WO2022126645A1 - 一种激光发射模组及电子设备 - Google Patents

一种激光发射模组及电子设备 Download PDF

Info

Publication number
WO2022126645A1
WO2022126645A1 PCT/CN2020/137750 CN2020137750W WO2022126645A1 WO 2022126645 A1 WO2022126645 A1 WO 2022126645A1 CN 2020137750 W CN2020137750 W CN 2020137750W WO 2022126645 A1 WO2022126645 A1 WO 2022126645A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
diffractive optical
connector
emitting module
laser emitting
Prior art date
Application number
PCT/CN2020/137750
Other languages
English (en)
French (fr)
Inventor
侯志明
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/137750 priority Critical patent/WO2022126645A1/zh
Publication of WO2022126645A1 publication Critical patent/WO2022126645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Definitions

  • the present application relates to the technical field of electronic products, and in particular, to a laser emission module and electronic equipment.
  • Time of flight (TOF) camera module is a commonly used depth camera module, which can be used to measure depth of field (depth) or distance information, and can realize three-dimensional imaging or distance detection functions of electronic devices to targets.
  • the laser emitting module generally includes two sub-modules, one of which is a light emitting module, which is used to emit light for measurement towards the target, and the other is a photosensitive module (also called an image sensing module).
  • the modules can be combined into one to form a whole module and then assembled to the terminal, or they can be assembled to the terminal separately.
  • diffractive optical elements (DOE), collimating mirrors, and ceramic bases are arranged in sequence.
  • the diffractive optical elements have positive and negative pins.
  • the pins extend along the height direction of the laser emitting module, so that the diffractive optical element can be electrically connected with the ceramic base.
  • the positive and negative pins of the exhaust hole and the diffractive optical element are located at the opposite ends of the laser emitting module, and at the same time, in order to facilitate the connection between the positive and negative pins and the corresponding areas of the base and avoid other components, the positive and negative The pole pins need to be bent many times, resulting in a large space occupied by the positive and negative pole pins, resulting in a large volume of the laser emitting module.
  • the present application provides a laser emission module and electronic equipment, which are used to reduce the volume of the laser emission module.
  • the application provides a laser emission module, the laser emission module includes:
  • the casing is connected with the base and encloses an installation cavity, and a connecting piece is embedded in the casing;
  • the lens assembly is installed in the installation cavity
  • the light-emitting component is mounted on the base and located in the mounting cavity;
  • the diffractive optical element is located on the side of the lens assembly away from the light-emitting component, and the diffractive optical element is provided with a protection circuit;
  • the connector includes a first connector and a second connector, the positive pole of the protection circuit is electrically connected to the base through the first connector, and the negative pole of the protection circuit is connected to the second connector It is electrically connected to the base, and the electrical connection positions of the first connector and the second connector and the protection circuit are respectively located on the diffractive optical element along the length direction or width direction of the laser emitting module. opposite sides.
  • connection position between the first connection member and the protection circuit and the connection position between the second connection member and the protection circuit is outside the projection range of the lens assembly.
  • one end of the housing away from the diffractive optical element has a recessed portion, and the recessed portion is used to avoid the electrical connection position of the connector and the base.
  • each of the connecting pieces at least includes a first connecting section and a second connecting section, and the first connecting section and the second connecting section are connected to each other and have a preset included angle.
  • first connecting section and the second connecting section are perpendicular to each other.
  • the first connecting segment is located at the same height as the diffractive optical element, and is used for electrical connection with the electrode of the diffractive optical element .
  • the connector further includes a third connector, the third connector is electrically connected to the second connector, and the third connector is used for electrostatic protection.
  • the position of the upper end surface of the third connecting member is higher than that of the first connecting member and the second connecting member.
  • the diffractive optical element is electrically connected to the connecting member through a conductive adhesive.
  • the conductive adhesive is conductive silver glue.
  • the diffractive optical element includes a first surface and a second surface, the first surface is located on a side of the diffractive optical element facing the lens assembly, and the first surface and the second surfaces are located on opposite sides of the diffractive optical element;
  • the first surface is provided with a working circuit
  • the second surface is provided with the protection circuit
  • the protection circuit is a transparent protection circuit.
  • the material of the protection circuit is indium tin oxide.
  • the base is a ceramic material.
  • the laser emitting module further includes a photosensitive element, and the photosensitive element is installed in the mounting cavity for detecting the light intensity of the light-emitting component.
  • the photosensitive element is located on the side of the diffractive optical element facing the light-emitting component, and is used for receiving the reflected light of the diffractive optical element.
  • the present application also provides an electronic device, the electronic device includes the laser emitting module described in any one of the above.
  • the application relates to a laser emitting module and electronic equipment, wherein the laser emitting module includes a base and a housing for enclosing an installation cavity, and the light-emitting component, the lens assembly and the diffractive optical element are along the height direction of the laser emitting module They are arranged in the installation cavity in sequence, the positive pole of the protection circuit of the diffractive optical element is electrically connected to the base through the first connector, and the negative pole is electrically connected to the base through the second connector, and is located along the width or length of the laser emitting module.
  • the electrical connection positions of the first connector and the second connector and the protection circuit are respectively located on opposite sides of the diffractive optical element, and at least part of the connector is embedded in the casing.
  • FIG. 1 is a schematic structural diagram of a laser emission module provided by an embodiment of the application.
  • Fig. 2 is the sectional view along the A-A direction of Fig. 1;
  • FIG. 3 is a cross-sectional view of FIG. 1 along the B-B direction;
  • FIG. 4 is a side view of FIG. 1 .
  • the TOF camera module is a commonly used depth camera module, which can be used to measure the depth of field (depth) or distance information, and can realize the three-dimensional imaging or distance detection function of electronic equipment to the target.
  • the laser emission module usually includes: DOE, collimating mirror, light-emitting component, ceramic substrate, etc.
  • the light-emitting component is usually a Vertical-Cavity Surface-Emitting Laser (VCSEL).
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • the components are stacked one after another.
  • the VCSEL will heat up, and the air inside the laser emitting module will be heated and expanded, resulting in an increase in air pressure.
  • the casing is provided with an exhaust hole to facilitate gas discharge and heat exchange with the outside world. Since the DOE is far away from the ceramic substrate, the positive and negative electrodes of the DOE usually need to be electrically connected to the ceramic substrate through metal pins. In order to avoid other components and extend to the electrical connection position, the metal pins need to pass through several times. Bending, resulting in a larger space occupied, so that the volume of the laser emitting module is larger.
  • the embodiments of the present application provide a laser emitting module and an electronic device, which are used to solve the problem of the large volume of the laser emitting module.
