WO2022126420A1 - 多焦点超声波的生成装置及生成方法 - Google Patents

多焦点超声波的生成装置及生成方法 Download PDF

Info

Publication number
WO2022126420A1
WO2022126420A1 PCT/CN2020/136774 CN2020136774W WO2022126420A1 WO 2022126420 A1 WO2022126420 A1 WO 2022126420A1 CN 2020136774 W CN2020136774 W CN 2020136774W WO 2022126420 A1 WO2022126420 A1 WO 2022126420A1
Authority
WO
WIPO (PCT)
Prior art keywords
array element
ultrasonic
element group
parameters
target point
Prior art date
Application number
PCT/CN2020/136774
Other languages
English (en)
French (fr)
Inventor
郑海荣
林争荣
牛丽丽
孟龙
周伟
孟文
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022126420A1 publication Critical patent/WO2022126420A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/0026Stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers

Definitions

  • the invention relates to the technical field of ultrasonic applications, in particular to a multi-focus ultrasonic generation device and a generation method.
  • neuropsychiatric diseases especially Parkinson's disease, epilepsy, and depression
  • neuropsychiatric diseases especially Parkinson's disease, epilepsy, and depression
  • my country's population base is huge and the aging population is increasing year by year.
  • the prevention and treatment of neuropsychiatric diseases has become a heavy economic burden and social problem in our society.
  • physical brain stimulation neuromodulation technology deep brain stimulation, Deep Brain Stimulation; transcranial magnetic stimulation, Transcranial Magnetic Stimulation, etc.
  • ultrasound in addition to the classic electrical and magnetic regulation methods, ultrasound, as a mechanical wave, also has energy, and can deliver energy to deep nerve nuclei non-invasively.
  • the stimulation and regulation of ultrasound on neuronal cells opens up new horizons for non-invasive brain stimulation technology .
  • neuropsychiatric diseases is often not limited to the abnormal neuron function in a single nucleus, and is often directly related to the abnormality of multinucleus in the brain functional network.
  • dysfunction of multifunctional circuits plays a crucial role in the pathogenesis of epilepsy, which mainly includes hippocampal amygdala circuits, cortical-subcortical circuits, and basal ganglia circuits.
  • the existing physical brain stimulation neuromodulation technology has the following shortcomings: the application of deep brain stimulation technology needs to implant electrodes into the deep brain tissue through craniotomy, the stimulation target cannot be replaced, and the entire power supply equipment needs to be surgically implanted into the body Medium; Transcranial magnetic stimulation technology has bottlenecks such as insufficient stimulation depth, inability to focus, low stimulation resolution, and difficulty in determining the stimulation area; photosensitive gene regulation technology cannot be used for clinical brain disease treatment due to the need to transfect viral proteins; new Although ultrasound neuromodulation technology has unique advantages such as non-invasiveness, deep brain stimulation, and dynamic focus adjustment compared with the previous physical brain stimulation neuromodulation technologies, the preclinical research of ultrasound neuromodulation technology and the clinical research of some people are mainly used. Single focal stimulation is less effective for neuropsychiatric disease intervention.
  • the present invention provides a multi-focus ultrasound generating device and a generating method, which can accurately stimulate multiple target points in real time and dynamically as required.
  • the specific technical solution proposed by the present invention is to provide a multi-focus ultrasonic generation device, the generation device includes an ultrasonic excitation module, a control module, a monitoring module and a feedback module, and the ultrasonic excitation module includes a plurality of ultrasonic transducers,
  • the control module is used to respectively control the multiple ultrasonic transducers to transmit ultrasonic pulse signals to the multiple target points according to the ultrasonic parameters of the multiple targets, and the monitoring module is used to detect whether the ultrasonic pulse signals emitted by the ultrasonic transducers are not.
  • the feedback module is configured to send a feedback signal to the control module when the ultrasonic pulse signal emitted by the ultrasonic transducer is not focused on the target point, and the control module adjusts the ultrasonic transducer according to the feedback signal. position of the transducer, so that the ultrasonic pulse signal emitted by the ultrasonic transducer can be focused to the target point.
  • control module includes a modulation unit and a parameter determination unit, the parameter determination unit is used to determine the ultrasonic parameters of a plurality of target points, and the modulation unit is used to select a need to be turned on according to the ultrasonic parameter selection of the plurality of target points. of ultrasonic transducers.
  • control module further includes a delay unit, and the delay unit is configured to generate a time interval between the ultrasonic pulse signals emitted by each array element in the ultrasonic transducer.
  • the delay unit generates the time interval according to the position information and acoustic parameters of the target point, and the position information of the array elements of the ultrasonic transducer.
  • the acoustic parameters include density, sound velocity, and attenuation coefficient.
  • control module further includes an activation control unit, and the activation control unit is configured to control the array elements in the ultrasonic transducer to transmit ultrasonic pulse signals according to the time interval and the ultrasonic parameters.
  • each ultrasonic transducer includes a first array element group and a second array element group, the first array element group and the second array element group each include at least one array element, and the second array element group is composed of The first array element group is centered around the first array element group and is arranged radially toward the periphery.
  • the present invention also provides a method for generating multifocal ultrasound, the generating method comprising:
  • ultrasonic pulse signal stimulation is performed on the multiple target points respectively;
  • the outgoing direction of the ultrasonic pulse signal is adjusted so that the ultrasonic pulse signal is focused on the target point.
  • the ultrasonic pulse signal stimulation is performed on the multiple target points according to the ultrasonic parameters of the multiple target points, including:
  • the ultrasonic pulse signal stimulation is performed on the plurality of target points according to the time interval and the ultrasonic parameters.
  • time interval between the acquisition of ultrasonic pulse signals includes:
  • the time interval between ultrasonic pulse signals is calculated according to the position information and acoustic parameters of the target point, and the position information of the array elements of the ultrasonic transducer.
  • the multi-focus ultrasonic generation device controls a plurality of ultrasonic transducers to transmit ultrasonic pulse signals to a plurality of target points respectively through a control module, and then detects through a monitoring module whether the ultrasonic pulse signals emitted by the ultrasonic transducer are focused on the target target. and send a feedback signal to the control module through the feedback module when the ultrasonic pulse signal emitted by the ultrasonic transducer is not focused on the target point, and the control module adjusts the position of the ultrasonic transducer according to the feedback signal, so that the ultrasonic pulse signal is focused on the target Target points, so as to accurately stimulate multiple target points in real time and dynamically.
