WO2022127219A1 - 模拟系统及可读存储介质 - Google Patents

模拟系统及可读存储介质 Download PDF

Info

Publication number
WO2022127219A1
WO2022127219A1 PCT/CN2021/117837 CN2021117837W WO2022127219A1 WO 2022127219 A1 WO2022127219 A1 WO 2022127219A1 CN 2021117837 W CN2021117837 W CN 2021117837W WO 2022127219 A1 WO2022127219 A1 WO 2022127219A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
implanted
dimensional
simulation system
Prior art date
Application number
PCT/CN2021/117837
Other languages
English (en)
French (fr)
Inventor
杨君荣
杨溪
Original Assignee
上海微创卜算子医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创卜算子医疗科技有限公司 filed Critical 上海微创卜算子医疗科技有限公司
Publication of WO2022127219A1 publication Critical patent/WO2022127219A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides

Definitions

  • the present invention relates to the field of simulation-assisted surgery systems and methods, in particular to a simulation system and a readable storage medium.
  • Deep Brain Stimulation surgery is the only effective treatment for many severe neurological and psychiatric diseases, and the accuracy of stimulation electrode implantation is a key factor in determining the success of the surgery.
  • Deep brain stimulation surgical electrodes are implanted into target nuclei such as the subthalamic nucleus (STN) and the medial part of the globus pallidus (GPi), both of which are subcortical nerve centers that control movement, but because of their small size, the stimulation electrodes are precisely implanted. entry brings greater difficulties.
  • MRI Magnetic Resonance Imaging
  • CT Computed Tomography
  • target nuclei can only be clearly displayed on high-resolution MRI images, while intraoperative and postoperative electrode position confirmation can only be performed with low-resolution MRI equipment or computed tomography equipment due to the influence of metal electrodes.
  • the large electrode artifact will also bring great difficulties to the positioning of the electrodes during and after the operation. Therefore, how to achieve clear, intuitive and accurate electrode positioning for deep brain stimulation surgery based on intraoperative and postoperative images is of great significance for the improvement of clinical surgical treatment effects.
  • the purpose of the present invention is to provide a simulation system and a readable storage medium to solve the problem that the existing clinical two-dimensional medical images cannot provide doctors with stereoscopic images of patients, and cannot accurately provide the positions of implanted electrodes for doctors to confirm.
  • a simulation system for simulating the implantation of an implanted electrode in a target tissue area, the simulation system includes: an image algorithm module connected in communication with display module;
  • the image algorithm module includes an electrode extraction unit and a registration unit, the electrode extraction unit is used to extract the three-dimensional coordinates of the implanted electrode from the postoperative image; the registration unit is used to register the implanted electrode. 3D coordinates and standard brain atlas;
  • the display module includes a three-dimensional reconstruction unit and a display unit, and the three-dimensional reconstruction unit is configured to perform three-dimensional reconstruction of the target tissue and the implanted electrodes according to the registered three-dimensional coordinates of the implanted electrodes and the standard brain atlas. reconstruction; the display unit is configured to display the virtual three-dimensional model obtained by the three-dimensional reconstruction unit three-dimensionally reconstructed.
  • the step of registering the three-dimensional coordinates of the implanted electrodes and the standard brain atlas by the registration unit includes: registering the preoperative image and the postoperative image, and registering the preoperative image and the standard brain atlas,
  • the three-dimensional coordinates of the implanted electrodes and the standard brain atlas are transformed into a unified coordinate system to realize the registration of the three-dimensional coordinates of the implanted electrodes and the standard brain atlas.
  • the step of registering the preoperative image and the postoperative image by the registration unit includes:
  • the first transformation matrix is obtained by registering the post-operative image coordinate system with the pre-operative image coordinate system;
  • the step of registering the preoperative image and the standard brain atlas by the registration unit includes:
  • the second transformation matrix is obtained by registering the preoperative image coordinate system with the standard brain atlas coordinate system;
  • the preoperative image * the second transformation matrix is transformed into the standard brain atlas coordinate system.
  • the display module further includes an electric field stimulation simulation unit, and the electric field stimulation simulation unit is used to simulate and obtain effective electric stimulation according to the current or voltage parameters input to the implanted electrode and the conductivity of the target tissue. range; the display unit is used to display the effective electrical stimulation range.
  • the step of acquiring the effective electrical stimulation range includes: acquiring electrical stimulation, comparing the electrical stimulation with a preset threshold, and determining an area greater than or equal to the threshold as the effective electrical stimulation range;
  • the electrical stimulation is derived from current or voltage parameters input to the implanted electrodes and the electrical conductivity of the target tissue.
  • the electrode extraction unit extracts the three-dimensional coordinates of the implanted electrode by using a deep neural network of threshold segmentation, dynamic three-dimensional region growth or multi-layer convolution.
  • the simulation system further includes a database module, and the database module includes a data storage unit and a data sorting unit;
  • the data storage unit is used for storing image data of different modes
  • the data sorting unit is used for sorting and sorting the image data based on the label information
  • the preoperative images and postoperative images extracted and registered by the image algorithm module are obtained from the image data sorted by the data sorting unit.
  • the simulation system further includes an image analysis module, and the image analysis module includes an image analysis unit and an image acquisition unit;
  • the image analysis unit is configured to parse the label information, so that the operator can retrieve the image data according to the label information;
  • the image acquisition unit is configured to extract the required image data from the database module according to the input key information, and input it to the image algorithm module for extraction and registration by the image algorithm module.
  • the registration unit performs registration based on at least one of mutual information iteration, extraction of key points and three-dimensional point cloud.
  • a readable storage medium on which a program is stored, and when the program is executed, it realizes:
  • the three-dimensional coordinates of the implanted electrodes are extracted from the postoperative images
  • the virtual 3D model obtained from the 3D reconstruction is displayed.
  • the simulation obtains the effective electrical stimulation range
  • the effective electrical stimulation range is displayed.
  • the required image data is extracted from the classified image data for extraction and registration.
  • the simulation system is used to simulate the implantation of the implanted electrode in the target tissue area
  • the simulation system includes: an image algorithm module connected in communication and a display module;
  • the image algorithm module includes an electrode extraction unit and a registration unit, the electrode extraction unit is used to extract the three-dimensional coordinates of the implanted electrodes from postoperative images;
  • the registration unit is used to register the The three-dimensional coordinates of the implanted electrodes and the standard brain atlas;
  • the display module includes a three-dimensional reconstruction unit and a display unit, and the three-dimensional reconstruction unit is configured to, according to the registered three-dimensional coordinates of the implanted electrodes and the standard brain atlas, performing three-dimensional reconstruction on the target tissue and the implanted electrode;
  • the display unit is used for displaying the virtual three-dimensional model obtained by the three-dimensional reconstruction by the three-dimensional reconstruction unit.
  • the virtual 3D model reconstructed based on preoperative and postoperative images realizes 3D visualization of the spatial structure of deep brain stimulation surgery, provides doctors with realistic stereoscopic images, facilitates the position confirmation of implanted electrodes, and compensates for It eliminates the defect that clinical two-dimensional medical images cannot accurately display the three-dimensional spatial positional relationship between implanted electrodes and basal nerve nuclei.
  • FIG. 1 is a schematic block diagram of a simulation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a deep brain stimulation operation according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a slice layer of a postoperative image according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a slice layer of a preoperative image according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a registration result according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a display result of a virtual three-dimensional model according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a display result of an effective electrical stimulation range according to an embodiment of the present invention.
  • 10-image algorithm module 11-electrode extraction unit; 12-registration unit; 20-display module; 21-three-dimensional reconstruction unit; 22-display unit; 23-electric field stimulation simulation unit; 30-database module; 31-data storage unit; 32-data sorting unit; 40-image analysis module; 41-image analysis unit; 42-image acquisition unit; 51-implanted electrode; 52-electrode patch; 53-subthalamic nucleus; 54-medial part of globus pallidus ; 55 - Effective electrical stimulation range.
  • features defined as “first”, “second”, “third” may expressly or implicitly include one or at least two of these features, the term “proximal” is generally the end close to the operator, the term “proximal” “Distal” is generally the end near the patient, and “one end” and “the other end” and “proximal end” and “distal end” generally refer to corresponding two parts, which include not only the endpoints, unless the context clearly indicates otherwise.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two elements or the interaction relationship between the two elements.
  • the arrangement of one element on another element generally only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the relationship between the two elements may be direct or indirect through intermediate elements connection, coupling, cooperation or transmission, and should not be construed as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any position inside, outside, above, below or on one side of the other element, unless the content Also clearly stated.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the core idea of the present invention is to provide a simulation system and a readable storage medium, so as to solve the problem that the existing clinical two-dimensional medical images cannot provide doctors with stereoscopic images of patients, and cannot accurately provide the positions of implanted electrodes for doctors to confirm. .
  • FIG. 1 is a schematic block diagram of a simulation system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a deep brain stimulation operation according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention
  • Figure 4 is a schematic diagram of a certain slice layer of a preoperative image according to an embodiment of the present invention
  • Figure 5 is a schematic diagram of a registration result of an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a display result of an effective electrical stimulation range according to an embodiment of the present invention.
