WO2022126666A1 - 数据传输方法、通信装置及通信系统 - Google Patents

数据传输方法、通信装置及通信系统 Download PDF

Info

Publication number
WO2022126666A1
WO2022126666A1 PCT/CN2020/137798 CN2020137798W WO2022126666A1 WO 2022126666 A1 WO2022126666 A1 WO 2022126666A1 CN 2020137798 W CN2020137798 W CN 2020137798W WO 2022126666 A1 WO2022126666 A1 WO 2022126666A1
Authority
WO
WIPO (PCT)
Prior art keywords
bicast
access network
sequence number
network device
qos flow
Prior art date
Application number
PCT/CN2020/137798
Other languages
English (en)
French (fr)
Inventor
徐小英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080103916.3A priority Critical patent/CN116114309A/zh
Priority to PCT/CN2020/137798 priority patent/WO2022126666A1/zh
Publication of WO2022126666A1 publication Critical patent/WO2022126666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data transmission method, a communication device, and a communication system.
  • a switching method is as follows: during the switching process, the user plane network element sends the same downlink data to the source access network device and the target access network device at the same time.
  • packet also known as a downlink bicast data packet
  • the source access network device and the target access network device respectively assign a packet data convergence protocol (PDCP) sequence number to the downlink data packet, and then carry PDCP respectively.
  • PDCP packet data convergence protocol
  • the source access network device and the target access network device assign the same PDCP sequence number to the same downlink bicast data packet, and then the terminal device, based on the PDCP sequence number, respectively
  • the downlink bicast data packets of the access network device are deduplicated, and one of the two identical downlink bicast data packets that are about to be received is discarded.
  • packet loss may occur, which may cause the source access network device and the target access network device to be the same
  • Different downlink bicast data packets are assigned different PDCP sequence numbers, which may also cause different downlink bicast data packets to be assigned the same PDCP sequence number, which in turn causes the terminal device to discard the data that has not been repeatedly received when deduplicating the data packets. packets, so that the terminal equipment misses the information from the access network equipment, reducing the reliability of data transmission.
  • the embodiments of the present application provide a data transmission method, a communication device, and a communication system, so as to prevent the terminal equipment from discarding data packets that have not been repeatedly received, so that the terminal equipment does not miss information from the access network equipment, thereby improving the reliability of data transmission .
  • an embodiment of the present application provides a data transmission method, including: an access network device receives a first downlink bicast data packet from a user plane network element, where the first downlink bicast data packet carries first data and the first sequence number; the access network device determines the first packet data convergence protocol PDCP sequence number corresponding to the first sequence number; the access network device sends a second downlink bicast data packet to the terminal device, the second downlink bicast data The packet carries the first data and the first PDCP sequence number.
  • the user plane network element uniformly allocates sequence numbers to the downlink data bicast data packets, and then the source access network device and the target access network device map the sequence number assigned by the user plane network element to the PDCP sequence number, so that the source access network can be guaranteed.
  • the network access device and the target access network device assign the same PDCP sequence number to the same downlink data bicast data packet, so as to prevent the terminal device from discarding the data packets that have not been repeatedly received when packet loss occurs, so that the terminal device will not miss incoming data packets.
  • the information of the network access device avoids the loss or interruption of data during the switching process, and improves the reliability of data transmission.
  • the first sequence number is an N3 sequence number.
  • the access network device determining the first PDCP sequence number corresponding to the first sequence number includes: the access network device determining the first PDCP COUNT value corresponding to the first sequence number; the access network device determining the first PDCP COUNT value corresponding to the first sequence number; The device determines the first PDCP sequence number corresponding to the first PDCP COUNT value.
  • the access network device is a source access network device; before the source access network device receives the first downlink bicast data packet from the user plane network element, the source access network device Receive the third downlink bicast data packet from the user plane network element, where the third downlink bicast data packet carries the second data and the second sequence number; the source access network device according to the second sequence number and the third downlink bicast data packet; The second PDCP sequence number corresponding to the broadcast data packet is determined, and the mapping relationship is used to determine the first PDCP sequence number corresponding to the first sequence number.
  • the source access network device sends indication information to the target access network device, where the indication information is used to indicate the mapping relationship.
  • the indication information carries the second sequence number and the second PDCP sequence number corresponding to the second sequence number; or, the indication information carries the difference between the second sequence number and the second PDCP sequence number or, the indication information carries the second sequence number and the second PDCP COUNT value corresponding to the second sequence number, and the second PDCP COUNT value corresponds to the second PDCP sequence number; or, the indication information carries the second sequence number and The difference between the second PDCP COUNT values, the second PDCP COUNT value corresponds to the second PDCP sequence number.
  • the source access network device can accurately determine the mapping relationship between the sequence number allocated by the UPF and the PDCP COUNT value (or PDCP sequence number) to be allocated by the source access network device, and then indicate to the target access network device through the indication information.
  • the target access network device can determine the mapping relationship between the sequence number allocated by the UPF and the PDCP COUNT value (or PDCP sequence number) that needs to be allocated by the target access network device. Therefore, the subsequent source access network device and the target access network device can accurately determine the PDCP sequence number corresponding to the sequence number in the downlink bicast data packet received from the UPF based on the mapping relationship.
  • the source access network device first requests from a first device that the first request carries information about a bicast quality of service QoS flow group, and the first device is the target access network device or Mobility management network element;
  • the source access network device receives a first response from the first device, where the first response carries information of a QoS flow group that accepts bicast, and the QoS flow group that accepts bicast is part of the QoS flow group that requests bicast or all.
  • the access network device is a target access network device; the target access network device receives indication information from the source access network device, where the indication information is used to indicate a mapping relationship, and the mapping relationship uses for determining the first PDCP sequence number corresponding to the first sequence number.
  • the target access network device receives information of a QoS flow group requesting bicast; the target access network device determines, according to the information of the QoS flow group requesting bicast, the QoS to accept bicast Flow group information; the target access network device sends the bicast QoS flow group information to the session management network element.
  • the target access network device receiving the information of the QoS flow group requesting bicast includes: the target access network device receives a handover request message from the source access network device, the handover request message Carrying information of the QoS flow group requesting bicast; or, the target access network device receiving a handover request message from the mobility management network element, where the handover request message carries the information of the QoS flow group requesting bicast.
  • an embodiment of the present application provides a data transmission method, including: a user plane network element receiving configuration information, where the configuration information carries information of a quality of service QoS flow group that accepts bicast, and the QoS flow group that accepts bicast includes One or more QoS flow groups, the first QoS flow group is any QoS flow group in the QoS flow group that accepts bicast; the user plane network element sequentially allocates the downlink bicast data packets of the first QoS flow group N3 serial number.
  • the user plane network element can be configured with the information of the QoS flow group that accepts bicast, and the subsequent user plane network elements can sequentially assign N3 sequence numbers to the downlink data packets of the QoS flow in the QoS flow group that accepts bicast. .
  • the user plane network element sends the downlink bicast data packets of the first QoS flow group to the source access network device and the target access network device.
  • QoS flows in each QoS flow group in the QoS flow group that accepts bicast are associated with the same data radio bearer, and QoS flows in different QoS flow groups are associated with different data radio bearers .
  • the N3 sequence number is carried in the downlink protocol data unit PDU session information in the downlink bicast data packet of the first QoS flow group.
  • an embodiment of the present application provides a communication apparatus, and the apparatus may be an access network device or a chip used for the access network device.
  • the apparatus has the function of implementing the above-mentioned first aspect or each possible implementation method based on the first aspect. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, where the device may be a user plane network element or a chip used for a user plane network element.
  • the apparatus has the function of implementing the above-mentioned second aspect or each possible implementation method based on the second aspect. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, including a processor, where the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the device implements the above-mentioned first aspect method, each possible implementation method based on the first aspect, the method of the second aspect, or each possible implementation method based on the second aspect.
  • the memory may be located within the device or external to the device.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a method for executing the above-mentioned first aspect, various possible implementation methods based on the first aspect, the method of the second aspect, or each possible implementation method based on the second aspect.
  • the units or means for implementing the various steps of the method are provided.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the processor is configured to control the interface circuit to communicate with other devices, and to execute the method of the first aspect and the various possibilities based on the first aspect.
  • the processor includes one or more.
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method of the first aspect, various possible implementation methods based on the first aspect, The method of the second aspect or each possible implementation method based on the second aspect.
  • the embodiments of the present application further provide a computer program product, which, when running on a computer, enables the computer to execute the method of the first aspect, the possible implementation methods based on the first aspect, and the method of the second aspect Or each possible implementation method based on the second aspect.
  • an embodiment of the present application further provides a chip system, including a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, when the program or instructions are executed by the processor, the chip system enables the above-mentioned first
  • the memory may be located within the system-on-chip, or may be located outside the system-on-chip.
  • the processor includes one or more.
  • FIG. 1 is a schematic diagram of a 5G network architecture to which the embodiments of the present application are applied;
  • Figure 2 is a schematic diagram of a packet loss process
  • FIG. 3(a) is a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 3(b) is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 3(c) is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 3(d) is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 3(e) is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a data packet sending process
  • FIG. 5 is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another data transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another communication apparatus provided by an embodiment of the present application.
  • FIG. 1 it is a schematic diagram of a fifth generation (5th generation, 5G) network architecture to which the embodiments of the present application are applied.
  • the 5G network architecture shown in FIG. 1 includes three parts, namely terminal equipment and data network (DN) and carrier networks. The following briefly describes the functions of some of the network elements.
  • the operator network may include one or more of the following network elements: Authentication Server Function (AUSF) network element, Network Exposure Function (NEF) network element, Policy Control Function (Policy Control Function) Function, PCF) network element, unified data management (unified data management, UDM), unified database (Unified Data Repository, UDR), network storage function (Network Repository Function, NRF) network element, application function (Application Function, AF) network element, access and mobility management function (Access and Mobility Management Function, AMF) network element, session management function (session management function, SMF) network element, radio access network (Radio Access Network, RAN) equipment user plane function ( user plane function, UPF) network element, etc.
  • the part other than the radio access network may be referred to as the core network.
  • the terminal device in this embodiment of the present application may be a device for implementing a wireless communication function.
  • the terminal equipment may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station in a 5G network or a public land mobile network (PLMN) evolved in the future.
  • UE user equipment
  • PLMN public land mobile network
  • remote station remote terminal
  • mobile device wireless communication device
  • terminal agent or terminal device etc.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control devices Wireless terminals, wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc. Terminal equipment can be mobile or fixed.
  • the above-mentioned terminal device can establish a connection with the operator network through an interface (eg, N1, etc.) provided by the operator network, and use the data and/or voice services provided by the operator network.
  • the terminal device can also access the DN through the operator's network, and use the operator's service deployed on the DN and/or the service provided by a third party.
  • the above-mentioned third party may be a service party other than the operator's network and the terminal device, and may provide other data and/or voice services for the terminal device.
  • the specific form of the above third party can be determined according to the actual application scenario, which is not limited here.
  • RAN is a sub-network of an operator's network, and is an implementation system between service nodes and terminal equipment in the operator's network.
  • the terminal device To access the operator's network, the terminal device first passes through the RAN, and then can be connected to the service node of the operator's network through the RAN.
  • the RAN device in this application is a device that provides a wireless communication function for a terminal device, and the RAN device is also called an access network device.
  • the RAN equipment in this application includes but is not limited to: next-generation base station (g nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B in 5G (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • node B in 5G node B, NB
  • base station controller BSC
  • base transceiver station base transceiver station
  • BTS home base station
  • base station for example, home
  • the AMF network element mainly performs functions such as mobility management and access authentication/authorization. In addition, it is also responsible for transferring user policies between UE and PCF.
  • the SMF network element mainly performs functions such as session management, execution of control policies issued by PCF, selection of UPF, and allocation of UE Internet Protocol (IP) addresses.
  • IP Internet Protocol
  • the UPF network element as the interface UPF with the data network, completes functions such as user plane data forwarding, session/flow-level accounting statistics, and bandwidth limitation.
  • the UDM network element is mainly responsible for the management of contract data, user access authorization and other functions.
  • UDR is mainly responsible for the access function of contract data, policy data, application data and other types of data.
  • the NEF network element is mainly used to support the opening of capabilities and events.
  • the AF network element mainly conveys the requirements of the application side to the network side, such as quality of service (Quality of Service, QoS) requirements or user status event subscriptions.
  • the AF may be a third-party functional entity or an application service deployed by an operator, such as an IP Multimedia Subsystem (IP Multimedia Subsystem, IMS) voice call service.
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • the PCF network element is mainly responsible for policy control functions such as charging for sessions and service flow levels, QoS bandwidth guarantee and mobility management, and UE policy decision-making.
  • the NRF network element can be used to provide the network element discovery function, and provide network element information corresponding to the network element type based on the request of other network elements.
  • NRF also provides network element management services, such as network element registration, update, de-registration, and network element status subscription and push.
  • AUSF network element It is mainly responsible for authenticating users to determine whether to allow users or devices to access the network.
  • a DN is a network outside the operator's network.
  • the operator's network can access multiple DNs, and multiple services can be deployed on the DNs, which can provide data and/or voice services for terminal devices.
  • DN is the private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices, and the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain the instruction of the control server, and transmit the collected sensor data to the control server according to the instruction.
  • the DN is an internal office network of a company.
  • the mobile phones or computers of employees of the company can be terminal devices, and the mobile phones or computers of employees can access information and data resources on the internal office network of the company.
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • interface serial numbers refer to the meanings defined in the 3GPP standard protocol, which is not limited here.
  • the mobility management network element may be the AMF network element shown in FIG. 1 , or may be other network elements having the functions of the above AMF network elements in the future communication system
  • the user plane network element It can be the UPF network element shown in Figure 1, or other network elements having the functions of the above UPF network element in the future communication system.
  • the session management network element can be the SMF network element shown in Figure 1, or it can be a future communication system.
  • the access network equipment may be the RAN equipment shown in FIG. 1 , or may be other network elements with the functions of the above-mentioned RAN equipment in the future communication system.
  • the mobility management network element is an AMF network element
  • the session management network element is an SMF
  • the user plane network element is a UPF network element as an example for description.
  • deduplicates when the UPF sends the same downlink bicast data packet to the source access network device and the target access network device at the same time, when the terminal device deduplicates, it may cause the terminal device to discard the data packets that have not been repeatedly received. , causing the terminal device to miss the information from the access network device and reducing the reliability of data transmission.
  • de-duplication here refers to discarding duplicate data packets, wherein these duplicate data packets carry the same data. For example, when the terminal device receives multiple data packets carrying the same PDCP sequence number, the terminal device only keeps one data packet and discards other data packets.
  • the PDCP sequence number is also referred to as PDCP SN for short, where SN is the abbreviation of sequence.
  • FIG. 2 it is a schematic diagram of a packet loss process.
  • UPF sends downlink bicast packet 1, downlink bicast packet 2 and downlink bicast packet 3 to the source access network device and the target access network device simultaneously.
  • Downlink bicast packet 1, downlink bicast packet 2 and downlink bicast packet 3 are allocated PDCP SNX, PDCP SNX+1 and PDCP SNX+2 respectively, and the source access network equipment is the received downlink bicast Packet 1, downlink bicast packet 2 and downlink bicast packet 3 are allocated PDCP SNX, PDCP SNX+1 and PDCP SNX+2 respectively.
  • the source access network device is actually the downlink bicast packet 1 and the downlink bicast packet 2 PDCP SNX and PDCP SNX+1 are allocated respectively, and the target access network device actually allocates PDCP SNX and PDCP SNX+1 for downlink bicast data packet 1 and downlink bicast data packet 3 respectively.
  • the terminal device After receiving the downlink bicast data packets from the source access network device and the target access network device respectively, the terminal device considers the downlink bicast data packets carrying the same PDCP SN to be the same downlink according to the PDCP SN carried by the downlink bicast data packets. Bicast packets.
  • the terminal device considers that the downlink bicast data packet 2 received from the source access network device and the downlink bicast data packet 3 received from the target access network device are the same downlink bicast data packet, and thus performs the deduplication operation. , for example, delete the downlink bicast data packet 2 received from the source access network device or delete the downlink bicast data packet 3 received from the target access network device.
  • the downlink bicast data packet 2 received from the source access network device and the downlink bicast data packet 3 received from the target access network device only carry the same PDCP SN, but do not carry the same downlink data. .
  • the terminal equipment will lose the data in the downlink bicast data packet 2, causing the data to be mistakenly deleted without repeated reception.
  • the downlink bicast data packet 3 received from the target access network device causes the terminal device to lose the data in the downlink bicast data packet 3, and also causes the data to be mistakenly deleted without repeated reception. Therefore, the above-mentioned packet loss process will cause the terminal device to discard the data packets that the terminal device has not received repeatedly, thereby causing the terminal device to miss the information from the access network device and reducing the reliability of data transmission.
  • the embodiment of the present application provides a data transmission method, which is used to ensure that the same PDCP SN is allocated to the same downlink bicast data packet, and different PDCP SNs are allocated to different downlink bicast data packets, thereby.
  • the terminal device When the source access network device or the target access network device loses packets, the terminal device will not discard the data packets that have not been repeatedly received during deduplication, so that the terminal device will not miss the information from the access network device. , to avoid the loss or interruption of data during the switching process, and improve the reliability of data transmission.
  • FIG. 3( a ) a schematic diagram of a data transmission method provided in an embodiment of the present application, the method includes the following steps:
  • Step 301a the UPF sends the first downlink bicast data packet to the access network device, and the first downlink bicast data packet carries the first data and the first sequence number.
  • the access network device receives the first downlink bicast data packet.
  • Step 302a the access network device determines the first PDCP sequence number corresponding to the first sequence number.
  • Step 303a the access network device sends a second downlink bicast data packet to the terminal device, where the second downlink bicast data packet carries the first data and the first PDCP sequence number.
  • the terminal device receives the second downlink bicast data packet.
  • the access network device may be either a source access network device or a target access network device, that is, the UPF sends the same downlink bicast data packet to the source access network device and the target access network device.
  • the UPF uniformly allocates sequence numbers to the downlink data bicast data packets, and then the source access network device and the target access network device map the sequence numbers allocated by the UPF to the PDCP sequence numbers, so that the source access network device and the target access network device can be guaranteed.
  • the network access device assigns the same PDCP sequence number to the same downlink data bicast data packet, thereby preventing the terminal device from discarding the data packets that have not been repeatedly received during deduplication, so that the terminal device will not miss the information from the access network device. The loss or interruption of data in the switching process is avoided, and the reliability of data transmission is improved.
  • the UPF uniformly allocates the N3 sequence number to the downlink bicast data packets. That is, the first sequence number carried in the first downlink bicast data packet is the N3 sequence number.
  • the method for the access network device to determine the first PDCP sequence number corresponding to the first sequence number may be: the sequence number allocated by the access network device according to the UPF and the PDCP that the access network device needs to allocate The mapping relationship between the sequence numbers determines the first PDCP sequence number corresponding to the first sequence number.
  • the access network device determines the first PDCP COUNT value corresponding to the first sequence number according to the mapping relationship between the sequence number allocated by the UPF and the PDCP count (COUNT) value that needs to be allocated by the access network device, and then determines the first PDCP COUNT value.
  • a PDCP sequence number can be determined according to a PDCP COUNT value.
  • the PDCP COUNT value uniquely identifies a PDCP service data unit (service data unit, SDU).
  • the PDCP COUNT value consists of the Hyper Frame Number (HFN) and the PDCP SN.
  • HNF Hyper Frame Number
  • the length of the HNF is equal to 32 minus the length of the PDCP SN.
  • a schematic diagram of a data transmission method provided in an embodiment of the present application is performed before the above step 301a.
