WO2022127633A1 - 一种多路偶发瞬态的局部放电快速检测装置 - Google Patents

一种多路偶发瞬态的局部放电快速检测装置 Download PDF

Info

Publication number
WO2022127633A1
WO2022127633A1 PCT/CN2021/135664 CN2021135664W WO2022127633A1 WO 2022127633 A1 WO2022127633 A1 WO 2022127633A1 CN 2021135664 W CN2021135664 W CN 2021135664W WO 2022127633 A1 WO2022127633 A1 WO 2022127633A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
partial discharge
cpu
amplifier
capacitor
Prior art date
Application number
PCT/CN2021/135664
Other languages
English (en)
French (fr)
Inventor
石泉
卢启付
汤龙华
冉旺
傅明
付东
邓威
Original Assignee
南方电网电力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网电力科技股份有限公司 filed Critical 南方电网电力科技股份有限公司
Priority to US18/039,219 priority Critical patent/US20240003958A1/en
Publication of WO2022127633A1 publication Critical patent/WO2022127633A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • the present application relates to the technical field of electric power detection, and in particular, to a device for rapid detection of partial discharge of multi-channel occasional transients.
  • the live partial discharge detection technology is currently used to repair the power equipment, which can effectively avoid various problems caused by power outages. It mainly includes transient ground voltage detection, ultrasonic detection, high-frequency current detection, UHF current detection and other methods. These detection methods need to be combined with partial discharge detection equipment to adopt intermittent acquisition or continuous acquisition to realize the acquisition and detection of partial discharge signals. detection.
  • intermittent sampling partial discharge detection equipment due to the characteristics of partial discharge signals, some partial discharge signals may be missed; for continuous sampling partial discharge detection equipment, due to the high frequency of partial discharge signals, transient and other characteristics, the sampling frequency of 3GHz is required, which is generally realized by means of high-cost high-speed oscilloscopes and high-speed acquisition cards.
  • the purpose of the present application is to provide a multi-channel accidental transient partial discharge rapid detection device, which is used to solve the technical problems of easy missed detection and high cost in the prior art.
  • the present application provides a multi-channel accidental transient partial discharge rapid detection device, the device includes: a CPU and a plurality of partial discharge detection circuits;
  • each partial discharge detection circuit receives the partial discharge pulse signal, and the output terminal (Q) of each partial discharge detection circuit is respectively connected with each input terminal of the CPU one by one;
  • the partial discharge detection circuit includes: a partial discharge pulse signal processing module, a reference voltage processing module, a comparator (U2), and a trigger (U3);
  • the PD pulse signal processing module is connected to the input terminal (A) of the comparator (U2), the reference voltage processing module is connected to the input terminal (B) of the comparator (U2), and the comparator
  • the output terminal (Y) of (U2) is connected with the input terminal (CP) of the flip-flop (U3);
  • the PD pulse signal processing module is used for: sequentially performing voltage amplitude limit protection processing, impedance matching processing, band-pass filtering processing, amplification processing and filtering processing on the PD pulse signal; In: converting, amplifying and filtering the reference voltage in sequence;
  • the comparator (U2) is used for: comparing the processed PD pulse signal with the processed reference voltage, and outputting a first level signal to the flip-flop (U3);
  • the flip-flop (U3) is used to: after processing and locking the level signal, send a second level signal to the input end of the CPU through the output end (Q);
  • the end (CLR) of the flip-flop (U3) is connected to the first output end of the CPU, for receiving the first input of the CPU after the input end of the CPU receives the second level signal
  • the pulse signal sent by the terminal makes the output terminal (Q) of the flip-flop (U3) return to the original level.
  • the PD pulse signal processing module includes: a diode (D1), an impedance matching resistor (R1), a band-pass filter, an impedance matching resistor (R2), a resistor (RG1), an amplifier (U1) and a first filter circuit;
  • Both ends of the diode (D1) are respectively connected to the end (IN+) and the input end (IN-), and both ends of the impedance matching resistor (R1) are respectively connected to both ends of the diode (D1)
  • the band-pass filter is connected in parallel with the impedance matching resistor (R1)
  • the two ends of the impedance matching resistor (R2) are respectively connected to the two ends of the band-pass filter
  • the two input ends of the amplifier are respectively connected to both ends of the impedance matching resistor (R2)
  • the output end (OUT) of the amplifier is connected to the first end of the first filter circuit
  • the second end of the first filter circuit is connected to the comparator
  • the input terminal (A) of the amplifier (U2) is connected, and the resistor (RG1) is connected in parallel with the two input terminals of the amplifier.
  • the bandpass filter includes: a capacitor (C1), a capacitor (C2) and an inductor (L1);
  • Two ends of the capacitor (C1) are respectively connected to two ends of the impedance matching resistor (R1), one end of the inductor (L1) is connected to one end of the capacitor (C1), and the The other end is connected to one end of the capacitor (C2), the other end of the capacitor (C2) is connected to the other end of the capacitor (C1), and the two ends of the impedance matching resistor (R2) are respectively connected to the across the capacitor (C2).
  • the first filter circuit includes: a resistor (R3), a resistor (R4) and a capacitor (C3);
  • One end of the resistor (R3) is connected to the output end (OUT) of the amplifier, and the other end is respectively connected to one end of the resistor (R4), one end of the capacitor (C3) and the comparator (U2).
  • the input terminal (A) is connected;
  • the reference voltage processing module includes: a conversion circuit (U5), an amplifier circuit, and a second filter circuit;
  • the input end of the conversion circuit (U5) is connected to the second output end of the CPU for receiving the reference voltage sent by the second output of the CPU, and the output end of the conversion circuit (U5) is connected to the second output end of the CPU.
  • the first end of the amplifier circuit is connected, the output end of the amplifier is connected to the first end of the second filter circuit, and the second end of the second filter circuit is connected to the input end (U2) of the comparator (U2). B) connected.
  • the amplifying circuit includes: a resistor (R6), a resistor (R7), a resistor (R8), and an amplifier (U4);
  • One end of the resistor (R6) is connected to the output end of the conversion circuit (U5), and the other end of the resistor (R6) is connected to the first input end of the amplifier (U4); the amplifier (U4)
  • the second input end of the resistor (R7) is connected to one end of the resistor (R7) and one end of the resistor (R8), the other end of the resistor (R8) is grounded, and the other end of the resistor (R7) is connected to the amplifier (
  • the output terminal of U4) is connected to the output terminal of the amplifier (U4), and the output terminal of the amplifier (U4) is connected to the second filter circuit.