  • an embodiment of the present invention provides a simulation system for simulating the implantation of an implanted electrode in a target tissue area.
  • the simulation system is mainly used for doctors to evaluate the accuracy of the implantation position of the implanted electrodes in the basal nerve nuclei of the brain, and preferably can also simulate the effective electrical stimulation range of the implanted electrodes in the basal nerve nuclei.
  • the simulation system includes: an image algorithm module 10 and a display module 20 that are connected in communication;
  • the image algorithm module 10 includes an electrode extraction unit 11 and a registration unit 12 , so The electrode extraction unit 11 is used to extract the three-dimensional coordinates of the implanted electrodes from the postoperative images, and the registration unit 12 is used to register the three-dimensional coordinates of the implanted electrodes with the standard brain atlas;
  • the display module 20 includes A three-dimensional reconstruction unit 21 and a display unit 22, the three-dimensional reconstruction unit 21 is configured to perform the three-dimensional reconstruction of the target tissue (ie, the basal nerve nuclei) and the The electrodes are implanted to perform three-dimensional reconstruction;
  • the display unit 22 is configured to display the virtual three-dimensional model obtained by the three-dimensional reconstruction of the three-dimensional reconstruction unit 21 .
  • the target tissue is not limited to the basal nerve nucleus of the brain, and those skilled in the art can also apply the simulation system provided in this embodiment to other target tissues, which is not limited in the present invention.
  • FIG. 2 shows a schematic diagram of the deep brain stimulation procedure
  • the description is given by implanting the electrode 51 into the subthalamic nucleus (STN) 53 and the medial part of the globus pallidus (GPi) 54 as the target basal nucleus.
  • Preoperative images such as magnetic resonance (MRI) images, may be taken of the patient before surgery.
  • Preoperative high-resolution MRI images can clearly show the basal nerve nuclei.
  • Postoperatively, postoperative images, such as MRI or computed tomography (CT) images may be taken of the patient.
  • FIG. 3 shows a schematic diagram of a certain slice of a postoperative (CT) image
  • FIG. 3 shows a schematic diagram of a certain slice of a postoperative (CT) image
  • the target basal nuclei are not limited to the subthalamic nucleus (STN) 53 and the medial part of the globus pallidus (GPi) 54, and those skilled in the art can also select other basal nuclei in the brain according to the actual situation.
  • STN subthalamic nucleus
  • GPi medial part of the globus pallidus
  • the present invention also does not limit it.
  • the electrode extraction unit 11 is mainly responsible for extracting the implanted electrode 51 from the postoperative image of the patient, and obtaining the three-dimensional coordinates of the implanted electrode 51 .
  • the metal features of the implanted electrodes will show a high gray value on the postoperative CT image, which is significantly contrasted with the pixel values of other brain tissues, and The end of the carrier implanted with the electrode 51 is substantially concentrated at the position of the basal cranial nerve.
  • the electrode extraction unit 11 uses a deep neural network of threshold segmentation, dynamic three-dimensional region growth or multi-layer convolution to realize the segmentation and extraction of the carrier of the implanted electrode 51, so as to extract the three-dimensional image of the implanted electrode 51. coordinate.
  • the specific extraction method can be understood and applied by those skilled in the art according to the prior art, and the present invention is not further developed.
  • the registration unit 12 is mainly responsible for registering the three-dimensional coordinates of the implanted electrodes 51 and the standard brain atlas.
  • the step of registering the three-dimensional coordinates of the implanted electrodes 51 with the standard brain atlas by the registration unit 12 includes: registering The preoperative image and the postoperative image, and the preoperative image and the standard brain atlas are registered, and the three-dimensional coordinates of the implanted electrode 51 and the standard brain atlas are transformed into a unified coordinate system to realize the implantation.
  • the three-dimensional coordinates of the input electrode 51 are registered with the standard brain atlas.
  • the basal nerve nucleus is a small tissue in the brain, which can only be seen clearly on high-resolution preoperative (MRI) images; and after the implanted electrode 51 is implanted, the implanted electrode 51 Due to the metal characteristics of the rhinoplasty, MRI images cannot be taken after surgery (or only low-resolution 1.5T MRI images can be taken, which cannot distinguish the basal nerve nuclei), so generally only CT images can be taken after surgery, but on CT images It is impossible to identify the brain tissue, and it is also impossible to distinguish the target nerve nucleus; therefore, the doctor cannot judge the relative positional relationship between the implanted electrode 51 and the target basal nerve nucleus through the existing medical images.
  • MRI magnetic resonance
  • each medical image (including preoperative images, postoperative images and standard brain atlas) has a physical coordinate system, and the coordinate system is related to the acquisition device of the medical image.
  • the standard brain atlas is a brain atlas template drawn by 152 human brain MRIs and approved by the International Brain Atlas Association. It is imaged under a 7T MRI device with high resolution and high contrast.
  • the standard brain atlas is an internationally recognized standard brain template library, which includes all functional areas of the human brain, as well as the basal nerve nuclei. Functional area; the physical coordinate system corresponding to the standard brain atlas is the standard stereotaxic space of the Montreal Neuroscience Institute. After the standard brain atlas is registered with the actual medical image of the patient, the position of each basal nerve nucleus in the standard brain atlas can be used to identify the position of each basal nerve nucleus in the actual medical image of the patient.
  • the physical coordinate system of postoperative images is Coord1
  • the physical coordinate system of preoperative images is Coord2
  • the physical coordinate system of standard brain atlas images is Coord3.
  • the specific steps for the registration unit 12 to register the three-dimensional coordinates of the implanted electrodes 51 with the standard brain atlas include:
  • the postoperative image coordinate system Coord1 is registered with the preoperative image coordinate system Coord2 to obtain the first transformation matrix T1 (for example, the transformation matrix can be a rotation and translation matrix), and the postoperative image * (* represents multiplication, the same below) the first transformation Matrix T1, which can transform the postoperative image to the preoperative image coordinate system Coord2;
  • the first transformation matrix T1 for example, the transformation matrix can be a rotation and translation matrix
  • the postoperative image * * represents multiplication, the same below
  • the preoperative image coordinate system Coord2 is registered with the standard brain atlas image coordinate system Coord3 to obtain the second transformation matrix T2, and the preoperative image * second transformation matrix T2 can be transformed into the standard brain atlas image coordinate system Coord3. ;
  • the three-dimensional coordinates of the implanted electrode 51 obtained by the segmentation on the postoperative image * the first transformation matrix T1 * the second transformation matrix T2, the three-dimensional coordinates of the implanted electrode 51 can be transformed into the standard brain atlas image coordinate system Coord3;
  • the three-dimensional coordinates of the implanted electrodes 51 and the standard brain atlas are transformed into a unified coordinate system, thereby realizing the registration of the three-dimensional coordinates of the implanted electrodes 51 and the standard brain atlas.
  • a unified reference coordinate system can also be set, and the coordinate systems of the postoperative image, the preoperative image and the standard brain atlas image are respectively converted into the unified reference coordinate system to realize the implantation. Registration of the 3D coordinates of the input electrodes with standard brain atlases.
  • the standard brain atlas reflects a plurality of diagrams of different basal nerve nuclei.
  • FIG. 5 shows the result of registering the preoperative and postoperative images of FIGS. 3 and 4 .
  • the registration unit 12 performs registration based on at least one of mutual information iteration, key point extraction (SIFT) and three-dimensional point cloud.
  • the number of iterations can be set to 200.
  • the medical image is first down-sampled to 1/4 of the original image for registration, and then down-sampled to 1/2 of the original image for registration, and then the original image is matched.
  • the registration process is similar to the spatial pyramid, which can improve the efficiency of registration.
  • key points in medical images can be extracted based on 3d SIFT for registration.
  • the target object in the medical image can be segmented, the target surface point cloud can be extracted, 1000-2000 points can be obtained by downsampling, and the registration can be performed by iterative calculation between the two groups of point clouds.
  • registration methods are commonly used registration methods in the art, and those skilled in the art can also use two or three of them to improve the registration accuracy.
  • those skilled in the art can also select other registration methods according to the prior art, which is not limited in this embodiment.
  • the three-dimensional reconstruction unit 21 performs three-dimensional reconstruction on the basal nerve nuclei and the implanted electrodes 51 according to the registered three-dimensional coordinates of the implanted electrodes 51 and the standard brain atlas to obtain a virtual three-dimensional model.
  • the virtual three-dimensional model includes a virtual model of the implanted electrode 51 and a virtual model of the basal nerve nucleus.
  • the three-dimensional reconstruction unit 21 can perform virtual modeling of the implanted electrode 51 , and based on the preoperative image and the standard brain atlas, the three-dimensional reconstruction unit 21 can reconstruct the target basal nerve
  • the nuclei are modeled virtually, and since the preoperative image and the postoperative image have been registered by the registration unit 12, the virtual 3D model reconstructed by the 3D reconstruction unit 21 reflects the relationship between the implanted electrode 51 and the basal nerve nucleus. exact relative position.
  • the three-dimensional reconstruction unit uses the Marching Cubes algorithm or the Dual Contouring algorithm to perform three-dimensional reconstruction.
  • the above algorithms are all three-dimensional reconstruction algorithms commonly used in the art, and will not be described further in the present invention.
  • the display unit 22 is configured to display the virtual three-dimensional model obtained by the three-dimensional reconstruction of the three-dimensional reconstruction unit 21 .
  • the display unit 22 can be, for example, a terminal display device, which is connected in communication with the image algorithm module 10 to obtain and display data information from the image algorithm module 10 .
  • a three-dimensional image of the implanted electrode 51 and the target nucleus can be displayed on the screen of the display unit 22 .
  • the three-dimensional visualization of the spatial structure of the deep brain stimulation operation is realized, which provides doctors with a realistic three-dimensional image, which is convenient for confirming the position of the implanted electrode 51, and makes up for the inability to accurately display the implanted electrode 51 and the basal nerve in clinical two-dimensional medical images.