  • the source access network device determines the sequence number allocated by the UPF and the source access network.
  • the device needs the mapping relationship between the assigned PDCP sequence numbers (or PDCP COUNT values), and then sends the indication information used to indicate the mapping relationship to the target access network device.
  • the method includes the following steps:
  • Step 301b the UPF sends a third downlink bicast data packet to the source access network device, where the third downlink bicast data packet carries the second data and the second sequence number.
  • the source access network device receives the third downlink bicast data packet.
  • Step 302b the UPF sends the above-mentioned third downlink bicast data packet to the target access network device.
  • the target access network device receives the third downlink bicast data packet.
  • the third downlink bicast data packet is one of the first N downlink bicast data packets sent by the UPF to the source access network device and the target access network device, where N is a positive integer.
  • N may be the first downlink bicast data packet or the second downlink bicast data packet sent by the UPF to the source access network device and the target access network device.
  • Step 303b the source access network device determines a mapping relationship according to the second sequence number and the second PDCP sequence number corresponding to the third downlink bicast data packet, and the mapping relationship can be used to determine the first PDCP sequence number corresponding to the first sequence number.
  • the source access network device may obtain the second sequence number from the third downlink bicast data packet, and determine the third downlink bicast data packet according to the PDCP sequence number of a downlink data packet before the third downlink bicast data packet The corresponding second PDCP sequence number, and then the source access network device can determine the above mapping relationship according to the second sequence number and the second PDCP sequence number.
  • the first sequence number and the second sequence number are both allocated by the UPF.
  • the first sequence number and the second sequence number are both N3 sequence numbers.
  • the method for determining the above-mentioned mapping relationship is described below by taking as an example that both the first serial number and the second serial number are N3 serial numbers.
  • the initial number for the N3 sequence number may be pre-agreed, or may also be dynamically configured.
  • the initial value of the downlink N3 sequence number may be indicated to the source access network device by the SMF or the UPF.
  • the third downlink bicast data packet is the first downlink bicast data packet sent by the UPF to the source access network device and the target access network device, and the N3 sequence number carried in the third downlink bicast data packet is 1,
  • the PDCP sequence number assigned by the source access network device to a downlink data packet before the third downlink bicast data packet (the downlink data packet is a data packet unicast to the source access network device) is 100, then the source access network device It is determined that the PDCP sequence number allocated to the third downlink bicast data packet is 101, so that the source access network device determines that the mapping relationship between the N3 sequence number allocated by the UPF and the PDCP sequence number that the source access network device needs to allocate is: the N3 sequence number is: 1 corresponds to PDCP serial number 101.
  • the third downlink bicast data packet is the second downlink bicast data packet sent by the UPF to the source access network device and the target access network device, and the N3 sequence number carried in the third downlink bicast data packet is 2,
  • the first downlink bicast data packet sent by the UPF to the source access network device is lost, and the source access network device does not receive the first downlink bicast data packet.
  • the UPF is numbered from N3 sequence number 1, and the source access network device can learn that the first downlink bicast data packet sent by the UPF to the source access network device is lost.
  • the source access network device determines that the PDCP sequence number allocated for the third downlink bicast data packet is 102, so the source access network device determines that the mapping relationship between the N3 sequence number allocated by the UPF and the PDCP sequence number that the source access network device needs to allocate is: : N3 serial number 2 corresponds to PDCP serial number 102.
  • the reason why the PDCP sequence number is 102 instead of the PDCP sequence number 101 is because the source access network device recognizes that a downlink bicast packet is lost before the third downlink bicast packet, so it needs to Skip a PDCP sequence number.
  • this step 303b can also be replaced with: the source access network device determines the mapping relationship according to the second sequence number and the second PDCP COUNT value corresponding to the third downlink bicast data packet, the The mapping relationship is used to indicate the mapping relationship between the sequence number allocated by the UPF and the PDCP COUNT value that needs to be allocated by the source access network device, where one PDCP COUNT value can determine one PDCP sequence number.
  • Step 304b the source access network device sends indication information to the target access network device, where the indication information is used to indicate the above-mentioned mapping relationship.
  • the target access network device receives the indication information from the source access network device.
  • the indication information carries the second sequence number and the second PDCP sequence number corresponding to the second sequence number.
  • the indication information carries 1:101.
  • the indication information carries 2:102.
  • the indication information carries the difference between the second sequence number and the second PDCP sequence number.
  • the indication information carries 100 (ie, the difference between 101 and 1, or the difference between 102 and 2).
  • the indication information carries the second sequence number and the second PDCP COUNT value corresponding to the second sequence number, and the second PDCP COUNT value corresponds to the second PDCP sequence number.
  • the indication information carries the difference between the second sequence number and the second PDCP COUNT value, and the second PDCP COUNT value corresponds to the second PDCP sequence number.
  • the target access network device can learn the mapping relationship between the sequence number allocated by the UPF and the PDCP COUNT value (or PDCP sequence number) that needs to be allocated by the target access network device.
  • Step 305b the source access network device sends a fourth downlink bicast data packet to the terminal device, where the fourth downlink bicast data packet carries the second data and the second PDCP sequence number.
  • the terminal device receives the fourth downlink bicast data packet.
  • Step 306b the target access network device sends the above-mentioned fourth downlink bicast data packet to the terminal device.
  • the terminal device receives the fourth downlink bicast data packet.
  • the target access network device determines the second PDCP sequence number carried in the fourth downlink bicast data packet according to the above mapping relationship and the second sequence number in the third downlink bicast data packet.
  • the target access network device when the target access network device first receives the third downlink bicast data packet from the UPF, and then receives the above-mentioned indication information from the source access network device, the target access network device needs to buffer the third downlink bicast data packet, After receiving the indication information, the second PDCP sequence number corresponding to the second sequence number in the third downlink bicast data packet is determined according to the mapping relationship indicated by the indication information, and then the target access network device sends the fourth sequence number to the terminal device. Downstream bicast packets.
  • the source access network device can accurately determine the mapping relationship between the sequence number allocated by the UPF and the PDCP COUNT value (or PDCP sequence number) to be allocated by the source access network device, and then indicate to the target access network device through the indication information.
  • the target access network device can determine the mapping relationship between the sequence number allocated by the UPF and the PDCP COUNT value (or PDCP sequence number) that needs to be allocated by the target access network device. Therefore, the subsequent source access network device and the target access network device can accurately determine the PDCP sequence number corresponding to the sequence number in the downlink bicast data packet received from the UPF based on the mapping relationship.
  • FIG. 3( c ) a schematic diagram of a data transmission method provided by an embodiment of the present application is performed before the above step 301b, and the method is used to configure the information of the QoS flow group requesting bicast for the UPF.
  • the method includes the following steps:
  • Step 301c the source access network device sends a first request to the target access network device, where the first request carries the information of the QoS flow group for which bicast is requested.
  • the target access network device receives the first request.
  • the first request may be a handover request message.
  • the QoS flow group requesting bicast includes one or more QoS flow groups, and each QoS flow group is associated with a data radio bearer (data radio bearer, DRB). That is, all QoS flows in a QoS flow group are mapped to the same data radio bearer, and QoS flows of different QoS flow groups are mapped to different data radio bearers.
  • One way of indicating the information of the QoS flow group requesting bicast may be: the information of each QoS flow group requesting bicast may include a QoS flow group identifier, one or more QoS flow identifiers associated with the QoS flow group identifier.
  • a session corresponds to three DRBs, and each DRB includes a QoS flow group consisting of one or more QoS flows. Therefore, the first request may carry information of three QoS flow groups, and the information of each QoS flow group corresponds to one DRB. Alternatively, the first request may carry information of two QoS flow groups, and the information of each QoS flow group corresponds to one DRB. Alternatively, the first request may carry information of one QoS flow group, and the information of the QoS flow group corresponds to one DRB.
  • Step 302c the target access network device determines the information of the QoS flow group that accepts the bicast according to the information of the QoS flow group that requests the bicast.
  • the QoS flow group that accepts bicast is part or all of the QoS flow group that requests bicast.
  • the target access network device can determine the information of the QoS flow group that accepts bicast based on the following method: For example, the target access network device will request the bicast QoS flow group that contains high QoS priority (eg, low latency and high QoS).
  • the QoS flow group of the reliable) QoS flow is determined as the QoS flow group that accepts bicast.
  • the target access network device when the air interface resources of the target cell in the target access network device (that is, the cell accessed by the terminal device) are limited, the target access network device will request a QoS flow group for bicasting that includes a high QoS priority ( For example, the QoS flow group of the QoS flow with low delay and high reliability) is determined as the QoS flow group that accepts bicast.
  • the target access network device For a QoS flow group that requests bicasting, the target access network device either accepts bicasting for all QoS flows in the QoS flow group, or rejects bicasting for all QoS flows in the QoS flow group. broadcast.
  • the QoS flow group requesting bicast includes QoS flow group 1, QoS flow group 2 and QoS flow group 3, then the QoS flow group that accepts bicast can be one of QoS flow group 1, QoS flow group 2 and QoS flow group 3 one or more QoS flow groups.
  • the target access network device may accept bicast for some QoS flows in the QoS flow group, and reject bicast for another part of the QoS flow.
  • the QoS flow group requesting bicast includes QoS flow group 1, QoS flow group 2 and QoS flow group 3, then the QoS flow group that accepts bicast can be one of QoS flow group 1, QoS flow group 2 and QoS flow group 3 part or all of the QoS flow.
  • the QoS flow groups that accept bicasting may be all QoS flows in QoS flow group 1 and some QoS flows in QoS flow group 2 .
  • Step 303c the target access network device sends a first response to the source access network device, where the first response carries the information of the QoS flow group that accepts bicast.
  • the source access network device receives the first response.
  • the first response may be a handover confirmation message.
  • the first response may indicate information of a QoS flow group that rejects bicast, and may further indicate a reason for rejecting reception of bicast.
  • the source access network device receives the information about the QoS flow group rejecting bicast sent by the target access network device in the first response, then when the source access network device receives the rejecting bicast QoS flow group from the UPF When the data of the QoS flow in the source access network device is discarded, and the PDCP SN is not allocated to the data.
  • Step 304c the target access network device sends the information of the QoS flow group that accepts the bicast to the SMF.
  • the SMF receives the information of the QoS flow group that accepts bicast.
  • the target access network device may send the information of the QoS flow group that accepts bicast to the AMF, and then the AMF sends the information of the QoS flow group that accepts the bicast to the SMF.
  • the target access network device also indicates to the SMF information about the QoS flow group that rejects the bicast, and may further indicate the reason for rejecting the reception of the bicast.
  • Step 305c the SMF sends configuration information to the UPF, where the configuration information carries the information of the QoS flow group that accepts bicast. Accordingly, the UPF receives the configuration information.
  • the SMF also indicates to the UPF the information of the QoS flow group that rejects the bicast, and may further indicate the reason for rejecting the reception of the bicast.
  • the UPF stops sending QoS flows that reject the QoS flow group of bicast.
  • the information of the QoS flow group that accepts bicast can be configured for the UPF, and the UPF can sequentially assign N3 sequence numbers to the downlink data packets of the QoS flow in the QoS flow group that accepts bicast in sequence.
  • the operation of the foregoing step 304c may also be performed by the source access network device.
  • the source access network device sends the information of the QoS flow group that accepts bicast to the SMF through the AMF.
  • the target access network device does not need to perform the above step 304c.
  • the UPF sends a configuration response to the SMF to indicate that the configuration is successful
  • the SMF sends a configuration response to the AMF to indicate that the configuration is successful
  • the AMF sends a configuration response to the target access network device, Used to indicate successful configuration.
  • the target access network device executes the above step 303c. That is, the target access network device sends the first response to the source access network device after receiving the configuration response from the AMF, where the first response carries the information of the QoS flow group that accepts bicast.
  • FIG. 3(d) a schematic diagram of a data transmission method provided by an embodiment of the present application is performed before the above step 301b, and the method is used to configure the information of the QoS flow group requesting bicast for the UPF.
  • the method includes the following steps:
  • Step 301d the source access network device sends a first request to the AMF, where the first request carries the information of the QoS flow group for which bicast is requested. Accordingly, the AMF receives the first request.
  • the first request may be a handover request message.
  • Step 302d the AMF sends a handover request message to the target access network device.
  • the target access network device receives the handover request message.
  • the handover request message carries the information of the QoS flow group requesting bicasting.
  • Step 303d the target access network device determines the information of the QoS flow group that accepts the bicast according to the information of the QoS flow group that requests the bicast.
  • the QoS flow group that accepts bicast is part or all of the QoS flow group that requests bicast.
  • the target access network device determines the information of the QoS flow group that accepts bicast.
  • Step 304d the target access network device sends the information of the QoS flow group that accepts the bicast to the AMF.
  • the AMF receives the information of the QoS flow group that accepts bicast.
  • Step 305d the AMF sends a first response to the source access network device, where the first response carries the information of the QoS flow group that accepts bicast.
  • the source access network device receives the first response.
  • the first response may be a handover command.
  • the first response may indicate information of a QoS flow group that rejects bicast, and may further indicate a reason for rejecting reception of bicast.
  • Step 306d the AMF sends the information of the QoS flow group that accepts the bicast to the SMF.
  • the SMF receives the information of the QoS flow group that accepts bicast.
  • the AMF also indicates to the SMF the information of the QoS flow group that rejects the bicast, and may further indicate the reason for rejecting the reception of the bicast.
  • Step 307d the SMF sends configuration information to the UPF, where the configuration information carries the information of the QoS flow group that accepts bicast. Accordingly, the UPF receives the configuration information.
  • the SMF also indicates to the UPF the information of the QoS flow group that rejects the bicast, and may further indicate the reason for rejecting the reception of the bicast.
  • the UPF stops sending QoS flows that reject the QoS flow group of bicast.
  • the information of the QoS flow group that accepts bicast can be configured for the UPF, and the UPF can sequentially assign N3 sequence numbers to downlink data packets of the QoS flow in the QoS flow group that accepts bicast in sequence.
  • the operation of the foregoing step 304d may also be performed by the source access network device.
  • the source access network device sends the information of the QoS flow group that accepts bicast to the AMF, and then the AMF sends the information of the QoS flow group that accepts bicast to the SMF in step 306d.
  • the target access network device does not need to perform the above step 304d.
  • the UPF sends a configuration response to the SMF to indicate that the configuration is successful, and then the SMF sends a configuration response to the AMF to indicate that the configuration is successful.
  • the AMF then executes the above step 305d. That is, the AMF sends the first response to the source access network device after receiving the configuration response from the SMF, where the first response carries the information of the QoS flow group that accepts bicast.
  • a schematic diagram of a data transmission method is a process in which the UPF sends a downlink bicast data packet after configuring the information of the QoS flow group that accepts bicast for the UPF.
  • the method includes the following steps:
  • Step 301e the UPF receives configuration information, the configuration information carries the information of the QoS flow group that accepts bicast, the QoS flow group that accepts bicast includes one or more QoS flow groups, and the first QoS flow group is the QoS flow group that accepts bicast Any QoS flow group in the flow group.
  • the QoS flows in each of the QoS flow groups that accept bicast are associated with the same data radio bearer, and the QoS flows in different QoS flow groups are associated with different data radio bearers.
  • Step 302e the UPF sequentially assigns N3 sequence numbers to the downlink bicast data packets of the first QoS flow group.
  • the N3 sequence number is carried in the downlink PDU session information in the downlink bicast data packet of the first QoS flow group.
  • the UPF For each QoS flow group in the QoS flow group that accepts bicast, when sending the data packets of the QoS flow in the QoS flow group, the UPF will uniformly and sequentially assign the N3 sequence number and send the data packets of the QoS flow together.
  • QoS flow group 1 includes QoS flow 1, QoS flow 2, and QoS flow 3.
  • UPF assigns N3 sequence numbers (such as 1, 2, %) to the data on these three QoS flows in sequence.
  • QoS flow group 2 has QoS flow 4 and QoS flow 5.
  • the UPF assigns N3 sequence numbers (eg 1, 2, . . . ) to the data on these two QoS flows in sequence.
  • the UPF sends the downlink bicast data packets of the first QoS flow group to the source access network device and the target access network device.
  • first downlink bicast data packet and the third downlink bicast data packet in the foregoing embodiments may be data packets of a QoS flow of a certain QoS flow group in the QoS flow group that accepts bicast.
  • the information of the QoS flow group that accepts bicast can be configured for the UPF, and the UPF can sequentially assign N3 sequence numbers to downlink data packets of the QoS flow in the QoS flow group that accepts bicast in sequence.
  • FIG. 4 it is a schematic diagram of a data packet sending process.
  • the example shown in FIG. 4 is a solution to the example shown in FIG. 2 .
  • the UPF after receiving the information of the QoS flow group that accepts bicast, the UPF allocates consecutive N3 sequence numbers to the downlink data of each QoS flow group, and carries the N3 sequence numbers in the downlink PDU session information.
  • UPF sends downlink bicast data packets to source access network equipment and target access network equipment. Referring to Figure 4, UPF sends downlink bicast data packet 1, downlink bicast data packet 2, and downlink bicast data packet 3, respectively carrying N3
  • the serial numbers are: 1, 2, 3.
  • the source access network device first determines the N3 sequence number according to the received downlink bicast packet 1
  • the mapping relationship with PDCP SN is: N3 sequence number 1 corresponds to PDCP sequence number 101, then the source access network device will indicate the information (for example, it can be 1:101, or 100 (that is, the difference between 101 and 1)) Sent to the target access network device. Therefore, the source access network device can allocate PDCP SN 101 and PDCP SN 102 respectively for the received downlink bicast data packet 1 and the downlink bicast data packet 2, and the target access network device is the received downlink bicast data packet 1.
  • PDCP SN 101 and PDCP SN 103 are respectively allocated to downlink bicast data packet 3.
  • the terminal device After the terminal device receives the downlink bicast data packets from the source access network device and the target access network device respectively, it considers the downlink bicast data packets received from the source access network device according to the PDCP SN carried by the downlink bicast data packets.
  • the deduplication operation is performed to obtain the downlink bicast data packet 1, the downlink bicast data packet 2 and the downlink bicast data packet Data packet 3, realize the correct reception of downlink data packets, avoid the terminal equipment discarding the data packets that have not been repeatedly received during deduplication, so that the terminal equipment will not miss the information from the access network equipment, and avoid the loss of data during the switching process. Interrupt, improve the reliability of data transmission.
  • the handover process involved in this embodiment of the present application may include, but is not limited to, N2-based handover and Xn-based handover.
  • the Xn interface is an interface between two access network devices
  • the N2 interface is an interface between the access network device and the AMF.
  • the applicable scenario of the embodiment of the present application may also be a scenario in which an auxiliary access network device is added, and then two-way transmission is performed through two dual access network devices.
  • FIG. 5 it is a schematic diagram of a data transmission method according to an embodiment of the present application.
  • the solution is based on a method for sending downlink bicast data packets in the N2 handover process.
  • the method includes the following steps:
  • Step 501 the terminal device sends a measurement report to the source access network device. Accordingly, the source access network device receives the measurement report.
  • the terminal device determines that the reporting event of the measurement report of the wireless signal is satisfied, and then sends the measurement report to the source access network device. For example, when the terminal device determines that the quality of the serving cell is lower than the set threshold, it sends a measurement report to the source access network device. For another example, when the terminal device determines that the quality of the neighboring cell is higher than the set threshold, it sends a measurement report to the source access network device.
  • Step 502 the source access network device sends a handover request to the AMF. Accordingly, the AMF receives the handover request.
  • the source access network device sends an initialization context establishment response (INITIAL CONTEXT SETUP RESPONSE) message to the AMF, and the message carries the above switching requirement.
  • an initialization context establishment response INITIAL CONTEXT SETUP RESPONSE
  • the source access network device sends a UE context modification response (UE CONTEXT MODIFICATION RESPONSE) message to the AMF, and the message carries the above handover requirement.
  • UE CONTEXT MODIFICATION RESPONSE UE context modification response
  • Step 503 the AMF sends a handover request message to the target access network device.
  • the target access network device receives the handover request message.
  • the handover request message carries the information of the QoS flow group requesting bicasting.
  • Step 504 the target access network device sends a handover confirmation message to the AMF. Accordingly, the AMF receives the handover confirmation message.
  • the handover confirmation message carries the information of the QoS flow group accepting bicast, and the QoS flow in the QoS flow group accepting bicast is a part or all of the QoS flow groups in the QoS flow group in the above-mentioned QoS flow group requesting bicast.
  • the handover confirmation message may also indicate the information of rejecting the QoS flow of the bicast, and may further indicate the reason for rejecting the reception of the bicast.
  • Step 505 the target access network device sends a bicast request message to the AMF.
  • the AMF receives the bicast request message.
  • the bicast request message carries the information of the QoS flow group that accepts bicast and the downlink tunnel address information of the target access network device.
  • the downlink tunnel address is an address on the target access network device for receiving downlink bicast data packets.
  • the bicast request message also carries an identifier of a session, and the session is a session corresponding to the above-mentioned QoS flow group that accepts bicast.
  • Step 506 the AMF configures the UPF via the SMF with the information of the QoS flow group that accepts the bicast.
  • the AMF provides the information of the source access network device (for example, including the downlink tunnel address information of the target access network device) to the SMF, and the SMF issues a forwarding rule to the UPF, instructing the UPF to start sending downlink bicast data packets.
  • the source access network device for example, including the downlink tunnel address information of the target access network device
  • the UPF after the UPF accepts the configuration, it sends a configuration response to the SMF, and the SMF sends a configuration response to the AMF.
