WO2022124877A1 - Sistema de monitoreo agrícola - Google Patents

Sistema de monitoreo agrícola Download PDF

Info

Publication number
WO2022124877A1
WO2022124877A1 PCT/MX2020/050052 MX2020050052W WO2022124877A1 WO 2022124877 A1 WO2022124877 A1 WO 2022124877A1 MX 2020050052 W MX2020050052 W MX 2020050052W WO 2022124877 A1 WO2022124877 A1 WO 2022124877A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
nodes
monitoring system
sensor nodes
sensor
Prior art date
Application number
PCT/MX2020/050052
Other languages
English (en)
French (fr)
Inventor
Denise Susana RODRÍGUEZ
Original Assignee
Rodriguez Denise Susana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rodriguez Denise Susana filed Critical Rodriguez Denise Susana
Priority to PCT/MX2020/050052 priority Critical patent/WO2022124877A1/es
Publication of WO2022124877A1 publication Critical patent/WO2022124877A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the supervision or monitoring of agricultural crops requires timely attention to multiple variables to make the necessary adjustments or actions to bring the crop cycle in optimal conditions, which requires allocating material and human resources that represents raising production costs, which will be more high in direct proportion to the supervision time required for each type of crop.
  • the present monitoring system that presents, among other advantages, being able to be implemented both in greenhouses and in open field cultivation, being robust and reliable to obtain measurements and data in real time on a multiplicity of environmental and subsoil indicators that They allow to address the adverse conditions that occur in the monitored crops.
  • Figure 1 Shows a schematic view of the sensor nodes (3) and the master node (4) that make up a mesh (2) within a property (1).
  • Figure 2 Shows a perspective view of a sensor node where its main casing (5), the telescopic tube (6), the ground fixing pegs (9), the solar panel (7) and the environmental box ( 8).
  • Figure 3 Shows a front view and a side view of a sensor node where you can see its main casing (5), the telescopic tube (6), the ground fixing pegs (9), the solar panel (7) and the environmental box (8).
  • Figure 4 Shows a perspective view, a front view and a side view of a master node where its main casing (4b), the solar panel (4a) and the ground fixing stakes (4c) can be seen.
  • Figure 5 Shows an electronic connection diagram of the master node of the system.
  • Figure 6 Shows an electronic connection diagram of the system's ambient temperature and humidity sensor node.
  • Figure 7 Shows an electronic connection diagram of the system's PH sensor node.
  • Figure 8 Shows an electronic connection diagram of the EC sensor node of the system. DETAILED DESCRIPTION OF THE INVENTION
  • the present agricultural monitoring system comprises as a basic measurement and monitoring unit a plurality of sensor nodes (3), connected to a master node (4).
  • the configuration and construction of these sensor nodes (3) and the master node (4) allow this agricultural monitoring system to be effective in the control of crops inside greenhouses, hydroponic crops and in extensive or open field agriculture.
  • the entire system is supported by information and remote communication technologies under the "Internet of Things" (loT) modality.
  • LoT Internet of Things
  • this system can be configured according to the crop area to be monitored based on the following concepts applied to the system:
  • PROPERTY It is a unitary extension of cultivation which is divided from one or more meshes for the measurement of environmental and subsoil indicators that impact the development of crops.
  • MESH It is the form of subdivision of a property for purposes of implementation of the monitoring system, each mesh being made up of a maximum of 9 nodes which are located defining a Cartesian plane of columns and rows.
  • SENSOR NODE It is the physical device that constitutes the basic monitoring unit. Each node independently performs real-time measurements of at least some subsurface or environmental condition.
  • MASTER NODE It is the physical device that coordinates the collection of data from the sensor nodes and their consolidated delivery to the system database.
  • the interconnection and communication between the sensor nodes (3) and the master node (4) of the system are carried out thanks to a local communication protocol, this interconnection is operated by microcontrollers integrated in each node, and said nodes communicate bidirectionally with any node in a mesh (2) and with the master node (4).
  • a node (3) within a mesh (2) can receive from another node (3) and transmit to the master node (4) information packets coming from any node (3) of said mesh (2) through communication "jumps" following the local communication protocol using radio frequencies.
  • the master node (4) When the system is put into operation in a mesh (2), the master node (4) is turned on permanently in the state of receiving information packets from the sensor nodes (3). Once the master node (4) receives at least one data packet, it starts a data acquisition and sending process. The sensor nodes (3) in turn enter the energy saving phase once they have sent their measurement data.
  • the system has a network access module which captures the data sent by the master node (4) and sends it to a database using the MQTT topic protocol.
  • Each sensor node (3) and measurement and data sending module is coordinated within the system by a coordinating module of the XBee3 type, this module being the one that validates the cycles and restricts the sending of data from the network access module if said data does not come from at least three sensor nodes (3), thereby allowing the energy saving of the network access module when a data cycle is invalid.
  • the sensor nodes (3) are paused by an algorithm that makes them go from energy saving mode when they are not in a measurement cycle to active mode when they are programmed to perform environmental or subsurface measurements during cycles of 8 seconds plus a random lapse added to each module to avoid network saturation by sending information packets simultaneously.
  • each node (3) obtains parameters every 0.1 seconds of each of the sensors integrated in each node (3), averaging the measurement of the last 20 data and storing them in independent parameter measurement lists.
