WO2022126304A1 - Modified helicase and application thereof - Google Patents

Modified helicase and application thereof Download PDF

Info

Publication number
WO2022126304A1
WO2022126304A1 PCT/CN2020/136031 CN2020136031W WO2022126304A1 WO 2022126304 A1 WO2022126304 A1 WO 2022126304A1 CN 2020136031 W CN2020136031 W CN 2020136031W WO 2022126304 A1 WO2022126304 A1 WO 2022126304A1
Authority
WO
WIPO (PCT)
Prior art keywords
helicase
amino
seq
polynucleotide
acid
Prior art date
Application number
PCT/CN2020/136031
Other languages
French (fr)
Chinese (zh)
Inventor
王慕旸
张周刚
吕伟丽
王艳双
陈呈尧
Original Assignee
北京齐碳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京齐碳科技有限公司 filed Critical 北京齐碳科技有限公司
Priority to PCT/CN2020/136031 priority Critical patent/WO2022126304A1/en
Priority to CN202080107912.2A priority patent/CN116601297A/en
Publication of WO2022126304A1 publication Critical patent/WO2022126304A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • Nanopore sequencing utilizes nanopores that provide channels for ionic current. Electrophoresis drives the polynucleotide through the nanopore, and as the polynucleotide passes through the nanopore, it reduces the current through the nanopore. A characteristic current is obtained for each passing nucleotide or series of nucleotides, and the recording of the current level corresponds to the polynucleotide sequence.
  • strand sequencing a single polynucleotide strand passes through the pore and enables identification of nucleotides. Strand sequencing can include the use of a nucleotide processing protein, such as a helicase, to control the movement of the polynucleotide through the pore.
  • patent WO2013057495A3 discloses a new method for characterizing target polynucleotides, which includes controlling the movement of target polynucleotides through a pore by Hel308 helicase or molecular motors.
  • Patent US20150065354A1 discloses a method for characterizing target polynucleotides using XPD helicase, the method comprising controlling the movement of target polynucleotides through a pore by the XPD helicase.
  • Patent CN107109380A discloses a modified enzyme, which is a modified Dda helicase that can control the movement of a target polynucleotide through a pore.
  • the introduced cysteine and the cysteine are connected to each other, and the introduced cysteine Interconnection between unnatural amino acids and unnatural amino acids, between introduced cysteine and unnatural amino acids, between introduced cysteine and natural amino acids, or between introduced unnatural amino acids and natural amino acids connected to each other.
  • the linkage may be permanent, such as a covalent linkage.
  • Covalent attachment can be carried out using chemical crosslinkers, which can vary in length from one carbon (phosgene type linker) to multiple Angstroms.
  • chemical crosslinkers can vary in length from one carbon (phosgene type linker) to multiple Angstroms.
  • the F8813 helicase is further modified to reduce the negative charge on its surface.
  • the fifth aspect of the present invention provides a host cell, the host cell comprising the nucleic acid of the present invention or the expression vector of the present invention.
  • a tenth aspect of the present invention provides a method for characterizing a target polynucleotide, the method comprising:
  • the pores include but are not limited to those derived from M. smegmatis porin A, M. smegmatis porin B, M. smegmatis porin C, smegmatis porin Mycobacterial porin D, hemolysin, lysin, interleukin, outer membrane porin F, outer membrane porin G, outer membrane phospholipase A, WZA or Neisseria autotransport lipoprotein and the like.
  • the rate of passage of the target polynucleotide through the pore is controlled by the F8813 helicase or construct, resulting in an identifiable stable current level for target determination Characterization of polynucleotides.
  • the target polynucleotide is single-stranded, double-stranded or at least partially double-stranded.
  • the product is selected from kits, devices or sensors.
  • the device includes a sensor that supports the plurality of pores and transmits a signal that the pores interact with the polynucleotide, and at least one memory for storing the polynucleotide of interest, and necessary for carrying out the characterization process. solution.
  • the seventeenth aspect of the present invention provides two or more helicases linked to a polynucleotide, wherein at least one of the two or more helicases is the F8813 of the present invention helicase.
  • between the F8813 helicase and the wild-type F8813 helicase between the F8813 helicase and the F8813 helicase, between the wild-type F8813 helicase and the wild-type F8813 helicase, and between the F8813 helicase
  • they can be connected or arranged in a head-to-head, tail-to-tail or head-to-tail manner.
  • the "F8813 helicase", “construct” or “pore” of the invention can be modified to aid in identification or purification, for example by adding histidine residues (His tag), aspartic acid residues base (asp tag), streptavidin tag, Flag tag, SUMO tag, GST tag or MBP tag, or by adding a signal sequence to facilitate their secretion from cells in which the polypeptide does not naturally contain the signal sequence .
  • His tag histidine residues
  • asp tag aspartic acid residues base
  • streptavidin tag Flag tag
  • Flag tag SUMO tag
  • GST tag GST tag
  • MBP tag GST tag
  • An alternative way of introducing a genetic tag is to chemically link the tag to a natural or artificial site on the F8813 helicase, pore or construct.
  • Figure 3 shows the F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 reaction mixture (SEQ ID NO: 1, mutations C172V/C217A/D284C/S589C/C594A linked by bismaleimide PEG3 linker) and F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG4 reaction mixture (SEQ ID NO: 1, mutation C172V/C217A/D284C/S589C/C594A via bismaleimide PEG4 linker ligated) Coomassie-stained 4-20% SDS-PAGE gel.
  • Fig. 7 is a graph showing the time-dependent displacement ratio of dsDNA in a buffer containing 400 mM NaCl.
  • SEQ ID NO: 1 The coding sequence of SEQ ID NO: 1 of C172V/C217A/D284C/S589C/C594A was obtained and optimized to obtain SEQ ID NO:2.
  • the fluorogenic substrate strand (final concentration 100 nM) has a 3'-end ssDNA overhang, and a 50-base hybridized dsDNA portion.
  • the upper part of the main chain has carboxyfluorescein (5'FAM-SEQ ID NO: 9) at the 5' end, and the hybridized complementary strand has a black hole quencher (BHQ-1) base (SEQ ID NO: 9) at the 3' end. NO:10--BHQ-3').
  • BHQ-1 black hole quencher
  • the substrate is essentially non-fluorescent.
  • a 0.5 ⁇ M capture strand complementary to the shorter strand (SEQ ID NO: 11).
  • F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide-PEG3 (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A was linked to bismaleimide-PEG3) and F8813_C172V /C217A/D284C/S589C/C594A-bismaleimide-PEG4 (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A linked to bismaleimide-PEG4) buffer exchanged to 20 mM HEPES , 50 mM NaCl, 1 mM DTT, 50% glycerol, 0.1 mM EDTA, pH 8.0.
  • FIG. 4 The results show that the DNA construct is mobilized by F8813 helicase-controlled DNA, and the results of F8813 helicase-controlled DNA mobilization are shown in FIG. 4 .
  • the DNA movement controlled by the F8813 helicase was 24 seconds long and corresponded to the translocation of the DNA construct of nearly 200 bp through the nanopore.
  • Figure 5 shows an enlarged view of a partial region of DNA movement controlled by the F8813 helicase.
  • This example shows how a DNA-containing leader is linked to RNA to facilitate loading of a DNA helicase, namely F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (with mutation C172V/C217A/D284C/S589C/ SEQ ID NO: 1 of C594A linked to bismaleimide-PEG3) and then observed that helicases control the movement of RNA through the nanopore. 0.28kb RNA was obtained by in vitro transcription. The DNA-containing leader region is ligated to the 3' end of the RNA. The F8813 helicase was then loaded into the DNA ligation site in the leader and the substrate was analyzed through the nanopore.
  • a DNA helicase namely F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (with mutation C172V/C217A/D284C/S5
  • DNA-RNA construct B as shown in Figure 8: SEQ ID NO: 13 with 3' end linked to 20 iSpC3 spacers and its 5' end linked to 4 iSpC3 spacers linked to SEQ ID NO : the 3' end of SEQ ID NO: 14, the 5' end of this SEQ ID NO: 14 is linked by annealing to the RNA single strand SEQ ID NO: 15, the SEQ ID NO: 16 region of the construct is identical to SEQ ID NO: 7 (which has 3 'cholesterol tether) hybridization.
  • DNA-RNA construct B in buffer in 50 mM NaCl, 10 mM Tris pH 7.5 was combined with F8813_C172V/C217A/D284C/S589C/C594A-double in buffer (50 mM KCl, 10 mM HEPES, pH 8.0) Maleimide PEG3 was pre-incubated for 30 min at room temperature. Buffer (10 mM HEPES, 600 mM KCl, pH 8.0, 3 mM MgCl 2 ) and ATP were then added to the premix.

Abstract

Provided are a modified F8813 helicase, a construct comprising the modified F8813 helicase, and an application in characterizing a target polynucleotide or controlling the movement of a target polynucleotide passing through pores. Also provided are a method for controlling the movement of a polynucleotide or a method for characterizing the target polynucleotide. The modified F8813 helicase can be used to control the translocation of a DNA chain through transmembrane pores in DNA chain sequencing, and also can realize direct RNA sequencing. Moreover, the modified helicase can remain bound to the polynucleotide for a longer time, thereby reducing the phenomenon of being released from a polynucleotide of a sequenced polynucleotide.