  • the second filter circuit includes: a capacitor (C4), a resistor (R5), and a resistor (R6);
  • One end of the resistor (R5) is connected to the output end of the amplifier (U4), and the other end is respectively connected to one end of the resistor (R6), one end of the capacitor (C4) and the comparator (U2).
  • the input terminal (B) is connected;
  • it also includes: a touch display;
  • the touch display is electrically connected to the CPU, and is used for performing detection map or detection data display on the PD pulse signal processed by each partial discharge detection circuit, and the types of the detection map include: trend graph, Phase diagram, PRPD diagram, PRPS diagram.
  • it also includes: a data storage;
  • the data memory is electrically connected to the CPU, and is used for storing the detection map or the detection data.
  • it also includes: a keyboard, a Bluetooth communication module and a power supply;
  • the keyboard is electrically connected to the CPU for inputting control instructions;
  • the Bluetooth communication module is electrically connected to the CPU for transmitting the detection map or the detection data;
  • the power supply is used for all The multi-channel occasional transient partial discharge rapid detection device is powered.
  • the present application provides a multi-channel accidental transient partial discharge rapid detection device, including: a CPU and several partial discharge detection circuits; each partial discharge detection circuit is connected to multiple ports of the CPU one by one, and the user can according to The number of circuits to be detected sets the number of partial discharge detection circuits, so that all circuits to be detected are detected.
  • the PD pulse signal of the circuit to be detected is filtered and amplified by the PD pulse signal processing module in the PD detection circuit, and then input to the comparator.
  • the reference voltage is sent to the reference voltage processing module by the CPU for processing and then input to the comparator.
  • the comparator makes the comparator process according to the partial discharge pulse signal and the reference voltage and then input it to the trigger for processing.
  • the CPU determines whether partial discharge occurs in the circuit to be detected according to the level signal at the output of the trigger.
  • the detection device of the present application is simple in structure and low in cost, and can continuously and rapidly detect occasional transient partial discharge signals without missing detection, thereby solving the technical problems of easy missed detection and high cost in the prior art.
  • FIG. 1 is a schematic structural diagram of a device for fast detection of partial discharges for multiple occasional transients provided by an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a partial discharge detection circuit according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a partial discharge detection circuit packaged as a module according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a plurality of partial discharge detection modules according to an embodiment of the present application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • a multi-channel accidental transient partial discharge rapid detection device provided by an embodiment of the present application includes: a CPU and several partial discharge detection circuits;
  • each partial discharge detection circuit receives the partial discharge pulse signal, and the output terminal (Q) of each partial discharge detection circuit is respectively connected with each input terminal of the CPU one by one.
  • the partial discharge detection circuit includes: a partial discharge pulse signal processing module, a reference voltage processing module, a comparator (U2), and a trigger (U3).
  • the PD pulse signal processing module is connected to the input terminal (A) of the comparator (U2), the reference voltage processing module is connected to the input terminal (B) of the comparator (U2), and the output terminal (Y) of the comparator (U2) is connected to The input (CP) of the flip-flop (U3) is connected.
  • the user can set the number of partial discharge detection circuits according to the actual number of partial discharge pulse signals of the circuit to be tested, as shown in Figure 4.
  • the PD pulse signal processing module is used for: sequentially performing voltage amplitude limit protection processing, impedance matching processing, band-pass filtering processing, amplification processing and filtering processing on the PD pulse signal;
  • the reference voltage processing module is used for: sequentially processing the reference voltage Conversion processing, amplification processing, and filtering processing are performed.
  • the comparator (U2) is used for: comparing the processed PD pulse signal with the processed reference voltage, and outputting a first level signal to the flip-flop (U3).
  • the flip-flop (U3) is used to: after processing and locking the level signal, send the second level signal to the input terminal of the CPU through the output terminal (Q).
  • the terminal (CLR) of the flip-flop (U3) is connected to the first output terminal of the CPU, and is used to receive the pulse signal sent by the first input terminal of the CPU after the input terminal of the CPU receives the second level signal, so that the flip-flop ( The output terminal (Q) of U3) is restored to the original level.
  • the working principle of the multi-channel accidental transient partial discharge rapid detection device of the present application is:
  • the CPU outside the partial discharge detection circuit controls the DA to output a reference voltage value through the D15..D0 data lines of the DA converter in the reference voltage processing module. After conditioning by the PD pulse signal processing module, it is input to the input terminal A of the comparator U2. When the amplitude of the PD signal is greater than the amplitude of the reference voltage, the output terminal Y of the comparator U2 outputs a high level.
  • the output terminal Y of the comparator U2 When the amplitude is less than the amplitude of the reference voltage, the output terminal Y of the comparator U2 outputs a low level, and when the output terminal Y of the comparator U2 changes from a low level to a high level, that is, at the CP input terminal of the flip-flop U3 When a positive pulse is generated, the output terminal Q of the flip-flop U3 will become a high level. At this time, when the level of the output terminal Y of the comparator U2 changes, since the output state of the flip-flop U3 has been locked, its output The level of terminal Q no longer changes, and it is still high level.
  • the external CPU can determine the relationship between the PD amplitude of the partial discharge pulse and the reference voltage amplitude by reading the state of the level of the output terminal Q of U3. Detection of partial discharge pulse signals. In order to detect the next partial discharge pulse signal, the external CPU controls CLR1 to output a positive pulse to the CLR of U3, and sets the level of the output terminal Q of U3 to a low level, thereby releasing the output terminal Q of the flip-flop U3 locked state.
  • the present application provides a multi-channel accidental transient partial discharge rapid detection device, including: a CPU and several partial discharge detection circuits; each partial discharge detection circuit is connected to multiple ports of the CPU one by one, and the user can according to The number of circuits to be detected sets the number of partial discharge detection circuits, so that all circuits to be detected are detected.
  • the PD pulse signal of the circuit to be detected is filtered and amplified by the PD pulse signal processing module in the PD detection circuit, and then input to the comparator.
  • the reference voltage is sent to the reference voltage processing module by the CPU for processing and then input to the comparator.
