WO2022126612A1 - 固定装置 - Google Patents

固定装置 Download PDF

Info

Publication number
WO2022126612A1
WO2022126612A1 PCT/CN2020/137652 CN2020137652W WO2022126612A1 WO 2022126612 A1 WO2022126612 A1 WO 2022126612A1 CN 2020137652 W CN2020137652 W CN 2020137652W WO 2022126612 A1 WO2022126612 A1 WO 2022126612A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
sleeve
inert gas
electrode array
retina
Prior art date
Application number
PCT/CN2020/137652
Other languages
English (en)
French (fr)
Inventor
徐臻
吴天准
蒋伯石
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/137652 priority Critical patent/WO2022126612A1/zh
Publication of WO2022126612A1 publication Critical patent/WO2022126612A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation

Definitions

  • the present invention relates to the technical field of artificial retina, in particular to a fixing device.
  • Artificial retina technology is a kind of functional electrical stimulation. It takes advantage of the fact that most blind people often only have lesions in a part of the visual pathway, while the structure and function of the rest of the nerve tissue are still intact, and specific artificial electrical stimulation is applied to the intact part of the visual pathway to excite nerve cells and simulate natural light stimulation. effect, so that blind people have a visual experience.
  • the artificial retina includes a video acquisition device, a video processing module, an electrical stimulation coding module and an electrode array (Multielectrode array).
  • the electrical stimulation coding module and the electrode array constitute the artificial retina in vivo chip.
  • the working principle of the artificial retina is as follows: the video acquisition device transmits the collected real-time video images to the video processing module for processing, and the video processing module processes the video image to generate a driving signal, and the driving signal drives the electrode array to apply a certain amplitude, Current stimulation of waveform and frequency excites visual neurons, thereby making the patient experience visual perception.
  • the visual perception produced by fixed-point electrical stimulation of a single electrode is called phosphene.
  • Phosphopsies are small spots of dots or other simple shapes whose brightness, color, size, etc. change due to factors such as electrical stimulation parameters.
  • the visual perception produced by the artificial retina is a pixelated image composed of a series of isolated light spots.
  • the electrode array of the current artificial retina cannot be fixed in the eyeball relatively stably
  • the purpose of the present invention is to provide a fixing device to solve the technical problem that the electrode array of the artificial retina cannot be fixed in the eyeball relatively stably and non-invasively.
  • the invention provides a fixing device for fixing an electrode array on the retina of an eyeball, comprising: a first sleeve, a second sleeve and an adhesive, the retina encloses a cavity, and the cavity is filled with There is an inert gas, the electrode array is located in the cavity, and is pre-fitted on the inner wall of the cavity, the first sleeve and the second sleeve are fixed on the eyeball at intervals, and both are connected to the eyeball.
  • the cavity is communicated, the first sleeve is used for inert gas to enter the cavity, so that the cavity is filled with the inert gas, and the second sleeve is used for the liquid binder to be injected into the cavity.
  • the cavity is used to pre-bond the electrode array on the inner wall of the cavity, and the liquid adhesive is used to fix the electrode array on the inner wall of the cavity after curing.
  • the retina is in contact with the electrode array.
  • the fixing device further comprises an inert gas injector and a first injection needle, the first injection needle is connected with the inert gas injector, and the first injection needle extends into the In the cavity, the inert gas injector is used to inject inert gas into the cavity through the first injection needle.
  • the fixing device further includes a second injection needle, the second injection needle extends into the cavity through the second sleeve, and is used for injecting the liquid adhesive into the mold intracavity.
  • the fixing device further includes an interstitial fluid injector and a two-way valve, and the two-way valve is used to connect the first injection needle with the inert gas injector, or connect the first injection needle with the interstitial fluid injector,
  • the tissue fluid injector is used for injecting vitreous tissue fluid into the cavity through the first injection needle.
  • the two-way valve includes a casing, a first branch and a second branch, the first branch is connected with the second branch, and both the first branch and the second branch are located at the same
  • the casing is provided with a first opening, a second opening and a third opening arranged at intervals, the first branch is connected with the first injection needle at the first opening, and the first branch is connected to the first injection needle.
  • the second branch is used for connecting with the inert gas injector at the second opening, and the second branch is also used for switching to the third opening to connect with the tissue fluid injector.
  • the fixing device further includes a third sleeve, the third sleeve is fixed on the eyeball and communicates with the cavity, the third sleeve is connected to the first sleeve and the The second sleeves are arranged at intervals, and the third sleeves are used for vitreous tissue fluid to be discharged from the cavity.
  • the fixing device further includes a casing plug, and the casing plug is used to cover the second casing during the process of injecting the inert gas into the cavity; When the cavity is inert gas, the cover is closed on the third sleeve to isolate the cavity from the outside.
  • the fixing device further includes a first injection conduit and a second injection conduit, the first injection conduit is connected between the inert gas injector and the second opening, and the second injection conduit is connected to the between the tissue fluid syringe and the third opening.
  • the cavity is a space formed by the retina and the pigment epithelial layer
  • the retina includes a first surface facing the pigment epithelial layer
  • the electrode array is in contact with the first surface
  • the cavity is a vitreous cavity
  • the retina includes a second surface facing the vitreous cavity
  • the electrode array is in contact with the second surface
  • the first sleeve can make the outside inert gas enter the cavity, so that the cavity is an inert environment, and the second sleeve can Make the liquid binder enter the cavity, and the liquid binder can pre-bond the electrode array to the inner wall of the cavity.
  • the cured binder can fix the electrode array on the mold. on the inner wall of the cavity.
  • the adhesive of the present application fixes the electrode array on the retina in an inert gas environment, which solves the problem that the eyeball is a closed system and is filled with liquid. Dilution, the technical problem that the polymer concentration cannot be achieved.
  • FIG. 1 is a schematic structural diagram of an eyeball provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a fixing device provided by an embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of the fixing device provided by the embodiment of the present invention.
  • Figures 4a-4e are schematic flowcharts of a fixed electrode array provided in a subretinal implantation technique according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of the structure of the two-way valve.