  • FIG. 1 is a schematic structural diagram of a device for generating multifocal ultrasonic waves in an embodiment of the present invention
  • Fig. 2 is the structural schematic diagram of the wearing part in the embodiment of the present invention.
  • 3a-3b are schematic diagrams of the arrangement of a plurality of array elements in an ultrasonic transducer according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an ultrasonic pulse signal in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for generating multifocal ultrasound in an embodiment of the present invention.
  • ultrasound interacts with human tissue, mainly using the wave effect of the interaction between sound waves and matter.
  • ultrasound also has three basic acoustic effects: mechanical effect, thermal effect and cavitation effect.
  • the object or biological tissue in the sound field is subjected to force due to the absorption, scattering and reflection of sound waves, and the energy of sound waves is converted into physical momentum, which is defined as ultrasonic radiation force in acoustics.
  • the non-invasive stimulation and regulation of deep brain nuclei by ultrasound has opened up new horizons for neuromodulation technology. Multi-level and multi-species studies have confirmed the effectiveness of transcranial ultrasound in regulating cranial nerves and intervening in different neuropsychiatry. application prospects for diseases.
  • neuropsychiatric diseases is closely related to the dysfunction of deep brain nuclei, and physical stimulation of the corresponding neuronal cells and nuclei can alleviate or cure symptoms.
  • the complexity of the pathogenesis of different neuropsychiatric diseases indicates that the treatment strategy should focus on the selection of "multi-target synergistic intervention", and realizing the stimulation of multiple different intracranial targets will contribute to the clinical efficacy of neuromodulation techniques.
  • This application proposes a multi-focus ultrasonic generation device, including an ultrasonic excitation module, a control module, a monitoring module and a feedback module.
  • the parameters respectively control multiple ultrasonic transducers to transmit ultrasonic pulse signals to multiple targets.
  • the monitoring module is used to detect whether the ultrasonic pulse signals emitted by the ultrasonic transducers are focused on the target points, and the feedback module is used to transmit ultrasonic pulse signals to the target.
  • a feedback signal is sent to the control module, and the control module adjusts the position of the ultrasonic transducer according to the feedback signal, so that the ultrasonic pulse signal emitted by the ultrasonic transducer is focused on the target point.
  • the device for generating multifocal ultrasonic waves controls a plurality of mutually independent ultrasonic transducers to transmit ultrasonic pulse signals to a plurality of target points respectively through a control module, thereby realizing multi-target point stimulation; then the monitoring module detects the ultrasonic transducers Whether the transmitted ultrasonic pulse signal is focused on the target point, and when the ultrasonic pulse signal is not focused on the target point, a feedback signal is sent to the control module through the feedback module, and the control module adjusts the position of the ultrasonic transducer according to the feedback signal, so that the ultrasonic pulse The signal is focused on the target, so as to accurately stimulate multiple targets in real time and dynamically, and realize the coordinated intervention of multiple targets.
  • the apparatus for generating multifocal ultrasound includes an ultrasound excitation module 1 , a control module 2 , a monitoring module 3 and a feedback module 4 .
  • the ultrasonic excitation module 1 includes a plurality of ultrasonic transducers 11
  • the control module 2 is used to respectively control the plurality of ultrasonic transducers 11 to transmit ultrasonic pulse signals to the plurality of target points according to the ultrasonic parameters of the plurality of target points
  • the monitoring module 3 uses
  • the feedback module 4 is used to send a feedback signal to the control module 2 when the ultrasonic pulse signal transmitted by the ultrasonic transducer 11 is not focused on the target point
  • the control module 2 adjusts the position of the ultrasonic transducer 11 according to the feedback signal, so that the ultrasonic pulse signal emitted by the ultrasonic transducer is focused to the target point.
  • each ultrasonic transducer 11 includes a plurality of array elements 110 and a bearing member 111 for carrying the plurality of array elements 110, and the plurality of array elements 110 work independently of each other.
  • Each array element 110 is an ultrasonic probe, and the target point is stimulated by the ultrasonic pulse signal emitted by each array element 110 .
  • the fundamental frequency of each array element 110 is 1 MHz, and the focus size is 5 mm.
  • the ultrasonic excitation module 1 in this embodiment further includes a wearing part 12 , the wearing part 12 is used to be worn on the user's head, and the shape of the wearing part 12 is consistent with the shape of the human head.
  • the plurality of ultrasonic transducers 11 are evenly distributed on the side of the wearing part 12 in contact with the head.
  • the arrangement of the array elements 110 in each ultrasonic transducer 11 may be the same or different.
  • the array elements 110 in each ultrasonic transducer 11 are arranged in different ways.
  • the arrangement of the plurality of array elements 110 may be a matrix array, and the distance between two adjacent array elements 110 is equal, as shown in FIG. 3a.
  • the multiple array elements 110 of the ultrasonic transducer are divided into a first array element group 200 and a second array element group 210.
  • the first array element group 200 and the second array element group 210 each include at least one array element 110, preferably , the second array element group 210 is centered on the first array element group 200 and is radially arranged around the first array element group 200, as shown in FIG. 3b, which exemplarily shows the first array element group 200.
  • the second array element group 210 includes two array elements 110.
  • the first array element group 200 and the second array element group 210 may include one array element 110, three array elements
  • the number of array elements 110 or more array elements 110, the first array element group 200 and the number of the array elements 110 in the second array element group 210 may be equal or unequal.
  • the included angles between two adjacent second array element groups 210 are equal, and the array elements 110 in the first array element group 200 and the second array element group 210 are arranged in a straight line. Sound field modulation can be better performed by arranging the second array element group 210 with the first array element group 200 as the center and around the first array element group 200 in a radial pattern toward the periphery, so as to obtain the required sound field.
  • the control module 2 includes a modulation unit 21 and a parameter determination unit 22.
  • the parameter determination unit 22 is used to determine the ultrasonic parameters of multiple target points
  • the modulation unit 21 is used to select the ultrasonic transducer that needs to be turned on according to the ultrasonic parameters of the multiple target points. device 11.
  • the parameter determination unit 22 obtains the ultrasound parameters of the target point according to the type of disease, the severity of the disease, the type of the target point and the required stimulation effect.
  • the ultrasonic parameters in this embodiment include fundamental frequency, pulse amplitude, pulse repetition frequency, pulse length, etc.
