WO2022127821A1 - 一种射频功率放大器及提高视频带宽的耦合电路 - Google Patents

一种射频功率放大器及提高视频带宽的耦合电路 Download PDF

Info

Publication number
WO2022127821A1
WO2022127821A1 PCT/CN2021/138317 CN2021138317W WO2022127821A1 WO 2022127821 A1 WO2022127821 A1 WO 2022127821A1 CN 2021138317 W CN2021138317 W CN 2021138317W WO 2022127821 A1 WO2022127821 A1 WO 2022127821A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
power amplifier
capacitor
circuit
coupling circuit
Prior art date
Application number
PCT/CN2021/138317
Other languages
English (en)
French (fr)
Inventor
孙益平
杨茂清
张立鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21905748.6A priority Critical patent/EP4239882A4/en
Publication of WO2022127821A1 publication Critical patent/WO2022127821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • H03F1/086Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/148Video amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/552Indexing scheme relating to amplifiers the amplifier being made for video applications

Definitions

  • the present application relates to the technical field of radio frequency power amplifiers, and in particular, to a radio frequency power amplifier and a coupling circuit for improving video bandwidth.
  • the video bandwidth plays a decisive role in the working bandwidth of the power amplifier. Specifically, the video bandwidth affects the correctable value of digital pre-distortion (DPD) on the power amplifier; when the instantaneous signal bandwidth is too wide or close to determining the video
  • DPD digital pre-distortion
  • an internal matching circuit will be input inside the power amplifier, and the internal matching circuit is generally a low-pass LCL circuit to realize the high impedance of the RF power amplifier in the working frequency band and improve the RF power.
  • the conversion efficiency of the amplifier to the power supply; however, the design of the internal matching circuit will increase the envelope impedance of the power amplifier, which will reduce the video bandwidth, which will affect the correction performance of the power amplifier; therefore, how to improve the performance of the power amplifier with the internal matching circuit.
  • the video bandwidth of the RF power amplifier and optimizing the performance of the video amplifier have become an urgent problem to be solved.
  • Embodiments of the present application provide a radio frequency power amplifier and a coupling circuit for improving video bandwidth, which are used to improve the video bandwidth of the radio frequency power amplifier while ensuring the radio frequency performance of the radio frequency power amplifier, thereby improving the amplification performance of the radio frequency power amplifier.
  • an embodiment of the present application provides a radio frequency power amplifier
  • the radio frequency power amplifier includes a transistor, an internal matching circuit of the transistor, and a coupling circuit; wherein, the internal matching circuit is provided at the drain of the transistor and serves as an output of the transistor circuit, and the coupling circuit is connected with the internal matching circuit.
  • the RF power amplifier amplifies the RF signal
  • the gate of the transistor is used to receive the RF signal and amplify the RF signal
  • the internal matching circuit is used as an output circuit to increase the Output impedance
  • the coupling circuit is used to reduce the included impedance corresponding to the operating bandwidth of the transistor, thereby increasing the video bandwidth of the entire RF power amplifier.
  • the increase of the internal matching circuit can improve the output impedance of the transistor, the improvement of the output impedance can enhance the energy conversion efficiency, increase the output power of the RF signal, and improve the RF performance of the RF power amplifier, and the coupling circuit can also Reduce the envelope impedance corresponding to the operating bandwidth of the transistor. Since the coupling circuit is connected to the internal matching circuit, the coupling circuit can improve the video bandwidth of the transistor without affecting the RF performance, and further optimize the amplification performance of the RF power amplifier.
  • the internal matching circuit in the radio frequency power amplifier is composed of an LCL low-pass filter circuit, including at least one inductor and a capacitor.
  • the low-pass filter circuit can effectively improve the output impedance of the transistor and improve the radio frequency. RF performance of power amplifiers.
  • the LCL low-pass filter circuit includes two inductors and one capacitor, wherein one end of the first inductor is the input end of the internal matching circuit, and one end of the second inductor is the internal matching circuit.
  • two inductors and a capacitor are connected in a T-shaped manner, and are connected to one point together, and then the other end of the capacitor is grounded; since the internal matching circuit is the output circuit of the transistor, one end of the first inductor is connected to the transistor.
  • the drain, and one end of the second inductor is used as the output port of the radio frequency signal.
  • the coupling circuit needs to be connected to the internal matching circuit, so one end of the coupling circuit can be connected to the convergence point of the inductance and the capacitor in the internal matching circuit; in this way, since the other end of the capacitor is grounded, the It is equivalent to connecting a capacitor in parallel with an impedance. Since the impedance corresponding to the capacitor in the internal matching circuit is relatively small, even if the impedance of the coupling circuit is small, it has little effect on the entire output impedance, so that the impedance value of the coupling circuit can be designed. The envelope impedance corresponding to the working bandwidth is reduced as much as possible to better optimize the video bandwidth of the RF power amplifier.
  • the coupling circuit may be composed of a capacitor and an inductance, and the coupling circuit may increase the resonant frequency point of the radio frequency power amplifier by adjusting the capacitance value of the capacitor and/or the inductance of the inductance, thereby reducing the resistance of the transistor.
  • the envelope impedance corresponding to the operating bandwidth.
  • the above-mentioned coupling circuit includes an inductor and a capacitor, wherein the inductor and the capacitor are connected, the other end of the inductor is connected to the convergence point in the internal matching circuit, and the other end of the capacitor is grounded,
  • the video bandwidth of the RF power amplifier can be optimized by designing the inductance of the inductor and/or the capacitance of the capacitor.
  • the capacitor in the above-mentioned coupling circuit is a low-frequency decoupling capacitor.
  • the coupling circuit may also be composed of a resistor, a capacitor and an inductor, and then the resistance value of the resistor, the capacitance value of the capacitor and/or the inductance of the inductor are adjusted to reduce the operating bandwidth of the transistor corresponding to the the envelope impedance.
