WO2022127625A1 - 一种sip网元多地址学习方法及装置、信令监测系统 - Google Patents

一种sip网元多地址学习方法及装置、信令监测系统 Download PDF

Info

Publication number
WO2022127625A1
WO2022127625A1 PCT/CN2021/135442 CN2021135442W WO2022127625A1 WO 2022127625 A1 WO2022127625 A1 WO 2022127625A1 CN 2021135442 W CN2021135442 W CN 2021135442W WO 2022127625 A1 WO2022127625 A1 WO 2022127625A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
network element
sip
learning
host
Prior art date
Application number
PCT/CN2021/135442
Other languages
English (en)
French (fr)
Inventor
燕晓
阚长江
陈磊
倪春华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21905554.8A priority Critical patent/EP4262174A1/en
Publication of WO2022127625A1 publication Critical patent/WO2022127625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/30Managing network names, e.g. use of aliases or nicknames
    • H04L61/3015Name registration, generation or assignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/30Types of network names
    • H04L2101/35Types of network names containing special prefixes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/54Organization of routing tables

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the technical field of communication networks, and specifically relate to, but are not limited to, a SIP network element multi-address learning method and device, and a signaling monitoring system.
  • SIP Session Initiation Protocol
  • CS Circuit Switched
  • NGN Next Generation Network
  • IMS Internet Management Entity
  • VOLTE Universal Mobile Communications
  • the SIP communication network element entity neither forwards signaling through the signaling monitoring system, nor perceives its existence. This is the difference between the signaling monitoring system It is a very important feature of the SIP communication network element entity; another difference is that after the SIP communication network element entity is configured by the system, it is clear about the role of the network element type it plays, such as: P-CSCF (Proxy CSCF), S -CSCF (Serving CSCF), I-CSCF (Interrogating CSCF), etc., and also know which IP addresses and communication ports they have. SIP network element entities can flexibly select these addresses and ports to send and receive signaling according to their needs.
  • P-CSCF Proxy CSCF
  • S -CSCF Serving CSCF
  • I-CSCF Interrogating CSCF
  • the monitoring system does not have the information, and sometimes the flexibility of the SIP protocol entity will bring great limitations to the SIP signaling monitoring system.
  • SIP network elements use different IP addresses in different processes of the same session, the SIP signaling monitoring system cannot identify the problem of which segment the subsequent SIP messages belong to. For this technical problem, no relevant effective solution has been proposed so far.
  • the SIP network element multi-address learning method and device, and the signaling monitoring system provided by the embodiments of the present disclosure mainly solve the technical problem that when the SIP network element uses different IP addresses in different processes of the same session, the SIP signaling monitoring The system cannot identify to which segment subsequent SIP messages belong.
  • an embodiment of the present disclosure provides a method for learning multiple addresses of a SIP network element, including: assigning a network element identifier to a SIP network element logical entity in a communication network, where the SIP network element logical entity includes at least one IP address.
  • the embodiment of the present disclosure also provides a SIP network element multi-address learning device, including: a configuration unit, an IP address learning unit, a creation unit, and a message identification unit; the configuration unit is used for SIP network element logic in a communication network.
  • the entity assigns a network element identifier, and the SIP network element logical entity includes at least one IP address; the IP address learning unit is used to pass the Branch parameter in the first Via header of the SIP message to the SIP network element logical entity.
  • the IP address is learned, or the IP address of the SIP network element logic entity is learned through the relationship between the HOST string and the destination IP address in the Top Route of the SIP request message; the creation unit is used for according to the network element logic Create an IP address-network element identification information table and a network element identification-IP address information table corresponding to the IP address of the entity; the message identification unit is used to create an IP address-network element identification information table or a network element identification-IP address according to the IP address-network element identification information table or network element identification-IP address The information table performs SIP message identification.
  • An embodiment of the present disclosure further provides a SIP signaling monitoring system, including the above-mentioned SIP network element multi-address learning device, and further including a processor, a memory, and a communication bus; the communication bus is used to realize the communication between the processor and the memory. Connecting and communicating; the processor is configured to execute one or more computer programs stored in the memory, so as to implement the steps of the above-mentioned SIP network element multi-address learning method.
  • Embodiments of the present disclosure also provide a computer storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the above-mentioned The steps of the SIP network element multi-address learning method.
  • Fig. 1 is the structural representation of the signaling monitoring system provided by the present disclosure in IMS, VOLTE network;
  • FIG. 2 is a schematic diagram of the signaling flow of SIP call establishment in the related art provided by the present disclosure
  • FIG. 3 is a schematic diagram of IP address change in a SIP call establishment process in the related art provided by the present disclosure
  • FIG. 4 is a basic flowchart of a method for learning multiple addresses of a SIP network element according to Embodiment 1 of the present disclosure
  • FIG. 5A is a schematic diagram of establishing an IP address-network element identification information table according to Embodiment 1 of the present disclosure
  • 5B is a schematic diagram of establishing a network element identifier-IP address information table according to Embodiment 1 of the present disclosure
  • FIG. 6 is a flowchart of a method for learning multiple addresses of a SIP network element according to Embodiment 1 of the present disclosure
  • FIG. 7A, FIG. 7B, and FIG. 7C are schematic diagrams of network element IP address relationship establishment according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic diagram of establishing a HOST-IP address information table according to Embodiment 1 of the present disclosure
  • FIG. 9 is a flowchart of another SIP network element multi-address learning method according to Embodiment 1 of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a SIP network element multi-address learning apparatus according to Embodiment 2 of the present disclosure.
  • the SIP network element in the communication network usually has multiple IP addresses, and the SIP network element entity can flexibly select these addresses and ports to send and receive signaling according to the needs, but the signaling monitoring system does not grasp this information. At this time, the flexibility of the SIP protocol entity will bring great limitations to the SIP signaling monitoring system.
  • the SIP signaling monitoring system cannot identify which segment the subsequent SIP messages belong to.
  • the following is a detailed analysis of how the multi-address feature of the SIP network element entity limits the SIP signaling monitoring system through the call establishment flow shown in FIG. 2 and FIG. 3 .
  • a complete SIP call establishment process requires multiple different SIP protocol interfaces from the calling user to the called user, but the routing and forwarding principles and existing problems are similar.
  • the signaling flow from UE (User Equipment) to AS (Application Server) is described as an example.
  • the user terminal UE sends an INVITE request to the SBC (Session Border Controller) through the Gm port, the SBC forwards the signaling to the S-CSCF through the Mw port, and the S-CSCF routes the INVITE signaling to the S-CSCF through the ISC port according to the subscription service configuration.
  • SBC Session Border Controller
  • the AS triggers the service, from S204 to S206 the AS replies 183 to the calling UE, from S207 to S218 the communication parties complete the media negotiation, from S219 to S221 transmits the called 180 ringing message to the calling UE, from S222 to S224
  • the call connection 200 OK message is delivered to the calling UE, and the ACK confirmation message of the calling UE is delivered from S225 to S227.
  • the SIP signaling monitoring system For the SIP signaling monitoring system, it is usually necessary to completely monitor the signaling process of each interface of Gm, Mw, and ISC, record the arrival time and processing status of messages on each interface in the entire signaling process, and generate corresponding events. To report the CDR, the SIP signaling monitoring system needs to create and maintain an independent status data area for each segment. Although different SIP session flows can be distinguished by CALL-ID, the SIP signaling of the same session is transmitted in each segment, except that the network layer (IP layer) and the transport layer (UDP or TCP) have sufficient identification.