Description

一种经修饰的解旋酶及其应用A kind of modified helicase and its application 技术领域technical field
本发明涉及基因测序、分子检测、临床检测技术领域,具体涉及一种经修饰的解旋酶,一种包含解旋酶的复合体结构及其在表征目标多核苷酸或控制目标多核苷酸穿过孔的运动中的应用。The present invention relates to the technical fields of gene sequencing, molecular detection and clinical detection, in particular to a modified helicase, a complex structure comprising the helicase and its function in characterizing target polynucleotides or controlling the penetration of target polynucleotides. Application of the movement of vias.
背景技术Background technique
纳米孔测序技术指以单个核酸分子为测量单元,利用纳米孔对其序列信息进行即时连续读取的基因测序技术。这种测序技术的优势在于建库简单,无需扩增;读取速度快,对单个分子可以达到每小时上万碱基的读取速度;读长非常长,通常在上千碱基;有可能可以对RNA和DNA甲基化进行直接测量。这些都是现有的二代测序技术所无法达到的。但是,纳米孔测序的常见问题是长链多核苷酸通过纳米孔的易位过快以至于单个核苷酸的电流电平过短而难以分辨。在对多核苷酸,尤其是500个核苷酸或更多个核苷酸的测序过程中存在的问题是控制多核苷酸移动的分子马达可能会从多核苷酸上解脱。这允许多核苷酸在施加的场的方向上以不受控的方式被迅速拉动穿过所述孔。Nanopore sequencing technology refers to a gene sequencing technology that uses a single nucleic acid molecule as a measurement unit and uses nanopores to continuously read its sequence information in real time. The advantage of this sequencing technology is that it is simple to build a library and does not require amplification; the reading speed is fast, and the reading speed of a single molecule can reach tens of thousands of bases per hour; the read length is very long, usually in the thousands of bases; it is possible Direct measurements of RNA and DNA methylation can be performed. These are all beyond the reach of existing next-generation sequencing technologies. However, a common problem with nanopore sequencing is that the translocation of long polynucleotides through the nanopore is so fast that the current levels of individual nucleotides are too short to be resolved. A problem in the sequencing of polynucleotides, especially 500 nucleotides or more, is that the molecular motors that control the movement of polynucleotides may become disengaged from the polynucleotide. This allows the polynucleotide to be pulled through the pore rapidly in an uncontrolled manner in the direction of the applied field.
纳米孔测序利用了可以为离子电流提供通道的纳米孔。电泳驱动多核苷酸通过纳米孔,并且由于多核苷酸穿过纳米孔,因此它降低了通过纳米孔的电流。每个通过的核苷酸或一系列核苷酸获得了特征电流,并且对电流电平的记录对应于多核苷酸序列。在“链测序”方法中,单个多核苷酸链穿过所述孔并能实现对核苷酸的鉴定。链测序可包括使用核苷酸处理蛋白,诸如解旋酶,以控制所述多核苷酸穿过所述孔的移动。例如,专利WO2013057495A3公开了一种新的表征目标多核苷酸的方法,所述的方法包括通过Hel308解旋酶或分子马达控制目标多核苷酸穿过孔的移动。专利US20150065354A1公开了一种使用XPD解旋酶表征目标多核苷酸的方法,所述的方法包括通过XPD解旋酶控制目标多核苷酸穿过孔的移动。专利CN107109380A公开了一种经修饰的酶,该酶为可以控制目标多核苷酸穿过孔的移动的经修饰的Dda解旋酶。但是,上述现有技术并没有公 开本申请提供的既可以实现在DNA链测序中控制其穿过跨膜孔的移位,也可以实现对RNA的直接测序的经修饰的F8813解旋酶。Nanopore sequencing utilizes nanopores that provide channels for ionic current. Electrophoresis drives the polynucleotide through the nanopore, and as the polynucleotide passes through the nanopore, it reduces the current through the nanopore. A characteristic current is obtained for each passing nucleotide or series of nucleotides, and the recording of the current level corresponds to the polynucleotide sequence. In the "strand sequencing" method, a single polynucleotide strand passes through the pore and enables identification of nucleotides. Strand sequencing can include the use of a nucleotide processing protein, such as a helicase, to control the movement of the polynucleotide through the pore. For example, patent WO2013057495A3 discloses a new method for characterizing target polynucleotides, which includes controlling the movement of target polynucleotides through a pore by Hel308 helicase or molecular motors. Patent US20150065354A1 discloses a method for characterizing target polynucleotides using XPD helicase, the method comprising controlling the movement of target polynucleotides through a pore by the XPD helicase. Patent CN107109380A discloses a modified enzyme, which is a modified Dda helicase that can control the movement of a target polynucleotide through a pore. However, the above-mentioned prior art does not disclose the modified F8813 helicase provided by the present application, which can not only realize the control of its translocation through the transmembrane pore in the DNA strand sequencing, but also realize the direct sequencing of RNA.
直接RNA测序的益处和应用是巨大的,比如直接信使RNA测序提供了对生物体动态的观察,包括用于健康筛查;例如某些癌症的转移过程和心脏病。直接RNA测序可快速确认病人、动物或农作物所感染RNA病毒的种类,另外,在调查农作物的抗病性中应用,确定农作物对应激因素,例如干旱、紫外线和盐度的反应,以及在胚胎发育过程的细胞分化和决定中应用。对于RNA,特别是500个或更多的核苷酸的RNA的直接测序中的问题是寻找合适的能够控制RNA穿过跨膜孔的移位的分子马达。对于表征或测序多核苷酸,需要RNA聚合物的持续移动和读取长片段聚合物的能力。The benefits and applications of direct RNA sequencing, such as direct messenger RNA sequencing, provide insight into the dynamics of organisms, including for health screening; for example, the metastatic process of certain cancers and heart disease. Direct RNA sequencing can rapidly identify the type of RNA virus infecting a patient, animal or crop, and has applications in investigating crop disease resistance, determining crop response to stressors such as drought, UV, and salinity, and in embryonic development. Processes of cellular differentiation and decision applications. The problem in direct sequencing of RNAs, especially RNAs of 500 or more nucleotides, is to find suitable molecular motors capable of controlling the translocation of RNAs across transmembrane pores. For characterizing or sequencing polynucleotides, continuous movement of RNA polymers and the ability to read long polymers are required.
因此,本发明提供了一种经修饰的解旋酶,其既可以实现在DNA链测序中控制其穿过跨膜孔的移位,也可以实现对RNA的直接测序。Accordingly, the present invention provides a modified helicase that can both control its translocation across a transmembrane pore in DNA strand sequencing and enable direct sequencing of RNA.
发明内容SUMMARY OF THE INVENTION
基于纳米孔测序中多核苷酸通过纳米孔的易位过快、不能准确直接进行RNA多核苷酸的测序以及控制多核苷酸移动的分子马达会从多核苷酸上解脱的现象,本发明提供了一种经修饰的解旋酶,该解旋酶既可以实现在DNA链测序中控制其穿过跨膜孔的移位速度,也可以实现提高对RNA直接测序的准确性,而且,该经修饰的解旋酶可以更长时间保持与多核苷酸的结合,降低从被测序的多核苷酸上解脱的现象。Based on the phenomenon that the translocation of polynucleotides through nanopores in nanopore sequencing is too fast, the sequencing of RNA polynucleotides cannot be performed directly and accurately, and the molecular motors that control the movement of polynucleotides are released from the polynucleotides, the present invention provides A modified helicase that can both control the translocation speed of DNA strands through a transmembrane pore and improve the accuracy of direct RNA sequencing, and the modified helicase The helicase can remain bound to the polynucleotide for a longer time, reducing the phenomenon of unwinding from the polynucleotide being sequenced.
本发明发现:F8813解旋酶上多核苷酸结合结构域的开口大小的减小或者开闭并不能阻止其与多核苷酸的结合。因此,本发明在F8813解旋酶中引入半胱氨酸残基和/或至少一个非天然氨基酸以使得两个或多个部分连接以减小开口的尺寸或者关闭开口。一旦根据本发明修饰的F8813解旋酶与多核苷酸结合,它就能够控制目标多核苷酸的运动速度,而不需要解开或分离。具体而言,根据本发明修饰的F8813解旋酶将与长多核苷酸(例如包含500个或更多个核苷酸的多核苷酸)强烈结合,并且将控制目标多核苷酸的移动速度,特别是在链测序过程中。具体方案如下:The present inventors found that the reduction or opening and closing of the opening size of the polynucleotide binding domain on the F8813 helicase does not prevent its binding to the polynucleotide. Accordingly, the present invention introduces cysteine residues and/or at least one unnatural amino acid in the F8813 helicase to allow the linkage of two or more moieties to reduce the size of the opening or close the opening. Once the F8813 helicase modified according to the present invention is bound to a polynucleotide, it is able to control the speed of movement of the target polynucleotide without the need for unwinding or dissociation. Specifically, the F8813 helicase modified according to the present invention will bind strongly to long polynucleotides (eg, polynucleotides comprising 500 or more nucleotides), and will control the speed of movement of the target polynucleotide, Especially during strand sequencing. The specific plans are as follows:
本发明的第一方面,提供了一种经修饰的F8813解旋酶,所述的F8813解旋酶包含多核苷酸结合结构域,所述的F8813解旋酶包括SEQ ID NO:1的变体,所述SEQ ID NO:1的变体包括在SEQ ID NO:1的2A结构域(优选第E250至H310位)、Ratchet结构域(优选第L580至G600位)和/或HLH结构域(优选第D680至I700位)中引入至少一个或多个(例如1、2、3、4、5、6、7、8、9、10、11或更多个)半胱氨酸残基和/或至少一个或多个(例如1、2、3、4、5、6、7、8、9、10、11或更多个)非天然氨基酸,以减小多核苷酸结合结构域的开口大小,其中所述F8813解旋酶保留其控制多核苷酸移动的能力。The first aspect of the present invention provides a modified F8813 helicase, the F8813 helicase comprises a polynucleotide binding domain, and the F8813 helicase comprises a variant of SEQ ID NO: 1 , the variant of SEQ ID NO: 1 is included in the 2A domain (preferably at position E250 to H310), the Ratchet domain (preferably at position L580 to G600) and/or the HLH domain (preferably at position L580 to G600) of SEQ ID NO: 1 At least one or more ( eg 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or more) cysteine residues and/or at least one or more ( eg 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or more) unnatural amino acids to reduce the opening size of the polynucleotide binding domain, wherein the F8813 helicase retains its ability to control movement of polynucleotides.
优选的,包括在下列任一组中引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸:Preferably, at least one cysteine residue and/or at least one unnatural amino acid is introduced in any of the following groups:
(a)2A结构域;(a) 2A domain;
(b)Ratchet结构域;(b) Ratchet domain;
(c)HLH结构域;(c) HLH domain;
(d)2A结构域和Ratchet结构域;(d) 2A domain and Ratchet domain;
(e)2A结构域和HLH结构域;(e) 2A domain and HLH domain;
(f)Ratchet结构域和HLH结构域;(f) Ratchet domain and HLH domain;
(g)2A结构域、Ratchet结构域和HLH结构域。(g) 2A domain, Ratchet domain and HLH domain.
优选的,在SEQ ID NO:1中引入至少一个或多个(例如1、2、3、4、5、6、7、8、9、10、11或更多个)半胱氨酸残基,或者引入至少一个或多个(例如1、2、3、4、5、6、7、8、9、10、11或更多个)非天然氨基酸,或者引入至少一个或多个(例如1、2、3、4、5、6、7、8、9、10、11或更多个)半胱氨酸残基和非天然氨基酸。Preferably, at least one or more ( eg 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or more) cysteine residues are introduced in SEQ ID NO: 1 , or introduce at least one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or more) unnatural amino acids, or introduce at least one or more (e.g. 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or more) cysteine residues and unnatural amino acids.
优选的,包括在SEQ ID NO:1的S272、A273、E274、E281、D284、E285、L287、E288、N289、S290、E291、D293、T294、A300、R303、D284、T314、T315、P316、L317、R318、L320、E322、R326、G328、S589、S589、K691、D694、R695或K698中的任一 种或两种以上的位置上引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。Preferably, S272, A273, E274, E281, D284, E285, L287, E288, N289, S290, E291, D293, T294, A300, R303, D284, T314, T315, P316, L317 of SEQ ID NO: 1 are included , R318, L320, E322, R326, G328, S589, S589, K691, D694, R695 or K698 in any one or two or more positions to introduce at least one cysteine residue and/or at least one non-natural amino acid.
进一步优选的,所述SEQ ID NO:1的变体包括在SEQ ID NO:1的D284和/或S589位置上引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。Further preferably, the variant of SEQ ID NO: 1 comprises introducing at least one cysteine residue and/or at least one unnatural amino acid at the D284 and/or S589 position of SEQ ID NO: 1.
更进一步优选的,所述SEQ ID NO:1的变体还包括在SEQ ID NO:1的S272、A273、E274、E281、D284、E285、L287、E288、N289、S290、E291、D293、T294、A300、R303、T314、T315、P316、L317、R318、L320、E322、R326、G328、S589、K691、D694、R695或K698中的任一种或两种以上的位置上引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。More preferably, the variant of SEQ ID NO: 1 also includes S272, A273, E274, E281, D284, E285, L287, E288, N289, S290, E291, D293, T294, At least one cysteine is introduced at any one or two or more positions of A300, R303, T314, T315, P316, L317, R318, L320, E322, R326, G328, S589, K691, D694, R695 or K698 residues and/or at least one unnatural amino acid.
为提高本发明所述的F8813解旋酶与目标多核苷酸结合的稳定性,降低从目标多核苷酸上解脱的能力:引入的半胱氨酸与半胱氨酸之间相互连接,引入的非天然氨基酸与非天然氨基酸之间相互连接,引入的半胱氨酸与非天然氨基酸之间相互连接,引入的半胱氨酸与天然氨基酸之间相互连接,或者引入的非天然氨基酸与天然氨基酸之间相互连接。In order to improve the stability of the binding of the F8813 helicase of the present invention to the target polynucleotide, and reduce the ability to be freed from the target polynucleotide: the introduced cysteine and the cysteine are connected to each other, and the introduced cysteine Interconnection between unnatural amino acids and unnatural amino acids, between introduced cysteine and unnatural amino acids, between introduced cysteine and natural amino acids, or between introduced unnatural amino acids and natural amino acids connected to each other.
优选的,可以使任何数目和组合的两个以上引入的半胱氨酸与非天然氨基酸相互连接。例如,可以使3,4,5,6,7,8或更多个半胱氨酸和/或非天然氨基酸相互连接。一个或多个半胱氨酸可以与一个或多个半胱氨酸连接。一个或多个半胱氨酸可以与一个或多个非天然氨基酸诸如Faz连接。一个或多个非天然氨基酸诸如Faz可以与一个或多个非天然氨基酸诸如Faz连接。一个或多个半胱氨酸可以与一个或多个解旋酶上的天然氨基酸连接。一个或多个非天然氨基酸诸如Faz可以与一个或多个解旋酶上的天然氨基酸连接。Preferably, any number and combination of two or more introduced cysteines and unnatural amino acids can be interconnected. For example, 3, 4, 5, 6, 7, 8 or more cysteines and/or unnatural amino acids can be linked to each other. One or more cysteines can be linked to one or more cysteines. One or more cysteines can be linked to one or more unnatural amino acids such as Faz. One or more unnatural amino acids such as Faz can be linked to one or more unnatural amino acids such as Faz. One or more cysteines can be attached to one or more natural amino acids on the helicase. One or more unnatural amino acids such as Faz can be linked to one or more natural amino acids on the helicase.
优选的,所述的连接可以是任何连接方式,包括暂时连接或者永久的连接方式。Preferably, the connection can be any connection mode, including a temporary connection or a permanent connection.
在本发明的一个具体实施方式中,所述的连接可以是暂时的,例如非共价连接。当然,即便是短暂的连接也足以降低目标多核苷酸从F8813解旋酶上的解脱。In one embodiment of the invention, the linkage may be temporary, eg, non-covalent linkage. Of course, even a brief ligation is sufficient to reduce the release of the target polynucleotide from the F8813 helicase.
在本发明的另一个具体实施方式中,所述的连接可以是永久的,例如共价连接。可以采用化学交联剂进行共价连接,其长度可以从一个碳(碳酰氯型连接器)到多个埃变化。例如马来酰亚胺、活性酯、琥珀酰亚胺、叠氮化物、炔烃(诸如二苯并环辛炔醇(DIBO或DBCO),二氟环炔烃和线性炔烃)等。又例如聚乙二醇(PEGs)、多肽、多糖、脱氧核糖核酸(DNA)、肽核酸(PNA)、苏糖核酸(TNA)、甘油核酸(GNA)、饱和的和不饱和的烃或聚酰胺等等的线性分子,又例如TMAD等等的催化试剂,可以通过 -S-S键进行连接。In another embodiment of the present invention, the linkage may be permanent, such as a covalent linkage. Covalent attachment can be carried out using chemical crosslinkers, which can vary in length from one carbon (phosgene type linker) to multiple Angstroms. For example maleimides, active esters, succinimides, azides, alkynes such as dibenzocyclooctynol (DIBO or DBCO), difluorocycloalkynes and linear alkynes, and the like. Another example is polyethylene glycol (PEGs), polypeptides, polysaccharides, deoxyribonucleic acid (DNA), peptide nucleic acid (PNA), threose nucleic acid (TNA), glycerol nucleic acid (GNA), saturated and unsaturated hydrocarbons or polyamides Linear molecules such as TMAD, etc., and catalytic reagents such as TMAD, can be linked by -S-S bonds.
在本发明的一个具体实施方式中,采用双马来酰亚胺PEG3和/或PEG4使得引入的半胱氨酸残基与半胱氨酸残基之间共价连接。In a specific embodiment of the present invention, bismaleimides PEG3 and/or PEG4 are used to covalently link the introduced cysteine residues to the cysteine residues.
进一步优选的,所述SEQ ID NO:1的变体还包括SEQ ID NO:1的至少一个或多个半胱氨酸被取代。在本发明的一个具体实施方式中,用丙氨酸、丝氨酸或缬氨酸取代半胱氨酸。Further preferably, the variant of SEQ ID NO: 1 further comprises that at least one or more cysteines of SEQ ID NO: 1 are substituted. In one embodiment of the invention, cysteine is replaced with alanine, serine or valine.