  • an embodiment of the present application provides a laser emission module, wherein the laser emission module includes a base 1 and a casing 2 , and the base 1 and the casing 2 are connected to each other to enclose an installation cavity.
  • the mounting cavity can be used to mount components such as the light-emitting component 4 , the lens assembly 3 and the diffractive optical element 5 .
  • the light-emitting component 4 can be a vertical cavity surface emitting laser (Vertical-Cavity Surface-Emitting Laser, VCSEL), and the lens assembly 3 can be a collimating mirror for correcting the laser beam emitted by the light-emitting component 4 to a suitable angle range
  • the lens assembly 3 can be formed by stacking a plurality of mirrors of the same and/or different structures, and the diffractive optical element 5 is used to copy the beam into multiple laser beams, so as to realize the expansion of the laser lattice, so that the number of lattices can meet the optical path design requirements. .
  • the light-emitting component 4 is installed on the base 1
  • the lens assembly 3 is installed in the installation cavity and is located on the side of the light-emitting component 4 away from the base 1
  • the diffractive optical element 5 is arranged on a side of the lens assembly 3 away from the light-emitting component 4 .
  • the housing 2 can be provided with a light window 23, the light window 23 is communicated with the installation cavity, at least part of the diffractive optical element 5 is located in the light window 23, and the laser beam reproduced by the diffractive optical element 5 propagates to the laser emission mode through the light window 23 outside the group.
  • the casing 2 is provided with a through hole 22, and the through hole 22 is used to balance the internal and external air pressure of the laser emission module and improve the heat dissipation efficiency of the laser emission module.
  • the through hole 22 can be arranged at On the upper surface of the housing 2 and extending along the height direction, the through hole 22 may be located on one side of the light window 23 .
  • the housing 2 is embedded with a connector 21 , and the connector 21 can be made of conductive materials such as metal.
  • the processing of the casing 2 can be carried out by means of injection molding. Such a design can facilitate the processing of the housing 2, and the connecting piece 21 can be embedded in the housing 2 during processing, which is more in line with actual use requirements.
  • the connector 21 may include a first connector 211 and a second connector 212.
  • the diffractive optical element 5 is provided with a protection circuit, and the positive pole of the protection circuit is electrically connected to the base 1 through the first connector 211, and the protection circuit is The negative electrode is electrically connected to the base 1 through the second connector 212 .
  • the positions of the first connector 211 and the second connector 212 for electrical connection with the base 1 are located on opposite sides of the through hole 22 respectively.
  • the connecting piece 21 may have a recess, which is used to avoid the mold during processing, so that the structure of the connecting piece 21 is more reasonable.
  • the electrical connection position of the first connector 211 and the protection circuit and the electrical connection position of the second connector 212 and the protection circuit are located on opposite sides of the diffractive optical element, Specifically, as shown in FIG. 1 , in a specific implementation manner, the connection positions of the first connector 211 and the second connector 212 and the protection circuit are respectively located at the diffractive optical element along the width direction Y of the laser emitting module. 5 on opposite sides.
  • the projection of the lens assembly 3 is a circle, the projection of the diffractive optical element 5 is a rectangle, and the projection of the lens assembly 3 is located in the projection range of the diffractive optical element 5 Therefore, the corner positions of the diffractive optical element 5, ie the positions where the projection of the diffractive optical element 5 does not coincide with the projection of the lens assembly 3, can be used for the connection of the connector 21 to the electrodes of the protection circuit.
  • Such a design can effectively improve the utilization rate of space, thereby making the internal space of the laser emitting module more compact, thereby facilitating the miniaturized design of the laser emitting module.
  • the through hole 22 is arranged on one side of the diffractive optical element 5, as shown in FIG. 1 and FIG. 4,
  • the connection positions of the first connecting member 211 and the second connecting member 212 and the base 1 are located on opposite sides of the through hole 22 .
  • the diameter of the through hole 22 is smaller than the width of the diffractive optical element 5 , therefore, there will be enough space in the width direction Y for arranging the connecting piece 21 , and at least part of the connecting piece 21 can be disposed opposite to the through hole 22 . sides.
  • the space utilization rate of the laser emitting module can be improved, and the location of the connector 21 can be more reasonable.
  • the solution provided in the embodiment of the present application can reduce the thickness of the casing 2 on the side of the diffractive optical element 5 away from the through hole 22, thereby reducing the overall volume of the casing 2, thereby reducing the volume of the laser emitting module , which is conducive to realizing the miniaturized design of the laser emission module, which is more in line with the actual use requirements.
  • Parts of the first connector 211 and the second connector 212 may be located in the light window 23 of the housing 2 so that the connector 21 is connected to the electrode of the protection circuit of the diffractive light optical element. Since the distance between the connecting member 21 and the electrodes of the protection circuit is relatively short, the electrical connection can be realized by the conductive adhesive.
  • the method of using conductive adhesive is more convenient and less difficult in actual operation, which can effectively improve the processing efficiency and is more in line with the actual use requirements.
  • conductive silver glue can be selected as the conductive adhesive.
  • the conductive silver glue has the advantages of fast curing speed, low resistance value, high reliability, long working life and convenient use, which is more in line with the actual use requirements.
  • the area of one end of the housing 2 close to the base 1 is smaller than the area of the base 1 .
  • the housing The projected area of the end of the body 2 close to the base 1 is smaller than the projected area of the base 1 , and is located within the projection range of the base 1 .
  • the positions of the base 1 for electrical connection with the first connecting member 211 and the second connecting member 212 are all located outside the projection range of the end of the casing 2 close to the base 1 .
  • the lens assembly 3 is composed of multiple lenses.
  • the projection of the lens assembly 3 is a circle
  • the projection of the diffractive optical element 5 is a square
  • the projection of the lens assembly 3 is a square.
  • the projected area is within the projected range of the diffractive optical element 5 .
  • the first connector 211 and the second connector 212 can be electrically connected to the diffractive optical element 5 and the position where the base 1 and the lens assembly 3 do not overlap, respectively.
  • the overall structure of the laser emitting module is more compact, which is conducive to realizing the miniaturization of the laser emitting module.
  • the base 1 may have a cuboid structure
  • the structure of the housing 2 may be designed according to the structures of the diffractive optical element 5 and the lens assembly 3 .
  • the structure of the housing 2 may be divided into Two parts, the upper part is approximately square and is used to install the diffractive optical element 5 , and the lower part can be approximately cylindrical or have an arc surface, so as to avoid the corner position of the base 1 so as to facilitate the connection of the connector 21 with the base 1 .
  • the housing 2 has a recessed portion 24 .
