem Sachsenwerk Gmbh Stator housing for medium and large rotating electrical machines for noise reduction
US20180367002A1 (en) * 2016-01-05 2018-12-20 Mitsubishi Electric Corporation Rotating electric machine
FR3095023A1 (en) * 2019-04-10 2020-10-16 Centre National De La Recherche Scientifique METAMATERIAU FOR VIBRATION FILTERING AND INSULATING PART MADE WITH LEDIT METAMATERIAU

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013418A1 (en) 1968-07-20 1970-04-03 Daikin Ind Ltd
JPS586057B2 (en) 1976-04-05 1983-02-02 フオ−ド・モ−タ−・カンパニ− Sonic flow vaporizer with fuel distribution device
US4373608A (en) * 1979-12-20 1983-02-15 General Electric Company Tuned sound barriers
EP0394180B1 (en) * 1989-04-18 1993-11-24 United Technologies Corporation Roll vibration absorber
JPH0552237A (en) * 1991-08-20 1993-03-02 Kobe Steel Ltd Vibration controling device
JP2006291996A (en) * 2005-04-06 2006-10-26 Toshiba Corp Vibration damping device for machine structure
DE102012100697A1 (en) * 2012-01-27 2013-08-01 Vem Sachsenwerk Gmbh Arrangement for noise reduction of large electric machine, has vibration damper that is formed as adapted spring-mass system with closed vibration damper spring
FR2995740A1 (en) * 2012-09-20 2014-03-21 Renault Sa Stator for electric machine, has cylindrical part comprising external surface, and two distinct rigid elements separated by damping elastic material, where two rigid elements form rotor that is fixed at external surface of cylindrical part
JP2014096951A (en) * 2012-11-12 2014-05-22 Mitsubishi Electric Corp Rotary electric machine
WO2016177961A1 (en) 2015-05-04 2016-11-10 Peugeot Citroen Automobiles Sa Vibrating-trap device with distributed resonators
US20180367002A1 (en) * 2016-01-05 2018-12-20 Mitsubishi Electric Corporation Rotating electric machine
DE102016104594A1 (en) * 2016-03-14 2017-09-14 Vem Sachsenwerk Gmbh Stator housing for medium and large rotating electrical machines for noise reduction
FR3095023A1 (en) * 2019-04-10 2020-10-16 Centre National De La Recherche Scientifique METAMATERIAU FOR VIBRATION FILTERING AND INSULATING PART MADE WITH LEDIT METAMATERIAU

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151881A4 (en) * 2020-05-12 2024-07-03 Nok Corp Vibration damper, vibration damping apparatus, mounting method of vibration damper, and vibration damping method

Also Published As

Publication number Publication date
FR3118110A1 (en) 2022-06-24

Similar Documents

Publication Publication Date Title
RU2007116859A (en) BEARING ASSEMBLY ASSEMBLY AND ITS GAS-TURBINE ENGINE CONTAINING IT
WO2022129710A1 (en) Distributed vibration trap device, particularly for a stator or casing of a rotating electrical machine
US20050133325A1 (en) Dynamic damper
FR2850217A1 (en) PIEZOACTIVE ACTUATOR WITH AMPLIFIED MOVEMENT
JP2013537953A (en) Blade arrangement and gas turbine having the blade arrangement
FR3014517A1 (en) DAMPING ELEMENT ADAPTABLE TO AT LEAST ONE EXTRINSIC FACTOR OF THE SHOCK ABSORBER
JP2009198003A (en) Differential gear device
FR2956712A1 (en) SPRING GUIDE AND AMORTIZATION UNIT
EP3292320B1 (en) Vibrating-trap device with distributed resonators
FR2954273A1 (en) ROTOR CARRIER STRUCTURE AND FLYING APPARATUS PROVIDED WITH SUCH A CARRIER STRUCTURE
EP2879129B1 (en) Acoustically insulating coating provided with resonators, panel provided with said coating, and aircraft
EP3804116B1 (en) Vibration energy harvester
WO1996020357A1 (en) Torsional damper comprising a number of friction stages
JP2007177830A (en) Dynamic damper and hollow propeller with it
EP0750131B1 (en) Elastic support for vibrating mass
US20130210533A1 (en) Torsional vibration damper
WO2019229310A1 (en) Vibrating torsion trap device
FR3062971A1 (en) ASSEMBLY ASSEMBLY OF AN ENGINE IN AN AIR PULSE DEVICE FOR A DEVICE FOR HEATING, VENTILATION AND / OR AIR CONDITIONING OF A MOTOR VEHICLE
JP2013181615A (en) Noise reduction structure for gear
EP2035688B1 (en) Device for deadening the noise and vibrations attributable to the injectors in a vehicle engine
WO2021123543A1 (en) Decoupling element for a motor mount comprising a non-newtonian fluid
KR101322659B1 (en) Fan assembly
JP4805212B2 (en) Vibration reduction member
JP4413578B2 (en) Polygon mirror mounting structure
FR3053287A1 (en) ASSEMBLY ASSEMBLY OF AIR PULSE DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21810681

Country of ref document: EP

Kind code of ref document: A1