  • the adjustment of the capacitance in the coupling circuit can be at the nF level, that is, when the capacitance of the capacitor changes slightly, the purpose of optimizing the video bandwidth can be achieved, and the optimal performance of the coupling circuit can be improved.
  • the coupling circuit may include a resistor, an inductor and a capacitor, wherein one end of the resistor is connected to one end of the inductor, and one end of the inductor is connected to one end of the capacitor, and the resistor, the inductor and the capacitor form a series structure, Then the resistor is connected to the convergence point in the internal matching circuit, and the other end of the capacitor is grounded.
  • the capacitor may be a low-frequency decoupling capacitor.
  • the radio frequency power amplifier also needs to include a power supply circuit, the power supply circuit is connected to the output end of the internal matching circuit, and is used for providing direct current for the radio frequency power amplifier.
  • a second aspect of the embodiments of the present application provides a coupling circuit for improving video bandwidth, including:
  • the coupling circuit is connected with the internal matching circuit of the transistor in the radio frequency power amplifier;
  • the drain of the transistor is connected to the input end of the internal matching circuit;
  • the coupling circuit is connected to the internal matching circuit;
  • the transistor is used to amplify the radio frequency signal received by the radio frequency power amplifier
  • the internal matching circuit is used to improve the output impedance of the radio frequency power amplifier in the working frequency band, and output the amplified radio frequency signal;
  • the coupling circuit is used for reducing the envelope impedance corresponding to the working bandwidth of the radio frequency power amplifier.
  • the coupling circuit is composed of a capacitor and an inductance; the coupling circuit is used to reduce the packet corresponding to the operating bandwidth of the transistor by adjusting the capacitance value of the capacitor and/or the inductance of the inductance network impedance.
  • the coupling circuit is composed of a resistor, a capacitor and an inductor; the coupling circuit is used to reduce the transistor by adjusting the resistance value of the resistor, the capacitance value of the capacitor and/or the inductance of the inductor The envelope impedance corresponding to the operating bandwidth.
  • the capacitor in the coupling circuit is a low-frequency decoupling capacitor.
  • a third aspect of the embodiments of the present application further provides a radio frequency amplification system, where the radio frequency amplification system includes a radio frequency power amplifier, and the radio frequency power amplifier may be the radio frequency power amplifier described in any embodiment of the first aspect.
  • the embodiments of the present application have the following advantages:
  • the internal matching circuit is used as the output circuit of the radio frequency power amplifier and is connected to the drain of the transistor, so that the output impedance can be increased in the working frequency band of the radio frequency power amplifier, and the radio frequency performance of the radio frequency power amplifier can be improved.
  • the circuit is also connected with a coupling circuit.
  • the coupling circuit can reduce the envelope impedance corresponding to the working bandwidth of the RF power amplifier by adjusting the physical quantities of its internal components, and improve the video bandwidth of the RF power amplifier without affecting the RF performance. Amplification performance of RF power amplifiers.
  • FIG. 1 is a schematic structural diagram of a radio frequency power amplifier according to an embodiment of the present application.
  • FIG. 2 is a graph of changes in envelope impedance of a radio frequency power amplifier provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another radio frequency power amplifier provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another radio frequency power amplifier provided by an embodiment of the present application.
  • FIG. 5 is a graph of variation of envelope impedance of another radio frequency power amplifier provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another radio frequency power amplifier provided by an embodiment of the present application.
  • FIG. 7 is a graph of changes in envelope impedance of another radio frequency power amplifier provided by an embodiment of the present application.
  • Embodiments of the present application provide a radio frequency amplifier and a bias circuit for improving video bandwidth, which are used to improve the video bandwidth of the radio frequency amplifier while ensuring the radio frequency performance of the radio frequency amplifier, thereby improving the amplification performance of the radio frequency amplifier.
  • the RF power amplifier is an energy converter, which is used to power amplify the low-power baseband signal, and is one of the key components of the wireless communication network system.
  • the quality of the RF power amplifier can be measured by indicators such as output power, efficiency, and operating bandwidth.
  • these indicators will restrict each other when improving. For example, in order to obtain a wider operating bandwidth, it is necessary to sacrifice certain efficiency and power, and vice versa. Therefore, how to reasonably improve the amplification performance of the RF power amplifier has become a problem worthy of study.
  • the output power and efficiency are used to evaluate the RF performance of the RF power amplifier, which is related to the output impedance corresponding to the RF power amplifier in the working frequency band; in the working frequency band, the higher the output impedance of the RF power amplifier, the higher the power conversion efficiency.
  • the higher the RF performance the better the RF performance. Therefore, an internal matching circuit can be designed for the transistor of the RF power amplifier to improve the output impedance.
  • FIG. 1 is a schematic structural diagram of a radio frequency power amplifier provided by an embodiment of the present application.
  • the radio frequency power amplifier includes a field effect transistor (transistor) 101 , an internal matching circuit 102 and a power supply circuit 103 .
  • the drain stage of the FET 101 is connected to the input terminal of the internal matching circuit, and the power supply circuit 103 is connected to the output terminal of the internal matching circuit; the capacitance Cds is the parasitic capacitance between the source stage and the drain of the FET 101; the internal matching circuit
  • the circuit 102 is a low-pass LCL filter circuit, including an inductor L1, an inductor L2, and a capacitor C1, which are called "T" connections.