  • Step 507 the AMF sends a handover command to the source access network device.
  • the source access network device receives the handover command.
  • the handover command carries the information of the QoS flow group that accepts bicast.
  • Step 508 the source access network device sends a handover message to the terminal device.
  • the terminal device receives the handover message.
  • Step 509 the source access network device sends indication information to the target access network device.
  • the target access network device receives the indication information.
  • the indication information is used to indicate the mapping relationship between the N3 sequence number and the PDCP SN.
  • the UPF starts to send a downlink bicast data packet to the source access network device and the target access network device at the same time, and the downlink bicast data packet carries the N3 sequence number allocated by the UPF, for example, the UPF can start from 0 or 1 Begins numbering of downstream packets.
  • a way of sending a downlink bicast data packet is: UPF carries the data part and the N3 sequence number in a general packet radio service (general packet radio service, GPRS) tunneling protocol (GPRS tunneling protocol, GTP) (GTP-U) different
  • GPRS general packet radio service
  • GTP GTP tunneling protocol
  • the fields are sent to the access network equipment together.
  • the data part is placed in the load part of the GTP-U
  • the N3 sequence number is placed in the subheader of the GTP-U.
  • the N3 sequence number is carried in the data frame of the downlink PDU session information sent by the UPF to the access network device.
  • the N3 sequence number is different from the GTP sequence number of the GTP-U header in the prior art, the N3 sequence number is different from the GTP sequence number assigned by the UPF for the data of all QoS flows in the PDU session in turn, and the N3 sequence number is also different from the existing GTP-U sequence number.
  • the N3 sequence number assigned in the header only to the data of a single QoS flow.
  • the UPF may carry flag information in the first downlink bicast data packet or the first set number of downlink bicast data packets, where the flag information is used to indicate that a bicast data packet is sent.
  • the UPF before sending the first downlink bicast packet, the UPF continuously sends one or more instructions to end the UPF sending unicast packets, that is, it sends one or more instructions to instruct the UPF to start sending the bicast packets to inform the source Access network device: UPF is about to start sending bicast packets.
  • the source access network device receives the downlink bicast data packet (it can be the first downlink bicast data packet or the second downlink bicast data packet, etc., for example, it can be performed by the above-mentioned tag information carried in the downlink bicast data packet. After identifying), obtain the N3 sequence number carried by the downlink bicast data packet, and then determine the mapping relationship between the N3 sequence number and the PDCP SN according to the PDCP SN corresponding to the downlink bicast data packet and the N3 sequence number. For example, the source access network device receives the first downlink bicast data packet, and the downlink bicast data packet carries the N3 sequence number of 1.
  • the downlink bicast data packet carries the N3 sequence number of 1. If the PDCP SN corresponding to the broadcast data packet is 101, the mapping relationship between the N3 sequence number and the PDCP SN is determined as follows: the N3 sequence number is 1 and the PDCP sequence number is 101.
  • subsequent source access network equipment receives other downlink bicast data packets, it can determine the PDCP SN corresponding to the downlink bicast data packet according to the N3 sequence number carried by the downlink bicast data packet. For example, if a downlink bicast data packet carrying an N3 sequence number of 100 is subsequently received, the source access network device adds PDCP SN 200 to the downlink bicast data packet.
  • the target access network device can add a PDCP SN to the downlink bicast data packet received from the UPF according to the mapping relationship between the N3 sequence number indicated by the indication information and the PDCP SN. For example, if the target access network device receives a downlink bicast data packet carrying an N3 sequence number of 100, the target access network device, according to the mapping relationship between the N3 sequence number indicated by the indication information and the PDCP SN, sends the downlink bicast data packet to the Added PDCP SN 200 to the package.
  • a possible implementation method is: the target access network device receives a downlink bicast data packet (for example, a GTP-U data packet from the UPF, and the target access network device extracts the IP packet from the GTP-U data packet as a PDCP SDU. , and then add PDCP SN to generate PDCP PDU, which is then sent to the terminal device through the protocol layer below PDCP.)
  • a downlink bicast data packet for example, a GTP-U data packet from the UPF
  • the target access network device extracts the IP packet from the GTP-U data packet as a PDCP SDU. , and then add PDCP SN to generate PDCP PDU, which is then sent to the terminal device through the protocol layer below PDCP.
  • the target access network device can first buffer these downlink bicast data packets, and then receive the downlink bicast data packets. Indication information, according to which the PDCP SN is determined for the buffered downlink bicast data packets.
  • the indication information carries the mapping relationship between the N3 sequence number and the PDCP SN.
  • the indication information carries the difference between the N3 sequence number and the PDCP SN, or carries the difference between the PDCP SN and the N3 sequence number. It can be understood that the indication information is used to indicate the N3 sequence number and the PDCP SN corresponding to the N3 sequence number.
  • Step 510 the terminal device sends a handover complete message to the target access network device.
  • the target access network device receives the handover complete message.
  • the terminal device After the terminal device sends a handover complete message to the target access network device, it can send a PDCP status report to the target access network device, and the terminal device can send an uplink data packet to the target access network device.
  • Step 511 the target access network device sends a path switching request message to the AMF.
  • the AMF receives the path switch request message.
  • the target access network device may carry an instruction to stop downlink bicast in the path switch request message, and notify the SMF via the AMF.
  • Step 512 the AMF notifies the UPF of the path switch via the SMF, and the UPF stops sending the downlink bicast message.
  • the AMF notifies the UPF via the SMF to stop downlink bicasting.
  • Step 513 the AMF sends a path switching response message to the target access network device.
  • the target access network device receives the path switching response message.
  • the UPF uniformly allocates N3 sequence numbers to the downlink bicast data packets of the bicast QoS flow, and carries the N3 sequence numbers in the downlink bicast data packets and sends them to the source access network device and the target access network device.
  • the source access network device and the target access network device may determine the PDCP SN corresponding to the downlink bicast data packet based on the mapping relationship between the N3 sequence number and the PDCP SN, and add the N3 sequence number to the downlink bicast data packet.
  • the source access network device and the target access network device determine the PDCP SN corresponding to the received downlink bicast data packet based on the same mapping relationship, the same PDCP SN will be determined for the same downlink bicast data packet. Therefore, it is avoided that the terminal device discards the data packets that have not been repeatedly received when the packet is lost, so that the terminal device does not miss the information from the access network device, avoids the loss or interruption of data during the handover process, and improves the reliability of data transmission.
  • the source access network device sends the above indication information to the target access network device through the Xn interface between the source access network device and the target access network device.
  • the source access network device may send the above indication information to the terminal device, for example, the source access network device carries the above indication information through the handover message in the above step 508, and then the terminal device sends the target device to the target device.
  • the access network device sends the above indication information, for example, the terminal device may send the above indication information through the handover complete message in the above step 510.
  • step 505 may also be carried in step 504. In this case, the above step 505 does not need to be performed.
  • the target access network device determines the information of the QoS flow group that accepts the bicast according to the information of the QoS flow group that requests the bicast.
  • the AMF can also request the information of the bicast QoS flow group, determine the information of the QoS flow group that accepts the bicast, and then carry the information of the QoS flow group that accepts the bicast in the above step 503 . In this way, the above step 504 does not need to carry the information of the QoS flow group that accepts bicast.
  • FIG. 6 it is a schematic diagram of a data transmission method according to an embodiment of the present application.
  • the solution is based on the sending method of downlink bicast data packets in the process of Xn handover.
  • the method includes the following steps:
  • Step 601 the terminal device sends a measurement report to the source access network device. Accordingly, the source access network device receives the measurement report.
  • the terminal device determines that the reporting event of the measurement report of the wireless signal is satisfied, and then sends the measurement report to the source access network device. For example, when the terminal device determines that the quality of the serving cell is lower than the set threshold, it sends a measurement report to the source access network device. For another example, when the terminal device determines that the quality of the neighboring cell is higher than the set threshold, it sends a measurement report to the source access network device.
  • Step 602 The source access network device sends a handover request message to the target access network device.
  • the target access network device receives the handover request message.
  • the handover request message carries information of a QoS flow group requesting bicasting, the QoS flow group requesting bicasting includes one or more QoS flow groups, and each QoS flow group is associated with a data radio bearer.
  • Step 603 the target access network device determines a QoS flow group that accepts bicast.
  • the target access network device determines the QoS flow group that accepts bicast according to the information of the QoS flow group that requests bicast.
  • Step 604 the target access network device sends a bicast request message to the AMF.
  • the AMF receives the bicast request message.
  • the bicast request message carries the information of the QoS flow group that accepts bicast and the downlink tunnel address information of the target access network device.
  • the downlink tunnel address is an address on the target access network device for receiving downlink bicast data packets.
  • the bicast request message also carries an identifier of a session, and the session is a session corresponding to the above-mentioned QoS flow group that accepts bicast.
  • Step 605 the AMF configures the UPF via the SMF with the information of the QoS flow group that accepts the bicast.
  • the AMF provides the information of the source access network device (for example, including the downlink tunnel address information of the target access network device) to the SMF, and the SMF issues a forwarding rule to the UPF, instructing the UPF to start sending downlink bicast data packets.
  • the source access network device for example, including the downlink tunnel address information of the target access network device
  • the UPF uniformly allocates an N3 sequence number to the QoS flow indicated by the information of the QoS flow group receiving bicast. For example, for each QoS flow group in the QoS flow group that accepts bicast, when sending the data packets of the QoS flow in the QoS flow group, the UPF will uniformly and sequentially assign the N3 sequence numbers to the data packets of the QoS flow. to send in.
  • Step 606 the AMF sends a bicast confirmation message to the target access network device.
  • the target access network device receives the bicast confirmation message.
  • the bicast confirmation message carries the information of the QoS flow group that accepts bicast.
  • Step 607 the target access network device sends a handover confirmation message to the source access network device.
  • the source access network device receives the handover confirmation message.
  • the handover confirmation message carries the information of the QoS flow group that accepts bicast.
  • Steps 608 to 613 are the same as the above-mentioned steps 508 to 513, and will not be repeated here.
  • the UPF uniformly allocates N3 sequence numbers to the downlink bicast data packets of the bicast QoS flow, and carries the N3 sequence numbers in the downlink bicast data packets and sends them to the source access network device and the target access network device.
  • the source access network device and the target access network device may determine the PDCP SN corresponding to the downlink bicast data packet based on the mapping relationship between the N3 sequence number and the PDCP SN, and add the N3 sequence number to the downlink bicast data packet.
  • the terminal device can avoid discarding the data packets that have not been repeatedly received when the packet is lost, so that the terminal device will not miss the information from the access network device, avoid data loss or interruption during the handover process, and improve the reliability of data transmission.
  • the source access network device sends the above indication information to the target access network device through the Xn interface between the source access network device and the target access network device.
  • the source access network device may send the above indication information to the terminal device.
  • the source access network device carries the above indication information through the handover message in the above step 608, and then the terminal device sends the target to the target device.
  • the access network device sends the above indication information, for example, the terminal device may send the above indication information through the handover complete message in the above step 610.
  • the target access network device determines the information of the QoS flow group that accepts the bicast according to the information of the QoS flow group that requests the bicast.
  • the AMF may also request the information of the bicast QoS flow group to determine the information of the QoS flow group that accepts the bicast.
  • the above step 603 is not performed, and the information of the QoS flow group requesting bicast is carried in the above step 604, and then the AMF determines the information of the QoS flow group that accepts bicast according to the information of the QoS flow group requesting bicast, and passes the steps 606 Send the information of the QoS flow group that accepts the bicast to the target access network device.
  • the information of the QoS flow group that accepts bicast is configured to the UPF during the handover process.
  • it is also possible to configure the information of the QoS flow group that accepts bicast to the UPF before the handover so that the UPF can start sending downlink bicast to the source access network device and the target access network device before the handover data packets, so that the target access network device can receive the downlink data packets from the UPF in advance, so that when this part of the downlink data packets cannot be correctly sent to the terminal device through the source access network device (for example, due to the imminent handover, the terminal device is connected to the source device).
  • the link between the network access devices is abnormal), it can also be sent to the terminal device through the target access network device, so as to prevent the data packets sent by the UPF from being unable to reach the terminal device.
  • the first measurement report corresponds to the first event detected by the terminal device
  • the second measurement report corresponds to the second event detected by the terminal device
  • the trigger threshold of the first event is lower than the trigger threshold of the second event.
  • the channel quality triggering threshold of the first event is lower than the channel quality triggering threshold of the second event.
  • the source access network device When the source access network device receives the first measurement report from the terminal device, the source access network device notifies the SMF to configure the UPF for dual-cast transmission. After the SMF configures the UPF for bicast transmission, the UPF can start sending downlink bicast packets to the source access network device and the target access network device, and then the source access network device can determine the relationship between the N3 sequence number and the PDCP SN. Mapping relations. The process is similar to steps 501 to 506 in FIG. 5 , or similar to steps 601 to 605 in FIG. 6 .
  • the source access network device When the source access network device receives the second measurement report from the terminal device, the source access network device triggers the handover process in the prior art to complete the terminal device from accessing the source access network device to accessing the target access network device. switch.
  • the source access network device may send indication information to the target access network device, where the indication information is used to indicate the mapping relationship between the N3 sequence number and the PDCP SN.
  • the source access network device carries the indication information in the handover request sent to the AMF, and then the AMF carries the indication information in the handover request message sent to the target access network device.
  • the source access network device carries the indication information in the handover request message sent to the target access network device.
  • this solution can realize the dual-cast configuration of the UPF in advance, and the source access network device can send the indication information for indicating the mapping relationship to the target access network device in advance, This enables the target access network device to determine the PDCP SN corresponding to the downlink bicast data packet received from the UPF earlier, thereby helping to reduce the delay in sending the downlink bicast data packet to the terminal device.
  • FIG. 7 a schematic diagram of a data transmission method provided by an embodiment of the present application, the method includes the following steps:
  • Step 701 The terminal device sends a first uplink bicast data packet to the access network device, wherein the first downlink and uplink bicast data packet carries third data and a third PDCP sequence number.
  • the access network device receives the first uplink bicast data packet.
  • Step 702 the access network device determines a third sequence number corresponding to the third PDCP sequence number.
  • the third sequence number may be an N3 sequence number or other pre-agreed sequence numbers, or the like.
  • the initial number for the N3 sequence number may be pre-agreed, or may also be dynamically configured.
  • the source access network device may indicate the initial value of the uplink N3 sequence number to the UPF.
  • Step 703 The access network device sends a second uplink bicast data packet to the UPF, where the second uplink bicast data packet carries third data and a third sequence number.
  • the UPF receives the second uplink bicast data packet.
  • the access network device may be either a source access network device or a target access network device, that is, the terminal device sends the same uplink bicast data packet to the source access network device and the target access network device.
  • the terminal device uniformly allocates the sequence number for the uplink data bicast data packets, and then the source access network device and the target access network device map the PDCP sequence number allocated by the terminal device to the N3 sequence number, so that the source access network device can be guaranteed.
  • the same N3 sequence number is assigned to the same uplink data bicast data packet with the target access network device, thereby preventing the UPF from discarding the data packets that have not been repeatedly received during deduplication, so that the UPF will not miss the information from the access network device.
  • the loss or interruption of data in the switching process is avoided, and the reliability of data transmission is improved.
  • the UPF performs a deduplication operation based on the N3 sequence number.
  • the method for determining the mapping relationship between the PDCP sequence number and the N3 sequence number in the uplink data transmission process is similar to the method for determining the mapping relationship between the PDCP sequence number and the N3 sequence number in the downlink data transmission process, and will not be repeated.
  • the communication apparatus 800 includes a transceiver unit 810 and a processing unit 820 .
  • the communication apparatus is used to implement the steps corresponding to the access network equipment in the foregoing embodiments:
  • the transceiver unit 810 is configured to receive the first downlink bicast data packet from the user plane network element, the first downlink bicast data packet carries the first data and the first sequence number; send the second downlink bicast to the terminal device
  • the second downlink bicast data packet carries the first data and the PDCP sequence number of the first packet data convergence protocol;
  • the processing unit 820 is configured to determine the first PDCP sequence number corresponding to the first sequence number.
  • the communication device is used to implement the steps corresponding to the user plane network elements in the foregoing embodiments:
  • the transceiver unit 810 is configured to receive configuration information, where the configuration information carries information about a quality of service QoS flow group that accepts bicast, and the QoS flow group that accepts bicast includes one or more QoS flow groups, the first QoS flow group is any QoS flow group in the QoS flow group that accepts bicast; the processing unit 820 is configured to sequentially assign N3 sequence numbers to the downlink bicast data packets of the first QoS flow group.
  • the above-mentioned communication device may also include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement corresponding methods or functions.
  • the processing unit 820 may read data or instructions in the storage unit, so that the communication apparatus implements the methods in the above embodiments.
  • each unit in the above communication apparatus can all be implemented in the form of software calling through the processing element; also can all be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing element, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the communication device to realize, in addition, it can also be stored in the memory in the form of a program, which can be called and executed by a certain processing element of the communication device. function of the unit.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above communication devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASIC), or, a or multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • a unit in the communication device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can invoke programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 9 a schematic diagram of a communication apparatus provided in an embodiment of the present application is used to implement operations of an access network device or a user plane network element in the above embodiment.
  • the communication apparatus includes: a processor 910 and an interface 930 , and optionally, the communication apparatus further includes a memory 920 .
  • the interface 930 is used to implement communication with other devices.
  • the processor 910 may call the program stored in the memory (which may be the memory 920 in the access network device or the user plane network element, or an external memory) to fulfill. That is, the access network device or the user plane network element may include a processor 910, and the processor 910 executes the method performed by the access network device or the user plane network element in the above method embodiments by invoking the program in the memory.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • Access network equipment or user plane network elements may be implemented by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessor DSPs, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Alternatively, the above implementations may be combined.
  • the functions/implementation process of the transceiver unit 810 and the processing unit 820 in FIG. 8 may be implemented by the processor 910 in the communication apparatus 900 shown in FIG. 9 calling computer executable instructions stored in the memory 920 .
  • the function/implementation process of the processing unit 820 in FIG. 8 can be implemented by the processor 910 in the communication device 900 shown in FIG. 9 calling the computer-executed instructions stored in the memory 920, and the function of the transceiver unit 810 in FIG. 8
  • the implementation process can be implemented through the interface 930 in the communication device 900 shown in FIG.
  • At least one item (single, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • “Plurality" means two or more, and other quantifiers are similar.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • Software units can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or this.
  • RAM Random Access Memory
  • ROM read-only memory
  • EPROM memory read-only memory
  • EEPROM memory electrically erasable programmable read-only memory
  • registers hard disk, removable disk, CD-ROM or this.
  • a storage medium may be coupled to the processor such that the processor may read information from, and store information in, the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium may be provided in the ASIC.
  • the above-described functions described herein may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, the functions may be stored on, or transmitted over, a computer-readable medium in the form of one or more instructions or code.
  • Computer-readable media includes computer storage media and communication media that facilitate the transfer of a computer program from one place to another. Storage media can be any available media that a general-purpose or special-purpose computer can access.
  • Such computer-readable media may include, but are not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that can be used to carry or store instructions or data structures and Other media in the form of program code that can be read by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly defined as a computer-readable medium, for example, if software is transmitted from a website site, server or other remote source over a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless, and microwave are also included in the definition of computer-readable media.
  • DSL digital subscriber line
  • the discs and magnetic discs include compact discs, laser discs, optical discs, digital versatile discs (English: Digital Versatile Disc, DVD for short), floppy discs and Blu-ray discs. Disks usually reproduce data magnetically, while Discs usually use lasers to optically reproduce data. Combinations of the above can also be included in computer readable media.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供数据传输方法、通信装置及通信系统。该方法包括:接入网设备接收来自用户面网元的第一下行双播数据包,该第一下行双播数据包携带第一数据和第一序号;该接入网设备确定该第一序号对应的第一PDCP序号;该接入网设备向终端设备发送第二下行双播数据包,该第二下行双播数据包携带该第一数据和该第一PDCP序号。由用户面网元为下行数据双播数据包统一分配序号,然后源接入网设备和目标接入网设备将用户面网元分配的序号映射为PDCP序号,如此可以保证源接入网设备和目标接入网设备为相同的下行数据双播数据包分配相同的PDCP序号,在发生丢包时避免终端设备丢弃未曾发生重复接收的数据包,提高了数据传输的可靠性。