  • the comparator makes the comparator process according to the PD pulse signal and the reference voltage and then input it to the trigger for processing.
  • the CPU determines whether partial discharge occurs in the circuit to be detected according to the level signal at the output of the trigger.
  • the detection device of the present application is simple in structure and low in cost, and can continuously and quickly detect occasional transient partial discharge signals without missing detection, thereby solving the technical problems of easy missed detection and high cost in the prior art.
  • the PD pulse signal processing module includes: a diode (D1), an impedance matching resistor (R1), a band-pass filter, an impedance matching resistor (R2), a resistor (RG1), an amplifier ( U1) and the first filter circuit; the two ends of the diode (D1) are connected to the terminal (IN+) and the input terminal (IN-) respectively, and the two ends of the impedance matching resistor (R1) are respectively connected to the two ends of the diode (D1),
  • the band-pass filter is connected in parallel with the impedance matching resistor (R1), the two ends of the impedance matching resistor (R2) are respectively connected to the two ends of the band-pass filter, and the two input ends of the amplifier are respectively connected to the two ends of the impedance matching resistor (R2).
  • the output terminal (OUT) of the amplifier is connected to the first terminal of the first filter circuit
  • the second terminal of the first filter circuit is connected to the input terminal (A) of the comparator (U2)
  • the resistor (RG1) is connected in parallel with the amplifier two inputs.
  • the partial discharge pulse signal PD is protected by the transient voltage protection diode D1 for amplitude limit protection to prevent the high voltage signal from entering and damaging the detection circuit;
  • the resistor R1 is the impedance matching resistance of the sensor, so that the partial discharge pulse signal PD can be No attenuation is introduced into the detection loop;
  • the band-pass filter has a band-pass range of 3MHz to 1.5GHz, which filters out power frequency interference signals and other narrow-band interference signals, and increases the anti-interference ability of the detection circuit; resistance R2 is the impedance of the filter.
  • U1 is a high-speed, high-precision instrumentation amplifier, which can amplify weak signals and high-frequency signals;
  • the resistance (RG1) is used to adjust the output gain of the instrumentation amplifier ;
  • the first filter circuit is used to filter the output signal of the instrumentation amplifier to improve the anti-interference ability of the detection circuit.
  • the band-pass filter includes: a capacitor (C1), a capacitor (C2) and an inductor (L1);
  • Both ends of the capacitor (C1) are connected to the two ends of the impedance matching resistor (R1) respectively, one end of the inductor (L1) is connected to one end of the capacitor (C1), and the other end of the inductor (L1) is connected to one end of the capacitor (C2) , the other end of the capacitor (C2) is connected to the other end of the capacitor (C1), and the two ends of the impedance matching resistor (R2) are respectively connected to the two ends of the capacitor (C2).
  • the first filter circuit includes: a resistor (R3), a resistor (R4) and a capacitor (C3);
  • One end of the resistor (R3) is connected to the output end (OUT) of the amplifier, and the other end is respectively connected to one end of the resistor (R4), one end of the capacitor (C3) and the input end (A) of the comparator (U2);
  • the other end of the resistor (R4) and the other end of the capacitor (C3) are connected to ground.
  • the reference voltage processing module includes: a conversion circuit (U5), an amplification circuit, and a second filter circuit; the input end of the conversion circuit (U5) is connected to the second output end of the CPU, for Receive the reference voltage sent by the second input of the CPU, the output end of the conversion circuit (U5) is connected to the first end of the amplifier circuit, the output end of the amplifier is connected to the first end of the second filter circuit, and the second end of the second filter circuit is connected.
  • the terminal is connected to the input terminal (B) of the comparator (U2).
  • U5 is a high-speed DA conversion circuit, and the input end of U5 is connected to the 16-bit data signal (reference voltage) of the CPU; the amplifier circuit is used to amplify the output signal of the DA conversion circuit U5; the second filter circuit is used for The output signal of the amplifying circuit is filtered to improve the anti-interference ability of the detection circuit.
  • the amplifying circuit includes: a resistor (R6), a resistor (R7), a resistor (R8), and an amplifier (U4);
  • One end of the resistor (R6) is connected to the output end of the conversion circuit (U5), the other end of the resistor (R6) is connected to the first input end of the amplifier (U4); the second input end of the amplifier (U4) is connected to the resistor (R7) One end of the resistor (R8) is connected to one end of the resistor (R8), the other end of the resistor (R8) is grounded, the other end of the resistor (R7) is connected to the output end of the amplifier (U4), and the output end of the amplifier (U4) is connected to the second filter circuit. .
  • the second filter circuit includes: a capacitor (C4), a resistor (R5), and a resistor (R6); one end of the resistor (R5) is connected to the output end of the amplifier (U4), and the other end is connected to the output end of the amplifier (U4). They are respectively connected to one end of the resistor (R6), one end of the capacitor (C4) and the input end (B) of the comparator (U2); the other end of the resistor (R6) and the other end of the capacitor (C4) are both grounded.
  • the partial discharge detection circuit of the present application can be packaged as a detection module, as shown in FIG. 3 , the input terminal includes: IN+, IN-, D15..D0 (input terminal of the conversion circuit U5), CLR; output The terminal includes Q, power supply V+, V-.
  • Multiple partial discharge detection circuits can share one data line, that is to say, one output port of the CPU can be connected to the input terminals of multiple partial discharge detection circuits U5, as shown in FIG. 4 .
  • the multi-channel accidental transient partial discharge rapid detection device also includes a touch display; the touch display is electrically connected to the CPU, and is used to detect the atlas of the partial discharge pulse signal processed by each partial discharge detection circuit.
  • the types of detection patterns include: trend diagram, phase diagram, PRPD diagram, PRPS diagram.
  • the multi-channel accidental transient partial discharge rapid detection device provided by the present application further includes: a data memory; the data memory is electrically connected to the CPU, and is used for storing the detection map or the detection data.