优选的,所述的被取代的一个或多个半胱氨酸为C172、C217、C246、C256、C301、C469、C527或C594中的一个或两个以上的组合。Preferably, the substituted one or more cysteines are one or a combination of two or more of C172, C217, C246, C256, C301, C469, C527 or C594.
优选的,所述的F8813解旋酶包括去除F8813解旋酶的C端HLH结构域。进一步优选的,包括去除C端HLH结构域的A644至Y729位氨基酸序列。Preferably, the F8813 helicase comprises removing the C-terminal HLH domain of the F8813 helicase. Further preferred, the amino acid sequence from A644 to Y729 of the C-terminal HLH domain is removed.
本发明所述的非天然氨基酸包括但不限于4-叠氮基-L-苯丙氨酸(Faz),4-乙酰基-L-苯丙氨酸,3-乙酰基-L-苯丙氨酸,4-乙酰乙酰基-L苯丙氨酸,O-烯丙基-L-酪氨酸,3-(苯基硒烷基)-L-丙氨酸,O-2-丙炔-1-基-L-酪氨酸,4(二羟基硼基)-L-苯丙氨酸,4-[(乙基硫烷基)羰基]-L-苯丙氨酸,(2S)-2-氨基-3-{4-[(丙烷-2-基硫烷基)羰基]苯基}丙酸,(2S)-2-氨基-3-{4-[(2-氨基-3-硫烷基丙酰基)氨基]苯基}丙酸,O-甲基-L-酪氨酸,4-氨基-L-苯丙氨酸,4-氰基-L-苯丙氨酸,3-氰基-L-苯丙氨酸,4-氟-L-苯丙氨酸,4-碘-L-苯丙氨酸,4-溴-L-苯丙氨酸,O-(三氟甲基)酪氨酸,4-硝基L-苯丙氨酸,3-羟基-L-酪氨酸,3-氨基-L-酪氨酸,3-碘-L-酪氨酸,4-异丙基-L-苯丙氨酸,3-(2-萘基)-L-丙氨酸,4-苯基-L-苯丙氨酸,(2S)-2-氨基-3-(萘-2-基氨基)丙酸,6-(甲基硫烷基)正亮氨酸,6-氧-L-赖氨酸,D-酪氨酸,(2R)-2-羟基-3-(4-羟基苯基)丙酸,(2R)-2氨基辛酸酯3-(2,2′-二吡啶-5-基)-D-丙氨酸,2-氨基-3-(8-羟基-3-喹啉基)丙酸,4-苯甲酰-L-苯丙氨酸,S-(2-硝基苄基)半胱氨酸,(2R)-2-氨基-3-[(2-硝基苄基)硫烷基]丙酸,(2S)-2-氨基-3-[(2-硝基苄基)氧基]丙酸,O-(4,5-二甲氧基-2-硝基苄基)-L-丝氨酸,(2S)-2-氨基-6-({[(2-硝基苄基)氧基]羰基}氨基)己酸,O-(2-硝基苄基)-L-酪氨酸,2-硝基苯丙氨酸,4-[(E)-苯基二氮烯基]-L-苯丙氨酸,4-[3-(三氟甲基)-3H-二吖丙啶基-3基]-D-苯丙氨酸,2-氨基-3-[[5-(二甲基氨基)-1-萘基]磺酰基氨基]丙酸,(2S)-2-氨基4-(7-羟基-2-氧-2H-色烯-4-基)丁酸,(2S)-3-[(6-乙酰基萘-2-基)氨基]-2-氨基丙酸,4(羧基甲基)苯丙氨酸,3-硝基-L-酪氨酸,O-硫基-L-酪氨酸,(2R)-6-乙酰氨基-2-氨基己酸酯,1-甲基组氨酸,2-氨基壬酸,2-氨基癸酸,L-同质半胱氨酸,5-硫烷基正缬氨酸,6-硫烷基-L-正亮氨酸,5-(甲基硫烷基)-L-正缬氨酸,N6-{[(2R,3R)-3-甲基-3,4-二氢-2H-吡咯2-基]羰 基}-L-赖氨酸,N6-[(苄基氧基)羰基]赖氨酸,(2S)-2-氨基-6-[(环戊基羰基)氨基]己酸,N6-[(环戊基氧基)羰基]-L-赖氨酸,(2S)-2-氨基-6-{[(2R)-四氢呋喃-2-基羰基]氨基}己酸,(2S)-2-氨基-8-[(2R,3S)-3-乙炔基四氢呋喃-2-基]-8-氧基辛酸,N6-(叔丁氧基羰基)-L-赖氨酸,(2S)-2-羟基-6-({[(2-甲基-2-丙烷基)氧基]羰基}氨基)己酸,N6-[(烯丙氧基)羰基]赖氨酸,(2S)-2-氨基-6-({[(2-叠氮苄基)氧基]羰基}氨基)己酸,N6L-脯氨酰基-L-赖氨酸,(2S)-2-氨基-6-{[(丙-2-炔-1-基氧基)羰基]氨基}己酸或N6-[(2叠氮乙氧基)羰基]-L-赖氨酸。The unnatural amino acids of the present invention include but are not limited to 4-azido-L-phenylalanine (Faz), 4-acetyl-L-phenylalanine, 3-acetyl-L-phenylalanine Acid, 4-acetoacetyl-L-phenylalanine, O-allyl-L-tyrosine, 3-(phenylselenyl)-L-alanine, O-2-propyne-1 -yl-L-tyrosine, 4(dihydroxyboronyl)-L-phenylalanine, 4-[(ethylsulfanyl)carbonyl]-L-phenylalanine, (2S)-2- Amino-3-{4-[(propan-2-ylsulfanyl)carbonyl]phenyl}propionic acid, (2S)-2-amino-3-{4-[(2-amino-3-sulfanyl Propionyl)amino]phenyl}propionic acid, O-methyl-L-tyrosine, 4-amino-L-phenylalanine, 4-cyano-L-phenylalanine, 3-cyano- L-phenylalanine, 4-fluoro-L-phenylalanine, 4-iodo-L-phenylalanine, 4-bromo-L-phenylalanine, O-(trifluoromethyl)tyrosine Acid, 4-Nitro-L-Phenylalanine, 3-Hydroxy-L-Tyrosine, 3-Amino-L-Tyrosine, 3-Iodo-L-Tyrosine, 4-Isopropyl-L -Phenylalanine, 3-(2-naphthyl)-L-alanine, 4-phenyl-L-phenylalanine, (2S)-2-amino-3-(naphthalen-2-ylamino ) propionic acid, 6-(methylsulfanyl) norleucine, 6-oxo-L-lysine, D-tyrosine, (2R)-2-hydroxy-3-(4-hydroxyphenyl) ) propionic acid, (2R)-2aminocaprylate 3-(2,2'-dipyridin-5-yl)-D-alanine, 2-amino-3-(8-hydroxy-3-quinoline yl)propionic acid, 4-benzoyl-L-phenylalanine, S-(2-nitrobenzyl)cysteine, (2R)-2-amino-3-[(2-nitrobenzyl) yl)sulfanyl]propionic acid, (2S)-2-amino-3-[(2-nitrobenzyl)oxy]propionic acid, O-(4,5-dimethoxy-2-nitro Benzyl)-L-serine, (2S)-2-amino-6-({[(2-nitrobenzyl)oxy]carbonyl}amino)hexanoic acid, O-(2-nitrobenzyl)- L-tyrosine, 2-nitrophenylalanine, 4-[(E)-phenyldiazenyl]-L-phenylalanine, 4-[3-(trifluoromethyl)-3H -Diaziridinyl-3yl]-D-phenylalanine, 2-amino-3-[[5-(dimethylamino)-1-naphthyl]sulfonylamino]propionic acid, (2S) -2-Amino-4-(7-hydroxy-2-oxo-2H-chromen-4-yl)butanoic acid, (2S)-3-[(6-acetylnaphthalen-2-yl)amino]-2- Aminopropionic acid, 4(carboxymethyl)phenylalanine, 3-nitro-L-tyrosine, O-thio-L-tyrosine, (2R)-6-acetamido-2-aminohexyl Acetate, 1-Methylhistidine, 2-Aminononanoic acid, 2-Aminodecanoic acid, L-Homocysteine, 5-Sulfanylnorvaline, 6-Sulfanyl-L- Norleucine, 5-(methylsulfanyl)-L-norvaline, N6-{[(2R,3R )-3-methyl-3,4-dihydro-2H-pyrrolidin 2-yl]carbonyl}-L-lysine, N6-[(benzyloxy)carbonyl]lysine, (2S)-2 -Amino-6-[(cyclopentylcarbonyl)amino]hexanoic acid, N6-[(cyclopentyloxy)carbonyl]-L-lysine, (2S)-2-amino-6-{[(2R )-tetrahydrofuran-2-ylcarbonyl]amino}hexanoic acid, (2S)-2-amino-8-[(2R,3S)-3-ethynyltetrahydrofuran-2-yl]-8-oxyoctanoic acid, N6- (tert-Butoxycarbonyl)-L-lysine, (2S)-2-hydroxy-6-({[(2-methyl-2-propanyl)oxy]carbonyl}amino)hexanoic acid, N6- [(allyloxy)carbonyl]lysine, (2S)-2-amino-6-({[(2-azidobenzyl)oxy]carbonyl}amino)hexanoic acid, N6L-prolyl- L-Lysine, (2S)-2-amino-6-{[(prop-2-yn-1-yloxy)carbonyl]amino}hexanoic acid or N6-[(2azidoethoxy)carbonyl ]-L-Lysine.
优选的,所述的F8813解旋酶的氨基酸序列为SEQ ID NO:1或其变体的氨基酸序列或与SEQ ID NO:1或其变体的氨基酸序列具有至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或至少99.9%的同源性,并具有控制多核苷酸移动的能力。Preferably, the amino acid sequence of the F8813 helicase is the amino acid sequence of SEQ ID NO: 1 or its variant or the amino acid sequence of SEQ ID NO: 1 or its variant with at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97% , at least 98%, at least 99%, or at least 99.9% homology, and have the ability to control polynucleotide movement.
优选的,所述的F8813解旋酶进一步被修饰降低其表面的负电荷。Preferably, the F8813 helicase is further modified to reduce the negative charge on its surface.
优选的,所述的F8813解旋酶还包含增加净正电荷的取代。优选的,所述的F8813解旋酶还包含对表面带负电的氨基酸、极性或非极性氨基酸进行取代或修饰。进一步优选的,所述的取代包括带正电的氨基酸、不带电荷的氨基酸取代带负电的氨基酸、不带电荷的氨基酸、芳香族氨基酸、极性或非极性氨基酸。Preferably, the F8813 helicase further comprises substitutions that increase the net positive charge. Preferably, the F8813 helicase further comprises substitution or modification of surface negatively charged amino acids, polar or non-polar amino acids. Further preferably, the substitution includes the substitution of positively charged amino acids, uncharged amino acids for negatively charged amino acids, uncharged amino acids, aromatic amino acids, polar or non-polar amino acids.
其中,所述的带正电的氨基酸、不带电荷的氨基酸、极性、非极性氨基酸或芳香族氨基酸可以是天然的或非天然的氨基酸,其可以是人工合成的或者经过修饰的天然氨基酸。Wherein, described positively charged amino acid, uncharged amino acid, polar, non-polar amino acid or aromatic amino acid can be natural or non-natural amino acid, it can be synthetic or modified natural amino acid .
优选的,所述的F8813解旋酶还包含:Preferably, the F8813 helicase also comprises:
(a)至少一个与单链DNA、RNA或双链DNA、RNA中一个或多个核苷酸相互作用的氨基酸被取代;和/或,(a) at least one amino acid that interacts with one or more nucleotides in single-stranded DNA, RNA or double-stranded DNA, RNA is substituted; and/or,
(b)至少一个与跨膜孔相互作用的氨基酸被取代;(b) at least one amino acid that interacts with the transmembrane pore is substituted;
所述F8813解旋酶具有控制多核苷酸移动的能力。The F8813 helicase has the ability to control the movement of polynucleotides.
进一步优选的,用包含较大侧链的氨基酸取代至少一个与单链DNA、RNA或双链DNA、RNA中一个或多个核苷酸的糖和/或碱基相互作用的氨基酸。Further preferably, at least one amino acid that interacts with the sugar and/or base of one or more nucleotides in single-stranded DNA, RNA or double-stranded DNA, RNA is replaced with an amino acid comprising a larger side chain.
所述较大侧链包括增加数目的碳原子,具有增加的长度,增加的分子体积和/或具有增加的范德华体积。所述较大侧链增加了所述至少一个氨基酸与所述单链或双链DNA中一个或多个核苷酸之间的(i)静电相互作用;(ii)氢键和/或(iii)阳离子-pi相互作 用。所述较大侧链的氨基酸不是丙氨酸(A)、半胱氨酸(C)、甘氨酸(G)、硒代半胱氨酸(U)、甲硫氨酸(M)、天冬氨酸(D)或谷氨酸(E)。The larger side chains include an increased number of carbon atoms, have an increased length, have an increased molecular volume, and/or have an increased van der Waals volume. The larger side chain increases (i) electrostatic interactions between the at least one amino acid and one or more nucleotides in the single- or double-stranded DNA; (ii) hydrogen bonding and/or (iii) ) cation-pi interaction. The amino acid of the larger side chain is not alanine (A), cysteine (C), glycine (G), selenocysteine (U), methionine (M), aspartate acid (D) or glutamic acid (E).
进一步优选的,至少一个与单链DNA、RNA或双链DNA、RNA中一个或多个核苷酸的磷酸基团相互作用的氨基酸被取代。Further preferably, at least one amino acid that interacts with the phosphate group of one or more nucleotides in single-stranded DNA, RNA or double-stranded DNA, RNA is substituted.
本发明的第二方面,提供了一种构建体,所述的构建体包含至少一个或多个本发明所述的F8813解旋酶。The second aspect of the present invention provides a construct comprising at least one or more of the F8813 helicases of the present invention.
优选的,所述的构建体还包含多核苷酸结合部分。Preferably, the construct further comprises a polynucleotide binding moiety.
优选的,所述的F8813解旋酶连接至所述多核苷酸结合部分,且所述的构建体具有控制多核苷酸移动的能力。Preferably, the F8813 helicase is linked to the polynucleotide binding moiety, and the construct has the ability to control the movement of the polynucleotide.
优选的,所述的多核苷酸结合部分可以与多核苷酸的碱基结合的部分,和/或与多核苷酸的糖结合的部分,和/或与多核苷酸的磷酸结合的部分。Preferably, the polynucleotide binding moiety may be a moiety that binds to the base of the polynucleotide, and/or a moiety that binds to the sugar of the polynucleotide, and/or a moiety that binds to the phosphate of the polynucleotide.
优选的,组成所述构建体的F8813解旋酶与多核苷酸结合部分可以单独制备,后直接连接。也可以通过遗传融合的方式直接制备构建体,例如将编码F8813解旋酶与多核苷酸结合部分的核苷酸连接,后转入宿主细胞中表达、纯化获得。Preferably, the F8813 helicase and polynucleotide binding moieties that make up the construct can be prepared separately and then directly linked. The construct can also be directly prepared by genetic fusion, for example, by linking the nucleotides encoding the F8813 helicase to the polynucleotide binding portion, and then transferring it into a host cell for expression and purification.
进一步优选的,所述的多核苷酸结合部分为能够与多核苷酸结合的多肽,包括但不限于真核单链结合蛋白、细菌单链结合蛋白、古生菌单链结合蛋白、病毒单链结合蛋白或双链结合蛋白中的一种或两种以上的组合。Further preferably, the polynucleotide binding moiety is a polypeptide that can bind to polynucleotides, including but not limited to eukaryotic single-stranded binding proteins, bacterial single-stranded binding proteins, archaeal single-stranded binding proteins, and viral single-stranded binding proteins. One or a combination of two or more binding proteins or double-stranded binding proteins.
在本发明的一个具体实施方式中,所述的多核苷酸结合部分包括但不限于表1所示的任一种:In a specific embodiment of the present invention, the described polynucleotide binding part includes but is not limited to any one shown in Table 1:
表1 与多核苷酸结合的结合部分Table 1 Binding moieties that bind to polynucleotides
Figure PCTCN2020136031-appb-000001
Figure PCTCN2020136031-appb-000001
Figure PCTCN2020136031-appb-000002
Figure PCTCN2020136031-appb-000002
本发明的第三方面,提供了一种核酸,所述的核酸编码本发明所述的F8813解旋酶或所述的构建体。The third aspect of the present invention provides a nucleic acid encoding the F8813 helicase or the construct of the present invention.
本发明的第四方面,提供了一种表达载体,所述的表达载体包含本发明所述的核酸。The fourth aspect of the present invention provides an expression vector, the expression vector comprising the nucleic acid of the present invention.
优选的,所述的核酸可操作的连接至表达载体中的调控组件,其中所述的调控组件优选为启动子。Preferably, the nucleic acid is operably linked to a regulatory component in an expression vector, wherein the regulatory component is preferably a promoter.
在本发明的一个具体实施方式中,所述的启动子选自T7、trc、lac、ara或λ LIn a specific embodiment of the present invention, the promoter is selected from T7, trc, lac, ara or λ L .
优选的,所述的表达载体包括但不限于质粒、病毒或噬菌体。Preferably, the expression vector includes but is not limited to plasmid, virus or phage.
本发明的第五方面,提供了一种宿主细胞,所述的宿主细胞包含本发明所述的核酸或本发明所述的表达载体。The fifth aspect of the present invention provides a host cell, the host cell comprising the nucleic acid of the present invention or the expression vector of the present invention.
优选的,所述的宿主细胞包括但不限于大肠杆菌。Preferably, the host cells include but are not limited to Escherichia coli.
在本发明的一个具体实施方式中,所述的宿主细胞选自BL21(DE3)、JM109(DE3)、B834(DE3)、TUNER、C41(DE3)、Rosetta2(DE3)、Origami、Origami B等等。In a specific embodiment of the present invention, the host cell is selected from BL21(DE3), JM109(DE3), B834(DE3), TUNER, C41(DE3), Rosetta2(DE3), Origami, Origami B, etc. .
本发明的第六方面,提供了一种本发明所述F8813解旋酶的制备方法,包括提供SEQ ID NO:1,在SEQ ID NO:1中引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸获得SEQ ID NO:1的变体,以减小F8813解旋酶的多核苷酸结合结构域的 开口大小,其中所述F8813解旋酶保留其控制多核苷酸移动的能力。The sixth aspect of the present invention provides a preparation method of the F8813 helicase of the present invention, comprising providing SEQ ID NO: 1, and introducing at least one cysteine residue and/or into SEQ ID NO: 1 At least one unnatural amino acid obtains a variant of SEQ ID NO: 1 to reduce the opening size of the polynucleotide binding domain of the F8813 helicase, wherein the F8813 helicase retains its ability to control polynucleotide movement.
本发明的第七方面,提供了一种本发明所述F8813解旋酶的制备方法,包括培养本发明所述的宿主细胞,并进行诱导表达,纯化后获得F8813解旋酶。The seventh aspect of the present invention provides a method for preparing the F8813 helicase of the present invention, comprising culturing the host cell of the present invention, inducing expression, and purifying to obtain the F8813 helicase.
在本发明的一个具体实施方式中,所述的方法包括根据本发明所述F8813解旋酶的氨基酸序列,获得编码F8813解旋酶的核酸序列,酶切连接至表达载体后转化至大肠杆菌中,诱导表达和纯化,获得F8813解旋酶。In a specific embodiment of the present invention, the method includes obtaining a nucleic acid sequence encoding the F8813 helicase according to the amino acid sequence of the F8813 helicase of the present invention, cleaving it into an expression vector and transforming it into E. coli , induced expression and purification to obtain F8813 helicase.
本发明的第八方面,提供了一种调节解旋酶的多核苷酸结合结构域开口大小的方法,所述的方法包括将本发明所述的F8813解旋酶或本发明所述的构建体与多核苷酸接触。优选为减小多核苷酸结合结构域开口的大小。The eighth aspect of the present invention provides a method for regulating the opening size of a polynucleotide binding domain of a helicase, the method comprising adding the F8813 helicase of the present invention or the construct of the present invention contact with a polynucleotide. It is preferred to reduce the size of the polynucleotide binding domain opening.
本发明的第九方面,提供了一种控制多核苷酸移动的方法,所述的方法包括将本发明所述的F8813解旋酶或本发明所述的构建体与多核苷酸接触。The ninth aspect of the present invention provides a method for controlling the movement of a polynucleotide, the method comprising contacting the F8813 helicase of the present invention or the construct of the present invention with a polynucleotide.
优选的,所述的控制多核苷酸移动为控制多核苷酸穿过孔的移动。所述的孔为纳米孔,所述的纳米孔为跨膜孔。该孔可以是天然的或人造的,包括但不限于蛋白孔、多核苷酸孔或固态孔。Preferably, the control of the movement of the polynucleotide is the movement of the control polynucleotide through the pore. The pores are nanopores, and the nanopores are transmembrane pores. The pores may be natural or artificial, including but not limited to protein pores, polynucleotide pores, or solid state pores.
在本发明的一个具体实施方式中,所述的跨膜孔选自生物孔、固态孔或生物与固态杂交的孔。In a specific embodiment of the present invention, the transmembrane pore is selected from biological pore, solid state pore or pore hybridized between biological and solid state.
在本发明的一个具体实施方式中,所述的孔包括但不限于衍生自耻垢分枝杆菌孔蛋白A、耻垢分枝杆菌孔蛋白B、耻垢分枝杆菌孔蛋白C、耻垢分枝杆菌孔蛋白D、溶血素、胞溶素、白细胞介素、外膜孔蛋白F、外膜孔蛋白G、外膜磷脂酶A、WZA或奈瑟氏菌自转运脂蛋白等等。In a specific embodiment of the present invention, the pores include but are not limited to those derived from M. smegmatis porin A, M. smegmatis porin B, M. smegmatis porin C, smegmatis porin Mycobacterial porin D, hemolysin, lysin, interleukin, outer membrane porin F, outer membrane porin G, outer membrane phospholipase A, WZA or Neisseria autotransport lipoprotein and the like.