  • IP layer IP layer
  • UDP transport layer
  • the SIP signaling monitoring system In order to distinguish the signaling of the same process in each segment, the SIP signaling monitoring system often uses the source address + destination address of the SIP message as the identification basis.
  • a SIP network element logic entity such as S-CSCF, AS, etc.
  • S-CSCF S-CSCF
  • AS AS, etc.
  • the SIP network element logic entity is for load balancing and link reliability.
  • this address change mechanism will introduce a problem to the SIP signaling monitoring system: when the network element address of the initial SIP request is the same as the network element address of the subsequent SIP message If not, how to identify which segment the subsequent SIP message belongs to?
  • the address of the S-CSCF network element is IP10
  • the addresses of the AS network element are two IP20 and IP21
  • the S301 initial call request INVITE is sent to the IP20 address through the IP10 address.
  • AS network element but the 183 response message of S302 is sent from the IP21 address of the AS to the IP10, and the addresses used by the AS in the subsequent PRACK, UPDATE, 180, 200OK (INVITE), and ACK processes are also IP21.
  • the segmentation identification mechanism fails, that is, when SIP network elements use different IP addresses in different processes of the same session, the SIP signaling monitoring system cannot identify subsequent SIP messages. Which segment it belongs to.
  • the present disclosure proposes a SIP network element multi-address learning method and device, and a SIP signaling monitoring system, which can automatically and quickly identify which IP addresses in a communication network belong to one SIP network element.
  • Logic entity assigns network element identification to SIP network element logical entity; solves the problem of segment identification when network element address changes through network element identification, reduces the workload of manual configuration and the complexity of personnel coordination, and improves the SIP signaling monitoring system Flexibility to adapt to changes in external networking.
  • an embodiment of the present disclosure proposes a SIP network element
  • the multi-address learning method see Figure 4, includes the following steps.
  • S401 Allocate a network element identifier to a SIP network element logical entity in a communication network, where the SIP network element logical entity includes at least one IP address.
  • S402 Learning the IP address of the SIP network element logical entity through the Branch parameter in the first Via header of the SIP message, or learning the IP address of the SIP network element logical entity through the relationship between the HOST string in the Top Route of the SIP request message and the destination IP address The IP address of the SIP network element logical entity is learned.
  • S403 Create an IP address-network element identification information table and a network element identification-IP address information table according to the IP address corresponding to the network element logical entity.
  • S404 Identify the network element logical entity to which the SIP message belongs according to the IP address-network element identification information table or the network element identification-IP address information table.
  • the IP address of the logical entity of the SIP network element is learned through the Branch parameter in the first Via header of the SIP message, or the IP address of the logical entity of the SIP network element is learned through the method in the Top Route of the SIP request message.
  • the relationship between the HOST string and the destination IP address is learned by learning the IP address of the SIP network element logical entity, which can automatically and quickly identify which IP addresses belong to the same SIP network element entity in the communication network and are SIP network element entities.
  • the Meta ID-IP address information table identifies the logical entity of the network element to which the SIP message belongs. In this way, even if the SIP network element uses different IP addresses in different processes of the same session, the SIP signaling monitoring system can also identify the subsequent SIP Which segment the message belongs to.
  • the IP address-network element identification information table and the network element identification-IP address information table established in the embodiment of the present disclosure when the signaling monitoring system performs SIP message identification, it can identify which branch belongs to according to the source and destination network element IP addresses. It is also possible to identify which segment the SIP message belongs to according to the network element identifiers corresponding to the IP addresses of the source and destination network elements.
  • the IP address-network element identification information table is: the IP address is used as the Key value, and the Value part at least includes an information table of a network element identification field and a network element role field;
  • the network element identifier-IP address value information table is: an information table in which the network element identifier is a Key value, and the Value part at least includes a network element role field and at least one IP address field.
  • a SIP network element logical entity In a communication network, a SIP network element logical entity usually has multiple different IP addresses. How to learn the IP address of the SIP network element logical entity, a seemingly simple and direct way is to apply for and obtain directly from the network operator. IP address information of SIP network elements, but SIP network element entities are deployed in a wide area and a large number, and it is a lot of work to sort out the multi-address relationship of all network elements; in addition, the information on the expansion and change of the communication network structure in a province will not be timely. Notify operation and maintenance personnel in other provinces. Therefore, the method of directly obtaining network element multi-address information directly from the network operator has the problems of high communication cost, high maintenance cost, and information lag.
  • the present disclosure proposes a method for learning multiple addresses of a SIP network element.
  • the method includes: learning the IP address of the logical entity of the SIP network element through the Branch parameter in the first Via header of the SIP message, or The IP address of the logical entity of the SIP network element is learned through the relationship between the HOST string in the Top Route of the SIP request message and the destination IP address.
  • the method includes the following steps.
  • S601 When receiving the SIP initial request message, query the session data area with the CALL-ID as the key, create a segmented data area with the source IP address + target IP address as the identification feature, and save the first SIP initial request message Branch parameter of Via header.
  • step S601 when the query of the session data area with the CALL-ID as the key fails, the session data area with the CALL-ID as the key is created.
  • CALL-ID and source address + destination address feature are divided into two-level data areas for management.
  • the advantage of this design is that it can improve performance and save memory.
  • this embodiment can also directly use CALL-ID + source address +
  • the following IP address learning is realized by the single-level data area method of the target address, and the learning principle remains unchanged, which is not limited in this embodiment.
  • S602 When the SIP response message corresponding to the SIP initial request message is received, use the CALL-ID as the Key to query the session data area, and if the query fails, exit the current IP address learning process.
  • the source address, the destination address, the source network element identifier, and the target network element identifier mentioned in the following description of this embodiment all refer to a situation that has been adjusted and is logically consistent with the SIP request message.
  • S603 Use the source IP address+target IP address or the source network element identifier and the target network element identifier to compare the identification features of all segmented data areas under the CALL-ID session data area, and locate the segmented data area , if the positioning is successful, exit the current IP address learning process.
  • Figure 7A shows the newly learned IP address A and IP address B If A and B belong to the same network element, then establish the IP address-network element identification table of A and B, and the network element identification-IP address information table, and assign the same network element identification to A and B, such as As shown in Figure 7B, when it is known that A and B belong to the same network element, it is newly learned that B and C also belong to the same network element, and the relationship between A and C is also indirectly learned. At this time, A, B, C are established.