  • Each active cycle can be established in this monitoring system in determined lapses from 1 or more minutes through the routing of said data by the Xbee3 coordinator module, having the modules multiple pauses and activations in the sending of data packets in such a way as to avoid the that some data has not been measured or is lost in any of the multiple cycles.
  • a regular or general configuration sensor node (3) of this system can measure are the relative humidity of the air, the ambient temperature, the ambient luminosity, the subsoil temperature and the subsoil humidity.
  • an EC sensor node (3) can measure the relative humidity of the air, the ambient temperature, the ambient luminosity, the temperature of the subsoil, the humidity of the subsoil and the electrical conductivity of the subsoil.
  • a PH sensor node (3) can measure the relative humidity of the air, the ambient temperature, the ambient luminosity, the temperature of the subsoil, the humidity of the subsoil and the PH of the subsoil.
  • the master node (4) does not have sensors nor does it perform any measurement of the environment or the subsoil, its primary function being to concentrate the data packages of the assigned property, give structure to said data and send them to the database through the network access module.
  • the microcontrollers installed in each sensor node (3) contain embedded libraries and a higher programming layer in the system code for the mesh protocol, pauses and automatic activation of the nodes, synchronization in in case of failures, acquire the data from the sensors integrated to said nodes (3), as well as the packaging and sending of measurement data to the cloud.
  • the user of the system can access the data and measurements and interact with the monitoring system through a computer application which can be operated from a mobile device such as a cell phone of the "smartphone" type, having the ability to register nodes (3), meshes (2) and premises (1) from said access device to the computer application.
  • a computer application which can be operated from a mobile device such as a cell phone of the "smartphone" type, having the ability to register nodes (3), meshes (2) and premises (1) from said access device to the computer application.
  • the system works in three hierarchies, the highest hierarchy being the coordinator module which is based on the Zigbee protocol for the implementation of a local RF network between the nodes (3) of a mesh (2) and the meshes (2) of a property (1).
  • the middle hierarchy comprises a plurality of routers which are responsible for linking the connection between 10 to 20 nodes (3) per router while maintaining communication between them.
  • the lower hierarchy of the protocol is made up of the sensor nodes which perform rapid operations of acquiring and sending data to the router to which they are linked and after said sending of data enters energy saving or pause mode.
  • Each sensor node (3) of the system is made up of a main housing (5) that integrates a plurality of microcontrollers and at least one of the following sensors:
  • the SHTXX model has been preferably chosen in any of its known commercial versions. This sensor has a cover to resist the weather while still fulfilling its functionality in measuring temperature and humidity of the environment.
  • - LIGHT SENSOR. The MAX44009 model has been chosen for our system, which operates at low voltages and has the ability to measure wide ranges of light intensity. - SUBSOIL TEMPERATURE, HUMIDITY, CONDUCTIVITY AND PH SENSOR.- For this type of measurement, the RK sensors of the company Rika Sensor were chosen, which operate at low voltage, encapsulated devices and corrosion-proof connections and can be used immersed in media liquids.
  • Each sensor node (3) is electrically powered by at least one solar panel (7) whose capacity is calculated so that it is sufficient to supply consumption of up to 90 mA, which is the highest consumption level of a sensor node ( 3) active during a complete cycle.
  • the solar panel (4a) integrated to the master node (4) is calculated to feed consumption peaks of up to 415 mA, which are demanded by all the circuitry contained in said master node (4 ), including the network connection module and by the Xbee3 Pro module, which has a greater data sending range than the Xbee3 modules installed in the sensor nodes (3), meaning greater electrical consumption.
  • these nodes include a 4.5 Ah SLA battery which stores the energy generated by the solar panels (7) integrated to the nodes (3), this allows a node (3) It can operate without receiving sunlight for an average of 3.67 days, a time that can be increased if a larger capacity battery or a greater number of batteries connected in parallel is used.
  • the master node (4) unlike the sensor nodes (3), does not go into energy saving mode, but it does operate during periods of data reception and sending during which the network access module is activated, so this master node (4) is equipped with a 12 Ah battery, allowing autonomy of up to an average of 5 days in total absence of sunlight.
  • the electrical supply from the battery to the circuits is modulated by voltage regulators.
  • the electrical consumption and autonomy of the system is maximized in efficiency by integrating the circuits of each node on a PCB, and this efficiency can be increased if you do without the LED indicators that are installed on the nodes to have a visual signal of their operating status.
  • the system has been conceived to ideally function under the wireless interconnection of the nodes (3) in a mesh-type network (2), with a property being able to contain as many meshes (2) as the extension of the field to be monitored requires.
  • each sensor node (3) is constituted by a casing or main body (5) preferably made of ABS, inside it has a plurality of parallel slots to insert floors where the circuitry and microcontrollers are organized, the casing has various holes for allow the assembly of a telescopic tube (6), solar panels (7), LED lights and the exit of cables that connect the environmental and subsoil sensors.
  • the main module In the floors where the circuitry and microcontrollers of each sensor node (3) are organized, the main module, the development card, the multiple switch, the analog signal multiplexer, the on and off switch, the Schottky diode for isolation are mounted. of the solar panels (7) of the battery and a plurality of resistors, inductors and capacitors to integrate the circuits in accordance with the configuration of functionality required for each sensor node (3).
