WO2022125370A1 - Methods of treating heart conditions using modified forms of trimetazidine - Google Patents
Methods of treating heart conditions using modified forms of trimetazidine Download PDFInfo
- Publication number
- WO2022125370A1 WO2022125370A1 PCT/US2021/061583 US2021061583W WO2022125370A1 WO 2022125370 A1 WO2022125370 A1 WO 2022125370A1 US 2021061583 W US2021061583 W US 2021061583W WO 2022125370 A1 WO2022125370 A1 WO 2022125370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- pharmaceutical composition
- mixture
- subject
- disease
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
- A61K31/497—Non-condensed pyrazines containing further heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/79—Acids; Esters
- C07D213/80—Acids; Esters in position 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/08—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
- C07D295/084—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/088—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
Definitions
- the invention relates to methods of treatment of heart conditions.
- Heart failure causes shortness of breath and excessive tiredness, which can severely impair quality of life, and 35% of patients with heart failure die within one year of their initial diagnosis. It is estimated that about half of heart failure patients have reduced left ventricular ejection fraction (LVEF), the fraction of blood volume that is ejected from the left ventricle during each contraction.
- the LVEF of healthy individuals is typically 50-65%, and heart failure patients with a LVEF below 40% are considered to have heart failure with reduced ejection fraction (HFrEF).
- Patients with an LVEF of 50% are considered to have heart failure with preserved ejection fraction (HFpEF). About half of patients with heart failure have HFpEF, and the number is increasing. The five-year survival rate of patients hospitalized with HFrEF or HFpEF is 25%.
- HFrEF Current pharmacological approaches for treating HFrEF include therapies that slow the disease process and those that merely relieve the clinical signs and symptoms of the disease.
- Therapies in the former category typically include blockers of the renin-angiotensin aldosterone system (RAAS), beta-blockers, or the anti-hypertensive hydralazine, each of which carries the risk of serious side effects.
- RAAS renin-angiotensin aldosterone system
- beta-blockers or the anti-hypertensive hydralazine, each of which carries the risk of serious side effects.
- ACE-I angiotensin converting enzyme inhibitors
- angiotensin receptor blockers which interfere with RAAS, can cause renal dysfunction, hyperkalemia, and hypotension
- beta blockers can cause fatigue and fluid retention
- hydralazine therapy can cause dizziness and headaches.
- Drugs that relieve symptoms of HFrEF include diuretics, Na + /K + ATPase inhibitors, and nitrates, but such drugs have not been shown to improve mortality rates when provided on their own. Moreover, diuretics must be administered carefully because they can activate RAAS and exacerbate the disease. Consequently, current pharmacological therapies for treatment of HFrEF are inadequate.
- HFpEF is secondary to a variety of other conditions, such as hypertension, obesity, and metabolic syndrome, and treatment of patients with HFpEF typically is direct toward ameliorating comorbidities and relieving symptoms. Millions of people with the disease remain limited in their daily lives and at an increased risk of death.
- Hibernating myocardium is a condition in which heart muscle tissue displays chronic contractile dysfunction.
- Myocardial hibernation differs from myocardial infarction, i.e., the death of myocardial tissue, in that cardiomyocytes remain viable but have undergone changes in gene expression that lead to dedifferentiation. Affected cells do not contract at rest, causing a reduction of contractility of the myocardium as a whole.
- Hibernating myocardium is usually caused by coronary artery disease (CAD), in which the supply of oxygenated blood to the myocardium is insufficient.
- CAD coronary artery disease
- hibernating myocardium may remain stable for extended periods, there is a high risk of necrosis of the hibernating tissue following a further physiological insult or if left untreated for a prolonged time. It is estimated that 20-50% of patients with heart failure caused by CAD have a substantial amount of hibernating myocardium.
- CABG coronary artery bypass graft
- angioplasty still carries the risk of adverse events, such as stroke and bleeding, and ischemia may recur due to restenosis of the repaired artery.
- the process by which dedifferentiated cells re-establish their cardiomyocyte phenotype is slow and gradual, and restoration of normal cardiac contractility following revascularization may take several months. Consequently, hibernating myocardium remains a serious medical condition that affects millions of individuals with heart failure.
- HCM Hypertrophic cardiomyopathy
- the invention provides methods of treating HFrEF, HFpEF, heart failure associated with hibernating myocardium, and hypertrophic cardiomyopathy (HCM) using modified forms of trimetazidine, such as CV-8972, which has the IUPAC name 2-[4-[(2,3,4- trimethoxyphenyl)methyl]piperazin-l-yl]ethyl pyridine-3 -carboxylate and the following structure:
- trimetazidine improve cardiac efficiency by shifting cellular metabolism from fatty acid oxidation to glucose oxidation. Unadulterated trimetazidine promotes the use of glucose as a mitochondrial energy source by blocking the activity of long-chain 3-ketoacyl-CoA thiolase, and certain modified forms retain the inhibitory effects but have superior pharmacokinetic properties.
- CV-8972 also provides a precursor for synthesis of nicotinamide adenine dinucleotide (NAD + ), which facilitates mitochondrial respiration to promote mitochondrial ATP production. Thus, CV-8972 stimulates glucose-dependent cardiac energy production via two independent mechanisms.
- the use of modified forms of trimetazidine provides an alternative to existing pharmacological therapies to mitigate the effects of HFrEF, HFpEF, and non-obstructive HCM.
- the invention provides pharmacological therapies that can be used as an alternative to, or in combination with, revascularization for treatment of hibernating myocardium.
- the contractile function of hibernating myocardium can be restored by improving coronary blood flow or reducing the oxygen demand of the myocardium.
- revascularization focuses on the first approach, the use of modified forms of trimetazidine rely on the second. Because oxidation of glucose generates more ATP per unit of oxygen than does fatty acid oxidation, modified forms of trimetazidine increase energy production in the low-oxygen environment associated with hibernating myocardium.
- NAD + precursors such as CV- 8972
- CV- 8972 supply an essential cofactor for oxidative phosphorylation to ensure optimal use of available oxygen. Therefore, providing modified forms of trimetazidine ameliorate contractility in patients that may not be candidates for revascularization or for whom cardiomyocyte function has not been fully restored following revascularization.
- the invention provides methods of treating heart failure associated with reduced ejection fraction (HFrEF) in a subject by providing to a subject having HFrEF a compound represented by formula (X): or a pharmaceutically acceptable salt thereof.
- HFrEF reduced ejection fraction
- the invention provides methods of treating heart failure associated with reduced ejection fraction (HFrEF) in a subject by providing to a subject having HFrEF a compound represented by formula (IX): or a pharmaceutically acceptable salt thereof.
- HFrEF reduced ejection fraction
- the HFrEF may be associated with another condition.
- the HFrEF may be associated with aortic stenosis, arrhythmia, cerebrovascular accident, chronic obstructive pulmonary disease, cigarette smoking, congenital heart disease, diabetic cardiomyopathy, dilated cardiomyopathy, hypertension, ischemic coronary disease, kidney disease, low baseline left ventricular ejection fraction, low platelet count, male gender, mitral regurgitation, myocardial infarction, myocarditis, obstructive hypertrophic cardiomyopathy, obesity, old age, peripheral vascular disease, renal disease, rheumatic heart disease, valvular disease, or viral myocarditis.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by any suitable route or mode of administration.
- the pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- an implantable medical device e.g., stent or drug-eluting stent or balloon equivalents.
- the pharmaceutical composition may have a format suitable for oral administration.
- the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio.
- the mixture may contain the compound and HPMC in a weight ratio of about 1 :5, about 1 :4, about 1 :3, about 1 :2, about 1 : 1, about 3:2, about 2: 1, about 3: 1, about 4: 1, about 5: 1, from about 1 : 100 to about 100: 1, from about 1 : 100 to about 50: 1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10: 1, from about 1 : 100 to about 5: 1, from about 1 : 100 to about 2: 1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50: 1, from about 1 :50 to about 20: 1, from about 1 :50 to about 10: 1, from about 1 :50 to about 5: 1, from about 1 :50 to about 2:1, from about 1 :20 to about 100: 1, from about 1 :20 to about 50: 1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10: 1, from
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound.
- the unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X).
- the polymorph may be Form A, Form B, Form C, Form D, or Form E.
- the pharmaceutical composition may be substantially free of one or more other polymorphs.
- the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides a compound of one of formulas (IX) and (X) for use in treatment of heart failure associated with reduced ejection fraction (HFrEF).
- the HFrEF may be associated with another condition, such as any of those described above.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
- the pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides methods of treating heart failure associated with hibernating myocardium in a subject by providing to a subject having heart failure associated with hibernating myocardium a compound represented by formula (X):
- the invention provides methods of treating heart failure associated with preserved ejection fraction (HFpEF) in a subject by providing to a subject having HFpEF a compound represented by formula (IX): or a pharmaceutically acceptable salt thereof.
- HFpEF preserved ejection fraction
- the HFpEF may be associated with another condition.
- the HFpEF may be associated with aortic stenosis, atrial fibrillation, cigarette smoking, coronary artery disease, diabetes, hyperlipidemia, hypertension, ischemia, kidney disease, metabolic syndrome, obesity, obstructive sleep apnea, old age, or senile systemic amyloidosis.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by any suitable route or mode of administration.
- the pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- the pharmaceutical composition may have a format suitable for oral administration.
- the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio.
- the mixture may contain the compound and HPMC in a weight ratio of about 1:5, about 1 :4, about 1:3, about 1:2, about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, from about 1:100 to about 100: 1, from about 1 : 100 to about 50:1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10:1, from about 1 : 100 to about 5:1, from about 1 : 100 to about 2:1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50:1, from about 1 :50 to about 20: 1, from about 1:50 to about 10:1, from about 1:50 to about 5:1, from about 1:50 to about 2:1, from about 1:20 to about 100: 1, from about 1 :20 to about 50:1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10:1, from about 1:20 to about 5:1, from about 1:20 to about
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound.
- the unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X).
- the polymorph may be Form A, Form B, Form C, Form D, or Form E.
- the pharmaceutical composition may be substantially free of one or more other polymorphs.
- the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides a compound of one of formulas (IX) and (X) for use in treatment of heart failure associated with preserved ejection fraction (HFpEF).
- HFpEF preserved ejection fraction
- the HFpEF may be associated with another condition, such as any of those described above.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
- the pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides methods of treating heart failure associated with hibernating myocardium in a subject by providing to a subject having heart failure associated with hibernating myocardium a compound represented by formula (IX): or a pharmaceutically acceptable salt thereof.
- the heart failure may be associated with one or more other conditions.
- the heart failure may be associated with ischemia or coronary artery disease (CAD).
- CAD coronary artery disease
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by any suitable route or mode of administration.
- the pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- the pharmaceutical composition may have a format suitable for oral administration.
- the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio.
- the mixture may contain the compound and HPMC in a weight ratio of about 1:5, about 1 :4, about 1:3, about 1:2, about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, from about 1:100 to about 100: 1, from about 1 : 100 to about 50:1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10:1, from about 1 : 100 to about 5:1, from about 1 : 100 to about 2:1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50:1, from about 1 :50 to about 20: 1, from about 1:50 to about 10:1, from about 1:50 to about 5:1, from about 1:50 to about 2:1, from about 1:20 to about 100: 1, from about 1 :20 to about 50:1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10:1, from about 1:20 to about 5:1, from about 1:20 to about
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound.
- the unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X).
- the polymorph may be Form A, Form B, Form C, Form D, or Form E.
- the pharmaceutical composition may be substantially free of one or more other polymorphs.
- the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides a compound of one of formulas (IX) and (X) for use in treatment of heart failure associated with hibernating myocardium.
- the heart failure may be associated with another condition, such as ischemia or coronary artery disease (CAD).
- CAD coronary artery disease
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
- the pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides methods of treating non-obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having non-obstructive HCM a compound represented by formula (X): or a pharmaceutically acceptable salt thereof.
- HCM hypertrophic cardiomyopathy
- the invention provides methods of treating non-obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having nonobstructive HCM a compound represented by formula (IX): or a pharmaceutically acceptable salt thereof.
- HCM hypertrophic cardiomyopathy
- the non-obstructive HCM may be associated with another condition.
- the nonobstructive HCM may be associated with angina (chest pain), atrial fibrillation, dizziness, fainting (syncope), fatigue, heart palpitation, leg swelling, light-headedness, shortness of breath (dyspnea), or stroke.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by any suitable route or mode of administration.
- the pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- an implantable medical device e.g., stent or drug-eluting stent or balloon equivalents.
- the pharmaceutical composition may have a format suitable for oral administration.
- the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio.
- the mixture may contain the compound and HPMC in a weight ratio of about 1 :5, about 1 :4, about 1 :3, about 1 :2, about 1 : 1, about 3:2, about 2: 1, about 3: 1, about 4: 1, about 5: 1, from about 1 : 100 to about 100: 1, from about 1 : 100 to about 50: 1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10: 1, from about 1 : 100 to about 5: 1, from about 1 : 100 to about 2: 1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50: 1, from about 1 :50 to about 20: 1, from about 1 :50 to about 10: 1, from about 1 :50 to about 5: 1, from about 1 :50 to about 2:1, from about 1 :20 to about 100: 1, from about 1 :20 to about 50: 1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10: 1, from
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound.
- the unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X).
- the polymorph may be Form A, Form B, Form C, Form D, or Form E.
- the pharmaceutical composition may be substantially free of one or more other polymorphs.
- the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides a compound of one of formulas (IX) and (X) for use in treatment of non-obstructive hypertrophic cardiomyopathy (HCM).
- HCM non-obstructive hypertrophic cardiomyopathy
- the non-obstructive HCM may be associated with another condition, such as any of those described above.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
- the pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides methods of treating obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having obstructive HCM a compound represented by formula (X): or a pharmaceutically acceptable salt thereof.
- HCM hypertrophic cardiomyopathy
- the invention provides methods of treating obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having obstructive HCM a compound represented by formula (IX): or a pharmaceutically acceptable salt thereof.
- HCM hypertrophic cardiomyopathy
- the obstructive HCM may be associated with another condition.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by any suitable route or mode of administration, such as any of those described above.
- the pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio, such as any weight ratio described above.
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any dosage described above.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X).
- the polymorph may be Form A, Form B, Form C, Form D, or Form E.
- the pharmaceutical composition may be substantially free of one or more other polymorphs.
- the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides a compound of one of formulas (IX) and (X) for use in treatment of obstructive hypertrophic cardiomyopathy (HCM).
- HCM obstructive hypertrophic cardiomyopathy
- the obstructive HCM may be associated with another condition.
- the compound may be provided in a pharmaceutical composition.
- the pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
- the pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
- the pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
- the erodible polymer may be hydroxypropyl methylcellulose (HPMC).
- the mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
- the pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
- the pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
- the pharmaceutical composition may include a hydrochloride salt of the compound of formula (X).
- the pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio.
- the pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
- the pharmaceutical composition may include a hydrated form of the compound of formula (X).
- the pharmaceutical composition may include a monohydrate form of the compound.
- the pharmaceutical composition may include an anhydrous form of the compound.
- the invention provides methods of treating heart failure with reduced ejection fraction (HFrEF), heart failure with preserved ejection fraction (HFpEF), heart failure associated with hibernating myocardium, and hypertrophic cardiomyopathy (HCM) using modified forms of trimetazidine.