优选的,所述的方法可以包含一个或多个的F8813解旋酶共同控制多核苷酸的移动。Preferably, the method may comprise one or more F8813 helicases jointly controlling the movement of the polynucleotide.
本发明的第十方面,提供了一种表征目标多核苷酸的方法,所述的方法包括:A tenth aspect of the present invention provides a method for characterizing a target polynucleotide, the method comprising:
I)将本发明所述的F8813解旋酶或本发明所述的构建体,与目标多核苷酸以及孔接触,使得F8813解旋酶或构建体控制目标多核苷酸穿过孔的移动;1) contacting the F8813 helicase of the present invention or the construct of the present invention with the target polynucleotide and the pore, so that the F8813 helicase or the construct controls the movement of the target polynucleotide through the pore;
并II)获取目标多核苷酸中的核苷酸与所述孔相互作用时的一个或多个特征,以表征所述目标多核苷酸。and II) obtaining one or more characteristics of the interaction of nucleotides in the target polynucleotide with the pore to characterize the target polynucleotide.
优选的,重复步骤I)和II)一次或多次。Preferably, steps I) and II) are repeated one or more times.
优选的,所述的方法中可以使用任意数量的本发明所述的F8813解旋酶。优选可以为一个或多个,更优选为1、2、3、4、5、6、7、8、9个或更多个。其中,所述的 两个以上本发明所述的F8813解旋酶可以相同或不同。也可以包含野生型F8813解旋酶或者其他类型的解旋酶。进一步的,两个以上解旋酶之间可以连接或者只是通过分别结合在多核苷酸上而排列发挥控制多核苷酸移动的功能。Preferably, any number of the F8813 helicases of the present invention can be used in the method. Preferably, there may be one or more, more preferably 1, 2, 3, 4, 5, 6, 7, 8, 9 or more. Wherein, the two or more F8813 helicases of the present invention can be the same or different. Wild-type F8813 helicases or other types of helicases may also be included. Further, two or more helicases can be linked or just arranged to play the function of controlling the movement of the polynucleotide by binding to the polynucleotide respectively.
优选的,所述的方法还包括横跨与所述解旋酶或构建体,和目标多核苷酸接触的孔施加势差的步骤。Preferably, the method further comprises the step of applying a potential difference across the pore in contact with the helicase or construct, and the polynucleotide of interest.
优选的,所述的孔是允许水合离子在施加的电势的驱动下从膜的一侧流向膜的另一层的结构。进一步优选的,所述的孔为纳米孔,所述的纳米孔为跨膜孔。所述跨膜孔为目标多核苷酸的移动提供了通道。进一步优选的,所述的孔选自生物孔、固态孔或生物与固态杂交的孔。Preferably, the pores are structures that allow hydrated ions to flow from one side of the membrane to the other layer of the membrane, driven by an applied electrical potential. Further preferably, the pores are nanopores, and the nanopores are transmembrane pores. The transmembrane pore provides a channel for the movement of the target polynucleotide. Further preferably, the pores are selected from biological pores, solid-state pores or hybrid pores of biological and solid-state.
在本发明的一个具体实施方式中,所述的孔包括但不限于衍生自耻垢分枝杆菌孔蛋白A、耻垢分枝杆菌孔蛋白B、耻垢分枝杆菌孔蛋白C、耻垢分枝杆菌孔蛋白D、溶血素、胞溶素、白细胞介素、外膜孔蛋白F、外膜孔蛋白G、外膜磷脂酶A、WZA或奈瑟氏菌自转运脂蛋白等等。In a specific embodiment of the present invention, the pores include but are not limited to those derived from M. smegmatis porin A, M. smegmatis porin B, M. smegmatis porin C, smegmatis porin Mycobacterial porin D, hemolysin, lysin, interleukin, outer membrane porin F, outer membrane porin G, outer membrane phospholipase A, WZA or Neisseria autotransport lipoprotein and the like.
所述的膜可以为任何现有技术中存在的膜,优选为两性分子层,即一种由具有至少一个亲水性部分和至少一个亲脂性或疏水性部分的两性分子诸如磷脂质形成的层,两性分子可以是合成的或天然存在的。进一步优选的,所述的膜为脂质双层膜。所述的目标多核苷酸可以使用任何已知的方法连接到膜上。如果膜是两性分子层,如脂质双分子层,所述多核苷酸优选通过在所述膜中存在的多肽或通过在所述膜中存在的疏水锚被连接到该膜上。其中,疏水锚优选为脂质、脂肪酸、甾醇、碳纳米管或氨基酸。Said membrane may be any membrane existing in the prior art, preferably an amphiphilic layer, ie a layer formed of amphiphilic molecules such as phospholipids having at least one hydrophilic part and at least one lipophilic or hydrophobic part , amphiphilic molecules can be synthetic or naturally occurring. Further preferably, the membrane is a lipid bilayer membrane. The target polynucleotide can be attached to the membrane using any known method. If the membrane is an amphiphilic layer, such as a lipid bilayer, the polynucleotide is preferably attached to the membrane via a polypeptide present in the membrane or via a hydrophobic anchor present in the membrane. Among them, the hydrophobic anchor is preferably lipid, fatty acid, sterol, carbon nanotube or amino acid.
优选的,当在孔施加一种力(如电压),目标多核苷酸通过孔的速率被F8813解旋酶或构建体所控制,从而获得一种可识别的稳定的电流水平,用于确定目标多核苷酸的特征。Preferably, when a force (eg, a voltage) is applied to the pore, the rate of passage of the target polynucleotide through the pore is controlled by the F8813 helicase or construct, resulting in an identifiable stable current level for target determination Characterization of polynucleotides.
优选的,所述的目标多核苷酸为单链、双链或至少一部分是双链的。Preferably, the target polynucleotide is single-stranded, double-stranded or at least partially double-stranded.
进一步优选的,所述的目标多核苷酸可以通过标签、间隔物、甲基化、氧化或损伤的方式进行修饰。Further preferably, the target polynucleotide can be modified by means of tags, spacers, methylation, oxidation or damage.
在本发明的一个具体实施方式中,所述的目标多核苷酸为至少一部分是双链的。其中所述的双链部分构成Y衔体结构,所述的Y衔体结构包含优先螺入所述孔的前导序列。In a specific embodiment of the present invention, the target polynucleotide is at least partially double-stranded. wherein the double-stranded portion constitutes a Y-adapter structure comprising a leader sequence that preferentially screws into the pore.
进一步优选的,所述的目标多核苷酸的长度可以为10-100000个或更多个。Further preferably, the length of the target polynucleotide may be 10-100,000 or more.
在本发明的一个具体实施方式中,所述的目标多核苷酸的长度可以为至少10个、 至少50个、至少100个、至少200个、至少300个、至少400个、至少500个、至少1000个、至少2000个、至少5000个、至少10000个、至少50000个或至少100000个等等。In a specific embodiment of the present invention, the length of the target polynucleotide can be at least 10, at least 50, at least 100, at least 200, at least 300, at least 400, at least 500, at least 1,000, at least 2,000, at least 5,000, at least 10,000, at least 50,000, or at least 100,000, etc.
优选的,所述的解旋酶结合到单链多核苷酸的内部核苷酸中。Preferably, the helicase is incorporated into the internal nucleotides of the single-stranded polynucleotide.
优选的,所述的目标多核苷酸为DNA或RNA。即可以为以核糖核苷酸和/或脱氧核糖核苷酸为单元组成的DNA、RNA、DNA与RNA的连接序列、DNA与RNA杂交序列等。Preferably, the target polynucleotide is DNA or RNA. That is, DNA, RNA, DNA-RNA junction sequences, DNA-RNA hybrid sequences, etc. composed of ribonucleotides and/or deoxyribonucleotides as units.
优选的,当所述的目标多核苷酸为RNA时,为提高要被测序的RNA穿过孔的能力和效率,将RNA修饰为包含非RNA多核苷酸。Preferably, when the target polynucleotide is RNA, in order to improve the ability and efficiency of the RNA to be sequenced passing through the pore, the RNA is modified to include a non-RNA polynucleotide.
优选的,RNA修饰的步骤包含将DNA前导区与待测RNA的3’末端连接。还包括将待测RNA反转录的步骤Preferably, the step of RNA modification comprises linking the DNA leader region to the 3' end of the RNA to be tested. It also includes the step of reverse transcription of the RNA to be tested
优选的,所述的一个或多个特征选自目标多核苷酸的来源、长度、同一性、序列、二级结构或目标多核苷酸是否被修饰。进一步优选的,所述的一个或多个特征通过电测量和/或光学测量进行。Preferably, the one or more features are selected from the source, length, identity, sequence, secondary structure of the target polynucleotide, or whether the target polynucleotide is modified. Further preferably, the one or more features are performed by electrical and/or optical measurements.
进一步优选的,通过电测量和/或光测量产生电信号和/或光信号,而每种核苷酸对应一种信号水平,继而将电信号和/或光信号转化为核苷酸的特征。Further preferably, electrical and/or optical signals are generated by electrical and/or optical measurements, and each nucleotide corresponds to a signal level, and the electrical and/or optical signals are then converted into nucleotide characteristics.
在本发明的一个具体实施方式中,所述的电测量包括但不限于电流测量、阻抗测量、隧道测量、风洞测量或场效应晶体管(FET)测量等等。In a specific embodiment of the present invention, the electrical measurement includes, but is not limited to, current measurement, impedance measurement, tunnel measurement, wind tunnel measurement, or field effect transistor (FET) measurement, and the like.
本发明所述的电信号选自电流、电压、隧穿、电阻、电位、电导率或横向电测量的测量值。The electrical signal according to the present invention is selected from measurements of current, voltage, tunneling, resistance, potential, conductivity or lateral electrical measurements.
在本发明的一个具体实施方式中,所述的电信号为穿过所述孔的电流。In a specific embodiment of the present invention, the electrical signal is a current passing through the hole.
优选的,所述的表征还包括应用改进型维特比算法。Preferably, the characterization further includes applying an improved Viterbi algorithm.
本发明的第十一方面,提供了一种表征目标多核苷酸的产品,所述的产品包含一个或多个本发明所述的F8813解旋酶、一个或多个本发明所述的构建体、一个或多个本发明所述的核酸、一个或多个本发明所述的表达载体或一个或多个本发明所述的宿主细胞,和一个或多个孔。An eleventh aspect of the present invention provides a product for characterizing a target polynucleotide, the product comprising one or more of the F8813 helicases of the present invention, one or more of the constructs of the present invention , one or more nucleic acids of the present invention, one or more expression vectors of the present invention, or one or more host cells of the present invention, and one or more pores.
优选的,所述的孔与F8813解旋酶或构建体之间形成络合物。Preferably, the pore forms a complex with the F8813 helicase or construct.
在本发明的一个具体实施方式中,所述的产品包含多个F8813解旋酶或多个构建体,和多个孔。In a specific embodiment of the invention, the product comprises a plurality of F8813 helicases or a plurality of constructs, and a plurality of wells.
优选的,所述的产品选自试剂盒、装置或传感器。Preferably, the product is selected from kits, devices or sensors.
进一步优选的,所述的试剂盒中还包括包含脂质双层的芯片。所述的孔横跨脂质双层。Further preferably, the kit also includes a chip comprising lipid bilayers. The pores span the lipid bilayer.
本发明所述的试剂盒包含一个或多个脂质双层,每个脂质双层包含一个或多个所述的孔。The kits of the present invention comprise one or more lipid bilayers, each lipid bilayer comprising one or more of said pores.
本发明所述的试剂盒还包括实施表征目标多核苷酸的试剂或装置。优选的,所述的试剂包括缓冲剂、PCR扩增所需的工具。The kits of the present invention also include reagents or devices for carrying out the characterization of the polynucleotide of interest. Preferably, the reagents include buffers and tools required for PCR amplification.
本发明的第十二方面,提供了本发明所述的F8813解旋酶、所述的构建体、所述的核酸、所述的表达载体、所述的宿主细胞或所述的产品在表征目标多核苷酸或控制目标多核苷酸穿过孔的移动中的应用。The twelfth aspect of the present invention provides the F8813 helicase, the construct, the nucleic acid, the expression vector, the host cell or the product described in the present invention in characterizing the target Applications in polynucleotides or controlling the movement of a polynucleotide of interest through a pore.
本发明的第十三方面,提供了一种表征目标多核苷酸的试剂盒,所述的试剂盒包含本发明所述的F8813解旋酶、所述的构建体、所述的核酸、所述的表达载体或所述的宿主细胞,和孔。The thirteenth aspect of the present invention provides a kit for characterizing a target polynucleotide, the kit comprising the F8813 helicase of the present invention, the construct, the nucleic acid, the The expression vector or the host cell, and well.
本发明的第十四方面,提供了一种表征目标多核苷酸的装置,所述的装置包含本发明所述的F8813解旋酶、所述的构建体、所述的核酸、所述的表达载体或所述的宿主细胞,和孔。The fourteenth aspect of the present invention provides a device for characterizing a target polynucleotide, the device comprising the F8813 helicase of the present invention, the construct, the nucleic acid, the expression The vector or the host cell, and the pores.
优选的,所述的装置包括支撑所述多个孔并可传输孔与多核苷酸相互作用的信号的传感器,和至少一个用于存储目标多核苷酸的存储器,和实施表征过程中所需的溶液。Preferably, the device includes a sensor that supports the plurality of pores and transmits a signal that the pores interact with the polynucleotide, and at least one memory for storing the polynucleotide of interest, and necessary for carrying out the characterization process. solution.
优选的,所述的装置包括多个F8813解旋酶和/或多个构建体,和多个孔。Preferably, the device comprises multiple F8813 helicases and/or multiple constructs, and multiple wells.
本发明的第十五方面,提供了一种表征目标多核苷酸的传感器,所述的传感器包含在所述孔和本发明所述F8813解旋酶或所述的构建体之间形成复合物。A fifteenth aspect of the present invention provides a sensor for characterizing a target polynucleotide, the sensor comprising forming a complex between the pore and the F8813 helicase or the construct of the present invention.
优选的,在所述目标多核苷酸存在下使所述孔和解旋酶或构建体接触,并跨所述孔施加电势。所述的电势选自电压电势或化学电势。Preferably, the pore and the helicase or construct are contacted in the presence of the polynucleotide of interest and an electrical potential is applied across the pore. Said potential is selected from voltage potential or chemical potential.
本发明的第十六方面,提供了一种形成表征目标多核苷酸的传感器的方法,包括在所述孔和本发明所述F8813解旋酶或所述的构建体之间形成复合物,从而形成表征目标多核苷酸的传感器。A sixteenth aspect of the present invention provides a method for forming a sensor for characterizing a target polynucleotide, comprising forming a complex between the pore and the F8813 helicase or the construct of the present invention, thereby A sensor is formed that characterizes the polynucleotide of interest.
本发明的第十七方面,提供了一种与多核苷酸连接的两个或多个解旋酶,其中,所述的两个或多个解旋酶中至少一个为本发明所述的F8813解旋酶。The seventeenth aspect of the present invention provides two or more helicases linked to a polynucleotide, wherein at least one of the two or more helicases is the F8813 of the present invention helicase.
本发明的第十八方面,提供了一种F8813解旋酶寡聚体,所述的F8813解旋酶寡聚体包含一个或多个的本发明所述的F8813解旋酶。The eighteenth aspect of the present invention provides an F8813 helicase oligomer, wherein the F8813 helicase oligomer comprises one or more of the F8813 helicases of the present invention.
优选的,所述的F8813解旋酶寡聚体还可以包含野生型F8813解旋酶或其他类型的解旋酶。其中,所述的其他类型的解旋酶可以为Hel308解旋酶、XPD解旋酶、Dda解旋酶、TraI解旋酶或者TrwC解旋酶等等。Preferably, the F8813 helicase oligomer may further comprise wild-type F8813 helicase or other types of helicases. Wherein, the other types of helicases can be Hel308 helicase, XPD helicase, Dda helicase, TraI helicase or TrwC helicase and the like.
优选的,所述的F8813解旋酶与野生型F8813解旋酶之间、F8813解旋酶与F8813解旋酶之间、野生型F8813解旋酶与野生型F8813解旋酶、F8813解旋酶与其他类型解旋酶之间或者野生型F8813解旋酶与其他类型解旋酶之间,可以通过头对头、尾对尾或者头对尾的方式连接或排列。Preferably, between the F8813 helicase and the wild-type F8813 helicase, between the F8813 helicase and the F8813 helicase, between the wild-type F8813 helicase and the wild-type F8813 helicase, and between the F8813 helicase With other types of helicases or between wild-type F8813 helicases and other types of helicases, they can be connected or arranged in a head-to-head, tail-to-tail or head-to-tail manner.
优选的,所述的F8813解旋酶寡聚体包含两个以上的本发明所述的F8813解旋酶,其中,所述的F8813解旋酶可以是不同的或者相同的。Preferably, the F8813 helicase oligomer comprises two or more F8813 helicases of the present invention, wherein the F8813 helicases may be different or the same.
本发明所述的“F8813解旋酶”、“构建体”或“孔”,均可以被修饰以助于鉴定或纯化,例如通过添加组氨酸残基(His标签),天冬氨酸残基(asp标签),链霉亲和素标签,Flag标签,SUMO标签,GST标签或MBP标签,或通过添加信号序列以促进它们从细胞中分泌,该细胞中的多肽不天然地含有该信号序列。引入遗传标签的替换方式是通过化学反应将标签连到F8813解旋酶、孔或构建体上的天然或人工位点。The "F8813 helicase", "construct" or "pore" of the invention can be modified to aid in identification or purification, for example by adding histidine residues (His tag), aspartic acid residues base (asp tag), streptavidin tag, Flag tag, SUMO tag, GST tag or MBP tag, or by adding a signal sequence to facilitate their secretion from cells in which the polypeptide does not naturally contain the signal sequence . An alternative way of introducing a genetic tag is to chemically link the tag to a natural or artificial site on the F8813 helicase, pore or construct.