  • the IP address of the logical entity of the SIP network element can also be learned through the relationship between the HOST string and the destination IP address in the Top Route of the SIP request message, and this method is not limited to learning within a SIP transaction; but , the learning results of some exceptional scenarios need to be excluded, and exclusion rules need to be set.
  • the implementation of this method needs to create a HOST-IP address information table.
  • the HOST-IP address information table is: take HOST as the Key value, and the Value part at least includes the information of the type tag field and at least one ID address field Table; the HOST is a domain name or a host name.
  • the IP address of the logical entity of the SIP network element is learned through the relationship between the HOST string in the Top Route of the SIP request message and the destination IP address; since this learning mechanism will increase the CPU processing time, It is not suitable to be turned on all the time. Therefore, it is controlled by configuring trigger conditions. Only when the preset conditions are met, the SIP network element multi-address learning processing of this method is performed.
  • the preset conditions include: a predetermined time period, a mandatory learning stage in the early stage of equipment installation or startup, and a user triggering through an instruction. Referring to Figure 9, the method includes the following steps.
  • S901 When receiving the SIP request message carrying the Route header, check whether the HOST part in the Top Route is in the form of an IP address, and if so, exit this IP address learning. If the HOST part in the Top Route is not in the form of an IP address, go to step S802.
  • S902 Use the entire HOST part of the Top Route as the key, and use the host name as the type tag temporarily to learn the HOST-IP address relationship.
  • HOST-IP address information table After converting the entire HOST part of the Top Route to uppercase or lowercase characters, it is used as a Key to query the HOST-IP address information table. If the query fails, a new HOST-IP address information table is created. At this time, it is usually uncertain whether the HOST part is a host name or a domain name, and the type tag is set to "host name" by default. If the query of the HOST-IP address information table is successful, it is checked whether the target address of the current SIP message has been successfully learned. If it has not been learned, the HOST-IP address information table is created according to the current IP target address.
  • S903 Remove the part before the first dot character in the HOST string one by one, use the remaining part of the string as the Key, and use the domain name as the type mark, and record it in the HOST-IP address information table until all domain names are The sections are all learned.
  • the type mark of the HOST is corrected to be a domain name.
  • the IP addresses that have been successfully learned need to be excluded according to preset special exclusion rules, and the special exclusion rules include: excluding IP addresses whose host name part contains the mgcf string, and excluding the host name part containing resource pool characteristics The IP address of the pool string.
  • the IP address of the logical entity of the SIP network element is learned through the Branch parameter in the first Via header of the SIP message, or the IP address of the logical entity of the SIP network element is learned through the method in the Top Route of the SIP request message.
  • the relationship between the HOST string and the destination IP address is learned by learning the IP address of the SIP network element logical entity, which can automatically and quickly identify which IP addresses belong to the same SIP network element entity in the communication network and are SIP network element entities.
  • Meta ID-IP address information table is used to identify SIP messages. In this way, even if SIP network elements use different IP addresses in different processes of the same session, the SIP signaling monitoring system can also identify which branch the subsequent SIP messages belong to. part. At the same time, it solves the communication cost, high maintenance cost, and information lag problems of directly obtaining network element multi-address information directly from the network operator, reduces the workload of manual configuration and the complexity of personnel coordination, and improves the adaptability of the SIP signaling monitoring system to external networking. Flexibility to change.
  • the multi-address learning device includes: a configuration unit, an IP address learning unit, a creation unit, and a message identification unit.
  • the configuration unit is configured to assign a network element identifier to a SIP network element logical entity in a communication network, where the SIP network element logical entity includes at least one IP address.
  • the IP address learning unit is used for learning the IP address of the SIP network element logical entity through the Branch parameter of the first Via header of the SIP message, or through the HOST string and the purpose in the Top Route of the SIP request message.
  • the relationship of IP addresses learns the IP addresses of the logical entities of the SIP network elements.
  • the creating unit is configured to create an IP address-network element identification information table and a network element identification-IP address information table according to the IP address corresponding to the network element logical entity.
  • the message identification unit is configured to identify the SIP message according to the IP address-network element identification information table or the network element identification-IP address information table.
  • the IP address learning unit includes a judgment unit and a processing unit.
  • the judging unit is used for judging whether the CALL-ID headers of the SIP request message and the SIP response message are the same, and whether the Method of the CSeq header is the same, when the association of the SIP request message and the response message through the IP address fails.
  • the processing unit is configured to perform learning processing on the IP address of the SIP network element logical entity through the Branch parameter in the first Via header of the SIP message.
  • the judging unit is also used to judge whether the preset conditions are met, and when the preset conditions are met, the processing unit will pass the relationship between the HOST string and the destination IP address in the Top Route of the SIP request message to the SIP network.
  • the IP address of the meta-logical entity is learned.
  • This embodiment also provides a signaling monitoring system, which includes the above-mentioned device for learning multiple addresses of SIP network elements; and also includes a processor, a memory, and a communication bus.
  • the communication bus is used to realize the connection communication between the processor and the memory.
  • the processor is configured to execute one or more computer programs stored in the memory, so as to implement the steps of the SIP network element multi-address learning method according to the first embodiment.
  • the present embodiments also provide a computer-readable storage medium embodied in any method or technology for storing information, such as computer-readable instructions, data structures, computer program modules, or other data volatile or nonvolatile, removable or non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory, random access memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, electrified Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store the desired information and that can be accessed by a computer.
  • the IP address of the logical entity of the SIP network element is learned through the Branch parameter in the first Via header of the SIP message, or the IP address of the SIP network element logical entity is learned through the SIP message.
  • the relationship between the HOST string and the destination IP address in the Top Route of the request message learns the IP address of the SIP network element logical entity, which can automatically and quickly identify which IP addresses belong to the same SIP network element entity in the communication network , assign a unique network element identifier to the SIP network element entity, and establish an IP address-network element identifier information table and a network element identifier-IP address information table according to the IP address corresponding to the SIP network element entity, so that the Element identification information table or network element identification-IP address information table is used to identify SIP messages.
  • the SIP signaling monitoring system can also identify subsequent SIP messages. Which segment the message belongs to.
  • the functional modules/units in the system, and the device can be implemented as software (which can be implemented by computer program codes executable by a computing device). ), firmware, hardware, and their appropriate combination.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • communication media typically embodies computer readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery, as is well known to those of ordinary skill in the art medium. Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种SIP网元多地址学习方法及装置、信令监测系统,该方法包括:为通信网络中的SIP网元逻辑实体分配网元标识,该SIP网元逻辑实体包括至少一个IP地址;通过SIP消息的第一个Via头部的Branch参数对SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对SIP网元逻辑实体的IP地址进行学习;根据网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表。