  • At least one SLA battery is installed on the lower floor of the casing (5) of each sensor node (3), which can be replaced by any other type of battery or device for storing the energy generated by the solar panels (7). integrated to each sensor node (3).
  • This lower floor has an opening where the battery is inserted to fix its position, said battery resting on the body of the main casing (5) of the sensor node (3).
  • the sensor node (3) On its exterior, the sensor node (3) has a telescopic tube (6) made of plastic material arranged on its upper wall, which projects upwards, serving as an antenna for the provision of environmental parameter sensors and to favor receiving and transmitting data from said sensor node (3).
  • This telescopic tube (6) is inserted by means of a plastic connector and a metal clamp into a hole in the upper wall of the main casing (5) of the sensor node (3), allowing the passage of cables that connect the connection module through its interior. remote achieving a greater range for the reception and transmission of data.
  • This telescopic tube (6) from the section fixed to the main casing (5) of the sensor node (3) consists of at least one second section also tubular but with a smaller diameter in such a way that it is inserted tightly inside the tubular section fixed to the casing (5), allowing the height of the telescopic tube (6) to be adjusted according to the height of the plants of the monitored crop.
  • an environmental box (8) is assembled, which has a crystalline cover on the upper face, which allows the passage of ambient light to be measured by the light intensity sensor placed in inside said environmental box (8).
  • one or more holes are arranged through which the wiring that connects the subsoil parameter measurement sensors is passed.
  • these holes can be dispensed with.
  • Each sensor node (3) has at least one solar panel (7) installed on the upper wall of the main casing (5) of said node (6), this solar panel (7) is fixed to the main casing (5) by tubes and clamps.
  • the cables that conduct the electricity generated by said solar panel (7) are passed through the interior of the tubes that support the solar panel (7), the cables are connected to a charge controller that in turn has output terminals to manage the electricity produced by the solar panels (7) and direct it to the battery and to power the electrical components of the sensor node (3).
  • the main casing (5) On the lower wall of the main casing (5) there is a plurality of rods or stakes (9) of rigid plastic material that project downwards, which have the function of fixing the sensor node (3) to the ground where the measurement is intended. Location of said sensor node (3).
  • Another option to fix a sensor node (3) is by means of clamps placed on the outer wall of the main casing (5) which allow the sensor node (3) to be fastened to a post nailed to the ground.
  • One or another alternative for fixing the sensor nodes (3) can be determined based on the height of the plants that make up the monitored crop or to overcome physical obstacles that affect the free communication between sensor nodes (3).
  • the main casing (5) of the sensor node (3) can consist of two sections, the first being the casing which houses the battery and the circuits, the second section is a base with stakes (9) on which the battery is assembled. first section.
  • this main casing (5) can also be made in one piece.
  • hermetic covers and connectors are considered to isolate the internal components from humidity and other environmental factors that may deteriorate them or affect their operation.
  • the sensor nodes (3) that make up said mesh (2) can be interconnected with each other from any point of location of each sensor node (3) in the mesh (2), in In this communication process between sensor nodes (3), the master node (4) is permanently in the function of receiving or "listening" the sensor nodes (3).
  • the sensor nodes (3) Once the sensor nodes (3) generate a measurement cycle, they transfer the data obtained through jumps between sensor nodes (3) until they deliver the data to the master node (4), which in turn processes them to discriminate or eliminate repeated data and generate a single data list in each reception and send said data list or packet to a remote database through a network connection module which transmits the data packets coordinated by the master node (4).
  • the sequence of steps in the operation of the monitoring system is listed below: a.
  • the sensor nodes (3) carry out measurement cycles of environmental and subsoil data and through communication jumps between nodes of a mesh (2) they transmit them to the master node (4) of said mesh (2).
  • the master node (4) generates data lists and packages said data to transmit the monitoring information collected by the sensor nodes (3) of a mesh (2). This transmission is done through a "machine to machine” communication protocol to a loT MQTT topic.
  • the MQTT topic performs a publish-subscriber bridge using backend logic.
  • the registry of sensor nodes (3) and meshes (2) have an API-type interface which receives the data from the backend and stores it in a database. and.
  • Access to the database occurs through the communication of a web application with said database through the API interface.
  • the end user is identified by username and password to access from the web application the data that is "pulled" from the database to have information related to the environmental and subsoil parameters obtained in a certain period by a sensor node (3) , a mesh (2) and a property (1).
  • the communication between the master node (4) and the remote connection module is of the UART serial type, while the remote connection module communicates with the MQTT topic via 3G.
  • the sensor nodes (3) communicate with each other and with the master node (4) by radio frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Sistema de monitoreo agrícola conformado por nodos sensores de parámetros ambientales y del subsuelo dispuesto en mallas que definen un plano cartesiano de renglones y columnas, un nodo maestro que coordina la comunicación de los datos obtenidos por los nodos sensores, módulos de comunicación serial, radio frecuencia y 3G, protocolos de envío de paquetes de datos, interfaz tipo API y desarrollo web para el acceso a los usuarios del sistema.