  • the multi-channel occasional transient partial discharge rapid detection device further comprises: a keyboard, a Bluetooth communication module and a power supply; the keyboard is electrically connected to the CPU for inputting control instructions; the Bluetooth communication module is electrically connected to the CPU, It is used to transmit the detection map or detection data; the power supply is used to supply power to the partial discharge rapid detection device of multiple occasional transients.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种多路偶发瞬态的局部放电快速检测装置,包括:CPU和若干个局部放电检测电路;每个局部放电检测电路的分别与CPU的多个端口一一连接。首先局放脉冲信号通过局部放电检测电路中的局放脉冲信号处理模块进行滤波、放大等处理后输入到比较器,而基准电压经CPU发送到基准电压处理模块进行放大、滤波等处理后输入到比较器,使得比较器根据局放脉冲信号与基准电压进行处理后输入到触发器,最后CPU根据触发器输出端的电平信号确定待检测电路是否发生局部放电。本申请的检测装置结构简单、成本较低,而且能对偶发瞬态局部放电信号进行连续快速的检测且不会漏检,从而解决了现有技术容易漏检、成本较高的技术问题。

Description

一种多路偶发瞬态的局部放电快速检测装置
本申请要求于2020年12月16日提交中国专利局、申请号为202011487015.7、发明名称为“一种多路偶发瞬态的局部放电快速检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力检测技术领域,尤其涉及一种多路偶发瞬态的局部放电快速检测装置。
背景技术
近年来随着高压电力设备种类多样化、体积小型化以及电压等级的提高,电力设备的运行故障也逐年增加,原有对电力设备采用的是定期停电检修方式,该方式存在“小病大治,无病也治”的现象,同时随着电网规模的迅速扩大,定期检修的工作量剧增,检修人员紧缺、停电安排困难问题日益突出,因此传统的定期停电检修的方式越来越难以适应电网发展的需要。
为了克服上述问题,目前采用带电局部放电检测技术对电力设备进行检修,该方式可以有效避免停电带来的各种问题。主要包括暂态地电压检测、超声波检测、高频电流检测、特高频电流检测等方法,这些检测方法需要结合局放检测设备,采取间歇采集或连续采集的方式,实现局放信号的采集和检测。然而,对于间歇性采样的局放检测设备,由于局放信号的特点,对于有的局放信号会造成漏检;对于连续性采样的局放检测设备,由于局放信号频率高,瞬态性等特点,需要3GHz的采样频率,目前普遍采用成本较高的高速示波器和高速采集卡的方式实现。
因此,提供一种成本较低且对局部放电不会漏检的局部放电检测装置是本领域亟需的。
发明内容
本申请的目的在于提供一种多路偶发瞬态的局部放电快速检测装置, 用于解决现有技术容易漏检、成本较高的技术问题。
有鉴于此,本申请提供了一种多路偶发瞬态的局部放电快速检测装置,所述装置包括:CPU和若干个局部放电检测电路;
每个所述局部放电检测电路的输入端均接收局放脉冲信号,每个所述局部放电检测电路的输出端(Q)分别与所述CPU的每个输入端一一相连;
所述局部放电检测电路包括:局放脉冲信号处理模块、基准电压处理模块、比较器(U2)、触发器(U3);
所述局放脉冲信号处理模块与所述比较器(U2)的输入端(A)相连,所述基准电压处理模块与所述比较器(U2)的输入端(B)相连,所述比较器(U2)的输出端(Y)与所述触发器(U3)的输入端(CP)相连;
所述局放脉冲信号处理模块用于:对所述局放脉冲信号依次进行电压幅值限位保护处理、阻抗匹配处理、带通滤波处理、放大处理和滤波处理;所述基准电压处理模块用于:对基准电压依次进行转换处理、放大处理和滤波处理;
所述比较器(U2)用于:对处理后的所述局放脉冲信号与处理后的所述基准电压进行比较,并向所述触发器(U3)输出第一电平信号;
所述触发器(U3)用于:对所述电平信号进行处理以及锁定后,通过所述输出端(Q)向所述CPU的输入端发送第二电平信号;
所述触发器(U3)的端(CLR)与所述CPU的第一输出端相连,用于当所述CPU的输入端接收所述第二电平信号后,接收所述CPU的第一输入端发送的脉冲信号,使得所述触发器(U3)的输出端(Q)恢复为原电平。
可选地,所述局放脉冲信号处理模块包括:二极管(D1)、阻抗匹配电阻(R1)、带通滤波器、阻抗匹配电阻(R2)、电阻(RG1)、放大器(U1)和第一滤波电路;
所述二极管(D1)的两端分别与所述端(IN+)和输入端(IN-)相连,所述阻抗匹配电阻(R1)的两端分别连接于所述二极管(D1)的两端,所述带通滤波器与所述阻抗匹配电阻(R1)并联,所述阻抗匹配电阻(R2)的两端分别连接于所述带通滤波器的两端,所述放大器的两个输入端分别连接于所述阻抗匹配电阻(R2)的两端,所述放大器的输出端(OUT)与 所述第一滤波电路的第一端相连,所述第一滤波电路的第二端与所述比较器(U2)的输入端(A)相连,所述电阻(RG1)并联于所述放大器的两个输入端。
可选地,所述带通滤波器包括:电容(C1)、电容(C2)和电感(L1);
所述电容(C1)的两端分别连接于所述阻抗匹配电阻(R1)的两端,所述电感(L1)的一端连接于所述电容(C1)的一端,所述电感(L1)的另一端连接于所述电容(C2)的一端,所述电容(C2)的另一端连接于所述电容(C1)的另一端,所述阻抗匹配电阻(R2)的两端分别连接于所述电容(C2)的两端。
可选地,所述第一滤波电路包括:电阻(R3)、电阻(R4)和电容(C3);
所述电阻(R3)的一端与所述放大器的输出端(OUT)相连,另一端分别与所述电阻(R4)的一端、所述电容(C3)的一端和所述比较器(U2)的输入端(A)相连;
所述电阻(R4)的另一端和所述电容(C3)的另一端均接地。
可选地,所述基准电压处理模块包括:转换电路(U5)、放大电路、第二滤波电路;
所述转换电路(U5)的输入端与所述CPU的第二输出端相连,用于接收所述CPU的第二输发送的所述基准电压,所述转换电路(U5)的输出端与所述放大电路的第一端相连,所述放大器的输出端与所述第二滤波电路的第一端相连,所述第二滤波电路的第二端与所述比较器(U2)的输入端(B)相连。
可选地,所述放大电路包括:电阻(R6)、电阻(R7)、电阻(R8)、放大器(U4);