  • the recessed portion 24 is located at one end of the housing 2 close to the base 1 and is recessed toward the interior of the housing 2 to avoid the base 1
  • the corner position of the connector 21 is the electrical connection position between the connector 21 and the base 1 .
  • a part of the connector 21 can extend out of the housing 2 and is located in the recess 24 , and the part of the connector 21 is used for electrical connection with the base 1 .
  • the volume of the casing 2 can be reduced, and at the same time, the interference of the casing 2 with the electrical connection position of the connector 21 and the base 1 can be reduced.
  • the part of the connector 21 protruding from the housing 2 can facilitate the electrical connection of the connector 21 and the base 1 during processing, thereby reducing the difficulty of operation.
  • the connection method can be welding or bonding through conductive glue.
  • the connecting member 21 includes at least a first connecting section 214 and a second connecting section 215 , and the first connecting section 214 and the second connecting section 215 are connected to each other and have preset angle.
  • the first connection segment 214 is used for electrical connection with the diffractive optical element 5
  • the second connection segment 215 is used for electrical connection with the base 1 .
  • first connecting segment 214 and the second connecting segment 215 are arranged perpendicular to each other.
  • Such a design can reduce the number of bending times of the connector 21, thereby making the structure of the connector 21 more reasonable, reducing the space occupied by the connector 21, and helping to reduce the thickness of the side wall of the housing 2, thereby reducing the size of the housing 21.
  • the volume of the body 2 is reduced, thereby facilitating the miniaturization of the laser emitting module, which is more in line with the actual use requirements.
  • the first connection segment 214 is used for electrical connection with the electrodes of the diffractive optical element 5
  • the second connection segment 215 is used for electrical connection with the base 1
  • the second connection segment 215 is used for electrical connection with the base 1 .
  • the connection method of the seat 1 can be welding. Wherein along the height direction Z of the laser emitting module, the first connecting segment 214 and the diffractive optical element 5 are located at the same height.
  • Such a design can facilitate the electrical connection between the first connection segment 214 and the electrode of the diffractive optical element 5 , so that the connection between the connecting member 21 and the diffractive optical element 5 is facilitated by conductive silver glue.
  • first connecting segment 214 and the diffractive optical element 5 involved here are located at the same height, not at the same height in an absolute sense, but at approximately the same height, or between the two The height difference is small.
  • the connector 21 further includes a third connector 213 , and the third connector 213 is electrically connected to the second connector 212 .
  • the third connecting member 213 can guide the generated static electricity into the second connecting member 212 . Since the second connecting member 212 is connected to the negative electrode of the diffractive optical element 5 , such a design can reduce the effect of static electricity on the diffractive optical element 5 . The impact of the generated static electricity on the diffractive optical element 5 is reduced, so that the third connector 213 plays the role of electrostatic protection, prolongs the service life of the diffractive optical element 5, and reduces the possibility of failure due to electrostatic impact. .
  • the upper end surface of the third connector 213 is higher than the first connector 211 and the second connector 212 .
  • Such a design is beneficial to the electrostatic protection of the third connecting piece 213.
  • the static electricity will strike first.
  • the third connecting piece 213 is included, so that static electricity is introduced into the negative circuit through the third connecting piece 213 to reduce the influence of static electricity on the diffractive optical element 5 .
  • Such a design can improve the protection effect of the third connecting member 213 on the diffractive optical element 5 .
  • a part of the third connector 213 is embedded in the housing 2, and the part embedded in the housing 2 is electrically connected to the second connector 212, and at least a part of the upper end surface is exposed to the housing Outside the body 2, it is used to receive static electricity.
  • the shell 2 is made of plastic and other insulating materials by injection molding. Embedding the connector 21 in the shell 2 can effectively reduce the influence of the connector 21 on the current during the conduction process, and can also reduce the possibility of accidents such as leakage. In turn, the safety and reliability of the laser emission module are improved.
  • the diffractive optical element 5 includes a first surface 51 and a second surface 52, wherein the first surface 51 and the second surface 52 are located on opposite sides of the diffractive optical element 5, Specifically, the first surface 51 is located on the side of the diffractive optical element 5 facing the lens assembly 3, and is provided with a working circuit; the second surface 52 is located on the side of the diffractive optical element 5 away from the lens assembly 3, and is provided with a protection circuit.
  • the embodiment of the present application can reduce the number of parts of the laser emitting module by disposing the working circuit and the protection circuit on opposite sides of the diffractive optical element 5 at the same time. Therefore, the space occupied by the installation cavity is reduced, so as to reduce the volume of the laser emitting module.
  • the protection circuit is connected to the control circuit of the light-emitting component 4.
  • the protection circuit provided in the diffractive optical element 5 will have faults such as open circuit and short circuit.
  • the control circuit will cut off the power supply of the light-emitting component 4, so that the light-emitting component 4 will stop working, so as to play a protective role.
  • the working circuit and the protection circuit are respectively set in different parts, there will be a certain delay in the process of the protection circuit detecting the failure of the diffractive optical element 5 and cutting off the connection, which is not conducive to protecting other parts of the laser emitting module and the object to be photographed.
  • the diffractive optical element 5 when the photographed object is a person, if the diffractive optical element 5 is broken and the light-emitting component 4 cannot be turned off in time, the laser light emitted by the light-emitting component 4 is likely to cause damage to the eyes.
  • the protection circuit by arranging the working circuit and the protection circuit with the diffractive optical element 5 at the same time, when the diffractive optical element 5 is broken, the protection circuit can be disconnected, short-circuited, etc. at the first time, making it invalid, and then turning off the light-emitting component 4, so that it can respond in the shortest time to reduce the damage of the laser to the subject.
  • the protection circuit is a transparent protection circuit.
  • Such a design can reduce the influence of the protection circuit on the propagation of light, and at the same time play a protective role, it can also make the laser emitting module work normally, which is more in line with the actual use requirements.
  • the material of the protection circuit is indium tin oxide (ITO).
  • Indium tin oxide has good heat resistance, and at the same time, it has poor flexibility and is relatively fragile. Therefore, when the diffractive optical element 5 is damaged, the indium tin oxide circuit can be broken at the first time, resulting in an open circuit of the protection circuit to cut off The power supply of the light-emitting part 4 .
  • the material of the base 1 is ceramic.
  • the light-emitting component 4 is mounted on the base 1, and in general, the light-emitting component 4 is a VCSEL.
  • the VCSEL generates a large amount of heat during operation, and the VCSEL usually has a porous structure, which is prone to deformation and fragmentation. Ceramic materials have the advantages of high heat dissipation efficiency and good thermal stability, which can improve the heat dissipation efficiency, thereby reducing the occurrence of thermal deformation of the VCSEL chip, improving the working stability of the laser emitting module, and more in line with the actual use requirements.