- HFrEF reduced ejection fraction
- HFpEF heart failure with preserved ejection fraction
- HCM hypertrophic cardiomyopathy
- trimetazidine improve cardiac efficiency by shifting cellular metabolism from fatty acid oxidation to glucose oxidation, which is a more oxygen-efficient pathway for generating ATP.
- Trimetazidine promotes the use of glucose as a mitochondrial energy source by blocking the activity of long-chain 3 -ketoacyl -Co A thiolase.
- the modified forms of trimetazidine used in methods of the invention also inhibit thiolase but have superior pharmacokinetic properties.
- the modified form of trimetazidine includes a precursor for synthesis of nicotinamide adenine dinucleotide (NAD + ).
- NAD + further improves mitochondrial ATP production by facilitating respiration.
- the methods of the invention alleviate HFrEF and HFpEF by a different mechanism from prior pharmacological approaches.
- the methods of the invention allow the myocardium to produce more energy from a limited supply of oxygen. Thus, they may be used when other therapies are contraindicated or ineffective, or they may be used in combination with other therapies.
- Heart failure is the inability of the heart to maintain cardiac output sufficient to meet the body's needs. Cases of heart failure can be categorized according to the measurement of the left ventricle ejection fraction (LVEF).
- LVEF left ventricle ejection fraction
- the LVEF is the volume of blood ejected from the left ventricle with each heartbeat divided by the volume of blood when the left ventricle is maximally filled. Notwithstanding its name, the LVEF is typically expressed as a percentage, and the LVEF in healthy individuals ranges from 50-65%. Consequently, patients with heart failure and a LVEF of at least 50% are considered to have heart failure with preserved ejection fraction (HFpEF).
- HFpEF preserved ejection fraction
- Heart failure patients with a LVEF below 40% are considered to have clinical HFrEF, while those with a LVEF of 40-49% are classified as having heart failure with moderately reduced (or mid-range) ejection fraction (HFmrEF).
- HFrEF may be accompanied by progressive left ventricular dilatation and adverse cardiac remodeling.
- HFrEF includes any heart failure patients with a LVEF below 50%, i.e., the term encompasses the clinical definitions of both HFrEF and HFmrEF, unless otherwise stated.
- HFrEF may include a subject that has heart failure and a LVEF of less than about 50%, less than about 49%, less than about 48%, less than about 47%, less than about 46%, less than about 45%, less than about 44%, less than about 43%, less than about 42%, less than about 41%, or less than about 40%.
- renin-angiotensin aldosterone system renin-angiotensin aldosterone system
- SNS sympathetic nervous system
- Drugs that inhibit the RAAS include angiotensin converting enzyme inhibitors (ACE-Is), such as benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril perindopril, quinapril, ramipril, and trandolapril; angiotensin receptor blockers (ARBs), such as azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan; and aldosterone antagonists, such as eplerenone and spironolactone; and anti-hypertensives, such as hydrala
- ACE-Is angiotensin converting enzyme inhibitor
- Drugs that inhibit the SNS include beta blockers, such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol.
- beta blockers such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol.
- statins such as atorva
- symptom-relieving drugs include diuretics, such as bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, and torasemide (torsemide); nitrates, such as glyceryl trinitrate, isosorbide dinitrate, and isosorbide mononitrate; and Na + /K + ATPase inhibitors, such as digoxin and digitoxin.
- diuretics such as bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, and torasemide (torsemide)
- nitrates such as glyceryl trinitrate, isosorbide dinitrate, and isosorbide mononitrate
- Na + /K + ATPase inhibitors such as digoxin and digitoxin.
- HFrEF angiotensin receptor-neprilysin inhibitor
- HFrEF has a variety of causes and risk factors linked to the disease.
- HFrEF may result from, or be associated with, aortic stenosis, arrhythmia, cerebrovascular accident, chronic obstructive pulmonary disease, cigarette smoking, congenital heart disease, diabetic cardiomyopathy, dilated cardiomyopathy, hypertension, ischemic coronary disease, kidney disease, low baseline left ventricular ejection fraction, low platelet count, male gender, mitral regurgitation, myocardial infarction, myocarditis, obstructive hypertrophic cardiomyopathy, obesity, old age, peripheral vascular disease, renal disease, rheumatic heart disease, valvular disease, or viral myocarditis.
- Heart failure is the inability of the heart to maintain cardiac output sufficient to meet the body's needs. Cases of heart failure can be categorized according to the measurement of the left ventricle ejection fraction (LVEF).
- LVEF left ventricle ejection fraction
- the LVEF is the volume of blood ejected from the left ventricle with each heartbeat divided by the volume of blood when the left ventricle is maximally filled. Notwithstanding its name, the LVEF is typically expressed as a percentage, and the LVEF in healthy individuals ranges from 50-65%. Consequently, patients with heart failure and a LVEF of at least 50% are considered to have HFpEF.
- Heart failure patients with a LVEF below 40% are considered to have heart failure with reduced ejection fraction (HFrEF), while those with a LVEF of 40-49% are classified as having heart failure with moderately reduced (or mid-range) ejection fraction (HFmrEF).
- HFrEF reduced ejection fraction
- HFpEF Clinical manifestations include shortness, exercise-induced dyspnea, paroxysmal nocturnal dyspnea and orthopnea, exercise intolerance, fatigue, elevated jugular venous pressure, and edema. Patients with HFpEF poorly tolerate stress, particularly hemodynamic alterations of ventricular loading or increased diastolic pressures.
- HFpEF can be developed by a variety of mechanisms, some of which are poorly understood. Nonetheless, a variety of risk factors linked to HFpEF have been identified. For example, and without limitation, HFpEF may result from, or be associated with aortic stenosis, atrial fibrillation, cigarette smoking, coronary artery disease, diabetes, hyperlipidemia, hypertension, ischemia, kidney disease, metabolic syndrome, obesity, obstructive sleep apnea, old age, or senile systemic amyloidosis.
- CAD coronary artery disease
- IHD ischemic heart disease
- hibernating myocardium a condition in which heart muscle tissue displays chronic contractile dysfunction.
- Hibernating cardiomyocytes remain viable but have undergone changes in gene expression that lead to dedifferentiation. The phenotypic change of hibernating cells is accompanied by a transition from oxidative to anaerobic metabolism to provide energy during oxygen scarcity. Because hibernating cells do not contract at rest, the contractility of the myocardium is reduced.
- hibernating myocardium may remain stable for extended periods, there is a high risk of necrosis of the hibernating tissue following a further physiological insult or if left untreated for a prolonged time. It is estimated that 20-50% of patients with heart failure caused by CAD have a substantial amount of hibernating myocardium.
- Treatment of hibernating myocardium focuses involves improving coronary blood flow and/or reducing the oxygen demand of the myocardium.
- the predominant current approach is directed toward improving coronary blood flow by revascularization.
- Revascularization may be achieved by coronary artery bypass graft (CABG) surgery, which allows blood to bypass the blocked coronary artery, or by angioplasty, which removes blockage of the artery to increase blood flow.
- CABG coronary artery bypass graft
- angioplasty which removes blockage of the artery to increase blood flow.
- CABG coronary artery bypass graft
- Angioplasty albeit less risky, is not effective in patients with severe CAD and is not durable in others, as restenosis of the repaired artery may occur over time.
- Both CABG and angioplasty allow dedifferentiated cells in hibernating myocardium to re-establish their cardiomyocyte phenotype and contribute to myocardial contractility.
- re-differentiation of hibernating cells is a slow, gradual process, and restoration of contractility following revascularization may take three months or more.
- Negative inotropic agents include beta blockers, such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol; calcium channel blockers, such as diltiazem, fendiline, gallopamil, and verapamil; class IA antiarrhythmics, such as ajmaline, disopyramide, procainamide, and quinidine; class IC antiarrhythmics, such as encainide, flecainide, moricizine, and propafenone; isovoacangine, and voacristine.
- beta blockers such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol
- calcium channel blockers
- HCM is a disease in which the heart muscle becomes abnormally thick, often making it harder for the heart to pump blood.
- the extent and localization of hypertrophy are highly variable. Nonetheless, the ventricles are usually affected, particularly the left ventricle, and the septum may be enlarged as well. Thickening of the heart muscle results in the heart being less able to pump blood effectively and also may cause electrical conduction problems.
- Many patients with HCM experience few, if any, symptoms, so HCM often goes undiagnosed. However, in a fraction of patients, HCM causes shortness of breath, angina, and heart palpitations, and abnormal heart rhythms due to HCM can be life-threatening.
- Hypertrophic cardiomyopathy is the most common inherited cardiac disease, affecting an estimated 1 in 500 individuals. HCM is usually inherited in an autosomal dominant manner due to a mutation in one of the genes encoding proteins of the cardiac sarcomere, Z-disc, and calcium-controlling proteins. Over 2000 different mutations in 20 different genes have been identified in patients with HCM, with mutation in the genes encoding P-myosin heady chain and myosin binding protein C being the most common. Approximately 50% of cases of hypertrophic cardiomyopathy are due to sarcomeric protein mutations. HCM may also be associated with Fabry’s disease, amyloidosis, Danon disease, and Friederich’s ataxia.
- LVH is associated with cardiac energetic impairment due to maladaptive changes in the enzymes involved in cardiac metabolism, abnormal electron transport chain function, and abnormal energy transfer through the creatine kinase system. Therefore, while the etiology of the energetic impairment differs, the consequences in terms of exercise induced diastolic abnormalities may be similar. Thus, without wishing to be bound by theory, it is believed that metabolic agents have therapeutic potential for HCM regardless of its etiology.
- HCM cases of HCM are categorized based on whether outflow of blood from the left ventricle is obstructed. About 60-70% HCM cases are obstructive, and the rest are non-obstructive. In obstructive HCM, the obstruction may be observed at rest or on provocation (Valsalva, exercise). This obstruction most commonly occurs in the left ventricular outflow tract, but less commonly occurs in the LV mid-cavity. LV outflow tract obstruction is due to anterior displacement of the mitral valve and sub-valvar apparatus during mid to late systole (systolic anterior motion - SAM) so that it meets the hypertrophied septum, obstructing blood flow and causing high intracavitary pressures.
- systolic anterior motion - SAM anterior motion - SAM
- the SAM is a consequence of one or more of the following factors: septal hypertrophy, anatomical displacement (anteriorly) of the papillary muscles, a small LV end systolic volume, and a Venturi effect, i.e., ‘sucking’ the mitral apparatus anteriorly during systole (rather like the mechanism of aircraft lift).
- HCM is considered obstructive if the left ventricular outflow tract (LVOT) gradient is >30 mmHg.
- LVOT left ventricular outflow tract
- the majority of patients with obstructive HCM are symptomatic (dyspnea, chest pains, palpitations, syncope/pre syncope). The obstruction itself appears to play a major role in the symptomatology.
- obstructive HCM is mavacamten, a myosin ATPase inhibitor. It reduces myofibril cross bridge cycling. In low doses it reduces the energy wasting associated with excessive cross bridge cycling (which may potentially be beneficial in non-obstructive HCM) but at higher doses it has a marked negative inotropic effect and thereby relieves obstruction and improves symptoms.
- a third treatment for obstructive HCM is septal myectomy. This surgical procedure produces excellent symptomatic benefit with low operative mortality and improved rates of long-term mortality.
- Another option for treating obstructive HCM is alcohol septal ablation. This percutaneous effectively relieves obstruction and improves symptoms, although a small proportion of patients become dependent on pacemakers.
- non-obstructive HCM has been largely overlooked as a distinct clinical condition. Factors that have contributed to the relative neglect of nonobstructive HCM include the difficulty of identifying the disease and the mildness or absence of symptoms of most patients. Nonetheless, 10% of patients with non-obstructive HCM develop advanced heart failure that is refractory to drug treatment and serious enough to merit consideration for heart transplantation.
- HCM including non-obstructive HCM
- non-obstructive HCM may cause, be caused by, or otherwise be associated with, a variety of other conditions.
- non- obstructive HCM may be associated with angina (chest pain), atrial fibrillation, dizziness, fainting (syncope), fatigue, heart palpitation, leg swelling, light-headedness, shortness of breath (dyspnea), or stroke.
- HCM including non-obstructive HCM
- angiotensin converting enzyme inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril perindopril, quinapril, ramipril, and trandolapril
- angiotensin receptor antagonists such as azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan
- antiarrhythmics such as ajmaline, amiodarone, disopyramide, dofetilide, mexiletine, procainamide, and quinidine
- beta blockers such as acebutolol, atenolol, bis
- HCM hypertrophic cardiomyopathy
- Methods of the invention include the use of modified forms of trimetazidine.
- Trimetazidine has the following structure:
- Trimetazidine is described as the first cytoprotective anti-ischemic agent developed and has long been used to treat angina.
- Trimetazidine promotes glucose oxidation by inhibiting oxidation of fatty acids.
- Glucose oxidation and fatty acid oxidation are energy-producing metabolic pathways that compete with each other for substrates.
- glucose oxidation glucose is broken down to pyruvate via glycolysis in the cytosol of the cell. Pyruvate then enters the mitochondria, where it is converted to acetyl coenzyme A (acetyl-CoA).
- acetyl-CoA acetyl coenzyme A
- beta-oxidation of fatty acids which occurs in the mitochondria, two-carbon units from long-chain fatty acids are sequentially converted to acetyl- CoA. The remaining steps in energy production from oxidation of glucose or fatty acids are common to the two pathways.
- Trimetazidine inhibits oxidation of fatty acids by blocking long-chain 3-ketoacyl-CoA thiolase, thus causing cells to rely on glucose oxidation to support energy production.
- Forcing cardiac mitochondria to rely on oxidation of glucose rather fatty acids as an energy source provides a therapeutic benefit for many patients with cardiovascular conditions.
- the overall efficiency of energy production by cardiac mitochondria is diminished due in part to an increased reliance on fatty acid oxidation over glucose oxidation.
- Glucose oxidation is a more efficient pathway for energy production, as measured by the number of ATP molecules produced per O2 molecule consumed, than is fatty acid oxidation.
- overall cardiac efficiency can be increased by agents that promote glucose oxidation, such as trimetazidine.
- CV-8972 was recently identified as a trimetazidine-derivative having improved pharmacological properties.
- CV-8972 has the IUPAC name 2-[4-[(2,3,4- trimethoxyphenyl)methyl]piperazin-l-yl]ethyl pyridine-3 -carboxylate and the structure of formula (X):
- CV-8972 When CV-8972 is administered to a subject, it is initially broken into nicotinic acid and CV-8814, which has the IUPAC name 2-[4-[(2,3,4-trimethoxyphenyl)methyl]piperazin-l- yl] ethanol and the structure of formula (IX):
- CV-8814 is a hydroxyethyl derivative of trimetazidine, and the hydroxyethyl group is subsequently removed in the body to provide trimetazidine.
- CV-8972 and its metabolic products are described in U.S. Patent No. 10,556,013, the contents of which are incorporated herein by reference.
- the improved therapeutic properties of CV-8972 are due in part to the effect of nicotinic acid.
- Nicotinic acid serves as a precursor for synthesis of nicotinamide adenine dinucleotide (NAD + ), the oxidized form of an essential coenzyme in the mitochondrial electron transport reaction.
- NAD + nicotinamide adenine dinucleotide
- Supplying a NAD + precursor ensures that mitochondrial redox reactions occur robustly to drive ATP synthesis, regardless of whether oxidation of glucose or fatty acids is used to feed the citric acid cycle.
- the nicotinic acid product of CV-8972 promotes mitochondrial respiration.