Description

一种SIP网元多地址学习方法及装置、信令监测系统
相关申请的交叉引用
本公开要求享有2020年12月14日提交的名称为“一种SIP网元多地址学习方法及装置、信令监测系统”的中国专利申请CN202011470632.6的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开实施例涉及但不限于通信网络技术领域,具体而言,涉及但不限于一种SIP网元多地址学习方法及装置、信令监测系统。
背景技术
近几年,移动互联网业务发展迅猛,IMS(IP Multimedia Subsystem)、VOLTE(Voice over LTE)业务流量持续增长,如何实时监测数据业务运行关键指标,提前预警排除网络隐患,突发故障迅速定界定位,提升用户体验感知度,是运营商重点关注的领域,催生了各种信令监测系统的研发。
SIP(Session Initiation Protocol,会话初始协议)协议是由IETF(国际互联网工程任务组)制定的多媒体通信协议,广泛应用于CS(Circuit Switched)、NGN(Next Generation Network)、IMS、VOLTE的网络中,支持语音、视频、数据等多媒体业务,以及Presence(呈现)、Instant Message(即时消息)等特色业务,仅在VOLTE网络中,采用SIP协议的主要信令接口就包括Gm、Mw、ISC、Mj、Mg、Ma、Mw/I2。如图1所示的网络通信系统,展示了信令监测系统在IMS、VOLTE网络中的部署位置,可以看到,信令监测系统并非网络通信的直接参与者,它仅仅是通过分光设备对网络实时进行信令数据的复制,然后分析、评价网络运行状况,SIP通信网元实体既不会通过信令监测系统进行信令转发,也不会感知到它的存在,这是信令监测系统区别于SIP通信网元实体的一个很重要的特点;另外一个区别在于,SIP通信网元实体经过系统配置后,明确清楚自己所扮演的网元类型角色,比如:P-CSCF(Proxy CSCF)、S-CSCF(Serving CSCF)、I-CSCF(Interrogating CSCF)等,也清楚自己有哪些IP地址、哪些通信端口,SIP网元实体可以根据需要灵活的选用这些地址、端口进行信令收发,而信令监测系统却并不掌握这些信息,有时候SIP协议实体的这种灵活性,会给SIP信令监测系统带来很大局限性。当SIP网元在同一次会话的不同流程中使用不同的IP地址时,SIP信令监测系统无法识别后续SIP消息归属于哪一个分段的问题。针对该技术问题,目前尚未提出相关有效的解决办法。
发明内容
本公开实施例提供的SIP网元多地址学习方法及装置、信令监测系统,主要解决的技术问题是当SIP网元在同一次会话的不同流程中使用不同的IP地址时,SIP信令监测系统无法识别后续SIP消息归属于哪一个分段。
为解决上述技术问题,本公开实施例提供一种SIP网元多地址学习方法,包括:为通信网络中的SIP网元逻辑实体分配网元标识,所述SIP网元逻辑实体包括至少一个IP地址;通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习;根据所述网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表;根据所述IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息所属网元逻辑实体的识别。
本公开实施例还提供一种SIP网元多地址学习装置,包括:配置单元、IP地址学习单元、创建单元、消息识别单元;所述配置单元,用于为通信网路中的SIP网元逻辑实体分配网元标识,所述SIP网元逻辑实体包括至少一个IP地址;所述IP地址学单元,用于通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习;所述创建单元,用于根据所述网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表;所述消息识别单元,用于根据所述IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息识别。
本公开实施例还提供一种SIP信令监测系统,包括如上述的SIP网元多地址学习装置,还包括处理器、存储器及通信总线;所述通信总线用于实现处理器和存储器之间的连接通信;所述处理器用于执行存储器中存储的一个或者多个计算机程序,以实现如上述的SIP网元多地址学习方法的步骤。
本公开实施例还提供一种计算机存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上所述的SIP网元多地址学习方法的步骤。
本公开其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为本公开提供的信令监测系统在IMS、VOLTE网络中的结构示意图;
图2为本公开提供的相关技术中SIP呼叫建立的信令流程示意图;
图3为本公开提供的相关技术中SIP呼叫建立过程中IP地址变化示意图;
图4为本公开实施例一提供的一种SIP网元多地址学习方法基本流程图;
图5A为本公开实施例一提供的建立IP地址-网元标识信息表的示意图;
图5B为本公开实施例一提供的建立网元标识-IP地址信息表的示意图;
图6为本公开实施例一提供的一种SIP网元多地址学习方法流程图;
图7A、图7B和图7C为本公开实施例一提供的网元IP地址关系建立示意图;
图8为本公开实施例一提供的建立HOST-IP地址信息表的示意图;
图9为本公开实施例一提供的另一种SIP网元多地址学习方法流程图;
图10为本公开实施二提供一种SIP网元多地址学习装置结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
相关技术中,通信网络中的SIP网元通常具有多个IP地址,SIP网元实体可以根据需要灵活的选用这些地址、端口进行信令收发,而信令监测系统却并不掌握这些信息,有时候SIP协议实体的这种灵活性,会给SIP信令监测系统带来很大局限性。当SIP网元在同一次会话的不同流程中使用不同的IP地址时,SIP信令监测系统无法识别后续SIP消息归属于哪一个分段。
下面通过图2和图3所示出的呼叫建立流程来具体分析SIP网元实体的这种多地址特性是如何局限SIP信令监测系统的。一次完整的SIP呼叫建立过程,从主叫用户到被叫用户需要经过多个不同的SIP协议接口,但是路由转发原理、存在的问题都是类似的,为了方便描述,图2以及后文仅以UE(User Equipment)到AS(Application Server)这一段的信令流程为例进行说明。
首先,从S201到S203用户终端UE通过Gm口发送INVITE请求到SBC(Session Border Controller),SBC通过Mw口转发信令到S-CSCF,S-CSCF根据签约业务配置通过ISC口路由INVITE信令到AS进行业务触发,从S204到S206 AS回复183响应给主叫UE,从S207到S218通信双方完成媒体协商,从S219到S221将被叫180振铃消息传递到主叫UE,从S222到S224将呼叫接通200OK消息传递到主叫UE,从S225到S227传递主叫UE的ACK确认消息。
对于SIP信令监测系统而言,通常需要完整的监测Gm、Mw、ISC各接口的信令流程,记录整个信令流程中消息在各接口的到达时间、处理状态等信息,并生成相应的事件上报 话单,为此,SIP信令监测系统需要为每一个分段创建并维护独立的状态数据区。虽然通过CALL-ID可以区分不同的SIP会话流程,但是同一会话的SIP信令在各分段传递过程中,除了网络层(IP层)和传输层(UDP或TCP)有足够的辨识度外,在SIP层本身很难识别出属于哪个分段(初始请求消息除外),比如图2中S207到S209的PRACK请求,S210到S212的PRACK 200OK响应都高度相似,后面的UPDATE、180、INVITE 200OK、ACK流程也有类似问题。