Description

"SISTEMA DE MONITORED AGRÍCOLA"
ANTECEDENTES DE LA INVENCIÓN
La evolución de las técnicas y sistemas de producción agrícola, se han enfocado en el objetivo primordial de alcanzar la mayor productividad posible de las áreas disponibles para el cultivo. Un factor relevante de cualquier sistema de producción agrícola es la supervisión y vigilancia de todo el ciclo productivo, desde la siembra de la semilla hasta la cosecha de los productos.
La supervisión o monitoreo de cultivos agrícolas requiere atender con oportunidad múltiples variables para realizar los ajustes o acciones necesarias para llevar en óptimas condiciones el ciclo de cultivo, lo cual requiere destinar recursos materiales y humanos que representa elevar los costos de producción, mismos que serán más altos en proporción directa al tiempo de supervisión que requiere cada tipo de cultivo.
El uso de tecnologías actualmente disponibles, han permitido adaptar dispositivos y medios remotos de monitoreo, incluyendo el procesamiento automatizado de datos mediante la asistencia de programas informáticos y el uso de mecanismos automatizados de aplicación a distancia de irrigación, fertilización y control de plagas en los cultivos agrícolas. No obstante, son múltiples las variables y factores que pueden cambiar de manera no previsible, afectando las condiciones de estabilidad de un cultivo, por lo que la oportunidad de detección de dichos imponderables vuelve valioso el contar con un monitoreo permanente que emita las señales de alerta para atender contingencias que puedan poner en riesgo los cultivos, en el momento adecuado.
Por estos motivos proponemos el presente sistema de monitoreo que presenta entre otras ventajas el poder implementarse tanto en invernaderos como en cultivo a campo abierto, siendo robusto y confiable para obtener mediciones y datos en tiempo real sobre una multiplicidad de indicadores ambientales y del subsuelo que permiten atender las condiciones adversas que se presenten en los cultivos monitoreados.
BREVE EXPLICACIÓN DE LAS FIGURAS
Figura 1. Muestra una vista esquemática de los nodos sensores (3) y nodo maestro (4) que integran una malla (2) dentro de un predio (1).
Figura 2. Muestra una vista en perspectiva de un nodo sensor donde puede apreciarse su carcasa principal (5), el tubo telescópico (6), las estacas de fijación al suelo (9), el panel solar (7) y la caja ambiental (8).
Figura 3. Muestra una vista frontal y una vista lateral de un nodo sensor donde puede apreciarse su carcasa principal (5), el tubo telescópico (6), las estacas de fijación al suelo (9), el panel solar (7) y la caja ambiental (8).
Figura 4. Muestra una vista en perspectiva, una vista frontal y una vista lateral de un nodo maestro donde puede apreciarse su carcasa principal (4b), el panel solar (4a) y las estacas de fijación al suelo (4c),
Figura 5. Muestra un diagrama de conexiones electrónicas del nodo maestro del sistema.
Figura 6. Muestra un diagrama de conexiones electrónicas del nodo sensor de temperatura y humedad ambiental del sistema.
Figura 7. Muestra un diagrama de conexiones electrónicas del nodo sensor PH del sistema.
Figura 8. Muestra un diagrama de conexiones electrónicas del nodo sensor EC del sistema. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El presente sistema de monitoreo agrícola comprende como unidad básica de medición y monitoreo una pluralidad de nodos sensores (3), comunicados con un nodo maestro (4). La configuración y construcción de estos nodos sensores (3) y del nodo maestro (4) permiten que este sistema de monitoreo agrícola resulte efectivo en el control de cultivos dentro de invernaderos, cultivos hidropónicos y en agricultura extensiva o a campo abierto. El sistema en su totalidad es soportado por tecnologías de información y de comunicación remota bajo la modalidad "Internet de las Cosas" (loT).
En las posibles modalidades de realización este sistema puede configurarse de acuerdo al área de cultivo a monitorear en fundón de los siguientes conceptos aplicados al sistema:
1. PREDIO.- Es una extensión de cultivo unitaria la cual se divide desde una o más mallas para la medición de los indicadores ambientales y del subsuelo que impactan el desarrollo de los cultivos.
2. MALLA.- Es la forma de subdivisión de un predio para efectos de implementación del sistema de monitoreo, siendo cada malla conformada por un máximo de 9 nodos los cuales se ubican definiendo un plano cartesiano de columnas y renglones.
3. NODO SENSOR.- Es el dispositivo físico que constituye la unidad básica de monitoreo. Cada nodo realiza de manera independiente mediciones en tiempo real de al menos alguna condición ambiental o del subsuelo.
4. NODO MAESTRO.- Es el dispositivo físico que coordina la captación de datos de los nodos sensores y su envío consolidado a la base de datos del sistema.
La interconexión y comunicación entre los nodos sensores (3) y el nodo maestro (4) del sistema se realizan gracias a un protocolo de comunicación local, operada esta interconexión por microcontroladores integrados en cada nodo pudiendo dichos nodos comunicarse bidireccionalmente con cualquier nodo en una malla (2) y con el nodo maestro (4).
Por dar un ejemplo, un nodo (3) dentro de una malla (2) puede recibir de otro nodo (3) y transmitir al nodo maestro (4) paquetes de información provenientes de cualquier nodo (3) de dicha malla (2) mediante "saltos" de comunicación siguiendo el protocolo de comunicación local mediante radio frecuencias.
Al poner en funcionamiento el sistema en una malla (2), el nodo maestro (4) se enciende de manera permanente en estado de recepción de paquetes de información de los nodos sensores (3). Una vez que el nodo maestro (4) recibe al menos un paquete de datos inicia un proceso de adquisición y envío de datos. Los nodos sensores (3) a su vez entran en fase de ahorro de energía una vez que han enviado sus datos de medición.
El sistema cuenta con un módulo de acceso a la red el cual captura los datos enviados por el nodo maestro (4) y los envía a una base de datos mediante protocolo de tópico MQTT.
Cada nodo sensor (3) y módulo de medición y envío de datos es coordinado dentro del sistema por un módulo coordinador del tipo XBee3, siendo este módulo el que valida los ciclos y restringe el envío de datos del módulo de acceso a la red si dichos datos no provienen de al menos tres nodos sensores (3), permitiendo con esto el ahorro de energía del módulo de acceso a la red cuando un ciclo de datos no es válido.
Los nodos sensores (3) son pausados mediante un algoritmo que los hace pasar de modo de ahorro de energía cuando no se encuentran en un ciclo de medición a modo activo cuando están programados para realizar mediciones ambientales o del subsuelo durante ciclos de 8 segundos más un lapso aleatorio añadido a cada módulo para evitar la saturación de la red por el envío simultáneo de paquetes de información. Durante estos ciclos de medición cada nodo (3) obtiene parámetros cada 0.1 segundos de cada uno de los sensores integrados en cada nodo (3), promediando la medición de los últimos 20 datos y almacenándolos en listas independientes de medición de parámetros.