  • the defect of the three-dimensional spatial positional relationship of the nucleus can meet the needs of the positioning of the implanted electrodes 51 in the clinical deep brain stimulation surgery under the premise of ensuring the accuracy and speed, and is the functional area positioning and optimal target point of the deep brain stimulation surgery. It provides guidance for the selection of deep brain stimulation and provides a basis for the optimization of control parameters after deep brain stimulation surgery, which can effectively improve the implantation accuracy of implanted electrodes, improve clinical treatment effects, reduce side effects and save battery life.
  • the display module 20 further includes an electric field stimulation simulation unit 23, and the electric field stimulation simulation unit 23 is configured to, according to the current or voltage parameters input to the implanted electrode 51 and the conductivity of the basal nerve nucleus,
  • the effective electrical stimulation range 55 is obtained by simulation; the display unit 22 is used to display the effective electrical stimulation range 55 .
  • the step of acquiring the effective electrical stimulation range 55 includes: acquiring electrical stimulation, comparing the electrical stimulation with a preset threshold, and determining an area greater than or equal to the threshold as the effective electrical stimulation range 55; wherein , the electrical stimulation is obtained according to the current or voltage parameters input to the implanted electrode 51 and the conductivity of the target tissue.
  • the carrier of the implanted electrode 51 has several electrode sheets, and the electrode sheets are connected to the positive and negative electrodes of the external power supply through the cavity in the carrier.
  • the basal nuclei of the brain are electrically conductive, and when a current or voltage passes through, a circuit can be formed to achieve electrical stimulation of the basal nuclei.
  • all electrode pads on the implanted electrode 51 can be considered as the positive and negative poles of a circuit, and the basal nerve nucleus tissue can be considered as a load (conductivity can be considered as resistivity).
  • the effective electrical stimulation range 55 of the implanted electrode 51 to the basal nerve nucleus can be simulated.
  • the electric field stimulation simulation unit 23 is responsible for simulating the electrical stimulation of the basal nerve nucleus by the implanted electrodes 51 . It can be understood that different current or voltage parameters can form effective electrical stimulation ranges 55 with different ranges and strengths. In addition, since the conductivity of the basal nerve nuclei at different times and different parts is different, the simulation of the effective electrical stimulation range 55 requires not only the current or voltage parameters input to the implanted electrode 51 but also the target basal nerve nuclei. The conductivity is used as an input parameter. Alternatively, the conductivity of the basal nuclei can be obtained by consulting official literature or querying databases,
  • FIG. 7 shows a display result in which the display unit 22 displays the effective electrical stimulation range 55 in an exemplary example.
  • two implanted electrodes 51 are included, and each implanted electrode 51 includes four annular electrode sheets 52 . Parameters such as the number, spacing and length of the electrode sheets 52 on the implanted electrode 51 can be acquired before the three-dimensional reconstruction unit 21 performs the three-dimensional reconstruction. Therefore, the three-dimensional reconstruction of the implanted electrode 51 can be accurately performed.
  • Fig. 7 shows the obtained example.
  • the current of the implanted electrode 51 is 5 mA as an example.
  • the illustrated range of electrical stimulation is the effective electrical stimulation above the threshold.
  • the stimulus range is 55.
  • the setting of the electric field stimulation simulation unit 23 can simulate the effective electrical stimulation range 55 for different basal nerve nuclei, and provide a basis for the optimization of control parameters after deep brain stimulation surgery.
  • the human-computer interaction operation process is reduced, it is convenient for doctors to check the diagnosis and treatment effect after DBS operation, and the diagnosis efficiency and accuracy are improved.
  • the simulation system further includes a database module 30, the database module 30 includes a data storage unit 31 and a data sorting unit 32; the data storage unit 31 is used to store image data of different modalities; the data sorting unit 32 The sorting unit 32 is used to sort and sort the image data based on the label information; the preoperative images and post-operative images extracted and registered by the image algorithm module 10 are both sorted and sorted by the data sorting unit. obtained in.
  • the data storage unit 31 is responsible for storing image data of different modalities of all patients.
  • the imaging time and imaging methods of different modalities of patients are different, and may include preoperative computed tomography (CT) brain volume data images, Preoperative cerebral angiography (CTA, CT angiography) volume data images, preoperative and postoperative magnetic resonance imaging (MRI) brain volume data images, etc.
  • image data including MRI, CT, etc.
  • Dicom is an international standard format that contains not only the image data (pixel value) of the image itself, but also patient and equipment information (such as names including names). , age, model of shooting equipment, shooting time, shooting location and image type, etc.).
  • third-party databases such as MYSQL, SQL Server, and Oracle can be used to store patient image data.
  • the data sorting unit 32 is mainly responsible for sorting and sorting the image data in the data storage unit 31 based on the tag information.
  • the label information may include, for example, the modality of the image data (referring to the type of the image, such as CT, MR, CTA, etc.), patient ID, imaging site, and imaging time.
  • the method for classifying and sorting includes: setting the patient ID as the first priority, and classifying all image data of the same patient under the patient ID; Image data of the same modality are classified into one category (MR, CT, CTA, etc.); the imaging site is the third priority, that is, the same part of the human body is classified into one category (such as the brain, lungs or legs, etc.)
  • the third priority all image data are arranged by imaging time.
  • the database module 30 classifies and organizes the patient's image data, which can be easily called by the image algorithm module 10 .
  • the simulation system further includes an image analysis module 40, and the image analysis module 40 includes an image analysis unit 41 and an image acquisition unit 42; the image analysis unit 41 is used to analyze the label information for the operator The image data is retrieved according to the label information; the image acquisition unit 10 is used to extract the required image data from the database module 30 according to the input key information, and input it to the image algorithm module 10, for extraction and registration by the image algorithm module 10 .
  • the image analysis unit 41 can parse the tag information of the image data (such as patient ID, age, imaging time, and imaging site, etc.) for retrieval based on the tag information as key information. Its main task is to extract, summarize and integrate patient and equipment information, such as: grouping all brain MRI images of the same patient in different time periods.
  • the image acquisition unit 42 is responsible for extracting the required image data from the database module 30 based on the key information input by the operator (eg, patient name, location), and inputting it to the image algorithm module 10 .
  • the main task of the image acquisition unit 42 is to quickly and accurately acquire the required image files from the database module 30 based on keywords; with the passage of time, millions of patient images may be stored in the database module 30, how to quickly find the image of a certain patient? Image data is particularly important; the image data of a certain patient can be found accurately and quickly by using the classification of the image analysis unit 41 and the extraction of the image acquisition unit 42 .
  • the image analysis module 40 extracts the magnetic resonance imaging (MRI) of patient xxx 1 day before surgery from the database module 30 Human brain volume data image.
  • MRI magnetic resonance imaging
  • the CT computed tomography
  • the CTA computed tomography
  • the image size can be selected according to the needs of the operator during the specific implementation.
  • the present embodiment also provides a readable storage medium on which a program is stored, and the program is executed to realize:
  • three-dimensional reconstruction is performed on the target tissue and the implanted electrode.
  • the virtual 3D model obtained from the 3D reconstruction is displayed.
  • the readable storage medium can be integrated in the simulation system, such as integrated in the image algorithm module 10 of the simulation system, and of course, in some other embodiments, the readable storage medium can also be arranged independently.
  • the step of registering the three-dimensional coordinates of the implanted electrodes 51 with the standard brain atlas includes:
  • the three-dimensional coordinates of the implanted electrodes and the standard brain atlas are transformed into a unified coordinate system to realize the registration of the three-dimensional coordinates of the implanted electrodes and the standard brain atlas.
  • the program on the readable storage medium when executed, it is further realized that: according to the current or voltage parameter input to the implanted electrode 51 and the electrical conductivity of the target tissue, the effective electrical stimulation range 55 is obtained by simulation; And the effective electrical stimulation range 55 is displayed.
  • the following steps are also implemented: classifying and arranging the image data based on the label information;
  • the required image data is extracted from the image data for extraction and registration.
  • the simulation system is used to simulate the implantation of the implanted electrode in the target tissue area
  • the simulation system includes: an image algorithm module connected in communication and a display module;
  • the image algorithm module includes an electrode extraction unit and a registration unit, the electrode extraction unit is used to extract the three-dimensional coordinates of the implanted electrodes from postoperative images;
  • the registration unit is used to register the The three-dimensional coordinates of the implanted electrodes and the standard brain atlas;
  • the display module includes a three-dimensional reconstruction unit and a display unit, and the three-dimensional reconstruction unit is configured to, according to the registered three-dimensional coordinates of the implanted electrodes and the standard brain atlas, Performing three-dimensional reconstruction on the target tissue and the implanted electrode;
  • the display unit is used for displaying the virtual three-dimensional model obtained by the three-dimensional reconstruction by the three-dimensional reconstruction unit.
  • the virtual 3D model reconstructed based on preoperative and postoperative images realizes 3D visualization of the spatial structure of deep brain stimulation surgery, provides doctors with realistic stereoscopic images, facilitates the position confirmation of implanted electrodes, and compensates for It eliminates the defect that clinical two-dimensional medical images cannot accurately display the three-dimensional spatial positional relationship between implanted electrodes and basal nerve nuclei.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Robotics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种模拟系统及可读存储介质,模拟系统用于模拟植入电极(51)于目标组织区域的植入情况,模拟系统包括:通信连接的图像算法模块(10)与显示模块(20);图像算法模块(10)包括电极提取单元(11)和配准单元(12),电极提取单元(11)用于从术后影像中提取得到植入电极(51)的三维坐标;配准单元(12)用于配准植入电极(51)的三维坐标与标准脑图谱;显示模块(20)包括三维重建单元(21)和显示单元(22),三维重建单元(21)用于根据配准后的植入电极(51)的三维坐标和标准脑图谱,对目标组织和植入电极(51)进行三维重建;显示单元(20)用于显示三维重建单元(21)三维重建得到的虚拟三维模型。