SIP信令监测系统为了区分同一流程在各分段的信令,往往会利用SIP报文的源地址+目标地址作为识别依据。在实际部署的通信网络中,一个SIP网元逻辑实体(如S-CSCF、AS等)允许配置多个IP地址+端口进行SIP消息的收发,SIP网元逻辑实体出于负荷均衡、链路可靠性等原因可以灵活选择使用某一个IP地址+端口进行通信,但是这种地址变化机制对于SIP信令监测系统却会引入一个问题:当SIP初始请求的网元地址与后续SIP消息的网元地址不同时,如何识别后续SIP消息属于哪一个分段?
以图3所示的一段ISC接口呼叫场景为例,S-CSCF网元的地址为IP10,AS网元的地址有两个IP20和IP21,S301的呼叫初始请求INVITE通过IP10地址发送到IP20地址的AS网元,但是S302的183响应消息却是从AS的IP21地址发给IP10,后面的PRACK、UPDATE、180、200OK(INVITE)、ACK流程中AS使用的地址也都是IP21,对于使用IP地址作为分段识别依据的SIP信令监测系统而言,分段识别机制失效,即当SIP网元在同一次会话的不同流程中使用不同的IP地址时,SIP信令监测系统无法识别后续SIP消息归属于哪一个分段。
另外,某些业务场景,希望将同一SIP网元处理的两个不同SIP事务流程(比如SIP注册的401鉴权流程前后的两次注册流程)关联起来发送事件报告,如果出现网元多地址的情况,现有SIP信令监测系统也无法关联处理。
针对上述相关技术中存在的技术问题,本公开提出一种SIP网元多地址学习方法及装置、SIP信令监测系统,可以自动、快速识别出通信网络中,哪些IP地址同属于一个SIP网元逻辑实体,为SIP网元逻辑实体分配网元识别标识;通过网元识别标识来解决网元地址变化时的分段识别问题,降低手动配置工作量和人员协调复杂度,提升SIP信令监测系统适应外部组网变化的灵活性。
实施例一
为了解决当SIP网元在同一次会话的不同流程中使用不同的IP地址时,SIP信令监测系统无法识别后续SIP消息归属于哪一个分段的问题,本公开实施例提出一种SIP网元多地址学习方法,请参见图4,包括以下步骤。
S401:为通信网络中的SIP网元逻辑实体分配网元标识,所述SIP网元逻辑实体包括 至少一个IP地址。
S402:通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习。
S403:根据所述网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表。
S404:根据所述IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息所属网元逻辑实体的识别。
本公开实施例提供的SIP网元多地址学习方法,通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习,可以自动、快速地识别出通信网络中,哪些IP地址属于同一个SIP网元实体,为SIP网元实体分配唯一的网元标识,根据SIP网元实体对应的IP地址,建立IP地址-网元标识信息表,以及网元标识-IP地址信息表,从而可以根据IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息所属网元逻辑实体的识别,这样,即使SIP网元在同一次会话的不同流程中使用不同的IP地址,SIP信令监测系统也能很识别出后续SIP消息归属于哪一个分段。根据本公开实施例建立的IP地址-网元标识信息表以及网元标识-IP地址信息表,信令监测系统进行SIP消息识别时,可以根据源、目的网元IP地址来识别属于哪一个分段,也可以根据源、目的网元IP地址对应的网元标识来识别SIP消息属于哪一个分段。
本实施例中,参见图5A、图5B,所述IP地址-网元标识信息表为:以所述IP地址作为Key值,Value部分至少包括网元标识字段、网元角色字段的信息表;所述网元标识-IP地址值信息表为:以所述网元标识为Key值,Value部分至少包括网元角色字段、至少一个IP地址字段的信息表。
在通信网络中,一个SIP网元逻辑实体通常具有多个不同的IP地址,如何对SIP网元逻辑实体的IP地址进行学习,一种看似简单直接的方式是:直接从网络运营商申请获取SIP网元的IP地址信息,但是SIP网元实体部署地域广阔、数量繁多,要整理出所有网元的多地址关系工作量较大;另外,一个省的通信网络结构扩展变化信息并不会及时通知其它省的运维人员。因此,直接从网络运营商直接获取网元多地址信息的方式,有沟通成本、维护成本高,信息滞后问题。
针对此问题,本公开提出了一种SIP网元多地址学习方法,该方法包括:通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体 的IP地址进行学习,这两种机制互为补充,从而提高学习的成功率。
对于CALL-ID头部相同,且CSeq头部的Method相同的SIP请求消息和SIP响应消息,当采用IP地址进行SIP请求消息和响应消息关联失败时,则通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,这种方法的学习结果准确性高,学习成功后可以直接使用,但是,只有在SIP事务流程内发生的IP地址变化才能学习成功。如图6所示,该方法包括以下步骤。
S601:接收到SIP初始请求消息时,查询以CALL-ID为Key的会话数据区,并创建以源IP地址+目标IP地址为识别特征的分段数据区,保存SIP初始请求消息的第一个Via头部的Branch参数。
步骤S601中,当查询以CALL-ID为Key的会话数据区失败时,则创建以CALL-ID为Key的会话数据区。本实施例中是将CALL-ID与源地址+目标地址特征分成两级数据区来管理,这样设计的优点在于能提高性能节省内存,当然,本实施例也可以直接使用CALL-ID+源地址+目标地址的单级数据区方式来实现后面的IP地址学习,学习原理不变,本实施例中并不作限定。
S602:接收到SIP初始请求消息对应的SIP响应消息时,使用CALL-ID为Key查询会话数据区,若查询失败,则退出本次IP地址学习处理。
由于SIP响应消息与SIP请求消息的方向相反,必须先进行调整,使源地址/目标地址与SIP网元实体的对应关系与SIP请求消息保持逻辑一致,才能进行后面的查询、比较操作。本实施例后面的描述中提及的源地址、目标地址、源网元标识、目标网元标识,都是指经过调整并与SIP请求消息保持逻辑一致的情况。
S603:使用源IP地址+目标IP地址或者源网元标识、目标网元标识与所述CALL-ID会话数据区下所有分段数据区的识别特征进行比较,对所述分段数据区进行定位,若定位成功,则退出本次IP地址学习处理。
S604:当分段数据区定位失败时,使用所述SIP响应消息的第一个Via头部的Branch参数与所述SIP初始请求消息的第一个Via头部的Branch参数进行匹配,若匹配失败,则退出本次IP地址学习处理;
S605:当Branch参数匹配成功时,则学习到的IP地址属于同一个网元逻辑实体。
当学习到IP地址后,则会对IP地址与网元标识之间的关系表进行新增或者是修正,如图7A-C所示,图7A中表示新学习到IP地址A与IP地址B的IP地址信息,A与B属于同一个网元,则建立A与B的IP地址-网元标识表,以及网元标识-IP地址信息表,为A与B分配相同的网元标识,如图7B所示,当已知A与B属于同一个网元,新学习到B与C也属于同一个网元,同时也间接学习到A与C的关系,此时则建立A、B、C之间的网 元关系;如图7C所示,已知A、B同属一网元,且已分配网元标识1,同时,已知C、D同属一网元,且已分配网元标识2,现在新学习到B与C也属于同一网元,由于网元标识1与网元标识2不同,因此,在建立A、B、C、D之间的同网元关系时,需要整合两个不同的网元标识,要么选用其中的一个,要么重新分配一个新的网元标识3,同时也间接学习到B与C、A与C、A与D之间的关系;图中,双实线表示已知的关系,单实线表示直接学习到的关系,虚线表示间接学习到的关系。