本发明所述的“核苷酸”包括但不局限于:腺苷单磷酸(AMP)、鸟苷单磷酸(GMP)、胸苷单磷酸(TMP)、尿苷单磷酸(UMP)、胞嘧啶核苷单磷酸(CMP)、环状腺苷单磷酸(cAMP)、环状鸟苷单磷酸(cGMP)脱氧腺苷单磷酸(dAMP)、脱氧鸟苷单磷酸(dGMP)、脱氧胸苷单磷酸(dTMP)、脱氧尿苷单磷酸(dUMP)和脱氧胞苷单磷酸(dCMP)。优选的,所述核苷酸选自AMP、TMP、GMP、CMP、UMP、dAMP、dTMP、dGMP或dCMP。The "nucleotides" in the present invention include but are not limited to: adenosine monophosphate (AMP), guanosine monophosphate (GMP), thymidine monophosphate (TMP), uridine monophosphate (UMP), cytosine Nucleoside monophosphate (CMP), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), deoxyadenosine monophosphate (dAMP), deoxyguanosine monophosphate (dGMP), deoxythymidine monophosphate (dTMP), deoxyuridine monophosphate (dUMP), and deoxycytidine monophosphate (dCMP). Preferably, the nucleotides are selected from AMP, TMP, GMP, CMP, UMP, dAMP, dTMP, dGMP or dCMP.
本发明所述的“两个以上”包括两个、三个、四个、五个、六个、七个、八个或更多个等等。The term "two or more" in the present invention includes two, three, four, five, six, seven, eight or more and the like.
本发明所述的“多个”包括但不限于两个以上、三个以上、四个以上、五个以上、六个以上、七个以上、八个以上或更多个等等。The "plurality" in the present invention includes, but is not limited to, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, and so on.
本发明所述的“至少一个”包括但不限于一个以上、两个以上、三个以上、四个以上、五个以上、六个以上、七个以上、八个以上或更多个等等。In the present invention, "at least one" includes, but is not limited to, one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, and so on.
本发明所述的“和/或”包括择一列出的项目以及任何数量的项目组合。As used herein, "and/or" includes any number of the listed items and combinations of any number.
本发明所述的“包括”或“包含”是开放式的描述,含有所描述的指定成分或步骤,以及不会实质上影响的其他指定成分或步骤。在本申请中用于描述蛋白质或核酸的序列时,所述蛋白质或核酸可以是由所述序列组成,或者在所述蛋白质或核酸的一端或两端可以具有额外的氨基酸或核苷酸,但仍然具有本发明所述的活性(例如其控制多核苷酸移动的能力等等)。In the present invention, "comprising" or "comprising" is an open-ended description containing the specified elements or steps described, as well as other specified elements or steps that are not substantially affected. When used in this application to describe the sequence of a protein or nucleic acid, the protein or nucleic acid may consist of the sequence, or may have additional amino acids or nucleotides at one or both ends of the protein or nucleic acid, but Still have the activity described in the present invention (eg, its ability to control movement of polynucleotides, etc.).
本发明所述的“开口”为野生型F8813解旋酶本身带有的多核苷酸结合结构域的开口,也可以指与F8813解旋酶结合的多核苷酸结合部分的开口,所述的开口为使得多核苷酸与F8813解旋酶解离的开口,并且该开口可以不是一直存在的,但是至少在一种构象状态下包含至少一个开口。本发明所述的“经修饰的F8813解旋酶”或者包含经修饰的F8813解旋酶的构建体包含一个或多个与多核苷酸结合的区域,包括一个或多个本身带有的多核苷酸结合结构域或者一个或多个多核苷酸结合部分。所述的“经修饰的F8813解旋酶”或者包含经修饰的F8813解旋酶的构建体含有一个或多个开口。经过修饰F8813解旋酶,使得解旋酶的同一单体上有两个或多个部分连接以减小开口的大小。The "opening" in the present invention refers to the opening of the polynucleotide binding domain of the wild-type F8813 helicase itself, and may also refer to the opening of the polynucleotide binding portion bound to the F8813 helicase. An opening for dissociation of the polynucleotide from the F8813 helicase, and the opening may not always be present, but at least in one conformational state comprises at least one opening. The "modified F8813 helicase" of the present invention or a construct comprising the modified F8813 helicase comprises one or more regions that bind to polynucleotides, including one or more polynucleotides that it carries An acid binding domain or one or more polynucleotide binding moieties. The "modified F8813 helicase" or a construct comprising the modified F8813 helicase contains one or more openings. The F8813 helicase is modified so that two or more moieties are attached on the same monomer of the helicase to reduce the size of the opening.
本发明所述的F8813解旋酶来源于Methanosarcinathermophila。The F8813 helicase of the present invention is derived from Methanosarcinathermophila.
本发明所述的经修饰的F8813解旋酶,是相比于相应的野生型解旋酶或天然解旋酶是修饰的。本发明的解旋酶是人工的或非天然的。The modified F8813 helicases described in the present invention are modified compared to the corresponding wild-type helicases or native helicases. The helicases of the present invention are artificial or non-natural.
本发明所述的F8813解旋酶是一种在链测序过程中控制目标多核苷酸移动的有用工具,当提供了促进移动的常规必要组分时,F8813解旋酶沿着DNA或RNA以3’至5’端的方向移动,但DNA或RNA在孔中的定向(取决于DNA或RNA的哪个末端被捕获)意味着F8813解旋酶可以用于逆着所施加的场的方向或顺着施加的场的方向将DNA或RNA移进孔。而且,通过在野生型F8813解旋酶中引入半胱氨酸残基和/或至少一个非天然氨基酸,可以有效减少F8813解旋酶或构建体上多核苷酸结合结构域或多核苷酸结合部分开口的大小或开闭,以及目标多核苷酸被解开的开口的大小或开闭,从而显着降低 F8813解旋酶从目标多核苷酸上解脱的能力,提高控制目标多核苷酸通过孔的能力。The F8813 helicase of the present invention is a useful tool for controlling the movement of target polynucleotides during strand sequencing, and when provided with the usual necessary components to facilitate movement, the F8813 helicase follows DNA or RNA with 3 ' to the 5' end, but the orientation of the DNA or RNA in the pore (depending on which end of the DNA or RNA is captured) means that the F8813 helicase can be used against the direction of the applied field or along the The direction of the field moves the DNA or RNA into the well. Furthermore, the polynucleotide binding domain or polynucleotide binding moiety on the F8813 helicase or construct can be effectively reduced by introducing cysteine residues and/or at least one unnatural amino acid in the wild-type F8813 helicase The size or opening of the opening, as well as the size or opening of the opening in which the target polynucleotide is unwound, significantly reduces the ability of the F8813 helicase to dissociate from the target polynucleotide and improves control of the passage of the target polynucleotide through the pore. ability.
附图说明Description of drawings
以下,结合附图来详细说明本发明的实施例,其中:Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein:
图1:显示了经纯化后的F8813_C172V/C217A/D284C/S589C/C594A的SDS-PAGE凝胶电泳图。其中,M是Marker(KDa),1道为F8813_C172V/C217A/D284C/S589C/C594A解旋酶的电泳结果图。Figure 1: shows the SDS-PAGE gel electrophoresis image of purified F8813_C172V/C217A/D284C/S589C/C594A. Among them, M is Marker (KDa), and lane 1 is the electrophoresis result of F8813_C172V/C217A/D284C/S589C/C594A helicase.
图2:实施例中使用的DNA构建体A的图,其中SEQ ID NO:3(标记为A)其5’末端连接到4个iSpC3间隔区(标记为B),该间隔区(标记为B)连接到SEQ ID NO:4(标记为C)的3’末端,该SEQ ID NO:4(标记为C)的5’末端连接到SEQ ID NO:5(标记为D),该构建体的SEQ ID NO:6(标记为E)区域与SEQ ID NO:7(标记为F,其具有3’胆固醇系链)杂交。Figure 2: Diagram of DNA construct A used in the examples, wherein SEQ ID NO: 3 (labeled A) has its 5' end joined to four iSpC3 spacers (labeled B), the spacers (labeled B) ) is ligated to the 3' end of SEQ ID NO: 4 (labeled C), the 5' end of the SEQ ID NO: 4 (labeled C) is ligated to SEQ ID NO: 5 (labeled D), the construct's The region of SEQ ID NO:6 (labeled E) hybridizes to SEQ ID NO:7 (labeled F, which has a 3' cholesterol tether).
图3:显示了F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3反应混合物(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A通过双马来酰亚胺PEG3链接器连接)和F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4反应混合物(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A通过双马来酰亚胺PEG4链接器连接)的考马斯染色的4-20%SDS-PAGE凝胶。M道显示了一个适当的蛋白质阶梯(质量单位标记显示在凝胶的右侧)。通道1含有5μL约6μM的F8813_C172V/C217A/D284C/S589C/C594A单体(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1)。通道2含有5μL的约6μM F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A,通过双马来酰亚胺PEG3连接器连接)。通道3含有5μL的约6μM F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A,通过双马来酰亚胺PEG4连接器连接)。从凝胶中可以清楚地看出,双马来酰亚胺PEG3或PEG4连接剂连接的反应几乎达到100% 的产率。箭头1对应于F8813_C172V/C217A/D284C/S589C/C594A单体(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1),箭头2对应于F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG3连接)。箭头3对应于F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG4连接)。Figure 3: shows the F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 reaction mixture (SEQ ID NO: 1, mutations C172V/C217A/D284C/S589C/C594A linked by bismaleimide PEG3 linker) and F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG4 reaction mixture (SEQ ID NO: 1, mutation C172V/C217A/D284C/S589C/C594A via bismaleimide PEG4 linker ligated) Coomassie-stained 4-20% SDS-PAGE gel. Lane M shows an appropriate protein ladder (mass unit markers are shown to the right of the gel). Lane 1 contained 5 μL of F8813_C172V/C217A/D284C/S589C/C594A monomer (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A) at about 6 μM. Lane 2 contained 5 μL of approximately 6 μM F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (SEQ ID NO: 1, mutant C172V/C217A/D284C/S589C/C594A via bismaleimide PEG3 connector connection). Lane 3 contained 5 μL of approximately 6 μM F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG4 (SEQ ID NO: 1, mutant C172V/C217A/D284C/S589C/C594A via bismaleimide PEG4 connector connection). It is clear from the gel that the reaction for bismaleimide PEG3 or PEG4 linker attachment reaches almost 100% yield. Arrow 1 corresponds to F8813_C172V/C217A/D284C/S589C/C594A monomer (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A), arrow 2 corresponds to F8813_C172V/C217A/D284C/S589C/C594A-double Maleimide PEG3 (SEQ ID NO: 1 with mutations C172V/C217A/D284C/S589C/C594A linked to bismaleimide-PEG3). Arrow 3 corresponds to F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide-PEG4 (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A linked to bismaleimide-PEG4) .
图4:显示了当解旋酶(F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A通过双马来酰亚胺PEG3链接器连接))控制DNA构建体A(穿过纳米孔8MspA(SEQ ID NO:8)移位时的示例电流轨迹(y轴坐标=电流(pA,0到240),x轴坐标=时间(h:m:s,14h:01m:09.3s到14h:01m:33.3s))。Figure 4: Shows when the helicase (F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (SEQ ID NO: 1, mutation C172V/C217A/D284C/S589C/C594A passes through the bismaleimide PEG3 (SEQ ID NO: 1) Amine PEG3 linker ligation)) Example current traces (y-axis coordinate = current(pA, 0 to 240), x-axis coordinate = time(h:m:s, 14h:01m:09.3s to 14h:01m:33.3s)).
图5:显示了图4的电流轨迹图中所示的解旋酶控制的DNA移动的区域的放大图(y轴坐标=电流(pA,0到100),x轴坐标=时间(h:m:s,14h:01m:12.4s到14h:01m:21.9s)。Figure 5: Shows an enlarged view of the region of helicase-controlled DNA movement shown in the current trace graph of Figure 4 (y-axis coordinate = current (pA, 0 to 100), x-axis coordinate = time (h:m) :s, 14h:01m:12.4s to 14h:01m:21.9s).
图6:检测F8813解旋酶酶活性的荧光分析示意图。其中,荧光底物链具有3’端ssDNA突出部分,以及50个碱基的杂交的dsDNA部分。a)所示,包括主链上部(B)在5’端具有羧基荧光素(C),并且所述杂交的互补链(D)在3’端具黑洞淬灭剂(BHQ-1)碱基(E)。还包括,与较短链(D)互补的0.5μM的捕获链(F)。如b)和c)所示,在ATP(5mM)和MgCl2(5mM)存在下,添加到所述底物中的解旋酶(100nM)(A)连接到所述荧光底物的3’端部分,沿着所述主链移动,并解开所述互补链后,过量的捕获链优先与互补链DNA退火以防止初始底物与丢失荧光重新退火。如d)所示,加入过量与主链完全互补的捕获链(G)后,部分未被解旋的dsDNA由于过量G的存在而产生链解旋效果,最终所有dsDNA被解旋,荧光值达到最高。Figure 6: Schematic diagram of fluorescence assay to detect F8813 helicase enzymatic activity. Among them, the fluorogenic substrate strand has a 3' end ssDNA overhang, and a 50-base hybridized dsDNA portion. a), including the upper part of the main chain (B) with carboxyfluorescein (C) at the 5' end, and the hybridized complementary strand (D) with a black hole quencher (BHQ-1) base at the 3' end (E). Also included was a 0.5 [mu]M capture strand (F) complementary to the shorter strand (D). Helicase (100 nM) added to the substrate in the presence of ATP (5 mM) and MgCl (5 mM) as shown in b) and c) (A) is attached to the 3' end of the fluorogenic substrate In part, after moving along the backbone and unwinding the complementary strand, the excess capture strand preferentially anneals to the complementary strand DNA to prevent reannealing of the original substrate with lost fluorescence. As shown in d), after adding an excess of the capture strand (G) that is completely complementary to the main chain, part of the dsDNA that has not been unwound has a chain unwinding effect due to the presence of excess G, and finally all dsDNA is unwound, and the fluorescence value reaches Highest.
图7:是含有400mM NaCl的缓冲液中的时间依赖型dsDNA被置换比例的变化图。Fig. 7 is a graph showing the time-dependent displacement ratio of dsDNA in a buffer containing 400 mM NaCl.
图8:实施例中使用的DNA-RNA构建体B的图,其中SEQ ID NO:13(标记为G) 其3’末端连接到20个iSpC3间隔区(标记为A)其5’末端连接到4个iSpC3间隔区(标记为B),该间隔区(标记为B)连接到SEQ ID NO:14(标记为C)的3’末端,该SEQ ID NO:14(标记为C)的5’末端连接到RNA单链SEQ ID NO:15(标记为D),该构建体的SEQ ID NO:16(标记为E)区域与SEQ ID NO:7(标记为F,其具有3’胆固醇系链)杂交。Figure 8: Diagram of DNA-RNA construct B used in the Examples, wherein SEQ ID NO: 13 (labeled G) has its 3' end linked to 20 iSpC3 spacers (labeled A) its 5' end is linked to 4 iSpC3 spacers (labeled B) linked to the 3' end of SEQ ID NO: 14 (labeled C) and 5' to SEQ ID NO: 14 (labeled C) End-ligated to the RNA single strand SEQ ID NO: 15 (labeled D), the SEQ ID NO: 16 (labeled E) region of the construct was linked to SEQ ID NO: 7 (labeled F) with a 3' cholesterol tether ) hybrid.
图9:当F8813解旋酶(F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG3连接))控制DNA-RNA构建体B穿过纳米孔8MspA(SEQ ID NO:8)移位时的示例电流轨迹(y轴坐标=电流(pA,-10到200),x轴坐标=时间(h:m:s,16h:32m:51.6s到16h:33m:03.6s)。Figure 9: When the F8813 helicase (F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (SEQ ID NO: 1 with the mutations C172V/C217A/D284C/S589C/C594A) and bismaleimide Amine-PEG3 linkage)) Example current traces (y-axis coordinate = current(pA, -10 to 200), x-axis coordinate when translocation of DNA-RNA construct B through nanopore 8MspA (SEQ ID NO: 8) is controlled) = time(h:m:s, 16h:32m:51.6s to 16h:33m:03.6s).
图10:图9电流轨迹图中所示的F8813解旋酶控制的RNA移动的区域放大图(y轴坐标=电流(pA,-10到200),x轴坐标=时间(h:m:s,16h:33m:01.3s到16h:33m:03.3s)。Figure 10: Enlarged view of the region of F8813 helicase-controlled RNA movement shown in the current trace plot of Figure 9 (y-axis coordinate = current (pA, -10 to 200), x-axis coordinate = time (h:m:s) , 16h:33m:01.3s to 16h:33m:03.3s).
具体实施方式Detailed ways
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。各实施例中所用的设备和试剂均常规市售可得。The following examples further illustrate the content of the present invention, but should not be construed as limiting the present invention. Modifications or substitutions made to the methods, steps or conditions of the present invention without departing from the spirit and essence of the present invention all belong to the scope of the present invention. Unless otherwise specified, the technical means used in the examples are conventional means well known to those skilled in the art. The equipment and reagents used in each example are conventionally commercially available.
实施例1 F8813解旋酶的制备Example 1 Preparation of F8813 helicase
1、序列获得1. Sequence acquisition
在SEQ ID NO:1的第284位和第589位引入半胱氨酸,并且将第172、217和594位的半胱氨酸取代,获得SEQ ID NO:1的变体,即C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1。Cysteines were introduced at positions 284 and 589 of SEQ ID NO: 1 and substituted at positions 172, 217 and 594 to obtain a variant of SEQ ID NO: 1, namely C172V/C217A SEQ ID NO: 1 of /D284C/S589C/C594A.
获得C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1的编码序列,并优化获得SEQ ID NO:2。The coding sequence of SEQ ID NO: 1 of C172V/C217A/D284C/S589C/C594A was obtained and optimized to obtain SEQ ID NO:2.
2、材料和方法2. Materials and methods
将含有F8813解旋酶序列(SEQ ID NO:2)的重组质粒通过热击转化到BL21(DE3)感受态细胞,复苏菌液涂布氨苄抗性固体LB平板后在37℃过夜培养,挑取单克隆菌落,接种至100ml含有氨苄抗性的液体LB培养基中37℃培养。按1%的接种量转接至氨苄抗性的LB液体培养基中进行扩大培养,37℃、200rpm条件下培养,并连续不断的测量其OD 600值。当OD 600=0.6-0.8时,将LB培养基中的培养液冷却至18℃,并添加异丙基硫代半乳糖苷(Isopropylβ-D-Thiogalactoside,IPTG)诱导表达,使得终浓度达到1mM。12-16h后,18℃收集细菌。高压破碎细菌,通过FPLC方法进行纯化,收集样品。 The recombinant plasmid containing the F8813 helicase sequence (SEQ ID NO: 2) was transformed into BL21 (DE3) competent cells by heat shock, and the recovered bacterial solution was coated on an ampicillin-resistant solid LB plate and cultured at 37°C overnight. Monoclonal colonies were inoculated into 100 ml of liquid LB medium containing ampicillin resistance and cultured at 37°C. 1% of the inoculum was transferred to ampicillin-resistant LB liquid medium for expansion culture, and cultured at 37° C. and 200 rpm, and the OD 600 value was continuously measured. When OD 600 =0.6-0.8, the culture medium in LB medium was cooled to 18°C, and isopropyl thiogalactoside (IPTG) was added to induce expression, so that the final concentration reached 1 mM. After 12-16 h, the bacteria were collected at 18°C. Bacteria were disrupted by high pressure, purified by FPLC method, and samples were collected.