  • One end of the capacitor C1 is connected to one end of the inductors L1 and L2, and the other end is grounded; the other end of the inductor L1 is connected to ground; One end is the input end of the internal matching circuit 102 and is connected to the drain of the FET 101; the other end of the inductor L2 is the output end of the radio frequency power amplifier; and the power supply circuit 103 includes a supply line 1031, a power supply 1032 and a capacitor C2, a power supply 1032 The supply line 1031 is connected to the output end of the internal matching circuit 102, one end of the capacitor C2 is connected to the output end of the power supply 1032, and one end is grounded.
  • the internal matching circuit 101 is used to improve the radio frequency performance of the radio frequency power amplifier.
  • the capacitance and inductance in the internal matching circuit can improve the output impedance of the radio frequency working amplifier, thereby improving the efficiency of the radio frequency working amplifier;
  • the internal matching circuit will also increase the envelope impedance corresponding to the working bandwidth of the RF power amplifier, thereby reducing the corresponding video bandwidth of the RF power amplifier.
  • the power supply circuit 103 provides a DC power supply for the power tube of the radio frequency power amplifier, and the supply line 1031 included therein also corresponds to the inductance L3; while the capacitance value of the capacitor C2 in the power supply circuit 103 is relatively large, exemplarily, the operation of the radio frequency power amplifier When the frequency is above 100MHz, it can be regarded as a short-circuit state, and its main function is low-pass filtering to avoid the radiation of radio frequency signals from the power supply end, resulting in loss of radio frequency signals.
  • the envelope impedance corresponding to the working bandwidth of the RF power amplifier can be reduced by reducing the inductance of the power supply line 1031 in the power supply circuit 103;
  • the output impedance of the frequency band is reduced, which affects the RF performance of the RF power amplifier. Therefore, the inductance of the power supply line is generally required to be large, which will result in a very limited optimization effect of the video bandwidth.
  • FIG. 2 is a graph of changes in envelope impedance of a radio frequency power amplifier provided by an embodiment of the application; as shown in FIG. 2 , the abscissa of the graph is the frequency value, and the ordinate is the impedance value including the impedance; wherein, the impedance
  • the abscissa corresponding to the peak m5 is the resonant frequency point corresponding to the RF power amplifier; assuming that the RF signal amplified by the RF power amplifier is 3.4 to 3.8 GHz, then its corresponding operating bandwidth is 400 MHz.
  • the impedance peak value Move to the right that is, the larger the resonance frequency point corresponding to the impedance peak value, then for the fixed frequency of 200MHz/400MHz, the corresponding impedance value of the envelope impedance will decrease, the video bandwidth will increase, and the linear result of DPD correction will be will be better.
  • the embodiment of the present application provides a new radio frequency power amplifier
  • the radio frequency power amplifier includes not only an internal matching circuit for improving radio frequency performance, but also a coupling circuit for optimizing the video bandwidth, which can be used without affecting the radio frequency of the radio frequency power amplifier.
  • the video bandwidth of the radio frequency power amplifier is increased, and the amplification performance of the radio frequency power amplifier is improved.
  • FIG. 3 is a schematic structural diagram of another radio frequency power amplifier provided by an embodiment of the present application; as shown in FIG.
  • the drain of the FET 301 is connected to the input end of the internal matching circuit, and the capacitor Cds is the parasitic capacitance between the source stage and the drain of the FET 301;
  • the internal matching circuit 302 is a low-pass LCL filter circuit, including an inductor L4, inductor L5 and capacitor C3 are connected in a "T" shape, the connection point is point A, one end of capacitor C3 intersects with one end of inductors L4 and L5 at point A, and the other end is grounded; the other end of inductor L4 is the inner
  • the input end of the matching circuit 302 is connected to the drain of the FET 301;
  • the other end of the inductor L5 is the output end of the radio frequency power amplifier;
  • the coupling circuit 303 includes an inductor L6 and a capacitor C4, one end of the inductor L6 is connected to the point A, The other end is connected to one end of the capacitor C4, and the other end of the capacitor C4 is grounded.
  • a field effect transistor is packaged in a semiconductor chip and can be made of semiconductor materials such as gallium nitride GaN, laterally diffused metal oxide semiconductor LDMOS, gallium arsenide GaAs, etc., wherein Cds is the FET source level
  • the internal matching circuit 302 is used to improve the input impedance and RF performance of the RF power amplifier, wherein the inductors L4 and L5 can be realized by the bonding wire boud wire, and the capacitor C3 can be realized by a single-layer capacitor ( Single layer capacitor, SLC) or metal-oxide-semiconductor capacitor (metal-oxide-semiconductor capacitor, moscap) is realized; and the coupling circuit 303 is used to improve the video bandwidth of the RF power amplifier; wherein, the inductor L6 can also be connected by the bonding wire boud wire
  • the capacitor C4 can be a low-frequency decoupling
  • the internal matching circuit 302 is used to improve the radio frequency performance of the radio frequency power amplifier.
  • the capacitance and inductance in the internal matching circuit can improve the radio frequency working amplifier.
  • the impedance corresponding to the capacitor C3 is smaller than the output impedance, so connecting the coupling circuit 303 at point A is equivalent to connecting an impedance to the capacitor C3 in parallel.
  • the coupling Even if the impedance of the circuit 303 is designed to be low, it has little effect on the output impedance. Therefore, in the working frequency band, the addition of the coupling circuit 303 has little effect on the output impedance of the entire RF power amplifier, which can ensure its RF performance.
  • the coupling circuit 303 is used to improve the video bandwidth of the radio frequency power amplifier.
  • the inductor L6 and the capacitance of the capacitor C4 By adjusting the inductance of the inductor L6 and the capacitance of the capacitor C4, the envelope impedance corresponding to the working bandwidth of the radio frequency power amplifier is reduced, and the video bandwidth is increased.
  • the inductor L6 and the capacitor C4 The addition of , can increase the resonant frequency of the RF power amplifier, so that the envelope impedance change curve can be shifted to the right along the abscissa (frequency value), so that at a fixed frequency of 200MHz/400MHz, the corresponding impedance value of the envelope impedance will be will decrease, the video bandwidth will increase, and the linearity of the DPD correction will be better.