  • 6a to 6f are schematic flowcharts of a fixed electrode array provided in an extra-retinal implantation technique according to an embodiment of the present invention.
  • the eyeball includes a vitreous body 104 , a retina 101 , a pigment epithelium layer 102 , a choroid and a sclera 103 which are sequentially sheathed on the vitreous body 104 .
  • the chamber in which the vitreous body 104 is located is the vitreous body chamber 601 .
  • the retina 101 includes a first surface 101 a and a second surface 101 b disposed opposite to the first surface 101 a , the first surface 101 a facing the pigment epithelium layer 102 , and the second surface 101 b facing the vitreous cavity 601 .
  • the extra-retinal implantation technique is to attach the electrode array to the outer surface of the retina in the vitreous cavity, and directly stimulate the nerve cells with the signals from outside the eye.
  • the subretinal implantation technology is to implant the electrode array into the area between the retinal neurosensory epithelium and the pigment epithelium, replace the photoreceptor cells to sense light, and directly use the encoding and decoding mechanism of the retina itself to convert electrical signals into vision.
  • the extra-retinal implantation mode requires the use of titanium pins to secure the electrode array between the retina and the pigment epithelium.
  • the process involves puncturing the retina into the sclera, thereby destroying the retina, pigment epithelium, and choroid; both the retina and choroid contain a large number of blood vessels.
  • the puncture of titanium nails can cause bleeding and inflammation; usually photocoagulation or electrocoagulation is used to pre-destroy the intraocular tissue (including blood vessels) at the site of the titanium nails, however, this may cause choroidal effusion and choroidal detachment, and the choroidal blood vessels may also be damaged. It is not easy to be destroyed in this condition, and there is still the possibility of bleeding. Due to the small space for electrode array implantation, subretinal implantation is often considered unnecessary to fix the electrode array, however, significant displacement of the electrode array occurs in more than half of the patients.
  • electrode array fixation is an important problem in the surgical procedure of artificial retinal implantation.
  • current electrode arrays cannot be securely and atraumatically fixed in the eyeball.
  • the present invention provides a fixing device for fixing the electrode array 50 in the eyeball 10 .
  • the fixing device includes: a first sleeve 20 , a second sleeve 30 and an adhesive 40 , the retina 101 encloses a cavity 60 , and the electrode array 50 is located in the cavity 60 and is pre-fitted On the inner wall of the cavity 60, the first sleeve 20 and the second sleeve 30 are fixed on the eyeball 10 at intervals, and both communicate with the cavity 60.
  • the first sleeve 20 is used for the inert gas to enter the cavity 60, so that the The cavity 60 is filled with inert gas
  • the second sleeve 30 is used for injecting the liquid adhesive 40 into the cavity 60 to pre-bond the electrode array 50 on the inner wall of the cavity 60.
  • the liquid adhesive 40 is used for After curing, the electrode array 50 is fixed on the inner wall of the cavity 60 , and the retina 101 is in contact with the electrode array 50 .
  • the inert gas is perfluoropropane, and of course, the inert gas can also be other gases, such as nitrogen.
  • the binder 40 can be a hydrogel, and the hydrogel is a hydrogel with a well-defined biochemical composition formed by mixing a polymer with a cross-linking agent, which can be transformed from a liquid phase to a solid phase in a short time. The liquid to solid phase transitions over a period of between 10 minutes and 20 minutes.
  • the first sleeve 20 can allow the inert gas from the outside to enter the cavity 60, so that the cavity 60 is an inert environment, and the second sleeve
  • the sleeve 30 can make the liquid adhesive 40 enter the cavity 60, and the liquid adhesive 40 can pre-bond the electrode array 50 to the inner wall of the cavity 60.
  • the cured The adhesive 40 can fix the electrode array 50 on the inner wall of the cavity 60 .
  • the fixing method of the electrode array 50 in the eyeball 10 of the present application is non-invasive and will not cause damage to the retina 101.
  • the adhesive 40 of the present application fixes the electrode array 50 on the retina 101 in an inert gas environment, which solves the problem that the eyeball 10 is a closed system and is filled with liquid. The technical problem that it is quickly diluted by the intraocular fluid and cannot reach the polymer concentration.
  • the extra-retinal 101 implantation technique and the retinal 101 sub-cavity implant technique will be described as follows.
  • the cavity 60 is a space formed by the retina 101 and the pigment epithelium layer 102 , and the electrode array 50 is fixed in contact with the first surface 101 a of the retina 101 .
  • the first surface 101a faces away from the vitreous cavity 601 .
  • the fixing device further includes an inert gas injector 70 and a first injection needle 80, the first injection needle 80 is connected to the inert gas injector 70, and the first injection needle 80 extends into the cavity 60 through the first sleeve 20, and the inert gas
  • the injector 70 is used to inject the inert gas into the cavity 60 through the first injection needle 80 . It can be understood that the inert gas in the inert gas injector 70 enters the cavity 60 after passing through the first injection needle 80 .
  • the arrangement of the first injection needle 80 is convenient for injecting the inert gas into the cavity 60 , and the arrangement of the first sleeve 20 is used to support and fix the first injection needle 80 .
  • the fixing device further includes a second injection needle 110 , and the second injection needle 110 is inserted into the cavity 60 through the second sleeve 30 for injecting the liquid adhesive 40 into the cavity 60 .
  • the arrangement of the second injection needle 110 facilitates the injection of the liquid adhesive 40 into the cavity 60 .
  • the needle of the second injection needle 110 can be close to the electrode array 50 , so that after the liquid adhesive 40 enters the cavity 60 , the liquid adhesive 40 can cover the electrode array 50 on the surface of the cavity 60 . on the inner wall.
  • the fixing device further includes a sleeve plug 120 , and the sleeve plug 120 is used to cover the second sleeve 30 when the inert gas is injected into the cavity 60 .
  • the arrangement of the sleeve plug 120 can make the cavity 60 a closed system, so that the inert gas can quickly enter the cavity 60 .
  • the needle of the first injection needle 80 passes through the sclera 103 and the pigment epithelium layer 102 in sequence, and then stays in the space between the retina 101 and the pigment epithelium layer 102, and the inert gas 190 injector 70 Inert gas 190 is injected into the space between the pigment epithelium layer 102 and the retina 101 through the first injection needle 80, which causes the retina 101 to be partially detached, the retina 101 protrudes toward the center of the vitreous, and the retina 101 is on the side facing away from the center of the vitreous
  • the cavity 60 is formed (FIG.
  • the volume of the cavity 60 is gradually increased, and the cavity 60 is filled with the inert gas 190 (FIG. 4a).
  • the sleeve plug 120 is covered on the second sleeve 30 .