- CV-8972 The stepwise breakdown of CV-8972 to CV-8814 and then to trimetazidine also contributes to the improved therapeutic properties of CV-8972.
- CV-8814 inhibits 3-ketoacyl-CoA thiolase, so CV-8972 delivers two different glucose-shifting active pharmaceutical ingredients (APIs).
- APIs glucose-shifting active pharmaceutical ingredients
- CV-8814 does not produce the same undesirable side effects as trimetazidine.
- the level of circulating trimetazidine following a dose of CV-8972 is much lower than the level following of comparable dose of trimetazidine itself. Therefore, compared to unadulterated trimetazidine, CV-8972 provides a more sustained level of circulating API and fewer side effects.
- trimetazidine that may be used in compositions of the invention are described in, for example, U.S. Patent Nos. 4,100,285 and 4,574,156, the contents of each of which are incorporated herein by reference.
- Modified forms of trimetazidine may include one or more atoms that are enriched for an isotope.
- the compounds may have one or more hydrogen atoms replaced with deuterium or tritium. Isotopic substitution or enrichment may occur at carbon, sulfur, or phosphorus, or other atoms.
- the compounds may be isotopically substituted or enriched for a given atom at one or more positions within the compound, or the compounds may be isotopically substituted or enriched at all instances of a given atom within the compound.
- Methods of the invention may include providing a modified form of trimetazidine, such as one of the compounds described above, in a pharmaceutical composition.
- the composition may be formulated for any route or mode of administration.
- the composition may be formulated for buccal, dermal, enteral, intraarterial, intramuscular, intraocular, intravenous, nasal, oral, parenteral, pulmonary, rectal, subcutaneous, topical, or transdermal administration.
- the composition may be formulated for administration by injection or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- a pharmaceutical composition containing one or more the compounds may be in a form suitable for oral use, for example, as tablets, troches, lozenges, fast-melts, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs.
- Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the compounds in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
- excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc.
- the tablets may be uncoated, or they may be coated by known techniques to delay disintegration in the stomach and absorption lower down in the gastrointestinal tract and thereby provide a sustained action over a longer period.
- a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.
- Formulations for oral use may also be presented as hard gelatin capsules in which the compounds are mixed with an inert solid diluent, for example calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the compounds are mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
- an alternative oral formulation, where control of gastrointestinal tract hydrolysis of the compound is sought, can be achieved using a controlled-release formulation, where a compound of the invention is encapsulated in an enteric coating.
- Aqueous suspensions may contain the compounds in admixture with excipients suitable for the manufacture of aqueous suspensions.
- excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as a naturally occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example, polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such a polyoxyethylene with partial esters derived from fatty acids and hexitol anhydrides, for example polyoxyethylene sorbitan monooleate.
- suspending agents for example sodium carboxymethylcellulose, methylcellulose
- the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
- preservatives for example ethyl, or n-propyl p-hydroxybenzoate
- coloring agents for example ethyl, or n-propyl p-hydroxybenzoate
- flavoring agents for example ethyl, or n-propyl p-hydroxybenzoate
- sweetening agents such as sucrose or saccharin.
- Oily suspensions may be formulated by suspending the compounds in a vegetable oil, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
- the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol.
- Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation.
- These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.
- Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the compounds in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
- a dispersing or wetting agent, suspending agent and one or more preservatives Suitable dispersing or wetting agents and suspending agents are exemplified, for example sweetening, flavoring and coloring agents, may also be present.
- compositions may also be in the form of oil-in-water emulsions.
- the oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these.
- Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally occurring phosphatides, for example soya bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate.
- the emulsions may also contain sweetening and flavoring agents.
- Syrups and elixirs may be formulated with sweetening agents, such as glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, and agents for flavoring and/or coloring.
- the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
- the sterile injectable preparation may also be in a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3 -butanediol.
- Suitable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or di-glycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- compositions may contain mixtures that include erodible polymers that promote swelling of the mixture in an aqueous environment.
- Pharmaceutical compositions that contain CV-8972 and one or more erodible polymers are described in co-pending, co-owned Application Nos. 63/046,115 and 63/046,117.
- An erodible polymer is any polymer that breaks down inside the body within a physiologically relevant time frame.
- the erodible polymer may have other characteristics that promote the gradual release of the modified form of trimetazidine from the mixture.
- the polymer may be one or more of the following: biocompatible, i.e., not harmful to living tissue; hydrophilic; hygroscopic; tending to form a hydrogel.
- the polymer-containing mixtures may promote gradual release by one or more mechanisms. For example, swelling of the mixture by absorption of water may facilitate diffusion of the modified form of trimetazidine from the mixture. Degradation of the polymer may also allow the modified form of trimetazidine to be released from the mixture. Osmotic pressure due the high concentration gradient of compound between the inside and outside of the mixture may also contribute to diffusion of the modified form of trimetazidine from the mixture.
- the polymer may be a cellulose derivative, a gelatin derivative, e.g., a cross-linked gelatin derivative, or a polyester derivative.
- Derivatives of cellulose is a linear chain P(1 — >4) linked D-glucose units, include polymers that contain substitutions on one of more of the hydroxyl groups of each glucose unit. Substituents may be organic or inorganic and are typically attached via ester or ether linkages.
- Cellulose ester derivatives include carboxymethyl cellulose (CMC), e.g., sodium carboxymethyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, ethyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), and methylcellulose.
- CMC carboxymethyl cellulose
- HPMC hydroxypropyl methylcellulose
- Cellulose ether derivatives include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose propionate, cellulose sulfate, cellulose triacetate, and nitrocellulose.
- cellulose-based polymers to form biodegradable hydrogels is known in the art and described in, for example, Sannino, et al., Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials 2009, 2, 353-373; doi: 10.3390/ma2020353, the contents of which are incorporated herein by reference.
- the mixture may contain multiple polymers or multiple polymeric forms of the same polymer.
- HPMC polymeric forms may differ in a variety of physical properties, including viscosity, degree of methoxyl substitution, degree of hydroxypropoxyl substitution, or average molecule weight.
- the viscosity of a HMPC polymeric form may be determined by testing under standard conditions, including the concentration of HMPC in the solution and the temperature of the solution.
- concentration of HMPC in the solution may be 1%, 1.5%, 2%, 2.5%, or 3%.
- the temperature of the solution may be 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C, 23°C, 24°C, or 25°C.
- a polymeric form of a cellulose derivative, such as HPMC may have a defined viscosity.
- a polymeric form of HPMC may have a viscosity of from about 2 cP to about 4 cP, from about 4 cP to about 6 cP, from about 5 cP to about 8 cP, from about 12 cP to about 18 cP, from about 40 cP to about 60 cP, from about 80 cP to about 120 cP, from about 300 cP to about 500 cP, from about 1200 cP to about 2400 cP, from about 2500 cP to about 5000 cP, from about 9000 cP to about 18,000 cP, from about 12,000 cP to about 24,000 cP, from about 12,000 cP to about 24,000 cP, from about 75,000 cP to about 150,000 cP, at least about 2 cP at least about 4 cP at least about 5 cP at least about 12
- Polymeric forms of cellulose derivatives may vary in their degree of substitution of the glucose units.
- the degree of substitution may be expressed as a weight percentage of the substituent or as a molar ratio of substituent to glucose unit.
- the polymeric form may be described by the degree of substitution for each substituent.
- Each polymeric form of HPMC may independently have a defined degree of methoxyl substitution.
- the degree of methoxyl substitution may be from about 19% to about 24%, from about 22% to about 24%, from about 27% to about 30%, from about 27% to about 30%, or from about 28% to about 32%.
- Each polymeric form of HPMC may independently have a defined degree of hydroxypropoxyl substitution.
- the degree of hydroxypropoxyl substitution may be from about 4% to about 8%, from about 7% to about 10%, from about 7% to about 12%, from about 8% to about 10%, from about 8% to about 11%, or from about 9% to about 12%.
- Each polymeric form of HPMC may independently have a defined average molecular weight.
- the average molecular weight may be about 10 kDa, about 13 kDa, about 20 kDa, about 26 kDa, about 41 kDa, about 63 kDa, about 86 kDa, about 110 kDa, about 120 kDa, about 140 kDa, about 180 kDa, or about 220 kDa.
- a polymer such as HPMC
- a polymer such as HPMC
- compositions may contain a crystal form of a modified form of trimetazidine, such as CV-8972.
- CV-8972 may exist in at least five polymorphic forms: Form A, Form B, Form C, Form D, and Form E.
- a pharmaceutical composition may contain one polymorph of CV-8972 and be substantially free of one or more other polymorphs.
- the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
- a composition containing a polymorph of CV-8972 may be substantially free of one or more other polymorphic forms of CV-8972 if the composition contains the predominant polymorph at a defined level of purity. Purity may be expressed as the amount of predominant polymorph as a percentage of the total weight of two of more polymorphs of CV-8972.
- the total weight is the weight of all polymorphs of CV-8972 in the composition.
- a composition that contains the Form A polymorph and is substantially free of other polymorphs may contain Form A at a defined weight percentage of all polymorphs of CV-8972 in the composition.
- the composition may contain Form A at at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.6% by weight, at least 99.7% by weight, at least 99.8% by weight, or at least 99.9% by weight of all polymorphs of CV-8972 in the composition.
- the total weight is the weight of selected polymorphs of CV- 8972 in the composition.
- a composition that contains the Form A polymorph and is substantially free of the Form B polymorph may contain Form A at a defined weight percentage of Forms A and B.
- the composition may contain Form A at at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.6% by weight, at least 99.7% by weight, at least 99.8% by weight, or at least 99.9% by weight of Forms A and B of CV-8972 in the composition.
- compositions that contains the Form A polymorph and is substantially free of the Form B and C polymorphs may contain Form A at a defined weight percentage of Forms A, B, and C.
- the composition may contain Form A at at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.6% by weight, at least 99.7% by weight, at least 99.8% by weight, or at least 99.9% by weight of Forms A, B, and C of CV-8972 in the composition.
- a composition containing a polymorph of CV-8972 may be substantially free of one or more other polymorphic forms of CV-8972 if the composition contains the secondary polymorphs at levels below a defined level. Presence of a secondary polymorphs may be defined as the amount of one or more secondary polymorphs as a percentage of the total weight of two of more polymorphs of CV-8972.
- the total weight is the weight of all polymorphs of CV-8972 in the composition.
- a composition that contains the Form A polymorph and is substantially free of other polymorphs may contain all polymorphs other than Form A at a defined weight percentage of all polymorphs of CV-8972 in the composition.
- the composition may contain all polymorphs other than Form A at below 5% by weight, below 4% by weight, below 3% by weight, below 2% by weight, below 1% by weight, below 0.5% by weight, below 0.4% by weight, below 0.3% by weight, below 0.2% by weight, or below 0.1% by weight of all polymorphs of CV-8972 in the composition.
- the total weight is the weight of selected polymorphs of CV- 8972 in the composition.
- a composition that contains the Form A polymorph and is substantially free of the Form B polymorph may contain Form B at a defined weight percentage of Forms A and B.
- the composition may contain Form B at below 5% by weight, below 4% by weight, below 3% by weight, below 2% by weight, below 1% by weight, below 0.5% by weight, below 0.4% by weight, below 0.3% by weight, below 0.2% by weight, or below 0.1% by weight of Forms A and B of CV-8972 in the composition.
- a composition that contains the Form A polymorph and is substantially free of the Form B and Form C polymorphs may contain Forms B and C at a defined weight percentage of Forms A, B, and C.
- the composition may contain Forms B and C at below 5% by weight, below 4% by weight, below 3% by weight, below 2% by weight, below 1% by weight, below 0.5% by weight, below 0.4% by weight, below 0.3% by weight, below 0.2% by weight, or below 0.1% by weight of Forms A, B, and C of CV-8972 in the composition.
- the crystal may contain a salt form of CV-8972.
- the Form A polymorph CV-8972 is a trihydrochloride salt.
- the composition may include CV-8972 and the chloride ion a defined stoichiometric ratio.
- the composition may include CV-8972 and the chloride ion in a 1 :3 stoichiometric ratio.
- the crystal may contain a hydrated form of CV-8972.
- the Form A polymorph CV-8972 is a monohydrate.
- the composition may include a monohydrate form of CV-8972, such as the Form A polymorph.
- the composition may include an anhydrous form of CV-8972, such as a Form B, Form D, or Form E polymorph.
- the pharmaceutical composition may be formulated as a single unit dosage.
- the pharmaceutical composition may be formulated as divided dosages.
- the composition may contain a defined dose of CV-8972 or CV-8814.
- the dose may contain from about 10 mg to about 2000 mg, from about 10 mg to about 1000 mg, from about 10 mg to about 800 mg, from about 10 mg to about 600 mg, from about 10 mg to about 400 mg, from about 10 mg to about 300 mg, from about 10 mg to about 200 mg, from about 25 mg to about 2000 mg, from about 25 mg to about 1000 mg, from about 25 mg to about 800 mg, from about 25 mg to about 600 mg, from about 25 mg to about 400 mg, from about 25 mg to about 300 mg, about 25 mg to about 200 mg, from about 50 mg to about 2000 mg, from about 50 mg to about 1000 mg, from about 50 mg to about 800 mg, from about 50 mg to about 600 mg, from about 50 mg to about 400 mg, from about 50 mg to about 300 mg, about 50 mg to about 200 mg, from about 100 mg to about 2000 mg, from about 100 mg to about 1000 mg, from about 100 mg to about 800 mg, from about 100 mg to about 600 mg, from about 100 mg to about
- the invention provides methods of treating HFrEF, in a subject by providing a modified form of trimetazidine, such as one of the compounds described above.
- the compound may be provided by any suitable route or mode of administration.
- the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- an implantable medical device e.g., stent or drug-eluting stent or balloon equivalents.
- the modified form of trimetazidine may be provided according to a dosing regimen.
- a dosing regimen may include a dosage, a dosing frequency, or both.
- Doses may be provided at any suitable interval.
- doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
- the dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
- the dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc.
- the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
- the dosing may continue for a defined period.
- doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
- the subject may be a human that has HFrEF.
- the subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject.
- the subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, long- term intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
- the invention includes combination therapies in which a modified form of trimetazidine is provided to a subject in combination with a second agent, such as any of the drugs described above.
- a modified form of trimetazidine and the second agent may be provided in a single composition, or they may be provided in separate compositions.
- the modified form of trimetazidine and the second agent may be provided according to the same dosing regimen, or they may be provided according to different dosing regimens.
- the invention provides methods of treating HFpEF in a subject by providing a modified form of trimetazidine, such as one of the compounds described above.
- the compound may be provided by any suitable route or mode of administration.
- the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- an implantable medical device e.g., stent or drug-eluting stent or balloon equivalents.
- the modified form of trimetazidine may be provided according to a dosing regimen.
- a dosing regimen may include a dosage, a dosing frequency, or both.
- Doses may be provided at any suitable interval.
- doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
- the dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
- the dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc.
- the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
- the dosing may continue for a defined period. For example, and without limitation, doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
- the subject may be a human that has HFpEF.
- the subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject.
- the subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, longterm intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
- the invention provides methods of treating HFpEF in a subject by providing a modified form of trimetazidine, such as one of the compounds described above.
- the compound may be provided by any suitable route or mode of administration.
- the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- an implantable medical device e.g., stent or drug-eluting stent or balloon equivalents.
- the modified form of trimetazidine may be provided according to a dosing regimen.
- a dosing regimen may include a dosage, a dosing frequency, or both.