  • the laser emitting module may further include a photosensitive element, and the photosensitive element is installed in the mounting cavity for detecting the light intensity of the light-emitting component 4 .
  • the photosensitive element detects the intensity of the laser light emitted by the light-emitting element 4.
  • the signal can be fed back to the control circuit of the light-emitting element 4.
  • the detection result adjusts the luminous intensity of the light-emitting component 4, so that the power of the light-emitting component 4 can be stabilized within a preset range, and the stability of the laser emitting module is improved.
  • the photosensitive element can be arranged around the light-emitting component 4 to receive the light reflected back by the diffractive optical element 5.
  • the laser emitting module works normally;
  • the diffractive optical element 5 may be broken, fall off, etc.
  • the control circuit of the light-emitting component 4 can judge whether the diffractive optical element 5 is in a normal state according to the detection result of the photosensitive element. When there is a problem with the element 5, the power supply of the light-emitting component 4 can be cut off in time to protect the photographed object.
  • the embodiments of the present application further provide an electronic device, wherein the electronic device may include the laser emission modules involved in any of the above embodiments. Since the laser emitting module has the above technical effects, the electronic equipment including the laser emitting module also has corresponding technical effects, which will not be repeated here.
  • the embodiments of the present application provide a laser emission module and electronic equipment, wherein the laser emission module includes a base 1 and a housing 2 for enclosing an installation cavity, a light-emitting component 4 , a lens assembly 3 and a diffractive optical element 5 Along the height direction Z of the laser emitting module, it is sequentially arranged in the installation cavity, the positive pole of the protection circuit of the diffractive optical element 5 is electrically connected to the base 1 through the first connector 211 , and the negative pole is electrically connected to the base 1 through the second connector 212 .
  • the electrical connection positions of the first connector 211 and the second connector 212 and the protection circuit are respectively located on opposite sides of the diffractive optical element 5 along the width direction Y or the length direction X of the laser emitting module. At least part of 21 is embedded in the casing 2 . Such a design can make the structure of the laser emitting module more reasonable, reduce the space occupied by the connector 21 , facilitate the miniaturized design of the laser emitting module, and be more in line with the actual use requirements.

Abstract

一种激光发射模组及电子设备,其中,激光发射模组包括用于围成安装腔的基座(1)和壳体(2),发光部件(4)、透镜组件(3)和衍射光学元件(5)沿激光发射模组的高度方向依次设置于安装腔,衍射光学元件(5)的保护电路的正极通过第一连接件(211)与基座(1)电性连接,负极通过第二连接件(212)与基座(1)电性连接,且沿激光发射模组的宽度或长度方向,第一连接件(211)和第二连接件(212)与保护电路的电性连接位置分别位于衍射光学元件(5)的相对两侧,连接件(21)的至少部分嵌设于壳体(2)。通过这样的设计能够使激光发射模组的结构更加合理,减少连接件(21)所占用的空间,有利于激光发射模组小型化设计,更加符合实际的使用需求。

Description

一种激光发射模组及电子设备 技术领域
本申请涉及电子产品技术领域,尤其涉及一种激光发射模组及电子设备。
背景技术
随着科学技术的发展,越来越多的具有成像功能的电子设备被广泛的应用于人们的日常生活以及工作当中,为人们的日常生活以及工作带来了巨大的便利,成为当今人们不可或缺的重要工具。