  • An incision is made on the sclera 103 and the pigment epithelium layer 102 by means of an external tool, and the electrode array 50 is sent from the incision into the cavity 60.
  • the electrode array 50 is located on the pigment epithelium layer 102 (Fig. 4b), and the incision is sutured by means of an external tool. This completes the feeding of the electrode array 50 into the cavity 60 .
  • the liquid adhesive 40 is injected into the cavity 60 through the second injection needle 110 , and the liquid adhesive 40 coats the electrode array 50 on the pigment epithelium layer 102 ( FIG. 4 c ).
  • the electrode array 50 is immobilized on the pigment epithelium layer 102 (FIG. 4d).
  • the inert gas 190 is exhausted from the cavity 60 . Due to the discharge of the inert gas 190, the space in the cavity 60 is gradually reduced to almost disappear, and the partially detached retina 101 is returned to its place, and the retina 101 is re-attached to the pigment epithelium layer 102 and is in contact with the electrode array 50 (FIG. 4e).
  • the relative position between the electrode array 50 and the retina 101 does not change, and the distance between the electrode array 50 and the retina 101 is consistent, which reduces the risk of damage to the retina 101 and improves the spatial resolution of electrode stimulation.
  • the inert gas 190 can pass through the retina 101, the pigment epithelium layer 102 and the sclera 103 in sequence and then be discharged from the body; the inert gas 190 can also be absorbed back into the inert gas 190 syringe 70 through an inert syringe to realize the inert gas 190. of discharge.
  • the surface of the pigment epithelial layer 102 facing the retina 101 and the first surface of the retina 101 form the inner wall of the cavity 60 .
  • the second retinal 101 implantation technology.
  • the cavity 60 is a vitreous cavity 601
  • the electrode array 50 is in contact with the second surface 101 b of the retina 101 .
  • the second surface 101b faces the vitreous cavity 601 .
  • the fixation device also includes an interstitial fluid injector 130 and a two-way valve 140.
  • the two-way valve 140 is used to make the first injection needle 80 and the inert gas injector 70 is connected, or the first injection needle 80 is connected with the tissue fluid injector 130 , and the tissue fluid injector 130 is used to inject the vitreous tissue fluid into the cavity 60 through the first injection needle 80 .
  • one state of the two-way valve 140 is to connect the first injection needle 80 with the inert gas injector 70
  • another state of the two-way valve 140 is to connect the first injection needle 80 to the tissue fluid injector 130 .
  • the setting of the two-way valve 140 can make the inert gas and the vitreous tissue fluid share one injection needle, reduce the number of injection needles, and simplify the structure of the fixing device.
  • the two-way valve 140 includes a housing 1401 , a first branch 1402 and a second branch 1403 , the first branch 1402 is connected with the second branch 1403 , and the first branch 1402 is connected with the second branch 1403 are all located in the housing 1401.
  • the housing 1401 is provided with a first opening 1404, a second opening 1405 and a third opening 1406.
  • the first branch 1402 is connected to the first injection needle 80 at the first opening 1404.
  • the second branch 1403 is used to connect to the inert gas injector 70 at the second opening 1405
  • the second branch 1403 is also used to switch to the third opening 1406 to connect to the tissue fluid injector 130 .
  • the second branch 1403 can also be switched to other positions different from the first opening 1404 , the second opening 1405 and the third opening 1406 , which makes the first injection needle 80 disconnected from the inert gas injector 70 .
  • An injection needle 80 is not connected to the tissue fluid injector 130 .
  • the setting of the casing 1401 can protect the first branch 1402 and the second branch 1403 .
  • the fixing device further comprises a third sleeve 150, the third sleeve 150 is fixed on the eyeball 10 and communicated with the cavity 60, and the third sleeve 150 is spaced apart from the first sleeve 20 and the second sleeve 30,
  • the third cannula 150 is used to drain the vitreous tissue fluid from the vitreous cavity 601 .
  • the third sleeve 150 is disposed opposite to the first sleeve 20 .
  • the fixture also includes a first injection conduit 90 connected between the inert gas injector 70 and the second opening 1405 . It can be understood that when the distance between the inert gas injector 70 and the second opening 1405 is relatively long, the first injection conduit 90 realizes the connection between the inert gas injector 70 and the second opening 1405 .
  • the first injection conduit 90 may be an injection hose.
  • the fixation device also includes a second injection conduit 160 connected between the interstitial fluid injector 130 and the third opening 1406 .
  • the second injection catheter 160 realizes the connection between the interstitial fluid injector 130 and the third opening 1406 when the distance between the interstitial fluid injector 130 and the third opening 1406 is relatively far.
  • the second injection conduit 160 may be an injection hose.
  • the sleeve plug 120 is also used to cover the third sleeve 150 when the cavity 60 is inert gas, so as to isolate the cavity 60 from the outside.
  • physiological saline 180 can be injected into the vitreous cavity 601 first, so that the vitreous tissue fluid can be drained from the third cannula 150 to the vitreous cavity 601 through the physiological saline 180.
  • the vitreous cavity 601 Filled with saline 180 (Fig. 6a).
  • the electrode array 50 is implanted in the physiological saline 180 of the vitreous cavity 601, and the electrode array 50 is made to fit the second surface 101b of the retina 101 (FIG.
  • the two-way valve 140 is adjusted so that the first injection needle 80 is connected to the inert gas injector 70 is connected, and the inert gas 190 is injected into the vitreous cavity 601 to discharge the physiological saline 180 from the third cannula 150 to the vitreous cavity 601 through the inert gas 190, and the vitreous cavity 601 is filled with the inert gas 190 (FIG. 6c).
  • the sleeve plug 120 is covered on the second sleeve 30 .
  • the two-way valve 140 is adjusted so that the interstitial fluid injector 130 communicates with the first injection needle 80 , and the interstitial fluid injector 130 injects the vitreous interstitial fluid into the vitreous cavity 601 through the first injection needle 80 , so that the inert gas is injected from the third cannula 150 through the vitreous interstitial fluid.
  • the vitreous body 104 is formed in the vitreous body cavity 601 .
  • the electrode array 50 can be implanted into the normal saline 180 of the vitreous cavity 601 through the third cannula 150 .
  • the electrode array 50 of this embodiment is not only in contact with the retina 101 but also fixed to the retina 101 .
  • the fixation device of the present application avoids the use of titanium nails in the external implantation mode of the retina 101, reduces or eliminates the damage to intraocular tissues such as the retina 101 caused by operations such as titanium nail puncture and photocoagulation, and the resulting bleeding and inflammation. question.
  • the fixing device of the present application can fix the electrode array 50 on the inner wall of the cavity 60 and make the electrode array 50 contact the retina 101 regardless of the retinal 101 implantation technique or the retinal 101 subcavity implantation technique.

