WO2022129650A1 - Cubic optical sensor for monitoring and studying characteristics of flying insects, including mosquitos, which can be coupled to a catch trap - Google Patents

Cubic optical sensor for monitoring and studying characteristics of flying insects, including mosquitos, which can be coupled to a catch trap Download PDF

Info

Publication number
WO2022129650A1
WO2022129650A1 PCT/ES2021/000030 ES2021000030W WO2022129650A1 WO 2022129650 A1 WO2022129650 A1 WO 2022129650A1 ES 2021000030 W ES2021000030 W ES 2021000030W WO 2022129650 A1 WO2022129650 A1 WO 2022129650A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
flying insects
cubic
monitoring
studying
Prior art date
Application number
PCT/ES2021/000030
Other languages
Spanish (es)
French (fr)
Inventor
João Miguel Faria RAPOSO ENCARNAÇÃO
Mark Richard Williams Hallows
Florit PANCRAç VILLALONGA
Bastian FAULHABER
Original Assignee
Irideon S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irideon S.L. filed Critical Irideon S.L.
Publication of WO2022129650A1 publication Critical patent/WO2022129650A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/06Catching insects by using a suction effect
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/10Catching insects by using Traps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M23/00Traps for animals
    • A01M23/02Collecting-traps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates, in general, to systems for classifying and counting flying insects and, in particular, to systems that use an optical sensor to obtain a digital recording of flying insects, which can be used with or as part of, a trap for flying insects, including mosquitoes, used for surveillance of said insects, to allow automatic classification and counting of insects under surveillance by applying signal processing and machine learning techniques.
  • the invention that is presented affects the Section of Current Necessities of Life of the International Patent Classification (CIP), paragraph of Rural Activities, section of Agriculture, Breeding, Hunting, Capture, Fishing, influencing, from the industrial point of view, in the manufacture of devices for surveillance, study and control of flying insects.
  • CIP International Patent Classification
  • Flying insects are an important part of the web of life, pollinating at least two-thirds of all food consumed by humans, but certain species can be detrimental to human and animal health and can also cause degradation or destruction of the crops.
  • honey bees and other pollinating insects are of critical interest in the pollination of food crops; the activity of certain fruit flies is of interest as predators of other species of insect pests and in the control of certain noxious weeds; and the activity of a wide range of insects is of interest in biodiversity studies.
  • many human and animal diseases are caused by viruses or parasites transmitted by flying insects that serve as carriers of the disease.
  • Leishmaniasis is carried by a sand fly, and sleeping sickness in humans and certain livestock diseases are transmitted by the tsetse fly.
  • the common housefly can spread typhus, bacilli, and amoebic dysentery infections to humans through food contamination.
  • the fruit fly can infest a wide range of commercial fruits and vegetables causing degradation and loss.
  • Conventional methods used to obtain information on the population of flying insects at a given location include the use of compact, portable insect traps placed at suitable locations in the field, in which closely guarded insects are lured into a trap containing a removable catch bag or sticky paper, which must be collected periodically by an operator and subsequently inspected by an entomologist.
  • Suction traps are widely used for mosquito surveillance. in which a suction fan sucks mosquitoes flying near the mouth of the trap into a catch bag.
  • Major manufacturers of such traps include the John W. Hock Company (USA) and Biogents AG (Germany).
  • the labor costs associated with conventional manual collection and sorting and recording of results are high, and errors can occur in each. step.
  • These methods can also suffer from a considerable delay between capturing a target insect and its subsequent collection and identification, which can reduce the effectiveness of control measures.
  • the delay between trapping and harvesting can lead to errors due to insect degradation in the trap or being eaten by predators such as ants.
  • Optical methods have also been described, which have the advantage of not being sensitive to wind noise and ambient sounds, unlike microphones.
  • a preferably collimated beam of light is projected onto the flying insect and the shadow created by the body and wings of the insect in flight is detected, while in the so-called scatter/backscatter/dark-field. reflected light is detected and. dispersed by the body and wings of the insect in flight.
  • BG-Counter from Biogents AG (Germany), designed for use with the same company's BG-Sentinel suction trap to count mosquitoes entering the trap, but which does not discriminate between mosquito species, sex or age, etc.
  • Moskeet smart trap from TrakitNow (India), which is designed for fixed mounting and is considerably larger in physical format and different from standard suction traps used by organisms. mosquito surveillance.
  • any of these traps can be considered as a complement to the invention which is described in this document, but in no case are detailed studies and recordings made in real time when the insects fly freely or access a trap through a special transparent conduit.
  • the inventors presenting this document do not know of solutions in the current state of the art that analyze in detail certain characteristics of insects such as speed, direction and instantaneous trajectory, size and optical properties of the wings, beat frequency and other parameters of interest. considering that the invention meets the characteristics of novelty and inventive activity that a patent must have.
  • the present invention describes an optical device intended for digital recording and surveillance of flying insects, including mosquitoes, whose purpose is to classify, count and study a series of characteristics of the insects under surveillance through the application of techniques line processing and machine learning.
  • the device can be used, in isolation, for the study of insects that move freely in front of optical emission and detection panels or in combination with traditional traps, including traps equipped with a suction fan, such as those produced by John W. Hock Company (USA) and Biogents AG (Germany) which are used by mosquito surveillance agencies around the world.
  • the typical acoustic or optical sensors of flying insects make a digital recording of each one of them as they pass through the detection zone, then applying a Fast Fourier Transform (FFT) to obtain a frequency spectrum of the recording.
  • FFT Fast Fourier Transform
  • For good classification of mosquito species for example, it is convenient to characterize fundamental wingbeat frequencies as low as 250 Hz with a resolution of spectral frequency of at least 25 Hz to discriminate species with closely spaced wing beat frequencies.
  • Suction traps designed for capturing mosquitoes usually have an entrance mouth of 8 to 11 cm in diameter and generate an airflow speed of about 3 meters per second, which gives rise to a speed Effective flight speed of 1.5 meters per second inside the trap with mosquitoes flying at 1.5 meters per second against the airflow.
  • the senor For reliable sorting and counting. the sensor must provide a constant amplitude output signal, regardless of the particular flight path of the flying insect through the sensing volume or the particular orientation of the insect with respect to the sensor system. Most of the flying insect sensor systems described in the literature have smaller detection dimensions, or have a sensor response that varies greatly depending on the position and/or orientation of the flying insect relative to the sensor system, which It means that the amplitude of the recorded wave and the power of the spectral components are of limited value in characterizing the flying insect.
  • the sensor provides information about the direction of flight, for example to know if the insect is flying towards the trap, or escaping from the trap, or partially entering and then escaping, or escaping. partially and re-entering, etc. Most of the flying insect sensor systems described in the literature do not provide this type of information.
  • the present invention overcomes the limitations of the current state of the art and describes a cube-shaped optical flying insect sensor that is particularly designed so that, when used in combination with a suction trap, insects are sucked into a detection zone with a relatively large diameter and length at velocities relatively high.
  • the device is capable of providing; sufficiently high resolution of the fundamental spectral frequency and wingbeat harmonics; a signal amplitude and power of the spectral components relatively stable and independent of the particular flight path through the detection volume and the particular orientation of the insect with respect to the detection system; information on the direction of flight; and both extinction and dispersion signal outputs. All this in order to allow a more robust classification using signal processing and machine learning methods; gender, species-, sex, age and other characteristics of the insect, compared to conventional methods which can be configured in different ways depending on cost and performance requirements.
  • Figure 1 represents a perspective view of the case in which the optical sensor for recording flying insects is mounted inside a protective box and connected to a conventional trap for capturing said insects. The following items are noted:
  • Figure 6 is the profile view of the matrix group of collimating lenses.
  • Figure 13 represents separately, in profile view, the elements that make up an optical emitting panel.
  • It shows a plan view of the cuboid (8) illustrating how said optical sensor can provide two simultaneous orthogonal extinction outputs.
  • Figure 20 shows a plan view of the cuboid (8) configured with an optical emitting panel on one side face, a first optical receiving panel on the opposite side to receive the extinction light and a second optical receiving panel on one of the side cameras. remaining to receive scattered light.
  • Figure 21 shows a plan view of the cuboid (8) configured with an optical emitting panel on one side face, a first optical receiving panel on the opposite side to receive the extinction light and a second optical receiving panel on one of the side cameras. remaining to receive scattered light.
  • Figure 21 shows a plan view of the cuboid (8) configured with an optical emitting panel on one side face, a first optical receiving panel on the opposite side to receive the extinction light and a second optical receiving panel on one of the side cameras. remaining to receive scattered light.
  • Figure 23 shows a plan view of the cuboid (8) with an emitter panel mounted on a side face of the cube and an optical receiver panel mounted on an orthogonal side face to provide a scattering view.
  • This figure shows us a perspective view of the case of use of the optical sensor in isolation, that is, without its coupling with a trap. Insects move freely as there are no closing walls,
  • Cubic optical sensor for surveillance and study of the characteristics of flying insects, including mosquitoes, attachable or not, to capture traps, whose purpose is to carry out the classification, counting and study of a series of characteristics of ios insects under surveillance through the application of signal processing techniques and of automatic learning that, in the most complete embodiment, preferred by its inventors, is shown as a set (1) of elements (Fig.1) in which a box (2) with a lid (3 ), an upper air duct (4), a lower air duct (5) and a coupling piece (7) that allows the optical sensor group to be connected to a conventional capture trap (6) that has been represented online of dots to imply that it is a complement to the invention without being its object.