  • FIG. 4 exemplarily shows the fundamental frequency, pulse amplitude, pulse repetition frequency, and pulse length of an ultrasonic pulse signal.
  • the parameter determination unit 22 sends the ultrasonic parameters of the target point to the modulation unit 21, and the modulation unit 21 selects the corresponding target point according to the relative position of the target point and the ultrasonic transducer 11, the shape and depth of the target target point.
  • the ultrasonic transducer 11, for example, in one embodiment, can be selected according to the distance and angle between the target point and the ultrasonic transducer 11, that is, the ultrasonic transducer 11 closest to the target point is used as the ultrasonic transducer 11.
  • the excitation source of the target point when the distance is equal, can be selected according to the angle between the target point and the ultrasonic transducer 11, and the ultrasonic transducer 11 that stimulates the target point at the best angle is selected as the target source of excitation for the target.
  • the depth of the target point and the distance between the target point and the ultrasonic transducer 11 are selected to be the same, which will not be repeated here.
  • it can be selected according to the shape of the target point, and the ultrasonic transducer 11 whose arrangement of the array elements 110 in the ultrasonic transducer 11 best matches the shape of the target point is selected as the target point source of motivation.
  • the control module 2 further includes a delay unit 23, and the delay unit 23 is configured to generate a time interval between each array element 110 in the ultrasonic transducer 11 transmitting the ultrasonic pulse signal. There is a certain delay between two adjacent ultrasonic pulse signals emitted by each ultrasonic transducer 11, so that the target can be stimulated at different depths to achieve precise stimulation of the target.
  • the delay unit 23 generates the time interval between two adjacent ultrasonic pulse signals according to the position information and acoustic parameters of the target point and the position information of the array element 110 of the ultrasonic transducer 11, wherein the acoustic parameters of the target point include: Density, speed of sound, attenuation coefficient.
  • the control module 2 in this embodiment further includes an activation control unit 24, and the activation control unit 24 is configured to control the array elements 110 in each ultrasonic transducer 11 to emit ultrasonic pulse signals according to the time interval and ultrasonic parameters.
  • the plurality of array elements 110 in the ultrasonic transducer 11 are respectively connected to the activation control unit 24 to independently control each array element 110 in the plurality of ultrasonic transducers 11 .
  • the modulation unit 21 is connected to the activation control unit 24 through a plurality of mutually independent lines, so that the modulation unit 21 independently controls the plurality of ultrasonic transducers 11 to realize multi-target stimulation.
  • the monitoring module 3 detects whether the ultrasonic pulse signal emitted by the ultrasonic transducer 11 is focused to the target point according to the electrophysiological signal or image data.
  • the monitoring module 3 in this embodiment may be an imaging monitoring system or an electrophysiological monitoring system, wherein , Imaging monitoring system includes MEG, CT, f-MRI, MRS and other imaging systems, electrophysiological monitoring system includes EEG, ECG, EMG, heart rate, deep multi-channel electrophysiological monitoring system.
  • the feedback module 4 is used to send feedback information to the controller 2 when the monitoring module 3 detects that the ultrasonic pulse signal emitted by the ultrasonic transducer 11 is not focused on the target point, and fine-tune the ultrasonic transducer through the modulation unit 21 in the controller 2 11, so that the ultrasonic pulse signal emitted by the ultrasonic transducer 11 can be focused to the target point.
  • the feedback signal may be position information to be adjusted by the ultrasonic transducer 11 , and the feedback module 4 in this embodiment is also used to convert the feedback information into a digital signal and send it to the controller 2 .
  • the feedback module 4 provides feedback on the stimulation conditions of the target points, so as to accurately stimulate multiple target points in real time and dynamically, so as to realize the coordinated intervention of multiple target points.
  • this embodiment also provides a method for generating multifocal ultrasonic waves, and the generating method includes the steps:
  • S3. Determine whether the ultrasonic pulse signal is focused on the target point. If the ultrasonic pulse signal is not focused on the target point, adjust the exit direction of the ultrasonic pulse signal to focus the ultrasonic pulse signal on the target point.
  • the ultrasonic parameters of the multiple target points are acquired through the control module 2, and the multiple independent ultrasonic transducers 11 are respectively controlled to transmit ultrasonic pulse signals to the multiple target points according to the ultrasonic parameters of the multiple target points.
  • the parameter determination unit 22 in the control module 2 obtains the ultrasound parameters of the target point according to the type of disease, the severity of the disease, the type of the target point and the required stimulation effect.
  • the ultrasonic parameters in this embodiment include fundamental frequency, pulse amplitude, pulse repetition frequency, pulse length, and the like.
  • the modulation unit 21 in the control module 2 selects the ultrasonic transducer 11 to be turned on according to the ultrasonic parameters of the multiple target points.
  • Step S2 specifically includes:
  • the time interval between each array element 110 in the ultrasonic transducer 11 transmitting the ultrasonic pulse signal is generated by the delay unit 23 .
  • the activation control unit 24 in the control unit 2 controls the array elements 110 in each ultrasonic transducer 11 to transmit ultrasonic pulse signals according to the time interval and ultrasonic parameters.
  • Step S21 specifically includes:
  • S212 Calculate the time interval between ultrasonic pulse signals according to the position information and acoustic parameters of the target point, and the position information of the array elements of the ultrasonic transducer.
  • the delay unit 23 generates the time interval between two adjacent ultrasonic pulse signals according to the position information and acoustic parameters of the target point and the position information of the array element 110 of the ultrasonic transducer 11, wherein the acoustic parameters of the target point include: Density, speed of sound, attenuation coefficient.
  • the monitoring module 3 determines whether the ultrasonic pulse signal emitted by the ultrasonic transducer 11 is focused on the target point according to the electrophysiological signal or image data. If the monitoring module 3 detects that the ultrasonic pulse signal emitted by the ultrasonic transducer 11 is not focused on the target For the target point, the feedback module 4 sends feedback information to the controller 2, and the modulation unit 21 in the controller 2 fine-tunes the position of the ultrasonic transducer 11, so that the ultrasonic pulse signal emitted by the ultrasonic transducer 11 is focused on the target point.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种多焦点超声波的生成装置及生成方法,生成装置包括超声激励模块(1)、控制模块(2)、监测模块(3)及反馈模块(4),超声激励模块(1)包括多个超声换能器(11),控制模块(2)用于根据多个目标靶点的超声参数分别控制多个超声换能器(11)发射超声脉冲信号至多个目标靶点,监测模块(3)用于检测超声换能器(11)发射的超声脉冲信号是否聚焦至目标靶点,反馈模块(4)用于在超声换能器(11)发射的超声脉冲信号未聚焦至目标靶点时发送反馈信号至控制模块(2),控制模块(2)根据反馈信号调节超声换能器(11)的位置,以使超声换能器(11)发射的超声脉冲信号聚焦至目标靶点。多焦点超声波的生成装置能够根据需要实时、动态地对多个目标靶点进行精准刺激。