飞行时间(Time of flight,TOF)摄像模组是一种常用的深度摄像机模组,可以用于测量景深(深度)或距离信息,能够实现电子设备对目标的三维成像或距离检测功能。激光发射模组一般包括两个子模组,其中一个光发射模组,用于朝目标物发射测量用的光,另外一个是感光模组(也可以称为图像传感模组),这两个模组可以合二为一组成一个整体的模组后组装到终端,也可以各自分别组装到终端。
通常情况下,沿激光发射模组的高度方向,衍射光学元件(Diffractive Optical Elements,DOE)、准直镜、陶瓷基座依次设置,衍射光学元件具有正极引脚和负极引脚,正负极的引脚沿激光发射模组的高度方向延伸,以使衍射光学元件能够与陶瓷基座电性连接。通常情况下,排气孔和衍射光学元件的正负极引脚分别位于激光发射模组的相对两端,同时为便于正负极引脚与基座的相应区域连接以及避让其他部件,正负极引脚需经过多次弯折,导致正负极引脚占用的空间较大,导致激光发射模组的体积较大。
申请内容
本申请提供了一种激光发射模组及电子设备,用于减小激光发射模组的体积。
本申请提供了一种激光发射模组,所述激光发射模组包括:
基座;
壳体,所述壳体与所述基座连接并围成安装腔,所述壳体嵌设有连接件;
透镜组件,所述透镜组件安装于所述安装腔;
发光部件,所述发光部件安装于所述基座且位于所述安装腔;
衍射光学元件,所述衍射光学元件位于所述透镜组件远离所述发光部件的一侧,且所述衍射光学元件设置有保护电路;
所述连接件包括第一连接件和第二连接件,所述保护电路的正极通过所述第一连接件与所述基座电性连接,所述保护电路的负极通过所述第二连接件与所述基座电性连接,所述第一连接件和所述第二连接件与保护电路的电性连接位置分别位于所述衍射光学元件沿所述激光发射模组的长度方向或宽度方向的相对两侧。
在一种可能的实施方式中,沿所述激光发射模组的高度方向的投影中,所述第一连接件与所述保护电路的连接位置以及所述第二连接件与所述保护电路的连接位置位于所述透镜组件的投影范围外。
在一种可能的实施方式中,所述壳体远离所述衍射光学元件的一端具有凹陷部,所述凹陷部用于避让所述连接件与所述基座的电性连接位置。
在一种可能的实施方式中,各所述连接件至少包括第一连接段和第二连接段,所述第一连接段和所述第二连接段相互连接且具有预设的夹角。
在一种可能的实施方式中,所述第一连接段与所述第二连接段相互垂直。
在一种可能的实施方式中,沿所述激光发射模组的高度方向,所述第一连接段与所述衍射光学元件位于同一高度,且用于与所述衍射光学元件的电极电性连接。
在一种可能的实施方式中,所述连接件还包括第三连接件,所述第三连接件与所述第二连接件电性连接,所述第三连接件用于静电保护。
在一种可能的实施方式中,沿所述激光发射模组的高度方向,所述第三连接件的上端面的位置高于所述第一连接件和所述第二连接件。
在一种可能的实施方式中,所述衍射光学元件通过导电粘合剂与所述连接件电性连接。
在一种可能的实施方式中,所述导电粘合剂为导电银胶。
在一种可能的实施方式中,所述衍射光学元件包括第一表面和第二表面,所述第一表面位于所述衍射光学元件朝向所述透镜组件的一侧,且所述第一表面和所述第二表面位于所述衍射光学元件的相对两侧;
所述第一表面设置有工作电路,所述第二表面设置有所述保护电路。
在一种可能的实施方式中,所述保护电路为透明保护电路。
在一种可能的实施方式中,所述保护电路的材料为氧化铟锡。
在一种可能的实施方式中,所述基座为陶瓷材料。
在一种可能的实施方式中,所述激光发射模组还包括感光元件,所述感光元件安装于所述安装腔,用于检测所述发光部件的光强。
在一种可能的实施方式中,所述感光元件位于所述衍射光学元件朝向发光部件的一侧,用于接收所述衍射光学元件的反射光。
本申请还提供了一种电子设备,所述电子设备包括以上任一项所述的激光发射模组。
本申请涉及一种激光发射模组及电子设备,其中,激光发射模组包括用于围成安装腔的基座和壳体,发光部件、透镜组件和衍射光学元件沿激光发射模组的高度方向依次设置于安装腔,衍射光学元件的保护电路的正极通过第一连接件与基座电性连接,负极通过第二连接件与基座电性连接,且沿激光发射模组的宽度或长度方向,第一连接件和第二连接件与保护电路的电性连接位置分别位于衍射光学元件的相对两侧,连接件的至少部分嵌设于壳体。通过这样的设计能够使激光发射模组的结构更加合理,减少连接件所占用的空间,有利于激光发射模组小型化设计,更加符合实际的使用需求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例所提供的激光发射模组的结构示意图;
图2为图1沿A-A方向的剖视图;
图3为图1沿B-B方向的剖视图;
图4为图1的侧视图。
附图标记:
1-基座;
2-壳体;
21-连接件;
211-第一连接件;
212-第二连接件;
213-第三连接件;
214-第一连接段;
215-第一连接段;
22-通孔;
23-光窗;
24-凹陷部;
3-透镜组件;
4-发光部件;
5-衍射光学元件;
51-第一表面;
52-第二表面。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的 “一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
随着技术的发展,越来越多的具有成像功能的电子设备被广泛的应用于人们的日常生活以及工作当中,为人们的日常生活以及工作带来了巨大的便利,成为当今人们不可或缺的重要工具。TOF摄像模组是一种常用的深度摄像机模组,可以用于测量景深(深度)或距离信息,能够实现电子设备对目标的三维成像或距离检测功能。激光发射模组通常包括:DOE、准直镜、发光部件、陶瓷基板等,发光部件通常为垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)。
沿激光发射模组的高度方向,各部件依次叠置,由于在工作过程中,VCSEL会发热,激光发射模组内部的空气受热膨胀,导致气压增大,为平衡气压以及提升散热效率,通常在壳体设置有排气孔,以便于气体排出,以及与外界进行热交换。由于DOE距离陶瓷基板的距离较远,因此,DOE的正负极通常需要通过金属引脚与陶瓷基板电性连接,为避让其他部件以及能够延伸至电性连接位置,金属引脚需要经过多次弯折,导致其占用的空间较大,从而使得激光发射模组的体积较大。
鉴于此,本申请实施例提供了一种激光发射模组及电子设备,用于解决激光发射模组的体积较大的问题。
如图1所示,本申请实施例提供了一种激光发射模组,其中,激光发射模组包括基座1和壳体2,基座1与壳体2相互连接围成安装腔。如图2所示,安装腔可以用于安装发光部件4、透镜组件3和衍射光学元件5等部件。
具体地,发光部件4可以为垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL),透镜组件3可以为准直镜,用于将发光部件4发出的激光束校正到合适角度范围,透镜组件3可以由多个相同和/或不同结构的镜片叠置而成,衍射光学元件5用于将光束复制多分激光束,以实现将激光点阵扩大,从而使点阵数量满足光路设计要求。
如图2所示,发光部件4安装于基座1,透镜组件3安装于安装腔且位于发光部件4远离基座1的一侧,衍射光学元件5设置于透镜组件3远离发光部件4的一侧,壳体2可以设置有光窗23,光窗23与安装腔连通,衍射光学元件5的至少部分位于光窗23,经衍射光学元件5复制的激光束经光窗23传播至激光发射模组之外。
壳体2设置有通孔22,通孔22用于平衡激光发射模组的内外气压以及提升激光发射模组的散热效率,具体地,沿激光发射模组的高度方向,通孔22可以设置在壳体2的上表面,并沿高度方向延伸,通孔22可以位于光窗23的一侧。