Cada ciclo activo puede establecerse en este sistema de monitoreo en lapsos determinados desde 1 ó más minutos mediante el enrutamiento de dichos datos por el módulo coordinador Xbee3, teniendo los módulos múltiples pausas y activaciones en el envío de paquetes de datos de manera que se evita el que algún dato no se haya medido o se pierda en alguno de los múltiples ciclos.
Entre los parámetros que un nodo sensor (3) regular o de configuración general de este sistema puede medir se encuentran la humedad relativa del aire, la temperatura ambiente, la luminosidad ambiental, temperatura del subsuelo y la humedad del subsuelo.
Entre los parámetros que un nodo sensor (3) EC puede medir se encuentran la humedad relativa del aire, la temperatura ambiente, la luminosidad ambiental, la temperatura del subsuelo, la humedad del subsuelo y la conductividad eléctrica del subsuelo.
Entre los parámetros que un nodo sensor (3) PH puede medir se encuentran la humedad relativa del aire, la temperatura ambiente, la luminosidad ambiental, la temperatura del subsuelo, la humedad del subsuelo y el PH del subsuelo.
El nodo maestro (4) no cuenta con sensores ni realiza medición alguna del medio ambiente ni del subsuelo, siendo su fundón primordial la de concentrar los paquetes de datos del predio asignado, darle estructura a dichos datos y enviarlos a la base de datos mediante el módulo de acceso a la red.
Los microcontroladores instalados en cada nodo sensor (3) contienen librerías embebidas y una capa de programación superior en el código del sistema para el protocolo de malla, pausas y activación automática de los nodos, sincronización en caso de fallas, adquirir los datos de los sensores integrados a dichos nodos (3), así como el empaquetado y envío de datos de medición a la nube.
El usuario del sistema puede acceder a los datos y mediciones e interactuar con el sistema de monitoreo mediante una aplicación informática la cual puede ser operada desde un dispositivo móvil tal como un teléfono celular del tipo "smartphone", teniendo la capacidad para dar de alta nodos (3), mallas (2) y predios (1) desde dicho dispositivo de acceso a la aplicación informática.
Con respecto al protocolo de conectividad local, el sistema funciona en tres jerarquías, siendo la jerarquía superior el módulo coordinador el cual se basa en protocolo Zigbee para la implementación de una red local RF entre los nodos (3) de una malla (2) y las mallas (2) de un predio (1). La jerarquía media comprende una pluralidad de ruteadores los cuales se encargan de vincular la conexión entre 10 a 20 nodos (3) por ruteador a la vez que mantienen una comunicación entre ellos. La jerarquía inferior del protocolo está conformada por los nodos sensores los cuales realizan operaciones rápidas de adquisición y envío de datos al ruteador al que se encuentran enlazados y posterior a dicho envío de datos entra en modo de ahorro de energía o pausa.
Cada nodo sensor (3) del sistema está compuesto por una carcasa principal (5) que integra una pluralidad de microcontroladores y al menos uno de los siguientes sensores:
- SENSOR DE TEMPERATURA Y HUMEDAD AMBIENTAL.- en la presente invención se ha elegido de manera preferente el modelo SHTXX en cualquiera de sus versiones comerciales conocidas. Este sensor cuenta con una cubierta para resistir la intemperie sin dejar de cumplir su funcionalidad en la medición de temperatura y humedad del medio ambiente.
- SENSOR DE LUMINOSIDAD.- Se ha elegido para nuestro sistema el modelo MAX44009 el cual opera a bajos voltajes y tiene la capacidad de medir rangos amplios de intensidad lumínica. - SENSOR DE TEMPERATURA, HUMEDA, CONDUCTIVIDAD Y PH DEL SUBSUELO.- Para este tipo de medición se eligieron los sensores RK de la empresa Rika Sensor, los cuales operan a bajo voltaje, dispositivos encapsulados y conexiones a prueba de corrosión pudiendo utilizarse inmerso en medios líquidos.
Cada nodo sensor (3) está alimentado eléctricamente por al menos un panel solar (7) del cual está calculada su capacidad de manera que sea suficiente para alimentar consumos de hasta 90 mA, el cual es el mayor nivel de consumo de un nodo sensor (3) activo durante un ciclo completo.
En el caso del nodo maestro (4), el panel solar (4a) integrado al nodo maestro (4) está calculado para alimentar picos de consumo de hasta 415 mA, los cuales son demandados por toda la circuitería contenida en dicho nodo maestro (4), incluyendo el módulo de conexión a la red y por el módulo Xbee3 Pro, el cual tiene mayor alcance de envío de datos que los módulos Xbee3 instalados en los nodos sensores (3), significando un mayor consumo eléctrico.
Para la autonomía energética de cada nodo sensor (3), dichos nodos incluyen una batería SLA de 4.5 Ah la cual almacena la energía generada por los paneles solares (7) integrados a los nodos (3), esto permite que un nodo (3) pueda operar sin recibir luz solar un promedio de 3.67 días, tiempo que puede incrementarse si se utiliza una batería de mayor capacidad o un mayor número de baterías conectadas en paralelo.
El nodo maestro (4) a diferencia de los nodos sensores (3), no entra en modo de ahorro de energía pero si opera en lapsos de recepción y envío de datos durante los que se activa el módulo de acceso a la red por lo que este nodo maestro (4) está equipado con una batería de 12 Ah, permitiéndole una autonomía de hasta un promedio de 5 días en ausencia total de luz solar. La alimentación eléctrica de la batería a los circuitos se modula mediante reguladores de voltaje.
El consumo eléctrico y autonomía del sistema está maximizado en eficiencia al integrar los circuitos de cada nodo en un PCB, pudiendo esta eficiencia incrementarse si se prescinde de los indicadores LED que se instalan en los nodos para tener una señal visual de su estado de funcionamiento.
En su conjunto, el sistema se ha concebido para funcionar idealmente bajo la interconexión inalámbrica de los nodos (3) en una red tipo malla (2) , pudiendo un predio contener tantas mallas (2) como la extensión del campo a monitorear lo requiera.
Mecánicamente cada nodo sensor (3) está constituido por una carcasa o cuerpo principal (5) construido preferentemente en ABS, en su interior cuenta con una pluralidad de ranuras paralelas para insertar pisos donde se organiza la circuitería y microcontroladores, la carcasa presenta diversos orificios para permitir el ensamble de un tubo telescópico (6), paneles solares (7), luces LED y la salida de cables que conectan los sensores de medio ambiente y subsuelo.