3、结果3. Results
图1显示了经纯化后的F8813解旋酶(SEQ ID NO:1的变体)SDS-PAGE凝胶电泳图。Figure 1 shows an SDS-PAGE gel electropherogram of purified F8813 helicase (variant of SEQ ID NO: 1).
实施例2 使用荧光分析检测酶活性来阐述F8813解旋酶的解开杂交dsDNA的能力Example 2 The ability of F8813 helicase to unwind hybrid dsDNA was demonstrated using fluorescence assay to detect enzymatic activity
1、材料和方法1. Materials and methods
如图6中的a)所示,荧光底物链(终浓度100nM)具有3’端ssDNA突出部分,以及50个碱基的杂交的dsDNA部分。包括主链上部在5’端具有羧基荧光素(5’FAM-SEQ ID NO:9),并且所述杂交的互补链在3’端具有黑洞淬灭剂(BHQ-1)碱基(SEQ ID NO:10--BHQ-3’)。当杂交的来自荧光素的荧光被局部的BHQ-1淬灭时,底物基本上是无荧光的。还包括与较短链互补的0.5μM的捕获链(SEQ ID NO:11)。如b)和c)所示,在ATP(5mM)和MgCl 2(5mM)存在下,添加到底物中的F8813解旋酶(100nM)连接到所述荧光底物的3’端部分,沿着所述主链移动,并解开所述互补链后,过量的捕获链优先与互补链DNA退火以防止初始底物与丢失荧光重新退火。同时,体系内仍存在一定量的杂交dsDNA未被F8813解旋酶解旋。如d)所示,加入过量与主链完全互补的捕获链G(SEQ ID NO:12)后,部分未被解旋的dsDNA由于过量G的存在而产生链解旋效果,最终所有dsDNA被解旋,荧光值达到最高。 As shown in a) of Figure 6, the fluorogenic substrate strand (final concentration 100 nM) has a 3'-end ssDNA overhang, and a 50-base hybridized dsDNA portion. The upper part of the main chain has carboxyfluorescein (5'FAM-SEQ ID NO: 9) at the 5' end, and the hybridized complementary strand has a black hole quencher (BHQ-1) base (SEQ ID NO: 9) at the 3' end. NO:10--BHQ-3'). When the hybridized fluorescence from fluorescein is quenched by localized BHQ-1, the substrate is essentially non-fluorescent. Also included was a 0.5 μM capture strand complementary to the shorter strand (SEQ ID NO: 11). As shown in b) and c), F8813 helicase (100 nM) added to the substrate in the presence of ATP (5 mM) and MgCl 2 (5 mM) was attached to the 3' end portion of the fluorogenic substrate along the After the backbone has moved and the complementary strand has been unwound, the excess capture strand preferentially anneals to the complementary strand DNA to prevent reannealing of the original substrate with lost fluorescence. At the same time, there is still a certain amount of hybrid dsDNA in the system that has not been unwound by F8813 helicase. As shown in d), after adding an excess of the capture strand G (SEQ ID NO: 12) that is completely complementary to the main chain, part of the dsDNA that has not been unwound has a chain unwinding effect due to the presence of excess G, and finally all dsDNA is unwound spin, the fluorescence value reaches the highest value.
2、结果2. Results
图7显示了含有400mMNaCl的缓冲液中的时间依赖型dsDNA被解旋比例的变化图 (10mM Hepes pH8.0,5mM ATP,5mM MgCl 2,100nM荧光底物DNA,0.5μM捕获DNA)。NC-Buffer为未添加F8813解旋酶的阴性对照。 Figure 7 shows a graph of time-dependent dsDNA unwinding ratio changes in buffer containing 400 mM NaCl (10 mM Hepes pH 8.0, 5 mM ATP, 5 mM MgCl2 , 100 nM fluorogenic substrate DNA, 0.5 [mu]M capture DNA). NC-Buffer is a negative control without F8813 helicase added.
实施例3Example 3
本实例描述了合成F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3解旋酶(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG3连接)和F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4解旋酶(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG4连接)的方法。在这种情况下,通过与双马来酰亚胺PEG3或双马来酰亚胺PEG4连接体反应,在F8813的一级序列中的284和589位半胱氨酸之间形成共价连接。This example describes the synthesis of F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 helicase (SEQ ID NO: 1 with the mutations C172V/C217A/D284C/S589C/C594A and bismaleimide -PEG3 linkage) and F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG4 helicase (SEQ ID NO: 1 with bismaleimide with mutation C172V/C217A/D284C/S589C/C594A -PEG4 linking) method. In this case, a covalent linkage was formed between cysteines 284 and 589 in the primary sequence of F8813 by reaction with a bismaleimide PEG3 or bismaleimide PEG4 linker.
1、材料和方法1. Materials and methods
将5μl 1M DTT添加到1mlF8813(C172V/C217A/D284C/S589C/C594A)(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A,储存在50mM Tris HCl pH 8.0、100mM NaCl、50%甘油、1mM DTT、1mM EDTA)中,并在室温下以20rpm旋转30分钟。通过PD-10脱盐柱缓冲交换至PBS缓冲液(pH7.2),得到1.25mL样品。添加20μL双马来酰亚胺PEG3或双马来酰亚胺PEG4后,将混合物在室温下在20rpm转速旋转60分钟培育。为了停止反应,添加5μl 1M DTT以淬灭任何剩余的马来酰亚胺。采用4-20%聚丙烯酰胺凝胶对结果进行分析。5 μl of 1M DTT was added to 1 ml of F8813 (C172V/C217A/D284C/S589C/C594A) (SEQ ID NO: 1, mutant C172V/C217A/D284C/S589C/C594A, stored in 50 mM Tris HCl pH 8.0, 100 mM NaCl, 50% glycerol , 1 mM DTT, 1 mM EDTA) and spun at 20 rpm for 30 min at room temperature. A 1.25 mL sample was obtained by buffer exchange to PBS buffer (pH 7.2) through a PD-10 desalting column. After addition of 20 μL of bismaleimide PEG3 or bismaleimide PEG4, the mixture was incubated at room temperature for 60 minutes with rotation at 20 rpm. To stop the reaction, add 5 μl of 1 M DTT to quench any remaining maleimide. Results were analyzed using 4-20% polyacrylamide gels.
2、结果2. Results
图3显示了F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3反应混合物(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A通过双马来酰亚胺PEG3链接器连接)和F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4反应混合物(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A通过双马来酰亚胺PEG4链接器连接)的考马斯染色的4-20%SDS-PAGE凝胶。M道显示了一个适当的蛋白质阶梯(质量单位标记显示在凝胶的右侧)。通道1含有5μL约6μM的 F8813_C172V/C217A/D284C/S589C/C594A单体(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1)。通道2含有5μL的约6μM F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A,通过双马来酰亚胺PEG3连接器连接)。通道3含有5μL的约6μM F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4(SEQ ID NO:1,突变C172V/C217A/D284C/S589C/C594A,通过双马来酰亚胺PEG4连接器连接)。从凝胶中可以清楚地看出,将双马来酰亚胺PEG3或PEG4连接剂连接的反应几乎达到100%的产率。然后将F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG3连接)和F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG4(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG4连接)缓冲交换至20mM HEPES、50mM NaCl、1mM DTT、50%甘油,0.1mM EDTA、pH 8.0。Figure 3 shows the F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 reaction mixture (SEQ ID NO: 1, mutation C172V/C217A/D284C/S589C/C594A via a bismaleimide PEG3 linker ligation) and F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG4 reaction mixture (SEQ ID NO: 1, mutation C172V/C217A/D284C/S589C/C594A ligated via a bismaleimide PEG4 linker ) of a Coomassie-stained 4-20% SDS-PAGE gel. Lane M shows an appropriate protein ladder (mass unit markers are shown to the right of the gel). Lane 1 contains 5 μL of F8813_C172V/C217A/D284C/S589C/C594A monomer (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A) at about 6 μM. Lane 2 contained 5 μL of approximately 6 μM F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (SEQ ID NO: 1, mutant C172V/C217A/D284C/S589C/C594A via bismaleimide PEG3 connector connection). Lane 3 contained 5 μL of approximately 6 μM F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG4 (SEQ ID NO: 1, mutant C172V/C217A/D284C/S589C/C594A via bismaleimide PEG4 connector connection). It is clear from the gel that the reaction to attach the bismaleimide PEG3 or PEG4 linker achieves almost 100% yield. Then F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide-PEG3 (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A was linked to bismaleimide-PEG3) and F8813_C172V /C217A/D284C/S589C/C594A-bismaleimide-PEG4 (SEQ ID NO: 1 with mutation C172V/C217A/D284C/S589C/C594A linked to bismaleimide-PEG4) buffer exchanged to 20 mM HEPES , 50 mM NaCl, 1 mM DTT, 50% glycerol, 0.1 mM EDTA, pH 8.0.
实施例4Example 4
本实施例显示F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3解旋酶(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG3连接)如何控制整个DNA链移动穿过单个MspA纳米孔(SEQ ID NO:8)。This example shows that F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 helicase (SEQ ID NO: 1 with mutations C172V/C217A/D284C/S589C/C594A and bismaleimide- PEG3 linkage) to control the movement of entire DNA strands through a single MspA nanopore (SEQ ID NO: 8).
1、材料和方法1. Materials and methods
制备如图2所示的DNA构建体A:SEQ ID NO:3其5’末端连接到4个iSpC3间隔区,该间隔区连接到SEQ ID NO:4的3’末端,该SEQ ID NO:4的5’末端连接到SEQ ID NO:5,该构建体的SEQ ID NO:6区域与SEQ ID NO:7(其具有3’胆固醇系链)杂交。Preparation of DNA construct A as shown in Figure 2: SEQ ID NO: 3 with the 5' end linked to 4 iSpC3 spacers linked to the 3' end of SEQ ID NO: 4 The 5' end of the construct was ligated to SEQ ID NO: 5, and the SEQ ID NO: 6 region of the construct hybridized to SEQ ID NO: 7 (which had a 3' cholesterol tether).
将制备的DNA构建体和F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3在25℃的缓冲液(10mM HEPES,pH 8.0,100mM NaCl,5%甘油,2mM DTT)中一起预孵育30分钟。The prepared DNA construct was pre-prepared with F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 in buffer (10 mM HEPES, pH 8.0, 100 mM NaCl, 5% glycerol, 2 mM DTT) at 25°C. Incubate for 30 minutes.
由嵌入1,2-二乙醇酰基-甘油-3-胆碱磷酸脂质双分子层的MspA纳米孔获得电测量。通过Montal-Mueller技术,在PTFE膜上的~25μm直径孔穴形成双分子层,隔开两个约100μL的缓冲溶液。所有实验在所述缓冲液中进行。使用装配有数字转换器的放大器测定单通道电流。将Ag/AgCl电极连接到所述缓冲液中使得顺式隔间连接到放大器的接地端,并且反式隔间连接到活性电极。Electrical measurements were obtained from MspA nanopores embedded in a 1,2-diethanolacyl-glycero-3-cholinephospholipid bilayer. By the Montal-Mueller technique, ~25 μm diameter holes in the PTFE membrane formed a bilayer, separating two ~100 μL buffer solutions. All experiments were performed in the described buffer. Single-channel current is measured using an amplifier equipped with a digitizer. The Ag/AgCl electrodes were connected into the buffer such that the cis compartment was connected to the ground of the amplifier and the trans compartment was connected to the active electrode.
在所述双分子层实现单孔之后,将DNA多核苷酸和F8813解旋酶添加到电生理学室的顺式隔间的70μL缓冲液中以引发解旋酶-DNA复合体在所述纳米孔的捕获。根据需要通过向所述顺式隔间添加二价金属(5mM MgCl 2)和NTP(2.86μM ATP)激活解旋酶ATP酶活性。实验在+180mV的恒定电势下实施。 After the bilayer achieved a single well, DNA polynucleotides and F8813 helicase were added to 70 μL of buffer in the cis compartment of the electrophysiology chamber to prime the helicase-DNA complex in the nanopore capture. Helicase ATPase activity was activated as needed by addition of divalent metal (5 mM MgCl2 ) and NTP (2.86 [mu]M ATP) to the cis compartment. Experiments were carried out at a constant potential of +180 mV.
2、结果和讨论2. Results and Discussion
结果显示DNA构建体被F8813解旋酶控制的DNA移动,F8813解旋酶控制的DNA移动的结果见图4。F8813解旋酶控制的DNA移动为24秒长并对应于接近200bp的DNA构建体穿过所述纳米孔的移位。其中,图5显示了F8813解旋酶控制的DNA移动的部分区域的放大图。The results show that the DNA construct is mobilized by F8813 helicase-controlled DNA, and the results of F8813 helicase-controlled DNA mobilization are shown in FIG. 4 . The DNA movement controlled by the F8813 helicase was 24 seconds long and corresponded to the translocation of the DNA construct of nearly 200 bp through the nanopore. Among them, Figure 5 shows an enlarged view of a partial region of DNA movement controlled by the F8813 helicase.
实施例5Example 5
本实施例显示包含DNA的前导区如何连接到RNA以促进加载DNA解旋酶,即F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(具有突变C172V/C217A/D284C/S589C/C594A的SEQ ID NO:1与双马来酰亚胺-PEG3连接),并随后观察解旋酶控制RNA穿过纳米孔的移动。使用体外转录的方式获得0.28kb RNA。该包含DNA的前导区与该RNA的3’末端连接。然后将F8813解旋酶加载到前导区中的DNA连接位点,通过纳米孔分析底物。This example shows how a DNA-containing leader is linked to RNA to facilitate loading of a DNA helicase, namely F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (with mutation C172V/C217A/D284C/S589C/ SEQ ID NO: 1 of C594A linked to bismaleimide-PEG3) and then observed that helicases control the movement of RNA through the nanopore. 0.28kb RNA was obtained by in vitro transcription. The DNA-containing leader region is ligated to the 3' end of the RNA. The F8813 helicase was then loaded into the DNA ligation site in the leader and the substrate was analyzed through the nanopore.
1、材料和方法1. Materials and methods
制备如图8所示的DNA-RNA构建体B:SEQ ID NO:13其3’末端连接到20个iSpC3间隔区其5’末端连接到4个iSpC3间隔区,该间隔区连接到SEQ ID NO:14的3’末端, 该SEQ ID NO:14的5’末端通过退火连接到RNA单链SEQ ID NO:15,该构建体的SEQ ID NO:16区域与SEQ ID NO:7(其具有3’胆固醇系链)杂交。Preparation of DNA-RNA construct B as shown in Figure 8: SEQ ID NO: 13 with 3' end linked to 20 iSpC3 spacers and its 5' end linked to 4 iSpC3 spacers linked to SEQ ID NO : the 3' end of SEQ ID NO: 14, the 5' end of this SEQ ID NO: 14 is linked by annealing to the RNA single strand SEQ ID NO: 15, the SEQ ID NO: 16 region of the construct is identical to SEQ ID NO: 7 (which has 3 'cholesterol tether) hybridization.
然后使用VAHTS RNA Clean Beads珠以每μL样品1.8μL珠的比例纯化构建体B。将纯化后的构建体B使用超级脚本III试剂盒(SuperScript III kit)将该样品反转录。Construct B was then purified using VAHTS RNA Clean Beads at a ratio of 1.8 μL of beads per μL of sample. The purified construct B was reverse transcribed using the SuperScript III kit.
然后使用VAHTS RNA Clean Beads珠以每μL样品1μL珠的比例纯化该混合物。The mixture was then purified using VAHTS RNA Clean Beads at a ratio of 1 μL of beads per μL of sample.
将在缓冲液(在50mM NaCl中,10mM Tris pH7.5)中的DNA-RNA构建体B与在缓冲液(50mM KCl,10mMHEPES,pH 8.0)中的F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3在室温下预孵育30分钟。然后向所述预混合物中添加缓冲液(10mMHEPES,600mM KCl,pH 8.0,3mM MgCl 2)和ATP。 DNA-RNA construct B in buffer (in 50 mM NaCl, 10 mM Tris pH 7.5) was combined with F8813_C172V/C217A/D284C/S589C/C594A-double in buffer (50 mM KCl, 10 mM HEPES, pH 8.0) Maleimide PEG3 was pre-incubated for 30 min at room temperature. Buffer (10 mM HEPES, 600 mM KCl, pH 8.0, 3 mM MgCl 2 ) and ATP were then added to the premix.
在室温下由嵌入到在缓冲液(10mM HEPES,400mM KCl,pH 8.0)中的嵌段共聚物中的单个MspA纳米孔获得电测量值。在实现单个孔插入到嵌段共聚物中后,将F8813解旋酶(F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3(1nM终浓度)),DNA(0.3nM终浓度),燃料(ATP 3mM终浓度)的预混合物添加到单个纳米孔实验系统中。每个实验在保持电势180mV下进行2小时,并监控F8813解旋酶控制的RNA移动。Electrical measurements were obtained from a single MspA nanopore embedded in a block copolymer in buffer (10 mM HEPES, 400 mM KCl, pH 8.0) at room temperature. After achieving single pore insertion into the block copolymer, F8813 helicase (F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 (1 nM final concentration)), DNA (0.3 nM final concentration) , a premix of fuel (ATP 3mM final concentration) was added to the single nanopore experimental system. Each experiment was performed at a holding potential of 180 mV for 2 hours and monitored F8813 helicase-controlled RNA movement.
2、结果2. Results
对DNA-RNA构建体B,观察F8813解旋酶控制的RNA移动,其F8813_C172V/C217A/D284C/S589C/C594A-双马来酰亚胺PEG3控制的RNA移动的结果参见图9-10。For DNA-RNA construct B, the RNA movement controlled by F8813 helicase was observed, and the results of the RNA movement controlled by F8813_C172V/C217A/D284C/S589C/C594A-bismaleimide PEG3 are shown in Figures 9-10.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention are described in detail above, but the present invention is not limited to the specific details of the above-mentioned embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the specific technical features described in the above-mentioned specific embodiments can be combined in any suitable manner under the condition of no contradiction. In order to avoid unnecessary repetition, the present invention has The combination method will not be specified otherwise.

