WO2022128479A1 - Unité membrane-électrode pour cellule électrochimique et procédé de fabrication d'unité membrane-électrode - Google Patents

Unité membrane-électrode pour cellule électrochimique et procédé de fabrication d'unité membrane-électrode Download PDF

Info

Publication number
WO2022128479A1
WO2022128479A1 PCT/EP2021/083799 EP2021083799W WO2022128479A1 WO 2022128479 A1 WO2022128479 A1 WO 2022128479A1 EP 2021083799 W EP2021083799 W EP 2021083799W WO 2022128479 A1 WO2022128479 A1 WO 2022128479A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
adhesive
electrode unit
frame structure
gas diffusion
Prior art date
Application number
PCT/EP2021/083799
Other languages
German (de)
English (en)
Inventor
Anton Ringel
Martin Gerlach
David Thomann
Andreas RINGK
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022128479A1 publication Critical patent/WO2022128479A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Membrane-electrode assembly for an electrochemical cell and method for producing a membrane-electrode assembly
  • a fuel cell is an electrochemical cell that has two electrodes that are separated from one another by means of an ion-conducting electrolyte.
  • the fuel cell converts the energy of a chemical reaction of a fuel with an oxidant directly into electricity.
  • a special type of fuel cell is the polymer electrolyte membrane fuel cell (PEM-FC).
  • PEM-FC polymer electrolyte membrane fuel cell
  • the PEM-FC also includes gas diffusion layers (GDL) in the active area, which delimit the polymer electrolyte membrane (PEM) and the two porous electrodes with a catalyst layer on both sides.
  • GDL gas diffusion layers
  • the PEM, the two electrodes with the catalyst layer and optionally also the two GDLs can form a so-called membrane-electrode unit (MEA) in the active area of the PEM-FC.
  • MEA membrane-electrode unit
  • Two opposing bipolar plates (halves) delimit the MEA on both sides.
  • a fuel cell stack is made up of MEA and bipolar plates arranged alternately one above the other.
  • the fuel in particular hydrogen
  • the oxidizing agent in particular air/oxygen
  • the MEA are enclosed in a frame-like opening of two foils arranged next to one another.
  • the two films of this frame structure are usually made of the same material, for example polyethylene naphthalate (PEN).
  • PEN polyethylene naphthalate
  • the two foils formed from the same material can dispensably have redundant properties, for example electrical insulating ability (electrically insulating) and/or oxygen impermeability of each of the two foils.
  • DE 101 40 684 A1 discloses a membrane-electrode unit for a fuel cell containing a layered arrangement of an anode electrode, a cathode electrode and a membrane arranged between them, with a polymer material on a top and bottom side of the layered arrangement is applied.
  • the object of the present invention is to advantageously connect the gas diffusion layers for the stacking process to the membrane-electrode unit, preferably in such a way that slipping is prevented.
  • the membrane-electrode assembly includes a frame structure for accommodating a membrane coated with electrodes.
  • the frame structure has a first film and a second film with an interposed adhesive.
  • a gas diffusion layer is arranged on the frame structure. At least one recess is formed in at least one of the two films, with the adhesive penetrating through the recess and interacting adhesively with the gas diffusion layer.
  • the gas diffusion layer is attached to the frame structure and thus to the membrane-electrode unit in a non-slip manner. This is particularly important for the process of stacking the individual electrochemical cells into a cell stack very advantageous. Furthermore, even a further adhesive, which is usually applied between the foil and the gas diffusion layer, can thereby be saved.
  • the membrane-electrode unit can include a membrane, in particular a polymer electrolyte membrane (PEM).
  • PEM polymer electrolyte membrane
  • the membrane-electrode unit can further comprise two porous electrodes, each with a catalyst layer, these being arranged in particular on the PEM and delimiting it on both sides.
  • the membrane electrode assembly preferably comprises two gas diffusion layers. In particular, these can delimit the MEA-3 on both sides.
  • the electrochemical cell can be, for example, a fuel cell, an electrolytic cell or a battery cell.
  • the fuel cell is in particular a PEM-FC (polymer electrolyte membrane fuel cell).
  • a cell stack comprises, in particular, a multiplicity of electrochemical cells arranged one above the other.
  • the frame structure has a frame shape.
  • the frame structure is preferably designed to be circumferential.
  • a membrane and the two electrodes can thus be enclosed in the frame structure in a particularly advantageous manner.
  • the cross section of the frame structure is in particular U-shaped or Y-shaped to accommodate the membrane and the two electrodes between the legs of the U-shape or Y-shape.
  • the adhesive preferably seals the membrane-electrode unit from the outside, glues the two foils together and fixes the membrane with the two electrodes in the frame structure.
  • the adhesive can also preferably be electrically insulating.
  • the frame structure can thus be particularly advantageously electrically insulating and an undesired flow of current in an inactive region of the electrochemical cell can be particularly advantageously kept low, in particular prevented.
  • two gas diffusion layers ie one gas diffusion layer on both sides of the membrane-electrode unit, are connected to the frame structure in such a way that they interact adhesively with the adhesive penetrating through the recess of the respective foils. Of course, this can also be done with a plurality of recesses in the foils.
  • the one or more recesses in the first film are arranged offset to the one or more recesses in the second film.
  • the two gas diffusion layers can be glued to the two foils independently of one another or the adhesive can be activated independently of one another by means of a hot stamp.