  • the optical sensor can be used, in an alternative embodiment, in a totally isolated way in which the insects move freely without being captured.
  • a zenith lighting focus (9.2) and/or a nadir lighting focus (9.3) is installed, respectively, as indicated in (Fig.4).
  • FIG.2 it is observed that inside the box (2) an electronic module for acquisition of lines and communications (10) has been schematically represented, which in turn communicates the lines or results captured with a system external that can provide data processing and access to them through electrical connectors (11), practicable from outside the box (2) to power the system and control peripherals such as the fan of a suction trap.
  • a system external that can provide data processing and access to them through electrical connectors (11), practicable from outside the box (2) to power the system and control peripherals such as the fan of a suction trap.
  • FIG.3 a perspective view of the cubic optical sensor (8) is represented, which in this document we will call “cuboid* (for simplicity), once the upper (4) and lower air ducts have been removed. (5).
  • the cuboid (8) is made up of an upper plate (16) and a lower plate (17), both equipped with circular windows, centered, to give way to the transparent flight duct (9), on which that the four lateral faces of the cuboid (8) are joined; face A (12), face B (13), face C (14) and face D (15).
  • optical panels which are fundamental pieces in the device of the invention, since they are the ones that serve to illuminate, detect and record all the movements and flight parameters of the insects that access the cuboid (8) through the upper part of the transparent flight conduit (9),
  • Each of these panels is made up of three main pieces; one, inner side, closer to the transparent flight duct (9), which incorporates a series of collimating lenses, an intermediate one, which acts as a deflector and an outer one that is the printed circuit board PCBA (Printed Circuit Board Assembly),
  • PCBA printed Circuit Board Assembly
  • the internal and intermediate parts are identical in all embodiments of the invention and the external parts, although of identical size and configuration, mount light emitting diodes in some cases and photoreceptors in others.
  • the collimating lens group 18 is shown as a matrix group of identical lenses 19, known as Fresnel lenses, as shown in plan views. (Fig.5) and profile (Fig.6). This group of lenses is the same in the optical emitter panels (32) and in the optical receiver panels (33),
  • the optical deflector (20) also the same in both cases, with a perspective view represented in (Fig.7) and a profile view in (Fig.8), has the same matrix distribution as the group of collimating lenses (18). ) and has a series of inverted pyramids (22) and the same number of windows for the passage of light (21),
  • the PCBA printed circuit boards they have the same configuration in the emitter (32) and receiver (33) panels with the difference that in the first ones they mount luminescent diodes (24) (Figs. 9 and 10) and in the second mounts photoreceptors (31) (Figs.11 and 12), also having various mounting holes (27, 28 and 29) and electrical connectors (25 and 26), for the communication of the cuboid (8) with the electronic module of acquisition of signals and communications which in turn Communicates the signals or results captured with an external system that may provide data processing and access.
  • each light-emitting diode (24) coincides with the position of the focus of the corresponding collimating lens (19), in such a way that the conical beam of the rays it emits leaves the lens collimator according to a beam of parallel rays.
  • FIG.16 the first form of embodiment of the invention is schematized, where the plan view of the cuboid (8) is represented.
  • an optical emitting panel (32) is placed on face A (12), indicated as 32/A
  • another optical receiving panel (33) on face D (15). designated as 33/D is represented in dotted lines.
  • the mosquito or other flying insect (36) that flies through the interior of the transparent flight tube (9). will be illuminated by the collimated light beam, projected by the collimating lens of the light emitting diode (24/A), on the optical emitting panel 32/A and also by the third row collimated light beam projected by the collimating lens of the diode luminescent (24/B), in the optical emitting panel 32/B, in which the two light beams have a mutual angle of 90 degrees.
  • the extinction shadow (37) is generated, projected by the mosquito (36).
  • the cuboid (8) provides two simultaneous outputs: one. first optical receiving panel output 33/C and a second optical receiving panel output 33/D in which the first optical emitting panel 32/A sees the mosquito at an angle of 90 degrees with respect to the second optical emitting panel 32/ b.
  • the device of the invention using the obtainable instantaneous position, speed and trajectory of the flying insect, within the limits of the transparent flight tube (9), could be configured to activate only the light emitting diodes (24) necessary to illuminate the insect at a given moment including, only, in the treatment of the signal, the outputs of the photoreceptors (31) that receive significant signals of extinction or dispersion of the insect at any moment, in order to reduce the power necessary to activate the luminescent diodes, which is of particular interest when the cuboid (8) is powered by a battery and above all, to improve the signal/noise ratio.
  • FIG.17 which is a plan view of the cuboid (8), according to a first embodiment, illustrates the mode of operation to provide two optical dispersion views with a mutual angle of . 90 degrees, in addition to the two extinction views shown in (Fig.16).
  • the elements indicated must be interpreted as indicated below. continuation.
  • the second column light emitting light emitting diode 24/A in the optical emitting panel 32/A is shown at an instant in time when this light emitting diode turns on.
  • the light emitting diode (24/B) of the third line of the optical emitting panel 32/B is shown at a time when this light emitting diode is off.
  • the extinction shadow (37) is the one projected by the mosquito (36), which falls on the optical receiving panel 33/C as described in (Fig.16).
  • the scatter signal can be automatically analyzed to obtain information about the insect's body and the coloration and brightness of its wings, to complement the information provided by the extinction output.
  • the cuboid (8) of the invention offers four different outputs: two extinction views of the flying insect with a mutual angle of 90 degrees and two scattering views of the flying insect with a mutual angle of 90 degrees.
  • a second embodiment is the one shown in (Fig. 18) which shows us the plan view of the cuboid (8) in an alternative configuration with an emitter panel 32, on face A (12) and optical receiver panels 33, on each of the lateral faces B (13), C (14) and D (15), to provide three simultaneous, orthogonal views: a) an extinction view from the optical receiving panel 33/C; b) a scatter view from receiver panel 33/D; and c) a second scatter view from optical receiver panel 33/B.
  • the light ray reflected and/or scattered (40) by the mosquito (36), is focused on the photoreceptor (31/B), in the optical receptor panel 33/B, causing the output of said photoreceptor to change.
  • the collimating lens assembly and/or optical deflector of that optical receiving panel may optionally be omitted to allow a greater number of of light rays from the flying insect reach a greater number of photoreceptors from a given position within the transparent flight conduit (9),
  • FIG.19 shows us a plan view of the cuboids (8) in an alternative configuration with optical emitting panels (32). on lateral faces A (12) and C (14), opposite, and optical receiving panels (33) on the remaining lateral faces B (13) and D (15). to provide two scatter views with a mutual angle of 180 degrees.
  • FIG.20 shows us a plan view of the cuboid (8) in an alternative configuration that only mounts three emitter/receiver optical panels: the optical emitter panel 32. on the face side A (12), an optical receptor panel (33), on the opposite side C(14), to receive the extinction light and another optical receptor panel (33) on the lateral side D (15) to receive the scattered light.
  • a fifth form of: embodiment is represented in (Fig.21) that shows us a plan view of the cuboid (8) in an alternative configuration that mounts an optical emitting panel (32) on the side face A (12), a optical receiving panel (33) on an orthogonal side face B (13) to receive scattered light and another optical receiving panel (33) on face D (15) oriented towards the optical receiving panel (33) on face B (13) , to receive scattered light from the opposite direction.
  • FIG.22 A sixth form of embodiment is represented in (Fig.22) that shows us a plan view of the cuboid (8) in an alternative configuration that mounts an optical emitter panel (32) on face A (12), side of the cube. and an optical receiving panel (33) on the opposite side C (14) to provide a view of the extinction.
  • a seventh embodiment is represented in (Fig.23) which shows us a plan view of the cuboid (8) in a configuration that mounts an emitter panel (32), on face A (12), lateral hub and an optical receiving panel (33), on the adjoining side face D (15) to provide a scatter view.
  • the fourth to seventh and other similar alternative embodiments which are not ruled out, are specially designed to reduce the cost of the cuboid (8) that. in all cases, it includes an electronic signal acquisition and communications module (10) for the acquisition and communication of the signals obtained.
  • an electronic signal acquisition and communications module 10 for the acquisition and communication of the signals obtained.
  • several embodiments have been considered in which the optical or cuboid sensor (8) is totally enclosed in the box (2) with access for the various insects or mosquitoes (16) to the transparent flight duct (9), sucked by the existing fan in all types of conventional traps (6). That is to say, the case in which the optical sensor is complemented with a conventional trap (6) has been analyzed.
  • the inventors contemplate an eighth embodiment in which the capture trap is dispensed with and an optical sensor with two facing panels is mounted; an optical emitter panel (32) and an optical receiver panel (33), protected with glazed covers (43), with their corresponding support frames (41) joined by connection bars (42), All of this is complemented by the electronic module and wireless transmission media for outdoor operations. As it is free of side walls, which allow the free movement of insects between the two panels of the optical sensor, it is possible to carry out various studies to find out the characteristics of the flying insects that frequent certain areas in the countryside.
  • the schematic assembly of this eighth embodiment is shown in (Fig.24).
  • the optical sensor of the invention with its corresponding electronic signal acquisition and communications module, which in turn communicates the signals or results captured with an external system that can provide data processing and access to them, is prepared to be able to study in detail all the events registered in any of its photoreceptors, whether they are analyzed individually or if combinations between them are considered, as has been described in the eight embodiments that have just been listed. This makes it possible to record a very complete range of characteristics of the different flying insects. It is not considered necessary to make the content of this description more extensive so that a person skilled in the art can understand the scope and advantages derived from the invention, as well as develop and put into practice the object of the same.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Human Resources & Organizations (AREA)
  • Geophysics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Catching Or Destruction (AREA)