如图3所示壳体2嵌设有连接件21,连接件21可以采用金属等导电材料。壳体2的加工可以采用注塑的方式。这样的设计能够便于对壳体2进行加工,以及在加工时将连接件21嵌入壳体2,更加符合实际的使用需求。连接件21可以包括第一连接件211和第二连接件212,具体地,衍射光学元件5设置有保护电路,保护电路的正极通过第一连接件211与基座1电性连接、保护电路的负极通过第二连接件212与基座1电性连接。第一连接件211和第二连接件212与基座1的电性连接的位置分别位于通孔22的相对两侧。
连接件21可以具有凹陷,用于在加工的时候避让模具,以使连接件21的结构更加合理。
沿激光发射模组的宽度方向Y或长度方向X,第一连接件211与保护电路的电性连接位置与第二连接件212与保护电路的电性连接位置位于衍射光学元件的相对两侧,具体地,如图1所示,在一种具体地实施方式中,第一连接件211和第二连接件212与保护电路的连接位置,沿激光发射模组的宽度方向Y分别位于衍射光学元件5的相对两侧。
通常情况下,在沿激光发射模组的高度方向Z的投影中,透镜组件3的投影为圆形,衍射光学元件5的投影为矩形,且透镜组件3的投影位于衍射 光学元件5的投影范围内,因此,衍射光学元件5的角落位置,即衍射光学元件5的投影未与透镜组件3的投影重合的位置能够用于连接件21与保护电路的电极连接。这样的设计能够有效地提升空间的利用率,从而使激光发射模组的内部空间更加紧凑,从而有利于激光发射模组进行小型化设计。
具体地,如图2所示,在一种可能的实施方式中,沿衍射光学元件5的长度方向X,通孔22设置在衍射光学元件5的一侧,如图1和图4所示,沿衍射光学元件5的宽度方向Y,第一连接件211和第二连接件212与基座1的连接位置位于通孔22的相对两侧。
通常情况下,通孔22的直径小于衍射光学元件5的宽度,因此,在宽度方向Y上会留有足够空间用于设置连接件21,连接件21的至少部分能够设置在通孔22的相对两侧。通过这样的设计能够提升激光发射模组的空间利用率,使连接件21的设位置更加合理,相较于将连接件21嵌设在衍射光学元件5远离通孔22的一侧的壳体2的方案,本申请实施例所提供的方案能够减小衍射光学元件5远离通孔22的一侧的壳体2的厚度,从而减小壳体2的整体体积,进而缩小激光发射模组的体积,有利于实现激光发射模组的小型化设计,更加符合实际的使用需求。
第一连接件211和第二连接件212的部分可以位于壳体2的光窗23,以便于连接件21与衍射光光学元件的保护电路的电极连接。由于连接件21与保护电路的电极之间的距离较近,因此可以通过导电粘合剂实现电性连接。
相较于采用焊接等连接方式,采用导电粘合剂的方式在实际操作时更加方便,且难度较低,能够有效提升加工效率,更加符合实际的使用需求。
具体地,导电粘合剂可以选用导电银胶。
导电银胶具有固化速度较快、电阻值较低、可靠性较高、工作寿命较长、使用较为方便的优点,更加符合实际的使用需求。
如图1所示,在一种可能的实施方式中,壳体2靠近基座1的一端面积小于基座1的面积,具体地,在沿激光发射模组的高度方向Z的投影中,壳体2靠近基座1的一端的投影面积小于基座1的投影面积,且位于基座1的投影范围内。位于基座1的用于与第一连接件211和第二连接件212电性连接的位置均位于壳体2靠近基座1的一端的投影范围外。
通常情况下,透镜组件3由多个透镜组成,在沿激光发射模组的高度方向Z的投影中,透镜组件3的投影成圆形,衍射光学元件5的投影成方形,且透镜组件3的投影面积位于衍射光学元件5的投影范围内。通过这样的设计,使得透镜组件3能够避让衍射光学元件5的角落位置,同时,由于透镜组件3的外形近似呈圆柱形,因此还能够避让基座1的角落位置,从而便于衍射光学元件5与基座1的角落位置处进行连接,以优化激光发射模组的结构。
通过这样的设计能够使第一连接件211和第二连接件212分别与衍射光学元件5以及基座1未与透镜组件3重合的位置进行电性连接,在连接基座1与衍射光学元件5的保护电路的同时,使得激光发射模组的整体结构更加紧凑,从而有利于实现激光发射模组的小型化。
具体地,在一种可能的实施方式中,基座1可以为长方体结构,壳体2的结构可以根据衍射光学元件5和透镜组件3的结构进行设计,例如,壳体2的结构可以分为两部分,上部分近似呈方形,用于安装衍射光学元件5,下部分可以近似呈圆柱形,或具有弧面,从而避让基座1的角落位置,以便于连接件21与基座1连接。
如图1所示,在一种可能的实施方式中,壳体2具有凹陷部24,凹陷部24位于壳体2靠近基座1的一端,且朝向壳体2的内部凹陷以避让基座1的角落位置,即连接件21与基座1的电性连接位置。连接件21的部分能够伸出壳体2,且位于凹陷部24,该部分连接件21用于与基座1电性连接。
通过这样的设计能够减小壳体2的体积,同时能够降低壳体2对于连接件21与基座1的电性连接位置的干涉。连接件21的部分伸出壳体2能够便于在加工时将连接件21与基座1电性连接,降低操作难度。连接的方式可以是焊接,也可以是通过导电胶进行粘接等。
如图3所示,在一种可能的实施方式中,连接件21至少包括第一连接段214和第二连接段215,第一连接段214和第二连接段215相互连接,且具有预设的夹角。具体地,第一连接段214用于与衍射光学元件5电性连接,第二连接段215用于与基座1电性连接。
通过这样的方式能够便于连接件21将衍射光学元件5与基座1进行电性连接,同时还能够避让其他部件。
如图3所示,在一种可能的实施方式中,第一连接段214和第二连接段215相互垂直设置。
通过这样的设计能够减少连接件21的弯折次数,从而使连接件21的结构更加合理,能够减少连接件21占用的空间,有利于减小壳体2的侧壁的厚度,从而减小壳体2的体积,进而便于激光发射模组小型化,更加符合实际的使用需求。
在一种可能的实施方式中,第一连接段214用于与衍射光学元件5的电极电性连接,第二连接段215用于与基座1进行电性连接,第二连接段215与基座1的连接方式可以为焊接。其中沿激光发射模组的高度方向Z,第一连接段214和衍射光学元件5位于同一高度。
通过这样的设计能够便于第一连接段214与衍射光学元件5的电极电性连接,以便于连接件21和衍射光学元件5之间通过导电银胶进行连接。
在此需要说明的是,这里所涉及的第一连接段214和衍射光学元件5位于同一高度,并不是绝对意义上的位于同一高度,而是指二者近似位于同一高度,或二者之间的高度差较小。
如图1所示,在一种可能的实施方式中,连接件21还包括第三连接件213,第三连接件213与第二连接件212电性连接。当有静电产生时,第三连接件213能够将产生的静电导入第二连接件212,由于第二连接件212与衍射光学元件5的负极连接,因此这样的设计能够降低静电对于衍射光学元件5的影响,降低产生的静电对于衍射光学元件5的冲击,从而时第三连接件213起到静电保护的作用,延长衍射光学元件5的使用寿命,降低其因受到静电冲击导致发生失效情况的可能。
具体地,如图1所示,在一种可能的实施方式中,沿激光发射模组的高度方向Z,第三连接件213的上端面高于第一连接件211和第二连接件212。
通过这样的设计有利于第三连接件213进行静电保护,当有静电产生时,由于第三连接件213的上端面高于第一连接件211和第二连接件212,因此,静电会先击中第三连接件213,从而通过第三连接件213将静电引入负极电路,以降低静电对于衍射光学元件5的影响。这样的设计能够提升第三连接件213对于衍射光学元件5的保护作用。
在一种可能的实施方式中,第三连接件213的部分嵌设于壳体2,且嵌设于壳体2的部分与第二连接件212电性连接,上端面的至少部分裸露与壳体2之外,用于接收静电。
通常壳体2采用塑胶等绝缘材料注塑加工而成,将连接件21嵌设于壳体2能够有效降低连接件21在传导过程中对于电流的影响,同时还能够降低漏电等事故发生的可能,进而提升激光发射模组的安全性和可靠性。
如图2所示,在一种可能的实施方式中,衍射光学元件5包括第一表面51和第二表面52,其中第一表面51和第二表面52位于衍射光学元件5的相对两侧,具体地,第一表面51位于衍射光学元件5朝向透镜组件3的一侧,并设置有工作电路;第二表面52位于衍射光学元件5远离透镜组件3的一侧,并设置有保护电路。