Description

模拟系统及可读存储介质 技术领域
本发明涉及模拟辅助手术系统和方法领域,特别涉及一种模拟系统及可读存储介质。
背景技术
深部脑刺激(Deep Brain Stimulation)手术是许多重症神经、精神系统疾病的唯一有效治疗手段,而刺激电极植入的准确性是决定手术成功与否的关键因素。深部脑刺激手术电极植入靶点核团如丘脑底核(STN)和苍白球内侧部(GPi),两者均是大脑皮层下控制运动的神经中枢,但因体积较小给刺激电极精确植入带来比较大的困难。目前,临床上通常采用核磁共振影像(Magnetic Resonance Imaging,MRI)或者计算机断层扫描影像(Computed Tomography,CT)来辅助手术电极定位。一般的,靶点核团仅能在高分辨率核磁共振影像下清晰显示,而术中、术后电极位置确认由于受金属材质电极影响,仅可采用低分辨率核磁共振设备或计算机断层扫描设备扫描,同时电极伪迹较大亦会给术中、术后电极定位带来很大的困难。因此,如何以术中、术后影像为基础,实现深部脑刺激手术清晰、直观、准确的电极定位对于临床手术治疗效果的提高具有十分重要的意义。
发明内容
本发明的目的在于提供一种模拟系统及可读存储介质,以解决现有的临床二维医学影像无法为医生提供患者的立体影像图像,无法精确提供植入电极的位置以便医生确认的问题。
为解决上述技术问题,根据本发明的第一个方面,提供了一种模拟系统,用于模拟植入电极于目标组织区域的植入情况,所述模拟系统包括:通信连接的图像算法模块与显示模块;
所述图像算法模块包括电极提取单元和配准单元,所述电极提取单元用于从术后影像中提取得到植入电极的三维坐标;所述配准单元用于配准所述 植入电极的三维坐标与标准脑图谱;
所述显示模块包括三维重建单元和显示单元,所述三维重建单元用于根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;所述显示单元用于显示所述三维重建单元三维重建得到的虚拟三维模型。
可选的,所述配准单元配准所述植入电极的三维坐标与标准脑图谱的步骤包括:配准术前影像与术后影像,以及配准所述术前影像与标准脑图谱,将所述植入电极的三维坐标和所述标准脑图谱变换到统一坐标系下,实现所述植入电极的三维坐标与标准脑图谱的配准。
可选的,所述配准单元配准所述术前影像与所述术后影像的步骤包括:
将术后影像坐标系与术前影像坐标系配准得到第一变换矩阵;
将所述术后影像*所述第一变换矩阵,使所述术后影像变换到所述术前影像坐标系下。
可选的,所述配准单元配准所述术前影像与所述标准脑图谱的步骤包括:
将术前影像坐标系与标准脑图谱坐标系配准得到第二变换矩阵;
将所述术前影像*所述第二变换矩阵,使所述术前影像变换到所述标准脑图谱坐标系下。
可选的,所述显示模块还包括电场刺激模拟单元,所述电场刺激模拟单元用于根据输入所述植入电极的电流或电压参数、以及所述目标组织的导电率,模拟得到有效电刺激范围;所述显示单元用于显示所述有效电刺激范围。
可选的,所述有效电刺激范围的获取步骤包括:获取电刺激,将所述电刺激与预设的阈值比较,将大于或等于所述阈值的区域确定为有效电刺激范围;其中,所述电刺激根据输入所述植入电极的电流或电压参数以及所述目标组织的导电率得到。
可选的,所述电极提取单元使用阈值分割、动态三维区域增长或多层卷积的深度神经网络,提取得到所述植入电极的三维坐标。
可选的,所述模拟系统还包括数据库模块,所述数据库模块包括数据存储单元和数据分拣单元;
所述数据存储单元用于存放不同模态的影像数据;
所述数据分拣单元用于基于标签信息对所述影像数据进行分类整理;
所述图像算法模块所提取和配准的术前影像和术后影像均由所述数据分拣单元分类整理后的影像数据中得到。
可选的,所述模拟系统还包括图像解析模块,所述图像解析模块包括图像分析单元和图像获取单元;
所述图像分析单元用于解析所述标签信息,以供操作者按所述标签信息对所述影像数据进行检索;
所述图像获取单元用于根据输入的关键信息,从所述数据库模块中抽取出需要的影像数据,输入到所述图像算法模块,以供所述图像算法模块提取和配准。
可选的,所述配准单元基于互信息迭代、提取关键点和三维点云中的至少一者进行配准。
为解决上述技术问题,根据本发明的第二个方面,还提供了一种可读存储介质,其上存储有程序,所述程序被执行时,实现:
从术后影像中提取得到植入电极的三维坐标;
配准所述植入电极的三维坐标与标准脑图谱;
根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;以及
显示三维重建得到的虚拟三维模型。
可选的,所述可读存储介质上的程序被执行时,还实现:
根据输入所述植入电极的电流或电压参数、以及所述目标组织的导电率,模拟得到有效电刺激范围;以及
显示所述有效电刺激范围。
可选的,所述可读存储介质上的程序被执行时,还实现:
基于标签信息对影像数据进行分类整理;
根据输入的关键信息,从分类整理后的所述影像数据中抽取出需要的影像数据,以供提取和配准。
综上所述,在本发明提供的模拟系统及可读存储介质中,所述模拟系统用于模拟植入电极于目标组织区域的植入情况,所述模拟系统包括:通信连接的图像算法模块以及显示模块;所述图像算法模块包括电极提取单元和配准单元,所述电极提取单元用于从术后影像中提取得到植入电极的三维坐标;所述配准单元用于配准所述植入电极的三维坐标与标准脑图谱;所述显示模块包括三维重建单元和显示单元,所述三维重建单元用于根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;所述显示单元用于显示所述三维重建单元三维重建得到的虚拟三维模型。
如此配置,以术前影像以及术后影像为基础重建得到的虚拟三维模型,实现了深部脑刺激手术空间结构三维可视化,为医生提供具有真实感的立体图像,便于植入电极的位置确认,弥补了临床二维医学影像无法精确显示植入电极与基底神经核团的三维空间位置关系的缺陷,在保证精度和速度的前提下,可以满足临床深部脑刺激手术中,植入电极定位的需求,为深部脑刺激手术的功能区定位、最优靶点的选择提供指导,为深部脑刺激手术后的调控参数优化提供依据,能有效地提高植入电极的植入精度、改善临床治疗效果、减少副作用和节省电池使用寿命。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明一实施例的模拟系统的原理框图;
图2是本发明一实施例的深脑部刺激手术的示意图;
图3是本发明一实施例的术后影像的某一切片层的示意图;
图4是本发明一实施例的术前影像的某一切片层的示意图;
图5是本发明一实施例的配准结果的示意图;
图6是本发明一实施例的虚拟三维模型的显示结果的示意图;
图7是本发明一实施例的有效电刺激范围的显示结果的示意图。
附图中:
10-图像算法模块;11-电极提取单元;12-配准单元;20-显示模块;21-三维重建单元;22-显示单元;23-电场刺激模拟单元;30-数据库模块;31-数据存储单元;32-数据分拣单元;40-图像解析模块;41-图像分析单元;42-图像获取单元;51-植入电极;52-电极片;53-丘脑底核;54-苍白球内侧部;55-有效电刺激范围。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,除非内容另外明确指出外。如在本发明中所使用的,除非另外明确指出外,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本发明中所使用的,一元件设置于另一 元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的核心思想在于提供一种模拟系统及可读存储介质,以解决现有的临床二维医学影像无法为医生提供患者的立体影像图像,无法精确提供植入电极的位置以便医生确认的问题。
以下参考附图进行描述。
请参考图1至图7,其中,图1是本发明一实施例的模拟系统的原理框图;图2是本发明一实施例的深脑部刺激手术的示意图;图3是本发明一实施例的术后影像的某一切片层的示意图;图4是本发明一实施例的术前影像的某一切片层的示意图;图5是本发明一实施例的配准结果的示意图;图6是本发明一实施例的虚拟三维模型的显示结果的示意图;图7是本发明一实施例的有效电刺激范围的显示结果的示意图。