  • the coupling circuit 303 since the coupling circuit 303 has little effect on the output impedance of the RF power amplifier, the impedance corresponding to the coupling circuit 303 can be designed to be reduced as much as possible, so that the coupling circuit 303 can optimize the video bandwidth to a higher degree. Improve the amplification performance of RF power amplifiers.
  • the RF power amplifier may also include a power supply circuit.
  • the power supply circuit 404 is used to supply power to the power tube, including a power supply 401, a capacitor 402 and a supply line 403; wherein the power supply is used to provide power to the power tube.
  • the capacitance value of the capacitor 402 is relatively large.
  • the operating frequency of the RF power amplifier is above 100MHz, it can be regarded as a short-circuit state.
  • the supply line 403 corresponds to an inductance.
  • the inductance of the power supply line 1031 by reducing the inductance of the power supply line 1031, the envelope impedance corresponding to the working bandwidth of the radio frequency power amplifier can be reduced, and the video bandwidth of the radio frequency power amplifier can be improved; however, in order not to affect the For the RF performance of the RF power amplifier, the inductance of the power supply line should not be too low.
  • Fig. 5 is the change curve diagram of the envelope impedance corresponding to the RF power amplifier shown in Fig. 4; as shown in the figure, the abscissa is still the frequency value, and the ordinate is the envelope impedance value; the curve L1 is when the coupling circuit is not added; the change curve of the envelope impedance of the RF power amplifier, the curve L2 is the change curve of the included impedance of the RF power amplifier when the coupling circuit is added; it can be seen from the curve L1 and the curve L2 that when the coupling circuit is added, the RF power The resonant frequency of the amplifier will be higher, therefore, on the left side of the resonant frequency, the impedance value of the envelope impedance corresponding to the fixed frequency decreases.
  • the original envelope impedance value is 5ohm, and the optimized envelope impedance The value is reduced to 4ohm; for another example, for 400MHz, the original envelope impedance value is 21ohm, and the optimized envelope impedance value is reduced to 7ohm, which will greatly reduce the envelope impedance corresponding to the working bandwidth and enhance the radio frequency. Video bandwidth of the power amplifier.
  • FIG. 6 is a schematic structural diagram of another radio frequency power amplifier provided by an embodiment of the present application; wherein, the coupling circuit may also be composed of a resistor, a capacitor and an inductor.
  • the coupling circuit 601 includes a resistor R1, an inductor L7 and a capacitor C5, wherein the resistor R1 is connected with the capacitor in the internal matching circuit.
  • resistor R1 can be made by thin film process
  • inductor L7 can be realized by bond wire
  • C5 is a low-frequency decoupling capacitor
  • the level of reducing the capacitance C5 in the coupling circuit can be at the nF level, and at the same time, the resistance in the coupling circuit 601 and the capacitance in the internal matching circuit can be implemented in the same electronic component, so that the The purpose of reducing the size of the circuit.
  • Fig. 7 is the change curve diagram of the envelope impedance corresponding to the radio frequency power amplifier shown in the above-mentioned Fig. 6; As shown in the figure, the abscissa is still the frequency value, and the ordinate is the envelope impedance value; the curve L3 is when the coupling circuit is not added The change curve of the envelope impedance of the RF power amplifier, the curve L4 is the change curve of the included impedance of the RF power amplifier when the coupling circuit is added; it can be seen from the curve L3 and the curve L4 that when the coupling circuit is added, the RF power The resonant frequency of the amplifier will be higher, and the impedance value of the envelope impedance corresponding to the fixed frequency will decrease.
  • the original envelope impedance value is 5ohm, and the optimized envelope impedance value is reduced to 3ohm; for example, For 400MHz, the original envelope impedance value is 21ohm, and the optimized envelope impedance value is reduced to 7ohm. In this way, the envelope impedance corresponding to the working bandwidth will be greatly reduced, and the video bandwidth of the RF power amplifier will be enhanced.
  • the internal matching circuit is used as the output circuit of the radio frequency power amplifier and is connected to the drain of the transistor, which can increase the output impedance in the working frequency band of the radio frequency power amplifier and improve the radio frequency performance of the radio frequency power amplifier.
  • the circuit is also connected with a coupling circuit.
  • the coupling circuit can reduce the envelope impedance corresponding to the working bandwidth of the RF power amplifier by adjusting the physical quantities of its internal components, and improve the video bandwidth of the RF power amplifier without affecting the RF performance. Amplification performance of RF power amplifiers.
  • This embodiment also provides a coupling circuit for improving the video bandwidth, and the coupling circuit is connected to the internal matching circuit of the transistor in the radio frequency power amplifier;
  • the drain of the transistor is connected to the input end of the internal matching circuit;
  • the coupling circuit is connected to the internal matching circuit;
  • the transistor is used to amplify the radio frequency signal received by the radio frequency power amplifier
  • the internal matching circuit is used to improve the output impedance of the radio frequency power amplifier in the working frequency band, and output the amplified radio frequency signal;
  • the coupling circuit is used for reducing the envelope impedance corresponding to the working bandwidth of the radio frequency power amplifier.
  • the coupling circuit is composed of a capacitor and an inductance; the coupling circuit is used to reduce the packet corresponding to the operating bandwidth of the transistor by adjusting the capacitance value of the capacitor and/or the inductance of the inductance network impedance.
  • the coupling circuit is composed of a resistor, a capacitor and an inductor; the coupling circuit is used to reduce the transistor by adjusting the resistance value of the resistor, the capacitance value of the capacitor and/or the inductance of the inductor The envelope impedance corresponding to the operating bandwidth.
  • the capacitor in the coupling circuit is a low-frequency decoupling capacitor.
  • This embodiment also provides a radio frequency amplifying system.
  • the radio frequency amplifying system includes a radio frequency power amplifier.
  • the radio frequency power amplifier reference may be made to any of the radio frequency power amplifiers in the foregoing embodiments, and details are not repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本申请实施例公开了一种射频功率放大器及提高视频带宽的耦合电路,可应用于射频功率放大器技术领域;该射频功率放大器包括:晶体管、所述晶体管的内匹配电路和耦合电路;其中,所述晶体管的漏极连接所述内匹配电路的输入端,所述耦合电路与所述内匹配电路相连;所述晶体管用于对接收到的射频信号进行放大;所述内匹配电路,用于提高所述晶体管在工作频段内的输出阻抗,并对放大后的射频信号进行输出;所述耦合电路,用于降低所述晶体管的工作带宽所对应的包络阻抗。