本实施例中,还可通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习,该方法不限定在SIP事务内进行学习;但是,有些例外场景的学习结果需要排除,需要设置排除规则。如图8所示,该方法的实现需要创建HOST-IP地址信息表,所述HOST-IP地址信息表为:以HOST为Key值,Value部分至少包括类型标记字段、至少一个ID地址字段的信息表;所述HOST为域名或主机名。当满足预设条件时,则通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习;由于这种学习机制会增加CPU处理时间,不适合始终开启,因此,通过配置触发条件来控制,仅在满足预设条件时,才进行该方法的SIP网元多地址学习处理。所述预设条件包括:预定的时间段、设备安装或者启动初期的强制学习阶段、用户通过指令触发。参见图9所示,该方法包括以下步骤。
S901:接收到携带Route头部的SIP请求消息时,检查Top Route中的HOST部分是否为IP地址形式,若是,则退出本次IP地址学习。若Top Route中的HOST部分不是IP地址的形式则进入步骤S802。
S902:以Top Route的整个HOST部分为Key,并以主机名暂时作为类型标记,进行HOST-IP地址关系学习。
将Top Route的整个HOST部分转换为大写或小写的字符后,作为Key查询所述HOST-IP地址信息表,若查询失败时,则新建HOST-IP地址信息表。此时,通常不确定HOST部分是主机名还是域名的,类型标记默认设置为“主机名”,如果该HOST为域名,后面的域名自学习成功后,会将类型标记修正为“域名”;如果HOST-IP地址信息表查询成功,则检测当前SIP消息目标地址是否已经学习成功,如果尚未学习,则根据当前IP目标地址创建HOST-IP地址信息表。
S903:逐次去掉HOST字符串中的第一个点字符之前的部分,以剩下部分字符串为Key,以域名作为所述类型标记,记录在所述HOST-IP地址信息表中,直到所有域名分段都学习完成。
以主机名scscf10.cs.hn.node.ims.mnc000.mcc460.3gppnetwork.org为例,需要逐次将cs.hn.node.ims.mnc000.mcc460.3gppnetwork.org、 hn.node.ims.mnc000.mcc460.3gppnetwork.org、node.ims.mnc000.mcc460.3gppnetwork.org、直到org字符串全部作为域名添加到HOST-IP地址信息表中。
当学习到被标记为主机名的HOST的实际类型标记实际为域名时,则修正HOST的类型标记为域名。
S904:学习预设时间段后,输出所述HOST-IP地址信息表中所有所述类型标记为主机名,且不同IP地址数大于1的所有IP地址即为学习成功的属于同一个网元逻辑实体的IP地址。
本实施例中,需要对所述学习成功的IP地址按照预设特殊排除规则进行排除,所述特殊排除规则包括:排除主机名部分包含mgcf字符串的IP地址、排除主机名部分包含资源池特征pool字符串的IP地址。
本公开实施例提供的SIP网元多地址学习方法,通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习,可以自动、快速地识别出通信网络中,哪些IP地址属于同一个SIP网元实体,为SIP网元实体分配唯一的网元标识,根据SIP网元实体对应的IP地址,建立IP地址-网元标识信息表,以及网元标识-IP地址信息表,从而可以根据IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息识别,这样,即使SIP网元在同一次会话的不同流程中使用不同的IP地址,SIP信令监测系统也能很识别出后续SIP消息归属于哪一个分段。同时,解决了直接从网络运营商直接获取网元多地址信息存在的沟通成本、维护成本高,信息滞后问题,降低手动配置工作量和人员协调复杂度,提升SIP信令监测系统适应外部组网变化的灵活性。
实施例二
为了解决当SIP网元在同一次会话的不同流程中使用不同的IP地址时,SIP信令监测系统无法识别后续SIP消息归属于哪一个分段的问题,本公开实施例提出一种SIP网元多地址学习装置,请参见图10,包括:配置单元、IP地址学习单元、创建单元、消息识别单元。
所述配置单元,用于为通信网路中的SIP网元逻辑实体分配网元标识,所述SIP网元逻辑实体包括至少一个IP地址。
所述IP地址学单元,用于通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习。
所述创建单元,用于根据所述网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表。
所述消息识别单元,用于根据所述IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息识别。
本实施例中,所述IP地址学习单元包括判断单元、处理单元。
所述判断单元,用于当通过IP地址进行SIP请求消息和响应消息关联失败时,判断SIP请求消息和SIP响应消息的CALL-ID头部是否相同,且CSeq头部的Method是否相同。
所述处理单元,用于通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习处理。
所述判断单元还用于判断是否满足预设条件,当满足预设条件时,则所述处理单元则通过通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习。
本实施例还提供了一种信令监测系统,包括如上所述的SIP网元多地址学习装置;还包括处理器、存储器及通信总线。
所述通信总线用于实现处理器和存储器之间的连接通信。
所述处理器用于执行存储器中存储的一个或者多个计算机程序,以实现如实施例一所述的SIP网元多地址学习方法的步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器)、ROM(Read-Only Memory,只读存储器)、EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例提供的一种SIP网元多地址学习装置、信令监测系统,通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习,可以自动、快速地识别出通信网络中,哪些IP地址属于同一个SIP网元实体,为SIP网元实体分配唯一的网元标识,根据SIP网元实体对应的IP地址,建立IP地址-网元标识信息表,以及网元标识-IP地址信息表,从而可以根据IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息识别,这样,即使SIP网元在同一次会话的不同流程中使用不同的IP地址,SIP信令监测系统也能很识别出后续SIP消息归属于哪一个分段。同时,解决了直接从网络运营商直接获取网元多地址信息存在的沟通成本、维护成本高,信息滞 后问题,降低手动配置工作量和人员协调复杂度,提升SIP信令监测系统适应外部组网变化的灵活性。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为本公开的保护范围。