  • the adhesive can be thermally activated, in particular by means of a hot stamp.
  • the invention also includes a method for producing a membrane electrode assembly according to one of the above statements.
  • the process has the following process steps:
  • the method has the following additional method step:
  • the adhesive is preferably activated by means of a hot stamp.
  • This is a simple, inexpensive and at the same time geometrically very variable process for the thermal activation of adhesive properties. Further measures improving the invention result from the following description of some exemplary embodiments of the invention, which are shown schematically in the figures. All of the features and/or advantages resulting from the claims, the description or the drawings, including structural details, spatial arrangements and method steps, can be essential to the invention both on their own and in various combinations. It should be noted that the figures are only descriptive and are not intended to limit the invention in any way.
  • FIG. 1 shows a membrane-electrode unit from the prior art, only the essential areas being shown.
  • FIG. 2 shows a membrane-electrode unit according to the invention, only the essential areas being shown.
  • FIG. 3 shows the section A-A of FIG. 2 in a further exemplary embodiment, only the essential areas being shown.
  • FIG. 1 shows a section of a membrane-electrode unit 1 of an electrochemical cell 100, in particular a fuel cell, from the prior art in a vertical section, only the essential areas being shown.
  • the membrane-electrode unit 1 has a membrane 2, for example a polymer electrolyte membrane (PEM), and two porous electrodes 3 and 4, each with a catalyst layer, the electrodes 3 and 4 being arranged on one side of the membrane 2 in each case. Furthermore, the electrochemical cell 100 has, in particular, two gas diffusion layers 5 and 6, which can also belong to the membrane-electrode unit 1, depending on the design.
  • the membrane-electrode unit 1 is surrounded on its periphery by a frame structure 10, which is also referred to as a subgasket.
  • the frame structure 10 is used for rigidity and tightness of the membrane-electrode unit 1 and is a non-active area of the electrochemical cell 100.
  • the frame structure 10 is particularly U-shaped or Y-shaped in section, with a first leg of the U-shaped frame section being formed by a first film 11 made of a first material W1 and a second leg of the U-shaped frame section being formed by a second Foil 12 is formed from a second material W2.
  • the first film 11 and the second film 12 are glued together by means of an adhesive 13 made of a third material W3.
  • the first material W1 and the second material W2 are often identical, preferably PEN.
  • the two gas diffusion layers 5 and 6 are in turn each arranged on one side of the frame structure 10 by means of a further adhesive 14, usually in such a way that they are in contact with one electrode 3, 4 each over the active surface of the electrochemical cell 100.
  • the gas diffusion layers 5, 6 are porous—for example, as a fleece—embodied so that reaction media can be fed to the electrodes 3, 4 through them.
  • the two gas diffusion layers 5 , 6 - or at least one of the two gas diffusion layers 5 , 6 - are then tacked or glued to the frame structure 10 by means of the adhesive 13 .
  • FIG. 2 shows a vertical section through a membrane-electrode unit 1 according to the invention of an electrochemical cell 100, in particular a fuel cell, only the essential areas being shown.
  • recesses 15 are formed in the form of bores, which are filled with the adhesive 13.
  • the gas diffusion layers 5, 6 are each in direct contact with the film 11, 12 adjacent to them, so that the adhesive 13 protruding through the recesses in this area is in contact with the respective gas diffusion layer 5, 6 is glued.
  • the additional adhesive 14 from the prior art in the embodiment of FIG. 1 can thus be saved.
  • the thickness of the membrane-electrode unit 1 in the stacking direction z is smaller and clearly defined; the overall height of the cell stack in the stacking direction z can thus be more tightly tolerated.
  • gas diffusion layers 5, 6 are effectively prevented from slipping relative to the frame structure 10 or relative to the membrane 2 coated with the electrodes 3, 4, so that the corresponding functional surfaces remain optimally positioned relative to one another.
  • FIG. 3 shows the section A-A of FIG. 2 in a further embodiment in a partially transparent view.
  • the membrane-electrode unit 1 has only the membrane 2 coated with the electrodes 3, 4 and the gas diffusion layer 5 lying behind it.
  • the frame structure 10 usually characterizes the non-active area of the electrochemical cell 100.
  • the adhesive 13 can be seen, or the first transparent film 11 can be seen behind it.
  • a plurality of recesses 15a through which the adhesive 13 is pressed in order to bond to the gas diffusion layer 5 are formed in the first film 11 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une unité membrane-électrode (1) pour une cellule électrochimique (100), ladite unité membrane-électrode (1) comprenant une structure de cadre (10) destinée à recevoir une membrane (2) revêtue d'électrodes (3, 4). La structure de cadre (10) comprend un premier film (11) et un second film (12), entre lesquels est disposé un adhésif (13). Une couche de diffusion de gaz (5, 6) est disposée sur la structure de cadre (10). Au moins un évidement (15) est formé dans au moins un des deux films (11, 12), l'adhésif (13) pénétrant dans ledit évidement (15) et interagissant de manière adhésive avec la couche de diffusion de gaz (5, 6).
PCT/EP2021/083799 2020-12-17 2021-12-01 Unité membrane-électrode pour cellule électrochimique et procédé de fabrication d'unité membrane-électrode WO2022128479A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020216093.7 2020-12-17
DE102020216093.7A DE102020216093A1 (de) 2020-12-17 2020-12-17 Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit

Publications (1)

Publication Number Publication Date
WO2022128479A1 true WO2022128479A1 (fr) 2022-06-23

Family

ID=78824787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/083799 WO2022128479A1 (fr) 2020-12-17 2021-12-01 Unité membrane-électrode pour cellule électrochimique et procédé de fabrication d'unité membrane-électrode

Country Status (2)

Country Link
DE (1) DE102020216093A1 (fr)
WO (1) WO2022128479A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078819A3 (fr) * 2021-11-03 2023-11-16 Robert Bosch Gmbh Assemblage membrane-électrodes pour cellule électrochimique et procédé de fabrication d'un assemblage membrane-électrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132394B3 (fr) * 2022-07-25 2024-03-22 Symbio France Assemblage membrane-électrode de pile à combustible, procédé de fabrication d’un tel assemblage et pile à combustible comprenant au moins un tel assemblage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20090162734A1 (en) * 2007-12-21 2009-06-25 3M Innovative Properties Company Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket
US20100000679A1 (en) * 2008-07-04 2010-01-07 Hyundai Motor Company Method for bonding mea and gdl of fuel cell stack
US20110177423A1 (en) * 2010-01-21 2011-07-21 Anton Nachtmann Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same
US20130040228A1 (en) * 2003-08-22 2013-02-14 Johnson Matthey Public Limited Company Sealing of a membrane electrode assembly
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140684A1 (de) 2001-08-24 2003-03-06 Daimler Chrysler Ag Dichtungsaufbau für eine MEA und Verfahren zur Herstellung des Dichtungsaufbaus
US20130040228A1 (en) * 2003-08-22 2013-02-14 Johnson Matthey Public Limited Company Sealing of a membrane electrode assembly
US20090162734A1 (en) * 2007-12-21 2009-06-25 3M Innovative Properties Company Manufacturing of fuel cell membrane electrode assemblies incorporating photocurable cationic crosslinkable resin gasket
US20100000679A1 (en) * 2008-07-04 2010-01-07 Hyundai Motor Company Method for bonding mea and gdl of fuel cell stack
US20110177423A1 (en) * 2010-01-21 2011-07-21 Anton Nachtmann Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same
DE102018131092A1 (de) 2018-09-04 2020-03-05 Hyundai Motor Company Membranelektrodeneinrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078819A3 (fr) * 2021-11-03 2023-11-16 Robert Bosch Gmbh Assemblage membrane-électrodes pour cellule électrochimique et procédé de fabrication d'un assemblage membrane-électrodes