Description

数据传输方法、通信装置及通信系统 技术领域
本申请实施例涉及通信技术领域,尤其涉及数据传输方法、通信装置及通信系统。
背景技术
终端设备因为位置移动等原因,导致终端设备接入的接入网设备发生切换。为了降低接入网设备切换过程中带来的空口中断时延,一种切换方法是:在切换过程中,用户面网元同时向源接入网设备和目标接入网设备发送相同的下行数据包(也可以称为下行双播数据包),源接入网设备和目标接入网设备分别为该下行数据包分配分组数据汇聚协议(packet data convergence protocol,PDCP)序号,然后分别将携带PDCP序号的下行数据包发送至同一个终端设备。
在正常情况下,源接入网设备和目标接入网设备为同一个下行双播数据包分配相同的PDCP序号,然后终端设备基于PDCP序号,对收到的分别来自源接入网设备和目标接入网设备的下行双播数据包进行去重,也即将收到的两个相同的下行双播数据包中的一个丢弃。
然而,在用户面网元向源接入网设备或目标接入网设备发送下行双播数据包时,有可能会发生丢包,这可能导致源接入网设备和目标接入网设备为相同的下行双播数据包分配了不同的PDCP序号,也可能导致为不同的下行双播数据包分配了相同的PDCP序号,进而导致终端设备在对数据包去重时,丢弃未曾发生重复接收的数据包,从而终端设备遗漏来自接入网设备的信息,降低了数据传输的可靠性。
发明内容
本申请实施例提供数据传输方法、通信装置及通信系统,用以避免终端设备丢弃未曾发生重复接收的数据包,使终端设备不会遗漏来自接入网设备的信息,从而提高数据传输的可靠性。
第一方面,本申请实施例提供一种数据传输方法,包括:接入网设备接收来自用户面网元的第一下行双播数据包,该第一下行双播数据包携带第一数据和第一序号;该接入网设备确定该第一序号对应的第一分组数据汇聚协议PDCP序号;该接入网设备向终端设备发送第二下行双播数据包,该第二下行双播数据包携带该第一数据和该第一PDCP序号。
基于上述方案,由用户面网元为下行数据双播数据包统一分配序号,然后源接入网设备和目标接入网设备将用户面网元分配的序号映射为PDCP序号,如此可以保证源接入网设备和目标接入网设备为相同的下行数据双播数据包分配相同的PDCP序号,进而在发生丢包时避免终端设备丢弃未曾发生重复接收的数据包,从而终端设备不会遗漏来自接入网设备的信息,避免了切换过程中数据的丢失或中断,提高了数据传输的可靠性。
在一种可能的实现方法中,该第一序号为N3序号。
在一种可能的实现方法中,该接入网设备确定该第一序号对应的第一PDCP序号,包括:该接入网设备确定该第一序号对应的第一PDCP COUNT值;该接入网设备确定该第 一PDCP COUNT值对应的该第一PDCP序号。
在一种可能的实现方法中,该接入网设备是源接入网设备;该源接入网设备接收来自用户面网元的第一下行双播数据包之前,该源接入网设备接收来自该用户面网元的第三下行双播数据包,该第三下行双播数据包携带第二数据和第二序号;该源接入网设备根据该第二序号和该第三下行双播数据包对应的第二PDCP序号,确定映射关系,该映射关系用于确定该第一序号对应的该第一PDCP序号。
在一种可能的实现方法中,该源接入网设备向目标接入网设备发送指示信息,该指示信息用于指示该映射关系。
在一种可能的实现方法中,该指示信息携带该第二序号和该第二序号对应的该第二PDCP序号;或者,该指示信息携带该第二序号与该第二PDCP序号之间的差值;或者,该指示信息携带该第二序号和该第二序号对应的第二PDCP COUNT值,该第二PDCP COUNT值与该第二PDCP序号对应;或者,该指示信息携带该第二序号与第二PDCP COUNT值之间的差值,该第二PDCP COUNT值与该第二PDCP序号对应。
基于上述方案,源接入网设备可以准确确定UPF分配的序号与源接入网设备需要分配的PDCP COUNT值(或PDCP序号)之间的映射关系,进而通过指示信息向目标接入网设备指示该映射关系,从而目标接入网设备可以确定UPF分配的序号与目标接入网设备需要分配的PDCP COUNT值(或PDCP序号)之间的映射关系。从而,后续源接入网设备和目标接入网设备可以基于该映射关系,准确确定从UPF收到的下行双播数据包中的序号对应的PDCP序号。
在一种可能的实现方法中,该源接入网设备向第一设备第一请求该第一请求携带请求双播的服务质量QoS流组的信息,该第一设备是目标接入网设备或移动性管理网元;
该源接入网设备接收来自该第一设备第一响应,该第一响应携带接受双播的QoS流组的信息,该接受双播的QoS流组是该请求双播的QoS流组的部分或全部。
在一种可能的实现方法中,该接入网设备目标接入网设备;该目标接入网设备接收来自源接入网设备的指示信息,该指示信息用于指示映射关系,该映射关系用于确定该第一序号对应的该第一PDCP序号。
在一种可能的实现方法中,该目标接入网设备接收请求双播的QoS流组的信息;该目标接入网设备根据该请求双播的QoS流组的信息,确定接受双播的QoS流组的信息;该目标接入网设备向会话管理网元发送该接受双播的QoS流组的信息。
在一种可能的实现方法中,该目标接入网设备接收请求双播的QoS流组的信息,包括:该目标接入网设备接收来自源接入网设备的切换请求消息,该切换请求消息携带该请求双播的QoS流组的信息;或者,该目标接入网设备接收来自该移动性管理网元的切换请求消息,该切换请求消息携带该请求双播的QoS流组的信息。
第二方面,本申请实施例提供一种数据传输方法,包括:用户面网元接收配置信息,该配置信息携带接受双播的服务质量QoS流组的信息,该接受双播的QoS流组包括一个或多个QoS流组,第一QoS流组是该接受双播的QoS流组中的任意一个QoS流组;该用户面网元依次为该第一QoS流组的下行双播数据包分配N3序号。
基于上述方案,可以实现为用户面网元配置接受双播的QoS流组的信息,后续用户面网元可以依次为接受双播的QoS流组中的QoS流的下行数据包依序分配N3序号。
在一种可能的实现方法中,该用户面网元向源接入网设备和目标接入网设备发送该第 一QoS流组的下行双播数据包。
在一种可能的实现方法中,该接受双播的QoS流组中的每一个QoS流组中的QoS流关联同一个数据无线承载,不同的QoS流组中的QoS流关联不同的数据无线承载。
在一种可能的实现方法中,该N3序号携带于该第一QoS流组的下行双播数据包中的下行协议数据单元PDU会话信息内。
第三方面,本申请实施例提供一种通信装置,该装置可以是接入网设备,还可以是用于接入网设备的芯片。该装置具有实现上述第一方面或基于第一方面的各可能的实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种通信装置,该装置可以是用户面网元,还可以是用于用户面网元的芯片。该装置具有实现上述第二方面或基于第二方面的各可能的实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供一种通信装置,包括处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该装置实现上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法或基于第二方面的各可能的实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第六方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法或基于第二方面的各可能的实现方法的各个步骤的单元或手段(means)。
第七方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于控制接口电路与其它装置通信,并执行上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法或基于第二方面的各可能的实现方法。该处理器包括一个或多个。
第八方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法或基于第二方面的各可能的实现方法。
第九方面,本申请实施例还提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法或基于第二方面的各可能的实现方法。
第十方面,本申请实施例还提供一种芯片系统,包括处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该芯片系统实现上述第一方面的方法、基于第一方面的各可能的实现方法、第二方面的方法或基于第二方面的各可能的实现方法。该存储器可以位于该芯片系统之内,也可以位于该芯片系统之外。且该处理器包括一个或多个。
附图说明
图1为本申请实施例所适用的5G网络架构示意图;
图2为丢包过程示意图;
图3(a)为本申请实施例提供的一种数据传输方法示意图;
图3(b)为本申请实施例提供的又一种数据传输方法示意图;
图3(c)为本申请实施例提供的又一种数据传输方法示意图;
图3(d)为本申请实施例提供的又一种数据传输方法示意图;
图3(e)为本申请实施例提供的又一种数据传输方法示意图;
图4为数据包发送过程示意图;
图5为本申请实施例提供的又一种数据传输方法示意图;
图6为本申请实施例提供的又一种数据传输方法示意图;
图7为本申请实施例提供的又一种数据传输方法示意图;
图8为本申请实施例提供的一种通信装置示意图;
图9为本申请实施例提供的又一种通信装置示意图。
具体实施方式
参考图1,为本申请实施例所适用的第五代(5th generation,5G)网络架构示意图,图1所示的5G网络架构包括三部分,分别是终端设备、数据网络(data network,DN)和运营商网络。下面对其中的部分网元的功能进行简单介绍说明。
其中,运营商网络可包括以下网元中的一个或多个:鉴权服务器功能(Authentication Server Function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、策略控制功能(Policy Control Function,PCF)网元、统一数据管理(unified data management,UDM)、统一数据库(Unified Data Repository,UDR)、网络存储功能(Network Repository Function,NRF)网元、应用功能(Application Function,AF)网元、接入与移动性管理功能(Access and Mobility Management Function,AMF)网元、会话管理功能(session management function,SMF)网元、无线接入网(Radio Access Network,RAN)设备用户面功能(user plane function,UPF)网元等。上述运营商网络中,除无线接入网之外的部分可以称为核心网络。
在具体实现中,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备。其中,终端设备可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。终端设备可以是移动的,也可以是固定的。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供其他数据和/或语音等服务。其中,上述第三 方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
RAN作为接入网网元是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过RAN,进而可通过RAN与运营商网络的业务节点连接。本申请中的RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。本申请中的RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
AMF网元,主要进行移动性管理、接入鉴权/授权等功能。此外,还负责在UE与PCF间传递用户策略。
SMF网元,主要进行会话管理、PCF下发控制策略的执行、UPF的选择、UE互联网协议(internet protocol,IP)地址分配等功能。
UPF网元,作为和数据网络的接口UPF,完成用户面数据转发、基于会话/流级的计费统计,带宽限制等功能。
UDM网元,主要负责管理签约数据、用户接入授权等功能。
UDR,主要负责签约数据、策略数据、应用数据等类型数据的存取功能。
NEF网元,主要用于支持能力和事件的开放。
AF网元,主要传递应用侧对网络侧的需求,例如,服务质量(Quality of Service,QoS)需求或用户状态事件订阅等。AF可以是第三方功能实体,也可以是运营商部署的应用服务,如IP多媒体子系统(IP Multimedia Subsystem,IMS)语音呼叫业务。
PCF网元,主要负责针对会话、业务流级别进行计费、QoS带宽保障及移动性管理、UE策略决策等策略控制功能。
NRF网元,可用于提供网元发现功能,基于其他网元的请求,提供网元类型对应的网元信息。NRF还提供网元管理服务,如网元注册、更新、去注册以及网元状态订阅和推送等。
AUSF网元:主要负责对用户进行鉴权,以确定是否允许用户或设备接入网络。
DN,是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1中Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
需要说明的是,本申请实施例中,移动性管理网元可以是图1所示的AMF网元,也可以是未来通信系统中具有上述AMF网元的功能的其它网元,用户面网元可以是图1所 示的UPF网元,也可以是未来通信系统中具有上述UPF网元的功能的其它网元,会话管理网元可以是图1所示的SMF网元,也可以是未来通信系统中具有上述SMF网元的功能的其它网元,接入网设备可以是图1所示的RAN设备,也可以是未来通信系统中具有上述RAN设备的功能的其它网元。为便于说明,本申请实施例中,以移动性管理网元为AMF网元,会话管理网元为SMF,用户面网元为UPF网元为例进行说明。
如背景技术所述,当UPF同时向源接入网设备和目标接入网设备发送相同的下行双播数据包时,在终端设备去重时,可能导致终端设备丢弃未曾发生重复接收的数据包,导致终端设备遗漏来自接入网设备的信息,降低了数据传输的可靠性。下面结合具体示例进行说明。其中,这里“去重”指的是丢弃重复的数据包,其中这些重复的数据包携带有相同的数据。比如当终端设备收到携带有相同PDCP序号的多个数据包时,则终端设备只保留一个数据包,并丢弃其它数据包。
为便于说明,本申请实施例中,也将PDCP序号简称为PDCP SN,其中SN即为sequence的缩写。
示例性地,参考图2,为丢包过程示意图。UPF依次同时向源接入网设备和目标接入网设备发送下行双播数据包1,下行双播数据包2和下行双播数据包3,正常情况下,源接入网设备为收到的下行双播数据包1,下行双播数据包2和下行双播数据包3分别分配PDCP SN X,PDCP SN X+1和PDCP SN X+2,源接入网设备为收到的下行双播数据包1,下行双播数据包2和下行双播数据包3分别分配PDCP SN X,PDCP SN X+1和PDCP SN X+2。假设源接入网设备丢失了下行双播数据包3,目标接入网设备丢失了下行双播数据包2,则源接入网设备实际为下行双播数据包1和下行双播数据包2分别分配PDCP SN X和PDCP SN X+1,目标接入网设备实际为下行双播数据包1和下行双播数据包3分别分配PDCP SN X和PDCP SN X+1。终端设备分别从源接入网设备和目标接入网设备收到下行双播数据包后,根据下行双播数据包携带的PDCP SN,认为携带相同PDCP SN的下行双播数据包是相同的下行双播数据包。因此,终端设备认为从源接入网设备收到的下行双播数据包2与从目标接入网设备收到的下行双播数据包3是相同的下行双播数据包,因而执行去重操作,比如删除从源接入网设备收到的下行双播数据包2或删除从目标接入网设备收到的下行双播数据包3。然而实际上,从源接入网设备收到的下行双播数据包2与从目标接入网设备收到的下行双播数据包3只是携带相同的PDCP SN,但并没有携带相同的下行数据。因此,如果是删除从源接入网设备收到的下行双播数据包2,则导致终端设备丢失下行双播数据包2内的数据,造成数据误删除未发生重复接收的信息,如果是删除从目标接入网设备收到的下行双播数据包3,则导致终端设备丢失下行双播数据包3内的数据,也造成数据误删除未发生重复接收的信息。因此,上述丢包过程会使得终端设备将该终端设备未曾发生重复接收的数据包丢弃,从而导致终端设备遗漏来自接入网设备的信息,降低了数据传输的可靠性。
为解决上述问题,本申请实施例提供一种数据传输方法,该方法用于保障为相同的下行双播数据包分配相同的PDCP SN,为不同的下行双播数据包分配不同的PDCP SN,从而在源接入网设备或目标接入网设备发生丢包的情况下,终端设备在去重时,不会丢弃未曾发生重复接收的数据包,从而终端设备不会遗漏来自接入网设备的信息,避免了切换过 程中数据的丢失或中断,提高了数据传输的可靠性。
参考图3(a),为本申请实施例提供的一种数据传输方法示意图,该方法包括以下步骤:
步骤301a,UPF向接入网设备第一下行双播数据包,第一下行双播数据包携带第一数据和第一序号。相应地,接入网设备收到该第一下行双播数据包。
步骤302a,接入网设备确定第一序号对应的第一PDCP序号。
步骤303a,接入网设备向终端设备发送第二下行双播数据包,第二下行双播数据包携带第一数据和第一PDCP序号。相应地,终端设备收到该第二下行双播数据包。
其中,上述接入网设备既可以是源接入网设备,也可以是目标接入网设备,也即UPF向源接入网设备和目标接入网设备发送相同的下行双播数据包。
基于上述方案,由UPF为下行数据双播数据包统一分配序号,然后源接入网设备和目标接入网设备将UPF分配的序号映射为PDCP序号,如此可以保证源接入网设备和目标接入网设备为相同的下行数据双播数据包分配相同的PDCP序号,进而避免终端设备在去重时丢弃未曾发生重复接收的数据包,从而终端设备不会遗漏来自接入网设备的信息,避免了切换过程中数据的丢失或中断,提高了数据传输的可靠性。
作为一种实现方法,UPF为下行双播数据包统一分配的是N3序号。也即,上述第一下行双播数据包携带的第一序号是N3序号。
作为一种实现方法,上述步骤302a中,接入网设备确定第一序号对应的第一PDCP序号的方法,比如可以是:接入网设备根据UPF分配的序号与接入网设备需要分配的PDCP序号之间的映射关系,确定第一序号对应的第一PDCP序号。再比如还可以是:接入网设备根据UPF分配的序号与接入网设备需要分配的PDCP计数(COUNT)值之间的映射关系,确定第一序号对应的第一PDCP COUNT值,然后确定第一PDCP COUNT值对应的第一PDCP序号。其中,根据一个PDCP COUNT值可以确定一个PDCP序号。
其中,PDCP COUNT值唯一标识一个PDCP服务数据单元(service data unit,SDU)。PDCP COUNT值由超帧号(Hyper Frame Number,HFN)和PDCP SN组成。可选的,HNF的长度等于32减去PDCP SN的长度。