Abstract

Disclosed is a cubic optical sensor for monitoring and studying characteristics of flying insects, including mosquitos, which can be coupled to a catch trap that, by means of digital recording, allows flying insects to be observed, studied, classified and counted automatically using signal processing techniques and automatic learning techniques. The sensor is formed by a box (2) and a lid (3) provided with a top air pipe (4) that, by means of a coupling piece (7), connects to any conventional trap (6). According to different embodiments, on each face of the cuboid (8) is mounted an optical emitter panel (32) and/or an optical receiver panel (33) connected to an electronic signal acquisition and communication module (10) and to an external data-processing system. The optical emitter panels (32) and the optical receiver panels (33) are formed by a matrix group of luminescent diodes (24) and photoreceivers (31), respectively.

Description

DESCRIPCION DESCRIPTION
SENSOR ÓPTICO DE FORMA CÚBICA PARA VIGILANCIA Y ESTUDIO DE CARACTERÍSTICAS DE INSECTOS VOLADORES, CUBIC-SHAPED OPTICAL SENSOR FOR SURVEILLANCE AND STUDY OF FLYING INSECTS CHARACTERISTICS,
INCLUIDOS LOS MOSQUITOS, ACOPLADLE A UNA TRAMPA DE CAPTURA INCLUDING MOSQUITOES, ATTACH IT TO A CAPTURE TRAP
OBJETO TÉCNICO DE LA INVENCIÓN TECHNICAL OBJECT OF THE INVENTION
.La presente invención se relaciona, en general, con los sistemas para clasificar y contar los insectos voladores y en particular, con los sistemas que utilizan un sensor óptico para obtener una grabación digital de insectos voladores, lo cual puede ser utilizado con, o como parte de, una trampa para insectos voladores, incluyendo ios mosquitos, utilizada para la vigilancia de dichos insectos, para permitir la clasificación y el conteo automáticos de insectos bajo vigilancia medíante la aplicación de técnicas de procesamiento de señales y de aprendizaje automático. The present invention relates, in general, to systems for classifying and counting flying insects and, in particular, to systems that use an optical sensor to obtain a digital recording of flying insects, which can be used with or as part of, a trap for flying insects, including mosquitoes, used for surveillance of said insects, to allow automatic classification and counting of insects under surveillance by applying signal processing and machine learning techniques.
SECTOR DE LA TÉCNICA AL QUE SE REFIERE LA INVENCIÓN TECHNICAL SECTOR TO WHICH THE INVENTION RELATES
La invención que sé presenta afecta a la Sección de Necesidades Corrientes de la Vida de la Clasificación Internacional de Patentes (CIP), párrafo de Actividades Rurales, apartado de Agricultura, Cria, Caza, Captura, Pesca incidiendo, desde el punto de vista industrial, en la fabricación de dispositivos para vigilancia, estudio y control de insectos voladores. The invention that is presented affects the Section of Current Necessities of Life of the International Patent Classification (CIP), paragraph of Rural Activities, section of Agriculture, Breeding, Hunting, Capture, Fishing, influencing, from the industrial point of view, in the manufacture of devices for surveillance, study and control of flying insects.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los insectos voladores son una parte importante de la red de vida, y polinizan al menos dos tercios de todos los alimentos consumidos por los seres humanos, pero ciertas especies pueden ser perjudiciales para la salud humana y animal y también pueden causar la degradación o destrucción de los cultivos. Flying insects are an important part of the web of life, pollinating at least two-thirds of all food consumed by humans, but certain species can be detrimental to human and animal health and can also cause degradation or destruction of the crops.
La actividad de las abejas melíferas y otros insectos polinizadores tiene un interés critico en la polinización de los cultivos alimentarios; la actividad de ciertas moscas de la fruta es de interés como depredadores de otras especies de plagas de insectos y en el control de ciertas malas hierbas nocivas y la actividad de una amplia gama de insectos es de interés en tos estudios de la biodiversidad. Por otra parte, muchas enfermedades humanas y animales son causadas por virus o parásítos transmitidos por insectos voladores» que sirven corno portadores de la enfermedad. The activity of honey bees and other pollinating insects is of critical interest in the pollination of food crops; the activity of certain fruit flies is of interest as predators of other species of insect pests and in the control of certain noxious weeds; and the activity of a wide range of insects is of interest in biodiversity studies. On the other hand, many human and animal diseases are caused by viruses or parasites transmitted by flying insects that serve as carriers of the disease.
Por ejemplo, cada ano cerca de 700 millones de personas contraen enfermedades transmitidas por mosquitos corno la malaria, el virus del Nilo Occidental, la chikungunya, la fiebre amarilla y la Zika, causando más de un millón de muertes año. La leishmaniasis es transportada por una mosca de arena, y la enfermedad del sueño en los seres humanos y ciertas enfermedades del ganado son transmitidas por la mosca tse- tse. La mosca doméstica común puede propagar Infecciones de tifas, bacilos y disentería amebiana a los humanos por medio de la contaminación de- los alimentos. La mosca de la fruta puede infestar una amplía gama de frutas y verduras comerciales cansando -su degradación y pérdida. For example, each year about 700 million people contract mosquito-borne diseases such as malaria, West Nile virus, chikungunya, yellow fever and Zika, causing more than one million deaths each year. Leishmaniasis is carried by a sand fly, and sleeping sickness in humans and certain livestock diseases are transmitted by the tsetse fly. The common housefly can spread typhus, bacilli, and amoebic dysentery infections to humans through food contamination. The fruit fly can infest a wide range of commercial fruits and vegetables causing degradation and loss.
Los métodos convencionales utilizados para obtener información sobre la población de insectos, voladores, en un lugar determinado, incluyen el uso de trampas de insectos compactas y portátiles que se colocan en lugares adecuados en el campo, en las que los insectos, bajo vigilancia cercanos son atraídos bacía la trampa que contiene una bolsa de captura extraíble o un papel pegajoso, que debe ser recogido periódicamente por un operador y posteriormente inspeccionado por un entomólogo. Las trampas de succión se utilizan ampliamente para la vigilancia de los mosquitos. en las que un ventilador de succión succiona los mosquitos que vuelan cerca de la boca de la trampa hacia una bolsa de captura.. Entre los principales fabricantes de tales trampas se encuentran la John W. Hock Company (EE.UU.) y Biogents AG (Alemania). Los costes de mano de obra asociados a la recogida manual convencional y la clasificación y el registro de los resultados son elevados, y pueden producirse errores en cada. paso. Esos métodos también pueden sufrir un retraso considerable entre la captura de un insecto objetivo y su posterior recogida e identificación, lo que puede reducir la eficacia de las medidas de control. El retraso entre la captara y la recolección puede dar lugar a errores debido a la degradación del insecto ea la trampa o que sea comido por depredadores como las hormigas. Conventional methods used to obtain information on the population of flying insects at a given location include the use of compact, portable insect traps placed at suitable locations in the field, in which closely guarded insects are lured into a trap containing a removable catch bag or sticky paper, which must be collected periodically by an operator and subsequently inspected by an entomologist. Suction traps are widely used for mosquito surveillance. in which a suction fan sucks mosquitoes flying near the mouth of the trap into a catch bag. Major manufacturers of such traps include the John W. Hock Company (USA) and Biogents AG (Germany). The labor costs associated with conventional manual collection and sorting and recording of results are high, and errors can occur in each. step. These methods can also suffer from a considerable delay between capturing a target insect and its subsequent collection and identification, which can reduce the effectiveness of control measures. The delay between trapping and harvesting can lead to errors due to insect degradation in the trap or being eaten by predators such as ants.
En la bibliografía se han descrito diversos métodos con el objetivo dé -proporcionar una clasificación y recuento automático de los insectos voladores para superar las limitaciones de la recolección e inspección manual convencional. Various methods have been described in the literature with the aim of providing a Automatic sorting and counting of flying insects to overcome the limitations of conventional manual collection and inspection.
Cuando los insectos voladores como los mosquitos y las moscas emiten un tono audible mientras vuelan, se ha. descrito el uso de micrófonos acústicos para captar el sonido, porejemplo en R. W. Mankin, Journal of the American Mosquito Control Association, 10(2);302-308 (1994) donde se estudio el sonido producido por los mosquitos voladores en el laboratorio y en el campó, y en H. Mukundarajan et al. eLife 6:e27854 (2017) donde se evaluaron los teléfonos móviles y se utilizaron como sensores acústicos para la vigilancia de los mosquitos. When flying insects such as mosquitoes and flies emit an audible tone as they fly, it has. The use of acoustic microphones to pick up sound has been described, for example, in R. W. Mankin, Journal of the American Mosquito Control Association, 10(2);302-308 (1994) where the sound produced by flying mosquitoes was studied in the laboratory and in el campo, and in H. Mukundarajan et al. eLife 6:e27854 (2017) where mobile phones were evaluated and used as acoustic sensors for mosquito surveillance.
También se han descrito métodos ópticos, que tienen la ventaja de no ser sensibles al ruido del viento y a los sonidos ambientales, a diferencia de los micrófonos. En la configuración óptica denominada de sombra/extinción/campo-briliante, se proyecta un haz de luz preferentemente colimado sobre el insecto volador y se detecta la sombra creada por el cuerpo y las alas del insecto en vuelo, mientras que en la configuración óptica denominada de dispersión/retrodispersíón/campo-oscuro. se detecta la luz reflejada y. dispersada por el cuerpo y las alas del insecto en vuelo. Optical methods have also been described, which have the advantage of not being sensitive to wind noise and ambient sounds, unlike microphones. In the so-called shadow/extinction/bright-field optical configuration, a preferably collimated beam of light is projected onto the flying insect and the shadow created by the body and wings of the insect in flight is detected, while in the so-called scatter/backscatter/dark-field. reflected light is detected and. dispersed by the body and wings of the insect in flight.
Por ejemplo: Moore y otros, Journal of Economic Entomology, Vol. 79, Issue 6, p1703- 1706 (1986) utilizaron un haz de luz y un detector de dispersión, y un análisis espectral para identificar machos y hembras de dos especies de mosquitos Aedes en el laboratorio, Li et al., Artificial Intelligence Applications and Innovations, The International Federation for Information Processing, vol. 187, vol, 187 (2005) describió un montaje de extinción óptica con análisis espectral y métodos de redes neuronales artificiales para clasificar cinco especies de mosquitos de ambos sexos. Brydegaard, PLoS ONE 10(8): e0135231. doi :10.1371/journal pone.0135231 (2015) describen un sistema LIDAR de dispersión que sigue la trayectoria de vuelo de las moscas de la fruta y otros insectos utilizando un modelo para la potencia relativa de los arménicos de los latidos alares pares e impares en función de la. orientación del insecto con respecto al sistema óptico. Potamitis y Rigakis, IEEE Sensors Journal paper ID X (2016) describen an sistema óptico de sensores de extinción basado en LEDs y fotodiodos para estudiar el vuelo de los mosquitos en una jaula de insectos. Wang et al.,Applied Physics B 126:28 (2020) describen un sensor óptico de re trodispersión y un sensor óptico de extinción utilizados individualmente y luego en tándem con una trampa de succión para mosquitos, señalando que si bien las trampas de succión son eficaces para atraer a. los mosquitos hada latrampa, los mosquitos pasan rápidamente por la zona de detección, y si se reduce la velocidad del ventilador de succión, la determinación de la frecuencia se hace más precisa pero los mosquitos pueden entonces escapar de la trampa. For example: Moore et al., Journal of Economic Entomology, Vol. 79, Issue 6, p1703-1706 (1986) used a light beam and scattering detector and spectral analysis to identify males and females of two mosquito species Aedes in the lab, Li et al., Artificial Intelligence Applications and Innovations, The International Federation for Information Processing, vol. 187, vol, 187 (2005) described an optical extinction setup with spectral analysis and artificial neural network methods to classify five species of mosquitoes of both sexes. Brydegaard, PLoS ONE 10(8): e0135231. doi:10.1371/journal pone.0135231 (2015) describe a scattering LIDAR system that tracks the flight path of fruit flies and other insects using a model for the relative strength of odd and even wingbeat armenics in function of the. orientation of the insect with respect to the optical system. Potamitis and Rigakis, IEEE Sensors Journal paper ID X (2016) describe an optical extinction sensor system based on LEDs and photodiodes to study the flight of mosquitoes in an insect cage. Wang et al., Applied Physics B 126:28 (2020) describe an optical backscatter sensor and an optical extinction sensor used individually and then in tandem with a mosquito suction trap, noting that while suction traps are effective at attracting. mosquitoes into the trap, the mosquitoes pass quickly through the detection zone, and if the speed of the suction fan is reduced, the determination of the frequency becomes more accurate but the mosquitoes can then escape from the trap.
Entre los sensores de insectos voladores comerciales figuran el BG-Counter de Biogents AG (Alemania), diseñado para su uso con la trampa de succión BG-Sentínel de la misma empresa para contar los mosquitos que entran en la trampa, pero que no discrimina entre especies de mosquitos, sexo o edad, etc., y la trampa inteligente Moskeet de TrakitNow (India), que está diseñada para su montaje fijo y que tiene un formato físico considerablemente .mayor y diferente de las trampas de succión estándar utilizadas por los organismos de vigilancia de los mosquitos. Commercial flying insect sensors include the BG-Counter from Biogents AG (Germany), designed for use with the same company's BG-Sentinel suction trap to count mosquitoes entering the trap, but which does not discriminate between mosquito species, sex or age, etc., and the Moskeet smart trap from TrakitNow (India), which is designed for fixed mounting and is considerably larger in physical format and different from standard suction traps used by organisms. mosquito surveillance.
Se conocen también diversos antecedentes registrados en la Oficina Española de Patentes y Marcas .entre los que podemos citar los siguientes: Various antecedents registered in the Spanish Patent and Trademark Office are also known, among which we can mention the following:
- ES-1058722 U Trampa para insectos - ES-1058722 U Insect trap
- ES-1069217 U Trampa para recogida de mosquitos - ES-1069217 U Trap for collecting mosquitoes
- ES-1247165 U Dispositivo para, el contaje automático del número de insectos en una trampa - ES-1247165 U Device for automatic counting of the number of insects in a trap