- Doses may be provided at any suitable interval.
- doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
- the dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
- the dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc.
- the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
- the dosing may continue for a defined period.
- doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
- the subject may be a human that has HFpEF.
- the subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject.
- the subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, longterm intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
- the invention provides methods of treating heart failure associated with hibernating myocardium in a subject by providing a modified form of trimetazidine, such as one of the compounds described above.
- the compound may be provided by any suitable route or mode of administration.
- the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- an implantable medical device e.g., stent or drug-eluting stent or balloon equivalents.
- the modified form of trimetazidine may be provided according to a dosing regimen.
- a dosing regimen may include a dosage, a dosing frequency, or both.
- Doses may be provided at any suitable interval.
- doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
- the dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
- the dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc.
- the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
- the dosing may continue for a defined period.
- doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
- the subject may be a human that has heart failure associated with hibernating myocardium.
- the subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject.
- the subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, long-term intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
- the invention includes combination therapies in which a modified form of trimetazidine is provided to a subject in combination with a second agent, such as any of the drugs described above in the section on heart failure associated with hibernating myocardium.
- a modified form of trimetazidine and the second agent may be provided in a single composition, or they may be provided in separate compositions.
- the modified form of trimetazidine and the second agent may be provided according to the same dosing regimen, or they may be provided according to different dosing regimens.
- the invention provides methods of treating non-obstructive HCM in a subject by providing a modified form of trimetazidine, such as one of the compounds described above.
- the compound may be provided by any suitable route or mode of administration.
- the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
- the modified form of trimetazidine may be provided according to a dosing regimen.
- a dosing regimen may include a dosage, a dosing frequency, or both.
- Doses may be provided at any suitable interval.
- doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
- the dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
- the dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc.
- the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
- the dosing may continue for a defined period.
- doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
- the subject may be a human that has non-obstructive HCM.
- the subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject.
- the subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, long-term intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
- the invention includes combination therapies in which a modified form of trimetazidine is provided to a subject in combination with a second agent, such as any of the drugs described above in the section on HCM.
- a modified form of trimetazidine and the second agent may be provided in a single composition, or they may be provided in separate compositions.
- the modified form of trimetazidine and the second agent may be provided according to the same dosing regimen, or they may be provided according to different dosing regimens.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The invention provides methods of treating heart failure with reduced ejection fraction (HFrEF), heart failure with preserved ejection fraction (HFpEF), heart failure associated with hibernating myocardium, and hypertrophic cardiomyopathy (HCM) using modified forms of trimetazidine such as CV-8972 and CV-8814.
Description
METHODS OF TREATING HEART CONDITIONS USING MODIFIED FORMS OF TRIMETAZIDINE
Field of the Invention
The invention relates to methods of treatment of heart conditions.
Background
Estimates of the global incidence of heart failure, the inability of the heart to maintain cardiac output sufficient to meet the body's needs, range from 26 million to 64 million individuals. Heart failure causes shortness of breath and excessive tiredness, which can severely impair quality of life, and 35% of patients with heart failure die within one year of their initial diagnosis. It is estimated that about half of heart failure patients have reduced left ventricular ejection fraction (LVEF), the fraction of blood volume that is ejected from the left ventricle during each contraction. The LVEF of healthy individuals is typically 50-65%, and heart failure patients with a LVEF below 40% are considered to have heart failure with reduced ejection fraction (HFrEF). Patients with an LVEF of 50% are considered to have heart failure with preserved ejection fraction (HFpEF). About half of patients with heart failure have HFpEF, and the number is increasing. The five-year survival rate of patients hospitalized with HFrEF or HFpEF is 25%.
Current pharmacological approaches for treating HFrEF include therapies that slow the disease process and those that merely relieve the clinical signs and symptoms of the disease. Therapies in the former category typically include blockers of the renin-angiotensin aldosterone system (RAAS), beta-blockers, or the anti-hypertensive hydralazine, each of which carries the risk of serious side effects. For example, angiotensin converting enzyme inhibitors (ACE-I) and angiotensin receptor blockers, which interfere with RAAS, can cause renal dysfunction, hyperkalemia, and hypotension; beta blockers can cause fatigue and fluid retention; and hydralazine therapy can cause dizziness and headaches. Drugs that relieve symptoms of HFrEF include diuretics, Na+/K+ ATPase inhibitors, and nitrates, but such drugs have not been shown to improve mortality rates when provided on their own. Moreover, diuretics must be administered carefully because they can activate RAAS and exacerbate the disease. Consequently, current pharmacological therapies for treatment of HFrEF are inadequate. Currently there exists no
effective treatment for HFpEF. HFpEF is secondary to a variety of other conditions, such as hypertension, obesity, and metabolic syndrome, and treatment of patients with HFpEF typically is direct toward ameliorating comorbidities and relieving symptoms. Millions of people with the disease remain limited in their daily lives and at an increased risk of death.
Hibernating myocardium is a condition in which heart muscle tissue displays chronic contractile dysfunction. Myocardial hibernation differs from myocardial infarction, i.e., the death of myocardial tissue, in that cardiomyocytes remain viable but have undergone changes in gene expression that lead to dedifferentiation. Affected cells do not contract at rest, causing a reduction of contractility of the myocardium as a whole. Hibernating myocardium is usually caused by coronary artery disease (CAD), in which the supply of oxygenated blood to the myocardium is insufficient. Although hibernating myocardium may remain stable for extended periods, there is a high risk of necrosis of the hibernating tissue following a further physiological insult or if left untreated for a prolonged time. It is estimated that 20-50% of patients with heart failure caused by CAD have a substantial amount of hibernating myocardium.
The predominant method for treatment of hibernating myocardium is revascularization either by coronary artery bypass graft (CABG) surgery or coronary angioplasty. CABG is a major procedure with the risk of serious complications. Although less invasive than CABG, angioplasty still carries the risk of adverse events, such as stroke and bleeding, and ischemia may recur due to restenosis of the repaired artery. Moreover, regardless of the mode of revascularization, the process by which dedifferentiated cells re-establish their cardiomyocyte phenotype is slow and gradual, and restoration of normal cardiac contractility following revascularization may take several months. Consequently, hibernating myocardium remains a serious medical condition that affects millions of individuals with heart failure.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease, affecting an estimated 1 in 500 individuals. In HCM, the ventricular myocardium becomes thickened for no apparent reason, and the septum may be thickened as well. The course of HCM is highly variable, and patients may experience shortness of breath, angina, heart palpitations, or no symptoms at all.
Cases of HCM are categorized based on whether outflow of blood from the left ventricle is obstructed. Ventricular outflow is obstructed in about 60-70% of HCM patients, and the remaining HCM patients have the non-obstructive variant. Although most patients with non-
obstructive HCM and have a benign clinical course with few or no symptoms, approximately 10% of patients develop debilitating heart failure that is refractory to drug treatment. In severe cases of non-obstructive HCM, the only treatment option is heart transplantation.
Current pharmacological treatments of HCM focus on relieving symptoms and thus are individualized to a given patient. However, no drug has been shown to thwart disease progression. Consequently, non-obstructive HCM remains a disease that carries a risk of mortality and serious morbidity and for which current therapies are inadequate.
Summary
The invention provides methods of treating HFrEF, HFpEF, heart failure associated with hibernating myocardium, and hypertrophic cardiomyopathy (HCM) using modified forms of trimetazidine, such as CV-8972, which has the IUPAC name 2-[4-[(2,3,4- trimethoxyphenyl)methyl]piperazin-l-yl]ethyl pyridine-3 -carboxylate and the following structure:
Modified forms of trimetazidine improve cardiac efficiency by shifting cellular metabolism from fatty acid oxidation to glucose oxidation. Unadulterated trimetazidine promotes the use of glucose as a mitochondrial energy source by blocking the activity of long-chain 3-ketoacyl-CoA thiolase, and certain modified forms retain the inhibitory effects but have superior pharmacokinetic properties. CV-8972 also provides a precursor for synthesis of nicotinamide adenine dinucleotide (NAD+), which facilitates mitochondrial respiration to promote mitochondrial ATP production. Thus, CV-8972 stimulates glucose-dependent cardiac energy production via two independent mechanisms. The use of modified forms of trimetazidine
provides an alternative to existing pharmacological therapies to mitigate the effects of HFrEF, HFpEF, and non-obstructive HCM.
The invention provides pharmacological therapies that can be used as an alternative to, or in combination with, revascularization for treatment of hibernating myocardium. The contractile function of hibernating myocardium can be restored by improving coronary blood flow or reducing the oxygen demand of the myocardium. While revascularization focuses on the first approach, the use of modified forms of trimetazidine rely on the second. Because oxidation of glucose generates more ATP per unit of oxygen than does fatty acid oxidation, modified forms of trimetazidine increase energy production in the low-oxygen environment associated with hibernating myocardium. In addition, compounds that provide NAD+ precursors, such as CV- 8972, supply an essential cofactor for oxidative phosphorylation to ensure optimal use of available oxygen. Therefore, providing modified forms of trimetazidine ameliorate contractility in patients that may not be candidates for revascularization or for whom cardiomyocyte function has not been fully restored following revascularization.
In an aspect, the invention provides methods of treating heart failure associated with reduced ejection fraction (HFrEF) in a subject by providing to a subject having HFrEF a compound represented by formula (X):
or a pharmaceutically acceptable salt thereof.
In another aspect, the invention provides methods of treating heart failure associated with reduced ejection fraction (HFrEF) in a subject by providing to a subject having HFrEF a compound represented by formula (IX):
or a pharmaceutically acceptable salt thereof.
The HFrEF may be associated with another condition. The HFrEF may be associated with aortic stenosis, arrhythmia, cerebrovascular accident, chronic obstructive pulmonary disease, cigarette smoking, congenital heart disease, diabetic cardiomyopathy, dilated cardiomyopathy, hypertension, ischemic coronary disease, kidney disease, low baseline left ventricular ejection fraction, low platelet count, male gender, mitral regurgitation, myocardial infarction, myocarditis, obstructive hypertrophic cardiomyopathy, obesity, old age, peripheral vascular disease, renal disease, rheumatic heart disease, valvular disease, or viral myocarditis.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by any suitable route or mode of administration. The pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The pharmaceutical composition may have a format suitable for oral administration. For example, the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio. The mixture may contain the compound and HPMC in a weight ratio of about 1 :5, about 1 :4, about 1 :3, about 1 :2, about 1 : 1, about 3:2, about 2: 1, about 3: 1, about 4: 1, about 5: 1, from about 1 : 100 to about 100: 1, from about 1 : 100 to about 50: 1, from about 1 : 100 to about 20: 1, from about
1 : 100 to about 10: 1, from about 1 : 100 to about 5: 1, from about 1 : 100 to about 2: 1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50: 1, from about 1 :50 to about 20: 1, from about 1 :50 to about 10: 1, from about 1 :50 to about 5: 1, from about 1 :50 to about 2:1, from about 1 :20 to about 100: 1, from about 1 :20 to about 50: 1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10: 1, from about 1 :20 to about 5: 1, from about 1 :20 to about 2:1, from about 1 : 10 to about 100: 1, from about 1 : 10 to about 50: 1, from about 1 : 10 to about 20: 1, from about 1 : 10 to about 10: 1, from about 1 : 10 to about 5: 1, from about 1 : 10 to about 2: 1, from about 1 :5 to about 100:1, from about 1 :5 to about 50: 1, from about 1 :5 to about 20: 1, from about 1 :5 to about 10:1, from about 1 :5 to about 5: 1, from about 1 :5 to about 2:1, from about 1 :3 to about 100: 1, from about 1 :3 to about 50: 1, from about 1 :3 to about 20: 1, from about 1 :3 to about 10: 1, from about 1 :3 to about 5 : 1 , or from about 1 : 3 to about 2: 1.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound. The unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X). The polymorph may be Form A, Form B, Form C, Form D, or Form E. The pharmaceutical composition may be substantially free of one or more other polymorphs. The composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides a compound of one of formulas (IX) and (X) for use in treatment of heart failure associated with reduced ejection fraction (HFrEF).
The HFrEF may be associated with another condition, such as any of those described above.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
The pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound. In an aspect, the invention provides methods of treating heart failure associated with hibernating myocardium in a subject by providing to a subject having heart failure associated with hibernating myocardium a compound represented by formula (X):
In another aspect, the invention provides methods of treating heart failure associated with preserved ejection fraction (HFpEF) in a subject by providing to a subject having HFpEF a compound represented by formula (IX):
or a pharmaceutically acceptable salt thereof.
The HFpEF may be associated with another condition. The HFpEF may be associated with aortic stenosis, atrial fibrillation, cigarette smoking, coronary artery disease, diabetes, hyperlipidemia, hypertension, ischemia, kidney disease, metabolic syndrome, obesity, obstructive sleep apnea, old age, or senile systemic amyloidosis.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by any suitable route or mode of administration. The pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The pharmaceutical composition may have a format suitable for oral administration. For example, the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio. The mixture may contain the compound and HPMC in a weight ratio of about 1:5, about 1 :4, about 1:3, about 1:2, about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, from about 1:100 to about 100: 1, from about 1 : 100 to about 50:1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10:1, from about 1 : 100 to about 5:1, from about 1 : 100 to about 2:1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50:1, from about 1 :50 to about 20: 1, from about 1:50 to about 10:1, from about 1:50 to about 5:1, from about 1:50 to about 2:1, from about 1:20 to about 100: 1, from about 1 :20 to about 50:1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10:1, from about 1:20 to about 5:1, from about 1:20 to about 2:1, from about 1:10 to about 100: 1, from about 1 : 10 to about 50:1, from about 1 : 10 to about 20: 1, from about 1 : 10 to about 10:1, from about 1:10 to about 5:1, from about 1:10 to about 2:1, from about 1:5 to about 100:1, from about 1:5 to about 50:1, from about 1:5 to about 20:1, from about 1:5 to about 10:1, from about 1:5 to about 5:1, from about 1:5 to about 2:1, from about 1:3 to about 100:1, from about 1:3 to about 50:1, from about 1:3 to about 20:1, from about 1:3 to about 10:1, from about 1:3 to about 5 : 1 , or from about 1 : 3 to about 2:1.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound. The unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50
mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X). The polymorph may be Form A, Form B, Form C, Form D, or Form E. The pharmaceutical composition may be substantially free of one or more other polymorphs. The composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides a compound of one of formulas (IX) and (X) for use in treatment of heart failure associated with preserved ejection fraction (HFpEF).
The HFpEF may be associated with another condition, such as any of those described above.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
The pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides methods of treating heart failure associated with hibernating myocardium in a subject by providing to a subject having heart failure associated with hibernating myocardium a compound represented by formula (IX):
or a pharmaceutically acceptable salt thereof.
The heart failure may be associated with one or more other conditions. The heart failure may be associated with ischemia or coronary artery disease (CAD).