如图1所示,本发明实施例提供一种模拟系统,用于模拟植入电极于目标组织区域植入情况,下面以脑部基底神经核团作为目标组织的示例进行说明,本实施例提供的模拟系统,主要用于供医生评估植入电极在脑部基底神经核团的植入位置的准确性,优选的还可以模拟植入电极在基底神经核团处的有效电刺激范围。结合图2示出的深脑部刺激手术的示意图,所述模拟系统包括:通信连接的图像算法模块10与显示模块20;所述图像算法模块10包括电极提取单元11和配准单元12,所述电极提取单元11用于从术后影像中提取得到植入电极的三维坐标,所述配准单元12用于配准所述植入电极的三维坐标与标准脑图谱;所述显示模块20包括三维重建单元21和显示单元22,所述三维重建单元21用于根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织(即基底神经核团)和所述植入电极进行三维重建; 所述显示单元22用于显示所述三维重建单元21三维重建得到的虚拟三维模型。需要说明的,目标组织并不局限于为脑部基底神经核团,本领域技术人员还可以将本实施例提供的模拟系统应用于其它的目标组织,本发明对此不作限制。
在图2示出的深脑部刺激手术的示意图中,以植入电极51植入丘脑底核(STN)53和苍白球内侧部(GPi)54作为靶点基底神经核团的示例,进行说明。在术前可对患者拍摄术前影像,如核磁共振(MRI)影像。术前高分辨率的核磁共振影像可清晰地显示基底神经核团。而术后,可对患者拍摄术后影像,如核磁共振影像或计算机断层扫描(CT)影像。图3示出了术后(CT)影像的某一切片层的示意图,图4示出了与图3的切片层相对应的术前(MRI)影像的一切片层的示意图。由于术后影像因受金属材质的植入电极的影响,分辨率较低,实际中较难清晰直观地分辨出植入电极的植入位置是否准确。需要说明的,靶点基底神经核团并不局限于为丘脑底核(STN)53和苍白球内侧部(GPi)54,本领域技术人员还可以根据实际,选取其它的脑部基底神经核团作为靶点基底神经核团,本发明对此亦不作限制。
而基于本实施例提供的模拟系统,电极提取单元11主要负责从患者的术后影像中提取出植入电极51,获取植入电极51的三维坐标。在一个示范例中,以术后的CT影像为例,植入电极的金属特征会在术后的CT影像上呈现出高灰度值,与脑部其他组织在像素值上有明显对比,且植入电极51的载体的末端基本集中在基底脑神经位置部分。优选的,所述电极提取单元11使用阈值分割、动态三维区域增长或多层卷积的深度神经网络,来实现植入电极51的载体的分割提取,从而提取得到所述植入电极51的三维坐标。具体的提取方法,本领域技术人员可根据现有技术进行理解和应用,本发明不再展开。
配准单元12主要负责配准植入电极51的三维坐标与标准脑图谱,优选的,所述配准单元12配准所述植入电极51的三维坐标与标准脑图谱的步骤包括:配准术前影像与所述术后影像,以及配准所述术前影像与标准脑图谱,将所述植入电极51的三维坐标和所述标准脑图谱变换到统一坐标系下,实现所述植入电极51的三维坐标与标准脑图谱的配准。
一般的,基底神经核团是脑部很小的一个组织,只能在高分辨率的术前(MRI)影像上才能看清;而在植入电极51被植入后,因植入电极51的金属特性,在术后无法拍摄MRI影像(或只能拍摄低分辨率1.5T的MRI影像,其无法分辨出基底神经核团),因此在术后一般只能拍摄CT影像,但CT影像上是无法识别脑组织的,同样也无法分辨出目标神经核团;由此导致通过现有的医学影像,医生无法判断植入电极51与靶点基底神经核团的相对位置关系。而将植入电极51的三维坐标与标准脑图谱进行配准后,即可通过对术后的CT影像中植入电极51的三维坐标,以及其对应于标准脑图谱中的位置,来间接地获得植入电极51与靶点基底神经核团的相对位置关系。具体的,每一个医学影像(包括术前影像、术后影像和标准脑图谱)都有一个物理坐标系,该坐标系与该医学影像的采集设备有关。标准脑图谱是综合152个人脑MRI绘制并得到国际脑图谱协会认可的脑图谱模板,其是在7T的MRI设备下成像的,具有高分辨率、高对比度。标准脑图谱由多位医生协作在三维脑图谱中分割出了各功能脑部组织,是一个国际公认的标准脑模板库,其包含了人脑所有的功能区,也包含各基底神经核团的功能区;标准脑图谱对应的物理坐标系是蒙特利尔神经科学研究所标准立体定向空间。将标准脑图谱与患者的实际医学影像配准后,即实现了利用标准脑图谱中各基底神经核团的位置,来标识出患者的实际医学影像中,各基底神经核团的位置。
术后影像(包含电极)的物理坐标系为Coord1,术前影像(不包含电极)的物理坐标系为Coord2,标准脑图谱影像的物理坐标系为Coord3。在一个示范性的实施例中,配准单元12配准植入电极51的三维坐标与标准脑图谱的具体步骤包括:
将术后影像坐标系Coord1与术前影像坐标系Coord2配准得到第一变换矩阵T1(变换矩阵如可为旋转平移矩阵),将术后影像*(*代表相乘,下同)第一变换矩阵T1,可将术后影像变换到术前影像坐标系Coord2下;
将术前影像坐标系Coord2与标准脑图谱影像坐标系Coord3配准得到第二变换矩阵T2,将术前影像*第二变换矩阵T2,可将术前影像变换到标准脑图谱影像坐标系Coord3下;
将术后影像上分割得到的植入电极51的三维坐标*第一变换矩阵T1*第二变换矩阵T2,即可将植入电极51的三维坐标变换到标准脑图谱影像坐标系Coord3下;
如此配置,即实现了将植入电极51的三维坐标和标准脑图谱变换到统一坐标系下,从而实现植入电极51的三维坐标与标准脑图谱的配准。由此实现了将植入电极51的位置与患者实际的基底神经核团的位置进行配置。当然在其它的一些实施例中,也可以另外设置统一的参考坐标系,将术后影像、术前影像以及标准脑图谱影像三者的坐标系分别转换到该统一的参考坐标系下,实现植入电极的三维坐标与标准脑图谱的配准。
需理解,本领域技术人员可通过查询文献或数据库,选择合适的标准脑图谱,标准脑图谱反映了多个不同基底神经核团的图示。请参考图5,其示出了将图3和图4的术前影像和术后影像配准后的结果,配准后,由于植入电极的三维坐标与标准脑图谱已经配准,可使植入电极51以及靶点基底神经核团处于统一坐标系下,便于后续处理。优选的,所述配准单元12基于互信息迭代、提取关键点(SIFT)和三维点云中的至少一者进行配准。下面列举若干配准方法的具体实施例,需理解下面列举的实施例仅为示范例而非对配置方法的限定。对于互信息迭代,可设定200次迭代次数,将医学影像先下采样到原图1/4进行配准,在此结果上再下采样到原图1/2进行配准,再原图配准,其配准过程类似空间金字塔,能提高配准的效率。对于关键点配准,可采用基于3d SIFT提取医学影像中的关键点,来进行配准。对于点云配准,可通过分割医学影像中的目标对象,提取目标表面点云,下采样得到1000-2000个点,通过两团点云之间的迭代计算进行配准。需理解,上述若干种配准方法均为本领域常用的配准方法,本领域技术人员也可利用其中两者或三者进行组合来提高配准精度。当然在其它的一些实施例中,本领域技术人员还可以根据现有技术,选择其它的配准方法,本实施例对此不限。
三维重建单元21根据配准后的所述植入电极51的三维坐标和所述标准脑图谱,对基底神经核团和所述植入电极51进行三维重建,以得到一虚拟三维模型。如图6所示,虚拟三维模型包括植入电极51的虚拟模型和基底神经 核团的虚拟模型。根据术后影像中提取得到的植入电极51的三维坐标,三维重建单元21可对植入电极51进行虚拟建模,根据术前影像与标准脑图谱,三维重建单元21可对靶点基底神经核团进行虚拟建模,进而由于术前影像与术后影像已经由配准单元12进行配准,故三维重建单元21所重建的虚拟三维模型即反映了植入电极51与基底神经核团的准确的相对位置关系。优选的,所述三维重建单元利用Marching Cubes算法或Dual Contouring算法进行三维重建。上述算法均为本领域常用的三维重建算法,本发明不再展开说明。
显示单元22用于显示所述三维重建单元21三维重建得到的虚拟三维模型。在一些实施例中,显示单元22如可为终端显示设备,其与图像算法模块10通信连接,可以获得来自图像算法模块10的数据信息,并进行显示。具体的,显示单元22的屏幕上可以呈现植入电极51及靶点核团的三维图像。由此,实现了深部脑刺激手术空间结构三维可视化,为医生提供具有真实感的立体图像,便于植入电极51的位置确认,弥补了临床二维医学影像无法精确显示植入电极51与基底神经核团的三维空间位置关系的缺陷,在保证精度和速度的前提下,可以满足临床深部脑刺激手术中,植入电极51定位的需求,为深部脑刺激手术的功能区定位、最优靶点的选择提供指导,为深部脑刺激手术后的调控参数优化提供依据,能有效地提高植入电极的植入精度、改善临床治疗效果、减少副作用和节省电池使用寿命。