- ES-2280425 T3 Dispositivo para capturer insectos voladores - ES-2280425 T3 Device to capture flying insects
- ES-2313134 T3 Dispositivo para capturer insectos voladores y procedimiento para fabricar el mismo - ES-2313134 T3 Device for capturing flying insects and procedure for manufacturing the same
Todos ellos describen trampas para la captura de insectos voladores basándose en su atracción por la luz o por ciertos efluvios olorosos existiendo elementos donde los insectos quedan inmovilizados o pasos unidireccionales que impiden que los insectos captados puedan liberarse. All of them describe traps for capturing flying insects based on their attraction to light or to certain odorous effluvia, with elements where the insects are immobilized or unidirectional steps that prevent the captured insects from being released.
Cualquiera de estas trampas puede considerarse como un complemento de la invención que se describe en este documento pero en ningún caso se profundiza en estudios de detalle y grabaciones que se realizan en tiempo real cuando los insectos vuelan libremente o acceden a una trampa por un conducto transparente especial. Los inventores que presentan este documento no conocen soluciones en el estado actual de la técnica que analicen con detalle determinadas características de los insectos tales como velocidad, dirección y trayectoria instantánea, tamaño y propiedades ópticas de las alas, frecuencia de batido y otros parámetros de interés considerando que la invención .reúne las características de novedad y actividad inventiva que debe tener una patente. Any of these traps can be considered as a complement to the invention which is described in this document, but in no case are detailed studies and recordings made in real time when the insects fly freely or access a trap through a special transparent conduit. The inventors presenting this document do not know of solutions in the current state of the art that analyze in detail certain characteristics of insects such as speed, direction and instantaneous trajectory, size and optical properties of the wings, beat frequency and other parameters of interest. considering that the invention meets the characteristics of novelty and inventive activity that a patent must have.
DESCRIPCIÓN SUMARIA DE LA INVENCIÓN SUMMARY DESCRIPTION OF THE INVENTION
La presente invención describe un dispositivo óptico destinado a realizar grabaciones digitales y vigilancia de insectos voladores, incluyendo los mosquitos, cuya finalidad es llevar a cabo la clasificación, el conteo y estudio de una serie de características de los insectos bajo vigilancia mediante la aplicación de técnicas de procesamiento de sedales y de aprendizaje automático. El dispositivo puede utilizarse, de forma aislada, para el estudio de insectos que transitan libremente frente a los paneles ópticos de emisión y detección o en combinación de trampas tradicionales, incluyendo trampas equipadas de un ventilador de succión, como las producidas por la John W. Hock Company (EE.UU.) y Biogents AG (Alemania) que son utilizadas por los organismos de vigilancia de mosquitos en todo el mundo. The present invention describes an optical device intended for digital recording and surveillance of flying insects, including mosquitoes, whose purpose is to classify, count and study a series of characteristics of the insects under surveillance through the application of techniques line processing and machine learning. The device can be used, in isolation, for the study of insects that move freely in front of optical emission and detection panels or in combination with traditional traps, including traps equipped with a suction fan, such as those produced by John W. Hock Company (USA) and Biogents AG (Germany) which are used by mosquito surveillance agencies around the world.
La mayoría de los sensores ópticos convencionales no proporcionarían buenos resultados de clasificación con tales trampas de succión debido a la velocidad ; relativamente alta a la que el .insecto pasa a través de la zona del sensor y el efecto que el flujo de aire tiene en la dinámica de vuelo del insecto. Most conventional optical sensors would not provide good sorting results with such suction traps due to speed; relatively high rate at which the insect passes through the sensor zone and the effect that airflow has on the insect's flight dynamics.
Para caracterizar estos insectos, los sensores acústicos u ópticos típicos de insectos voladores hacen una grabación digital de cada uno de ellos a medida que pasan por la zona de detección aplicándose luego una Transformada rápida de Fourier (FFT) para obtener un espectro de frecuencia de la grabación. Para una buena clasificación de las especies de mosquitos, per ejemplo, es conveniente caracterizar las frecuencias fundamentales del latido de las alas tan bajo como 250 Hz con una resolución de frecuencia espectral de al menos 25 Hz para discriminar las especies con frecuencias del latido de alas estrechamente espaciadas. To characterize these insects, the typical acoustic or optical sensors of flying insects make a digital recording of each one of them as they pass through the detection zone, then applying a Fast Fourier Transform (FFT) to obtain a frequency spectrum of the recording. For good classification of mosquito species, for example, it is convenient to characterize fundamental wingbeat frequencies as low as 250 Hz with a resolution of spectral frequency of at least 25 Hz to discriminate species with closely spaced wing beat frequencies.
Varias trampas comerciales para insectos voladores, ampliamente utilizadas,, contienen un ventilador de succión que succiona los insectos que vuelan cerca de la boca de la trampa, hacia el interior de la zona de captura. Las trampas de succión diseñadas para la captura de mosquitos, suelen tener, por ejemplo, una boca de entrada de 8 a 11 cm de diámetro y generan una velocidad de flujo de aire de unos 3 metros por segundo, lo que da lugar a una velocidad de vuelo efectiva de 1.5 metros por segundo dentro de la trampacon mosquitos que vuelan a 1,5 metros por segundo contra el flujo de aire. Para un sensor acoplado a una trampa de .succión de mosquitos, que proporciona una resolución de frecuencia espectral de 25 Hz, con una velocidad de vuelo efectiva de 1,5 metros por segundo, la longitud del vuelo registrada debe ser deal menos 1 / 25 Hz = 0,04 segundos, lo que implica que la longitud de la zona de detección activa debe ser de al menos 0,04 segundos x 1,5 metros por segundo = 0,06 metros = 6 cm. Several widely used commercial flying insect traps contain a suction fan that sucks flying insects near the mouth of the trap into the capture zone. Suction traps designed for capturing mosquitoes, for example, usually have an entrance mouth of 8 to 11 cm in diameter and generate an airflow speed of about 3 meters per second, which gives rise to a speed Effective flight speed of 1.5 meters per second inside the trap with mosquitoes flying at 1.5 meters per second against the airflow. For a sensor attached to a mosquito suction trap, providing 25 Hz spectral frequency resolution, with an effective flight speed of 1.5 meters per second, the recorded flight length should be at least 1/25 Hz = 0.04 seconds, which implies that the length of the active detection zone must be at least 0.04 seconds x 1.5 meters per second = 0.06 meters = 6 cm.
Para una clasificación y un recuento fiables. el sensor debe proporcionar una señal de salida de amplitud constante, independientemente de la trayectoria de vuelo particular del insecto volador a través del volumen de detección o de la orientación particular del insecto con respecto al sistema del sensor. La mayoría de los sistemas de sensores de insectos voladores descritos en 1a bibliografía tienen dimensiones de detección más pequeñas, o tienen una respuesta del sensor que varía enormemente según la posición y/o la orientación del insecto volador con respecto al sistema de sensores, lo que significa que la amplitud de la onda registrada y la potencia de los componentes espectrales tiene un valor limitado para caracteri zar el insecto volador. For reliable sorting and counting. the sensor must provide a constant amplitude output signal, regardless of the particular flight path of the flying insect through the sensing volume or the particular orientation of the insect with respect to the sensor system. Most of the flying insect sensor systems described in the literature have smaller detection dimensions, or have a sensor response that varies greatly depending on the position and/or orientation of the flying insect relative to the sensor system, which It means that the amplitude of the recorded wave and the power of the spectral components are of limited value in characterizing the flying insect.
En las trampas de insectos voladores también puede ser muy ventajoso que el sensor proporcione información sobre la dirección del vuelo, por ejemplo pata saber si el insecto está volando hacia la trampa, o escapando de la trampa, o entrando parcialmente y luego escapando, o escapando parcialmente y volviendo a entrar, etc. La mayoría de los sistemas de sensores de insectos voladores descritos en la literatura no proporcionan este típo de información. In flying insect traps it can also be very advantageous if the sensor provides information about the direction of flight, for example to know if the insect is flying towards the trap, or escaping from the trap, or partially entering and then escaping, or escaping. partially and re-entering, etc. Most of the flying insect sensor systems described in the literature do not provide this type of information.
La presente in vención supera las limitaciones del estado actual de la técnica y describe un sensor óptico de insectos voladores, de forma cubica, que está particularmente diseñado para que, cuando se usa combinado con una trampa de succión, en la que los insectos están aspirados por una zona de detección con un diámetro y una longitud relativamente grandes a velocidades relativamente altas. El dispositivo es capaz de proporcionar; una resolución de la frecuencia espectral fundamental y armónicos del batido de las alas suficientemente alto; una amplitud de señal y una potencia de los componentes espectrales relativamente estable e independientemente de la trayectoria de vuelo concreta a través del volumen de detección y la orientación particular del insecto con respecto al sistema de detección; información sobre la dirección de vuelo; y salidas de señal tanto de extinción como de dispersión. Todo ello con el fin de permitir una clasificación mas robusta utilizando métodos de- procesamiento de señales y de aprendizaje automático de; género, especie-, sexo, edad y otras características del insecto, en comparación con los métodos convencionales lo cual puede configurarse de manetas diferentes en función de los requisitos de coste y rendimiento. The present invention overcomes the limitations of the current state of the art and describes a cube-shaped optical flying insect sensor that is particularly designed so that, when used in combination with a suction trap, insects are sucked into a detection zone with a relatively large diameter and length at velocities relatively high. The device is capable of providing; sufficiently high resolution of the fundamental spectral frequency and wingbeat harmonics; a signal amplitude and power of the spectral components relatively stable and independent of the particular flight path through the detection volume and the particular orientation of the insect with respect to the detection system; information on the direction of flight; and both extinction and dispersion signal outputs. All this in order to allow a more robust classification using signal processing and machine learning methods; gender, species-, sex, age and other characteristics of the insect, compared to conventional methods which can be configured in different ways depending on cost and performance requirements.
La investigación que ha conducido a estos resultados ha recibido financiación delprograma de investigación e innovación Horizon 2020 .de la Unión Europea en virtud del acuerdo de subvención No 853758. BREVE DESCRIPCIÓN DE LOS DIBUJOS The research that has led to these results has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 853758. BRIEF DESCRIPTION OF THE DRAWINGS
Se incluyen veinticuatro figuras, que se consideran suficientes para la correcta interpretación de la invención. Twenty-four figures are included, which are considered sufficient for the correct interpretation of the invention.
Figura 1 Representa una vista en perspectiva del caso en que el sensor óptico para grabación de insectos voladores, está montado dentro de una caja protectora y conectado a una trampa convencional para la captura de dichos insectos. Se señalan los siguientes elementos: Figure 1 represents a perspective view of the case in which the optical sensor for recording flying insects is mounted inside a protective box and connected to a conventional trap for capturing said insects. The following items are noted:
Conjunto Set
2.- Caja 2.- Box
3.- Tapa 4.- Conducta de aire superior 3.- Lid 4.- Upper air duct
5.- Conducto de aire inferior 5.- Lower air duct
6.- Trampa convencional 6.- Conventional trap
7.- Acoplamiento 7.- Coupling
Figura 2 Figure 2
Representa una vista interna en perspectiva del conjunto una vez retirada la tapa y la trampa. It represents an internal perspective view of the assembly once the lid and trap have been removed.
8.- Sensor óptico de forma cubica (cuboide) 10.-Módulo electrónico 8.- Cubic optical sensor (cuboid) 10.-Electronic module
11.- Conectores eléctricos 11.- Electrical connectors
Figura 3 Figure 3
Muestra una vista en perspectiva del cuboide, aislado, habiendo retirado el conducta de vuelo transparente que se representa en linea de puntas. It shows a perspective view of the cuboid, isolated, having removed the transparent flight behavior that is represented by the dotted line.
9.- Conducto de vuelo transparente 9.- Transparent flight tube
9.1.- Eje de simetría 9.1.- Axis of symmetry
12.- Cara A 12.- Side A
13 - Cara B 13 - Side B
14.- Cara C 14.- Side C
15.- Cara D 15.- Side D
16.- Placa superior 16.- Upper plate
17.- Placa inferior Figura 4 17.- Lower plate Figure 4
Maestra una vista frontal del dispositivo, con la caja en línea de puntos, representando el conducto de vuelo transparente conectado al conducto de aire superior y al conducto de aíre inferior en los que se ínstala, según requerimientos del estudio, un foco de iluminación cenital y un foco de iluminación nadir. Shows a front view of the device, with the box in dotted lines, representing the transparent flight duct connected to the upper air duct and the lower air duct in which it is installed, according to study requirements, a spotlight from above and a nadir illumination spotlight.
9.- Conducto de vuelo transparente 9.- Transparent flight tube
9.2.- Foco cenital 9.2.- Zenith focus
9.3.- Foco nadir Figura 5 9.3.- Nadir focus Figure 5
Muéstra la vista en planta de un grupo matrícial de lentes colimadoras. Shows the plan view of a matrix group of collimating lenses.
18.- Grupo de lentes colimadoras 18.- Group of collimating lenses
19.- Lente colimadora 19.- Collimator lens
Figura 6 Es la vista de perfil del grupo matricial de lentes colimadoras. Figure 6 is the profile view of the matrix group of collimating lenses.
Figura 7 Figure 7
Muestra la vista en perspectiva del deflector óptico matrícial que se monta adyacente al grupo matricial de lentes colimadoras, Shows the perspective view of the matrix optical deflector that is mounted adjacent to the collimating lens matrix group,
20.- Deflector óptico 21.- Ventana para paso de luz 20.- Optical deflector 21.- Window for light passage
22.- Pirámide invenida 22.- Invented pyramid
Figura 8 Figure 8