相较于将工作电路和保护电路分别设置在不同部件的方案,本申请实施例通过将工作电路和保护电路同时设置于衍射光学元件5的相对两侧,能够减少激光发射模组的部件数量,从而减少对于安装腔的空间的占用,以便于减小激光发射模组的体积。
具体地,保护电路与发光部件4的控制电路连接,当衍射光学元件5出现故障,导致碎裂时,设置在衍射光学元件5的保护电路会出现断路、短路等故障,当保护电路出现故障时,控制电路会切断发光部件4的电源,使发光部件4停止工作,从而起到保护作用。当工作电路和保护电路分别设置在不同部件时,保护电路检测衍射光学元件5出现故障并切断连接的过程会存在一定的延时情况,不利于保护激光发射模组的其他部件以及被拍摄对象,例如,当拍摄对象为人时,如果衍射光学元件5发生碎裂而无法及时关闭发光部件4时,发光部件4发出的激光容易对眼睛造成伤害。而本申请通过将工作电路和保护电路同时设置与衍射光学元件5,当衍射光学元件5发生碎裂时,保护电路能够在第一时间发生断路、短路等情况,使其失效,进而关闭发光部件4,从而能够在最短的时间内做出应对,以降低激光对于拍摄对象的伤害。
具体地,在一种可能的实施方式中,保护电路为透明保护电路。
通过这样的设计能够降低保护电路对于光的传播的影响,在起到保护作用的同时,还能够使激光发射模组正常工作,更加符合实际的使用需求。
在一种可能的实施方式中,保护电路的材料为氧化铟锡(ITO)。
氧化铟锡具有较好的耐热性,同时柔韧性较差,较为脆弱,因此,在衍射光学元件5收到损坏时,氧化铟锡电路能够在第一时间碎裂,导致保护电路断路以切断发光部件4的电源。
在一种可能的实施方式中,基座1的材料为陶瓷。
发光部件4安装于基座1,且通常情况下,发光部件4为VCSEL,VCSEL在工作过程中的发热量较大,且VCSEL通常为多孔结构,容易发生变形碎裂。陶瓷材料具有散热效率较高,热稳定性较好的优点,能够提升散热效率,从而降低VCSEL芯片受热变形的情况发生,提升激光发射模组的工作稳定性,更加符合实际的使用需求。
具体地,在一种可能的实施方式中激光发射模组还可以包括感光元件,感光元件安装于安装腔,用于检测发光部件4的光强。
感光元件通过检测发光部件4发出的激光的强弱,当感光元件检测到光强低于或高于预设的阈值时,能够将信号反馈至发光部件4的控制电路,控制电路根据感光元件的检测结果调整发光部件4的发光强度,从而使发光部件4的功率能够稳定在预设的范围内,提升激光发射模组工作的稳定性。
在一种可能的实施方式中,感光元件可以设置于发光部件4周围,用于接收经衍射光学元件5反射回的光线,当感光元件能够接收到反射光时,激光发射模组正常工作;当感光元件无法接收到反射光时,衍射光学元件5可能出现碎裂、脱落等情况,发光部件4的控制电路可以根据感光元件的检测结果对衍射光学元件5是否处于正常状态进行判断,当衍射光学元件5出现问题时,能够及时切断发光部件4的电源,以保护拍摄对象。
基于以上各实施例所涉及的激光发射模组,本申请实施例还提供了一种电子设备,其中,该电子设备可以包括以上任一实施例所涉及的激光发射模组。由于激光发射模组具有以上的技术效果,因此,包括该激光发射模组的电子设备也具有相应的技术效果,此处不再赘述。
本申请实施例提供了一种激光发射模组及电子设备,其中,激光发射模组包括用于围成安装腔的基座1和壳体2,发光部件4、透镜组件3和衍射光学元件5沿激光发射模组的高度方向Z依次设置于安装腔,衍射光学元件5的保护电路的正极通过第一连接件211与基座1电性连接,负极通过第二连 接件212与基座1电性连接,且沿激光发射模组的宽度方向Y或长度方向X,第一连接件211和第二连接件212与保护电路的电性连接位置分别位于衍射光学元件5的相对两侧,连接件21的至少部分嵌设于壳体2。通过这样的设计能够使激光发射模组的结构更加合理,减少连接件21所占用的空间,有利于激光发射模组小型化设计,更加符合实际的使用需求。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种激光发射模组,其特征在于,所述激光发射模组包括:
    基座(1);
    壳体(2),所述壳体(2)与所述基座(1)连接并围成安装腔,所述壳体(2)嵌设有连接件(21);
    透镜组件(3),所述透镜组件(3)安装于所述安装腔;
    发光部件(4),所述发光部件(4)安装于所述基座(1)且位于所述安装腔;
    衍射光学元件(5),所述衍射光学元件(5)位于所述透镜组件(3)远离所述发光部件(4)的一侧,且所述衍射光学元件(5)设置有保护电路;
    所述连接件(21)包括第一连接件(211)和第二连接件(212),所述保护电路的正极通过所述第一连接件(211)与所述基座(1)电性连接,所述保护电路的负极通过所述第二连接件(212)与所述基座(1)电性连接,所述第一连接件(211)和所述第二连接件(212)与保护电路的电性连接位置分别位于所述衍射光学元件(5)沿所述激光发射模组的长度方向或宽度方向的相对两侧。
  2. 根据权利要求1所述的激光发射模组,其特征在于,沿所述激光发射模组的高度方向的投影中,所述第一连接件(211)与所述保护电路的电性连接位置以及所述第二连接件(212)与所述保护电路的电性连接位置位于所述透镜组件(3)的投影范围外。
  3. 根据权利要求2所述的激光发射模组,其特征在于,所述壳体(2)远离所述衍射光学元件(5)的一端具有凹陷部(24),所述凹陷部(24)用于避让所述连接件(21)与所述基座(1)的电性连接位置。
  4. 根据权利要求1所述的激光发射模组,其特征在于,各所述连接件(21)分别至少包括第一连接段(214)和第二连接段(215),所述第一连接段(214)和所述第二连接段(215)相互连接且具有预设的夹角。
  5. 根据权利要求4所述的激光发射模组,其特征在于,所述第一连接段(214)与所述第二连接段(215)相互垂直。
  6. 根据权利要求4所述的激光发射模组,其特征在于,沿所述激光发射模组的高度方向,所述第一连接段(214)与所述衍射光学元件(5)位于同一高度,且用于与所述衍射光学元件(5)的电极电性连接。
  7. 根据权利要求1所述的激光发射模组,其特征在于,所述连接件(21)还包括第三连接件(213),所述第三连接件(213)与所述第二连接件(212)电性连接,所述第三连接件(213)用于静电保护。
  8. 根据权利要求7所述的激光发射模组,其特征在于,沿所述激光发射模组的高度方向,所述第三连接件(213)的上端面的位置高于所述第一连接件(211)和所述第二连接件(212)。
  9. 根据权利要求1至8中任一项所述的激光发射模组,其特征在于,所述衍射光学元件(5)的电极通过导电粘合剂与所述连接件(21)电性连接。
  10. 根据权利要求9所述的激光发射模组,其特征在于,所述导电粘合剂为导电银胶。
  11. 根据权利要求1至8中任一项所述的激光发射模组,其特征在于,所述衍射光学元件(5)包括第一表面(51)和第二表面(52),所述第一表面(51)位于所述衍射光学元件(5)朝向所述透镜组件(3)的一侧,且所述第一表面(51)和所述第二表面(52)位于所述衍射光学元件(5)的相对两侧;
    所述第一表面(51)设置有工作电路,所述第二表面(52)设置有所述保护电路。
  12. 根据权利要求11所述的激光发射模组,其特征在于,所述保护电路为透明保护电路。
  13. 根据权利要求12所述的激光发射模组,其特征在于,所述保护电路的材料为氧化铟锡。
  14. 根据权利要求1至8中任一项所述的激光发射模组,其特征在于,所述基座(1)为陶瓷材料。
  15. 根据权利要求1至8中任一项所述的激光发射模组,其特征在于,所述激光发射模组还包括感光元件,所述感光元件安装于所述安装腔,用于检测所述发光部件(4)的光强。