Landscapes

  • Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Prostheses (AREA)

Abstract

一种固定装置,用于将电极阵列(50)固定在眼球的视网膜(101)上,包括:第一套管(20)、第二套管(30)以及粘结剂(40),所述视网膜(101)围成型腔(60),所述型腔(60)内填充有惰性气体,所述电极阵列(50)位于所述型腔(60)内,且预贴合在所述型腔(60)的内壁上,所述第一套管(20)和所述第二套管(30)间隔固定在眼球上,且均与所述型腔(60)连通,所述第一套管(20)用于惰性气体进入所述型腔(60),以使得所述型腔(60)内填充所述惰性气体,所述第二套管(30)用于液态的所述粘结剂(40)注入所述型腔(60),以将所述电极阵列(50)预粘结在所述型腔(60)的内壁上,液态的所述粘结剂(40)用于在固化后将所述电极阵列(50)固定在所述型腔(60)的内壁上,所述视网膜(101)与所述电极阵列(50)接触。上述技术方案能够使人工视网膜的电极阵列(50)较稳固且无创伤地固定在眼球内。

Description

固定装置 技术领域
本发明涉及人工视网膜技术领域,特别涉及一种固定装置。
背景技术
人工视网膜技术属于功能电刺激的一种。它利用大多数盲人往往只有视觉通路的一部分发生病变,而其余部分神经组织的结构和功能尚完好的特点,对视觉通路的完好部位施加特定的人工电刺激,来兴奋神经细胞,模拟自然光刺激的效果,使盲人产生视觉感受。
人工视网膜包括视频采集设备、视频处理模块、电刺激编码模块以及电极阵列(Multielectrode array),视频采集设备与视频处理模块位于病人体外,电刺激编码模块与电极阵列(Multielectrode array)植入到眼内,电刺激编码模块和电极阵列构成了人工视网膜在体芯片。人工视网膜的工作原理为:视频采集设备将采集到的实时视频图像传送给视频处理模块进行处理,视频处理模块对视频图像处理后产生驱动信号,驱动信号驱动电极阵列对视觉神经组织施加一定幅度、波形和频率的电流刺激,兴奋视觉神经元,从而使病人产生视觉感受。单个电极的定点电刺激所产生的视觉感受叫做光幻视(Phosphene)。光幻视是点状或其他简单形状的小光斑,亮度、颜色、大小等由于电刺激参数等因素的影响而变化。人工视网膜所产生的视觉感受是由一系列类孤立的光点所组成的像素化的图像。然而,目前人工视网膜的电极阵列无法较稳固且无创伤地固定在眼球内。
发明内容
本发明的目的在于提供一种固定装置,以解决人工视网膜的电极阵列无法较稳固且无创伤地固定在眼球内的技术问题。
本发明提供一种固定装置,用于将电极阵列固定在眼球的视网膜上,包括:第一套管、第二套管以及粘结剂,所述视网膜围成型腔,所述型腔内填充有惰性气体,所述电极阵列位于所述型腔内,且预贴合在所述型腔的内壁上,所述 第一套管和所述第二套管间隔固定在眼球上,且均与所述型腔连通,所述第一套管用于惰性气体进入所述型腔,以使得所述型腔内填充所述惰性气体,所述第二套管用于液态的所述粘结剂注入所述型腔,以将所述电极阵列预粘结在所述型腔的内壁上,液态的所述粘结剂用于在固化后将所述电极阵列固定在所述型腔的内壁上,所述视网膜与所述电极阵列接触。
其中,所述固定装置还包括惰性气体注射器与第一注射针,所述第一注射针与所述惰性气体注射器连接,且所述第一注射针穿过所述第一套管伸入到所述型腔内,所述惰性气体注射器用于将惰性气体通过所述第一注射针注入到所述型腔内。
其中,所述固定装置还包括第二注射针,所述第二注射针穿过所述第二套管伸入在所述型腔内,用于将液态的所述粘结剂注入所述型腔内。
其中,所述固定装置还包括组织液注射器与双向阀,所述双向阀用于使得所述第一注射针与所述惰性气体注射器连接,或者使得所述第一注射针与所述组织液注射器连接,所述组织液注射器用于将玻璃体组织液通过所述第一注射针注入到所述型腔内。
其中,所述双向阀包括外壳、第一支路以及第二支路,所述第一支路与所述第二支路连接,所述第一支路与所述第二支路均位于所述外壳内,所述外壳上设有间隔设置的第一开口、第二开口与第三开口,所述第一支路在所述第一开口处与所述第一注射针连接,所述第二支路用于在所述第二开口处与所述惰性气体注射器连接,所述第二支路还用于切换至所述第三开口处与所述组织液注射器连接。
其中,所述固定装置还包括第三套管,所述第三套管固定在所述眼球上,且与所述型腔连通,所述第三套管与所述第一套管以及与所述第二套管均间隔设置,所述第三套管用于玻璃体组织液从所述型腔内排出。
其中,所述固定装置还包括套管塞,所述套管塞用于在惰性气体注入所述型腔的过程中,盖合在所述第二套管上;或者,所述套管塞用于在所述型腔内为惰性气体时,盖合在所述第三套管上,以隔离所述型腔与外界。
其中,所述固定装置还包括第一注射导管与第二注射导管,所述第一注射导管连接在所述惰性气体注射器与所述第二开口之间,所述第二注射导管连接 在所述组织液注射器与所述第三开口之间。
其中,所述型腔为所述视网膜与色素上皮层形成的空间,所述视网膜包括朝向所述色素上皮层的第一表面,所述电极阵列与所述第一表面接触。
其中,所述型腔为玻璃体腔,所述视网膜包括朝向所述玻璃体腔的第二表面,所述电极阵列与所述第二表面接触。