Es la vista de perfil del deflector óptico matrícial. Figura 9 It is the profile view of the matrix optical deflector. Figure 9
Muestra la vista en planta del circuito impreso PCBA de un panel emisor. Shows the plan view of the PCBA printed circuit of an emitter panel.
23.- Circuito impreso PCBA de emisor 24- Diodo luminiscente 23.- Emitter PCBA printed circuit 24- Light emitting diode
25.- Conector eléctrico tipo A 25.- Type A electrical connector
26.- Conector eléctrico tipo B 26.- Type B electrical connector
27.- Orificio de montaje de PCBA sobre el deflector óptico 27.- PCBA mounting hole on the optical deflector
28.- Orificio de montaje de PCBA sobre placa superior del cuboíde 29. Orificio de montaje de PCBA sobre placa inferior del cuboide 28.- PCBA mounting hole on cuboid upper plate 29. PCBA mounting hole on cuboid lower plate
Figura 10 Figure 10
Es la vista de perfil del circuito impreso PCBA de un panel emisor. It is the profile view of the PCBA printed circuit of an emitter panel.
Figuró 11 figured 11
Muestra la vista en planta del circuito impreso PCBA de un panel receptor. 30.- Circuito impreso PCBA de receptor Shows the plan view of the PCBA printed circuit of a receiving panel. 30.- Receiver PCBA printed circuit
31.- Fotorreceptor 31.- Photoreceptor
Figuró 12 figured 12
Es la vista de perfil del circuito impreso PCBA de un panel receptor. It is the profile view of the PCBA printed circuit of a receiving panel.
Figura 13 Representa separadamente, en vista de perfil, los elementos que componen an panel emisor óptico. Figure 13 represents separately, in profile view, the elements that make up an optical emitting panel.
32.- Panel emisor óptico Figura 14 32.- Optical emitter panel Figure 14
Representa, en vista de perfil, un panel emisor óptico con sus elementos conjuntados.It represents, in profile view, an optical emitting panel with its elements combined.
Figura 15 Figure 15
Representa, en vista de perfil, un panel receptor óptico con sus elementos conjuntados. It represents, in profile view, an optical receiving panel with its elements assembled.
33.- Panel receptor óptico 33.- Optical receiver panel
Figura 16 Figure 16
Muestra una vista en planta del cuboide (8) que ilustra como dicho sensor óptico puede proporcionar dos salidas de extinción ortogonales simultáneas. It shows a plan view of the cuboid (8) illustrating how said optical sensor can provide two simultaneous orthogonal extinction outputs.
24/A.- Diodo luminiscente del panel emisor 32/A 24/A.- Light emitting diode of the emitting panel 32/A
24/B.- Diodo luminiscente del panel emisor 32/B 24/B.- Light emitting diode of the emitting panel 32/B
31/C.- Fotorreceptor del panel receptor 33/C 31/C.- Photoreceptor of the receiving panel 33/C
31/D.- Fotorreceptor del panel receptor 33/D 31/D.- Photoreceptor of the receiving panel 33/D
20/A.- Es el deflector óptico del panel emisor 32/A 20/A.- It is the optical deflector of the emitting panel 32/A
20/D.- Es el deflector óptico del panel receptor 33/D 20/D.- It is the optical deflector of the receiving panel 33/D
18/A.- Es el conjunto de lentes colimadoras del panel emisor 32/A 18/A.- It is the set of collimating lenses of the emitting panel 32/A
18/C.- Es el conjunto de lentes colimadoras en el panel receptor 33/C 18/C.- It is the set of collimating lenses in the receiving panel 33/C
34.- Cono de rayos divergentes 34.- Cone of divergent rays
35.- Haz de luz col imada 35.- Col imated beam of light
36.- Mosquito u otro insecto volador 36.- Mosquito or other flying insect
37.- Sombra de extinción proyectada sobre la lente colimadora del panel receptor37.- Shadow of extinction projected on the collimating lens of the receiving panel
33/C 38.- Sombra de extinción proyectada sobre la lente colimadora del panel receptor 33/D 33/C 38.- Extinction shadow projected on the collimating lens of the receiving panel 33/D
9.- Conducto de vuelo transparente Figura 17 9.- Transparent flight duct Figure 17
Muestra una vista en planta del cuboide (8) que ilustra cómo dicho sensor puede proporcionar dos salidas de dispersión óptica con un ángulo mutuo de 90 grados, además de las dos salidas de extinción que se muestran en la figura 16. It shows a plan view of the cuboid (8) illustrating how said sensor can provide two optical dispersion outputs with a mutual angle of 90 degrees, in addition to the two extinction outputs shown in figure 16.
39.- Rayo de luz reflejado y/o dispersado por el insecto volador enfocado sobre un fotorreceptor del panel receptor 33/D 39.- Ray of light reflected and/or scattered by the flying insect focused on a photoreceptor of the receiving panel 33/D
Figura 18 Figure 18
Muestra una vista en planta del cuboide (8) en una configuración alternativa con un panel emisor óptico en una cara del cubo y un panel receptor óptico en cada una de las caras laterales restantes del cubo. 40.- Rayo de luz reflejado y/o dispersado por el insecto volador enfocado sobre un fotorreceptor del panel receptor óptico 33/B It shows a plan view of the cuboid (8) in an alternate configuration with an optical emitter panel on one face of the cube and an optical receiver panel on each of the remaining side faces of the cube. 40.- Ray of light reflected and/or scattered by the flying insect focused on a photoreceptor of the optical receptor panel 33/B
Figura 19 Figure 19
Muestra una vista en planta del cuboide (8) en una configuración alternativa con dos paneles emisores ópticos en dos caras laterales opuestas y dos paneles receptores ópticos en las caras laterales restantes. It shows a plan view of the cuboid (8) in an alternative configuration with two optical emitting panels on two opposite lateral faces and two optical receiving panels on the remaining lateral faces.
Figura 20Muestra una vista en planta del cuboide (8) configurado con un panel emisor óptico en una cara lateral, un primer panel receptor óptico en la cara lateral opuesta para recibir la luz de extinción y un segundo panel receptor óptico en una de las cams laterales restantes para recibir la luz dispersa. Figura 21 Figure 20 shows a plan view of the cuboid (8) configured with an optical emitting panel on one side face, a first optical receiving panel on the opposite side to receive the extinction light and a second optical receiving panel on one of the side cameras. remaining to receive scattered light. Figure 21
Muestra una vista en planta del cuboide (8) representado Con un panel emisor óptico en una cara lateral, an primer panel receptor óptico en una cara lateral ortogonal para recibir luz dispersa y un segundo panel receptor óptico orientado hacia el primer panel receptor óptico para recibir luz dispersa de la dirección opuesta. Figura 22 It shows a plan view of the cuboid (8) represented With an optical emitting panel in a side face, a first optical receiving panel on an orthogonal side face for receiving scattered light, and a second optical receiving panel facing the first optical receiving panel for receiving scattered light from the opposite direction. Figure 22
Maestra una vista en planta del cnboide (8) con un panel emisor óptico montado en una tara lateral del cubo y un panel receptor óptico montado en la cara lateral opuesta para proporcionar una vista de la extinción. It shows a plan view of the hub (8) with an optical emitter panel mounted on one side of the cube and an optical receiver panel mounted on the opposite side to provide an extinction view.
Figura 23 Muestra una vista en planta del cuboide (8) con un panel emisor montado en una cara lateral del cubo y un panel receptor óptico montado en una cara lateral ortogonal para proporcionar una vista de dispersión. Figure 23 shows a plan view of the cuboid (8) with an emitter panel mounted on a side face of the cube and an optical receiver panel mounted on an orthogonal side face to provide a scattering view.
Figura 24 Figure 24
Esta figura nos muestra una vista en perspectiva del caso de utilización del sensor óptico de forma aislada, es decir, prescindiendo de su acoplamiento con una trampa. Los insectos transitan en libertad al no existir paredes de cierre, This figure shows us a perspective view of the case of use of the optical sensor in isolation, that is, without its coupling with a trap. Insects move freely as there are no closing walls,
41.- Bastidor de soporte 41.- Support frame
42.- Barra de unión 42.- Union bar
43.- Tapa acristalada 44.- Antena 43.- Glass cover 44.- Antenna
EXPLICACIÓN DETALLADA DE MODOS DE REALIZACIÓN DE LA INVENCIÓN DETAILED EXPLANATION OF MODES OF EMBODIMENT OF THE INVENTION
Sensor óptico, de forma cubica, para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acopable o no, a trampas de captura, cuya finalidad es llevar a cabo la clasificación, el conteo y estudio de una serie de características de ios insectos bajo vigilancia medíante la aplicación de técnicas de procesamiento de señales y de aprendizaje automático que, en la forma de realización más completa, preterida por sus inventores, se muestra como un conjunto (1) de elementos (Fig.1) en el que se distingue exteriórmente una caja (2), con una tapa (3), un conducto de aire superior (4), un conducto de aire inferior (5) y una pieza de acoplamiento (7) que permite conectar el grupo del sensor óptico a una trampa convencional (6) de captura que se ha representado en línea de puntos para dar a entender que es un complemento de la invención sin ser objeto de la misma. Cubic optical sensor for surveillance and study of the characteristics of flying insects, including mosquitoes, attachable or not, to capture traps, whose purpose is to carry out the classification, counting and study of a series of characteristics of ios insects under surveillance through the application of signal processing techniques and of automatic learning that, in the most complete embodiment, preferred by its inventors, is shown as a set (1) of elements (Fig.1) in which a box (2) with a lid (3 ), an upper air duct (4), a lower air duct (5) and a coupling piece (7) that allows the optical sensor group to be connected to a conventional capture trap (6) that has been represented online of dots to imply that it is a complement to the invention without being its object.
Como veremos, el sensor óptico se puede utilizar, en una realización alternativa, de forma totalmente aislada en la que los insectos transitan libremente sin ser capturados. As we will see, the optical sensor can be used, in an alternative embodiment, in a totally isolated way in which the insects move freely without being captured.
En el interior de la caja (2) es donde se instala el sensor óptico de forma cubica (8), atravesado por un conducto de vuelo transparente (9) que se prolonga por arriba y por abajo, con los conductos de aire superior (4) e inferior (5). En cada uno de dichos conductos superior (4) e inferior (5) se instala, respectivamente, según requerimientos del proceso de investigación, un foco de iluminación cenital (9.2) y/o un foco de iluminación nadir (9.3) tal como se indica en la (Fig.4). Inside the box (2) is where the cubic optical sensor (8) is installed, crossed by a transparent flight duct (9) that extends above and below, with the upper air ducts (4 ) and lower (5). In each of said upper (4) and lower (5) ducts, a zenith lighting focus (9.2) and/or a nadir lighting focus (9.3) is installed, respectively, as indicated in (Fig.4).
En la (Fig.2) se observa que dentro de la caja (2) se ha representado, esquemáticamente, un módulo electrónico de adquisición de sedales y de comunicaciones (10), qne a su vez comunica las sedales o resultados capturados con un sistema externo que puede proporcionar el procesamiento de datos y el acceso a los mismos mediante conectores eléctricos (11), practicables desde el exterior de la caja (2) para alimentar ei sistema y controlar los periféricos como el ventilador de una trampa de succión. In (Fig.2) it is observed that inside the box (2) an electronic module for acquisition of lines and communications (10) has been schematically represented, which in turn communicates the lines or results captured with a system external that can provide data processing and access to them through electrical connectors (11), practicable from outside the box (2) to power the system and control peripherals such as the fan of a suction trap.
En la (Fig.3) se representa una vista en perspectiva del sensor óptico de forma cubica (8), que en este documento denominaremos “cuboide* (para simplificar), una vez retirados los conductos de aire, superior (4) e inferior (5). En dicha figura se observa que el cuboide (8) se compone de una placa superior (16) y una placa inferior (17), ambas dotadas de ventanas circulares, centradas, para dar paso ai conducto de vuelo transparente (9), sobre las que se solidarizan las cuatro caras laterales del cuboide (8); cara A (12), cara B (13), cara C (14) y cara D (15). Sobre estas caras estructurales, se rijan unos paneles ópticos que son piezas fundamentales en el dispositivo de la invención pues son los que sirven para iluminar, detectar y registrar todos los movimientos y parámetros de vuelo de los insectos que acceden al cuboíde (8) por la parte superior del conducto de vuelo transparente (9), In (Fig.3) a perspective view of the cubic optical sensor (8) is represented, which in this document we will call "cuboid* (for simplicity), once the upper (4) and lower air ducts have been removed. (5). In said figure it can be seen that the cuboid (8) is made up of an upper plate (16) and a lower plate (17), both equipped with circular windows, centered, to give way to the transparent flight duct (9), on which that the four lateral faces of the cuboid (8) are joined; face A (12), face B (13), face C (14) and face D (15). On these structural faces, some optical panels are governed, which are fundamental pieces in the device of the invention, since they are the ones that serve to illuminate, detect and record all the movements and flight parameters of the insects that access the cuboid (8) through the upper part of the transparent flight conduit (9),
Cada uno de estos paneles está compuesto de tres piezas principales; una, lado interior, mas próximo al conducto de vuelo transparente (9), que incorpora una serie de lentes colimadoras, una intermedia, que actúa como deflector y una exterior que es la placa del circuito impreso PCBA (Printed Circuit Board Assembly), Each of these panels is made up of three main pieces; one, inner side, closer to the transparent flight duct (9), which incorporates a series of collimating lenses, an intermediate one, which acts as a deflector and an outer one that is the printed circuit board PCBA (Printed Circuit Board Assembly),
Las piezas interiores e intermedias son idénticas en todas las realizaciones de la invención y las piezas exteriores, aunque de idéntico tamaño y configuración, montan en unos casos diodos luminiscentes y en otros fotorreceptores. The internal and intermediate parts are identical in all embodiments of the invention and the external parts, although of identical size and configuration, mount light emitting diodes in some cases and photoreceptors in others.
En las (Figs, 13 a 15), se puede ver claramente la disposición de estas tres piezas vistas de perfil, en posición desacoplada y una vez acopladas. In (Figs, 13 to 15), you can clearly see the arrangement of these three pieces seen in profile, in the uncoupled position and once coupled.
La diferente combinación de paneles sobre las caras laterales del cuboide (8), permite llevar a cabo varios modos de realizaciones preferidas con los que se consiguen diversos fines en el estudio del vuelo de los insectos. The different combination of panels on the lateral faces of the cuboid (8) allows various preferred embodiments to be carried out with which various purposes are achieved in the study of insect flight.