Claims (26)

  1. 一种经修饰的F8813解旋酶,其特征在于,所述的F8813解旋酶包含多核苷酸结合结构域,所述的F8813解旋酶包括SEQ ID NO:1的变体,所述SEQ ID NO:1的变体包括在SEQ ID NO:1的2A结构域、Ratchet结构域和/或HLH结构域中引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸,以减小多核苷酸结合结构域的开口大小,其中所述F8813解旋酶保留其控制多核苷酸移动的能力。A modified F8813 helicase, characterized in that the F8813 helicase comprises a polynucleotide binding domain, the F8813 helicase comprises a variant of SEQ ID NO: 1, and the SEQ ID Variants of NO: 1 include the introduction of at least one cysteine residue and/or at least one unnatural amino acid in the 2A domain, Ratchet domain and/or HLH domain of SEQ ID NO: 1 to reduce multinucleation The size of the opening of the nucleotide binding domain in which the F8813 helicase retains its ability to control movement of polynucleotides.
  2. 根据权利要求1所述的F8813解旋酶,其特征在于,所述SEQ ID NO:1的变体包括在SEQ ID NO:1的2A结构域的第E250至H310位,和/或Ratchet结构域的第L580至G600位,和/或HLH结构域的第D680至I700位中引入了至少一个半胱氨酸残基和/或至少一个非天然氨基酸。The F8813 helicase of claim 1, wherein the variant of SEQ ID NO: 1 is included in positions E250 to H310 of the 2A domain of SEQ ID NO: 1, and/or the Ratchet domain At least one cysteine residue and/or at least one unnatural amino acid has been introduced into positions L580 to G600 of the HLH domain, and/or positions D680 to I700 of the HLH domain.
  3. 根据权利要求1或2所述的F8813解旋酶,其特征在于,所述SEQ ID NO:1的变体包括在SEQ ID NO:1的D284和/或S589位置上引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。The F8813 helicase according to claim 1 or 2, wherein the variant of SEQ ID NO: 1 comprises the introduction of at least one cysteine at the D284 and/or S589 position of SEQ ID NO: 1 residues and/or at least one unnatural amino acid.
  4. 根据权利要求1-3任一所述的F8813解旋酶,其特征在于,所述SEQ ID NO:1的变体还包括在SEQ ID NO:1的S272、A273、E274、E281、D284、E285、L287、E288、N289、S290、E291、D293、T294、A300、R303、T314、T315、P316、L317、R318、L320、E322、R326、G328、S589、K691、D694、R695或K698中的任一种或两种以上的位置上引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸。The F8813 helicase according to any one of claims 1-3, wherein the variant of SEQ ID NO: 1 is further included in S272, A273, E274, E281, D284, E285 of SEQ ID NO: 1 , L287, E288, N289, S290, E291, D293, T294, A300, R303, T314, T315, P316, L317, R318, L320, E322, R326, G328, S589, K691, D694, R695, or K698 At least one cysteine residue and/or at least one unnatural amino acid is introduced at one or more positions.
  5. 根据权利要求1-4任一所述的F8813解旋酶,所述F8813解旋酶的氨基酸序列为SEQ ID NO:1或其变体,或者与SEQ ID NO:1或其变体所示氨基酸序列具有至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或至少99.9%的同源性,并具有控制多核苷酸移动的能力。The F8813 helicase according to any one of claims 1-4, wherein the amino acid sequence of the F8813 helicase is SEQ ID NO: 1 or a variant thereof, or the amino acid shown in SEQ ID NO: 1 or a variant thereof The sequence has at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, At least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.9% homology, and have the ability to control polynucleotide movement.
  6. 根据权利要求1-5任一所述的F8813解旋酶,其特征在于,所述引入的半胱氨酸与半胱氨酸之间相互连接,引入的非天然氨基酸与非天然氨基酸之间相互连接,引入的半胱氨酸与非天然氨基酸之间相互连接,引入的半胱氨酸与天然氨基酸之间相互连接,或者引入的非天然氨基酸与天然氨基酸之间相互连接。The F8813 helicase according to any one of claims 1-5, wherein the introduced cysteine and the cysteine are connected to each other, and the introduced unnatural amino acid and the unnatural amino acid are mutually connected Linking, the introduced cysteine is linked to the unnatural amino acid, the introduced cysteine is linked to the natural amino acid, or the introduced unnatural amino acid is linked to the natural amino acid.
  7. 根据权利要求1-6任一所述的F8813解旋酶,其特征在于,所述SEQ ID NO:1的变体还包括SEQ ID NO:1的至少一个或多个半胱氨酸被取代;优选为用丙氨酸、丝氨酸或缬氨酸取代半胱氨酸。The F8813 helicase according to any one of claims 1-6, wherein the variant of SEQ ID NO: 1 further comprises that at least one or more cysteines of SEQ ID NO: 1 are substituted; Preferably, cysteine is replaced by alanine, serine or valine.
  8. 根据权利要求7所述的F8813解旋酶,其特征在于,所述的被取代的一个或多个半胱氨酸为C172、C217、C246、C256、C301、C469、C527或C594中的一个或两个以上的组合。The F8813 helicase according to claim 7, wherein the substituted one or more cysteine is one of C172, C217, C246, C256, C301, C469, C527 or C594 or A combination of two or more.
  9. 根据权利要求1-8任一所述的F8813解旋酶,其特征在于,所述的F8813解旋酶包括去除F8813解旋酶的C端HLH结构域,优选去除C端HLH结构域的A644至Y729位氨基酸序列。The F8813 helicase according to any one of claims 1-8, wherein the F8813 helicase comprises removing the C-terminal HLH domain of the F8813 helicase, preferably removing the C-terminal HLH domain from A644 to Y729 amino acid sequence.
  10. 根据权利要求1-9任一所述的F8813解旋酶,其特征在于,所述的非天然氨基酸选自4-叠氮基-L-苯丙氨酸(Faz),4-乙酰基-L-苯丙氨酸,3-乙酰基-L-苯丙氨酸,4-乙酰乙酰基-L苯丙氨酸,O-烯丙基-L-酪氨酸,3-(苯基硒烷基)-L-丙氨酸,O-2-丙炔-1-基-L-酪氨酸,4(二羟基硼基)-L-苯丙氨酸,4-[(乙基硫烷基)羰基]-L-苯丙氨酸,(2S)-2-氨基-3-{4-[(丙烷-2-基硫烷基)羰基]苯基}丙酸,(2S)-2-氨基-3-{4-[(2-氨基-3-硫烷基丙酰基)氨基]苯基}丙酸,O-甲基-L-酪氨酸,4-氨基-L-苯丙氨酸,4-氰基-L-苯丙氨酸,3-氰基-L-苯丙氨酸,4-氟-L-苯丙氨酸,4-碘-L-苯丙氨酸,4-溴-L-苯丙氨酸,O-(三氟甲基)酪氨酸,4-硝基L-苯丙氨酸,3-羟基-L-酪氨酸,3-氨基-L-酪氨酸,3-碘-L-酪氨酸,4-异丙基-L-苯丙氨酸,3-(2-萘基)-L-丙氨酸,4-苯基-L-苯丙氨酸,(2S)-2-氨基-3-(萘-2-基氨基)丙酸,6-(甲基硫烷基)正亮氨酸,6-氧-L-赖氨酸,D-酪氨酸,(2R)-2-羟基-3-(4-羟基苯基)丙酸,(2R)-2氨基辛酸酯3-(2,2′-二吡啶-5-基)-D-丙氨酸,2-氨基-3-(8-羟基-3-喹啉基)丙酸,4-苯甲酰-L-苯丙氨酸,S-(2-硝基苄基)半胱氨酸,(2R)-2-氨基-3-[(2-硝基苄基)硫烷基]丙酸,(2S)-2-氨基-3-[(2-硝基苄基)氧基]丙酸,O-(4,5-二甲氧基-2-硝基苄基)-L-丝氨酸,(2S)-2-氨基-6-({[(2-硝基苄基)氧基]羰基}氨基)己酸,O-(2-硝基苄基)-L-酪氨酸,2-硝基苯丙氨酸,4-[(E)-苯基二氮烯基]-L-苯丙氨酸,4-[3-(三氟甲基)-3H-二吖丙啶基-3基]-D-苯丙氨酸,2-氨基-3-[[5-(二甲基氨基)-1-萘基]磺酰基氨基]丙酸,(2S)-2-氨基4-(7-羟基-2-氧-2H-色烯-4-基)丁酸,(2S)-3-[(6-乙酰基萘-2-基)氨基]-2-氨基丙酸,4(羧基甲基)苯丙氨酸,3-硝基-L-酪氨酸,O-硫基-L-酪氨酸,(2R)-6-乙酰氨基-2-氨基己酸酯,1-甲基组氨酸,2-氨基壬酸,2-氨基癸酸,L-同质半胱氨酸,5-硫烷基正缬氨酸,6-硫烷基-L-正亮氨酸,5-(甲基硫烷基)-L-正缬氨酸,N6-{[(2R,3R)-3-甲基-3,4-二氢-2H-吡咯2-基]羰基}-L-赖氨酸,N6-[(苄基氧基)羰基]赖氨酸,(2S)-2-氨基-6-[(环戊基羰基)氨基]己酸,N6-[(环戊基氧基)羰基]-L-赖氨酸,(2S)-2-氨基-6-{[(2R)-四氢呋喃-2-基羰基]氨基}己酸,(2S)-2-氨基-8-[(2R,3S)-3-乙炔基四氢呋喃-2-基]-8-氧基辛酸,N6-(叔丁氧基羰基)-L-赖氨酸,(2S)-2-羟基-6-({[(2-甲基-2-丙烷基)氧基]羰基}氨基)己酸, N6-[(烯丙氧基)羰基]赖氨酸,(2S)-2-氨基-6-({[(2-叠氮苄基)氧基]羰基}氨基)己酸,N6L-脯氨酰基-L-赖氨酸,(2S)-2-氨基-6-{[(丙-2-炔-1-基氧基)羰基]氨基}己酸或N6-[(2叠氮乙氧基)羰基]-L-赖氨酸。The F8813 helicase according to any one of claims 1-9, wherein the unnatural amino acid is selected from 4-azido-L-phenylalanine (Faz), 4-acetyl-L -Phenylalanine, 3-Acetyl-L-Phenylalanine, 4-Acetoacetyl-L-Phenylalanine, O-Allyl-L-Tyrosine, 3-(Phenylselenyl )-L-alanine, O-2-propyn-1-yl-L-tyrosine, 4(dihydroxyboryl)-L-phenylalanine, 4-[(ethylsulfanyl) Carbonyl]-L-phenylalanine, (2S)-2-amino-3-{4-[(propan-2-ylsulfanyl)carbonyl]phenyl}propionic acid, (2S)-2-amino- 3-{4-[(2-Amino-3-sulfanylpropionyl)amino]phenyl}propionic acid, O-methyl-L-tyrosine, 4-amino-L-phenylalanine, 4 -Cyano-L-phenylalanine, 3-cyano-L-phenylalanine, 4-fluoro-L-phenylalanine, 4-iodo-L-phenylalanine, 4-bromo-L -Phenylalanine, O-(trifluoromethyl)tyrosine, 4-nitro-L-phenylalanine, 3-hydroxy-L-tyrosine, 3-amino-L-tyrosine, 3 -Iodo-L-tyrosine, 4-isopropyl-L-phenylalanine, 3-(2-naphthyl)-L-alanine, 4-phenyl-L-phenylalanine, ( 2S)-2-amino-3-(naphthalen-2-ylamino)propionic acid, 6-(methylsulfanyl)norleucine, 6-oxo-L-lysine, D-tyrosine, (2R)-2-Hydroxy-3-(4-hydroxyphenyl)propionic acid, (2R)-2-aminocaprylate 3-(2,2′-dipyridin-5-yl)-D-alanine , 2-amino-3-(8-hydroxy-3-quinolinyl)propionic acid, 4-benzoyl-L-phenylalanine, S-(2-nitrobenzyl)cysteine, ( 2R)-2-amino-3-[(2-nitrobenzyl)sulfanyl]propionic acid, (2S)-2-amino-3-[(2-nitrobenzyl)oxy]propionic acid, O-(4,5-Dimethoxy-2-nitrobenzyl)-L-serine, (2S)-2-amino-6-({[(2-nitrobenzyl)oxy]carbonyl} Amino)hexanoic acid, O-(2-nitrobenzyl)-L-tyrosine, 2-nitrophenylalanine, 4-[(E)-phenyldiazenyl]-L-phenylpropane Amino acid, 4-[3-(trifluoromethyl)-3H-diaziridinyl-3-yl]-D-phenylalanine, 2-amino-3-[[[5-(dimethylamino) -1-Naphthyl]sulfonylamino]propionic acid, (2S)-2-amino 4-(7-hydroxy-2-oxo-2H-chromen-4-yl)butanoic acid, (2S)-3-[ (6-Acetylnaphthalen-2-yl)amino]-2-aminopropionic acid, 4(carboxymethyl)phenylalanine, 3-nitro-L-tyrosine, O-thio-L-tyrosine Amino acid, (2R)-6-acetamido-2-aminocaproate, 1-methylhistidine, 2-aminononanoic acid, 2-aminodecanoic acid, L-homocysteine, 5- Sulfanyl norvaline, 6-sulfanyl-L-norleucine, 5-(methyl sulfide alkyl)-L-norvaline, N6-{[(2R,3R)-3-methyl-3,4-dihydro-2H-pyrrole 2-yl]carbonyl}-L-lysine, N6 -[(benzyloxy)carbonyl]lysine, (2S)-2-amino-6-[(cyclopentylcarbonyl)amino]hexanoic acid, N6-[(cyclopentyloxy)carbonyl]-L -Lysine, (2S)-2-amino-6-{[(2R)-tetrahydrofuran-2-ylcarbonyl]amino}hexanoic acid, (2S)-2-amino-8-[(2R,3S)- 3-Ethynyltetrahydrofuran-2-yl]-8-oxyoctanoic acid, N6-(tert-butoxycarbonyl)-L-lysine, (2S)-2-hydroxy-6-({[(2-methyl (2-Propyloxy)oxy]carbonyl}amino)hexanoic acid, N6-[(allyloxy)carbonyl]lysine, (2S)-2-amino-6-({[(2-azido Benzyl)oxy]carbonyl}amino)hexanoic acid, N6L-prolyl-L-lysine, (2S)-2-amino-6-{[(prop-2-yn-1-yloxy) Carbonyl]amino}hexanoic acid or N6-[(2azidoethoxy)carbonyl]-L-lysine.
  11. 一种构建体,其特征在于,所述的构建体包含至少一个权利要求1-10任一所述的F8813解旋酶。A kind of construct is characterized in that, described construct comprises at least one F8813 helicase described in any one of claim 1-10.
  12. 根据权利要求11所述的构建体,其特征在于,所述的构建体还包含多核苷酸结合部分。The construct of claim 11, wherein the construct further comprises a polynucleotide binding moiety.
  13. 一种核酸,其特征在于,所述的核酸编码权利要求1-10任一所述的F8813解旋酶或权利要求11-12任一所述的构建体。A nucleic acid, characterized in that the nucleic acid encodes the F8813 helicase described in any one of claims 1-10 or the construct described in any one of claims 11-12.
  14. 一种表达载体,其特征在于,所述的表达载体包含权利要求13所述的核酸。An expression vector, characterized in that the expression vector comprises the nucleic acid of claim 13 .
  15. 一种宿主细胞,其特征在于,所述的宿主细胞包含权利要求13所述的核酸或权利要求14所述的表达载体。A host cell, wherein the host cell comprises the nucleic acid of claim 13 or the expression vector of claim 14.
  16. 一种权利要求1-10任一所述F8813解旋酶的制备方法,其特征在于,提供SEQ ID NO:1,在SEQ ID NO:1中引入至少一个半胱氨酸残基和/或至少一个非天然氨基酸获得SEQ ID NO:1的变体,以减小F8813解旋酶的多核苷酸结合结构域的开口大小,其中所述F8813解旋酶保留其控制多核苷酸移动的能力。A method for preparing the F8813 helicase described in any one of claims 1-10, characterized in that SEQ ID NO: 1 is provided, and at least one cysteine residue and/or at least one cysteine residue are introduced in SEQ ID NO: 1 A variant of SEQ ID NO: 1 was obtained with an unnatural amino acid to reduce the opening size of the polynucleotide binding domain of the F8813 helicase, wherein the F8813 helicase retains its ability to control polynucleotide movement.
  17. 一种权利要求1-10任一所述F8813解旋酶的制备方法,其特征在于,培养权利要求15所述的宿主细胞并进行诱导表达,纯化获得F8813解旋酶。A method for preparing the F8813 helicase according to any one of claims 1 to 10, wherein the host cell according to claim 15 is cultured and induced to express, and the F8813 helicase is obtained by purification.
  18. 一种调节解旋酶的多核苷酸结合结构域开口大小的方法,其特征在于,所述的方法包括将权利要求1-10任一所述的F8813解旋酶或权利要求11-12任一所述的构建体与多核苷酸接触,优选为减小多核苷酸结合结构域开口的大小。A method for regulating the opening size of a polynucleotide binding domain of a helicase, wherein the method comprises adding the F8813 helicase according to any one of claims 1-10 or any one of claims 11-12 The construct is contacted with the polynucleotide, preferably to reduce the size of the opening in the binding domain of the polynucleotide.
  19. 一种控制多核苷酸移动的方法,其特征在于,所述的方法包括将权利要求1-10任一所述的F8813解旋酶或权利要求11-12任一所述的构建体与多核苷酸接触。A method for controlling the movement of a polynucleotide, wherein the method comprises combining the F8813 helicase described in any of claims 1-10 or the construct described in any of claims 11-12 with a polynucleoside acid contact.
  20. 一种表征目标多核苷酸的方法,其特征在于,所述的方法包括:A method for characterizing a target polynucleotide, wherein the method comprises:
    I)将权利要求1-10任一所述的F8813解旋酶或权利要求11-12任一所述的构建体,与目标多核苷酸以及孔接触,使得F8813解旋酶或构建体控制目标多核苷酸穿过孔的移动;1) contacting the F8813 helicase of any one of claims 1-10 or the construct of any one of claims 11 to 12 with the target polynucleotide and the pore, so that the F8813 helicase or the construct controls the target movement of the polynucleotide through the pore;
    并II)获取目标多核苷酸中的核苷酸与所述孔相互作用时的一个或多个特征,以表征所述目标多核苷酸。and II) obtaining one or more characteristics of the interaction of nucleotides in the target polynucleotide with the pore to characterize the target polynucleotide.
  21. 根据权利要求20所述的方法,其特征在于,所述的方法还包括横跨与所述解 旋酶或构建体,和目标多核苷酸接触的孔施加势差的步骤;优选的,所述的孔选自生物孔、固态孔或生物与固态杂交的孔。The method of claim 20, further comprising the step of applying a potential difference across the pore in contact with the helicase or construct, and the target polynucleotide; preferably, the The wells are selected from biological wells, solid state wells, or biological and solid state hybrid wells.
  22. 根据权利要求20或21所述的方法,其特征在于,所述的目标多核苷酸为单链、双链或至少一部分是双链的,所述的目标多核苷酸为DNA或RNA。The method according to claim 20 or 21, wherein the target polynucleotide is single-stranded, double-stranded or at least partially double-stranded, and the target polynucleotide is DNA or RNA.
  23. 根据权利要求20-22任一所述的方法,其特征在于,所述的一个或多个特征选自目标多核苷酸的来源、长度、同一性、序列、二级结构或目标多核苷酸是否被修饰;优选的,所述的一个或多个特征通过电测量和/或光学测量进行。The method according to any one of claims 20-22, wherein the one or more features are selected from the source, length, identity, sequence, secondary structure of the target polynucleotide or whether the target polynucleotide is is modified; preferably, the one or more features are carried out by electrical and/or optical measurements.
  24. 一种表征目标多核苷酸的产品,其特征在于,所述的产品包含权利要求1-10任一所述的F8813解旋酶、权利要求11-12任一所述的构建体、权利要求13所述的核酸、权利要求14所述的表达载体或权利要求15所述的宿主细胞。A product for characterizing a target polynucleotide, characterized in that the product comprises the F8813 helicase described in any one of claims 1-10, the construct described in any one of claims 11-12, the claim 13 The nucleic acid, the expression vector of claim 14 or the host cell of claim 15.
  25. 根据权利要求24所述的产品,其特征在于,所述的产品选自试剂盒、装置或传感器。The product of claim 24, wherein the product is selected from a kit, a device or a sensor.
  26. 权利要求1-10任一所述的F8813解旋酶、权利要求11-12任一所述的构建体、权利要求13所述的核酸、权利要求14所述的表达载体、权利要求15所述的宿主细胞或权利要求24-25任一所述的产品在表征目标多核苷酸或控制目标多核苷酸穿过孔的移动中的应用。The F8813 helicase described in any one of claims 1-10, the construct described in any one of claims 11-12, the nucleic acid described in claim 13, the expression vector described in claim 14, the described in claim 15 Use of the host cell of any one of claims 24-25 or the product of any one of claims 24-25 in characterizing a polynucleotide of interest or controlling the movement of a polynucleotide of interest through a pore.
PCT/CN2020/136031 2020-12-14 2020-12-14 Modified helicase and application thereof WO2022126304A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/136031 WO2022126304A1 (en) 2020-12-14 2020-12-14 Modified helicase and application thereof
CN202080107912.2A CN116601297A (en) 2020-12-14 2020-12-14 Modified helicase and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136031 WO2022126304A1 (en) 2020-12-14 2020-12-14 Modified helicase and application thereof