Description

一种射频功率放大器及提高视频带宽的耦合电路
本申请要求于2020年12月16日提交中国专利局、申请号为202011488263.3、发明名称为“一种射频功率放大器及提高视频带宽的耦合电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频功率放大器技术领域,尤其涉及一种射频功率放大器及提高视频带宽的耦合电路。
背景技术
随着通信系统的快速发展,具有较宽带宽或多载波调制信号的应用对射频功率放大器的线性化提出了苛刻的要求,表征着射频功率放大器工作带宽的视频带宽(video bandwidth,VBW)以及影响着功放线性度的记忆效应成为衡量射频放大器性能的两个重要因素。其中,视频带宽对功放的工作带宽大小起着决定性作用,具体体现在,视频带宽影响数字预失真(digital pre-distortion,DPD)对功放的可矫正数值;当瞬时信号带宽过宽或者接近决定视频带宽的晶体管谐振频率时,就会严重恶化DPD系统对功放线性矫正的效果。
为提高射频功率放大器的射频性能,一般的,将会在功率放大器内部输入内匹配电路,该内匹配电路一般为低通LCL电路,以实现射频功率放大器在工作频段内的高阻抗,提高射频功率放大器对电源的转换效率;但是,内匹配电路的设计同时会使得功率放大器的包络阻抗增加,从而导致视频带宽降低,进而将影响功率放大器的矫正性能;因此,如何提高携带有内匹配电路的射频功率放大器的视频带宽,优化视频放大器的性能成为亟需解决的问题。
发明内容
本申请实施例提供了一种射频功率放大器及提高视频带宽的耦合电路,用于在保证射频功率放大器的射频性能下,提高射频功率放大器的视频带宽,进而提高射频功率放大器的放大性能。
第一方面,本申请实施例提供了一种射频功率放大器,该射频功率放大器包括晶体管,晶体管的内匹配电路以及耦合电路;其中,内匹配电路设置于晶体管的漏极,并作为该晶体管的输出电路,而耦合电路与内匹配电路相连,当射频功率放大器对射频信号进行放大时,晶体管的栅极用于接收射频信号并对射频信号进行放大,内匹配电路作为输出电路用来增大晶体管的输出阻抗,耦合电路则用来降低晶体管工作带宽对应的包括阻抗,以此提高整个射频功率放大器的视频带宽。
在上述射频功率放大器中,内匹配电路的增加可以提高晶体管的输出阻抗,输出阻抗的提高可以增强能量的转换效率,增加射频信号的输出功率,提高射频功率放大器的射频性能,而耦合电路又能降低晶体管工作带宽对应的包络阻抗,由于耦合电路是与内匹配电路相连,所以耦合电路可以在不影响射频性能的情况下提高晶体管的视频带宽,更加优化了射频功率放大器的放大性能。
在一个可选的实施方式中,射频功率放大器中的内匹配电路,是由LCL低通滤波电路组成的,包括至少一个电感和电容,低通滤波电路可以有效的提高晶体管的输出阻抗,提高射频功率放大器的射频性能。
在一个可选的实施方式中,上述内匹配电路中,LCL低通滤波电路包括两个电感和一个电容,其中,第一电感的一端为内匹配电路的输入端,第二电感的一端为内匹配电路的输出端,两个电感和一个电容呈T型连接,共同连接于一点,然后电容的另一端则做接地处理;由于内匹配电路为晶体管的输出电路,所以第一电感的一端接晶体管的漏极,第二电感的一端作为射频信号的输出端口。
在一个可选的实施方式中,耦合电路需要跟内匹配电路相连接,因此,耦合电路的一端可以与内匹配电路中电感和电容的汇聚点相连接;这样,由于电容的另一端接地,因此相当于为电容并联一个阻抗,由于内匹配电路中电容对应的阻抗相对较小,因此,即便耦合电路的阻抗很小也对整个输出阻抗的影响很小,这样就可以设计耦合电路的阻抗值,尽可能的减小工作带宽对应的包络阻抗,对射频功率放大器的视频带宽进行更好的优化。
在一个可选的实施方式中,耦合电路可以由电容和电感组成,耦合电路可以通过调节电容的电容值和/或电感的电感量提高射频功率放大器的谐振频率点,进而来降低所述晶体管的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,上述耦合电路包括一个电感和一个电容,其中,电感和电容相连接,电感的另一端与内匹配电路中的汇聚点相连接,电容的另一端做接地处理,这样就可以通过设计电感的电感量和/或电容的电容量来优化射频功率放大器的视频带宽。
在一个可选的实施方式中,上述耦合电路中的电容为低频去耦电容。
在一个可选的实施方式中,耦合电路还可以由电阻、电容以及电感来组成,然后调节电阻的电阻值、电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
若耦合电路中包含有电阻时,那么对耦合电路中电容的调节则可以为nF级别,即电容的电容量进行微小变化时,就能达到优化视频带宽的目的,提高了耦合电路的优化性能。
在一个可选的实施方式中,耦合电路可以包括一个电阻、一个电感和一个电容,其中,电阻的一端连接电感的一端,电感的一端连接电容的一端,电阻、电感和电容构成串型结构,然后电阻与内匹配电路中的汇聚点相连接,电容的另一端作接地处理。
在一个可选的实施方式中,上述包括有电阻的耦合电路中,电容可以为低频去耦电容。
在一个可选的实施方式中,射频功率放大器还需要包括供电电路,该供电电路与内匹配电路的输出端相连接,用于为射频功率放大器提供直流电。
本申请实施例第二方面提供了一种提高视频带宽的耦合电路,包括:
该耦合电路与射频功率放大器中晶体管的内匹配电路相连;
其中,所述晶体管的漏极连接所述内匹配电路的输入端;所述耦合电路与所述内匹配电路相连;
所述晶体管,用于对所述射频功率放大器接收到的射频信号进行放大;
所述内匹配电路,用于提高所述射频功率放大器在工作频段内的输出阻抗,并对放大后的射频信号进行输出;
所述耦合电路,用于降低所述射频功率放大器的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,所述耦合电路由电容和电感组成;所述耦合电路用于通过调节电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,所述耦合电路由电阻、电容和电感组成;所述耦合电路用于通过调节电阻的电阻值、电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,所述耦合电路中的电容为低频去耦电容。
本申请实施例第三方面还提供了一种射频放大系统,所述射频放大系统包括射频功率放大器,所述射频功率放大器为可以为第一方面任一实施例所述的射频功率放大器。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,内匹配电路作为射频功率放大器的输出电路,与晶体管的漏极相连,可以在射频功率放大器的工作频段内增大输出阻抗,提高射频功率放大器的射频性能,同时,内匹配电路又连接有耦合电路,耦合电路可以通过调节其内部元件的物理量来减小射频功率放大器工作带宽对应的包络阻抗,在不影响射频性能的前提下提高射频功率放大器的视频带宽,进一步提高了射频功率放大器的放大性能。
附图说明
图1为本申请实施例提供的一种射频功率放大器的结构示意图;
图2为本申请实施例提供的一种射频功率放大器的包络阻抗的变化曲线图;
图3为本申请实施例提供的另一种射频功率放大器的结构示意图;
图4为本申请实施例提供的另一种射频功率放大器的结构示意图;
图5为本申请实施例提供的另一种射频功率放大器的包络阻抗的变化曲线图;
图6为本申请实施例提供的另一种射频功率放大器的结构示意图;
图7为本申请实施例提供的另一种射频功率放大器的包络阻抗的变化曲线图。
具体实施方式
本申请实施例提供了一种射频放大器及提高视频带宽的偏置电路,用于在保证射频放大器的射频性能下,提高射频放大器的视频带宽,进而提高射频放大器的放大性能。
下面将结合本申请中的附图,对本申请中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