综上所述,本申请通过设置第一套管、第二套管以及粘结剂,第一套管可以使得外界的惰性气体进入型腔,使得型腔内为惰性环境,第二套管可以使得液态的粘结剂进入型腔,液态的粘结剂可以将电极阵列预粘结到型腔的内壁上,在液态的粘结剂固化后,固化的粘结剂可以将电极阵列固定在型腔的内壁上。本申请电极阵列在眼球内的固定方式无创伤,不会对视网膜产生损伤,同时能保证电极阵列紧贴在视网膜上,保证电极阵列和视网膜间的距离一致,降低了视网膜受损风险,提高了电极刺激的空间分辨率。而且,本申请的粘结剂在惰性气体环境中将电极阵列固定到视网膜上,解决了由于眼球为封闭体系,充满液体,在这种条件下,粘结剂注入后,很快被眼内液体稀释,无法达到聚合浓度的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的眼球的结构示意图。
图2是本发明实施例提供的固定装置的一种结构示意图。
图3是本发明实施例提供的固定装置的另一种结构示意图。
图4a-图4e是本发明实施例提供视网膜下腔植入技术中固定电极阵列的流程示意图。
图5是双向阀的结构示意图。
图6a-图6f是本发明实施例提供视网膜外植入技术中固定电极阵列的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在描述本发明的实施例之前,首先描述眼球的结构以及人工视网膜的植入技术。
请参阅图1,眼球包括玻璃体104、依次套设在玻璃体104上的视网膜101、色素上皮层102、脉络膜以及巩膜103。玻璃体104所在的腔室为玻璃体腔601。视网膜101包括第一表面101a和与第一表面101a相对设置的第二表面101b,第一表面101a朝向色素上皮层102,第二表面101b朝向玻璃体腔601。
人工视网膜按照植入部位的不同,大致可以分为视网膜外植入技术和视网膜下腔植入技术。
视网膜外植入技术是将电极阵列紧贴于玻璃体腔视网膜外表面,用眼外传来的信号直接刺激神经细胞。视网膜下腔植入技术是将电极阵列植入到视网膜神经感觉上皮和色素上皮之间的区域,代替光感细胞感受光照,直接利用视网膜本身的编码和解码机制来将电信号转化成视觉。视网膜外植入模式需要用钛钉将电极阵列固定于视网膜与色素上皮层之间,其过程涉及穿刺视网膜至巩膜内,因而会破坏视网膜、色素上皮层和脉络膜;由于视网膜和脉络膜都含有大量血管,钛钉的穿刺会引发出血和炎症;通常利用光凝或电凝预先破坏钛钉钉入部位的眼内组织(包括血管),然而这有造成可能脉络膜积液和脉络膜脱落,同时脉络膜血管也不易在此条件被破坏,还是存在出血可能。由于电极阵列的植入空间狭小,视网膜下腔植入往往被认为没有固定电极阵列的必要,然而一半以上患者眼内电极阵列出现了显著位移。而且,即便钛钉成功将电极阵列固定在视网膜内界膜外,大量临床OCT图像显示,大约70%的电极阵列并不能紧贴视网膜,因此需要加大刺激强度,这又显著增加了视网膜受损的风险,并降低了电极刺激的空间分辨率。因此,电极阵列固定是人工视网膜植入手术过程的重要难题。然而,目前的电极阵列无法较稳固且无创伤地固定在眼球内。
为了解决上述问题,本发明提供一种固定装置,用于将电极阵列50固定在眼球10内。
请参阅图2-图3,固定装置包括:第一套管20、第二套管30以及粘结剂40,视网膜101围成型腔60,电极阵列50位于型腔60内,且预贴合在型腔60的内壁上,第一套管20和第二套管30间隔固定在眼球10上,且均与型腔60连通,第一套管20用于惰性气体进入型腔60,以使得型腔60内填充惰性气体,第二套管30用于液态的粘结剂40注入型腔60,以将电极阵列50预粘结在型腔60的内壁上,液态的粘结剂40用于在固化后将电极阵列50固定在型腔60的内壁上,视网膜101与电极阵列50接触。可以理解的是,惰性气体是全氟丙烷,当然,惰性气体还可以其他的气体,如氮气等。粘结剂40可以是水凝胶,水凝胶是通过将聚合物与交联剂混合而形成的生物化学成分明确的水凝胶,可在短时间内由液相向固相转化,如可以在10分钟-20分钟之间的时间由液相向固相转化。
本申请中,通过设置第一套管20、第二套管30以及粘结剂40,第一套管20可以使得外界的惰性气体进入型腔60,使得型腔60内为惰性环境,第二套管30可以使得液态的粘结剂40进入型腔60,液态的粘结剂40可以将电极阵列50预粘结到型腔60的内壁上,在液态的粘结剂40固化后,固化的粘结剂40可以将电极阵列50固定在型腔60的内壁上。本申请电极阵列50在眼球10内的固定方式无创伤,不会对视网膜101产生损伤,同时能保证电极阵列50紧贴在视网膜101上,保证电极阵列50和视网膜101间的距离一致,降低了视网膜101受损风险,提高了电极刺激的空间分辨率。而且,本申请的粘结剂40在惰性气体环境中将电极阵列50固定到视网膜101上,解决了由于眼球10为封闭体系,充满液体,在这种条件下,粘结剂40注入后,很快被眼内液体稀释,无法达到聚合浓度的技术问题。
如下将介绍视网膜101外植入技术和视网膜101下腔植入技术。
第一种:视网膜101下腔植入技术。
请参阅图4a,型腔60为视网膜101与色素上皮层102形成的空间,电极阵列50固定与视网膜101的第一表面101a接触。第一表面101a背向玻璃体腔601。
固定装置还包括惰性气体注射器70与第一注射针80,第一注射针80与惰性气体注射器70连接,且第一注射针80穿过第一套管20伸入到型腔60内,惰性气体注射器70用于将惰性气体通过第一注射针80注入到型腔60内。可以理解的是,惰性气体注射器70内的惰性气体穿过第一注射针80后进入到型腔60内。第一注射针80的设置便于将惰性气体注入到型腔60内,第一套管20的设置用于支撑固定第一注射针80。