El grupo de lentes colimadoras (18) se muestra como un grupo matricial de lentes idénticas (19), de las conocidas como lentes de Fresnel, tal como se representa en las vistas en planta. (Fig.5) y perfil (Fig.6). Este grupo de lentes es igual en los paneles de emisor óptico (32) y en los paneles de receptor óptico (33), The collimating lens group 18 is shown as a matrix group of identical lenses 19, known as Fresnel lenses, as shown in plan views. (Fig.5) and profile (Fig.6). This group of lenses is the same in the optical emitter panels (32) and in the optical receiver panels (33),
El deflector óptico (20), también igual en ambos casos, con vista en perspectiva representada en la (Fig.7) y vista de perfil en la (Fig.8), tiene la misma distribución matricial que el grupo de lentes colimadoras (18) y tiene una serie de pirámides invertidas (22) e igual número de ventanas para paso de luz (21), The optical deflector (20), also the same in both cases, with a perspective view represented in (Fig.7) and a profile view in (Fig.8), has the same matrix distribution as the group of collimating lenses (18). ) and has a series of inverted pyramids (22) and the same number of windows for the passage of light (21),
En cuanto a las placas del circuito impreso PCBA tienen la misma configuración en los paneles de emisor (32) y receptor (33) con la diferencia de que en los primeros monta diodos luminiscentes (24) (Figs.9 y 10) y en los segundos monta fotorreceptores (31) (Figs.11 y 12), contando además con diversos orificios de montaje (27, 28 y 29) y conectares eléctricos (25 y 26), para la comunicación del cuboide (8) con el módulo electrónico de adquisición de señales y de comunicaciones que a su vez Comunica las señales o resultados capturados con un sistema, externo que puede proporcionar el procesamiento de datos y el acceso a los mi smos. As for the PCBA printed circuit boards, they have the same configuration in the emitter (32) and receiver (33) panels with the difference that in the first ones they mount luminescent diodes (24) (Figs. 9 and 10) and in the second mounts photoreceptors (31) (Figs.11 and 12), also having various mounting holes (27, 28 and 29) and electrical connectors (25 and 26), for the communication of the cuboid (8) with the electronic module of acquisition of signals and communications which in turn Communicates the signals or results captured with an external system that may provide data processing and access.
Cabe resaltar que aunque en las figuras se ha representado el caso de grupos matriciales de cuatro filas y seis columnas., se contemplan también realizaciones de una, dos o más filas y una, dos o más columnas. It should be noted that although in the figures the case of matrix groups of four rows and six columns has been represented, embodiments of one, two or more rows and one, two or more columns are also contemplated.
La disposición de las tres piezas principales, antes citadas, de un panel emisor (32), representado en la (Fig.14), permite comprender fácilmente que la luz emitida por un diodo luminiscente (24) concreto, que atraviesa la correspondiente ventana para paso de luz (21), no se mezcla con la que emiten los demás diodos gracias a la configuración de las célalas piramidales invertidas (22) del deflector. Por otra, parte, el montaje se hace de modo que cada diodo luminiscente (24) coincide con la posición del foco de la correspondiente lente colimadora (19), de tal manera que el haz cónico de los rayos que emite, salen de la lente colimadora según un haz de rayos paralelos. Este detalle se esquematiza su la parte izquierda de la (Fig.14) en la que se puede ver que el diodo luminiscente (24) emite él haz cónico de rayos divergentes (34) que, al pasar por la lente colimadora ( 19), se transforma en un haz de rayos paralelos o haz de luz colimada (35). The arrangement of the three main pieces, mentioned above, of an emitting panel (32), represented in (Fig.14), makes it easy to understand that the light emitted by a specific light-emitting diode (24), which passes through the corresponding window to passage of light (21), does not mix with that emitted by the other diodes thanks to the configuration of the inverted pyramidal cells (22) of the deflector. On the other hand, the assembly is done so that each light-emitting diode (24) coincides with the position of the focus of the corresponding collimating lens (19), in such a way that the conical beam of the rays it emits leaves the lens collimator according to a beam of parallel rays. This detail is schematized in the left part of (Fig.14) in which it can be seen that the luminescent diode (24) emits the conical beam of divergent rays (34) which, when passing through the collimating lens (19), it is transformed into a beam of parallel rays or beam of collimated light (35).
De la misma forma que ha quedado explicada la posición de los diodos luminiscentes (24} en- coincidencia con el foco de la correspondiente lente colimadora (19), se recalca ahora que ocurre lo mismo con los fotorreceptores (31) que están colocados exactamente en el foco de sus correspondientes lentes colimadoras (19) (Fig.15). Eso implica que el haz de luz colimada (35) que incide en cada lente colimadora (19) del panel receptor (33), se convierte en un haz cónico dé rayos convergentes (34) cayó vértice esta en el correspondiente fotorreceptor(31). El dispositivo de la invención dispone de medios de ajuste fino para conseguir la coincidencia de los focos de las lentes colimadoras (19) del panel emisor (32) y del panel receptor (33) con ios diodos luminiscentes (24) y los fotorreceptores (31). In the same way that the position of the luminescent diodes (24) in coincidence with the focus of the corresponding collimating lens (19) has been explained, it is now emphasized that the same thing happens with the photoreceptors (31) that are placed exactly in the focus of their corresponding collimating lenses (19) (Fig.15).This implies that the collimated light beam (35) that falls on each collimating lens (19) of the receiving panel (33), becomes a conical beam converging rays (34) fell this vertex in the corresponding photoreceptor (31).The device of the invention has means of fine adjustment to achieve the coincidence of the foci of the collimating lenses (19) of the emitting panel (32) and of the panel receiver (33) with the light-emitting diodes (24) and the photoreceptors (31).
En consonancia con lo que se acaba de explicar, se comprende que, si no existe obstáculo alguno entre el panel emisor (32/A) (panel emisor 32 en la cara. A) y el panel receptor (33/C) (panel receptor 33 en la cara C), tal como puede observarse a la derecha de la (Fig.16), la señal emitida por el diodo luminiscente (24/A) llega inalterada al fotorreceptor (31/C). In accordance with what has just been explained, it is understood that, if there is no obstacle between the emitting panel (32/A) (emitting panel 32 on face A) and the receiving panel (33/C) (receiving panel 33 on face C), as can be seen on the right of the (Fig.16), the signal emitted by the luminescent diode (24/A) arrives unchanged at the photoreceptor (31/C).
Por el contrario, en la misma (Fig. 16) se representa la interposición del mosquito (36) en el haz de rayos emitidos por el diodo luminiscente (24/A) de la segunda columna lo cual supone una alteración de la señal luminosa que llega ai fotorreceptor (31/C), de la misma columna, cuyas características se transfieren a un módulo electrónico de adquisición de señales y de comunicaciones que a su vez comunica las señales o resultados capturados con un sistema externo que puede proporcionar el procesamiento de datos y el acceso a los mismos. On the contrary, in the same (Fig. 16) the interposition of the mosquito (36) in the beam of rays emitted by the luminescent diode (24/A) of the second column is represented, which supposes an alteration of the light signal that reaches the photoreceptor (31/C), of the same column, whose characteristics are transferred to an electronic signal acquisition and communications module which in turn communicates the signals or results captured with an external system that can provide data processing and access to them.
En la (Fig.16), que acabamos de citar, se esquematiza la primera forma de realización de la invención donde se representa la vista en planta del cuboide (8). Obsérvese que en esta forma de .realización se coloca un panel emisor óptico (32) en la cara A (12), señalándose como 32/A, otro panel emisor óptico (32) en la cara B (13), señalándose, como 32/B, un panel receptor óptico (33) en la cara C (14), señalándose como 33/C y otro panel receptor óptico (33) en la cara D (15). señalándose como 33/D. Además, se representa en línea de puntos el conducto de vuelo transparente (9), por donde acceden y transitan los mosquitos (36). In (Fig.16), which we have just cited, the first form of embodiment of the invention is schematized, where the plan view of the cuboid (8) is represented. Note that in this embodiment, an optical emitting panel (32) is placed on face A (12), indicated as 32/A, another optical emitting panel (32) on face B (13), indicated, as 32 /B, an optical receiving panel (33) on face C (14), indicated as 33/C and another optical receiving panel (33) on face D (15). designated as 33/D. In addition, the transparent flight conduit (9), through which mosquitoes access and transit (36), is represented in dotted lines.
Insistiendo en lo indicado con anterioridad, cuando un mosquito (36) u otro insecto volador, cruza un haz de luz colimada (35), dicho insecto bloqueara algunos o todos los rayos de dicho haz causando el cambio correspondiente en la salida del fotorreceptor (31), Este modo de atenuación óptica se conoce comúnmente como '"extinción óptica” y proporciona información sobre la frecuencia y armónicos del batido de las alas del insecto y sobre el tamaño de las alas y cuerpo del insecto. Insisting on what was indicated above, when a mosquito (36) or other flying insect crosses a beam of collimated light (35), said insect will block some or all of the rays of said beam, causing the corresponding change in the output of the photoreceptor (31). ), this mode of optical attenuation is commonly known as '"optical extinction" and provides information on the frequency and harmonics of the insect's wing beat and on the size of the insect's wings and body.
En la parte izquierda, columna segunda, de la (Fig.16), el mosquito u otro insecto volador (36) que vuela por el interim del conducto de vuelo transparente (9). será iluminado por el haz de luz colimado, proyectado por la lente colimadora del diodo luminiscente (24/A), en el panel emisor óptico 32/A y también por el haz de luz colimado de la tercera fila proyectado por la lente colimadora del diodo luminiscente (24/B), en el panel emisor óptico 32/B, en el que los dos haces de luz tienen un ángulo mutuo de 90 grado. Se genera, como consecuencia de ello, la sombra de extinción (37), proyectada por el mosquito (36). que cae sobre la lente colimadora alineada en el conjunto de lentes colimadoras del panel receptor óptico 33/C causando que la salida del fotorreceptor (31/C) sufra alteración. Del mismo modo la sombra de extinción (38), proyectada también por el mosquito (36), cae sobré la lente colimadora alineada en la matriz de lentes colimadoras del panel receptor óptico 33/D, causando que la salida del fotorreceptor (31/D), de la tercera fila, sufra alteración. In the left part, second column, of (Fig.16), the mosquito or other flying insect (36) that flies through the interior of the transparent flight tube (9). will be illuminated by the collimated light beam, projected by the collimating lens of the light emitting diode (24/A), on the optical emitting panel 32/A and also by the third row collimated light beam projected by the collimating lens of the diode luminescent (24/B), in the optical emitting panel 32/B, in which the two light beams have a mutual angle of 90 degrees. As a consequence, the extinction shadow (37) is generated, projected by the mosquito (36). falling on the collimating lens aligned in the collimating lens array of the optical receiver panel 33/C causing the output of the photoreceptor (31/C) to be altered. In the same way the extinction shadow (38), also projected by the mosquito (36), falls on the collimator lens aligned in the array of collimator lenses of the optical receiver panel 33/D, causing the output of the photoreceptor (31/D ), of the third row, suffers alteration.
De esta manera, el cuboide (8) proporciona dos salidas simultaneas: una. primera salida del panel receptor óptico 33/C y una segunda salida del panel, receptor óptico 33/D en la que el primer panel emisor óptico 32/A ve al mosquito en un ángulo de 90 grados con respecto al segundo panel emisor óptico 32/B. In this way, the cuboid (8) provides two simultaneous outputs: one. first optical receiving panel output 33/C and a second optical receiving panel output 33/D in which the first optical emitting panel 32/A sees the mosquito at an angle of 90 degrees with respect to the second optical emitting panel 32/ b.
El análisis apropiado de la sedal de los fotorreceptores individuales, o grupos de fotorreceptores del cuboide (8), permite, determinar, además, la posición, velocidad, dirección y trayectoria instantánea del insecto volador dentro de los límites del conducto de vuelo transparente (9) en múltiples instancias de tiempo a medida que el insecto transita por dicho conducto. Appropriate analysis of the line of the individual photoreceptors, or groups of photoreceptors of the cuboid (8), allows, in addition, to determine the position, speed, direction and instantaneous trajectory of the flying insect within the limits of the transparent flight conduit (9 ) in multiple instances of time as the insect transits through said conduit.
Por otra parte, el dispositivo de la invención, utilizando la posición, la velocidad y la trayectoria instantáneas obtenibles del insecto volador, dentro de los límites del conducto de vuelo transparente (9), podría estar configurado para activar solamente los diodos luminiscentes (24) necesarios para iluminar el insecto en un momento determinado incluyendo, únicamente, en ei tratamiento de la señal, las salidas de los fotorreceptores (31) que reciben señales significativas de extinción o dispersión del insecto en cualquier momento, a fin de reducir la potencia necesaria para accionar los diodos luminiscentes, lo cual es de particular interés cuando el cuboide (8) es alimentado con una batería y sobre todo, para mejorar la relación señal/ruído. On the other hand, the device of the invention, using the obtainable instantaneous position, speed and trajectory of the flying insect, within the limits of the transparent flight tube (9), could be configured to activate only the light emitting diodes (24) necessary to illuminate the insect at a given moment including, only, in the treatment of the signal, the outputs of the photoreceptors (31) that receive significant signals of extinction or dispersion of the insect at any moment, in order to reduce the power necessary to activate the luminescent diodes, which is of particular interest when the cuboid (8) is powered by a battery and above all, to improve the signal/noise ratio.
La (Fig.17), que es una vista en planta del cuboide (8), según una primera forma de realización, ilustra el modo de funcionar para proporcionar dos vistas de dispersión óptica con un ángulo mutuo de. 90 grados, además de las dos vistas de extinción que se muestran en la (Fig.16). Los elementos señalados deben interpretarse tal como se indica a continuación. (Fig.17), which is a plan view of the cuboid (8), according to a first embodiment, illustrates the mode of operation to provide two optical dispersion views with a mutual angle of . 90 degrees, in addition to the two extinction views shown in (Fig.16). The elements indicated must be interpreted as indicated below. continuation.