Claims (14)

  1. 一种SIP网元多地址学习方法,包括:
    为通信网络中的SIP网元逻辑实体分配网元标识,所述SIP网元逻辑实体包括至少一个IP地址;
    通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或
    通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习;
    根据所述网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表;
    根据所述IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息所述网元逻辑实体的识别。
  2. 如权利要求1所述的SIP网元多地址学习方法,其中,包括:所述IP地址-网元标识信息表为:以所述IP地址作为Key值,Value部分至少包括网元标识字段、网元角色字段的信息表;所述网元标识-IP地址值信息表为:以所述网元标识为Key值,Value部分至少包括网元角色字段、至少一个IP地址字段的信息表。
  3. 如权利要求1所述的SIP网元多地址学方法,其中,包括:
    对于CALL-ID头部相同,且CSeq头部的Method相同的SIP请求消息和SIP响应消息,当采用IP地址进行SIP请求消息和响应消息关联失败时,通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习。
  4. 如权利要求3所述的SIP网元多地址学习方法,其中,所述通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习包括:
    接收到SIP初始请求消息时,查询以CALL-ID为Key的会话数据区,并创建以源IP地址+目标IP地址为识别特征的分段数据区,保存SIP初始请求消息的第一个Via头部的Branch参数;
    接收到SIP初始请求消息对应的SIP响应消息时,使用CALL-ID为Key查询会话数据区,若查询失败,则退出本次IP地址学习处理;
    使用源IP地址+目标IP地址或者源网元标识、目标网元标识与所述CALL-ID会话数据区下所有分段数据区的识别特征进行比较,对所述分段数据区进行定位,若定位成功,则退出本次IP地址学习处理;
    当所述分段数据区定位失败时,使用所述SIP响应消息的第一个Via头部的Branch参数与所述SIP初始请求消息的第一个Via头部的Branch参数进行匹配,若匹配失败, 则退出本次IP地址学习处理;
    当Branch参数匹配成功时,则学习到的IP地址属于同一个网元逻辑实体。
  5. 如权利要求4所述的SIP网元多地址学习方法,其中,所述接收到SIP初始请求消息时,查询以CALL-ID为Key的会话数据区包括:
    当CALL-ID会话数据区查询失败时,则创建以CALL-ID为Key的会话数据区。
  6. 如权利要求1所述的SIP网元多地址学习方法,其中,所述通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习之前包括:
    创建HOST-IP地址信息表,所述HOST-IP地址信息表为:以HOST为Key值,Value部分至少包括类型标记字段、至少一个ID地址字段的信息表;所述HOST为域名或主机名。
  7. 如权利要求6所述的SIP网元多地址学习方法,其中,当满足预设条件时,则通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习;所述预设条件包括:预定的时间段、设备安装或者启动初期的强制学习阶段、用户通过指令触发。
  8. 如权利要求7所述的SIP网元多地址学习方法,其中,所述通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习包括:
    接收到携带Route头部的SIP请求消息时,检查Top Route中的HOST部分是否为IP地址形式,
    若Top Route中的HOST部分是IP地址形式,则退出本次IP地址学习;
    若Top Route中的HOST部分不是IP地址形式,则以Top Route的整个HOST部分为Key,并以主机名暂时作为类型标记,进行HOST-IP地址关系学习;
    逐次去掉HOST字符串中的第一个点字符之前的部分,以剩下部分字符串为Key,以域名作为所述类型标记,记录在所述HOST-IP地址信息表中,直到所有域名分段都学习完成;
    当学习到被标记为主机名的HOST的实际类型标记实际为域名时,则修正HOST的类型标记为域名;
    学习预设时间段后,输出所述HOST-IP地址信息表中所有所述类型标记为主机名,且不同IP地址数大于1的所有IP地址即为学习成功的属于同一个网元逻辑实体的IP地址。
  9. 如权利要求8所述的SIP网元多地址学习方法,其中,包括:对所述学习成功 的IP地址按照预设特殊排除规则进行排除,所述特殊排除规则包括:排除主机名部分包含mgcf字符串的IP地址、排除主机名部分包含资源池特征pool字符串的IP地址。
  10. 如权利要求8所述的SIP网元多地址学习方法,其中,以Top Route的整个HOST部分为Key,进行HOST-IP地址关系学习包括:
    将Top Route的整个HOST部分转换为大写或小写的字符后,作为Key查询所述HOST-IP地址信息表,若查询失败时,则新建HOST-IP地址信息表。
  11. 一种SIP网元多地址学习装置,包括:配置单元、IP地址学习单元、创建单元、消息识别单元;
    所述配置单元,用于为通信网路中的SIP网元逻辑实体分配网元标识,所述SIP网元逻辑实体包括至少一个IP地址;
    所述IP地址学单元,用于通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习,或
    通过SIP请求消息的Top Route中HOST字符串与目的IP地址的关系对所述SIP网元逻辑实体的IP地址进行学习;
    所述创建单元,用于根据所述网元逻辑实体对应的IP地址创建IP地址-网元标识信息表以及网元标识-IP地址信息表;
    所述消息识别单元,用于根据所述IP地址-网元标识信息表或网元标识-IP地址信息表进行SIP消息识别。
  12. 如权利要求11所述的SIP网元多地址学习装置,其中,所述IP地址学习单元包括判断单元、处理单元;
    所述判断单元,用于当通过IP地址进行SIP请求消息和响应消息关联失败时,判断SIP请求消息和SIP响应消息的CALL-ID头部是否相同,且CSeq头部的Method是否相同;
    所述处理单元,用于通过SIP消息的第一个Via头部的Branch参数对所述SIP网元逻辑实体的IP地址进行学习处理。
  13. 一种SIP信令监测系统,其中,包括如权利要求11-12任一项所述的SIP网元多地址学习装置;还包括处理器、存储器及通信总线;
    所述通信总线用于实现处理器和存储器之间的连接通信;
    所述处理器用于执行存储器中存储的一个或者多个计算机程序,以实现如权利要求1至10中任一项所述的SIP网元多地址学习方法的步骤。
  14. 一种计算机可读存储介质,其中,所述计算机可读存储介质
    存储有一个或者多个计算机程序,所述一个或者多个计算机程序可被一个或者多 个处理器执行,以实现如权利要求1至10中任一项所述的SIP网元多地址学习方法的步骤。
PCT/CN2021/135442 2020-12-14 2021-12-03 一种sip网元多地址学习方法及装置、信令监测系统 WO2022127625A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21905554.8A EP4262174A1 (en) 2020-12-14 2021-12-03 Sip network element multi-address learning method and apparatus, and signaling monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011470632.6 2020-12-14
CN202011470632.6A CN114629881A (zh) 2020-12-14 2020-12-14 一种sip网元多地址学习方法及装置、信令监测系统