参考图3(b),为本申请实施例提供的一种数据传输方法示意图,该方法是在上述步骤301a之前执行的,该方法由源接入网设备确定UPF分配的序号与源接入网设备需要分配的PDCP序号(或PDCP COUNT值)之间的映射关系,然后将用于指示该映射关系的指示信息发送给目标接入网设备。
该方法包括以下步骤:
步骤301b,UPF向源接入网设备发送第三下行双播数据包,第三下行双播数据包携带第二数据和第二序号。相应地,源接入网设备收到该第三下行双播数据包。
步骤302b,UPF向目标接入网设备发送上述第三下行双播数据包。相应地,目标接入网设备收到该第三下行双播数据包。
其中,第三下行双播数据包是UPF向源接入网设备和目标接入网设备发送的前N个下行双播数据包中的一个下行双播数据包,其中,N为正整数。比如,可以是UPF向源接入网设备和目标接入网设备发送的第一个下行双播数据包或第二个下行双播数据包等。
步骤303b,源接入网设备根据第二序号和第三下行双播数据包对应的第二PDCP序号,确定映射关系,该映射关系可以用于确定上述第一序号对应的上述第一PDCP序号。
其中,源接入网设备可以从第三下行双播数据包中获取到第二序号,以及根据第三下行双播数据包之前的一个下行数据包的PDCP序号确定该第三下行双播数据包对应的第二PDCP序号,进而源接入网设备可以根据第二序号和第二PDCP序号,确定上述映射关系。
其中,上述第一序号和第二序号都是由UPF分配的,一种可能的方法中,第一序号和第二序号都是N3序号。下面以第一序号和第二序号都是N3序号为例,来说明上述映射关系的确定方法。
需要说明的是,对于N3序号的初始编号可以是预先约定的,或者还可以是动态配置的。例如,可以由SMF或UPF向源接入网设备指示下行N3序号的初始值。
示例一,第三下行双播数据包是UPF向源接入网设备和目标接入网设备发送的第一个下行双播数据包,该第三下行双播数据包携带的N3序号是1,源接入网设备为第三下行双播数据包之前的一个下行数据包(该下行数据包是单播给源接入网设备的数据包)分配的PDCP序号是100,则源接入网设备确定为该第三下行双播数据包分配的PDCP序号是101,从而源接入网设备确定UPF分配的N3序号与源接入网设备需要分配的PDCP序号之间的映射关系是:N3序号为1对应PDCP序号为101。
示例二,第三下行双播数据包是UPF向源接入网设备和目标接入网设备发送的第二个下行双播数据包,该第三下行双播数据包携带的N3序号是2,并且UPF向源接入网设备发送的第一个下行双播数据包发生丢包,源接入网设备并没有收到第一个下行双播数据包,则源接入网设备可以根据预先配置的规则,比如预先约定UPF是从N3序号1开始编号,则源接入网设备可以获知UPF向源接入网设备发送的第一个下行双播数据包发生丢包。另一方面,源接入网设备为第三下行双播数据包之前的一个下行数据包(该下行数据包是单播给源接入网设备的数据包)分配的PDCP序号是100,则源接入网设备确定为该第三下行双播数据包分配的PDCP序号是102,从而源接入网设备确定UPF分配的N3序号与源接入网设备需要分配的PDCP序号之间的映射关系是:N3序号为2对应PDCP序号为102。需要说明的是,这里之所以是PDCP序号为102,而不是PDCP序号为101,是因为:源接入网设备识别到在第三下行双播数据包之前丢失一个下行双播数据包,因此需要跳过一个PDCP序号。
需要说明的是,作为另一种实现方法,该步骤303b也可以替换为:源接入网设备根据第二序号和第三下行双播数据包对应的第二PDCP COUNT值,确定映射关系,该映射关系用于指示UPF分配的序号与源接入网设备需要分配的PDCP COUNT值之间的映射关系,其中,一个PDCP COUNT值可以确定一个PDCP序号。
步骤304b,源接入网设备向目标接入网设备发送指示信息,该指示信息用于指示上述映射关系。相应地,目标接入网设备收到来自源接入网设备的该指示信息。
作为一种实现方法,该指示信息携带第二序号和第二序号对应的第二PDCP序号。比如,在上述第一个示例中,该指示信息携带1:101。再比如,在上述第二个示例中,该指示信息携带2:102。
作为另一种实现方法,该指示信息携带第二序号与第二PDCP序号之间的差值。比如,在上述示例中,该指示信息携带100(即101与1的差值,或102与2的差值)。
作为另一种实现方法,该指示信息携带第二序号和第二序号对应的第二PDCP COUNT值,第二PDCP COUNT值与第二PDCP序号对应。
作为另一种实现方法,该指示信息携带第二序号与第二PDCP COUNT值之间的差值, 第二PDCP COUNT值与第二PDCP序号对应。
目标接入网设备根据该指示信息,可以获知UPF分配的序号与目标接入网设备需要分配的PDCP COUNT值(或PDCP序号)之间的映射关系。
步骤305b,源接入网设备向终端设备发送第四下行双播数据包,该第四下行双播数据包携带第二数据和第二PDCP序号。相应地,终端设备收到该第四下行双播数据包。
步骤306b,目标接入网设备向终端设备发送上述第四下行双播数据包。相应地,终端设备收到该第四下行双播数据包。
其中,目标接入网设备是根据上述映射关系和第三下行双播数据包中的第二序号,确定第四下行双播数据包携带的第二PDCP序号。
需要说明的是,上述步骤302b与上述步骤304b之前没有严格的先后顺序限制。其中,当目标接入网设备先从UPF收到第三下行双播数据包,后从源接入网设备收到上述指示信息,则目标接入网设备需要缓存第三下行双播数据包,待收到指示信息后,再根据指示信息所指示的映射关系,确定第三下行双播数据包中的第二序号对应的第二PDCP序号,然后目标接入网设备再向终端设备发送第四下行双播数据包。
基于上述方案,源接入网设备可以准确确定UPF分配的序号与源接入网设备需要分配的PDCP COUNT值(或PDCP序号)之间的映射关系,进而通过指示信息向目标接入网设备指示该映射关系,从而目标接入网设备可以确定UPF分配的序号与目标接入网设备需要分配的PDCP COUNT值(或PDCP序号)之间的映射关系。从而,后续源接入网设备和目标接入网设备可以基于该映射关系,准确确定从UPF收到的下行双播数据包中的序号对应的PDCP序号。
参考图3(c),为本申请实施例提供的一种数据传输方法示意图,该方法是在上述步骤301b之前执行的,该方法用于实现为UPF配置请求双播的QoS流组的信息。
该方法包括以下步骤:
步骤301c,源接入网设备向目标接入网设备发送第一请求,该第一请求携带请求双播的QoS流组的信息。相应地,目标接入网设备收到该第一请求。
该第一请求可以是切换请求消息。
该请求双播的QoS流组包括一个或多个QoS流组,每个QoS流组关联一个数据无线承载(data radio bearer,DRB)。也就是说,一个QoS流组中的所有QoS流映射到同一个数据无线承载,不同的QoS流组的QoS流映射到不同的数据无线承载。一种指示请求双播的QoS流组的信息的方式可以是:每个请求双播的QoS流组的信息可包含QoS流组标识,QoS流组标识关联的一个或多个QoS流标识。
例如,某个会话对应3个DRB,每个DRB内包含由一个或多个QoS流组成的一个QoS流组。因此,该第一请求可以携带3个QoS流组的信息,每个QoS流组的信息对应1个DRB。或者,该第一请求可以携带2个QoS流组的信息,每个QoS流组的信息对应1个DRB。或者,该第一请求可以携带1个QoS流组的信息,该QoS流组的信息对应1个DRB。
步骤302c,目标接入网设备根据请求双播的QoS流组的信息,确定接受双播的QoS流组的信息。
其中,接受双播的QoS流组是请求双播的QoS流组的部分或全部。目标接入网设备 可以基于以下方法确定接受双播的QoS流组的信息:比如,目标接入网设备将请求双播的QoS流组中包含有高QoS优先级(如,低时延和高可靠)的Qos流的QoS流组,确定为接受双播的QoS流组。作为一个示例,当目标接入网设备中的目标小区(即终端设备接入的小区)的空口资源有限时,目标接入网设备将请求双播的QoS流组中包含有高QoS优先级(如,低时延和高可靠)的Qos流的QoS流组,确定为接受双播的QoS流组。
作为一种实现方法,针对请求双播的QoS流组,目标接入网设备或者是对该QoS流组内的全部QoS流接受双播,或者是对该QoS流组内的全部QoS流拒绝双播。例如,请求双播的QoS流组包括QoS流组1、QoS流组2和QoS流组3,则接受双播的QoS流组可以是QoS流组1、QoS流组2和QoS流组3中的一个或多个QoS流组。
作为另一种实现方法,针对请求双播的QoS流组,目标接入网设备可以是对QoS流组内的部分QoS流接受双播,另一部分QoS流拒绝双播。例如,请求双播的QoS流组包括QoS流组1、QoS流组2和QoS流组3,则接受双播的QoS流组可以是QoS流组1、QoS流组2和QoS流组3中的部分或全部QoS流。示例性地,接受双播的QoS流组可以是QoS流组1中的全部QoS流和QoS流组2中的部分QoS流。
步骤303c,目标接入网设备向源接入网设备发送第一响应,第一响应携带接受双播的QoS流组的信息。相应地,源接入网设备收到该第一响应。
其中,该第一响应可以是切换确认消息。
可选的,第一响应可以指示拒绝双播的QoS流组的信息,进一步还可以指示拒绝接收双播的原因。
可选的,若源接入网设备在第一响应收到目标接入网设备发送的拒绝双播的QoS流组的信息,则当源接入网设备从UPF收到拒绝双播QoS流组内的QoS流的数据时,源接入网设备丢弃该数据,并且也不给该数据分配PDCP SN。
步骤304c,目标接入网设备向SMF发送接受双播的QoS流组的信息。相应地,SMF收到该接受双播的QoS流组的信息。
比如,目标接入网设备可以向AMF发送接受双播的QoS流组的信息,然后AMF向SMF发送接受双播的QoS流组的信息。
可选的,目标接入网设备还向SMF指示拒绝双播的QoS流组的信息,进一步还可以指示拒绝接收双播的原因。
步骤305c,SMF向UPF发送配置信息,配置信息携带接受双播的QoS流组的信息。相应地,UPF收到该配置信息。
可选的,SMF还向UPF指示拒绝双播的QoS流组的信息,进一步还可以指示拒绝接收双播的原因。从而,UPF停止发送拒绝双播的QoS流组的QoS流。
需要说明的是,上述为UPF配置接受双播的QoS流组的信息的方法,仅是一种可选的实施方式,在实际应用中,还可以有其它配置方式,比如还可以是通过网管设备为UPF配置接受双播的QoS流组的信息。
基于上述方案,可以实现为UPF配置接受双播的QoS流组的信息,后续UPF可以依次为接受双播的QoS流组中的QoS流的下行数据包依序分配N3序号。
作为一种可替代的实现方法,上述步骤304c的操作也可以是由源接入网设备执行。比如在步骤303c之后,由源接入网设备通过AMF向SMF发送接受双播的QoS流组的信息。 此时,目标接入网设备不需要执行上述步骤304c。
作为一种实现方法,在上述步骤305c之后,UPF向SMF发送配置响应,用于指示配置成功,然后SMF向AMF发送配置响应,用于指示配置成功,AMF向目标接入网设备发送配置响应,用于指示配置成功。接着目标接入网设备执行上述步骤303c。也即,目标接入网设备是在从AMF收到配置响应之后,才向源接入网设备发送第一响应,该第一响应携带接受双播的QoS流组的信息。
参考图3(d),为本申请实施例提供的一种数据传输方法示意图,该方法是在上述步骤301b之前执行的,该方法用于实现为UPF配置请求双播的QoS流组的信息。
该方法包括以下步骤:
步骤301d,源接入网设备向AMF发送第一请求,该第一请求携带请求双播的QoS流组的信息。相应地,AMF收到该第一请求。
该第一请求可以是切换请求消息。
该请求双播的QoS流组的信息的具体描述可以参考前述描述,不再赘述。
步骤302d,AMF向目标接入网设备发送切换请求消息。相应地,目标接入网设备收到该切换请求消息。
该切换请求消息携带请求双播的QoS流组的信息。
步骤303d,目标接入网设备根据请求双播的QoS流组的信息,确定接受双播的QoS流组的信息。
其中,接受双播的QoS流组是请求双播的QoS流组的部分或全部。目标接入网设备确定接受双播的QoS流组的信息的方法可以参考前述描述,不再赘述。
步骤304d,目标接入网设备向AMF发送接受双播的QoS流组的信息。相应地,AMF收到该接受双播的QoS流组的信息。
步骤305d,AMF向源接入网设备发送第一响应,该第一响应携带接受双播的QoS流组的信息。相应地,源接入网设备收到该第一响应。
其中,该第一响应可以是切换命令。
可选的,第一响应可以指示拒绝双播的QoS流组的信息,进一步还可以指示拒绝接收双播的原因。
步骤306d,AMF向SMF发送接受双播的QoS流组的信息。相应地,SMF收到该接受双播的QoS流组的信息。
可选的,AMF还向SMF指示拒绝双播的QoS流组的信息,进一步还可以指示拒绝接收双播的原因。
步骤307d,SMF向UPF发送配置信息,配置信息携带接受双播的QoS流组的信息。相应地,UPF收到该配置信息。
可选的,SMF还向UPF指示拒绝双播的QoS流组的信息,进一步还可以指示拒绝接收双播的原因。从而,UPF停止发送拒绝双播的QoS流组的QoS流。
需要说明的是,上述为UPF配置接受双播的QoS流组的信息的方法,仅是一种可选的实施方式,在实际应用中,还可以有其它配置方式,比如还可以是通过网管设备为UPF配置接受双播的QoS流组的信息。
基于上述方案,可以实现为UPF配置接受双播的QoS流组的信息,后续UPF可以依次为接受双播的QoS流组中的QoS流的下行数据包依序分配N3序号。
作为一种可替代的实现方法,上述步骤304d的操作也可以是由源接入网设备执行。比如在步骤305d之后,由源接入网设备向AMF发送接受双播的QoS流组的信息,然后AMF在步骤306d中向SMF发送接受双播的QoS流组的信息。此时,目标接入网设备不需要执行上述步骤304d。
作为一种实现方法,在上述步骤307d之后,UPF向SMF发送配置响应,用于指示配置成功,然后SMF向AMF发送配置响应,用于指示配置成功。接着AMF执行上述步骤305d。也即,AMF是在从SMF收到配置响应之后,才向源接入网设备发送第一响应,该第一响应携带接受双播的QoS流组的信息。
参考图3(e),为本申请实施例提供的一种数据传输方法示意图,该方法是在为UPF配置接受双播的QoS流组的信息之后,UPF发送下行双播数据包的过程。
该方法包括以下步骤:
步骤301e,UPF接收配置信息,该配置信息携带接受双播的QoS流组的信息,该接受双播的QoS流组包括一个或多个QoS流组,第一QoS流组是接受双播的QoS流组中的任意一个QoS流组。
比如,可以通过上述图3(c)或图3(d)对应的实施例,实现为UPF配置接受双播的QoS流组的信息。
可选的,接受双播的QoS流组中的每一个QoS流组中的QoS流关联同一个数据无线承载,不同的QoS流组中的QoS流关联不同的数据无线承载。
步骤302e,UPF依次为第一QoS流组的下行双播数据包分配N3序号。
可选的,N3序号携带于第一QoS流组的下行双播数据包中的下行PDU会话信息内。
针对接受双播的QoS流组中的每个QoS流组,UPF在发送该QoS流组内的QoS流的数据包时,将统一按序分配N3序列号和QoS流的数据包一同发送。比如,QoS流组1里有QoS流1,QoS流2,QoS流3,UPF将这3个QoS流上的数据按序分配N3序列号(如1,2,…)。QoS流组2有QoS流4,QoS流5,UPF将这2个QoS流上的数据按序分配N3序列号(如1,2,…)。
后续,UPF向源接入网设备和目标接入网设备发送第一QoS流组的下行双播数据包。
需要说明的是,前述实施例中的第一下行双播数据包和第三下行双播数据包可以是该接受双播的QoS流组中的某个QoS流组的QoS流的数据包。
基于上述方案,可以实现为UPF配置接受双播的QoS流组的信息,后续UPF可以依次为接受双播的QoS流组中的QoS流的下行数据包依序分配N3序号。
下面结合一个具体示例,对上述方案进行说明。参考图4,为数据包发送过程示意图。该图4所示的示例是图2所示的示例的解决方案。
参考图4,UPF在收到接受双播的QoS流组的信息后,针对每个QoS流组的下行数据分配连续N3序号,将N3序号携带在下行PDU会话信息中。UPF向源接入网设备和目标 接入网设备发送下行双播数据包,参考图4,UPF发送下行双播数据包1,下行双播数据包2,下行双播数据包3,分别携带N3序号为:1,2,3。假设源接入网设备丢失了下行双播数据包3,目标接入网设备丢失了下行双播数据包2,则源接入网设备首先根据收到的下行双播数据包1,确定N3序号与PDCP SN之间的映射关系为:N3序号为1对应PDCP序号为101,则源接入网设备将指示信息(比如可以是1:101,或者是100(即101与1的差值))发送给目标接入网设备。从而,源接入网设备可以为收到的下行双播数据包1和下行双播数据包2分别分配PDCP SN 101,PDCP SN 102,目标接入网设备为收到的下行双播数据包1和下行双播数据包3分别分配PDCP SN 101,PDCP SN 103。终端设备分别从源接入网设备和目标接入网设备收到下行双播数据包后,根据下行双播数据包携带的PDCP SN,认为从源接入网设备收到的下行双播数据包1与从目标接入网设备收到的下行双播数据包1是相同的下行双播数据包,因而执行去重操作,得到下行双播数据包1,下行双播数据包2和下行双播数据包3,实现正确接收下行数据包,避免终端设备在去重时丢弃未曾发生重复接收的数据包,从而终端设备不会遗漏来自接入网设备的信息,避免了切换过程中数据的丢失或中断,提高了数据传输的可靠性。
下面结合具体实施方式,对上述方案进行说明。
本申请实施例涉及的切换流程可以包括但不限于基于N2的切换和基于Xn的切换。其中,Xn接口为两个接入网设备之间的接口,N2接口为接入网设备与AMF之间的接口。本申请实施例适用的场景除了切换场景外,也可以是添加辅接入网设备,进而通过两个双接入网设备进行双路传输的场景。
参考图5,为本申请实施例提供的一种数据传输方法示意图。该方案是基于N2切换过程中的下行双播数据包的发送方法。
该方法包括以下步骤:
步骤501,终端设备向源接入网设备发送测量报告。相应地,源接入网设备收到测量报告。
终端设备确定满足无线信号的测量报告的上报事件,则向源接入网设备发送测量报告。比如,当终端设备确定服务小区质量低于设定的门限阈值,则向源接入网设备发送测量报告。再比如,当终端设备确定邻区质量高于设定的门限阈值,则向源接入网设备发送测量报告。
步骤502,源接入网设备向AMF发送切换要求。相应地,AMF收到切换要求。
作为一种实现方法,该步骤502中,源接入网设备向AMF发送初始化上下文建立响应(INITIAL CONTEXT SETUP RESPONSE)消息,该消息中携带上述切换要求。
作为另一种实现方法,该步骤502中,源接入网设备向AMF发送UE上下文修改响应(UE CONTEXT MODIFICATION RESPONSE)消息,该消息中携带上述切换要求。
步骤503,AMF向目标接入网设备发送切换请求消息。相应地,目标接入网设备收到该切换请求消息。
该切换请求消息携带请求双播的QoS流组的信息。
其中,请求双播的QoS流组的信息的具体描述,可以参考前述描述,不再赘述。
步骤504,目标接入网设备向AMF发送切换确认消息。相应地,AMF收到切换确认 消息。
该切换确认消息携带接受双播的QoS流组的信息,该接受双播的QoS流组中的QoS流是上述请求双播的QoS流组中的QoS流中的部分或全部QoS流组。
可选的,切换确认消息还可以指示拒绝双播的QoS流的信息,进一步还可以指示拒绝接收双播的原因。