Publications (1)

Publication Number Publication Date
WO2022126304A1 true WO2022126304A1 (en) 2022-06-23

Family

ID=82058733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136031 WO2022126304A1 (en) 2020-12-14 2020-12-14 Modified helicase and application thereof

Country Status (2)

Country Link
CN (1) CN116601297A (en)
WO (1) WO2022126304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056038A1 (en) * 2022-09-16 2024-03-21 北京普译生物科技有限公司 Modified capif1 helicase and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013260A1 (en) * 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Modified helicases
CN104039979A (en) * 2011-10-21 2014-09-10 牛津纳米孔技术公司 Method of characterizing a target polynucleotide using a pore and a hel308 helicase
US20150065354A1 (en) * 2011-12-29 2015-03-05 Oxford Nanopore Technologies Limited Method for characterising a polynucelotide by using a xpd helicase
CN106574300A (en) * 2014-05-02 2017-04-19 牛津纳米孔技术公司 Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
CN107109380A (en) * 2014-10-07 2017-08-29 牛津纳米孔技术公司 Enzyme through modification
WO2020061997A1 (en) * 2018-09-28 2020-04-02 北京齐碳科技有限公司 Helicase and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039979A (en) * 2011-10-21 2014-09-10 牛津纳米孔技术公司 Method of characterizing a target polynucleotide using a pore and a hel308 helicase
US20150065354A1 (en) * 2011-12-29 2015-03-05 Oxford Nanopore Technologies Limited Method for characterising a polynucelotide by using a xpd helicase
WO2014013260A1 (en) * 2012-07-19 2014-01-23 Oxford Nanopore Technologies Limited Modified helicases
CN106574300A (en) * 2014-05-02 2017-04-19 牛津纳米孔技术公司 Method of improving the movement of a target polynucleotide with respect to a transmembrane pore
CN107109380A (en) * 2014-10-07 2017-08-29 牛津纳米孔技术公司 Enzyme through modification
WO2020061997A1 (en) * 2018-09-28 2020-04-02 北京齐碳科技有限公司 Helicase and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 8 July 2018 (2018-07-08), ANONYMOUS: "MULTISPECIES: ATP-dependent DNA helicase [Methanosarcina]", XP055697339, retrieved from Genbank Database accession no. WP_048166958 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056038A1 (en) * 2022-09-16 2024-03-21 北京普译生物科技有限公司 Modified capif1 helicase and use thereof

Also Published As

Publication number Publication date
CN116601297A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
JP6776366B2 (en) Mutant pore
US11525126B2 (en) Modified helicases
KR102436445B1 (en) Modified enzymes
CN104126018B (en) Enzymatic process
CN112646019B (en) Mutant lysenin pore
CN109219665B (en) Method of modifying a template double-stranded polynucleotide for characterization
KR102472805B1 (en) mutant pore
CN117264925A (en) Modified enzymes
WO2021253410A1 (en) Pif1-like helicase and application thereof
JP2023090618A (en) Pif1-like helicase and use thereof
WO2022126304A1 (en) Modified helicase and application thereof
WO2022213253A1 (en) Modified prp43 helicase and use thereof
CN117965707A (en) Modified enzymes
CN117947148A (en) Modified enzymes
CN117947149A (en) Modified enzymes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107912.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965325

Country of ref document: EP

Kind code of ref document: A1