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by any suitable route or mode of administration. The pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The pharmaceutical composition may have a format suitable for oral administration. For example, the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio. The mixture may contain the compound and HPMC in a weight ratio of about 1:5, about 1 :4, about 1:3, about 1:2, about 1:1, about 3:2, about 2:1, about 3:1, about 4:1, about 5:1, from about 1:100 to about 100: 1, from about 1 : 100 to about 50:1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10:1, from about 1 : 100 to about 5:1, from about 1 : 100 to about 2:1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50:1, from about 1 :50 to about 20: 1, from about 1:50 to about 10:1, from about 1:50 to about 5:1, from about 1:50 to about 2:1, from about 1:20 to about 100: 1, from about 1 :20 to about 50:1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10:1, from about 1:20 to about 5:1, from about 1:20 to about 2:1, from about 1:10 to about 100: 1, from about 1 : 10 to about 50:1, from about 1 : 10 to about 20: 1, from about 1 : 10 to about 10:1, from about 1:10 to about 5:1, from about 1:10 to about 2:1, from about 1:5 to about 100:1, from about 1:5 to about 50:1, from about 1:5 to about 20:1, from about 1:5 to about 10:1, from about 1:5 to about 5:1, from about 1:5 to about 2:1, from about 1:3 to about 100:1, from about 1:3 to about 50:1, from about 1:3 to about 20:1, from about 1:3 to about 10:1, from about 1:3 to about 5 : 1 , or from about 1 : 3 to about 2:1.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound. The unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50
mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X). The polymorph may be Form A, Form B, Form C, Form D, or Form E. The pharmaceutical composition may be substantially free of one or more other polymorphs. The composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides a compound of one of formulas (IX) and (X) for use in treatment of heart failure associated with hibernating myocardium.
The heart failure may be associated with another condition, such as ischemia or coronary artery disease (CAD).
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
The pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound. In an aspect, the invention provides methods of treating non-obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having non-obstructive HCM a compound represented by formula (X):
or a pharmaceutically acceptable salt thereof.
In another aspect, the invention provides methods of treating non-obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having nonobstructive HCM a compound represented by formula (IX):
or a pharmaceutically acceptable salt thereof.
The non-obstructive HCM may be associated with another condition. The nonobstructive HCM may be associated with angina (chest pain), atrial fibrillation, dizziness, fainting (syncope), fatigue, heart palpitation, leg swelling, light-headedness, shortness of breath (dyspnea), or stroke.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by any suitable route or mode of administration. The pharmaceutical composition may be administered buccally, by injection, dermally, enterally, intraarterially, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The pharmaceutical composition may have a format suitable for oral administration. For example, the pharmaceutical composition may be in the form of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, or syrup.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio. The mixture may contain the compound and HPMC in a weight ratio of about 1 :5, about 1 :4, about 1 :3, about 1 :2, about 1 : 1, about 3:2, about 2: 1, about 3: 1, about 4: 1, about 5: 1, from about 1 : 100 to about 100: 1, from about 1 : 100 to about 50: 1, from about 1 : 100 to about 20: 1, from about 1 : 100 to about 10: 1, from about 1 : 100 to about 5: 1, from about 1 : 100 to about 2: 1, from about 1 :50 to about 100: 1, from about 1 :50 to about 50: 1, from about 1 :50 to about 20: 1, from about 1 :50 to about 10: 1, from about 1 :50 to about 5: 1, from about 1 :50 to about 2:1, from about 1 :20 to about 100: 1, from about 1 :20 to about 50: 1, from about 1 :20 to about 20: 1, from about 1 :20 to about 10: 1, from about 1 :20 to about 5: 1, from about 1 :20 to about 2:1, from about 1 : 10 to about 100: 1, from about 1 : 10 to about 50: 1, from about 1 : 10 to about 20: 1, from about 1 : 10 to about 10: 1, from about 1 : 10 to about 5: 1, from about 1 : 10 to about 2: 1, from about 1 :5 to about 100:1, from about 1 :5 to about 50: 1, from about 1 :5 to about 20: 1, from about 1 :5 to about 10:1, from about 1 :5 to about 5: 1, from about 1 :5 to about 2:1, from about 1 :3 to about 100: 1, from about
1 :3 to about 50: 1, from about 1 :3 to about 20: 1, from about 1 :3 to about 10: 1, from about 1 :3 to about 5 : 1 , or from about 1 : 3 to about 2: 1.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound. The unit dosage may contain about 5 mg, about 10 mg, about 20 mg, about 50 mg, about 100 mg, about 200 mg, about 500 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 50 mg, from about 5 mg to about 100 mg, from about 5 mg to about 200 mg, from about 5 mg to about 500 mg, from about 10 mg to about 20 mg, from about 10 mg to about 50 mg, from about 10 mg to about 100 mg, from about 10 mg to about 200 mg, from about 10 mg to about 500 mg, from about 20 mg to about 50 mg, from about 20 mg to about 100 mg, from about 20 mg to about 200 mg, from about 20 mg to about 500 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 500 mg, from about 100 mg to about 200 mg, from about 100 mg to about 500 mg, or from about 200 mg to about 500 mg of the compound.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X). The polymorph may be Form A, Form B, Form C, Form D, or Form E. The pharmaceutical composition may be substantially free of one or more other polymorphs. The composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides a compound of one of formulas (IX) and (X) for use in treatment of non-obstructive hypertrophic cardiomyopathy (HCM).
The non-obstructive HCM may be associated with another condition, such as any of those described above.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
The pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides methods of treating obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having obstructive HCM a compound represented by formula (X):
or a pharmaceutically acceptable salt thereof.
In another aspect, the invention provides methods of treating obstructive hypertrophic cardiomyopathy (HCM) in a subject by providing to a subject having obstructive HCM a compound represented by formula (IX):
or a pharmaceutically acceptable salt thereof.
The obstructive HCM may be associated with another condition.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by any suitable route or mode of administration, such as any of those described above.
The pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio, such as any weight ratio described above.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any dosage described above.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X). The polymorph may be Form A, Form B, Form C, Form D, or Form E. The pharmaceutical composition may be substantially free of one or more other polymorphs. The composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
In another aspect, the invention provides a compound of one of formulas (IX) and (X) for use in treatment of obstructive hypertrophic cardiomyopathy (HCM).
The obstructive HCM may be associated with another condition.
The compound may be provided in a pharmaceutical composition.
The pharmaceutical composition may be provided by a particular route of mode of administration, such as any of those described above.
The pharmaceutical composition may have a format suitable for oral administration, such as any of those described above.
The pharmaceutical composition may contain a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment. The erodible polymer may be hydroxypropyl methylcellulose (HPMC).
The mixture may contain the compound and HPMC in a defined weight ratio, such as any of those described above.
The pharmaceutical composition may be formulated as a unit dosage containing a defined amount of the compound, such as any of the amounts described above.
The pharmaceutical composition may contain a specific polymorph of the compound of formula (X), such as any of those described above.
The pharmaceutical composition may include a hydrochloride salt of the compound of formula (X). The pharmaceutical composition may include the compound of formula (X) and the hydrochloride ion in a defined stoichiometric ratio. The pharmaceutical composition may include the compound and the hydrochloride ion in a 1 :3 stoichiometric ratio.
The pharmaceutical composition may include a hydrated form of the compound of formula (X). The pharmaceutical composition may include a monohydrate form of the compound. The pharmaceutical composition may include an anhydrous form of the compound.
Detailed Description
The invention provides methods of treating heart failure with reduced ejection fraction (HFrEF), heart failure with preserved ejection fraction (HFpEF), heart failure associated with hibernating myocardium, and hypertrophic cardiomyopathy (HCM) using modified forms of trimetazidine. Such drugs improve cardiac efficiency by shifting cellular metabolism from fatty acid oxidation to glucose oxidation, which is a more oxygen-efficient pathway for generating ATP. Trimetazidine promotes the use of glucose as a mitochondrial energy source by blocking the activity of long-chain 3 -ketoacyl -Co A thiolase. The modified forms of trimetazidine used in methods of the invention also inhibit thiolase but have superior pharmacokinetic properties. In some methods of the invention, the modified form of trimetazidine includes a precursor for synthesis of nicotinamide adenine dinucleotide (NAD+). NAD+ further improves mitochondrial ATP production by facilitating respiration. By forcing cardiac mitochondria to derive energy from glucose oxidation, the methods of the invention alleviate HFrEF and HFpEF by a different mechanism from prior pharmacological approaches. The methods of the invention allow the myocardium to produce more energy from a limited supply of oxygen. Thus, they may be used when other therapies are contraindicated or ineffective, or they may be used in combination with other therapies.
HFrEF and existing pharmacological therapies for treatment of HFrEF
Heart failure is the inability of the heart to maintain cardiac output sufficient to meet the body's needs. Cases of heart failure can be categorized according to the measurement of the left ventricle ejection fraction (LVEF). The LVEF is the volume of blood ejected from the left ventricle with each heartbeat divided by the volume of blood when the left ventricle is maximally filled. Notwithstanding its name, the LVEF is typically expressed as a percentage, and the LVEF in healthy individuals ranges from 50-65%. Consequently, patients with heart failure and a LVEF of at least 50% are considered to have heart failure with preserved ejection fraction (HFpEF). Heart failure patients with a LVEF below 40% are considered to have clinical HFrEF, while those with a LVEF of 40-49% are classified as having heart failure with moderately reduced (or mid-range) ejection fraction (HFmrEF). HFrEF may be accompanied by progressive left ventricular dilatation and adverse cardiac remodeling.
As used herein, HFrEF includes any heart failure patients with a LVEF below 50%, i.e., the term encompasses the clinical definitions of both HFrEF and HFmrEF, unless otherwise stated. Thus, within the context of this application, HFrEF may include a subject that has heart failure and a LVEF of less than about 50%, less than about 49%, less than about 48%, less than about 47%, less than about 46%, less than about 45%, less than about 44%, less than about 43%, less than about 42%, less than about 41%, or less than about 40%.
Existing pharmacological approaches to thwart the progress of HFrEF focus on inhibition of one or both of the renin-angiotensin aldosterone system (RAAS) and the sympathetic nervous system (SNS). Drugs that inhibit the RAAS include angiotensin converting enzyme inhibitors (ACE-Is), such as benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril perindopril, quinapril, ramipril, and trandolapril; angiotensin receptor blockers (ARBs), such as azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan; and aldosterone antagonists, such as eplerenone and spironolactone; and anti-hypertensives, such as hydralazine and sacubitril. Drugs that inhibit the SNS include beta blockers, such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol. Other drugs or drug classes of drugs that have also been used to treat HFrEF include aspirin; statins, such as atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin; omega polyunsaturated fatty acids, such as alpha-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid; and anticoagulants, such as acenocoumarol, anisindione, apixaban, brodifacoum, chlorophacinone, coumatetralyl, dabigatran, dicoumarol, diphacinone, fluindione, phenindione, phenprocoumon, pindone, rivaroxaban, and tioclomarol; and antiarrhythmics, such as amiodarone, dofetilide, and mexiletine;
Current pharmacotherapies to treat HFrEF also includes agents that relieve symptoms but do not slow disease progress. Examples symptom-relieving drugs include diuretics, such as bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, and torasemide (torsemide); nitrates, such as glyceryl trinitrate, isosorbide dinitrate, and isosorbide mononitrate; and Na+/K+ ATPase inhibitors, such as digoxin and digitoxin.
Current therapies also include the use of combinations of the aforementioned drugs from different categories. For example, the combination of sacubitril and valsartan is licensed as an angiotensin receptor-neprilysin inhibitor (ARNI).
The diagnosis, treatment, and prognosis of HFrEF are described in, for example, Brent N Reed and Carla A Sueta, A Practical Guide for the Treatment of Symptomatic Heart Failure with Reduced Ejection Fraction (HFrEF), Curr Cardiol Rev. 2015 Feb; 11(1): 23-32, doi: 10.2174/1574884708666131117125508; Chao Ma, et al., Heart failure with preserved ejection fraction: an update on pathophysiology, diagnosis, treatment, and prognosis, Braz J Med Biol Res. 2020 Jun 5;53(7):e9646, doi: 10.1590/1414-431X20209646; Egbuche O, et al., Contemporary Pharmacologic Management of Heart Failure with Reduced Ejection Fraction: A Review, Curr Cardiol Rev. 2020;16(l):55-64, doi: 10.2174/1573403X15666190709185011; Markus Hinder, et al., Developing Drugs for Heart Failure With Reduced Ejection Fraction: What Have We Learned From Clinical Trials? Clin Pharmacol Ther. 2018 May; 103(5): 802- 814, doi: 10.1002/cpt.l010, Murphy SP, et al., Heart Failure With Reduced Ejection Fraction: A Review, JAMA. 2020 Aug 4;324(5):488-504, doi: 10.1001/jama.2020.10262, the contents of each of which are incorporated herein by reference.
HFrEF has a variety of causes and risk factors linked to the disease. For example and without limitation, HFrEF may result from, or be associated with, aortic stenosis, arrhythmia, cerebrovascular accident, chronic obstructive pulmonary disease, cigarette smoking, congenital heart disease, diabetic cardiomyopathy, dilated cardiomyopathy, hypertension, ischemic coronary disease, kidney disease, low baseline left ventricular ejection fraction, low platelet count, male gender, mitral regurgitation, myocardial infarction, myocarditis, obstructive hypertrophic cardiomyopathy, obesity, old age, peripheral vascular disease, renal disease, rheumatic heart disease, valvular disease, or viral myocarditis.
HFpEF and existing pharmacological therapies for treatment of HFpEF
Heart failure is the inability of the heart to maintain cardiac output sufficient to meet the body's needs. Cases of heart failure can be categorized according to the measurement of the left ventricle ejection fraction (LVEF). The LVEF is the volume of blood ejected from the left ventricle with each heartbeat divided by the volume of blood when the left ventricle is maximally filled. Notwithstanding its name, the LVEF is typically expressed as a percentage, and the LVEF in healthy individuals ranges from 50-65%. Consequently, patients with heart failure and a LVEF of at least 50% are considered to have HFpEF. Heart failure patients with a LVEF below 40% are considered to have heart failure with reduced ejection fraction (HFrEF),
while those with a LVEF of 40-49% are classified as having heart failure with moderately reduced (or mid-range) ejection fraction (HFmrEF).
Clinical manifestations of HFpEF include shortness, exercise-induced dyspnea, paroxysmal nocturnal dyspnea and orthopnea, exercise intolerance, fatigue, elevated jugular venous pressure, and edema. Patients with HFpEF poorly tolerate stress, particularly hemodynamic alterations of ventricular loading or increased diastolic pressures.
HFpEF can be developed by a variety of mechanisms, some of which are poorly understood. Nonetheless, a variety of risk factors linked to HFpEF have been identified. For example, and without limitation, HFpEF may result from, or be associated with aortic stenosis, atrial fibrillation, cigarette smoking, coronary artery disease, diabetes, hyperlipidemia, hypertension, ischemia, kidney disease, metabolic syndrome, obesity, obstructive sleep apnea, old age, or senile systemic amyloidosis.
Heart failure associated with hibernating myocardium
Heart failure, the inability of the heart to maintain cardiac output sufficient to meet the body's needs, is often caused by coronary artery disease (CAD), the reduction of blood flow to the heart. CAD, also called ischemic heart disease (IHD), can lead to the development of hibernating myocardium, a condition in which heart muscle tissue displays chronic contractile dysfunction. Hibernating cardiomyocytes remain viable but have undergone changes in gene expression that lead to dedifferentiation. The phenotypic change of hibernating cells is accompanied by a transition from oxidative to anaerobic metabolism to provide energy during oxygen scarcity. Because hibernating cells do not contract at rest, the contractility of the myocardium is reduced. Although hibernating myocardium may remain stable for extended periods, there is a high risk of necrosis of the hibernating tissue following a further physiological insult or if left untreated for a prolonged time. It is estimated that 20-50% of patients with heart failure caused by CAD have a substantial amount of hibernating myocardium.