所述电阻(R6)的一端与所述转换电路(U5)的输出端相连,所述电阻(R6)的另一端与所述放大器(U4)的第一输入端相连;所述放大器(U4)的第二输入端与所述电阻(R7)的一端、所述电阻(R8)的一端相连,所述电阻(R8)的另一端接地,所述电阻(R7)的另一端与所述放大器(U4)的输出端相连,所述放大器(U4)的输出端与所述第二滤波电路相连。
可选地,所述第二滤波电路包括:电容(C4)、电阻(R5)、电阻(R6);
所述电阻(R5)的一端与所述放大器(U4)的输出端相连,另一端分别与所述电阻(R6)的一端、所述电容(C4)的一端和所述比较器(U2)的输入端(B)相连;
所述电阻(R6)的另一端、所述电容(C4)的另一端均接地。
可选地,还包括:触摸显示器;
所述触摸显示器与所述CPU电连接,用于对每个所述局部放电检测电路处理后的所述局放脉冲信号进行检测图谱或检测数据显示,所述检测图谱的类型包括:趋势图、相位图、PRPD图、PRPS图。
可选地,还包括:数据存储器;
所述数据存储器与所述CPU电连接,用于对所述检测图谱或所述检测数据进行存储。
可选地,还包括:键盘、蓝牙通信模块和电源;
所述键盘与所述CPU电连接,用于输入控制指令;所述蓝牙通信模块与所述CPU电连接,用于对所述检测图谱或所述检测数据进行传输;所述电源用于为所述多路偶发瞬态的局部放电快速检测装置供电。
与现有技术相比,本申请实施例的优点在于:
本申请提供了一种多路偶发瞬态的局部放电快速检测装置,包括:CPU和若干个局部放电检测电路;每个局部放电检测电路的分别与CPU的多个端口一一连接,用户可以根据待检测电路的数量设置局部放电检测电路的个数,从而对所有待检测电路均进行检测。首先待检测电路的局放脉冲信号通过局部放电检测电路中的局放脉冲信号处理模块进行滤波、放大等处理后输入到比较器,基准电压经CPU发送到基准电压处理模块进行处理后输入到比较器,使得比较器根据局放脉冲信号与基准电压进行处理后输入到触发器处理,最后CPU根据触发器输出端的电平信号确定待检测电路是否发生局部放电。本申请的检测装置结构简单、成本较低,而且能对偶发瞬态局部放电信号进行连续快速的检测且不会漏检,从而解决了现有技术容易漏检、成本较高的技术问题。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种多路偶发瞬态的局部放电快速检测装置结构示意图;
图2为本申请实施例提供的一种局部放电检测电路的结构示意图;
图3为本申请实施例提供的一种局部放电检测电路的封装为模块的结构示意图;
图4为本申请实施例提供的多个局部放电检测模块的结构示意图。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
请参阅图1和图2,本申请实施例提供的一种多路偶发瞬态的局部放电快速检测装置,包括:CPU和若干个局部放电检测电路;
每个局部放电检测电路的输入端均接收局放脉冲信号,每个局部放电检测电路的输出端(Q)分别与CPU的每个输入端一一相连。局部放电检测电路包括:局放脉冲信号处理模块、基准电压处理模块、比较器(U2)、触 发器(U3)。
局放脉冲信号处理模块与比较器(U2)的输入端(A)相连,基准电压处理模块与比较器(U2)的输入端(B)相连,比较器(U2)的输出端(Y)与触发器(U3)的输入端(CP)相连。
需要说明的是,用户可以根据实际待测试电路的局放脉冲信号的数量设置局部放电检测电路的个数,如图4所示。
局放脉冲信号处理模块用于:对局放脉冲信号依次进行电压幅值限位保护处理、阻抗匹配处理、带通滤波处理、放大处理和滤波处理;基准电压处理模块用于:对基准电压依次进行转换处理、放大处理和滤波处理。
比较器(U2)用于:对处理后的局放脉冲信号与处理后的基准电压进行比较,并向触发器(U3)输出第一电平信号。
触发器(U3)用于:对电平信号进行处理以及锁定后,通过输出端(Q)向CPU的输入端发送第二电平信号。
触发器(U3)的端(CLR)与CPU的第一输出端相连,用于当CPU的输入端接收第二电平信号后,接收CPU的第一输入端发送的脉冲信号,使得触发器(U3)的输出端(Q)恢复为原电平。
请参阅图2,本申请的多路偶发瞬态的局部放电快速检测装置的工作原理为:
局部放电检测电路外部的CPU,通过基准电压处理模块中的DA转换器的D15..D0数据线控制DA输出一个基准电压值,经调理后输入至比较器U2输入端B,局部放电脉冲信号PD经局放脉冲信号处理模块调理后,输入至比较器U2的输入端A,当PD信号的幅值大于基准电压的幅值时,比较器U2的输出端Y输出高电平,当PD信号的幅值小于基准电压的幅值时,比较器U2的输出端Y输出低电平,当比较器U2的输出端Y输出由低电平变为高电平时,即在触发器U3的CP输入端产生一个正向脉冲,触发器U3的输出端Q会变为高电平,此时当比较器U2的输出端Y的电平发生变化时,由于触发器U3的输出状态已被锁定,其输出端Q的电平不再发生变化,依然为高电平,外部CPU可通过读取U3的输出端Q的电平的状态,确定局放脉冲PD幅值与基准电压幅值的关系,从而完成对局部放电脉冲信号的检测。为了对 下一次局部放电脉冲信号进行检测,通过外部CPU控制CLR1输出一个正向脉冲给U3的CLR,将U3的输出端Q的电平置为低电平,从而解除触发器U3的输出端Q的锁定状态。
本申请提供了一种多路偶发瞬态的局部放电快速检测装置,包括:CPU和若干个局部放电检测电路;每个局部放电检测电路的分别与CPU的多个端口一一连接,用户可以根据待检测电路的数量设置局部放电检测电路的个数,从而对所有待检测电路均进行检测。首先待检测电路的局放脉冲信号通过局部放电检测电路中的局放脉冲信号处理模块进行滤波、放大等处理后输入到比较器,基准电压经CPU发送到基准电压处理模块进行处理后输入到比较器,使得比较器根据局放脉冲信号与基准电压进行处理后输入到触发器处理,最后CPU根据触发器输出端的电平信号确定待检测电路是否发生局部放电。本申请的检测装置结构简单、成本较低,而且能对偶发瞬态局部放电信号进行连续快速的检测且不会漏检,从而解决了现有技术容易漏检、成本较高的技术问题。
进一步地,在一个具体的实施例中,局放脉冲信号处理模块包括:二极管(D1)、阻抗匹配电阻(R1)、带通滤波器、阻抗匹配电阻(R2)、电阻(RG1)、放大器(U1)和第一滤波电路;二极管(D1)的两端分别与端(IN+)和输入端(IN-)相连,阻抗匹配电阻(R1)的两端分别连接于二极管(D1)的两端,带通滤波器与阻抗匹配电阻(R1)并联,阻抗匹配电阻(R2)的两端分别连接于带通滤波器的两端,放大器的两个输入端分别连接于阻抗匹配电阻(R2)的两端,放大器的输出端(OUT)与第一滤波电路的第一端相连,第一滤波电路的第二端与比较器(U2)的输入端(A)相连,电阻(RG1)并联于放大器的两个输入端。
需要说明的是,局放脉冲信号PD经过瞬态电压保护二极管D1进行幅值限位保护,防止高压信号传入,损坏检测回路;电阻R1为传感器阻抗匹配电阻,从而使得局放脉冲信号PD能够无衰减传入检测回路;带通滤波器的带通范围为3MHz~1.5GHz的,滤除工频干扰信号和其它的窄带干扰信号,增加检测电路的抗干扰能力;电阻R2为滤波器的阻抗匹配电阻,使得滤波后的信号能够无衰减传入后级放大电路;U1为高速、高精度仪表放大器, 可以对微弱信号和高频信号进行放大;电阻(RG1)用于调节仪表放大器的输出增益;第一滤波电路,用于对仪表放大器的输出信号进行滤波,提高检测电路的抗干扰能力。