El diodo luminiscente (24/A), emisor de luz, de la segunda columna, en el panel emisor óptico 32/A, está representado en un instante en el tiempo en que este diodo emisor de luz se enciende. The second column light emitting light emitting diode 24/A in the optical emitting panel 32/A is shown at an instant in time when this light emitting diode turns on.
El diodo luminiscente (24/B), de la tercera tila del panel emisor óptico 32/B, está representado en un instante en el que este diodo emisor de luz está apagado. The light emitting diode (24/B) of the third line of the optical emitting panel 32/B is shown at a time when this light emitting diode is off.
La sombra de extinción (37), es la proyectada por el mosquito (36), que cae sobre el panel receptor óptico 33/C corno se describe en la (Fig.16). El rayo de luz reflejado y/o dispersado (39) por el mosquito (36), que se enfocará sobre el fotorreceptor (31/D) de la tercera fila del panel receptor óptico 33/D, ocasiona que la salida de dicho fotorreceptor sufra alteración. La serial de dispersión puede ser analizada automáticamente para obtener información sobre el cuerpo del insecto y la coloración y brillo de sus alas, para complementar la información proporcionada por la salida de extinción. The extinction shadow (37) is the one projected by the mosquito (36), which falls on the optical receiving panel 33/C as described in (Fig.16). The light ray reflected and/or scattered (39) by the mosquito (36), which will be focused on the photoreceptor (31/D) of the third row of the optical receiver panel 33/D, causes the output of said photoreceptor to suffer disturbance. The scatter signal can be automatically analyzed to obtain information about the insect's body and the coloration and brightness of its wings, to complement the information provided by the extinction output.
Cuando el diodo luminiscente (24/A), de las segunda columna del panel emisor óptico 32/A, está apagado y el diodo emisor de luz (24/B). en la tercera fila del panel emisor óptico 32/B. esta encendido, la sombra de la extinción caerá sobre el fotorreceptor (31/D), de la tercera fila del panel receptor óptico 33/D y la luz dispersada y reflejada del insecto se enfocara sobre el fotorreceptor (31/C) de la segunda columna del panel receptor óptico 33/C. De esta manera, al activar alternativamente los diodos emisores de luz en los paneles emisores ópticos 32/A y 32/B, el cuboide (8) de la invención ofrececuatro salidas diferentes: dos vistas de extinción del insecto volador con un ángulo mutuo de 90 grados y dos vistas de dispersión del insecto volador con un ángulo mutuo de 90 grados. When the light emitting diode (24/A), of the second column of the optical emitting panel 32/A, is off and the light emitting diode (24/B). in the third row of the optical emitting panel 32/B. is on, the shadow of the extinction will fall on the photoreceptor (31/D) of the third row of the optical receiver panel 33/D and the scattered and reflected light of the insect will be focused on the photoreceptor (31/C) of the second row. optical receiving panel column 33/C. In this way, by alternately activating the light-emitting diodes in the optical emitting panels 32/A and 32/B, the cuboid (8) of the invention offers four different outputs: two extinction views of the flying insect with a mutual angle of 90 degrees and two scattering views of the flying insect with a mutual angle of 90 degrees.
Aunque se acaba de describir un caso concreto de emisor encendido o apagado, es importante señalar que ésta es una de las propiedades importantes del sensor de la invención, que se puede utilizar en fases adicionales de medición momentánea en las que uno o más emisores de luz, se desactivan en un momento dado, permitiendo sustraer automátícamente la cantidad de luz de fondo y luz parasita de las mediciones realizadas cuando dichos emisores de luz están activados. Although a specific case of emitter on or off has just been described, it is important to point out that this is one of the important properties of the sensor of the invention, which can be used in additional phases of momentary measurement in which one or more light emitters , are deactivated at a given moment, allowing to subtract automatically determine the amount of backlight and stray light from measurements made when those light emitters are on.
Una segunda forma de realización es la que se representa en la (Fig. 18) que nos muestra la vista en planta del cuboide (8) en una configuración alternativa con un panel emisor 32, en la cara A (12) y paneles receptores ópticos 33, en cada una de las caras laterales B (13), C (14) y D (15), para proporcionar tres vistas simultaneas, ortogonales: a) una vista de extinción desde el panel receptor óptico 33/C; b) una vista de dispersión desde el panel receptor 33/D: y c) una segunda vista de dispersión desde el panel receptor óptico 33/B. A second embodiment is the one shown in (Fig. 18) which shows us the plan view of the cuboid (8) in an alternative configuration with an emitter panel 32, on face A (12) and optical receiver panels 33, on each of the lateral faces B (13), C (14) and D (15), to provide three simultaneous, orthogonal views: a) an extinction view from the optical receiving panel 33/C; b) a scatter view from receiver panel 33/D; and c) a second scatter view from optical receiver panel 33/B.
El rayo de luz reflejado y/o dispersado (40) por el mosquito (36), se enfoca sobre el fotorreceptór (31/B), en el panel receptor óptico 33/B, cansando que la salida de dicho fotorrecepior cambie. The light ray reflected and/or scattered (40) by the mosquito (36), is focused on the photoreceptor (31/B), in the optical receptor panel 33/B, causing the output of said photoreceptor to change.
En esta configuración y en otras configuraciones, en las que un panel receptor óptico se coloca de manera que solo recíba luz dispersa, el conjunto de lentes colimadoras y/o el deflector óptico de ese panel receptor óptico puede omitirse opcionalmente para permitir que un mayor número de rayos de luz del insecto volador alcancen un mayor número de fotorreceptores desde una posición determinada dentro del conducto de vuelo transparente (9), In this configuration and other configurations, where an optical receiving panel is positioned so that it receives only scattered light, the collimating lens assembly and/or optical deflector of that optical receiving panel may optionally be omitted to allow a greater number of of light rays from the flying insect reach a greater number of photoreceptors from a given position within the transparent flight conduit (9),
Una tercera forma de realización está representada en la (Fig.19) que nos muestra una vista en planta del cuboids (8) en una Configuración alternativa con paneles emisores ópticos (32). en las caras laterales A (12) y C (14), opuestas y paneles receptores ópticos (33) en las caras laterales restantes B (13) y D (15). para proporcionar dos vistas de dispersión con un ángulo mutuo de 180 grados. A third form of embodiment is represented in (Fig.19) that shows us a plan view of the cuboids (8) in an alternative configuration with optical emitting panels (32). on lateral faces A (12) and C (14), opposite, and optical receiving panels (33) on the remaining lateral faces B (13) and D (15). to provide two scatter views with a mutual angle of 180 degrees.
Una cuarta forma de realización está .representada en la (Fig.20) que nos muestra una vista en planta del cuboíde (8) en una configuración alternativa que solo monta tres paneles ópticos emisores/receptores: en panel emisor óptico 32. en la cara lateral A (12), un panel receptor óptico (33), en la cara lateral C(14), opuesta, para recibir la luz de extinción y otro panel receptor óptico (33) en la cara laterales D (15) para recibir la luz dispersa. Una quinta forma de: realización está representada en la (Fig.21) que nos muestra una vista en planta del cuboide (8) en una configuración alternativa que monta un panel emisor óptico (32) en la cara lateral A (12), un panel receptor óptico (33) en una cara lateral ortogonal B (13) para recibir luz dispersa y otro panel receptor óptico (33) en la cara D (15) orientado hacia el panel receptor óptico (33) de la cara B (13), para recibir luz dispersa de la dirección opuesta. A fourth form of embodiment is represented in (Fig.20) which shows us a plan view of the cuboid (8) in an alternative configuration that only mounts three emitter/receiver optical panels: the optical emitter panel 32. on the face side A (12), an optical receptor panel (33), on the opposite side C(14), to receive the extinction light and another optical receptor panel (33) on the lateral side D (15) to receive the scattered light. A fifth form of: embodiment is represented in (Fig.21) that shows us a plan view of the cuboid (8) in an alternative configuration that mounts an optical emitting panel (32) on the side face A (12), a optical receiving panel (33) on an orthogonal side face B (13) to receive scattered light and another optical receiving panel (33) on face D (15) oriented towards the optical receiving panel (33) on face B (13) , to receive scattered light from the opposite direction.
Una sexta forma de realización está representada en la (Fig.22) que nos muestra una vista en planta del cuboide (8) en una configuración alternativa que monta un panel emisor óptico (32) en la cara A (12), lateral del cubo y un panel receptor óptico (33) en la cara lateral C (14), opuesta, para proporcionar una vista de la extinción. A sixth form of embodiment is represented in (Fig.22) that shows us a plan view of the cuboid (8) in an alternative configuration that mounts an optical emitter panel (32) on face A (12), side of the cube. and an optical receiving panel (33) on the opposite side C (14) to provide a view of the extinction.
Por último, una séptima forma de realización está representada en la (Fig.23) que nos muestra una vista en planta del cuboide (8) en una configuración que monta un panel emisor (32), en la cara A (12), lateral del cubo y un panel receptor óptico (33), en la cara lateral contigua D (15) para proporcionar una vista de dispersión. Finally, a seventh embodiment is represented in (Fig.23) which shows us a plan view of the cuboid (8) in a configuration that mounts an emitter panel (32), on face A (12), lateral hub and an optical receiving panel (33), on the adjoining side face D (15) to provide a scatter view.
Los modos de realización alternativos cuarto a séptimo y otros similares, que no se descartan, se conciben especialmente para aminorar el coste del cuboide (8) que. en todos los casos, incluye un módulo electrónico (10) de adquisición de señales y de comunicaciones para la adquisición y comunicación de las señales obtenidas. Hasta aquí se han considerado varios modos de realización en los que el sensor óptico o cuboide (8) está totalmente encerrado en la caja (2) con acceso para los diversos insectos o mosquitos (16) hacia el conducto de vuelo transparente (9), succionados por el ventilador existente en todo tipo de trampas convencionales (6). Es decir, se ha analizado el caso en el que el sensor óptico esta complementado con una trampa convencional (6). No obstante, los inventores contemplan una octava forma de realización en la que se prescinde de la trampa de captura y se monta un sensor óptico de dos paneles enfrentados; un panel emisor óptico (32) y nn panel receptor óptico (33), protegidos con tapas acristaladas (43), con sus correspondientes bastidores de soporte (41)solidarizados mediante barras de unión (42), Todo ello se complementa con el módulo electrónico y medios de transmisión inalámbricos para funcionamientos ai aire libre. Al estar exento de paredes laterales, que permiten el libre tránsito de los insectos entre los dos paneles del sensor óptico, es posible realizar diversos estudios para conocer las características de los Insectos voladores que frecuentan determinadas zonas en pleno campo. El montaje esquemático de esta octava forma de realización, se ha representado en la (Fig.24). The fourth to seventh and other similar alternative embodiments, which are not ruled out, are specially designed to reduce the cost of the cuboid (8) that. in all cases, it includes an electronic signal acquisition and communications module (10) for the acquisition and communication of the signals obtained. So far, several embodiments have been considered in which the optical or cuboid sensor (8) is totally enclosed in the box (2) with access for the various insects or mosquitoes (16) to the transparent flight duct (9), sucked by the existing fan in all types of conventional traps (6). That is to say, the case in which the optical sensor is complemented with a conventional trap (6) has been analyzed. However, the inventors contemplate an eighth embodiment in which the capture trap is dispensed with and an optical sensor with two facing panels is mounted; an optical emitter panel (32) and an optical receiver panel (33), protected with glazed covers (43), with their corresponding support frames (41) joined by connection bars (42), All of this is complemented by the electronic module and wireless transmission media for outdoor operations. As it is free of side walls, which allow the free movement of insects between the two panels of the optical sensor, it is possible to carry out various studies to find out the characteristics of the flying insects that frequent certain areas in the countryside. The schematic assembly of this eighth embodiment is shown in (Fig.24).
El sensor óptico de la invención, con su correspondiente módulo electrónico deadquisición de sedales y de comunicaciones que a su vez comunica las señales o resultados capturados con un sistema externo que puede proporcionar el procesamiento de datos y el acceso a los mismos, está preparado para poder estudiar con detalle todos los eventos registrados en cualquiera de sus fotorreceptores, tanto si se analizan individualmente como si se consideran combinaciones entre ellos, tal como se ha descrito en las ocho formas de realización que se acaban de relacionar. Ello posibilita el registro de un abanico muy completo de características de los diferentes insectos voladores. No se considera necesario hacer más extenso el contenido de esta descripción para que un experto en la materia pueda comprender el alcance y las ventajas derivadas de la invención, así corno desarrollar y llevar a la práctica el objeto de la misma. Sin embargo, debe entenderse que la invención ha sido descrita según unas formas de realización preferida de la misma, pudíendo ser susceptible de modificaciones sin que ello repercuta o suponga alteración alguna del fundamento de. dicha invención, Es decir, los términos en que ha quedado expuesta esta invención. deberá ser tomada siempre con carácter amplio y no limitativo. The optical sensor of the invention, with its corresponding electronic signal acquisition and communications module, which in turn communicates the signals or results captured with an external system that can provide data processing and access to them, is prepared to be able to study in detail all the events registered in any of its photoreceptors, whether they are analyzed individually or if combinations between them are considered, as has been described in the eight embodiments that have just been listed. This makes it possible to record a very complete range of characteristics of the different flying insects. It is not considered necessary to make the content of this description more extensive so that a person skilled in the art can understand the scope and advantages derived from the invention, as well as develop and put into practice the object of the same. However, it should be understood that the invention has been described according to some preferred embodiments of the same, and may be subject to modifications without this affecting or implying any alteration to the foundation of. said invention, that is, the terms in which this invention has been exposed. should always be taken broadly and not limiting.