Treatment of hibernating myocardium focuses involves improving coronary blood flow and/or reducing the oxygen demand of the myocardium. The predominant current approach is directed toward improving coronary blood flow by revascularization. Revascularization may be achieved by coronary artery bypass graft (CABG) surgery, which allows blood to bypass the blocked coronary artery, or by angioplasty, which removes blockage of the artery to increase blood flow. Because CABG is a major procedure with the risk of serious complications, it is
typically reserved for patients with severe CAD. Angioplasty, albeit less risky, is not effective in patients with severe CAD and is not durable in others, as restenosis of the repaired artery may occur over time. Both CABG and angioplasty allow dedifferentiated cells in hibernating myocardium to re-establish their cardiomyocyte phenotype and contribute to myocardial contractility. However, re-differentiation of hibernating cells is a slow, gradual process, and restoration of contractility following revascularization may take three months or more.
Treatments to reduce the oxygen demand of the myocardium are typically implemented as temporary measures until revascularization can be performed. For example, negative inotropic agents, i.e., agents that decrease myocardial contractility, may be administered. Negative inotropic agents include beta blockers, such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol; calcium channel blockers, such as diltiazem, fendiline, gallopamil, and verapamil; class IA antiarrhythmics, such as ajmaline, disopyramide, procainamide, and quinidine; class IC antiarrhythmics, such as encainide, flecainide, moricizine, and propafenone; isovoacangine, and voacristine.
The causes, diagnosis, and treatment of hibernating myocardium are described in, for example, Ryan, M. and Perera, D., Identifying and Managing Hibernating Myocardium: What’s New and What Remains Unknown? Current Heart Failure Reports (2018) 15:214-223, doi: 10.1007/sl 1897-018-0396-6; Vaidya, Y., et al, Myocardial Stunning and Hibernation, StatPearls [Internet], Treasure Island (FL): StatPearls Publishing; 2020 Jan. 2020 Aug 10, NBK537026; and Kloner, RA, Stunned and Hibernating Myocardium: Where Are We Nearly 4 Decades Later? J Am Heart Assoc. 2020 Feb 4;9(3):e015502. doi: 10.1161/JAHA.119.015502, the contents of which are incorporated herein by reference.
Non-obstructive HCM and existing pharmacological therapies for treatment of HCM
HCM is a disease in which the heart muscle becomes abnormally thick, often making it harder for the heart to pump blood. The extent and localization of hypertrophy are highly variable. Nonetheless, the ventricles are usually affected, particularly the left ventricle, and the septum may be enlarged as well. Thickening of the heart muscle results in the heart being less able to pump blood effectively and also may cause electrical conduction problems. Many patients with HCM experience few, if any, symptoms, so HCM often goes undiagnosed.
However, in a fraction of patients, HCM causes shortness of breath, angina, and heart palpitations, and abnormal heart rhythms due to HCM can be life-threatening.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease, affecting an estimated 1 in 500 individuals. HCM is usually inherited in an autosomal dominant manner due to a mutation in one of the genes encoding proteins of the cardiac sarcomere, Z-disc, and calcium-controlling proteins. Over 2000 different mutations in 20 different genes have been identified in patients with HCM, with mutation in the genes encoding P-myosin heady chain and myosin binding protein C being the most common. Approximately 50% of cases of hypertrophic cardiomyopathy are due to sarcomeric protein mutations. HCM may also be associated with Fabry’s disease, amyloidosis, Danon disease, and Friederich’s ataxia.
In cases of HCM due to mutations in sarcomeric proteins, the mutations result in increased cross cycling of myofilaments, which wastes energy. The energetic abnormality is present before the onset of left ventricular (LV) hypertrophy and is probably causally related to the latter via increased cystosolic calcium. Patients with non-obstructive cardiomyopathy develop a paradoxical slowing of LV active relaxation on exercise due to energetic impairment (active relaxation is a highly energy-dependent process), and this slowing is largely responsible for the failure to increase stroke volume on exercise. Perhexiline, a metabolic agent that inhibits CPT 1 and CPT 2, corrects the cardiac energetic impairment and the relaxation abnormality on exercise, which translates into an improvement in symptoms and an increase in peak VO2.
Among cases of HCM that are not due to known sarcomere gene mutations, a small proportion are due to other inherited abnormalities, e.g., mitochondrial disorders, but many appear to be a consequence of a (polygenically inherited) exaggerated hypertrophic response to mild hypertension.
Irrespective of the etiology, LVH is associated with cardiac energetic impairment due to maladaptive changes in the enzymes involved in cardiac metabolism, abnormal electron transport chain function, and abnormal energy transfer through the creatine kinase system. Therefore, while the etiology of the energetic impairment differs, the consequences in terms of exercise induced diastolic abnormalities may be similar. Thus, without wishing to be bound by theory, it is believed that metabolic agents have therapeutic potential for HCM regardless of its etiology.
Cases of HCM are categorized based on whether outflow of blood from the left ventricle is obstructed. About 60-70% HCM cases are obstructive, and the rest are non-obstructive. In
obstructive HCM, the obstruction may be observed at rest or on provocation (Valsalva, exercise). This obstruction most commonly occurs in the left ventricular outflow tract, but less commonly occurs in the LV mid-cavity. LV outflow tract obstruction is due to anterior displacement of the mitral valve and sub-valvar apparatus during mid to late systole (systolic anterior motion - SAM) so that it meets the hypertrophied septum, obstructing blood flow and causing high intracavitary pressures. The SAM is a consequence of one or more of the following factors: septal hypertrophy, anatomical displacement (anteriorly) of the papillary muscles, a small LV end systolic volume, and a Venturi effect, i.e., ‘sucking’ the mitral apparatus anteriorly during systole (rather like the mechanism of aircraft lift). HCM is considered obstructive if the left ventricular outflow tract (LVOT) gradient is >30 mmHg. The majority of patients with obstructive HCM are symptomatic (dyspnea, chest pains, palpitations, syncope/pre syncope). The obstruction itself appears to play a major role in the symptomatology.
Although both types of HCM were recognized as early as the 1960’s, studies in the early decades focused on the diagnosis and management of obstructive HCM due to the availability of interventions to provoke outflow tract obstruction. Consequently, there are effective treatments for obstructive HCM. One treatment for obstructive HCM is a combination of disopyramide and a beta blocker. These two drug types, via their additive negative inotropic effects, increase LV end systolic volume and reduce the obstruction. While this combination effectively reduces the gradient and improves symptoms in a high proportion of patients, some are intolerant of the anticholinergic effects of disopyramide (dry mouth, blurred vision, urinary problems particularly in men with prostatic enlargement, and cognitive impairment in older patients particularly when combined with other drugs with anti-cholinergic properties). Another treatment for obstructive HCM is mavacamten, a myosin ATPase inhibitor. It reduces myofibril cross bridge cycling. In low doses it reduces the energy wasting associated with excessive cross bridge cycling (which may potentially be beneficial in non-obstructive HCM) but at higher doses it has a marked negative inotropic effect and thereby relieves obstruction and improves symptoms. A third treatment for obstructive HCM is septal myectomy. This surgical procedure produces excellent symptomatic benefit with low operative mortality and improved rates of long-term mortality. Another option for treating obstructive HCM is alcohol septal ablation. This percutaneous effectively relieves obstruction and improves symptoms, although a small proportion of patients become dependent on pacemakers.
In contrast to obstructive HCM, non-obstructive HCM has been largely overlooked as a distinct clinical condition. Factors that have contributed to the relative neglect of nonobstructive HCM include the difficulty of identifying the disease and the mildness or absence of symptoms of most patients. Nonetheless, 10% of patients with non-obstructive HCM develop advanced heart failure that is refractory to drug treatment and serious enough to merit consideration for heart transplantation.
HCM, including non-obstructive HCM, may cause, be caused by, or otherwise be associated with, a variety of other conditions. For example, and without limitation, non- obstructive HCM may be associated with angina (chest pain), atrial fibrillation, dizziness, fainting (syncope), fatigue, heart palpitation, leg swelling, light-headedness, shortness of breath (dyspnea), or stroke.
Current pharmacological treatments of HCM, including non-obstructive HCM, are directed toward relief of symptoms. For example, HCM, including non-obstructive HCM, may be treated with angiotensin converting enzyme inhibitors, such as benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril perindopril, quinapril, ramipril, and trandolapril; angiotensin receptor antagonists, such as azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan; antiarrhythmics, such as ajmaline, amiodarone, disopyramide, dofetilide, mexiletine, procainamide, and quinidine; beta blockers, such as acebutolol, atenolol, bisoprolol, carvedilol, metoprolol, nadolol, nebivolol, and propranolol; calcium channel blockers, such as diltiazem, fendiline, gallopamil, and verapamil; and diuretics, such as bumetanide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, and torasemide (torsemide). Although many of the aforementioned drugs have been used to alleviate the symptoms of HCM, no drug has been shown to slow disease progression.
The diagnosis and treatment of HCM, including non-obstructive HCM, are described in, for example, Prinz C, et al., The diagnosis and treatment of hypertrophic cardiomyopathy, Dtsch Arztebl Int. 2011 Apr;108(13):209-15, doi: 10.3238/arztebl.2011.0209; Maron, BJ, et al., Nonobstructive Hypertrophic Cardiomyopathy Out of the Shadows: Known from the Beginning but Largely Ignored . . . Until Now, Am J Med. 2017 Feb; 130(2): 119-123, doi: 10.1016/j.amjmed.2016.09.015; and Murillo de Oliveira Antunes and Thiago Luis Scudeler, Hypertrophic cardiomyopathy, Int J Cardiol Heart Vase. 2020 Mar 25;27:100503, doi: 10.1016/j.ijcha.2020.100503, the contents of each of which are incorporated herein by reference.
Modified forms of trimetazidine
Methods of the invention include the use of modified forms of trimetazidine.
Trimetazidine is described as the first cytoprotective anti-ischemic agent developed and has long been used to treat angina.
Trimetazidine promotes glucose oxidation by inhibiting oxidation of fatty acids. Glucose oxidation and fatty acid oxidation are energy-producing metabolic pathways that compete with each other for substrates. In glucose oxidation, glucose is broken down to pyruvate via glycolysis in the cytosol of the cell. Pyruvate then enters the mitochondria, where it is converted to acetyl coenzyme A (acetyl-CoA). In beta-oxidation of fatty acids, which occurs in the mitochondria, two-carbon units from long-chain fatty acids are sequentially converted to acetyl- CoA. The remaining steps in energy production from oxidation of glucose or fatty acids are common to the two pathways. Briefly, they include breakdown of acetyl-CoA to carbon dioxide via the citric acid cycle, the concomitant generation of a proton gradient across the mitochondrial inner membrane via a series of oxygen-dependent electron transport reactions, and the use of the energy potential in the proton gradient to drive ATP synthesis. Trimetazidine inhibits oxidation of fatty acids by blocking long-chain 3-ketoacyl-CoA thiolase, thus causing cells to rely on glucose oxidation to support energy production.
Forcing cardiac mitochondria to rely on oxidation of glucose rather fatty acids as an energy source provides a therapeutic benefit for many patients with cardiovascular conditions.
In certain types of heart disease, the overall efficiency of energy production by cardiac mitochondria is diminished due in part to an increased reliance on fatty acid oxidation over glucose oxidation. Glucose oxidation is a more efficient pathway for energy production, as measured by the number of ATP molecules produced per O2 molecule consumed, than is fatty acid oxidation. Thus, overall cardiac efficiency can be increased by agents that promote glucose oxidation, such as trimetazidine.
CV-8972 was recently identified as a trimetazidine-derivative having improved pharmacological properties. CV-8972 has the IUPAC name 2-[4-[(2,3,4- trimethoxyphenyl)methyl]piperazin-l-yl]ethyl pyridine-3 -carboxylate and the structure of formula (X):
When CV-8972 is administered to a subject, it is initially broken into nicotinic acid and CV-8814, which has the IUPAC name 2-[4-[(2,3,4-trimethoxyphenyl)methyl]piperazin-l- yl] ethanol and the structure of formula (IX):
CV-8814 is a hydroxyethyl derivative of trimetazidine, and the hydroxyethyl group is subsequently removed in the body to provide trimetazidine. CV-8972 and its metabolic products
are described in U.S. Patent No. 10,556,013, the contents of which are incorporated herein by reference.
The improved therapeutic properties of CV-8972 are due in part to the effect of nicotinic acid. Nicotinic acid serves as a precursor for synthesis of nicotinamide adenine dinucleotide (NAD+), the oxidized form of an essential coenzyme in the mitochondrial electron transport reaction. Supplying a NAD+ precursor ensures that mitochondrial redox reactions occur robustly to drive ATP synthesis, regardless of whether oxidation of glucose or fatty acids is used to feed the citric acid cycle. Thus, the nicotinic acid product of CV-8972 promotes mitochondrial respiration.
The stepwise breakdown of CV-8972 to CV-8814 and then to trimetazidine also contributes to the improved therapeutic properties of CV-8972. Like trimetazidine, CV-8814 inhibits 3-ketoacyl-CoA thiolase, so CV-8972 delivers two different glucose-shifting active pharmaceutical ingredients (APIs). However, CV-8814 does not produce the same undesirable side effects as trimetazidine. In addition, due to the sequential metabolism of CV-8972, the level of circulating trimetazidine following a dose of CV-8972 is much lower than the level following of comparable dose of trimetazidine itself. Therefore, compared to unadulterated trimetazidine, CV-8972 provides a more sustained level of circulating API and fewer side effects.
Other modified forms of trimetazidine that may be used in compositions of the invention are described in, for example, U.S. Patent Nos. 4,100,285 and 4,574,156, the contents of each of which are incorporated herein by reference.
Modified forms of trimetazidine, such as the compounds described above, may include one or more atoms that are enriched for an isotope. For example, the compounds may have one or more hydrogen atoms replaced with deuterium or tritium. Isotopic substitution or enrichment may occur at carbon, sulfur, or phosphorus, or other atoms. The compounds may be isotopically substituted or enriched for a given atom at one or more positions within the compound, or the compounds may be isotopically substituted or enriched at all instances of a given atom within the compound.
Pharmaceutical compositions
Methods of the invention may include providing a modified form of trimetazidine, such as one of the compounds described above, in a pharmaceutical composition. The composition
may be formulated for any route or mode of administration. For example, and without limitation, the composition may be formulated for buccal, dermal, enteral, intraarterial, intramuscular, intraocular, intravenous, nasal, oral, parenteral, pulmonary, rectal, subcutaneous, topical, or transdermal administration. The composition may be formulated for administration by injection or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
A pharmaceutical composition containing one or more the compounds may be in a form suitable for oral use, for example, as tablets, troches, lozenges, fast-melts, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs. Compositions intended for oral use may be prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the compounds in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated, or they may be coated by known techniques to delay disintegration in the stomach and absorption lower down in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the techniques described in U.S. Patent Nos. 4,256,108, 4,166,452 and 4,265,874, to form osmotic therapeutic tablets for control release. Preparation and administration of compounds is discussed in U.S. Patent No. 6,214,841 and U.S. Patent Publication No. 2003/0232877, incorporated by reference herein in their entirety.
Formulations for oral use may also be presented as hard gelatin capsules in which the compounds are mixed with an inert solid diluent, for example calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the compounds are mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
An alternative oral formulation, where control of gastrointestinal tract hydrolysis of the compound is sought, can be achieved using a controlled-release formulation, where a compound of the invention is encapsulated in an enteric coating.