Also Published As

Publication number Publication date
DE102020216093A1 (de) 2022-06-23

Similar Documents

Publication Publication Date Title
EP1654776B1 (fr) Unité membrane-électrode pour des installation électrochmiques
DE19502391C1 (de) Membranelektrodeneinheit gebildet durch die Zusammenfassung von flächigen Einzelzellen und deren Verwendung
EP3545579B1 (fr) Système d'étanchéité de plaques bipolaires et empilement de pile à combustible muni dudit système d'étanchéité
EP1759434B2 (fr) Module membrane-electrode (mea) pour pile a combustible
DE102013217759B4 (de) Brennstoffzellenmembran-unterdichtungsanordnung mit beschichteten unterdichtungen sowie brennstoffzellenanordnung mit solch einer brennstoffzellenmembran-unterdichtungsanordnung
WO2022128479A1 (fr) Unité membrane-électrode pour cellule électrochimique et procédé de fabrication d'unité membrane-électrode
DE102015002500A1 (de) Polymerelektrolyt-Brennstoffzelle
WO2022084014A1 (fr) Ensemble membrane-électrode pour une cellule électrochimique et procédé de fabrication d'un ensemble membrane-électrode
WO2022084028A1 (fr) Unité membrane-électrodes pour une cellule électrochimique, et procédé de fabrication d'une unité membrane-électrodes
DE102010054305A1 (de) Brennstoffzellenstapel mit mehreren Brennstoffzellen
EP3736894B1 (fr) Plaque bipolaire pour piles à combustible, empilement de piles à combustible doté de telles plaques bipolaires ainsi que véhicule doté d'un tel empilement de piles à combustible
WO2022089788A1 (fr) Plaque bipolaire, pile à combustible et empilement de piles à combustible
WO2020207754A1 (fr) Plaque bipolaire pour piles à combustibles, empilement de piles à combustible comprenant de telles plaques bipolaires ainsi que véhicule comprenant un tel empilement de piles à combustible
WO2022084121A1 (fr) Unité membrane-électrode destinée à une cellule électrochimique, et procédé de fabrication d'une unité membrane-électrode
WO2022084026A1 (fr) Ensemble membrane-électrode pour une cellule électrochimique et procédé de fabrication d'un ensemble membrane-électrode
DE102021211884A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zum Herstellen einer Membran-Elektroden-Einheit
DE102021212398A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle
WO2022129279A1 (fr) Empilement de piles à combustible et son procédé de production
DE102022205356A1 (de) Anordnung, Gasket-MEA-System, Brennstoffzellenstapel sowie Verfahren zum Herstellen einer Anordnung
DE102022202113A1 (de) Membranelektrodenanordnung, elektrochemische Zelle und Verfahren zur Herstellung von Membranelektrodenanordnungen
DE102020215019A1 (de) Anordnung elektrochemischer Zellen und Verfahren zum Betrieb einer Anordnung elektrochemischer Zellen
WO2023078819A2 (fr) Assemblage membrane-électrodes pour cellule électrochimique et procédé de fabrication d'un assemblage membrane-électrodes
WO2022129533A1 (fr) Ensemble de cellules électrochimiques, véhicule comprenant ledit ensemble et procédé de fabrication de l'ensemble
DE102022200797A1 (de) Membran-Elektroden-Einheit, Anordnung elektrochemischer Zellen und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102020128557A1 (de) Brennstoffzellenstapel mit Gussmaterial und Verfahren zum Herstellen eines Brennstoffzellenstapels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820600

Country of ref document: EP

Kind code of ref document: A1