进一步地,在一个具体的实施例中,带通滤波器包括:电容(C1)、电容(C2)和电感(L1);
电容(C1)的两端分别连接于阻抗匹配电阻(R1)的两端,电感(L1)的一端连接于电容(C1)的一端,电感(L1)的另一端连接于电容(C2)的一端,电容(C2)的另一端连接于电容(C1)的另一端,阻抗匹配电阻(R2)的两端分别连接于电容(C2)的两端。
进一步地,在一个具体的实施例中,第一滤波电路包括:电阻(R3)、电阻(R4)和电容(C3);
电阻(R3)的一端与放大器的输出端(OUT)相连,另一端分别与电阻(R4)的一端、电容(C3)的一端和比较器(U2)的输入端(A)相连;
电阻(R4)的另一端和电容(C3)的另一端均接地。
进一步地,在一个具体的实施例中,基准电压处理模块包括:转换电路(U5)、放大电路、第二滤波电路;转换电路(U5)的输入端与CPU的第二输出端相连,用于接收CPU的第二输发送的基准电压,转换电路(U5)的输出端与放大电路的第一端相连,放大器的输出端与第二滤波电路的第一端相连,第二滤波电路的第二端与比较器(U2)的输入端(B)相连。
需要说明的是,U5为高速DA转换电路,U5的输入端接入CPU的16位数据信号(基准电压);放大电路用于对DA转换电路U5的输出信号进行放大;第二滤波电路用于放大电路的输出信号进行滤波,提高检测电路的抗干扰能力。
进一步地,在一个具体的实施例中,放大电路包括:电阻(R6)、电阻(R7)、电阻(R8)、放大器(U4);
电阻(R6)的一端与转换电路(U5)的输出端相连,电阻(R6)的另一端与放大器(U4)的第一输入端相连;放大器(U4)的第二输入端与电阻(R7)的一端、电阻(R8)的一端相连,电阻(R8)的另一端接地,电阻(R7)的另一端与放大器(U4)的输出端相连,放大器(U4)的输出 端与第二滤波电路相连。
进一步地,在一个具体的实施例中,第二滤波电路包括:电容(C4)、电阻(R5)、电阻(R6);电阻(R5)的一端与放大器(U4)的输出端相连,另一端分别与电阻(R6)的一端、电容(C4)的一端和比较器(U2)的输入端(B)相连;电阻(R6)的另一端、电容(C4)的另一端均接地。
需要说明的是,本申请的局部放电检测电路可以封装为一个检测模块,如图3所示,输入端包括:IN+、IN-、D15..D0(转换电路U5的输入端)、CLR;输出端包括Q,电源V+、V-。多个局部放电检测电路可以共用一条数据线,也就是说通过CPU的一个输出端口就可以连接多个局部放电检测电路U5的输入端,如图4所示。
进一步地,本申请提供的多路偶发瞬态的局部放电快速检测装置,还包括触摸显示器;触摸显示器与CPU电连接,用于对每个局部放电检测电路处理后的局放脉冲信号进行检测图谱或检测数据显示,检测图谱的类型包括:趋势图、相位图、PRPD图、PRPS图。
进一步地,本申请提供的多路偶发瞬态的局部放电快速检测装置,还包括:数据存储器;数据存储器与CPU电连接,用于对检测图谱或检测数据进行存储。
进一步地,本申请提供的多路偶发瞬态的局部放电快速检测装置,还包括:键盘、蓝牙通信模块和电源;键盘与CPU电连接,用于输入控制指令;蓝牙通信模块与CPU电连接,用于对检测图谱或检测数据进行传输;电源用于为多路偶发瞬态的局部放电快速检测装置供电。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种多路偶发瞬态的局部放电快速检测装置,其特征在于,包括:CPU和若干个局部放电检测电路;
    每个所述局部放电检测电路的输入端均接收局放脉冲信号,每个所述局部放电检测电路的输出端(Q)分别与所述CPU的每个输入端一一相连;
    所述局部放电检测电路包括:局放脉冲信号处理模块、基准电压处理模块、比较器(U2)、触发器(U3);
    所述局放脉冲信号处理模块与所述比较器(U2)的输入端(A)相连,所述基准电压处理模块与所述比较器(U2)的输入端(B)相连,所述比较器(U2)的输出端(Y)与所述触发器(U3)的输入端(CP)相连;
    所述局放脉冲信号处理模块用于:对所述局放脉冲信号依次进行电压幅值限位保护处理、阻抗匹配处理、带通滤波处理、放大处理和滤波处理;所述基准电压处理模块用于:对基准电压依次进行转换处理、放大处理和滤波处理;
    所述比较器(U2)用于:对处理后的所述局放脉冲信号与处理后的所述基准电压进行比较,并向所述触发器(U3)输出第一电平信号;
    所述触发器(U3)用于:对所述电平信号进行处理以及锁定后,通过所述输出端(Q)向所述CPU的输入端发送第二电平信号;
    所述触发器(U3)的端(CLR)与所述CPU的第一输出端相连,用于当所述CPU的输入端接收所述第二电平信号后,接收所述CPU的第一输入端发送的脉冲信号,使得所述触发器(U3)的输出端(Q)恢复为原电平。
  2. 根据权利要求1所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,所述局放脉冲信号处理模块包括:二极管(D1)、阻抗匹配电阻(R1)、带通滤波器、阻抗匹配电阻(R2)、电阻(RG1)、放大器(U1)和第一滤波电路;
    所述二极管(D1)的两端分别与所述端(IN+)和输入端(IN-)相连,所述阻抗匹配电阻(R1)的两端分别连接于所述二极管(D1)的两端,所述带通滤波器与所述阻抗匹配电阻(R1)并联,所述阻抗匹配电阻(R2) 的两端分别连接于所述带通滤波器的两端,所述放大器的两个输入端分别连接于所述阻抗匹配电阻(R2)的两端,所述放大器的输出端(OUT)与所述第一滤波电路的第一端相连,所述第一滤波电路的第二端与所述比较器(U2)的输入端(A)相连,所述电阻(RG1)并联于所述放大器的两个输入端。
  3. 根据权利要求2所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,所述带通滤波器包括:电容(C1)、电容(C2)和电感(L1);
    所述电容(C1)的两端分别连接于所述阻抗匹配电阻(R1)的两端,所述电感(L1)的一端连接于所述电容(C1)的一端,所述电感(L1)的另一端连接于所述电容(C2)的一端,所述电容(C2)的另一端连接于所述电容(C1)的另一端,所述阻抗匹配电阻(R2)的两端分别连接于所述电容(C2)的两端。
  4. 根据权利要求3所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,所述第一滤波电路包括:电阻(R3)、电阻(R4)和电容(C3);
    所述电阻(R3)的一端与所述放大器的输出端(OUT)相连,另一端分别与所述电阻(R4)的一端、所述电容(C3)的一端和所述比较器(U2)的输入端(A)相连;
    所述电阻(R4)的另一端和所述电容(C3)的另一端均接地。