Aqueous suspensions may contain the compounds in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as a naturally occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example, polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such a polyoxyethylene with partial esters derived from fatty acids and hexitol anhydrides, for example polyoxyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
Oily suspensions may be formulated by suspending the compounds in a vegetable oil, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.
Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the compounds in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified, for example sweetening, flavoring and coloring agents, may also be present.
Pharmaceutical compositions may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally occurring phosphatides, for example
soya bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
Syrups and elixirs may be formulated with sweetening agents, such as glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, and agents for flavoring and/or coloring. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be in a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3 -butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
Pharmaceutical compositions may contain mixtures that include erodible polymers that promote swelling of the mixture in an aqueous environment. Pharmaceutical compositions that contain CV-8972 and one or more erodible polymers are described in co-pending, co-owned Application Nos. 63/046,115 and 63/046,117. An erodible polymer is any polymer that breaks down inside the body within a physiologically relevant time frame. The erodible polymer may have other characteristics that promote the gradual release of the modified form of trimetazidine from the mixture. For example, and without limitation, the polymer may be one or more of the following: biocompatible, i.e., not harmful to living tissue; hydrophilic; hygroscopic; tending to form a hydrogel.
Without wishing to be bound by theory, the polymer-containing mixtures may promote gradual release by one or more mechanisms. For example, swelling of the mixture by absorption of water may facilitate diffusion of the modified form of trimetazidine from the mixture. Degradation of the polymer may also allow the modified form of trimetazidine to be released from the mixture. Osmotic pressure due the high concentration gradient of compound between
the inside and outside of the mixture may also contribute to diffusion of the modified form of trimetazidine from the mixture.
For example, and without limitation, the polymer may be a cellulose derivative, a gelatin derivative, e.g., a cross-linked gelatin derivative, or a polyester derivative.
Derivatives of cellulose, is a linear chain P(1 — >4) linked D-glucose units, include polymers that contain substitutions on one of more of the hydroxyl groups of each glucose unit. Substituents may be organic or inorganic and are typically attached via ester or ether linkages. Cellulose ester derivatives include carboxymethyl cellulose (CMC), e.g., sodium carboxymethyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, ethyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), and methylcellulose. Cellulose ether derivatives include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose propionate, cellulose sulfate, cellulose triacetate, and nitrocellulose. The use of cellulose-based polymers to form biodegradable hydrogels is known in the art and described in, for example, Sannino, et al., Biodegradable Cellulose-based Hydrogels: Design and Applications, Materials 2009, 2, 353-373; doi: 10.3390/ma2020353, the contents of which are incorporated herein by reference.
The mixture may contain multiple polymers or multiple polymeric forms of the same polymer. For example, HPMC polymeric forms may differ in a variety of physical properties, including viscosity, degree of methoxyl substitution, degree of hydroxypropoxyl substitution, or average molecule weight.
The viscosity of a HMPC polymeric form may be determined by testing under standard conditions, including the concentration of HMPC in the solution and the temperature of the solution. For example, and without limitation, the HPMC concentration may be 1%, 1.5%, 2%, 2.5%, or 3%. For example, and without limitation, the temperature of the solution may be 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C, 23°C, 24°C, or 25°C.
A polymeric form of a cellulose derivative, such as HPMC, may have a defined viscosity. For example and without limitation, a polymeric form of HPMC may have a viscosity of from about 2 cP to about 4 cP, from about 4 cP to about 6 cP, from about 5 cP to about 8 cP, from about 12 cP to about 18 cP, from about 40 cP to about 60 cP, from about 80 cP to about 120 cP, from about 300 cP to about 500 cP, from about 1200 cP to about 2400 cP, from about 2500 cP to about 5000 cP, from about 9000 cP to about 18,000 cP, from about 12,000 cP to about 24,000
cP, from about 12,000 cP to about 24,000 cP, from about 75,000 cP to about 150,000 cP, at least about 2 cP at least about 4 cP at least about 5 cP at least about 12 cP at least about 40 cP at least about 80 cP at least about 300 cP at least about 1200 cP at least about 2500 cP at least about 9000 cP at least about 12,000 cP at least about 12,000 cP at least about 75,000 cP less than about 4 cP, less than about 6 cP, less than about 8 cP, less than about 18 cP, less than about 60 cP, less than about 120 cP, less than about 500 cP, less than about 2400 cP, less than about 5000 cP, less than about 18,000 cP, less than about 24,000 cP, less than about 24,000 cP, or less than about 150,000 cP for a 2% aqueous solution of the polymeric form at 20°C.
Polymeric forms of cellulose derivatives, such as HPMC, may vary in their degree of substitution of the glucose units. The degree of substitution may be expressed as a weight percentage of the substituent or as a molar ratio of substituent to glucose unit. For a cellulose derivative that has two different substituents, such as HPMC, the polymeric form may be described by the degree of substitution for each substituent.
Each polymeric form of HPMC may independently have a defined degree of methoxyl substitution. For example, and without limitation, the degree of methoxyl substitution may be from about 19% to about 24%, from about 22% to about 24%, from about 27% to about 30%, from about 27% to about 30%, or from about 28% to about 32%.
Each polymeric form of HPMC may independently have a defined degree of hydroxypropoxyl substitution. For example, and without limitation, the degree of hydroxypropoxyl substitution may be from about 4% to about 8%, from about 7% to about 10%, from about 7% to about 12%, from about 8% to about 10%, from about 8% to about 11%, or from about 9% to about 12%.
Each polymeric form of HPMC may independently have a defined average molecular weight. The average molecular weight may be about 10 kDa, about 13 kDa, about 20 kDa, about 26 kDa, about 41 kDa, about 63 kDa, about 86 kDa, about 110 kDa, about 120 kDa, about 140 kDa, about 180 kDa, or about 220 kDa.
When multiple forms of a polymer, such as HPMC, are present, one or more polymeric forms may be present in a defined amount. For example, and without limitation, a polymer, such as HPMC, may contain about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, at least 50%, at least 60%, at least 70%, at least
80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% by weight of one polymeric form.
Pharmaceutical compositions may contain a crystal form of a modified form of trimetazidine, such as CV-8972. As described in co-pending, co-owned U.S. Application No. 63/046,120, CV-8972 may exist in at least five polymorphic forms: Form A, Form B, Form C, Form D, and Form E. A pharmaceutical composition may contain one polymorph of CV-8972 and be substantially free of one or more other polymorphs. For example, the composition may include a Form A polymorph and be substantially free of polymorphs of Form B, Form C, Form D, and Form E.
A composition containing a polymorph of CV-8972 may be substantially free of one or more other polymorphic forms of CV-8972 if the composition contains the predominant polymorph at a defined level of purity. Purity may be expressed as the amount of predominant polymorph as a percentage of the total weight of two of more polymorphs of CV-8972.
In certain embodiments, the total weight is the weight of all polymorphs of CV-8972 in the composition. For example, a composition that contains the Form A polymorph and is substantially free of other polymorphs may contain Form A at a defined weight percentage of all polymorphs of CV-8972 in the composition. For example, the composition may contain Form A at at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.6% by weight, at least 99.7% by weight, at least 99.8% by weight, or at least 99.9% by weight of all polymorphs of CV-8972 in the composition.
In certain embodiments, the total weight is the weight of selected polymorphs of CV- 8972 in the composition. For example, a composition that contains the Form A polymorph and is substantially free of the Form B polymorph may contain Form A at a defined weight percentage of Forms A and B. For example, the composition may contain Form A at at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.6% by weight, at least 99.7% by weight, at least 99.8% by weight, or at least 99.9% by weight of Forms A and B of CV-8972 in the composition. Similarly, a composition that contains the Form A polymorph and is substantially free of the Form B and C polymorphs may contain Form A at a defined weight percentage of Forms A, B, and C. For example, the composition may contain Form A at at least 95% by
weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.6% by weight, at least 99.7% by weight, at least 99.8% by weight, or at least 99.9% by weight of Forms A, B, and C of CV-8972 in the composition.
Alternatively, or additionally, a composition containing a polymorph of CV-8972 may be substantially free of one or more other polymorphic forms of CV-8972 if the composition contains the secondary polymorphs at levels below a defined level. Presence of a secondary polymorphs may be defined as the amount of one or more secondary polymorphs as a percentage of the total weight of two of more polymorphs of CV-8972.
In certain embodiments, the total weight is the weight of all polymorphs of CV-8972 in the composition. For example, a composition that contains the Form A polymorph and is substantially free of other polymorphs may contain all polymorphs other than Form A at a defined weight percentage of all polymorphs of CV-8972 in the composition. For example, the composition may contain all polymorphs other than Form A at below 5% by weight, below 4% by weight, below 3% by weight, below 2% by weight, below 1% by weight, below 0.5% by weight, below 0.4% by weight, below 0.3% by weight, below 0.2% by weight, or below 0.1% by weight of all polymorphs of CV-8972 in the composition.
In certain embodiments, the total weight is the weight of selected polymorphs of CV- 8972 in the composition. For example, a composition that contains the Form A polymorph and is substantially free of the Form B polymorph may contain Form B at a defined weight percentage of Forms A and B. For example, the composition may contain Form B at below 5% by weight, below 4% by weight, below 3% by weight, below 2% by weight, below 1% by weight, below 0.5% by weight, below 0.4% by weight, below 0.3% by weight, below 0.2% by weight, or below 0.1% by weight of Forms A and B of CV-8972 in the composition. Similarly, a composition that contains the Form A polymorph and is substantially free of the Form B and Form C polymorphs may contain Forms B and C at a defined weight percentage of Forms A, B, and C. For example, the composition may contain Forms B and C at below 5% by weight, below 4% by weight, below 3% by weight, below 2% by weight, below 1% by weight, below 0.5% by weight, below 0.4% by weight, below 0.3% by weight, below 0.2% by weight, or below 0.1% by weight of Forms A, B, and C of CV-8972 in the composition.
The crystal may contain a salt form of CV-8972. For example, the Form A polymorph CV-8972 is a trihydrochloride salt. Thus, the composition may include CV-8972 and the chloride ion a defined stoichiometric ratio. The composition may include CV-8972 and the chloride ion in a 1 :3 stoichiometric ratio.
The crystal may contain a hydrated form of CV-8972. For example, the Form A polymorph CV-8972 is a monohydrate. Thus, the composition may include a monohydrate form of CV-8972, such as the Form A polymorph. The composition may include an anhydrous form of CV-8972, such as a Form B, Form D, or Form E polymorph.
The pharmaceutical composition may be formulated as a single unit dosage. The pharmaceutical composition may be formulated as divided dosages.
The composition may contain a defined dose of CV-8972 or CV-8814. The dose may contain from about 10 mg to about 2000 mg, from about 10 mg to about 1000 mg, from about 10 mg to about 800 mg, from about 10 mg to about 600 mg, from about 10 mg to about 400 mg, from about 10 mg to about 300 mg, from about 10 mg to about 200 mg, from about 25 mg to about 2000 mg, from about 25 mg to about 1000 mg, from about 25 mg to about 800 mg, from about 25 mg to about 600 mg, from about 25 mg to about 400 mg, from about 25 mg to about 300 mg, about 25 mg to about 200 mg, from about 50 mg to about 2000 mg, from about 50 mg to about 1000 mg, from about 50 mg to about 800 mg, from about 50 mg to about 600 mg, from about 50 mg to about 400 mg, from about 50 mg to about 300 mg, about 50 mg to about 200 mg, from about 100 mg to about 2000 mg, from about 100 mg to about 1000 mg, from about 100 mg to about 800 mg, from about 100 mg to about 600 mg, from about 100 mg to about 400 mg, from about 100 mg to about 300 mg, about 100 mg to about 200 mg, from about 200 mg to about 2000 mg, from about 200 mg to about 1000 mg, from about 200 mg to about 800 mg, from about 200 mg to about 600 mg, from about 200 mg to about 400 mg, from about 200 mg to about 300 mg, from about 300 mg to about 2000 mg, from about 300 mg to about 1000 mg, from about 300 mg to about 800 mg, from about 300 mg to about 600 mg, or from about 300 mg to about 400 mg of CV-8972 or CV-8814. The dose may contain about 10 mg, about 25 mg, about 50 mg, about 100 mg, about 200 mg, about 300 mg, or about 400 mg of CV-8972 or CV-8814.
Providing a compound to a subject
The invention provides methods of treating HFrEF, in a subject by providing a modified form of trimetazidine, such as one of the compounds described above. The compound may be provided by any suitable route or mode of administration. For example, and without limitation, the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The modified form of trimetazidine may be provided according to a dosing regimen. A dosing regimen may include a dosage, a dosing frequency, or both.
Doses may be provided at any suitable interval. For example and without limitation, doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
The dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
The dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc. Alternatively, the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
The dosing may continue for a defined period. For example, and without limitation, doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
The subject may be a human that has HFrEF. The subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject. The subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, long-
term intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
The invention includes combination therapies in which a modified form of trimetazidine is provided to a subject in combination with a second agent, such as any of the drugs described above. The modified form of trimetazidine and the second agent may be provided in a single composition, or they may be provided in separate compositions. The modified form of trimetazidine and the second agent may be provided according to the same dosing regimen, or they may be provided according to different dosing regimens.
The invention provides methods of treating HFpEF in a subject by providing a modified form of trimetazidine, such as one of the compounds described above. The compound may be provided by any suitable route or mode of administration. For example, and without limitation, the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The modified form of trimetazidine may be provided according to a dosing regimen. A dosing regimen may include a dosage, a dosing frequency, or both.
Doses may be provided at any suitable interval. For example and without limitation, doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
The dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
The dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc. Alternatively, the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
The dosing may continue for a defined period. For example, and without limitation, doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
The subject may be a human that has HFpEF. The subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject. The subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, longterm intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
The invention provides methods of treating HFpEF in a subject by providing a modified form of trimetazidine, such as one of the compounds described above. The compound may be provided by any suitable route or mode of administration. For example, and without limitation, the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The modified form of trimetazidine may be provided according to a dosing regimen. A dosing regimen may include a dosage, a dosing frequency, or both.
Doses may be provided at any suitable interval. For example and without limitation, doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
The dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
The dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc. Alternatively, the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
The dosing may continue for a defined period. For example, and without limitation, doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
The subject may be a human that has HFpEF. The subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject. The subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, longterm intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
The invention provides methods of treating heart failure associated with hibernating myocardium in a subject by providing a modified form of trimetazidine, such as one of the compounds described above. The compound may be provided by any suitable route or mode of administration. For example, and without limitation, the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The modified form of trimetazidine may be provided according to a dosing regimen. A dosing regimen may include a dosage, a dosing frequency, or both.
Doses may be provided at any suitable interval. For example and without limitation, doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
The dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
The dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc. Alternatively, the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
The dosing may continue for a defined period. For example, and without limitation, doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
The subject may be a human that has heart failure associated with hibernating myocardium. The subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject. The subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, long-term intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
The invention includes combination therapies in which a modified form of trimetazidine is provided to a subject in combination with a second agent, such as any of the drugs described above in the section on heart failure associated with hibernating myocardium. The modified form of trimetazidine and the second agent may be provided in a single composition, or they may be provided in separate compositions. The modified form of trimetazidine and the second agent may be provided according to the same dosing regimen, or they may be provided according to different dosing regimens.