En los pisos donde se organiza la circuitería y microcontroladores de cada nodo sensor (3) se montan el módulo principal, la tarjeta de desarrollo, el switch múltiple, el multiplexor de señales análogas, el interruptor de encendido y apagado, el diodo Schottky para aislamiento de los paneles solares (7) de la batería y una pluralidad de resistencias, inductores y capacitores para integrar los circuitos de conformidad con la configuración de funcionalidad requerida para cada nodo sensor (3).
En el piso inferior de la carcasa (5) de cada nodo sensor (3) se instala al menos una batería SLA, pudiendo ser esta sustituida por cualquier otro tipo de batería o dispositivo para almacenamiento de la energía generada por los paneles solares (7) integrados a cada nodo sensor (3). Este piso inferior tiene una abertura donde se inserta la batería para fijar su posición quedando descansada dicha batería en el cuerpo de la carcasa principal (5) del nodo sensor (3).
En su exterior el nodo sensor (3) tiene dispuesto en su pared superior un tubo telescópico (6) de material plástico el cual se proyecta hada arriba, sirviendo como antena para la disposición de sensores de parámetros ambientales y para favorecer la recepción y transmisión de datos de dicho nodo sensor (3). Este tubo telescópico (6) está insertado mediante un conector plástico y una abrazadera metálica a un orificio en la pared superior de la carcasa principal (5) del nodo sensor (3) permitiendo por su interior el paso de cables que conectan el módulo de conexión remota logrando un mayor alcance para la recepción y transmisión de datos. Este tubo telescópico (6) a partir de la sección fijada a la carcasa principal (5) del nodo sensor (3) consta de al menos una segunda sección también tubular pero de menor diámetro de tal manera que se inserta de manera ajustada al interior de la sección tubular fijada a la carcasa (5), permitiendo ajustar la altura del tubo telescópico (6) en fundón de la altura de las plantas del cultivo monitoreado. En el extremo superior del tubo telescópico (6) se ensambla una caja ambiental (8) la cual presenta una tapa cristalina en la cara superior, la cual permite el paso de la luminosidad ambiental para poder ser medida por el sensor de intensidad lumínica colocado en el interior de dicha caja ambiental (8).
En la pared inferior de la carcasa principal (5) se disponen uno o más orificios por donde se hace pasar el cableado que conecta los sensores de medición de parámetros del subsuelo. Cuando el nodo sensor (3) solo está configurado para medir parámetros ambientales se puede prescindir de dichos orificios.
Cada nodo sensor (3) cuenta con al menos un panel solar (7) instalado en la pared superior de la carcasa principal (5) de dicho nodo (6), este panel solar (7) está fijado a la carcasa principal (5) mediante tubos y abrazaderas. Por el interior de los tubos que soportan el panel solar (7) se hacen pasar los cables que conducen la electricidad generada por dicho panel solar (7), los cables se conectan a un controlador de carga que a su vez cuenta con terminales de salida para administrar la electricidad producida por los paneles solares (7) y dirigirla hada la batería y para alimentar los componentes eléctricos del nodo sensor (3).
En la pared inferior de la carcasa principal (5) se dispone una pluralidad de varillas o estacas (9) de material plástico rígido que se proyectan hada abajo las cuales tienen la fundón de fijar el nodo sensor (3) al suelo donde se destine la ubicación de dicho nodo sensor (3). Otra opción para fijar un nodo sensor (3) es mediante abrazaderas colocadas en la pared exterior de la carcasa principal (5) las cuales permiten sujetar el nodo sensor (3) a un poste clavado en el suelo. Una u otra alternativa de fijación de los nodos sensores (3) puede determinarse en fundón de la altura de las plantas que conforman el cultivo monitoreado o para salvar obstáculos físicos que afecten la libre comunicación entre nodos sensores (3).
La carcasa principal (5) del nodo sensor (3) puede constar de dos secciones, siendo la primera la carcasa la cual aloja la batería y los circuitos, la segunda sección es una base con las estacas (9) en la cual se ensambla la primera sección. Sin embargo, esta carcasa principal (5) también puede estar construida en una sola pieza.
Finalmente, en el armado completo del nodo sensor (3) se consideran tapas y conectores herméticos para aislar los componentes internos de humedad y de otros factores del medio ambiente que puedan deteriorarlos o afectar su funcionamiento.
En su forma definida de operación de una malla (2), los nodos sensores (3) que integran dicha malla (2) pueden interconectarse entre sí desde cualquier punto de ubicación de cada nodo sensor (3) en la malla (2), en este proceso de comunicación entre nodos sensores (3), el nodo maestro (4) se encuentra de manera permanente en fundón de recepción o "escucha" de los nodos sensores (3). Una vez que los nodos sensores (3) generan un ciclo de medición, transfieren los datos obtenidos mediante saltos entre nodos sensores (3) hasta entregar los datos al nodo maestro (4), que a su vez los procesa para discriminar o eliminar datos repetidos y generar una lista de datos única en cada recepción y enviar dicha lista o paquete de datos a una base de datos remota a través de un módulo de conexión a la red el cual transmite los paquetes de datos coordinados por el nodo maestro (4).
A continuación se enlista la secuencia de pasos en el funcionamiento del sistema de monitoreo: a. Los nodos sensores (3) realizan ciclos de medición de datos ambientales y del subsuelo y mediante saltos de comunicación entre nodos de una malla (2) los transmiten al nodo maestro (4) de dicha malla (2). b. El nodo maestro (4) genera listas de datos y empaqueta dichos datos para transmitir la información de monitoreo recolectada por los nodos sensores (3) de una malla (2). Esta transmisión se realiza mediante un protocolo de comunicación "machine to machine" a un tópico loT MQTT. c. El tópico MQTT realiza un puente publicación-suscriptor mediante una lógica "backend". d. El registro de nodos sensores (3) y mallas (2) cuentan con una interfaz tipo API la cual recibe los datos del backend y los almacena en una base. e. El acceso a la base de datos ocurre mediante la comunicación de una aplicación web con dicha base a través de la interfaz API. f. El usuario final se identifica mediante usuario y contraseña para acceder desde la aplicación web a los datos que se "jalan" desde la base de datos para tener información relacionada con los parámetros ambientales y de subsuelo obtenidos en determinado periodo por un nodo sensor (3), una malla (2) y un predio (1).
La comunicación entre el nodo maestro (4) y el módulo de conexión remota es de tipo serial UART, mientras que el módulo de conexión remota se comunica al tópico MQTT vía 3G. Los nodos sensores (3) se comunican entre sí y con el nodo maestro (4) mediante radio frecuencia.