  16. 根据权利要求15所述的激光发射模组,其特征在于,所述感光元件位 于所述衍射光学元件(5)朝向发光部件(4)的一侧,用于接收所述衍射光学元件(5)的反射光。
  17. 一种电子设备,其特征在于,所述电子设备包括如权利要求1至16中任一项所述的激光发射模组。
PCT/CN2020/137750 2020-12-18 2020-12-18 一种激光发射模组及电子设备 WO2022126645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137750 WO2022126645A1 (zh) 2020-12-18 2020-12-18 一种激光发射模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137750 WO2022126645A1 (zh) 2020-12-18 2020-12-18 一种激光发射模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022126645A1 true WO2022126645A1 (zh) 2022-06-23

Family

ID=82058878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137750 WO2022126645A1 (zh) 2020-12-18 2020-12-18 一种激光发射模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022126645A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205726354U (zh) * 2016-04-18 2016-11-23 上海与德通讯技术有限公司 一种电路板组件及电子设备
CN108181777A (zh) * 2018-02-27 2018-06-19 广东欧珀移动通信有限公司 激光投射模组、深度相机及电子装置
CN108767638A (zh) * 2018-04-19 2018-11-06 信利光电股份有限公司 激光发射器及其驱动装置、驱动方法和可读存储介质
CN108879296A (zh) * 2018-06-26 2018-11-23 维沃移动通信有限公司 一种电子设备及激光红外发射装置
CN208461195U (zh) * 2018-08-30 2019-02-01 信利光电股份有限公司 一种激光模组支架
US20190386464A1 (en) * 2018-06-19 2019-12-19 Oepic Semiconductors, Inc. Opto-electronic device having a backside illuminating vcsel array with integrated diffractive optical elements (doe), diffuser and/or lens
CN210864219U (zh) * 2019-09-27 2020-06-26 深圳市安思疆科技有限公司 一种含激光安全保护的结构光投射模组及3d成像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205726354U (zh) * 2016-04-18 2016-11-23 上海与德通讯技术有限公司 一种电路板组件及电子设备
CN108181777A (zh) * 2018-02-27 2018-06-19 广东欧珀移动通信有限公司 激光投射模组、深度相机及电子装置
CN108767638A (zh) * 2018-04-19 2018-11-06 信利光电股份有限公司 激光发射器及其驱动装置、驱动方法和可读存储介质
US20190386464A1 (en) * 2018-06-19 2019-12-19 Oepic Semiconductors, Inc. Opto-electronic device having a backside illuminating vcsel array with integrated diffractive optical elements (doe), diffuser and/or lens
CN108879296A (zh) * 2018-06-26 2018-11-23 维沃移动通信有限公司 一种电子设备及激光红外发射装置
CN208461195U (zh) * 2018-08-30 2019-02-01 信利光电股份有限公司 一种激光模组支架
CN210864219U (zh) * 2019-09-27 2020-06-26 深圳市安思疆科技有限公司 一种含激光安全保护的结构光投射模组及3d成像装置

Similar Documents

Publication Publication Date Title
WO2020038067A1 (zh) 激光投射模组及控制方法、深度图像获取设备和电子装置
US20200003870A1 (en) Depth information camera module and base assembly, projection assembly, electronic device and manufacturing method thereof
WO2020125388A1 (zh) 飞行时间模组及电子设备
WO2020038066A1 (zh) 光投射器及其破裂的检测方法、深度相机和电子装置
US10667341B1 (en) Light projector with integrated integrity sensor
TW201836434A (zh) 包括整合在密封劑中的光學結構之vcsel照明器封裝
WO2019228126A1 (zh) 摄像头模组及移动终端
US20210185804A1 (en) Circuit board assembly and semi-finished product thereof, floodlight, camera module and application thereof
EP3936755A1 (en) Light module and mobile terminal
TWI696000B (zh) 鐳射投射模組及其破裂的檢測方法、深度相機和電子裝置
JP2010086844A (ja) 傾斜センサ
WO2022126645A1 (zh) 一种激光发射模组及电子设备
CN113764972B (zh) 激光器
KR20040062980A (ko) 스트로브 장치 및 그 제조 방법
CN112242641B (zh) 一种激光发射模组及电子设备
WO2019188106A1 (ja) 半導体レーザ装置
US11552201B2 (en) Optical package assembly and mobile terminal
CN114578640A (zh) 激光投影设备
TWI682230B (zh) 光學投影裝置
CN219226883U (zh) 一种vcsel发光器件
CN112393691A (zh) 光发射模组、深度相机及电子设备
CN110649009A (zh) 一种双模压成型的led产品及制作工艺
CN219889500U (zh) 光源装置
WO2023284880A1 (zh) 激光器和激光投影设备
TWI703867B (zh) 光源安全裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965659

Country of ref document: EP

Kind code of ref document: A1