Publications (1)

Publication Number Publication Date
WO2022127625A1 true WO2022127625A1 (zh) 2022-06-23

Family

ID=81896911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135442 WO2022127625A1 (zh) 2020-12-14 2021-12-03 一种sip网元多地址学习方法及装置、信令监测系统

Country Status (3)

Country Link
EP (1) EP4262174A1 (zh)
CN (1) CN114629881A (zh)
WO (1) WO2022127625A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412532A (zh) * 2022-08-15 2022-11-29 深圳市风云实业有限公司 一种sip及扩展协议会话控制流识别及处理的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060221893A1 (en) * 2005-04-01 2006-10-05 Nokia Corporation System, network entity, method, mobile device and computer program product for correlating device identifiers in mobile networks
US20080310425A1 (en) * 2007-06-15 2008-12-18 Badri Nath System and method for automatic detection and reporting of the mapping between device identity and network address in wireless networks
CN103037433A (zh) * 2011-09-29 2013-04-10 中兴通讯股份有限公司 一种寻址跟踪收集实体的方法及系统
CN107317786A (zh) * 2016-04-26 2017-11-03 中国移动通信有限公司研究院 一种转发会话初始协议消息的方法、装置及网元
CN110913010A (zh) * 2019-12-05 2020-03-24 杭州东信北邮信息技术有限公司 一种sip业务集群系统及实现方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2326246C (en) * 1999-12-23 2005-04-05 Nortel Networks Limited Methods and systems for internet protocol (ip) network surveillance
JP3577067B2 (ja) * 2002-12-24 2004-10-13 一 福嶋 動的ipアドレス割当てを受けた機器を管理する方法およびシステム
US7769159B1 (en) * 2003-06-03 2010-08-03 Sprint Spectrum L.P. Method and system for identifying calls
MX2008000757A (es) * 2005-07-19 2008-03-13 Ericsson Telefon Ab L M Metodo y aparato para asignar servidores de aplicacion en un ims.
US20080144602A1 (en) * 2006-12-14 2008-06-19 Nortel Networks Limited Providing sip interworking in a next generation network
US8645565B2 (en) * 2008-07-31 2014-02-04 Tekelec, Inc. Methods, systems, and computer readable media for throttling traffic to an internet protocol (IP) network server using alias hostname identifiers assigned to the IP network server with a domain name system (DNS)
CN101583129A (zh) * 2009-06-12 2009-11-18 中兴通讯股份有限公司 一种ip多媒体子系统网络中的合法监听系统及方法
US9307092B1 (en) * 2010-10-04 2016-04-05 Verint Americas Inc. Using secondary channel information to provide for gateway recording
US8775610B2 (en) * 2010-12-30 2014-07-08 Sonus Networks, Inc. Identifying an application server in a plurality of application servers associated with a shared identifier
US9148359B2 (en) * 2011-12-22 2015-09-29 Voipfuture Gmbh Correlation of media plane and signaling plane of media services in a packet-switched network
US9247418B2 (en) * 2012-07-13 2016-01-26 Verizon Patent And Licensing Inc. Communication-session termination when subscriber server is unavailable
US10924895B2 (en) * 2013-01-22 2021-02-16 Blackberry Limited Enhancing short message service addressing and routing
US9819703B2 (en) * 2015-09-23 2017-11-14 T-Mobile Usa, Inc. SIP server with multiple identifiers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060221893A1 (en) * 2005-04-01 2006-10-05 Nokia Corporation System, network entity, method, mobile device and computer program product for correlating device identifiers in mobile networks
US20080310425A1 (en) * 2007-06-15 2008-12-18 Badri Nath System and method for automatic detection and reporting of the mapping between device identity and network address in wireless networks
CN103037433A (zh) * 2011-09-29 2013-04-10 中兴通讯股份有限公司 一种寻址跟踪收集实体的方法及系统
CN107317786A (zh) * 2016-04-26 2017-11-03 中国移动通信有限公司研究院 一种转发会话初始协议消息的方法、装置及网元
CN110913010A (zh) * 2019-12-05 2020-03-24 杭州东信北邮信息技术有限公司 一种sip业务集群系统及实现方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412532A (zh) * 2022-08-15 2022-11-29 深圳市风云实业有限公司 一种sip及扩展协议会话控制流识别及处理的方法
CN115412532B (zh) * 2022-08-15 2023-07-21 深圳市风云实业有限公司 一种sip及扩展协议会话控制流识别及处理的方法

Also Published As

Publication number Publication date
EP4262174A1 (en) 2023-10-18
CN114629881A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US10602384B2 (en) Systems and methods for emergency call route failover
US11405502B2 (en) Fault routing of an emergency communication
US9602634B2 (en) Global session identifier
US9602595B2 (en) Controlling registration floods in VoIP networks via DNS
US8745182B2 (en) Provision of public service identities
US9026663B2 (en) Method, apparatus and program product for merging communication sessions in an IMS
US8958282B2 (en) 1-for-N redundancy in private IP session border control networks
US9148359B2 (en) Correlation of media plane and signaling plane of media services in a packet-switched network
US20080080515A1 (en) Marker for communication systems consisting of multiple sip servers
EP2091186A1 (en) A method, network and device of routing session
CN108141440A (zh) 具有多个标识符的sip服务器
WO2022127625A1 (zh) 一种sip网元多地址学习方法及装置、信令监测系统
US9432409B2 (en) Apparatus and method for managing emergency calls
US8693376B2 (en) Monitoring in a telecommunication network
US8966089B2 (en) Supporting proxy discovery
WO2018233641A1 (zh) 三角信令分析方法、装置、系统及计算机可读存储介质
US20220321609A1 (en) Methods, systems, and computer readable media for routing of packets for lawful interception
US12010154B2 (en) Support for IMS virtual clients in multi-operator environment
US20180278656A1 (en) Implementing Application Level Multimedia Services As A Switching Function
US20080040508A1 (en) Supporting A Response To A Mid-Dialog Failure
US11870820B2 (en) Handling of lawfully intercepted SIP messages
US20120005250A1 (en) Systems and Methods for Recording Communication Sessions
MacDonald et al. Asterisk as a Public Switched Telephone Network Gateway for an IMS test bed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021905554

Country of ref document: EP

Effective date: 20230714