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como novedad y por lo tanto reclamo como mi exclusiva creación y propiedad, lo contenido en las siguientes cláusulas.
1. Sistema de monitoreo de cultivos agrícolas caracterizado por que comprende el uso de nodos sensores de parámetros ambientales y del subsuelo, un nodo maestro coordinador de los datos recolectados por los nodos sensores, disposición de los nodos definiendo mallas dentro de un predio agrícola, módulos de conexión remota, tópicos MQTT, una base de datos, un desarrollo web e interfaz tipo API para el acceso de los usuarios a los datos monitoreados.
2. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque los nodos sensores cuentan para su funcionalidad con circuitos de conexión de sensores de parámetros ambientales y del subsuelo, una batería, paneles solares, medios de fijación al suelo y un tubo telescópico con sensores ambientales y módulo de comunicación por radiofrecuencia.
3. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque se implementa en el predio a monitorear mediante la disposición equidistante de los nodos sensores en una malla que define ejes cartesianos por columnas y renglones; un nodo maestro que coordina la recolección de datos de los nodos sensores y medios de transmisión de datos.
4. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque los nodos sensores cuentan con dispositivos de medición de parámetros ambientales y del subsuelo relativos a la temperatura y humedad ambiental, intensidad lumínica, PH del subsuelo y conductividad del subsuelo.
5. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque los nodos sensores se comunican bidireccionalmente recibiendo y transmitiendo datos entre dichos nodos mediante saltos de comunicación por radio frecuencia hasta entregar los datos al nodo maestro. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque los nodos sensores funcionan por ciclos de recolección de datos de 1 ó más minutos recolectando datos cada 0.1 segundos por cada uno de los sensores integrados en cada nodo sensor. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque el nodo maestro que coordina los nodos sensores de una malla se mantiene en fundón activa durante el proceso de monitoreo para la recepción de los datos transmitidos por los nodos sensores. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque el nodo maestro envía los paquetes de información recibidos de los nodos sensores mediante una señal 3G a un tópico MQTT. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque los nodos en una malla pueden ser nodos de sensado regular, nodos de sensado de intensidad lumínica, nodos de sensado de conductividad eléctrica y nodos de sensado de PH. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque el nodo maestro está configurado para enviar paquetes de datos al tópico MQTT únicamente cuando obtiene datos de al menos tres nodos sensores en una malla. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque el tópico MQTT transmite los datos recibidos del nodo maestro a una base de datos utilizando una interfaz tipo API. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque el usuario accede al sistema mediante una aplicación web 14 responsiva que puede desplegarse en un equipo de cómputo de escritorio, lap top o dispositivo móvil. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque los nodos sensores cuentan con microcontroladores que contienen librerías embebidas y una capa de programación superior en el código del sistema para el protocolo de malla, pausas y activación automática de dichos nodos, sincronización en caso de fallas, adquirir los datos de los sensores integrados a dichos nodos, así como el empaquetado y envío de datos de medición a la nube. El sistema de monitoreo agrícola, de conformidad con la reivindicación 1, caracterizado porque su fundón de monitoreo ocurre bajo los siguientes pasos: a. Los nodos sensores realizan ciclos de medición de datos ambientales y del subsuelo y mediante saltos de comunicación entre nodos de una malla los transmiten al nodo maestro de dicha malla. b. El nodo maestro genera listas de datos y empaqueta dichos datos para transmitir la información de monitoreo recolectada por los nodos sensores de una malla. Esta transmisión se realiza mediante un protocolo de comunicación "machine to machine" a un tópico loT MQTT. c. El tópico MQTT realiza un puente publicación-suscriptor mediante una lógica "backend". d. El registro de nodos y mallas cuentan con una interfaz tipo API la cual recibe los datos del backend y los almacena en una base. e. El acceso a la base de datos ocurre mediante la comunicación de una aplicación web con dicha base a través de la interfaz API. f. El usuario final se identifica mediante usuario y contraseña para acceder desde la aplicación web a los datos que se "jalan" desde la base de datos para tener información relacionada con los parámetros ambientales y de subsuelo obtenidos en determinado periodo por un nodo sensor, una malla y un predio.
PCT/MX2020/050052 2020-12-08 2020-12-08 Sistema de monitoreo agrícola WO2022124877A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2020/050052 WO2022124877A1 (es) 2020-12-08 2020-12-08 Sistema de monitoreo agrícola