The invention provides methods of treating non-obstructive HCM in a subject by providing a modified form of trimetazidine, such as one of the compounds described above. The compound may be provided by any suitable route or mode of administration. For example, and without limitation, the compound may be provided buccally, dermally, enterally, intraarterially, intramuscularly, intraocularly, intravenously, nasally, orally, parenterally, pulmonarily, rectally, subcutaneously, topically, transdermally, by injection, or with or on an implantable medical device (e.g., stent or drug-eluting stent or balloon equivalents).
The modified form of trimetazidine may be provided according to a dosing regimen. A dosing regimen may include a dosage, a dosing frequency, or both.
Doses may be provided at any suitable interval. For example and without limitation, doses may be provided once per day, twice per day, three times per day, four times per day, five times per day, six times per day, eight times per day, once every 48 hours, once every 36 hours, once every 24 hours, once every 12 hours, once every 8 hours, once every 6 hours, once every 4 hours, once every 3 hours, once every two days, once every three days, once every four days, once every five days, once every week, twice per week, three times per week, four times per week, or five times per week.
The dose may contain a defined amount of CV-8972 or CV-8814 that improves cardiac mitochondrial function, such as any of the doses described above in relation to pharmaceutical compositions containing CV-8972 or CV-8814.
The dose may be provided in a single dosage, i.e., the dose may be provided as a single tablet, capsule, pill, etc. Alternatively, the dose may be provided in a divided dosage, i.e., the dose may be provided as multiple tablets, capsules, pills, etc.
The dosing may continue for a defined period. For example, and without limitation, doses may be provided for at least one week, at least two weeks, at least three weeks, at least four weeks, at least six weeks, at least eight weeks, at least ten weeks, at least twelve weeks or more.
The subject may be a human that has non-obstructive HCM. The subject may be a pediatric, a newborn, a neonate, an infant, a child, an adolescent, a pre-teen, a teenager, an adult, or an elderly subject. The subject may be in critical care, intensive care, neonatal intensive care, pediatric intensive care, coronary care, cardiothoracic care, surgical intensive care, medical intensive care, long-term intensive care, an operating room, an ambulance, a field hospital, or an out-of-hospital field setting.
The invention includes combination therapies in which a modified form of trimetazidine is provided to a subject in combination with a second agent, such as any of the drugs described above in the section on HCM. The modified form of trimetazidine and the second agent may be provided in a single composition, or they may be provided in separate compositions. The modified form of trimetazidine and the second agent may be provided according to the same dosing regimen, or they may be provided according to different dosing regimens.
Incorporation by Reference
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Equivalents
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification, and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
Claims
1. A method of treating heart failure associated with reduced ejection fraction (HFrEF) in a subject, the method comprising providing to a subject having HFrEF a compound represented by formula (X):
(X), or a pharmaceutically acceptable salt thereof.
2. The method of claim 1, wherein the HFrEF is associated with a condition selected from the group consisting of aortic stenosis, arrhythmia, cerebrovascular accident, chronic obstructive pulmonary disease, cigarette smoking, congenital heart disease, diabetic cardiomyopathy, dilated cardiomyopathy, hypertension, ischemic coronary disease, kidney disease, low baseline left ventricular ejection fraction, low platelet count, male gender, mitral regurgitation, myocardial infarction, myocarditis, obstructive hypertrophic cardiomyopathy, obesity, old age, peripheral vascular disease, renal disease, rheumatic heart disease, valvular disease, and viral myocarditis.
3. The method of claim 1, wherein the compound is provided in a pharmaceutical composition.
4. The method of claim 3, wherein the pharmaceutical composition is provided orally.
5. The method of claim 4, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
6. The method of claim 3, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
7. The method of claim 6, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
8. The method of claim 7, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
9. The method of claim 3, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
10. The method of claim 3, wherein the pharmaceutical composition comprises a crystal comprising a Form A polymorph of the compound.
11. The method of claim 10, wherein the crystal comprises a hydrochloride salt of the compound.
12. A method of treating heart failure associated with reduced ejection fraction (HFrEF) in a subject, the method comprising providing to a subject having HFrEF a compound represented by formula (IX):
13. The method of claim 12, wherein the HFrEF is associated with a condition selected from the group consisting of aortic stenosis, arrhythmia, cerebrovascular accident, chronic obstructive pulmonary disease, cigarette smoking, congenital heart disease, diabetic cardiomyopathy, dilated cardiomyopathy, hypertension, ischemic coronary disease, kidney disease, low baseline left ventricular ejection fraction, low platelet count, male gender, mitral regurgitation, myocardial infarction, myocarditis, obstructive hypertrophic cardiomyopathy, obesity, old age, peripheral vascular disease, renal disease, rheumatic heart disease, valvular disease, and viral myocarditis.
14. The method of claim 12, wherein the compound is provided in a pharmaceutical composition.
15. The method of claim 14, wherein the pharmaceutical composition is provided orally.
16. The method of claim 15, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
17. The method of claim 14, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
48
18. The method of claim 17, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
19. The method of claim 18, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
20. The method of claim 14, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
22. The method of claim 21, wherein the HFpEF is associated with a condition selected from the group consisting of hypertension, obesity, and diabetes.
23. The method of claim 21, wherein the compound is provided in a pharmaceutical composition.
24. The method of claim 23, wherein the pharmaceutical composition is provided orally.
25. The method of claim 24, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
26. The method of claim 23, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
27. The method of claim 26, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
28. The method of claim 27, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
29. The method of claim 23, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
30. The method of claim 23, wherein the pharmaceutical composition comprises a crystal comprising a Form A polymorph of the compound.
31. The method of claim 30, wherein the crystal comprises a hydrochloride salt of the compound.
33. The method of claim 32, wherein the HFpEF is associated with a condition selected from the group consisting of hypertension, obesity, and diabetes.
34. The method of claim 32, wherein the compound is provided in a pharmaceutical composition.
35. The method of claim 34, wherein the pharmaceutical composition is provided orally.
36. The method of claim 35, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
37. The method of claim 34, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
38. The method of claim 37, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
39. The method of claim 38, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
40. The method of claim 34, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
42. The method of claim 41, wherein the heart failure is associated with ischemia.
43. The method of claim 41, wherein the compound is provided in a pharmaceutical composition.
44. The method of claim 43, wherein the pharmaceutical composition is provided orally.
45. The method of claim 44, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
46. The method of claim 43, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
47. The method of claim 46, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
48. The method of claim 47, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
49. The method of claim 43, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
50. The method of claim 43, wherein the pharmaceutical composition comprises a crystal comprising a Form A polymorph of the compound.
51. The method of claim 50, wherein the crystal comprises a hydrochloride salt of the compound.
53. The method of claim 52, wherein the heart failure is associated with ischemia.
54. The method of claim 52, wherein the compound is provided in a pharmaceutical composition.
55. The method of claim 54, wherein the pharmaceutical composition is provided orally.
56. The method of claim 55, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
57. The method of claim 54, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
58. The method of claim 57, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
59. The method of claim 58, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
60. The method of claim 54, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
61. A method of treating non-obstructive hypertrophic cardiomyopathy (HCM) in a subject, the method comprising providing to a subject having non-obstructive HCM a compound represented by formula (X):
54
62. The method of claim 61, wherein the subject has at least one symptom selected from the group consisting of angina, atrial fibrillation, dizziness, fainting, fatigue, heart palpitation, leg swelling, light-headedness, shortness of breath, and stroke.
63. The method of claim 61, wherein the compound is provided in a pharmaceutical composition.
64. The method of claim 63, wherein the pharmaceutical composition is provided orally.
65. The method of claim 64, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
66. The method of claim 63, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
67. The method of claim 66, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
68. The method of claim 67, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
69. The method of claim 63, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
70. The method of claim 63, wherein the pharmaceutical composition comprises a crystal comprising a Form A polymorph of the compound.
71. The method of claim 70, wherein the crystal comprises a hydrochloride salt of the compound.
73. The method of claim 72, wherein the subject has at least one symptom selected from the group consisting of angina, atrial fibrillation, dizziness, fainting, fatigue, heart palpitation, leg swelling, light-headedness, shortness of breath, and stroke.
74. The method of claim 72, wherein the compound is provided in a pharmaceutical composition.
75. The method of claim 74, wherein the pharmaceutical composition is provided orally.
76. The method of claim 75, wherein the composition comprises a format selected from the group consisting of a tablet, troche, lozenge, aqueous suspension, oily suspension, emulsion, hard capsule, soft capsule, and syrup.
77. The method of claim 74, wherein the pharmaceutical composition comprises a mixture of the compound and an erodible polymer that promotes swelling of the mixture in an aqueous environment.
78. The method of claim 77, wherein the erodible polymer is hydroxypropyl methylcellulose (HPMC).
79. The method of claim 78, wherein the mixture comprises the compound and HMPC in a ratio of from about 1 : 10 to about 10: 1.
80. The method of claim 74, wherein the pharmaceutical composition is a unit dosage comprising from about 10 mg to about 500 mg of the compound.
57
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21904143.1A EP4259138A1 (en) | 2020-12-10 | 2021-12-02 | Methods of treating heart conditions using modified forms of trimetazidine |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063123715P | 2020-12-10 | 2020-12-10 | |
US202063123721P | 2020-12-10 | 2020-12-10 | |
US202063123711P | 2020-12-10 | 2020-12-10 | |
US202063123728P | 2020-12-10 | 2020-12-10 | |
US63/123,721 | 2020-12-10 | ||
US63/123,728 | 2020-12-10 | ||
US63/123,711 | 2020-12-10 | ||
US63/123,715 | 2020-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022125370A1 true WO2022125370A1 (en) | 2022-06-16 |
WO2022125370A8 WO2022125370A8 (en) | 2022-08-25 |
Family
ID=82932763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/061583 WO2022125370A1 (en) | 2020-12-10 | 2021-12-02 | Methods of treating heart conditions using modified forms of trimetazidine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4259138A1 (en) |
WO (1) | WO2022125370A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170348292A1 (en) * | 2014-12-22 | 2017-12-07 | Cardiora Pty Ltd | Method of treatment |
US20190117623A1 (en) * | 2016-02-26 | 2019-04-25 | The Regents Of The University Of California | Alpha-1-adrenergic receptor agonist therapy |
WO2020081361A1 (en) * | 2018-10-17 | 2020-04-23 | Imbria Pharmaceuticals, Inc. | Methods of treating rheumatic diseases using trimetazidine-based compounds |
WO2020243119A1 (en) * | 2019-05-31 | 2020-12-03 | Imbria Pharmaceuticals, Inc. | Methods of altering cardiac remodeling using compounds that promote glucose oxidation |
WO2020247213A1 (en) * | 2019-06-03 | 2020-12-10 | Imbria Pharmaceuticals, Inc. | Combination therapies that include an agent that promotes glucose oxidation and an inhibitor of pyruvate dehydrogenase kinase |
-
2021
- 2021-12-02 EP EP21904143.1A patent/EP4259138A1/en active Pending
- 2021-12-02 WO PCT/US2021/061583 patent/WO2022125370A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170348292A1 (en) * | 2014-12-22 | 2017-12-07 | Cardiora Pty Ltd | Method of treatment |
US20190117623A1 (en) * | 2016-02-26 | 2019-04-25 | The Regents Of The University Of California | Alpha-1-adrenergic receptor agonist therapy |
WO2020081361A1 (en) * | 2018-10-17 | 2020-04-23 | Imbria Pharmaceuticals, Inc. | Methods of treating rheumatic diseases using trimetazidine-based compounds |
WO2020243119A1 (en) * | 2019-05-31 | 2020-12-03 | Imbria Pharmaceuticals, Inc. | Methods of altering cardiac remodeling using compounds that promote glucose oxidation |
WO2020247213A1 (en) * | 2019-06-03 | 2020-12-10 | Imbria Pharmaceuticals, Inc. | Combination therapies that include an agent that promotes glucose oxidation and an inhibitor of pyruvate dehydrogenase kinase |
Non-Patent Citations (2)
Title |
---|
CHAMBERLIN ET AL.: "IMB-1018792, A Novel First-In Class Partial Fatty Acid Oxidation Inhibitor Improves Cardiac Remodeling And Function Post-Myocardial Infarction", JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, vol. 77, no. 18, 11 May 2021 (2021-05-11), pages 539, XP086561459, DOI: 10.1016/S0735-1097(21)01898-2 * |
MATTHEW HARDING, JAIKRISHNA PATEL, PAUL CHAMBERLIN, CLAUDIA CALCAGNO AND ANDREW LEVIN: "IMB-1018792, an Investigational Agent Designed to Augment Cardiac Glucose Utlization and Energetics Reduces Cardiac Remodelling and Preserves Cardiac Function in a Model of Pressure Overload-Induced Heart Failure", METABOLISM AND PHYSIOLOGY, vol. 141, 8 November 2021 (2021-11-08), pages 1 - 5, XP009544893, DOI: 10.1161/circ.144.suppl_1.12092 * |
Also Published As
Publication number | Publication date |
---|---|
EP4259138A1 (en) | 2023-10-18 |
WO2022125370A8 (en) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101278928B (en) | Medicament composition containing levocarnitine or its derivatives and use thereof | |
CZ303433B6 (en) | Use of ramipril, ramiprilat or pharmaceutically acceptable derivatives thereof | |
WO2020243119A1 (en) | Methods of altering cardiac remodeling using compounds that promote glucose oxidation | |
CN104138379B (en) | Anti-hypoxia pharmaceutical composition and application thereof | |
US20240245678A1 (en) | Methods of treating heart failure with reduced ejection fraction using modified forms of trimetazidine | |
MX2014000971A (en) | Left ventricular diastolic function improving agent. | |
TW201313679A (en) | Use of indolyl and indolinyl hydroxamates for treating heart failure or neuronal injury | |
EP4259138A1 (en) | Methods of treating heart conditions using modified forms of trimetazidine | |
WO1998027982A1 (en) | Composition containing ascorbic acid | |
AU780152B2 (en) | Use of cortisol antagonists in the treatment for heat failure | |
US11730733B2 (en) | Methods of treating non-obstructive hypertrophic cardiomyopathy using modified forms of trimetazidine | |
US11793807B2 (en) | Methods of treating heart failure with preserved ejection fraction using modified forms of trimetazidine | |
WO2010136823A1 (en) | Angina treatment | |
US12076318B2 (en) | Methods of treating heart failure with hibernating myocardium using modified forms of trimetazidine | |
AU2010276461B2 (en) | Pharmaceutical composition of levamlodipine or pharmaceutically acceptable salt thereof and beta receptor blocking agent, and use thereof | |
WO2021203779A1 (en) | Compound for treatment of pulmonary arterial hypertension, and application thereof | |
CN102430109A (en) | Amlodipine, aliskiren and pril compound antihypertensive medicament | |
CN102552255A (en) | Amlodipine, aliskiren and sartan compound antihypertensive medicine | |
JP5142991B2 (en) | Pharmaceutical composition for treating appetite disorders comprising 1- (3-chlorophenyl) -3-alkylpiperazine | |
CN102552873A (en) | Levoamlodipine, aliskiren and pril compound antihypertensive medicine | |
CA3207811A1 (en) | Methods for treating glioblastomas with sepiapterin | |
EP1552830A1 (en) | Drug composition for prevention or inhibition of advance of diabetic complication | |
WO2007023754A1 (en) | DRUG CONTAINING FBPase INHIBITOR | |
Innasimuthu et al. | Therapy for angina pectoris secondary to coronary disease | |
JPH08165239A (en) | Anti-arteriosclerotic agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21904143 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021904143 Country of ref document: EP Effective date: 20230710 |