步骤505,目标接入网设备向AMF发送双播请求消息。相应地,AMF收到该双播请求消息。
该双播请求消息携带接受双播的QoS流组的信息和目标接入网设备的下行隧道地址信息。该下行隧道地址为目标接入网设备上的用于接收下行双播数据包的地址。
可选的,该双播请求消息还携带会话的标识,该会话是上述接受双播的QoS流组对应的会话。
步骤506,AMF经由SMF向UPF配置接受双播的QoS流组的信息。
比如,AMF将源接入网设备的信息(比如包括目标接入网设备的下行隧道地址信息)提供给SMF,SMF给UPF下发转发规则,指示UPF开始发送下行双播数据包。
可选的,UPF接受配置后,向SMF发送配置响应,SMF向AMF发送配置响应。
步骤507,AMF向源接入网设备发送切换命令。相应地,源接入网设备收到该切换命令。
该切换命令携带接受双播的QoS流组的信息。
步骤508,源接入网设备向终端设备发送切换消息。相应地,终端设备收到该切换消息。
步骤509,源接入网设备向目标接入网设备发送指示信息。相应地,目标接入网设备收到该指示信息。
该指示信息用于指示N3序号与PDCP SN之间的映射关系。
比如,在上述步骤506之后,UPF开始向源接入网设备和目标接入网设备同时发送下行双播数据包,该下行双播数据包中携带UPF分配的N3序号,比如UPF可以从0或1开始对下行数据包进行编号。
一种下行双播数据包的发送方式为:UPF将数据部分和N3序号携带在一个通用无线分组业务(general packet radio service,GPRS)隧道协议(GPRS tunneling protocol,GTP)(GTP-U)的不同字段中一起发送给接入网设备,比如数据部分放在GTP-U的负荷部分,N3序号放在GTP-U的子头。可选的,N3序号携带在UPF向接入网设备发送的下行PDU会话信息的数据帧中。
需要说明,N3序号不同于现有技术中的GTP-U头的GTP序号,N3序号不同于UPF依次为PDU会话中所有QoS流的数据分配的GTP序号,N3序号也不同于现有GTP-U头中只为某单个QoS流的数据依次分配的N3序号。需要说明的是,UPF可以在第一个下行双播数据包或最初的设定数量的下行双播数据包中携带标记信息,该标记信息用于指示发送的是双播数据包。或者,UPF在发送首个下行双播数据包前,连续发送一个或多个结束UPF发送单播包的指示,也就是发送一个或多个用于指示UPF开始发送双播包的指示,告知源接入网设备:UPF将要开始发送双播数据包。
源接入网设备收到下行双播数据包(可以是第一个下行双播数据包或第二个下行双播数据包等等,比如可以通过下行双播数据包中携带的上述标记信息进行识别)后,获取该 下行双播数据包携带的N3序号,然后根据该下行双播数据包对应的PDCP SN和该N3序号,确定N3序号与PDCP SN之间的映射关系。比如,源接入网设备收到第一个下行双播数据包,该下行双播数据包携带N3序号为1,假设源接入网设备已经使用或分配的PDCP SN为100,那么该下行双播数据包对应的PDCP SN为101,则确定N3序号与PDCP SN之间的映射关系为:N3序号为1对应PDCP序号为101。后续源接入网设备收到其它下行双播数据包,则可以根据下行双播数据包携带的N3序号,确定该下行双播数据包对应的PDCP SN。比如,后续收到携带N3序号为100的下行双播数据包,则源接入网设备在下行双播数据包中新增PDCP SN 200。
目标接入网设备收到该指示信息后,可以根据该指示信息所指示的N3序号与PDCP SN之间的映射关系,在从UPF收到的下行双播数据包中新增PDCP SN。比如,目标接入网设备收到携带N3序号为100的下行双播数据包,则目标接入网设备根据该指示信息所指示的N3序号与PDCP SN之间的映射关系,在下行双播数据包中新增PDCP SN 200。一种可能的实现方式为:目标接入网设备从UPF接收到下行双播数据包(例如是GTP-U数据包,目标接入网设备从GTP-U数据包中提取IP包,作为PDCP SDU,然后加上PDCP SN生成PDCP PDU,进而通过PDCP以下的协议层发送给终端设备。)
需要说明的是,若目标接入网设备在接收到该指示信息之前,从UPF收到下行双播数据包,则目标接入网设备可以先缓存这些下行双播数据包,然后在收到该指示信息,根据该指示信息为缓存的下行双播数据包确定PDCP SN。
作为一种实现方法,该指示信息携带N3序号与PDCP SN之间的映射关系。作为另一种实现方法,该指示信息携带N3序号与PDCP SN之间的差值,或者携带PDCP SN与N3序号之间的差值。可以理解为,该指示信息用于指示N3序号和该N3序号对应的PDCP SN。
步骤510,终端设备向目标接入网设备发送切换完成消息。相应地,目标接入网设备收到该切换完成消息。
终端设备向目标接入网设备发送切换完成消息之后,可以向目标接入网设备发送PDCP状态报告,以及终端设备可以向目标接入网设备发送上行数据包。
步骤511,目标接入网设备向AMF发送路径切换请求消息。相应地,AMF收到该路径切换请求消息。
可选的,目标接入网设备可在路径切换请求消息携带停止下行双播的指示,经由AMF通知到SMF。
步骤512,AMF经由SMF通知UPF路径切换,UPF停止发送下行双播报文。
可选的,AMF经由SMF通知UPF停止下行双播。
步骤513,AMF向目标接入网设备发送路径切换响应消息。相应地,目标接入网设备收到该路径切换响应消息。
基于上述方案,由UPF为接受双播的QoS流的下行双播数据包统一分配N3序号,并将N3序号携带在下行双播数据包中发送至源接入网设备和目标接入网设备。后续,源接入网设备和目标接入网设备可以基于N3序号与PDCP SN之间的映射关系,确定下行双播数据包对应的PDCP SN,并在下行双播数据包中新增N3序号。由于是源接入网设备与目标接入网设备基于相同的映射关系确定收到的下行双播数据包对应的PDCP SN,因此对于同一个下行双播数据包,将会确定相同的PDCP SN,从而避免出现丢包时终端设备丢弃未曾发生重复接收的数据包,从而终端设备不会遗漏来自接入网设备的信息,避免了切换过 程中数据的丢失或中断,提高了数据传输的可靠性。
在上述方案中,源接入网设备在上述步骤509中,源接入网设备通过源接入网设备与目标接入网设备之间的Xn接口,向目标接入网设备发送上述指示信息。作为上述步骤509的一种可替换的实现方法,源接入网设备可以向终端设备发送上述指示信息,比如源接入网设备通过上述步骤508的切换消息携带上述指示信息,然后终端设备向目标接入网设备发送上述指示信息,比如终端设备可以通过上述步骤510的切换完成消息发送上述指示信息。
在上述方案中,步骤505中携带的信息也可以携带于步骤504中,该情形下,则不需要执行上述步骤505。
上述图5对应的实施例中,是由目标接入网设备根据请求双播的QoS流组的信息,确定接受双播的QoS流组的信息。作为一种可替代的实现方法,也可以由AMF请求双播的QoS流组的信息,确定接受双播的QoS流组的信息,然后在上述步骤503中携带接受双播的QoS流组的信息。如此,上述步骤504就不需要携带接受双播的QoS流组的信息。
参考图6,为本申请实施例提供的一种数据传输方法示意图。该方案是基于Xn切换过程中的下行双播数据包的发送方法。
该方法包括以下步骤:
步骤601,终端设备向源接入网设备发送测量报告。相应地,源接入网设备收到测量报告。
终端设备确定满足无线信号的测量报告的上报事件,则向源接入网设备发送测量报告。比如,当终端设备确定服务小区质量低于设定的门限阈值,则向源接入网设备发送测量报告。再比如,当终端设备确定邻区质量高于设定的门限阈值,则向源接入网设备发送测量报告。
步骤602,源接入网设备向目标接入网设备发送切换请求消息。相应地,目标接入网设备收到切换请求消息。
该切换请求消息携带请求双播的QoS流组的信息,该请求双播的QoS流组包括一个或多个QoS流组,每个QoS流组关联一个数据无线承载。
该请求双播的QoS流组的信息的具体描述可以参考前述描述,不再赘述。
步骤603,目标接入网设备确定接受双播的QoS流组。
目标接入网设备根据请求双播的QoS流组的信息,确定接受双播的QoS流组。
该接受双播的QoS流组的信息的具体描述可以参考前述描述,不再赘述。
步骤604,目标接入网设备向AMF发送双播请求消息。相应地,AMF收到该双播请求消息。
该双播请求消息携带接受双播的QoS流组的信息和目标接入网设备的下行隧道地址信息。该下行隧道地址为目标接入网设备上的用于接收下行双播数据包的地址。
可选的,该双播请求消息还携带会话的标识,该会话是上述接受双播的QoS流组对应的会话。
步骤605,AMF经由SMF向UPF配置接受双播的QoS流组的信息。
比如,AMF将源接入网设备的信息(比如包括目标接入网设备的下行隧道地址信息) 提供给SMF,SMF给UPF下发转发规则,指示UPF开始发送下行双播数据包。
后续,UPF针对该接受双播的QoS流组的信息所指示的QoS流,统一分配N3序号。比如,针对接受双播的QoS流组中的每个QoS流组,UPF在发送该QoS流组内的QoS流的数据包时,将行统一按序分配N3序列号携带于QoS流的数据包中进行发送。
步骤606,AMF向目标接入网设备发送双播确认消息。相应地,目标接入网设备收到该双播确认消息。
该双播确认消息携带接受双播的QoS流组的信息。
步骤607,目标接入网设备向源接入网设备发送切换确认消息。相应地,源接入网设备收到该切换确认消息。
该切换确认消息携带接受双播的QoS流组的信息。
步骤608至步骤613,同上述步骤508至步骤513,不再赘述。
基于上述方案,由UPF为接受双播的QoS流的下行双播数据包统一分配N3序号,并将N3序号携带在下行双播数据包中发送至源接入网设备和目标接入网设备。后续,源接入网设备和目标接入网设备可以基于N3序号与PDCP SN之间的映射关系,确定下行双播数据包对应的PDCP SN,并在下行双播数据包中新增N3序号。由于是源接入网设备与目标接入网设备基于相同的映射关系确定收到的下行双播数据包对应的PDCP SN,因此对于同一个下行双播数据包,将会确定相同的PDCP SN,从而避免出现丢包时终端设备丢弃未曾发生重复接收的数据包,从而终端设备不会遗漏来自接入网设备的信息,避免了切换过程中数据的丢失或中断,提高了数据传输的可靠性。
在上述方案中,源接入网设备在上述步骤609中,源接入网设备通过源接入网设备与目标接入网设备之间的Xn接口,向目标接入网设备发送上述指示信息。作为上述步骤609的一种可替换的实现方法,源接入网设备可以向终端设备发送上述指示信息,比如源接入网设备通过上述步骤608的切换消息携带上述指示信息,然后终端设备向目标接入网设备发送上述指示信息,比如终端设备可以通过上述步骤610的切换完成消息发送上述指示信息。
上述图6对应的实施例中,是由目标接入网设备根据请求双播的QoS流组的信息,确定接受双播的QoS流组的信息。作为一种可替代的实现方法,也可以由AMF请求双播的QoS流组的信息,确定接受双播的QoS流组的信息。比如不执行上述步骤603,在上述步骤604中携带请求双播的QoS流组的信息,然后AMF根据请求双播的QoS流组的信息,确定接受双播的QoS流组的信息,并通过步骤606将接受双播的QoS流组的信息发送给目标接入网设备。
上述图5或图6对应的实施例中,是在切换过程中向UPF配置接受双播的QoS流组的信息。作为另一种实现方法,也可以是在切换之前向UPF配置接受双播的QoS流组的信息,从而UPF可以在切换之前就开始向源接入网设备和目标接入网设备发送下行双播数据包,使得目标接入网设备可以提早从UPF接收下行数据包,从而当这部分下行数据包不能通过源接入网设备正确发送至终端设备(比如因为即将发生切换,导致终端设备与源接入网设备之间的链路异常)时,还可以通过目标接入网设备发送至终端设备,避免UPF发 送的数据包无法到达终端设备。
作为一种实现方法,第一测量报告对应终端设备检测到的第一事件,第二测量报告对应终端设备检测到的第二事件,该第一事件的触发门限低于第二事件的触发门限。例如,该第一事件的信道质量触发门限低于第二事件的信道质量触发门限。
1)发生切换之前:
当源接入网设备从终端设备收到第一测量报告,则源接入网设备通知SMF对UPF进行双播传输配置。在SMF对UPF进行双播传输配置完成后,UPF可以开始向源接入网设备和目标接入网设备发送下行双播数据包,然后源接入网设备可以确定N3序号与PDCP SN之间的映射关系。该过程类似于图5中的步骤501至步骤506,或者类似于图6中的步骤601至步骤605。
2)发生切换:
当源接入网设备从终端设备收到第二测量报告,则源接入网设备触发现有技术的切换流程,完成终端设备从接入源接入网设备到接入目标接入网设备的切换。
在切换过程中,源接入网设备可以向目标接入网设备发送指示信息,该指示信息用于指示N3序号与PDCP SN之间的映射关系。比如,在基于N2切换的场景中,源接入网设备在发送给AMF的切换要求中携带该指示信息,然后AMF在向目标接入网设备发送的切换请求消息中携带该指示信息。再比如,在基于Xn切换的场景中,源接入网设备在发送给目标接入网设备的切换请求消息中携带该指示信息。
相较于图5和图6对应的实施例,该方案可以实现提前对UPF进行双播配置,并且源接入网设备可以提前将用于指示映射关系的指示信息发送给目标接入网设备,使得目标接入网设备可以更早地确定从UPF收到的下行双播数据包对应的PDCP SN,从而有利于降低向终端设备发送下行双播数据包的时延。
需要说明的是,本申请实施例是以下行传输为例进行说明的,本申请实施例同样也可以应用于上行传输。
参考图7,为本申请实施例提供的一种数据传输方法示意图,该方法包括以下步骤:
步骤701,终端设备向接入网设备发送第一上行双播数据包,其中,第一下上行双播数据包携带第三数据和第三PDCP序号。相应地,接入网设备收到该第一上行双播数据包。
步骤702,接入网设备确定第三PDCP序号对应的第三序号。
该第三序号可以是N3序号或其它预先约定的序号等。
需要说明的是,对于N3序号的初始编号可以是预先约定的,或者还可以是动态配置的。例如,可以由源接入网设备向UPF指示上行N3序号的初始值。
步骤703,接入网设备向UPF发送第二上行双播数据包,第二上行双播数据包携带第三数据和第三序号。相应地,UPF收到该第二上行双播数据包。
其中,上述接入网设备既可以是源接入网设备,也可以是目标接入网设备,也即终端设备向源接入网设备和目标接入网设备发送相同的上行双播数据包。
基于上述方案,由终端设备为上行数据双播数据包统一分配序号,然后源接入网设备和目标接入网设备将终端设备分配的PDCP序号映射为N3序号,如此可以保证源接入网设备和目标接入网设备为相同的上行数据双播数据包分配相同的N3序号,进而避免UPF在去重时丢弃未曾发生重复接收的数据包,从而UPF不会遗漏来自接入网设备的信息,避 免了切换过程中数据的丢失或中断,提高了数据传输的可靠性。
后续,UPF基于N3序号进行去重操作。
对于上行数据传输过程中的PDCP序号与N3序号之间的映射关系的确定方法,与下行数据传输过程中的PDCP序号与N3序号之间的映射关系的确定方法类似,不再赘述。
参考图8,为本申请实施例提供的一种通信装置示意图。该通信装置用于实现上述各实施例中对应接入网设备或用户面网元的各个步骤,如图8所示,该通信装置800包括收发单元810和处理单元820。
在第一个实施例中,该通信装置用于实现上述各实施例中对应接入网设备的各个步骤:
收发单元810,用于接收来自用户面网元的第一下行双播数据包,所述第一下行双播数据包携带第一数据和第一序号;向终端设备发送第二下行双播数据包,所述第二下行双播数据包携带所述第一数据和第一分组数据汇聚协议PDCP序号;处理单元820,用于确定所述第一序号对应的所述第一PDCP序号。
该通信装置所用于执行的其它操作,可以参考前述方法实施例中的相关描述,这里不再赘述。
在第二个实施例中,该通信装置用于实现上述各实施例中对应用户面网元的各个步骤:
收发单元810,用于接收配置信息,所述配置信息携带接受双播的服务质量QoS流组的信息,所述接受双播的QoS流组包括一个或多个QoS流组,第一QoS流组是所述接受双播的QoS流组中的任意一个QoS流组;处理单元820,用于依次为所述第一QoS流组的下行双播数据包分配N3序号。
该通信装置所用于执行的其它操作,可以参考前述方法实施例中的相关描述,这里不再赘述。
可选地,上述通信装置还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元820可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
应理解以上通信装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且通信装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在通信装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由通信装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一通信装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC), 或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当通信装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
参考图9,为本申请实施例提供的一种通信装置示意图,用于实现以上实施例中接入网设备或用户面网元的操作。如图9所示,该通信装置包括:处理器910和接口930,可选地,该通信装置还包括存储器920。接口930用于实现与其他设备进行通信。
以上实施例中接入网设备或用户面网元执行的方法可以通过处理器910调用存储器(可以是接入网设备或用户面网元中的存储器920,也可以是外部存储器)中存储的程序来实现。即,接入网设备或用户面网元可以包括处理器910,该处理器910通过调用存储器中的程序,以执行以上方法实施例中接入网设备或用户面网元执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。接入网设备或用户面网元可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
具体的,图8中的收发单元810和处理单元820的功能/实现过程可以通过图9所示的通信装置900中的处理器910调用存储器920中存储的计算机可执行指令来实现。或者,图8中的处理单元820的功能/实现过程可以通过图9所示的通信装置900中的处理器910调用存储器920中存储的计算机执行指令来实现,图8中的收发单元810的功能/实现过程可以通过图9中所示的通信装置900中的接口930来实现,示例性的,收发单元810的功能/实现过程可以通过处理器调用存储器中的程序指令以驱动接口930来实现。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个或多个示例性的设计中,本申请所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(英文:Digital Versatile Disc,简称:DVD)、软盘和蓝光光盘,磁 盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (35)