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2020/050052 WO2022124877A1 (es) 2020-12-08 2020-12-08 Sistema de monitoreo agrícola

Publications (1)

Publication Number Publication Date
WO2022124877A1 true WO2022124877A1 (es) 2022-06-16

Family

ID=81974483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2020/050052 WO2022124877A1 (es) 2020-12-08 2020-12-08 Sistema de monitoreo agrícola

Country Status (1)

Country Link
WO (1) WO2022124877A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886979U (zh) * 2012-11-19 2013-04-17 吉林农业大学 一种基于物联网的农业生产远程监测与智能决策系统
WO2016118979A2 (en) * 2015-01-23 2016-07-28 C3, Inc. Systems, methods, and devices for an enterprise internet-of-things application development platform
CN206848267U (zh) * 2017-06-26 2018-01-05 贵州财大鼎新科创产业有限公司 土壤检测仪及环境检测设备
CN109357706A (zh) * 2018-10-10 2019-02-19 山东理工大学 一种基于物联网的智能无线温室监测系统
CN110007062A (zh) * 2019-04-02 2019-07-12 江苏大学 一种基于窄带物联网的太阳能土壤温湿度传感器
CN110942609A (zh) * 2019-12-04 2020-03-31 安徽农业大学 一种面向农情监测的低功耗遥测设备及系统
CN111480554A (zh) * 2020-06-04 2020-08-04 宁夏大学 农田灌区水肥气热药一体化智能灌溉系统
CN211979535U (zh) * 2019-07-29 2020-11-20 甘肃梦农物联网科技有限公司 一种智慧农业控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886979U (zh) * 2012-11-19 2013-04-17 吉林农业大学 一种基于物联网的农业生产远程监测与智能决策系统
WO2016118979A2 (en) * 2015-01-23 2016-07-28 C3, Inc. Systems, methods, and devices for an enterprise internet-of-things application development platform
CN206848267U (zh) * 2017-06-26 2018-01-05 贵州财大鼎新科创产业有限公司 土壤检测仪及环境检测设备
CN109357706A (zh) * 2018-10-10 2019-02-19 山东理工大学 一种基于物联网的智能无线温室监测系统
CN110007062A (zh) * 2019-04-02 2019-07-12 江苏大学 一种基于窄带物联网的太阳能土壤温湿度传感器
CN211979535U (zh) * 2019-07-29 2020-11-20 甘肃梦农物联网科技有限公司 一种智慧农业控制系统
CN110942609A (zh) * 2019-12-04 2020-03-31 安徽农业大学 一种面向农情监测的低功耗遥测设备及系统
CN111480554A (zh) * 2020-06-04 2020-08-04 宁夏大学 农田灌区水肥气热药一体化智能灌溉系统

Similar Documents

Publication Publication Date Title
CN106506699A (zh) 一种智慧农业物联网种植平台
US20150163850A9 (en) Remote sensing device and system for agricultural and other applications
CN206161052U (zh) 基于智能监控及环境信息采集的有机茶园管理系统
CN203950191U (zh) 一种基于移动设备的植物监控装置
CN204963904U (zh) 温室环境云感知终端
CN208314503U (zh) 一种基于物联网的农业管理系统
Brinkhoff et al. WiField, an IEEE 802.11-based agricultural sensor data gathering and logging platform
Pusatkar et al. Implementation of wireless sensor network for real time monitoring of agriculture
KR100767765B1 (ko) 환경 파라미터 취합 시스템
CN104770347B (zh) 一种便携式智能型虫情测报系统
Yu et al. Zigbee wireless sensor network in environmental monitoring applications
Shaghaghi et al. A low-power wireless sensing unit for hydro-system automation
Roy et al. A test-bed on real-time monitoring of agricultural parameters using wireless sensor networks for precision agriculture
WO2022124877A1 (es) Sistema de monitoreo agrícola
CN106768063A (zh) 种植监测器
CN107368976A (zh) 一种基于大数据的温室在线经济评价管控系统
Elsts et al. SADmote: a robust and cost-effective device for environmental monitoring
CN108535440A (zh) 一种智能地下水监测装置
He et al. Design of a greenhouse humiture monitoring system based on zigbee wireless sensor networks
Coates et al. Wireless mesh network for irrigation control and sensing
CN207050757U (zh) 温室环境数据采集装置及系统
CN215114667U (zh) 一种基于ZigBee技术的户外农作物环境数据采集无线传感网络系统
CN207150583U (zh) 用于土壤温度监测的地下无线传感节点
CN211046965U (zh) 一种白蚁侦测系统
CN106852271A (zh) 节能式灌溉监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965226

Country of ref document: EP

Kind code of ref document: A1