Description

多焦点超声波的生成装置及生成方法 技术领域
本发明涉及超声波应用技术领域,尤其涉及一种多焦点超声波的生成装置及生成方法。
背景技术
随着环境变化、人口老龄化以及社会生活节奏的加快和日益加剧的竞争,神经精神系统疾病,特别是帕金森病、癫痫、和抑郁症等已成为全球重大医学问题和沉重社会负担。同样,我国人口基数庞大、老龄化逐年提高,神经精神系统疾病预防和治疗已成为我国社会沉重的经济负担和社会问题。目前,物理性脑部刺激神经调控技术(脑深部电刺激,Deep Brain Stimulation;经颅磁刺激,Transcranial Magnetic Stimulation等)为神经精神系统疾病患者提供了一种安全有效的临床治疗手段。除了经典的电、磁调控手段,超声作为一种机械波,同样具有能量,能够无创的对深部神经核团投递能量,超声对神经元细胞的刺激与调控作用为无创脑刺激技术打开了新的视野。
神经精神系统疾病的发生往往不局限于单一核团内神经元功能异常,常常与脑功能网络中多核团异常有着直接联系。例如,多功能环路功能异常在癫痫的发病过程中扮演着至关重要的角色,这其中主要包含了海马杏仁核环路、皮层-皮层下环路、基底神经节环路等等。现有的物理性脑部刺激神经调控技术存在以下不足:深部脑刺激技术的应用需通过开颅手术将电极植入脑深部组织,刺激靶点无法更换,整个电源供给装备要手术植入到身体中;经颅磁刺激技术存在刺激的深度不够、无法聚焦、刺激分辨率低和刺激区域难以确定等瓶颈;光感基因调控技术由于需要转染病毒蛋白,所以无法用于临床脑疾病治疗;新型超声神经调控技术相对前几种物理性脑部刺激神经调控技术虽然具有无创、深部脑刺激、焦点动态可调等独特优势,但是,超声神经调控技术的临床前研究及部分人的临床研究主要应用单一焦点刺激,对神经精神系统疾病干预效果较差。
发明内容
为了解决现有技术的不足,本发明提供一种多焦点超声波的生成装置及生成方法,能够根据需要实时、动态地对多个目标靶点进行精准刺激。
本发明提出的具体技术方案为:提供一种多焦点超声波的生成装置,所述生成装置包括超声激励模块、控制模块、监测模块及反馈模块,所述超声激励模块包括多个超声换能器,所述控制模块用于根据多个目标靶点的超声参数分别控制多个超声换能器发射超声脉冲信号至多个目标靶点,所述监测模块用于检测超声换能器发射的超声脉冲信号是否聚焦至目标靶点,所述反馈模块用于在超声换能器发射的超声脉冲信号未聚焦至目标靶点时发送反馈信号至所述控制模块,所述控制模块根据所述反馈信号调节超声换能器的位置,以使超声换能器发射的超声脉冲信号聚焦至目标靶点。
进一步地,所述控制模块包括调制单元和参数确定单元,所述参数确定单元用于确定多个目标靶点的超声参数,所述调制单元用于根据多个目标靶点的超声参数选择需要开启的超声换能器。
进一步地,所述控制模块还包括延时单元,所述延时单元用于生成超声换能器中每一个阵元发射超声脉冲信号之间的时间间隔。
进一步地,所述延时单元根据目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息生成所述时间间隔。
进一步地,所述声学参数包括密度、声速、衰减系数。
进一步地,所述控制模块还包括启动控制单元,所述启动控制单元用于根据所述时间间隔和所述超声参数控制超声换能器中的阵元发射超声脉冲信号。
进一步地,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
本发明还提供了一种多焦点超声波的生成方法,所述生成方法包括:
获取多个目标靶点的超声参数;
根据多个目标靶点的超声参数分别对多个目标靶点进行超声脉冲信号刺激;
判断超声脉冲信号是否聚焦至目标靶点,若超声脉冲信号未聚焦至目标靶点,则调节超声脉冲信号的出射方向,以使超声脉冲信号聚焦至目标靶点。
进一步地,所述根据多个目标靶点的超声参数分别对多个目标靶点进行超声脉冲信号刺激,包括:
获取超声脉冲信号之间的时间间隔;
根据所述时间间隔、超声参数对多个目标靶点进行超声脉冲信号刺激。
进一步地,所述获取超声脉冲信号之间的时间间隔,包括:
获取目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息;
根据所述目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息计算超声脉冲信号之间的时间间隔。
本发明提供的多焦点超声波的生成装置通过控制模块分别控制多个超声换能器发射超声脉冲信号至多个目标靶点,再通过监测模块检测超声换能器发射的超声脉冲信号是否聚焦至目标靶点并在超声换能器发射的超声脉冲信号未聚焦至目标靶点时通过反馈模块发送反馈信号至控制模块,控制模块根据反馈信号调节超声换能器的位置,以使超声脉冲信号聚焦至目标靶点,从而实时、动态地对多个目标靶点进行精准刺激。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
图1为本发明实施例中的多焦点超声波的生成装置的结构示意图;
图2为本发明实施例中的佩戴部的结构示意图;
图3a~3b为本发明实施例中的超声换能器中多个阵元的排列方式的示意图;