  1. 一种数据传输方法,其特征在于,包括:
    接入网设备接收来自用户面网元的第一下行双播数据包,所述第一下行双播数据包携带第一数据和第一序号;
    所述接入网设备确定所述第一序号对应的第一分组数据汇聚协议PDCP序号;
    所述接入网设备向终端设备发送第二下行双播数据包,所述第二下行双播数据包携带所述第一数据和所述第一PDCP序号。
  2. 如权利要求1所述的方法,其特征在于,所述第一序号为N3序号。
  3. 如权利要求1或2所述的方法,其特征在于,所述接入网设备确定所述第一序号对应的第一PDCP序号,包括:
    所述接入网设备确定所述第一序号对应的第一PDCP COUNT值;
    所述接入网设备确定所述第一PDCP COUNT值对应的所述第一PDCP序号。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述接入网设备是源接入网设备;
    所述源接入网设备接收来自用户面网元的第一下行双播数据包之前,还包括:
    所述源接入网设备接收来自所述用户面网元的第三下行双播数据包,所述第三下行双播数据包携带第二数据和第二序号;
    所述源接入网设备根据所述第二序号和所述第三下行双播数据包对应的第二PDCP序号,确定映射关系,所述映射关系用于确定所述第一序号对应的所述第一PDCP序号。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    所述源接入网设备向目标接入网设备发送指示信息,所述指示信息用于指示所述映射关系。
  6. 如权利要求5所述的方法,其特征在于,
    所述指示信息携带所述第二序号和所述第二序号对应的所述第二PDCP序号;或者,
    所述指示信息携带所述第二序号与所述第二PDCP序号之间的差值;或者,
    所述指示信息携带所述第二序号和所述第二序号对应的第二PDCP COUNT值,所述第二PDCP COUNT值与所述第二PDCP序号对应;或者,
    所述指示信息携带所述第二序号与第二PDCP COUNT值之间的差值,所述第二PDCP COUNT值与所述第二PDCP序号对应。
  7. 如权利要求4-6任一所述的方法,其特征在于,还包括:
    所述源接入网设备向第一设备第一请求所述第一请求携带请求双播的服务质量QoS流组的信息,所述第一设备是目标接入网设备或移动性管理网元;
    所述源接入网设备接收来自所述第一设备第一响应,所述第一响应携带接受双播的QoS流组的信息,所述接受双播的QoS流组是所述请求双播的QoS流组的部分或全部。
  8. 如权利要求1-3任一所述的方法,其特征在于,所述接入网设备目标接入网设备;所述方法还包括:
    所述目标接入网设备接收来自源接入网设备的指示信息,所述指示信息用于指示映射关系,所述映射关系用于确定所述第一序号对应的所述第一PDCP序号。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    所述目标接入网设备接收请求双播的QoS流组的信息;
    所述目标接入网设备根据所述请求双播的QoS流组的信息,确定接受双播的QoS流组的信息;
    所述目标接入网设备向会话管理网元发送所述接受双播的QoS流组的信息。
  10. 如权利要求9所述的方法,其特征在于,所述目标接入网设备接收请求双播的QoS流组的信息,包括:
    所述目标接入网设备接收来自源接入网设备的切换请求消息,所述切换请求消息携带所述请求双播的QoS流组的信息;或者,
    所述目标接入网设备接收来自所述移动性管理网元的切换请求消息,所述切换请求消息携带所述请求双播的QoS流组的信息。
  11. 一种数据传输方法,其特征在于,包括:
    用户面网元接收配置信息,所述配置信息携带接受双播的服务质量QoS流组的信息,所述接受双播的QoS流组包括一个或多个QoS流组,第一QoS流组是所述接受双播的QoS流组中的任意一个QoS流组;
    所述用户面网元依次为所述第一QoS流组的下行双播数据包分配N3序号。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    所述用户面网元向源接入网设备和目标接入网设备发送所述第一QoS流组的下行双播数据包。
  13. 如权利要求12所述的方法,其特征在于,
    所述接受双播的QoS流组中的每一个QoS流组中的QoS流关联同一个数据无线承载,不同的QoS流组中的QoS流关联不同的数据无线承载。
  14. 如权利要求13所述的方法,其特征在于,所述N3序号携带于所述第一QoS流组的下行双播数据包中的下行协议数据单元PDU会话信息内。
  15. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自用户面网元的第一下行双播数据包,所述第一下行双播数据包携带第一数据和第一序号;向终端设备发送第二下行双播数据包,所述第二下行双播数据包携带所述第一数据和第一分组数据汇聚协议PDCP序号;
    处理单元,用于确定所述第一序号对应的所述第一PDCP序号。
  16. 如权利要求15所述的装置,其特征在于,所述第一序号为N3序号。
  17. 如权利要求15或16所述的装置,其特征在于,所述处理单元,具体用于:
    确定所述第一序号对应的第一PDCP COUNT值;
    确定所述第一PDCP COUNT值对应的所述第一PDCP序号。
  18. 如权利要求15至17任一项所述的装置,其特征在于,所述收发单元,还用于在接收来自用户面网元的第一下行双播数据包之前,接收来自所述用户面网元的第三下行双播数据包,所述第三下行双播数据包携带第二数据和第二序号;
    所述处理单元,还用于根据所述第二序号和所述第三下行双播数据包对应的第二PDCP序号,确定映射关系,所述映射关系用于确定所述第一序号对应的所述第一PDCP序号。
  19. 如权利要求18所述的装置,其特征在于,所述收发单元,还用于向目标接入网设备发送指示信息,所述指示信息用于指示所述映射关系。
  20. 如权利要求19所述的装置,其特征在于,
    所述指示信息携带所述第二序号和所述第二序号对应的所述第二PDCP序号;或者,
    所述指示信息携带所述第二序号与所述第二PDCP序号之间的差值;或者,
    所述指示信息携带所述第二序号和所述第二序号对应的第二PDCP COUNT值,所述第二PDCP COUNT值与所述第二PDCP序号对应;或者,
    所述指示信息携带所述第二序号与第二PDCP COUNT值之间的差值,所述第二PDCP COUNT值与所述第二PDCP序号对应。
  21. 如权利要求18至20任一项所述的装置,其特征在于,所述收发单元,还用于:
    向第一设备第一请求所述第一请求携带请求双播的服务质量QoS流组的信息,所述第一设备是目标接入网设备或移动性管理网元;
    接收来自所述第一设备第一响应,所述第一响应携带接受双播的QoS流组的信息,所述接受双播的QoS流组是所述请求双播的QoS流组的部分或全部。
  22. 如权利要求15至17任一项所述的装置,其特征在于,所述收发单元,还用于:
    接收来自源接入网设备的指示信息,所述指示信息用于指示映射关系,所述映射关系用于确定所述第一序号对应的所述第一PDCP序号。
  23. 如权利要求22所述的装置,其特征在于,所述收发单元,还用于接收请求双播的QoS流组的信息;向会话管理网元发送接受双播的QoS流组的信息;
    所述处理单元,还用于根据所述请求双播的QoS流组的信息,确定所述接受双播的QoS流组的信息。
  24. 如权利要求23所述的装置,其特征在于,所述收发单元,具体用于:
    接收来自源接入网设备的切换请求消息,所述切换请求消息携带所述请求双播的QoS流组的信息;或者,
    接收来自所述移动性管理网元的切换请求消息,所述切换请求消息携带所述请求双播的QoS流组的信息。
  25. 一种通信装置,其特征在于,包括:
    收发单元,用于接收配置信息,所述配置信息携带接受双播的服务质量QoS流组的信息,所述接受双播的QoS流组包括一个或多个QoS流组,第一QoS流组是所述接受双播的QoS流组中的任意一个QoS流组;
    处理单元,用于依次为所述第一QoS流组的下行双播数据包分配N3序号。
  26. 如权利要求25所述的装置,其特征在于,所述收发单元,还用于向源接入网设备和目标接入网设备发送所述第一QoS流组的下行双播数据包。
  27. 如权利要求26所述的装置,其特征在于,
    所述接受双播的QoS流组中的每一个QoS流组中的QoS流关联同一个数据无线承载,不同的QoS流组中的QoS流关联不同的数据无线承载。
  28. 如权利要求27所述的装置,其特征在于,所述N3序号携带于所述第一QoS流组的下行双播数据包中的下行协议数据单元PDU会话信息内。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至10任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如 权利要求11至14任一项所述的方法。
  31. 一种通信装置,其特征在于,用于执行权利要求1至10任一项所述的方法。
  32. 一种通信装置,其特征在于,用于执行权利要求11至14任一项所述的方法。
  33. 一种通信系统,其特征在于,包括如权利要求15-24、29、31中任一项所述的通信装置,和如权利要求25-28、30、32中任一项所述的通信装置。
  34. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至14任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被运行时,实现如权利要求1至14中任一项所述的方法。
PCT/CN2020/137798 2020-12-18 2020-12-18 数据传输方法、通信装置及通信系统 WO2022126666A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080103916.3A CN116114309A (zh) 2020-12-18 2020-12-18 数据传输方法、通信装置及通信系统
PCT/CN2020/137798 WO2022126666A1 (zh) 2020-12-18 2020-12-18 数据传输方法、通信装置及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137798 WO2022126666A1 (zh) 2020-12-18 2020-12-18 数据传输方法、通信装置及通信系统