固定装置还包括第二注射针110,第二注射针110穿过第二套管30伸入在型腔60内,用于将液态的粘结剂40注入型腔60内。第二注射针110的设置便于液态的粘结剂40注入到型腔60内。可以理解的是,第二注射针110的针头可以靠近电极阵列50,以在液态的粘结剂40进入到型腔60后,液态的粘结剂40可以将电极阵列50覆盖在型腔60的内壁上。
固定装置还包括套管塞120,套管塞120用于在惰性气体注入型腔60的过程中,盖合在第二套管30上。套管塞120的设置可以使得型腔60内为封闭体系,便于惰性气体快速进入型腔60。
请参阅图4a-图4e,本方式中,第一注射针80的针头依次穿过巩膜103与色素上皮层102之后,停留在视网膜101与色素上皮层102之间的空间,惰性气体190注射器70将惰性气体190通过第一注射针80注入到色素上皮层102与视网膜101之间的空间,这使得视网膜101局部脱落,视网膜101朝向玻璃体的中心凸起,视网膜101在背向玻璃体中心的一侧形成型腔60(图4a),型腔60的体积逐渐增大,型腔60内充满惰性气体190(图4a)。在上述过程中,套管塞120盖合在第二套管30上。借助外界的工具在巩膜103与色素上皮层102上设置切口,将电极阵列50从切口送入型腔60,电极阵列50位于色素上皮层102上(图4b),借助外界的工具将切口缝合。这就完成了将电极阵列50送入型腔60内。然后,通过第二注射针110将液态的粘结剂40注入到型腔60,液态的粘结剂40将电极阵列50包覆在色素上皮层102上(图4c),液态的粘结剂40经过一段时间的固化后,将电极阵列50固定在色素上皮层102上(图4d)。最后,将惰性气体190排出型腔60。由于惰性气体190的排出,型腔60内的空间逐渐减小至基本消失,局部脱落的视网膜101归位,视网膜101重新贴合在色素上皮层102上,且与电极阵列50接触(图4e),电 极阵列50与视网膜101之间的相对位置不会发生变化,电极阵列50和视网膜101间的距离一致,降低了视网膜101受损风险,提高了电极刺激的空间分辨率。可以理解的是,惰性气体190可以依次穿过视网膜101、色素上皮层102与巩膜103后,排出体外;也可以通过惰性注射器将惰性气体190吸收回至惰性气体190注射器70内,实现惰性气体190的排出。本方式中,色素上皮层102朝向视网膜101的表面与视网膜101的第一表面形成型腔60的内壁。
第二种:视网膜101外植入技术。
请参阅图6c,型腔60为玻璃体腔601,电极阵列50与视网膜101的第二表面101b接触。第二表面101b朝向玻璃体腔601。
固定装置除了包括上述的惰性气体注射器70、第一注射针80与套管塞120外,固定装置还包括组织液注射器130与双向阀140,双向阀140用于使得第一注射针80与惰性气体注射器70连接,或者使得第一注射针80与组织液注射器130连接,组织液注射器130用于将玻璃体组织液通过第一注射针80注入到型腔60内。可以理解的是,双向阀140的一种状态为使得第一注射针80与惰性气体注射器70连接,双向阀140的另一状态为使得第一注射针80与组织液注射器130连接。双向阀140的设置可以使得惰性气体与玻璃体组织液共用一个注射针,减少注射针的数量,简化固定装置的结构。
请一并参阅图5,双向阀140包括外壳1401、第一支路1402以及第二支路1403,第一支路1402与第二支路1403连接,且第一支路1402与第二支路1403均位于外壳1401内,外壳1401上设有间隔设置的第一开口1404、第二开口1405与第三开口1406,第一支路1402在第一开口1404处与第一注射针80连接,第二支路1403用于在第二开口1405处与惰性气体注射器70连接,第二支路1403还用于切换至第三开口1406处与组织液注射器130连接。可以理解的是,第二支路1403还可以切换至不同于第一开口1404、第二开口1405以及第三开口1406的其他位置,这使得第一注射针80与惰性气体注射器70不连接,第一注射针80与组织液注射器130均不连接。外壳1401的设置可以保护第一支路1402与第二支路1403。
固定装置还包括第三套管150,第三套管150固定在眼球10上,且与型腔60连通,第三套管150与第一套管20以及与第二套管30均间隔设置,第 三套管150用于玻璃体组织液从玻璃体腔601内排出。可选地,第三套管150与第一套管20正对设置。
固定装置还包括第一注射导管90,第一注射导管90连接在惰性气体注射器70与第二开口1405之间。可以理解的是,在惰性气体注射器70与第二开口1405之间的距离较远时,第一注射导管90实现了惰性气体注射器70与第二开口1405之间的连接。第一注射导管90可以为注射软管。
固定装置还包括第二注射导管160,第二注射导管160连接在组织液注射器130与第三开口1406之间。第二注射导管160实现了在组织液注射器130与第三开口1406之间的距离较远时,实现组织液注射器130与第三开口1406之间的连接。第二注射导管160可以为注射软管。
套管塞120还用于在型腔60内为惰性气体时,盖合在第三套管150上,以隔离型腔60与外界。