图4为本发明实施例中的超声脉冲信号的示意图;
图5为本发明实施例中的多焦点超声波的生成方法的流程示意图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,相同的标号将始终被用于表示相同的元件。
医学超声波与人体组织相互作用,主要应用了声波与物质相互作用的波动效应。除了基本的物理特性,超声还具有力学效应、热效应和空化效应三大基本声学效应。声场中的物体或生物组织由于吸收、散射、反射声波,将声波的能量转化为物理的动量而受到力的作用,在声学中被定义为超声辐射力。在近年来,超声无创地对脑深部核团的刺激与调控作用为神经调控技术打开了新的视野,多层次,多物种的研究证实了经颅超声调控脑神经的有效性及干预不同神经精神类疾病的应用前景。
研究表明,神经精神疾病的发生与脑深部神经核团功能异常密切相关,物理性刺激相应的神经元细胞及神经核团可减轻或治愈症状。此外,不同神经精神疾病发病机制的复杂性表明治疗的策略应侧重于选择"多靶点协同干预",实现向颅内多个不同靶点的刺激将有助于神经调控技术的临床疗效。
本申请提出了一种多焦点超声波的生成装置,包括超声激励模块、控制模块、监测模块及反馈模块,超声激励模块包括多个超声换能器,控制模块用于根据多个目标靶点的超声参数分别控制多个超声换能器发射超声脉冲信号至多个目标靶点,监测模块用于检测超声换能器发射的超声脉冲信号是否聚焦至目标靶点,反馈模块用于在超声换能器发射的超声脉冲信号未聚焦至目标靶点时发送反馈信号至控制模块,控制模块根据反馈信号调节超声换能器的位置,以使超声换能器发射的超声脉冲信号聚焦至目标靶点。
本申请提供的多焦点超声波的生成装置通过控制模块分别控制多个相互独立的超声换能器发射超声脉冲信号至多个目标靶点,从而实现多靶点刺激;然后通过监测模块检测超声换能器发射的超声脉冲信号是否聚焦至目标靶点 并在超声脉冲信号未聚焦至目标靶点时通过反馈模块发送反馈信号至控制模块,控制模块根据反馈信号调节超声换能器的位置,以使超声脉冲信号聚焦至目标靶点,从而实时、动态地对多个目标靶点进行精准刺激,实现多靶点协同干预。
下面通过具体的实施例并结合附图来对本申请中的多焦点超声波的生成装置及生成方法进行详细的描述。
参照图1,本实施例提供的多焦点超声波的生成装置包括超声激励模块1、控制模块2、监测模块3及反馈模块4。
超声激励模块1包括多个超声换能器11,控制模块2用于根据多个目标靶点的超声参数分别控制多个超声换能器11发射超声脉冲信号至多个目标靶点,监测模块3用于检测超声换能器11发射的超声脉冲信号是否聚焦至目标靶点,反馈模块4用于在超声换能器11发射的超声脉冲信号未聚焦至目标靶点时发送反馈信号至控制模块2,控制模块2根据反馈信号调节超声换能器11的位置,以使超声换能器发射的超声脉冲信号聚焦至目标靶点。
具体地,本实施例中的多个超声换能器11之间相互独立工作,多个超声换能器11分别对多个目标靶点进行刺激。每一个超声换能器11包括多个阵元110以及用于承载多个阵元110的承载部件111,多个阵元110之间相互独立工作。每一个阵元110为一个超声探头,通过每一个阵元110发射的超声脉冲信号对目标靶点进行刺激。本实施例中每一个阵元110的基础频率为1MHz、焦点尺寸为5mm。
参照图2,本实施例中的超声激励模块1还包括佩戴部12,佩戴部12用于佩戴在用户的头部,其形状与人的头部的形状一致。多个超声换能器11均匀分布于佩戴部12与头部接触的一面。
每一个超声换能器11中的多个阵元110的排列方式可以相同,也可以不同。较佳地,每一个超声换能器11中的多个阵元110的排列方式不同。
参照图3a~3b,多个阵元110的排列方式可以为矩阵阵列,相邻两个阵元110之间的间距相等,如图3a所示。将超声换能器的多个阵元110分成第一阵元组200和第二阵元组210,第一阵元组200、第二阵元组210均包括至少一个阵元110,较佳地,第二阵元组210以第一阵元组200为中心并绕第一阵元组200呈朝 向四周的辐射状排列,如图3b所示,图3b示例性给出了第一阵元组200、第二阵元组210均包括两个阵元110,当然,在本实施例的其他实施方式中,第一阵元组200、第二阵元组210可以包括一个阵元110、三个阵元110或者更多个阵元110,第一阵元组200、第二阵元组210中的阵元110的数目可以相等,也可以不相等。相邻两个第二阵元组210之间的夹角相等,第一阵元组200、第二阵元组210中的阵元110呈直线排列。通过将第二阵元组210以第一阵元组200为中心并绕第一阵元组200呈朝向四周的辐射状排列可以更好进行声场调制,以获得所需要的声场。
控制模块2包括调制单元21和参数确定单元22,参数确定单元22用于确定多个目标靶点的超声参数,调制单元21用于根据多个目标靶点的超声参数选择需要开启的超声换能器11。
具体地,参数确定单元22根据疾病类型、病情严重性、目标靶点的类型以及所需要的刺激效果来获取目标靶点的超声参数。本实施例中的超声参数包括基础频率、脉冲幅度、脉冲重复频率、脉冲长度等,图4示例性的示出了一个超声脉冲信号的基础频率、脉冲幅度、脉冲重复频率、脉冲长度。