  5. 根据权利要求1所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,所述基准电压处理模块包括:转换电路(U5)、放大电路、第二滤波电路;
    所述转换电路(U5)的输入端与所述CPU的第二输出端相连,用于接收所述CPU的第二输发送的所述基准电压,所述转换电路(U5)的输出端与所述放大电路的第一端相连,所述放大器的输出端与所述第二滤波电路的第一端相连,所述第二滤波电路的第二端与所述比较器(U2)的输入端(B)相连。
  6. 根据权利要求5所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,所述放大电路包括:电阻(R6)、电阻(R7)、电阻(R8)、放大器(U4);
    所述电阻(R6)的一端与所述转换电路(U5)的输出端相连,所述电阻(R6)的另一端与所述放大器(U4)的第一输入端相连;所述放大器(U4)的第二输入端与所述电阻(R7)的一端、所述电阻(R8)的一端相连,所述电阻(R8)的另一端接地,所述电阻(R7)的另一端与所述放大器(U4)的输出端相连,所述放大器(U4)的输出端与所述第二滤波电路相连。
  7. 根据权利要求6所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,所述第二滤波电路包括:电容(C4)、电阻(R5)、电阻(R6);
    所述电阻(R5)的一端与所述放大器(U4)的输出端相连,另一端分别与所述电阻(R6)的一端、所述电容(C4)的一端和所述比较器(U2)的输入端(B)相连;
    所述电阻(R6)的另一端、所述电容(C4)的另一端均接地。
  8. 根据权利要求1所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,还包括:触摸显示器;
    所述触摸显示器与所述CPU电连接,用于对每个所述局部放电检测电路处理后的所述局放脉冲信号进行检测图谱或检测数据显示,所述检测图谱的类型包括:趋势图、相位图、PRPD图、PRPS图。
  9. 根据权利要求8所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,还包括:数据存储器;
    所述数据存储器与所述CPU电连接,用于对所述检测图谱或所述检测数据进行存储。
  10. 根据权利要求9所述的多路偶发瞬态的局部放电快速检测装置,其特征在于,还包括:键盘、蓝牙通信模块和电源;
    所述键盘与所述CPU电连接,用于输入控制指令;所述蓝牙通信模块与所述CPU电连接,用于对所述检测图谱或所述检测数据进行传输;所述电源用于为所述多路偶发瞬态的局部放电快速检测装置供电。
PCT/CN2021/135664 2020-12-16 2021-12-06 一种多路偶发瞬态的局部放电快速检测装置 WO2022127633A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/039,219 US20240003958A1 (en) 2020-12-16 2021-12-06 Rapid detection device for multi-channel sporadic transient partial discharge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011487015.7A CN112485623B (zh) 2020-12-16 2020-12-16 一种多路偶发瞬态的局部放电快速检测装置
CN202011487015.7 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022127633A1 true WO2022127633A1 (zh) 2022-06-23

Family

ID=74917246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135664 WO2022127633A1 (zh) 2020-12-16 2021-12-06 一种多路偶发瞬态的局部放电快速检测装置

Country Status (3)

Country Link
US (1) US20240003958A1 (zh)
CN (1) CN112485623B (zh)
WO (1) WO2022127633A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109025A1 (zh) * 2022-11-24 2024-05-30 苏州元脑智能科技有限公司 一种瞬态二极管失效监控电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485623B (zh) * 2020-12-16 2021-08-13 南方电网电力科技股份有限公司 一种多路偶发瞬态的局部放电快速检测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458291A (zh) * 2009-01-09 2009-06-17 南京因泰莱配电自动化设备有限公司 变压器局部放电线上检测的数据采集装置及检测方法
CN101556302A (zh) * 2009-05-25 2009-10-14 博扬科仪电气技术(北京)有限公司 超声局放诊断仪及方法
CN101819246A (zh) * 2010-04-27 2010-09-01 重庆大学 超高频局部放电放电量监测采集方法、装置和系统
CN103197206A (zh) * 2013-03-12 2013-07-10 重庆市电力公司电力科学研究院 电平扫描式超高频局部放电在线监测系统及方法
CN204832421U (zh) * 2015-06-04 2015-12-02 江苏国电南自海吉科技有限公司 一种基于脉冲宽频超高频局放带电检测装置
CN106324445A (zh) * 2015-07-06 2017-01-11 国家电网公司 改进的超高频局部放电电量检测采集装置及方法
CN208283506U (zh) * 2018-06-04 2018-12-25 国网重庆市电力公司电力科学研究院 分布式气体绝缘组合电器局部放电超高频智能监测系统
EP3447508A1 (en) * 2017-08-23 2019-02-27 EA Technology Limited System and method for detecting partial discharge in a switchgear cabinet
CN210090605U (zh) * 2019-05-08 2020-02-18 南京如拓电气有限公司 一种局部放电探测器