优选的,所述显示模块20还包括电场刺激模拟单元23,所述电场刺激模拟单元23用于根据输入所述植入电极51的电流或电压参数、以及所述基底神经核团的导电率,模拟得到有效电刺激范围55;所述显示单元22用于显示所述有效电刺激范围55。可选的,所述有效电刺激范围55的获取步骤包括:获取电刺激,将所述电刺激与预设的阈值比较,将大于或等于所述阈值的区域确定为有效电刺激范围55;其中,所述电刺激根据输入所述植入电极51的电流或电压参数以及所述目标组织的导电率得到。一般的,植入电极51的载体上具有若干电极片,电极片通过载体内的腔道连接外部电源的正负极。脑部的基底神经核团组织具有导电性,当有电流或电压通过时可形成回路实现对基底神经核团的电刺激。具体的,植入电极51上的所有电极片可认为是一 个电路的正负极,基底神经核团组织可认为是负载(导电率可认为是电阻率),当电极片上有电压和电流时,会在基底神经核团组织中形成回路;基底神经核团距离电极片越远则电刺激越小,当低于某一预设的阈值时就无法形成有效的刺激,可认为低于阈值的电刺激对神经核团无法形成有效刺激,而将大于或等于所述阈值的区域认为是有效电刺激范围55。因此根据输入的电流或电压参数,以及靶点基底神经核团的导电率,即可模拟得到植入电极51对基底神经核团的有效电刺激范围55。
电场刺激模拟单元23负责实现植入电极51对基底神经核团的电刺激的模拟,可以理解的,不同的电流或电压参数能够形成不同范围和强弱的有效电刺激范围55。此外,由于不同时间、不同部位的基底神经核团的导电率均不同,因此有效电刺激范围55的模拟除了需获取输入植入电极51的电流或电压参数,还需要获取靶点基底神经核团的导电率作为输入参数。可选的,基底神经核团的导电率可通过查阅官方文献或查询数据库来获得,
如选择某一固定的均值作为某一基底神经核团的导电率。请参考图7,其示出了一个示范例中显示单元22显示有效电刺激范围55的显示结果。其中,包括两个植入电极51,每个植入电极51包括四个环形的电极片52。植入电极51上的电极片52的数量、间距和长度等参数可于三维重建单元21进行三维重建前获取,例如可通过查阅植入电极51的制造参数,或于重建前进行标定来获取,由此可以准确地对植入电极51进行三维重建,图7示出得到示范例中,植入电极51的电流以5mA为例,示意了的电刺激的范围即为电刺激于阈值以上的有效的刺激范围55。
电场刺激模拟单元23的设置,能够模拟对不同基底神经核团的有效电刺激范围55,为深部脑刺激手术后的调控参数优化提供依据。减少了人机交互操作流程,便于医生查看DBS术后的诊疗效果,提高了诊断效率和准确性。
进一步的,所述模拟系统还包括数据库模块30,所述数据库模块30包括数据存储单元31和数据分拣单元32;所述数据存储单元31用于存放不同模态的影像数据;所述数据分拣单元32用于基于标签信息对所述影像数据进行分类整理;所述图像算法模块10所提取和配准的术前影像和术后影像均由所 述数据分拣单元分类整理后的影像数据中得到。
数据存储单元31负责存放所有患者的不同模态的影像数据,患者不同模态影像的成像时间、成像方式等不同,可能包含患者术前的计算机断层摄影(CT)脑部体数据影像,患者术前的脑血管造影(CTA,CT angiography)体数据影像,患者术前和术后的磁共振成像(MRI)脑部体数据影像等。一般的,影像数据(包括MRI,CT等)基本是以dicom格式存储,dicom是一种国际标准格式,内部不仅包含图像自身影像数据(像素值),还包含患者和设备信息等(如包括姓名、年龄、拍摄设备型号、拍摄时间、拍摄部位以及图像类型等)。在实际中可使用MYSQL、SQL Server、Oracle等第三方数据库来对患者的影像数据进行存储。
数据分拣单元32主要负责对数据存储单元31中的影像数据,基于标签信息进行分类整理。标签信息如可包括:影像数据的模态(指影像的类别,如CT,MR,CTA等不同的模态)、患者ID、成像部位和成像时间等。在一个示范例中,分类整理的方法包括:设置患者ID为第一优先级,将同一患者的所有影像数据归类到该患者ID下;影像数据的模态为第二优先级,将患者所有同模态的影像数据归为一类(MR,CT,CTA等);成像部位为第三优先级,即人体同一部位归为一类(如脑部、肺部或腿部等),进一步可选的,在第三优先级中所有的影像数据按成像时间排列。
由此,数据库模块30将患者的影像数据进行分类整理,可便于图像算法模块10调用。
更进一步的,所述模拟系统还包括图像解析模块40,所述图像解析模块40包括图像分析单元41和图像获取单元42;所述图像分析单元41用于解析所述标签信息,以供操作者按所述标签信息对所述影像数据进行检索;所述图像获取单元10用于根据输入的关键信息,从所述数据库模块30中抽取出需要的影像数据,输入到所述图像算法模块10,以供所述图像算法模块10提取和配准。
图像分析单元41能够解析影像数据的标签信息(如患者ID、年龄、成像时间和成像部位等信息),以供基于标签信息作为关键信息进行检索。其主要 任务是对患者和设备信息进行提取归纳整合,比如:将同一患者不同时间段所有脑部MRI图像归类到一起等。图像获取单元42负责基于操作者输入的关键信息(如患者姓名,部位),从数据库模块30中抽取出需要的影像数据,将其输入到图像算法模块10。图像获取单元42的主要任务基于关键字从数据库模块30中快速准确获取需要的图像文件;随着时间推移,数据库模块30中可能存有数百万的患者影像,如何快速寻找到某一患者的影像数据显得尤为重要;而利用图像分析单元41的归类以及图像获取单元42的提取,即可准确快速地寻找到某一患者的影像数据。
在一个示范例中,当关键信息为:患者ID=xxx、MR、脑部、术前1天,则图像解析模块40从数据库模块30中提取患者xxx手术前1天的磁共振成像(MRI)人脑体数据图像。更换关键信息后,同理可得到手术前1天的CT(计算机断层摄影)人脑体数据图像,手术后1小时的CTA(计算机断层摄影)人脑体数据图像(术后CT影像中包含植入电极51)等,当然具体实施时图像大小可根据操作者的需要进行选择。
基于上述的模拟系统,本实施例还提供一种可读存储介质,其上存储有程序,所述程序被执行时实现:
从术后影像中提取得到植入电极51的三维坐标;
配准所述植入电极51的三维坐标与标准脑图谱;
根据配准后的所述植入电极51的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;以及
显示三维重建得到的虚拟三维模型。
可以理解的,该可读存储介质可集成设置在模拟系统上,如集成于模拟系统的图像算法模块10中,当然在其它的一些实施例中,该可读存储介质也可以独立设置。优选的,配准所述植入电极51的三维坐标与标准脑图谱的步骤包括:
配准术前影像与所述术后影像,以及配准所述术前影像与标准脑图谱;
将所述植入电极的三维坐标和所述标准脑图谱变换到统一坐标系下,实现所述植入电极的三维坐标与标准脑图谱的配准。
进一步的,所述可读存储介质上的程序被执行时,还实现:根据输入所述植入电极51的电流或电压参数、以及所述目标组织的导电率,模拟得到有效电刺激范围55;以及显示所述有效电刺激范围55。
优选的,在从术后影像中提取得到植入电极的三维坐标前,所述程序被执行时,还实现:基于标签信息对影像数据进行分类整理;根据输入的关键信息,从分类整理后的所述影像数据中抽取出需要的影像数据,以供提取和配准。
综上所述,在本发明提供的模拟系统及可读存储介质中,所述模拟系统用于模拟植入电极于目标组织区域的植入情况,所述模拟系统包括:通信连接的图像算法模块以及显示模块;所述图像算法模块包括电极提取单元和配准单元,所述电极提取单元用于从术后影像中提取得到植入电极的三维坐标;所述配准单元用于配准所述植入电极的三维坐标与标准脑图谱;所述显示模块包括三维重建单元和显示单元,所述三维重建单元用于根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;所述显示单元用于显示所述三维重建单元三维重建得到的虚拟三维模型。
如此配置,以术前影像以及术后影像为基础重建得到的虚拟三维模型,实现了深部脑刺激手术空间结构三维可视化,为医生提供具有真实感的立体图像,便于植入电极的位置确认,弥补了临床二维医学影像无法精确显示植入电极与基底神经核团的三维空间位置关系的缺陷,在保证精度和速度的前提下,可以满足临床深部脑刺激手术中,植入电极定位的需求,为深部脑刺激手术的功能区定位、最优靶点的选择提供指导,为深部脑刺激手术后的调控参数优化提供依据,能有效地提高植入电极的植入精度、改善临床治疗效果、减少副作用和节省电池使用寿命。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (13)