参数确定单元22将目标靶点的超声参数发送给调制单元21,调制单元21根据目标靶点与超声换能器11的相对位置、目标靶点的形状和深度来选择与该目标靶点对应的超声换能器11,例如,在一种实施方式中,可以根据目标靶点与超声换能器11之间的距离和角度来选择,即将离该目标靶点最近的超声换能器11作为该目标靶点的激励源,当距离相等时,可以根据目标靶点与超声换能器11之间的角度来选择,选择以最佳角度对目标靶点进行刺激的超声换能器11作为该目标靶点的激励源。目标靶点的深度与目标靶点和超声换能器11之间的距离选择远离相同,这里不再赘述。在另一种实施方式中,可以根据目标靶点的形状来选择,选择超声换能器11中阵元110的排列方式与目标靶点的形状最匹配的超声换能器11作为该目标靶点的激励源。
控制模块2还包括延时单元23,延时单元23用于生成超声换能器11中每一个阵元110发射超声脉冲信号之间的时间间隔。每一个超声换能器11中发射的相邻两次超声脉冲信号之间存在一定延时,从而可以对目标靶点进行不同深度的刺激,以实现对目标靶点的精准刺激。
延时单元23根据目标靶点的位置信息和声学参数、超声换能器11的阵元110的位置信息生成相邻两次超声脉冲信号之间的时间间隔,其中,目标靶点的声学参数包括密度、声速、衰减系数。
本实施例中的控制模块2还包括启动控制单元24,启动控制单元24用于根据时间间隔和超声参数控制每个超声换能器11中的阵元110发射超声脉冲信号。超声换能器11中的多个阵元110分别与启动控制单元24连接,以对多个超声换能器11中的每一个阵元110进行独立控制。其中,调制单元21通过多个相互独立的线路与启动控制单元24连接,使得调制单元21对多个超声换能器11进行独立控制,以实现多靶点刺激。
监测模块3根据电生理信号或者影像数据来检测超声换能器11发射的超声脉冲信号是否聚焦至目标靶点,本实施例中的监测模块3可以为影像学监测系统或电生理监测系统,其中,影像学监测系统包括MEG、CT、f-MRI、MRS等成像系统,电生理监测系统包括脑电、心电、肌电、心率、深部多通道电生理监测系统。
反馈模块4用于在监测模块3检测到超声换能器11发射的超声脉冲信号未聚焦至目标靶点时发送反馈信息至控制器2,通过控制器2中的调制单元21微调超声换能器11的位置,以使超声换能器11发射的超声脉冲信号聚焦至目标靶点。其中,反馈信号可以是超声换能器11需要调节的位置信息,本实施例中的反馈模块4还用于将反馈信息转换为数字信号发送给控制器2。
本实施例通过反馈模块4对目标靶点的刺激情况进行反馈,从而实时、动态地对多个目标靶点进行精准刺激,实现多靶点协同干预。
参照图5,本实施例还提供还提供了一种多焦点超声波的生成方法,所述生成方法包括步骤:
S1、获取多个目标靶点的超声参数;
S2、根据多个目标靶点的超声参数分别对多个目标靶点进行超声脉冲信号刺激;
S3、判断超声脉冲信号是否聚焦至目标靶点,若超声脉冲信号未聚焦至目标靶点,则调节超声脉冲信号的出射方向,以使超声脉冲信号聚焦至目标靶点。
通过控制模块2获取多个目标靶点的超声参数并根据多个目标靶点的超声参数分别控制多个相互独立的超声换能器11发射超声脉冲信号至多个目标靶点。
具体地,通过控制模块2中的参数确定单元22根据疾病类型、病情严重性、目标靶点的类型以及所需要的刺激效果来获取目标靶点的超声参数。本实施例中的超声参数包括基础频率、脉冲幅度、脉冲重复频率、脉冲长度等。通过控制模块2中的调制单元21根据多个目标靶点的超声参数选择需要开启的超声换能器11。
步骤S2具体包括:
S21、获取超声脉冲信号之间的时间间隔;
S22、根据时间间隔、超声参数对多个目标靶点进行超声脉冲信号刺激。
通过延时单元23生成超声换能器11中每一个阵元110发射超声脉冲信号之间的时间间隔。每一个超声换能器11中发射的相邻两次超声脉冲信号之间存在一定延时,从而可以对目标靶点进行不同深度的刺激,以实现对目标靶点的精准刺激。通过控制单元2中的启动控制单元24根据时间间隔和超声参数控制每个超声换能器11中的阵元110发射超声脉冲信号。
步骤S21具体包括:
S211、获取目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息;
S212、根据目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息计算超声脉冲信号之间的时间间隔。
延时单元23根据目标靶点的位置信息和声学参数、超声换能器11的阵元110的位置信息生成相邻两次超声脉冲信号之间的时间间隔,其中,目标靶点的声学参数包括密度、声速、衰减系数。
通过监测模块3根据电生理信号或者影像数据来判断超声换能器11发射的超声脉冲信号是否聚焦至目标靶点,如果监测模块3检测到超声换能器11发射的超声脉冲信号未聚焦至目标靶点,反馈模块4发送反馈信息至控制器2,通过 控制器2中的调制单元21微调超声换能器11的位置,以使超声换能器11发射的超声脉冲信号聚焦至目标靶点。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (15)