CN112485623A (zh) * 2020-12-16 2021-03-12 南方电网电力科技股份有限公司 一种多路偶发瞬态的局部放电快速检测装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475312A (en) * 1994-06-07 1995-12-12 Iris Power Engineering Inc. Method and device for distinguishing between partial discharge and electrical noise
CN101750573B (zh) * 2009-12-07 2012-07-18 上海市电力公司 便携式电缆局部放电检测装置
US9372221B1 (en) * 2015-08-28 2016-06-21 Aktiebolaget Skf Partial discharge signal normalization
CN205450180U (zh) * 2015-12-01 2016-08-10 安徽罗伯特科技股份有限公司 局部放电实时在线监测警报系统
CN105334443A (zh) * 2015-12-04 2016-02-17 重庆臻远电气有限公司 局部放电数据采集电路及监测设备
CN105527549A (zh) * 2015-12-04 2016-04-27 重庆臻远电气有限公司 局部放电数据采集电路及检测系统
CN205229398U (zh) * 2015-12-04 2016-05-11 重庆臻远电气有限公司 局部放电数据采集电路及检测系统
CN207123590U (zh) * 2017-02-23 2018-03-20 福建省魏尔曼电力科技有限公司 一种防孤岛的局部放电检测装置
CN107797033B (zh) * 2017-09-29 2024-03-19 广西电网有限责任公司电力科学研究院 一种用以模拟变压器局部放电试验的检测平台
CN208314124U (zh) * 2018-06-07 2019-01-01 南方电网科学研究院有限责任公司 一种局部放电检测装置
CN110196380A (zh) * 2019-06-25 2019-09-03 安徽中祺智能电器股份有限公司 一种用于配电电缆局部放电的带电检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458291A (zh) * 2009-01-09 2009-06-17 南京因泰莱配电自动化设备有限公司 变压器局部放电线上检测的数据采集装置及检测方法
CN101556302A (zh) * 2009-05-25 2009-10-14 博扬科仪电气技术(北京)有限公司 超声局放诊断仪及方法
CN101819246A (zh) * 2010-04-27 2010-09-01 重庆大学 超高频局部放电放电量监测采集方法、装置和系统
CN103197206A (zh) * 2013-03-12 2013-07-10 重庆市电力公司电力科学研究院 电平扫描式超高频局部放电在线监测系统及方法
CN204832421U (zh) * 2015-06-04 2015-12-02 江苏国电南自海吉科技有限公司 一种基于脉冲宽频超高频局放带电检测装置
CN106324445A (zh) * 2015-07-06 2017-01-11 国家电网公司 改进的超高频局部放电电量检测采集装置及方法
EP3447508A1 (en) * 2017-08-23 2019-02-27 EA Technology Limited System and method for detecting partial discharge in a switchgear cabinet
CN208283506U (zh) * 2018-06-04 2018-12-25 国网重庆市电力公司电力科学研究院 分布式气体绝缘组合电器局部放电超高频智能监测系统
CN210090605U (zh) * 2019-05-08 2020-02-18 南京如拓电气有限公司 一种局部放电探测器
CN112485623A (zh) * 2020-12-16 2021-03-12 南方电网电力科技股份有限公司 一种多路偶发瞬态的局部放电快速检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109025A1 (zh) * 2022-11-24 2024-05-30 苏州元脑智能科技有限公司 一种瞬态二极管失效监控电路

Also Published As

Publication number Publication date
US20240003958A1 (en) 2024-01-04
CN112485623B (zh) 2021-08-13
CN112485623A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022127633A1 (zh) 一种多路偶发瞬态的局部放电快速检测装置
CN108664439B (zh) 一种数字隔离的模拟量输出电路装置
US10193496B2 (en) Photovoltaic combiner box monitoring system
WO2021232290A1 (zh) 天线检测电路及车载设备
CN104931814B (zh) 一种数字隔离式电网检测器
CN204758714U (zh) 一种数字隔离式电网检测器
CN113884747B (zh) 一种电子式互感器过电压测量装置
CN112213620B (zh) 一种通信类器件的谐波失真测试电路
CN212872582U (zh) 一种多参数程控可调的双指数波脉冲电流注入源电路
CN110690757B (zh) 一种电力输配电系统的数据监控装置
CN211826256U (zh) 一种新型变压器变比测试仪
CN107192896A (zh) 用于高压工频电场的测量装置
CN108226621A (zh) 一种高精度峰谷值采样电路
CN209432892U (zh) 小功率eps输出电流检测装置
CN209102803U (zh) 一种射频信号探测分析装置
CN206990685U (zh) 用于高压工频电场的测量装置
CN217787281U (zh) 可消除噪声的特高频局放检测电路及装置
CN106526504A (zh) 一种电源管理芯片及移动设备
CN220438434U (zh) 一种基于fifo的脉冲电源参数测量装置
CN109270328A (zh) 一种led暂态峰值电压测量装置及测量方法
CN220231936U (zh) 一种基于恒定交流频率法的蓄电池内阻在线测量装置
CN103018637A (zh) 输电线路行波测量减噪装置和减噪方法
CN218122209U (zh) 对地采样模块和电源系统
CN219609069U (zh) 防雷电路的测试电路
CN220107970U (zh) 一种差分模数转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905562

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18-01-2024)