  1. 一种模拟系统,其特征在于,用于模拟植入电极于目标组织区域的植入情况,所述模拟系统包括:通信连接的图像算法模块与显示模块;
    所述图像算法模块包括电极提取单元和配准单元,所述电极提取单元用于从术后影像中提取得到植入电极的三维坐标;所述配准单元用于配准所述植入电极的三维坐标与标准脑图谱;
    所述显示模块包括三维重建单元和显示单元,所述三维重建单元用于根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;所述显示单元用于显示所述三维重建单元三维重建得到的虚拟三维模型。
  2. 根据权利要求1所述的模拟系统,其特征在于,所述配准单元配准所述植入电极的三维坐标与标准脑图谱的步骤包括:配准术前影像与术后影像,以及配准所述术前影像与标准脑图谱,将所述植入电极的三维坐标和所述标准脑图谱变换到统一坐标系下,实现所述植入电极的三维坐标与标准脑图谱的配准。
  3. 根据权利要求2所述的模拟系统,其特征在于,所述配准单元配准所述术前影像与所述术后影像的步骤包括:
    将术后影像坐标系与术前影像坐标系配准得到第一变换矩阵;
    将所述术后影像*所述第一变换矩阵,使所述术后影像变换到所述术前影像坐标系下。
  4. 根据权利要求2所述的模拟系统,其特征在于,所述配准单元配准所述术前影像与所述标准脑图谱的步骤包括:
    将术前影像坐标系与标准脑图谱坐标系配准得到第二变换矩阵;
    将所述术前影像*所述第二变换矩阵,使所述术前影像变换到所述标准脑图谱坐标系下。
  5. 根据权利要求1所述的模拟系统,其特征在于,所述显示模块还包括电场刺激模拟单元,所述电场刺激模拟单元用于根据输入所述植入电极的电 流或电压参数、以及所述目标组织的导电率,模拟得到有效电刺激范围;所述显示单元用于显示所述有效电刺激范围。
  6. 根据权利要求5所述的模拟系统,其特征在于,所述有效电刺激范围的获取步骤包括:获取电刺激,将所述电刺激与预设的阈值比较,将大于或等于所述阈值的区域确定为有效电刺激范围;其中,所述电刺激根据输入所述植入电极的电流或电压参数以及所述目标组织的导电率得到。
  7. 根据权利要求1所述的模拟系统,其特征在于,所述电极提取单元使用阈值分割、动态三维区域增长或多层卷积的深度神经网络,提取得到所述植入电极的三维坐标。
  8. 根据权利要求1所述的模拟系统,其特征在于,所述模拟系统还包括数据库模块,所述数据库模块包括数据存储单元和数据分拣单元;
    所述数据存储单元用于存放不同模态的影像数据;
    所述数据分拣单元用于基于标签信息对所述影像数据进行分类整理;
    所述图像算法模块所提取和配准的术前影像和术后影像均由所述数据分拣单元分类整理后的影像数据中得到。
  9. 根据权利要求5所述的模拟系统,其特征在于,所述模拟系统还包括图像解析模块,所述图像解析模块包括图像分析单元和图像获取单元;
    所述图像分析单元用于解析所述标签信息,以供操作者按所述标签信息对所述影像数据进行检索;
    所述图像获取单元用于根据输入的关键信息,从所述数据库模块中抽取出需要的影像数据,输入到所述图像算法模块,以供所述图像算法模块提取和配准。
  10. 根据权利要求1所述的模拟系统,其特征在于,所述配准单元基于互信息迭代、提取关键点和三维点云中的至少一者进行配准。
  11. 一种可读存储介质,其上存储有程序,其特征在于,所述程序被执行时,实现:
    从术后影像中提取得到植入电极的三维坐标;
    配准所述植入电极的三维坐标与标准脑图谱;
    根据配准后的所述植入电极的三维坐标和所述标准脑图谱,对目标组织和所述植入电极进行三维重建;以及
    显示三维重建得到的虚拟三维模型。
  12. 根据权利要求11所述的可读存储介质,其特征在于,所述程序被执行时,还实现:
    根据输入所述植入电极的电流或电压参数、以及所述目标组织的导电率,模拟得到有效电刺激范围;以及
    显示所述有效电刺激范围。
  13. 根据权利要求11所述的可读存储介质,其特征在于,在从术后影像中提取得到植入电极的三维坐标前,所述程序被执行时,还实现:
    基于标签信息对影像数据进行分类整理;
    根据输入的关键信息,从分类整理后的所述影像数据中抽取出需要的影像数据,以供提取和配准。
PCT/CN2021/117837 2020-12-15 2021-09-10 模拟系统及可读存储介质 WO2022127219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011481551.6 2020-12-15
CN202011481551.6A CN114631885A (zh) 2020-12-15 2020-12-15 模拟系统及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022127219A1 true WO2022127219A1 (zh) 2022-06-23