Claims

RElVINDICACIONES
1. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura que, mediante grabación digital, permite la observación, estudio, clasificación y conteo automático de insectos voladores mediante la aplicación de técnicas de procesamiento de señales y de aprendizaje automático, caracterizado por constar de una caja (2) y tapa (3), dotada de un conducto de aire superior (4) donde se instala un foco de iluminación cenital (9.2) y de un conducto de aire inferior (5), donde se instala un foco de iluminación nadir (9.3), que mediante una pieza de acoplamiento (7), se puede conectar a cualquier trampa convencional (6), disponiendo la caja (2) de un conducto de vuelo transparente (9) con una sección transversal, preferentemente circular, aunque puede ser cuadrada o de otra forma, al que pueden acceder y transitar insectos voladores, estando rodeadas coaxial mente las paredes del conducto de vuelo transparente (9) por una estructura que constituye el núcleo del sensor óptico de forma cúbica o cuboide (8) existiendo, además, en la caja (2), un módulo electrónico auxiliar (10), diversos cableados, conectares eléctricos (11) y otros accesorios. El cuboide (8) está estructurado con una placa superior (16), una placa inferior (17), una cara A (12), una cara B (13), una cara C (14) y una cara D (15), montándose en cada una de dichas caras, según la forma de realización, un panel emisor óptico (32) o un panel receptor óptico (33) conectado eléctricamente a un módulo electrónico (10) de adquisición de señales y de comunicaciones que, a su vez, comunica las señales o resultados capturados con un sistema externo que puede proporcionar el procesamiento de datos y el acceso a los mismos, estando constituidos los paneles emisores ópticos (32) y los paneles receptores ópticos (33) por un grupo matricial de lentes colimadoras (18), con lentes colimadoras (19), por un deflector óptico (20), con ventanas para paso de luz (21) y pirámides invertidas (22), un circuito impreso PCBA (23), con diodos luminiscentes (24), en el caso de los paneles emisores ópticos (32) y un circuito impreso PCBA (30), con fotorreceptores (31), en el caso de los paneles receptores ópticos (33). Los diodos luminiscentes (24) así como los fotorreceptores (31), se montan en coincidencia con los respectivos focos de las lentes colimadoras (19), existiendo medios de ajuste fino para conseguir un enfoque de precisión. Tanto ios diodos luminiscentes (24) como los fotorreceptores (31) se seleccionan para funcionar en diversas longitudes de onda, o en una combinación de las mismas. 1. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap that, through digital recording, allows the observation, study, classification and automatic counting of flying insects through the application of signal processing and automatic learning techniques, characterized by consisting of a box (2) and a cover (3), equipped with an upper air duct (4) where an overhead lighting focus (9.2) and a duct lower air (5), where a nadir lighting source (9.3) is installed, which by means of a coupling piece (7), can be connected to any conventional trap (6), having the box (2) with a conduit for transparent flight (9) with a cross section, preferably circular, although it can be square or otherwise, which can be accessed and transited by flying insects, the walls of the tr flight conduit being coaxially surrounded transparent (9) by a structure that constitutes the nucleus of the optical sensor in a cubic or cuboid form (8) existing, in addition, in the box (2), an auxiliary electronic module (10), various wiring, electrical connectors (11) and other accessories. The cuboid (8) is structured with an upper plate (16), a lower plate (17), an A face (12), a B face (13), a C face (14), and a D face (15), mounting on each of said faces, depending on the embodiment, an optical emitter panel (32) or an optical receiver panel (33) electrically connected to an electronic module (10) for signal acquisition and communications which, in turn , communicates the captured signals or results with an external system that can provide data processing and access to them, the optical emitting panels (32) and the optical receiving panels (33) being constituted by a matrix group of collimating lenses ( 18), with collimating lenses (19), by an optical deflector (20), with light passage windows (21) and inverted pyramids (22), a PCBA printed circuit (23), with luminescent diodes (24), in the case of the optical emitting panels (32) and a PCBA printed circuit (30), with photoreceptors (31), in the case of the p optic receptor anels (33). The luminescent diodes (24) as well as the photoreceptors (31) are mounted in coincidence with the respective foci of the collimating lenses (19), with fine adjustment means to achieve a precision focus. Both the light emitting diodes (24) and the photoreceptors (31) are selected to operate at various wavelengths, or in a combination thereof.
2. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado por montar grupos matriciales de lentes colimadoras, pirámides invertidas, diodos luminiscentes y fotorreceptores en matrices de una, dos o más filas y una, dos o más columnas. 2. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized by mounting array groups of collimating lenses, inverted pyramids, light emitting diodes and photoreceptors in arrays one, two or more rows and one, two or more columns.
3. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque las señales de salida de extinción y o dispersión del cuboide (8), definen características dinámicas, morfológicas y ópticas de los insectos que transitan por el conducto de vuelo transparente (9). 3. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that the extinction and/or dispersion output signals of the cuboid (8) define characteristics dynamic, morphological and optical characteristics of the insects that transit through the transparent flight conduit (9).
4. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque técnicamente, está programado para activar solamente los diodos luminiscentes (24) necesarios para iluminar el insecto en un momento determinado incluyendo, únicamente, en el tratamiento de la señal, las salidas de los fotorreceptores (31) que reciben señales de extinción o dispersión del insecto en cualquier momento. 4. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that technically, it is programmed to activate only the light emitting diodes (24) necessary to illuminate the insect at a given time including, only, in the processing of the signal, the outputs of the photoreceptors (31) that receive signals of extinction or dispersal of the insect at any time.
5. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque en las caras laterales del cuboide (8) se montan dos paneles emisores ópticos (32) contiguos y dos paneles receptores ópticos (33) contiguos. 5. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that two optical emitting panels are mounted on the lateral faces of the cuboid (8). 32) adjoining and two optical receiving panels (33) adjoining.
6. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque en las caras laterales del cuboide (8) se monta un panel emisor óptico (32) y tres paneles receptores ópticos (33). 6. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that an optical emitting panel (8) is mounted on the lateral faces of the cuboid (8). 32) and three optical receiving panels (33).
7. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque en las caras laterales del cuboide (8) se montan dos paneles emisores ópticos (32), en caras opuestas y dos paneles receptores ópticos (33) en las otras dos caras opuestas, 7. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that on the lateral faces of the cuboid (8) there are mount two optical emitting panels (32) on opposite sides and two optical receiving panels (33) on the other two opposite sides,
8. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque se monta un único panel emisor óptico (32) y dos paneles receptores ópticos (33), en caras contiguas, dejando libre la cara restante. 8. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that a single optical emitter panel (32) and two optical receiver panels (32) are mounted. 33), on adjoining faces, leaving the remaining face free.
9. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque se monta un único panel emisor óptico (32) y dos paneles receptores ópticos (33), en caras opuestas, dejando libre la cara restante. 9. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that a single optical emitter panel (32) and two optical receiver panels (32) are mounted. 33), on opposite faces, leaving the remaining face free.
10. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque se monta un único panel emisor óptico (32) y un único panel receptor óptico (33), en caras opuestas, dejando libres las otras dos caras. 10. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that a single optical emitter panel (32) and a single optical receiver panel are mounted (33), on opposite faces, leaving the other two faces free.
11. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque se monta un único panel emisor óptico (32) y un único panel receptor óptico (33), en caras contiguas, dejando libres las otras dos caras. 11. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that a single optical emitter panel (32) and a single optical receiver panel are mounted (33), on adjoining faces, leaving the other two faces free.
12. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado porque el foco de iluminación cenital (9.2) y el foco de iluminación nadir (9.3) emiten luz de diversas longitudes de onda. 12. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to the first claim, characterized in that the zenith lighting focus (9.2) and the nadir lighting focus (9.3 ) emit light of various wavelengths.
13. Sensor óptico de forma cúbica para vigilancia y estudio de características de insectos voladores, incluidos los mosquitos, acoplable a una trampa de captura, según reivindicación primera, caracterizado por constar de un panel emisor óptico (32), y de un panel receptor óptico (33), con sus correspondientes lentes colimadoras (18), defíectores ópticos (20) y circuitos impresos PCBA de emisor (23) y receptor (30) estando ambos paneles enfrentados y protegidos con tapas acristaladas (43), montados sobre bastidores de soporte (41) solidarizados entre sí mediante barras de unión (42), disponiendo de un módulo electrónico (10) y medios de comunicación inalámbrica. 13. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to first claim, characterized by consisting of an optical emitter panel (32), and an optical receiver panel (33), with its corresponding collimating lenses (18), optical deflectors (20) and PCBA printed circuits of emitter (23) and receiver (30) being both panels facing each other and protected with glazed covers (43), mounted on support frames (41) joined together by means of connecting bars (42), having an electronic module (10) and means of wireless communication.
14. Sensor óptico de forma cubica para vigilancia y estudio de características de insectos voladores, incluidos ios mosquitos, acoplable a una trampa de captura, según la reivindicación decimotercera, caracterizado porque los grupos de lentes colimadoras (18) y los defíectores ópticos (20) son matriciales de una, dos o más filas y de una, dos o más columnas. 14. Cubic-shaped optical sensor for monitoring and studying the characteristics of flying insects, including mosquitoes, attachable to a capture trap, according to claim thirteen, characterized in that the groups of collimating lenses (18) and the optical deflectors (20) they are matrices of one, two or more rows and one, two or more columns.
PCT/ES2021/000030 2020-12-14 2021-08-03 Cubic optical sensor for monitoring and studying characteristics of flying insects, including mosquitos, which can be coupled to a catch trap WO2022129650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202000562U ES1266456Y (en) 2020-12-14 2020-12-14 Cubic-shaped optical sensor for surveillance and study of characteristics of flying insects, including mosquitoes, attachable, or not, to a capture trap
ESU202000562 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022129650A1 true WO2022129650A1 (en) 2022-06-23

Family

ID=75653693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/000030 WO2022129650A1 (en) 2020-12-14 2021-08-03 Cubic optical sensor for monitoring and studying characteristics of flying insects, including mosquitos, which can be coupled to a catch trap

Country Status (3)

Country Link
BR (1) BR202021021236U2 (en)
ES (1) ES1266456Y (en)
WO (1) WO2022129650A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027795A1 (en) * 2015-02-13 2018-02-01 Delta Five, Llc Insect Traps and Monitoring System
US20190187281A1 (en) * 2014-02-18 2019-06-20 Onvector Technology Llc Object Detection Systems
US20200081152A1 (en) * 2018-09-06 2020-03-12 Verily Life Sciences Llc Systems and methods for insect detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190187281A1 (en) * 2014-02-18 2019-06-20 Onvector Technology Llc Object Detection Systems
US20180027795A1 (en) * 2015-02-13 2018-02-01 Delta Five, Llc Insect Traps and Monitoring System
US20200081152A1 (en) * 2018-09-06 2020-03-12 Verily Life Sciences Llc Systems and methods for insect detection

Also Published As

Publication number Publication date
BR202021021236U2 (en) 2022-08-16
ES1266456Y (en) 2021-08-04
ES1266456U (en) 2021-04-30

Similar Documents

Publication Publication Date Title
ES2846792T3 (en) Object detection systems
US11361573B2 (en) Photonic fence
AU2018253554B2 (en) Photonic Fence
US8705017B2 (en) Photonic fence
ES2883123T3 (en) Systems and methods for classifying flying insects
ES2914313T3 (en) Procedure and system for the detection and/or supervision of insect populations
US10914837B2 (en) Object detection systems
BR112021002477A2 (en) sensor assisted image
US20190000059A1 (en) Automated Multispectral Detection, Identification and Remediation of Pests and Disease Vectors
Potamitis et al. Large aperture optoelectronic devices to record and time-stamp insects’ wingbeats
US20220125029A1 (en) Insect and Creature Monitoring System
Santos et al. Automated electronic approaches for detecting disease vectors mosquitoes through the wing-beat frequency
WO2022129650A1 (en) Cubic optical sensor for monitoring and studying characteristics of flying insects, including mosquitos, which can be coupled to a catch trap
EP3920692A1 (en) Insect and creature monitoring system
ES1069468U (en) Trapping device for frugivorous insects
CN209894995U (en) Insect identification counting system and field insect monitoring instrument
EP4039089A1 (en) Flying insect monitoring system and method
de Araújo et al. Effect of ultraviolet LED and trap height on catches of host-seeking anopheline mosquitoes by using a low-cost passive light trap in northeast Brazil
Patt et al. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens
JP6972176B2 (en) How to catch adult moths belonging to the subfamily Indianmeal moth, light source device and catcher
Zulkiply et al. Smart mosquitoes trap using favoriot monitoring system
JP2835432B2 (en) Insect trap and insect trapping and killing method using the same
Joiner et al. Three-dimensional evaluation of the responses of two species of flies (Diptera) to an indoor light trap
WO2023222594A1 (en) Apparatus and method for detecting insects
Selby et al. Response of Adult Plum Curculios (Coleoptera: Curculionidae) to Contrasting Shades in Field and Laboratory Experiments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905861

Country of ref document: EP

Kind code of ref document: A1