  1. 一种多焦点超声波的生成装置,其中,所述生成装置包括超声激励模块、控制模块、监测模块及反馈模块,所述超声激励模块包括多个超声换能器,所述控制模块用于根据多个目标靶点的超声参数分别控制多个超声换能器发射超声脉冲信号至多个目标靶点,所述监测模块用于检测超声换能器发射的超声脉冲信号是否聚焦至目标靶点,所述反馈模块用于在超声换能器发射的超声脉冲信号未聚焦至目标靶点时发送反馈信号至所述控制模块,所述控制模块根据所述反馈信号调节超声换能器的位置,以使超声换能器发射的超声脉冲信号聚焦至目标靶点。
  2. 根据权利要求1所述的生成装置,其中,所述控制模块包括调制单元和参数确定单元,所述参数确定单元用于确定多个目标靶点的超声参数,所述调制单元用于根据多个目标靶点的超声参数选择需要开启的超声换能器。
  3. 根据权利要求2所述的生成装置,其中,所述控制模块还包括延时单元,所述延时单元用于生成超声换能器中每一个阵元发射超声脉冲信号之间的时间间隔。
  4. 权利要求3所述的生成装置,其中,所述延时单元根据目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息生成所述时间间隔。
  5. 根据权利要求4所述的生成装置,其中,所述声学参数包括密度、声速、衰减系数。
  6. 根据权利要求3所述的生成装置,其中,所述控制模块还包括启动控制单元,所述启动控制单元用于根据所述时间间隔和所述超声参数控制超声换能器中的阵元发射超声脉冲信号。
  7. 根据权利要求1所述的生成装置,其中,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
  8. 根据权利要求2所述的生成装置,其中,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述 第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
  9. 根据权利要求3所述的生成装置,其中,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
  10. 根据权利要求4所述的生成装置,其中,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
  11. 根据权利要求5所述的生成装置,其中,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
  12. 根据权利要求6所述的生成装置,其中,每一个超声换能器包括第一阵元组和第二阵元组,所述第一阵元组、第二阵元组均包括至少一个阵元,所述第二阵元组以所述第一阵元组为中心并绕所述第一阵元组呈朝向四周的辐射状排列。
  13. 一种多焦点超声波的生成方法,其中,所述生成方法包括:
    获取多个目标靶点的超声参数;
    根据多个目标靶点的超声参数分别对多个目标靶点进行超声脉冲信号刺激;
    判断超声脉冲信号是否聚焦至目标靶点,若超声脉冲信号未聚焦至目标靶点,则调节超声脉冲信号的出射方向,以使超声脉冲信号聚焦至目标靶点。
  14. 根据权利要求13所述的生成方法,其中,所述根据多个目标靶点的超声参数分别对多个目标靶点进行超声脉冲信号刺激,包括:
    获取超声脉冲信号之间的时间间隔;
    根据所述时间间隔、超声参数对多个目标靶点进行超声脉冲信号刺激。
  15. 根据权利要求14所述的生成方法,其中,所述获取超声脉冲信号之间的时间间隔,包括:
    获取目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息;
    根据所述目标靶点的位置信息和声学参数、超声换能器的阵元的位置信息计算超声脉冲信号之间的时间间隔。
PCT/CN2020/136774 2020-12-14 2020-12-16 多焦点超声波的生成装置及生成方法 WO2022126420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011475373.6A CN112604191A (zh) 2020-12-14 2020-12-14 多焦点超声波的生成装置及生成方法
CN202011475373.6 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022126420A1 true WO2022126420A1 (zh) 2022-06-23