射频功率放大器是一个能量转换器,用于将小功率的基带信号进行功率放大,是无线通信网络系统的关键器件之一。一般的,可以通过输出功率、效率、工作带宽等指标来衡量射频功率放大器的好坏,然而,这几个指标在提升时会相互制约,例如要想取得更宽的 工作带宽,就需要牺牲一定的效率和功率,反之亦然。因此如何合理提高射频功率放大器的放大性能,成为值得研究的问题。
一般的,输出功率和效率用来评价射频功率放大器的射频性能,其与射频功率放大器在工作频段对应的输出阻抗相关;在工作频段内,射频功率放大器的输出阻抗越高,其功率转换效率越高,射频性能越好,因此,可以为射频功率放大器的晶体管设计内匹配电路,来提高输出阻抗。
图1为本申请实施例提供的一种射频功率放大器的结构示意图,如图1所示,射频功率放大器包括场效应管(晶体管)101,内匹配电路102和供电电路103。
其中,场效应管101的漏级与内匹配电路的输入端连接,供电电路103与内匹配电路的输出端连接;电容Cds为场效应管101源级和漏极之间的寄生电容;内匹配电路102为低通LCL滤波电路,包括了电感L1、电感L2以及电容C1,三者称“T”型连接,电容C1的一端与电感L1和L2的一端连接,另一端接地;电感L1的另一端为内匹配电路102的输入端,与场效应管101漏极相连;电感L2的另一端为射频功率放大器的输出端;而供电电路103则包括供给线1031,电源1032和电容C2,电源1032通过供给线1031与内匹配电路102的输出端相连,电容C2一端与电源1032的输出端相连,一端接地。
其中,内匹配电路101用来提升射频功率放大器的射频性能,当射频功率放大器在工作频段工作时,内匹配电路中电容和电感可以提高射频工作放大器的输出阻抗,进而提高射频工作放大器的效率;但是内匹配电路同时会增大射频工作放大器的工作带宽对应的包络阻抗,从而使得射频功率放大器对应的视频带宽变小。
供电电路103为射频功率放大器的功率管提供直流电源,其中包括的供给线1031也对应有电感量L3;而供电电路103中的电容C2的电容值较大,示例性的,射频功率放大器的工作频率在100MHz以上就可以视为短路状态,其主要作用为低通滤波,避免射频信号从供电端辐射,造成射频信号损耗。这样,在整个射频功率放大器中,可以通过减少供电电路103中供电线1031的电感量,来降低射频功率放大器的工作带宽对应的包络阻抗;但是,供电线1031的电感量的降低将导致工作频段的输出阻抗降低,影响射频功率放大器的射频性能,因此,供电线的电感量一般要求大,这样将导致视频带宽的优化效果十分有限。
图2为本申请实施例提供的一种射频功率放大器的包络阻抗的变化曲线图;如图2所示,曲线图的横坐标为频率值,纵坐标为包括阻抗的阻抗值;其中,阻抗峰值m5对应的横坐标为射频功率放大器对应的谐振频率点;假设射频功率放大器放大的射频信号为3.4到3.8GHz,那么其对应的工作带宽为400MHz,那么从图中可以看出,如果阻抗峰值往右移,即阻抗峰值对应的谐振频率点越大,那么对于固定频率200MHz/400MHz而言,其对应的包络阻抗的阻抗值将会降低,视频带宽将会增大,DPD校正的线性结果也会越好。
基于上述内容,本申请实施例提供了一种新的射频功率放大器,该射频功率放大器既包括提高射频性能的内匹配电路,还包括优化视频带宽的耦合电路,能够在不影响射频功率放大器的射频功能基础上,增加射频功率放大器的视频带宽,提高该射频功率放大器的放大性能。
图3为本申请实施例提供的另一种射频功率放大器的结构示意图;如图3所示,射频功率放大器包括场效应管(晶体管)301,内匹配电路302和耦合电路303。
其中,场效应管301的漏极与内匹配电路的输入端连接,电容Cds为场效应管301源级和漏极之间的寄生电容;内匹配电路302为低通LCL滤波电路,包括了电感L4、电感L5以及电容C3,三者呈“T”型连接,连接点为点A,电容C3的一端与电感L4和L5的一端相交于点A,另一端接地;电感L4的另一端为内匹配电路302的输入端,与场效应管301漏极相连;电感L5的另一端为射频功率放大器的输出端;而耦合电路303则包括电感L6和电容C4,电感L6的一端连接于点A,另一端与电容C4的一端连接,电容C4的另一端接地。
其中,场效应管(field effect transistor,FET)封装于半导体芯片中,可以由氮化镓GaN、横向扩散金属氧化物半导体LDMOS、砷化镓GaAs等半导体材料制成,其中,Cds为FET源级和漏极之间的寄生电容;内匹配电路302用于提升射频功率放大器的输入阻抗和射频性能,其中,电感L4和L5都可由键合线boud wire实现,电容C3则可以用单层电容(single layer capacitor,SLC)或者金属氧化物半导体电容(metal-oxide-semiconductor capacitor,moscap)实现;而耦合电路303用于提升射频功率放大器的视频带宽;其中,电感L6也可以由键合线boud wire实现,电容C4则可以为低频去耦电容,通过电感L6连接至内匹配电路302中的电容C3上。
下面对上述射频功率放大器的工作原理进行具体描述:内匹配电路302用来提升射频功率放大器的射频性能,当射频功率放大器在工作频段工作时,内匹配电路中电容和电感可以提高射频工作放大器的输出阻抗,进而提高射频工作放大器的效率;此时电容C3所对应的阻抗较输出阻抗而言很小,那么在点A处连接耦合电路303,相当于为电容C3并联一个阻抗,这样,耦合电路303的阻抗即便设计很低,也对输出阻抗的影响是很小的,因此,在工作频带中,耦合电路303的添加对整个射频功率放大器的输出阻抗影响较小,可以保证其射频性能。
耦合电路303用于提高射频功率放大器的视频带宽,通过调节电感L6的电感量以及电容C4的电容量,来降低射频功率放大器工作带宽对应的包络阻抗,提高视频带宽,同时电感L6和电容C4的添加,可以使得射频功率放大器的谐振频率增加,这样,可以使得包络阻抗变化曲线沿横坐标(频率值)右移,使得固定频率200MHz/400MHz下,其对应的包络阻抗的阻抗值将会降低,视频带宽将会增大,DPD校正的线性结果也会越好。
可以理解的,由于耦合电路303对射频功率放大器的输出阻抗影响较小,因此可以设计耦合电路303对应的阻抗尽可能的降低,这样耦合电路303对视频带宽的优化程度将更高,这样,可以提高射频功率放大器的放大性能。
其中,射频功率放大器还可以包括供电电路,如图4所示,供电电路404用于给功率管供电,其中包括供电电源401、电容402以及供给线403;其中,供电电源用于给功率管提供直流电,电容402的电容值较大,示例性的,射频功率放大器的工作频率在100MHz以上可以就视为短路状态,其主要作用为低通滤波,避免射频信号从供电端辐射,造成射频信号损耗。供给线403对应有电感量,可以理解的,可以通过减小供电线1031的电感量,来降低射频功率放大器的工作带宽对应的包络阻抗,提高射频功率放大器的视频带宽;但是,为了不影响射频功率放大器的射频性能,供电线的电感量不能太低。
图5为上述图4所示的射频功率放大器对应的包络阻抗的变化曲线图;如图所示,横 坐标仍然为频率值,纵坐标为包络阻抗值;曲线L1为未添加耦合电路时射频功率放大器的包络阻抗的变化曲线图,曲线L2则为添加有耦合电路时射频功率放大器的包括阻抗的变化曲线图;由曲线L1和曲线L2可以看出,当添加耦合电路后,射频功率放大器的谐振频率将更高,因此,在谐振频率的左侧,固定频率对应的包络阻抗的阻抗值降低,例如,针对200MHz,原来的包络阻抗值为5ohm,而优化后的包络阻抗值则降为了4ohm;又例如,针对400MHz,原来的包络阻抗值为21ohm,而优化后的包络阻抗值则降为了7ohm,这样,将大大降低工作带宽对应的包络阻抗,增强了射频功率放大器的视频带宽。
图6为本申请实施例提供的另一种射频功率放大器的结构示意图;其中,耦合电路还可以由电阻、电容和电感组成,如图6所示,耦合电路601包括电阻R1、电感L7和电容C5,其中,电阻R1与内匹配电路中的电容连接。
其中,电阻R1可以薄膜工艺制作,电感L7可以由bond wire实现,C5是低频去耦电容。可以理解的,射频功率放大器的其他部分的结构与图3和图4所示实施例中的结构类似,在此不做赘述。