请参阅图6a-图6f,本方式中,可以首先向玻璃体腔601内注入生理盐水180,以通过生理盐水180将玻璃体组织液从第三套管150排出玻璃体腔601,玻璃体切除后,玻璃体腔601内填充生理盐水180(图6a)。然后将电极阵列50植入玻璃体腔601的生理盐水180中,并使得电极阵列50贴合视网膜101的第二表面101b(图6b);调整双向阀140,使得第一注射针80与惰性气体注射器70连通,向玻璃体腔601内注入惰性气体190,以通过惰性气体190将生理盐水180从第三套管150排出玻璃体腔601,玻璃体腔601内充满惰性气体190(图6c)。上述过程中,套管塞120盖合在第二套管30上。然后,将套管塞120盖合在第三套管150上,在第二套管30内插入第二注射针110,通过第二注射针110将液态的粘结剂40注入到型腔60,液态的粘结剂40将电极阵列50包覆在视网膜101上(图6d),液态的粘结剂40经过一段时间的固化后,将电极阵列50固定在视网膜101上(图6e)。最后,调整双向阀140,使得组织液注射器130与第一注射针80连通,组织液注射器130通过第一注射针80向玻璃体腔601内注入玻璃体组织液,以通过玻璃体组织液将惰性气体从第三套管150排出体外,玻璃体腔601内形成玻璃体104。电极阵列50固定在视网膜101上后,电极阵列50与视网膜101之间的相对位置不会发生变化,电极阵列50和视网膜101间的距离一致,降低了视网膜101受损风险, 提高了电极刺激的空间分辨率。可以理解的是,电极阵列50可以通过第三套管150植入到玻璃体腔601的生理盐水180中。本方式的电极阵列50不仅与视网膜101接触,还固定在视网膜101上。
本申请的固定装置避免了视网膜101外植入模式对钛钉的使用,降低或消除了钛钉穿刺和光凝等操作对视网膜101等眼内组织的损伤,以及由此造成的出血和炎症等技术问题。
从而,不管是视网膜101外植入技术和视网膜101下腔植入技术,本申请的固定装置均可以将电极阵列50固定在型腔60的内壁上,且使得电极阵列50与视网膜101接触。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种固定装置,用于将电极阵列固定在眼球的视网膜上,其特征在于,包括:第一套管、第二套管以及粘结剂,所述视网膜围成型腔,所述型腔内填充有惰性气体,所述电极阵列位于所述型腔内,且预贴合在所述型腔的内壁上,所述第一套管和所述第二套管间隔固定在眼球上,且均与所述型腔连通,所述第一套管用于惰性气体进入所述型腔,以使得所述型腔内填充所述惰性气体,所述第二套管用于液态的所述粘结剂注入所述型腔,以将所述电极阵列预粘结在所述型腔的内壁上,液态的所述粘结剂用于在固化后将所述电极阵列固定在所述型腔的内壁上,所述视网膜与所述电极阵列接触。
  2. 根据权利要求1所述的固定装置,其特征在于,所述固定装置还包括惰性气体注射器与第一注射针,所述第一注射针与所述惰性气体注射器连接,且所述第一注射针穿过所述第一套管伸入到所述型腔内,所述惰性气体注射器用于将惰性气体通过所述第一注射针注入到所述型腔内。
  3. 根据权利要求2所述的固定装置,其特征在于,所述固定装置还包括第二注射针,所述第二注射针穿过所述第二套管伸入在所述型腔内,用于将液态的所述粘结剂注入所述型腔内。
  4. 根据权利要求3所述的固定装置,其特征在于,所述固定装置还包括组织液注射器与双向阀,所述双向阀用于使得所述第一注射针与所述惰性气体注射器连接,或者使得所述第一注射针与所述组织液注射器连接,所述组织液注射器用于将玻璃体组织液通过所述第一注射针注入到所述型腔内。
  5. 根据权利要求4所述的固定装置,其特征在于,所述双向阀包括外壳、第一支路以及第二支路,所述第一支路与所述第二支路连接,所述第一支路与所述第二支路均位于所述外壳内,所述外壳上设有间隔设置的第一开口、第二开口与第三开口,所述第一支路在所述第一开口处与所述第一注射针连接,所述第二支路用于在所述第二开口处与所述惰性气体注射器连接,所述第二支路还用于切换至所述第三开口处与所述组织液注射器连接。
  6. 根据权利要求5所述的固定装置,其特征在于,所述固定装置还包括第三套管,所述第三套管固定在所述眼球上,且与所述型腔连通,所述第三套 管与所述第一套管以及与所述第二套管均间隔设置,所述第三套管用于玻璃体组织液从所述型腔内排出。
  7. 根据权利要求6所述的固定装置,其特征在于,所述固定装置还包括套管塞,所述套管塞用于在惰性气体注入所述型腔的过程中,盖合在所述第二套管上;或者,所述套管塞用于在所述型腔内为惰性气体时,盖合在所述第三套管上,以隔离所述型腔与外界。
  8. 根据权利要求7所述的固定装置,其特征在于,所述固定装置还包括第一注射导管与第二注射导管,所述第一注射导管连接在所述惰性气体注射器与所述第二开口之间,所述第二注射导管连接在所述组织液注射器与所述第三开口之间。
  9. 根据权利要求1所述的固定装置,其特征在于,所述型腔为所述视网膜与色素上皮层形成的空间,所述视网膜包括朝向所述色素上皮层的第一表面,所述电极阵列与所述第一表面接触。
  10. 根据权利要求1所述的固定装置,其特征在于,所述型腔为玻璃体腔,所述视网膜包括朝向所述玻璃体腔的第二表面,所述电极阵列与所述第二表面接触。
PCT/CN2020/137652 2020-12-18 2020-12-18 固定装置 WO2022126612A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137652 WO2022126612A1 (zh) 2020-12-18 2020-12-18 固定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137652 WO2022126612A1 (zh) 2020-12-18 2020-12-18 固定装置