Family

ID=81945097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117837 WO2022127219A1 (zh) 2020-12-15 2021-09-10 模拟系统及可读存储介质

Country Status (2)

Country Link
CN (1) CN114631885A (zh)
WO (1) WO2022127219A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117011352A (zh) * 2023-09-27 2023-11-07 之江实验室 标准脑图谱构建方法、装置和计算机设备
CN117934726A (zh) * 2024-03-11 2024-04-26 景昱医疗科技(苏州)股份有限公司 三维可视化方法、装置和系统、可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271151A1 (en) * 2009-10-08 2012-10-25 Lavoilette Peter S Method for Determining Locations of Implanted Electrodes with Medical Images
CN103932796A (zh) * 2014-04-13 2014-07-23 北京师范大学 一种基于多模态医学影像数据融合的颅内电极个体化定位的方法
CN105849777A (zh) * 2015-06-26 2016-08-10 深圳市美德医疗电子技术有限公司 一种大脑皮层电极与磁共振图像融合显示的方法及装置
US20170367608A1 (en) * 2016-06-28 2017-12-28 Chung Shan Medical University Hospital Personal brain structure displaying device having intracranial electrodes and its displaying method
CN110363778A (zh) * 2019-07-18 2019-10-22 中山大学 一种基于ct图像的多触点电极自动分割方法
US20200111207A1 (en) * 2018-10-04 2020-04-09 National Chiao Tung University Method and system for localizing implanted intracranial electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271151A1 (en) * 2009-10-08 2012-10-25 Lavoilette Peter S Method for Determining Locations of Implanted Electrodes with Medical Images
CN103932796A (zh) * 2014-04-13 2014-07-23 北京师范大学 一种基于多模态医学影像数据融合的颅内电极个体化定位的方法
CN105849777A (zh) * 2015-06-26 2016-08-10 深圳市美德医疗电子技术有限公司 一种大脑皮层电极与磁共振图像融合显示的方法及装置
US20170367608A1 (en) * 2016-06-28 2017-12-28 Chung Shan Medical University Hospital Personal brain structure displaying device having intracranial electrodes and its displaying method
US20200111207A1 (en) * 2018-10-04 2020-04-09 National Chiao Tung University Method and system for localizing implanted intracranial electrode
CN110363778A (zh) * 2019-07-18 2019-10-22 中山大学 一种基于ct图像的多触点电极自动分割方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117011352A (zh) * 2023-09-27 2023-11-07 之江实验室 标准脑图谱构建方法、装置和计算机设备
CN117011352B (zh) * 2023-09-27 2024-01-16 之江实验室 标准脑图谱构建方法、装置和计算机设备
CN117934726A (zh) * 2024-03-11 2024-04-26 景昱医疗科技(苏州)股份有限公司 三维可视化方法、装置和系统、可读存储介质
CN117934726B (zh) * 2024-03-11 2024-05-28 景昱医疗科技(苏州)股份有限公司 三维可视化方法、装置和系统、可读存储介质

Also Published As

Publication number Publication date
CN114631885A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
JP7405818B2 (ja) 変形可能テンプレートを使用して最適化された電極位置を有するttフィールドを用いて患者を治療する
JP7383679B2 (ja) Mriによる導電率測定値に基づいて頭部上の電極位置を最適化したttfield治療
US20200146586A1 (en) Creating Accurate Computational Head Models of Patients Using Datasets Combining MRI and CT Images
WO2022127219A1 (zh) 模拟系统及可读存储介质
US20090220136A1 (en) Image Guidance System for Deep Brain Stimulation
Lemaire et al. Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging
US11205267B2 (en) Method for localizing implanted intracranial electrode
Qin et al. Automatic and precise localization and cortical labeling of subdural and depth intracranial electrodes
Kalloch et al. Semi‐automated generation of individual computational models of the human head and torso from MR images
D’Haese et al. Automatic selection of DBS target points using multiple electrophysiological atlases
Chen et al. Development of an open source software module for enhanced visualization during MR-guided interstitial gynecologic brachytherapy
Stancanello et al. 3T MRI evaluation of the accuracy of atlas‐based subthalamic nucleus identification
Larsen et al. Quantitative comparison of functional MRI and direct electrocortical stimulation for functional mapping
Iacono et al. Atlas-based segmentation for globus pallidus internus targeting on low-resolution MRI
WO2022120869A1 (zh) 颅脑医学影像中脑内分片电极的方位识别方法及设备
Tei et al. Tracking volumetric brain deformation during image guided neurosurgery
Khan et al. Atlas-based segmentation of deep brain structures using non-rigid registration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905151

Country of ref document: EP

Kind code of ref document: A1