当耦合电路601包括有电阻R1时,降低耦合电路中电容C5的级别可以为nF级别,同时,耦合电路601中的电阻可以与内匹配电路中的电容在同一电子元件中实现,这样就可以实现减小电路体积的目的。
图7为上述图6所示的射频功率放大器对应的包络阻抗的变化曲线图;如图所示,横坐标仍然为频率值,纵坐标为包络阻抗值;曲线L3为未添加耦合电路时射频功率放大器的包络阻抗的变化曲线图,曲线L4则为添加有耦合电路时射频功率放大器的包括阻抗的变化曲线图;由曲线L3和曲线L4可以看出,当添加耦合电路后,射频功率放大器的谐振频率将更高,固定频率对应的包络阻抗的阻抗值降低,例如,针对200MHz,原来的包络阻抗值为5ohm,而优化后的包络阻抗值则降为了3ohm;又例如,针对400MHz,原来的包络阻抗值为21ohm,而优化后的包络阻抗值则降为了7ohm,这样,将大大降低工作带宽对应的包络阻抗,增强了射频功率放大器的视频带宽。
在上述实施例中,内匹配电路作为射频功率放大器的输出电路,与晶体管的漏极相连,可以在射频功率放大器的工作频段内增大输出阻抗,提高射频功率放大器的射频性能,同时,内匹配电路又连接有耦合电路,耦合电路可以通过调节其内部元件的物理量来减小射频功率放大器工作带宽对应的包络阻抗,在不影响射频性能的前提下提高射频功率放大器的视频带宽,进一步提高了射频功率放大器的放大性能。
本实施例还提供了一种提高视频带宽的耦合电路,该耦合电路与射频功率放大器中晶体管的内匹配电路相连;
其中,所述晶体管的漏极连接所述内匹配电路的输入端;所述耦合电路与所述内匹配电路相连;
所述晶体管,用于对所述射频功率放大器接收到的射频信号进行放大;
所述内匹配电路,用于提高所述射频功率放大器在工作频段内的输出阻抗,并对放大后的射频信号进行输出;
所述耦合电路,用于降低所述射频功率放大器的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,所述耦合电路由电容和电感组成;所述耦合电路用于通过 调节电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,所述耦合电路由电阻、电容和电感组成;所述耦合电路用于通过调节电阻的电阻值、电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
在一个可选的实施方式中,所述耦合电路中的电容为低频去耦电容。
本实施例还提供了一种射频放大系统,该射频放大系统包括射频功率放大器,射频功率放大器可以参考上述实施例中任一射频功率放大器,具体不做赘述。
需要说明的是,以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种射频功率放大器,其特征在于,所述射频功率放大器包括:晶体管、所述晶体管的内匹配电路和耦合电路;
    其中,所述晶体管的漏极连接所述内匹配电路的输入端;所述耦合电路与所述内匹配电路相连;
    所述晶体管,用于对接收到的射频信号进行放大;
    所述内匹配电路,用于提高所述晶体管在工作频段内的输出阻抗,并对放大后的射频信号进行输出;
    所述耦合电路,用于降低所述晶体管的工作带宽所对应的包络阻抗。
  2. 根据权利要求1所述的射频功率放大器,其特征在于,所述晶体管的内匹配电路包括LCL低通滤波电路,所述LCL低通滤波电路由电容和电感组成。
  3. 根据权利要求2所述的射频功率放大器,其特征在于,所述LCL低通滤波电路包括第一电感、第二电感和第一电容;
    其中,所述第一电感的第一端为所述内匹配电路的输入端,与所述晶体管的漏极相连;所述第一电感的第二端与所述第二电感的第一端相连,所述第二电感的第二端为所述内匹配电路的输出端;
    所述第一电容的第一端与所述第一电感的第二端相连,所述第一电容的第二端接地。
  4. 根据权利要求3所述的射频功率放大器,其特征在于,所述耦合电路的一端与所述第一电感的第二端相连。
  5. 根据权利要求4所述的射频功率放大器,其特征在于,所述耦合电路由电容和电感组成;所述耦合电路用于通过调节电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
  6. 根据权利要求5所述的射频功率放大器,其特征在于,所述耦合电路包括第三电感和第二电容;
    其中,所述第三电感的第一端连接所述第一电感的第二端;所述第三电感的第二端连接所述第二电容的第一端;所述第二电容的第二端接地。
  7. 根据权利要求6所述的射频功率放大器,其特征在于,所述第二电容为低频去耦电容。
  8. 根据权利要求4所述的射频功率放大器,其特征在于,所述耦合电路由电阻、电容和电感组成;所述耦合电路用于通过调节电阻的电阻值、电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
  9. 根据权利要求8所述的射频功率放大器,其特征在于,所述耦合电路包括第一电阻、第四电感和第三电容;
    其中,所述第一电阻的第一端连接所述第一电感的第二端,所述第一电阻的第二端连接所述第四电感的第一端;
    所述第四电感的第二端连接所述第三电容的第一端;所述第三电容的第二端接地。
  10. 根据权利要求9所述的射频功率放大器,其特征在于,所述第三电容为低频去耦电容。
  11. 根据权利要求1至10任一项所述的射频功率放大器,其特征在于,所述射频功率放大器还包括供电电路,所述供电电路与所述内匹配电路的输出端相连;
    所述供电电路用于为所述射频功率放大器供电。
  12. 一种提高视频带宽的耦合电路,其特征在于,所述耦合电路与射频功率放大器中晶体管的内匹配电路相连;
    其中,所述晶体管的漏极连接所述内匹配电路的输入端;所述耦合电路与所述内匹配电路相连;
    所述晶体管,用于对所述射频功率放大器接收到的射频信号进行放大;
    所述内匹配电路,用于提高所述射频功率放大器在工作频段内的输出阻抗,并对放大后的射频信号进行输出;
    所述耦合电路,用于降低所述射频功率放大器的工作带宽所对应的包络阻抗。
  13. 根据权利要求12所述的耦合电路,其特征在于,所述耦合电路由电容和电感组成;所述耦合电路用于通过调节电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
  14. 根据权利要求12所述的耦合电路,其特征在于,所述耦合电路由电阻、电容和电感组成;所述耦合电路用于通过调节电阻的电阻值、电容的电容值和/或电感的电感量来降低所述晶体管的工作带宽所对应的包络阻抗。
  15. 根据权利要求13至14任一项所述的耦合电路,其特征在于,所述耦合电路中的电容为低频去耦电容。
  16. 一种射频放大系统,其特征在于,所述射频放大系统包括射频功率放大器,所述射频功率放大器为权利要求1至11任一项所述的射频功率放大器。
PCT/CN2021/138317 2020-12-16 2021-12-15 一种射频功率放大器及提高视频带宽的耦合电路 WO2022127821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21905748.6A EP4239882A4 (en) 2020-12-16 2021-12-15 HIGH FREQUENCY POWER AMPLIFIER AND COUPLING CIRCUIT TO INCREASE VIDEO BANDWIDTH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011488263.3A CN114640315A (zh) 2020-12-16 2020-12-16 一种射频功率放大器及提高视频带宽的耦合电路
CN202011488263.3 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022127821A1 true WO2022127821A1 (zh) 2022-06-23