Publications (1)

Publication Number Publication Date
WO2022126612A1 true WO2022126612A1 (zh) 2022-06-23

Family

ID=82059994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137652 WO2022126612A1 (zh) 2020-12-18 2020-12-18 固定装置

Country Status (1)

Country Link
WO (1) WO2022126612A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396583A (zh) * 2008-10-30 2009-04-01 上海交通大学 基于视盘微电极阵列的视觉假体装置
US20140058506A1 (en) * 2012-08-22 2014-02-27 University Of Southern California 3-coil wireless power transfer system for eye implants
CN105266957A (zh) * 2015-02-05 2016-01-27 浙江诺尔康神经电子科技股份有限公司 人工视网膜刺激电极及其制作方法
CN109568790A (zh) * 2018-11-26 2019-04-05 中山大学中山眼科中心 视觉重建装置
CN109621195A (zh) * 2019-01-28 2019-04-16 微智医疗器械有限公司 视网膜假体、植入装置及柔性电缆
CN110947094A (zh) * 2019-12-26 2020-04-03 东南大学 一种植入贴敷式神经电信号采集和功能电刺激电极阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396583A (zh) * 2008-10-30 2009-04-01 上海交通大学 基于视盘微电极阵列的视觉假体装置
US20140058506A1 (en) * 2012-08-22 2014-02-27 University Of Southern California 3-coil wireless power transfer system for eye implants
CN105266957A (zh) * 2015-02-05 2016-01-27 浙江诺尔康神经电子科技股份有限公司 人工视网膜刺激电极及其制作方法
CN109568790A (zh) * 2018-11-26 2019-04-05 中山大学中山眼科中心 视觉重建装置
CN109621195A (zh) * 2019-01-28 2019-04-16 微智医疗器械有限公司 视网膜假体、植入装置及柔性电缆
CN110947094A (zh) * 2019-12-26 2020-04-03 东南大学 一种植入贴敷式神经电信号采集和功能电刺激电极阵列

Similar Documents

Publication Publication Date Title
US5597381A (en) Methods for epi-retinal implantation
CA2257749C (en) Device for the intraocular transfer of active products by iontophoresis
US9192512B2 (en) Device for delivering medicines by transpalpebral electrophoresis
Walter et al. Cortical activation via an implanted wireless retinal prosthesis
EP2010116B1 (en) Compound subretinal prostheses with extra-ocular parts
Hesse et al. Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat
US7031776B2 (en) Methods for improving damaged retinal cell function
ES2733398T3 (es) Sistemas y métodos para administración sub-retiniana de agentes terapéuticos
US5025811A (en) Method for focal destruction of eye tissue by electroablation
JP4873897B2 (ja) 視覚再生補助装置
PT1434623E (pt) Dispositivo para a administração de medicamentos através de intoforese ou de electroporação
JP2005521433A (ja) 眼薬投与装置
US7398124B2 (en) Visual restoration aiding device
JPWO2002080816A1 (ja) 網膜刺激用電極部材、およびその電極部材を用いた人工網膜装置等
Schanze et al. Implantation and testing of subretinal film electrodes in domestic pigs
WO2022126612A1 (zh) 固定装置
CN109172129A (zh) 青光眼阀引流装置
US20110238133A1 (en) Electrical stimulation of the eye
CN214860597U (zh) 固定装置
CN109908467A (zh) 神经电刺激电极组件及其制备方法
CN114642830A (zh) 固定装置
Su et al. The visual cortical responses to sinusoidal transcorneal electrical stimulation
CN110302005A (zh) 一种后巩膜定量加压块及其使用方法
RU2147216C1 (ru) Способ лечения атрофий зрительного нерва методом электрофореза с электростимуляцией
Ameri et al. Biological considerations for an intraocular retinal prosthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965627

Country of ref document: EP

Kind code of ref document: A1