Publications (1)

Publication Number Publication Date
WO2022126666A1 true WO2022126666A1 (zh) 2022-06-23

Family

ID=82059844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137798 WO2022126666A1 (zh) 2020-12-18 2020-12-18 数据传输方法、通信装置及通信系统

Country Status (2)

Country Link
CN (1) CN116114309A (zh)
WO (1) WO2022126666A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997220A (zh) * 2006-01-04 2007-07-11 华为技术有限公司 用户设备硬切换中的双播方法
WO2018111029A1 (ko) * 2016-12-15 2018-06-21 엘지전자(주) 무선 통신 시스템에서 핸드오버 수행 방법 및 이를 위한 장치
CN109392004A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法、基站、终端设备和系统
CN109982360A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 通信方法和装置
US20190268815A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated User plane function (upf) duplication based make before break handover
CN110636568A (zh) * 2018-06-25 2019-12-31 华为技术有限公司 通信方法和通信装置
US20200029260A1 (en) * 2018-07-20 2020-01-23 Qualcomm Incorporated Methods and apparatus for handover enhancements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997220A (zh) * 2006-01-04 2007-07-11 华为技术有限公司 用户设备硬切换中的双播方法
WO2018111029A1 (ko) * 2016-12-15 2018-06-21 엘지전자(주) 무선 통신 시스템에서 핸드오버 수행 방법 및 이를 위한 장치
CN109392004A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法、基站、终端设备和系统
CN109982360A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 通信方法和装置
US20190268815A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated User plane function (upf) duplication based make before break handover
CN110636568A (zh) * 2018-06-25 2019-12-31 华为技术有限公司 通信方法和通信装置
US20200029260A1 (en) * 2018-07-20 2020-01-23 Qualcomm Incorporated Methods and apparatus for handover enhancements

Also Published As

Publication number Publication date
CN116114309A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
US11528770B2 (en) Session management method, apparatus, and system
KR102469191B1 (ko) 정보 전송방법 및 장치, 컴퓨터 판독가능 저장 매체
JP5766879B2 (ja) シグナリング無線ベアラを介したショートパケットデータメッセージの送信
US20170238215A1 (en) Mobility management method, apparatus, and system
US11871330B2 (en) Transparent session migration between user plane functions
US10945180B2 (en) Mobility management method, apparatus, and system
US20160338031A1 (en) Cache-based data transmission methods and apparatuses
WO2020001562A1 (zh) 一种通信方法及装置
US10812292B2 (en) Packet processing method and device
WO2021227559A1 (zh) 通信方法、装置及系统
CN114667746A (zh) 无线通信系统中用于psa-upf重定位的装置和方法
WO2021212939A1 (zh) 通信方法、装置及系统
WO2022021971A1 (zh) 通信方法、第一策略控制网元及通信系统
WO2021051420A1 (zh) 一种dns缓存记录的确定方法及装置
JP2021524204A (ja) サービス品質監視方法、及びシステム、並びに装置
KR20210125842A (ko) 무선 통신 시스템에서 브리지 관리 정보를 전달하기 위한 장치 및 방법
WO2022007847A1 (zh) 一种通信方法及装置
WO2022126666A1 (zh) 数据传输方法、通信装置及通信系统
WO2012089032A1 (zh) 一种采用多种接入方式中的数据传输方法和接入设备
WO2022151206A1 (zh) 通信方法和网络设备
WO2021203794A1 (zh) 通信方法、装置及系统
WO2021168713A1 (zh) 通信方法及装置
WO2018228309A1 (zh) 缓存控制方法、网元及控制器
TWI821882B (zh) 丟包率的檢測方法、通信裝置及通信系統
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965679

Country of ref document: EP

Kind code of ref document: A1