Family

ID=81945447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138317 WO2022127821A1 (zh) 2020-12-16 2021-12-15 一种射频功率放大器及提高视频带宽的耦合电路

Country Status (3)

Country Link
EP (1) EP4239882A4 (zh)
CN (1) CN114640315A (zh)
WO (1) WO2022127821A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546980A (zh) * 2017-09-21 2019-03-29 株式会社村田制作所 功率放大电路
CN110504922A (zh) * 2018-05-18 2019-11-26 恩智浦美国有限公司 宽带功率晶体管装置和放大器及其制造方法
CN111313854A (zh) * 2020-02-25 2020-06-19 广州慧智微电子有限公司 一种射频功率放大器电路及增益控制方法
US20200295716A1 (en) * 2019-03-15 2020-09-17 Kabushiki Kaisha Toshiba Radio frequency circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692363B2 (en) * 2015-10-21 2017-06-27 Nxp Usa, Inc. RF power transistors with video bandwidth circuits, and methods of manufacture thereof
US10637405B2 (en) * 2018-08-14 2020-04-28 Nxp Usa, Inc. Wideband biasing of high power amplifiers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546980A (zh) * 2017-09-21 2019-03-29 株式会社村田制作所 功率放大电路
CN110504922A (zh) * 2018-05-18 2019-11-26 恩智浦美国有限公司 宽带功率晶体管装置和放大器及其制造方法
US20200295716A1 (en) * 2019-03-15 2020-09-17 Kabushiki Kaisha Toshiba Radio frequency circuit
CN111313854A (zh) * 2020-02-25 2020-06-19 广州慧智微电子有限公司 一种射频功率放大器电路及增益控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4239882A4

Also Published As

Publication number Publication date
EP4239882A4 (en) 2024-04-10
EP4239882A1 (en) 2023-09-06
CN114640315A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN107425814B (zh) 一种基于补偿寄生电容的宽带Doherty功率放大器
US8354882B2 (en) Doherty amplifier with input network optimized for MMIC
US8717102B2 (en) RF device with compensatory resonator matching topology
CN102480272B (zh) 射频放大器
JP2945833B2 (ja) マイクロ波ドハティ型増幅器
US20100001802A1 (en) Integrated doherty type amplifier arrangement with high power efficiency
CN107517039B (zh) 毫米波GaN功放射频预失真线性化器
US9130511B2 (en) Power amplifier and linearization techniques using active and passive devices
WO2006016299A1 (en) Integrated f-class amplifier with output parasitic capacitance compensation
WO2021212818A1 (zh) 一种宽带多赫蒂放大器
CN113938102A (zh) 一种宽带高效率的功率放大器及实现方法
Yamaguchi et al. A wideband and high efficiency Ka-band GaN Doherty power amplifier for 5G communications
Seo et al. Ultrabroadband linear power amplifier using a frequency-selective analog predistorter
CN110719078A (zh) 一种用于汽车雷达收发机的毫米波功率放大器
CN112865717B (zh) 一种基于自适应线性化技术的高增益功率放大器
WO2022127821A1 (zh) 一种射频功率放大器及提高视频带宽的耦合电路
CN113630092B (zh) 一种反射式可调预失真器
CN114978045A (zh) 一种双频Doherty功率放大器及射频分立器件
Wilson et al. Enhanced instantaneous bandwidth LDMOS RF power transistor using integrated passive devices
CN110417355B (zh) 一种集成高阻线多赫蒂放大器
WO2023216071A1 (zh) 一种功率放大电路以及射频系统
CN219459021U (zh) 陶瓷管壳封装功率放大器的内匹配电路
CN218549870U (zh) 一种射频功率放大器和射频前端模组
CN116647199B (zh) 调谐变压器及包含该调谐变压器的Doherty功率放大器
Ahmed et al. A high performance in-package harmonic terminated class-J Doherty power amplifier for 3.5 GHz mMIMO applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021905748

Country of ref document: EP

Effective date: 20230601

NENP Non-entry into the national phase

Ref country code: DE