Family

ID=75234042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136774 WO2022126420A1 (zh) 2020-12-14 2020-12-16 多焦点超声波的生成装置及生成方法

Country Status (2)

Country Link
CN (1) CN112604191A (zh)
WO (1) WO2022126420A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114308156B (zh) * 2021-12-23 2023-03-17 深圳先进技术研究院 一种超声移液装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427927A (zh) * 2007-11-09 2009-05-13 深圳迈瑞生物医疗电子股份有限公司 超声成像系统中多焦点拼接的实现方法
CN101642607A (zh) * 2009-09-01 2010-02-10 西安交通大学 基于阵列换能器的低强度聚焦超声药物控释与监控装置
US20140100458A1 (en) * 2012-10-08 2014-04-10 Samsung Electronics Co., Ltd. Method, apparatus, and system for measuring propagation of shear wave using ultrasound transducer
CN109069115A (zh) * 2017-06-06 2018-12-21 深圳迈瑞生物医疗电子股份有限公司 一种在超声扫描中成像的方法、装置及系统
CN110465008A (zh) * 2019-08-28 2019-11-19 黄晶 一种聚焦超声治疗系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649876B2 (en) * 2005-09-10 2014-02-11 Artann Laboratories Inc. Leadless system for deep brain stimulation using time reversal acoustics
KR20140132811A (ko) * 2013-05-06 2014-11-19 삼성전자주식회사 초음파 영상 장치 및 그 제어 방법
CN105536156A (zh) * 2015-12-25 2016-05-04 中国科学院深圳先进技术研究院 一种基于大规模面阵元的超声脑刺激或调控方法及装置
CN105999569B (zh) * 2016-05-04 2019-03-12 中国科学院深圳先进技术研究院 一种多阵元换能器的阵元选择装置、方法和超声刺激系统
KR101850801B1 (ko) * 2016-09-05 2018-04-23 한국과학기술연구원 Mri 장치 내에서 이용되는 초음파 자극 장치
CN110090364B (zh) * 2019-04-30 2021-12-21 四川省人民医院 一种贴壁充电式超声正性肌力治疗装置
CN110507918A (zh) * 2019-09-17 2019-11-29 深圳先进技术研究院 一种超声针灸系统和超声针灸系统控制方法
CN111529970B (zh) * 2020-04-20 2023-06-27 内江师范学院 一种头戴式多通道超声神经刺激装置及方法
CN111863227A (zh) * 2020-06-16 2020-10-30 中国科学院深圳先进技术研究院 超声聚焦控制方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427927A (zh) * 2007-11-09 2009-05-13 深圳迈瑞生物医疗电子股份有限公司 超声成像系统中多焦点拼接的实现方法
CN101642607A (zh) * 2009-09-01 2010-02-10 西安交通大学 基于阵列换能器的低强度聚焦超声药物控释与监控装置
US20140100458A1 (en) * 2012-10-08 2014-04-10 Samsung Electronics Co., Ltd. Method, apparatus, and system for measuring propagation of shear wave using ultrasound transducer
CN109069115A (zh) * 2017-06-06 2018-12-21 深圳迈瑞生物医疗电子股份有限公司 一种在超声扫描中成像的方法、装置及系统
CN110465008A (zh) * 2019-08-28 2019-11-19 黄晶 一种聚焦超声治疗系统

Also Published As

Publication number Publication date
CN112604191A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
US11253730B2 (en) Ultrasound deep brain stimulation method and system
US10143843B2 (en) Systems and methods for stimulating cellular function in tissue
US7771341B2 (en) Electromagnetic brain animation
WO2017107230A1 (zh) 一种基于大规模面阵元的超声脑刺激或调控方法及装置
US20120197163A1 (en) Patterned control of ultrasound for neuromodulation
US20160038770A1 (en) Focused transcranial ultrasound systems and methods for using them
US20090149782A1 (en) Non-Invasive Neural Stimulation
US20110270138A1 (en) Ultrasound macro-pulse and micro-pulse shapes for neuromodulation
Gavrilov et al. Focused ultrasound as a tool to input sensory information to humans
US20130144192A1 (en) Ultrasound neuromodulation treatment of anxiety (including panic attacks) and obsessive-compulsive disorder
US20120283604A1 (en) Ultrasound neuromodulation treatment of movement disorders, including motor tremor, tourette's syndrome, and epilepsy
US20130178765A1 (en) Ultrasound neuromodulation of spinal cord
US20130184728A1 (en) Ultrasound Neuromodulation for Diagnosis and Other-Modality Preplanning
US20120226091A1 (en) Ultrasound neuromodulation treatment of pain
WO2017113179A1 (zh) 头戴式超声刺激设备及系统
CN102793980A (zh) 双频聚焦超声系统
WO2022126420A1 (zh) 多焦点超声波的生成装置及生成方法
Liu et al. A noninvasive deep brain stimulation method via temporal-spatial interference magneto-acoustic effect: simulation and experimental validation
US20130066239A1 (en) Ultrasound neuromodulation of the brain, nerve roots, and peripheral nerves
WO2023108876A1 (zh) 全息超声跨颅与神经环路调控系统及其设计方法
US20140088462A1 (en) Ultrasound neuromodulation treatment of gastrointestinal motility disorders
WO2024109759A1 (zh) 一种变频超声调控装置
Vion‐Bailly et al. Neurostimulation success rate of repetitive‐pulse focused ultrasound in an in vivo giant axon model: An acoustic parametric study
Machado et al. Low intensity focused ultrasound modulation of neural circuits activity
Zhu et al. A novel noninvasive multi-target electrical stimulation method: simulation and experimental validation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3170579

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965438

Country of ref document: EP

Kind code of ref document: A1