WO2022124447A1 - Smart grid monitoring method for heat-pump cooling and heating system using building-integrated photovoltaic and thermal hybrid - Google Patents

Smart grid monitoring method for heat-pump cooling and heating system using building-integrated photovoltaic and thermal hybrid Download PDF

Info

Publication number
WO2022124447A1
WO2022124447A1 PCT/KR2020/018074 KR2020018074W WO2022124447A1 WO 2022124447 A1 WO2022124447 A1 WO 2022124447A1 KR 2020018074 W KR2020018074 W KR 2020018074W WO 2022124447 A1 WO2022124447 A1 WO 2022124447A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand
data
existing
power generation
weather
Prior art date
Application number
PCT/KR2020/018074
Other languages
French (fr)
Korean (ko)
Inventor
김국정
하태진
Original Assignee
(주)비온시이노베이터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)비온시이노베이터 filed Critical (주)비온시이노베이터
Publication of WO2022124447A1 publication Critical patent/WO2022124447A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated photovoltaic complex, and more particularly, predicts the amount of power generation of a solar thermal complex that produces a heat source and electricity required for a building, and the electricity and heat load in the building It relates to a smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar thermal composite that can effectively manage the electricity supply in a building by analyzing demand patterns.
  • the present invention intends to improve the amount of power generation by installing a solar cell module cleaning system corresponding to a solar thermal complex.
  • a monitoring system is provided.
  • Solar cells using such solar energy do not use fossil fuels such as coal or petroleum, but are in the spotlight as a new alternative energy source in the future because they use sunlight or solar heat, which are pollution-free and infinite energy sources.
  • photovoltaic power generation is a technology for directly producing electricity using a solar cell (PV: Photovoltaic).
  • the solar cell is a semiconductor device that converts light energy into electrical energy using the photoelectric effect, and is composed of two semiconductor thin films each having positive (+) and negative (-) polarity.
  • a plurality of solar cells (cells) are connected in series/parallel to generate the voltage and current required by the user, and the user can use the power generated by the solar cell.
  • BIPV building integrated photovoltaic
  • the registration patent No. 10-1687700 (Registration date: December 13, 2016) is provided with an outer frame embedded in the outer wall surface of a building so that it can be mounted integrally and forming an air gap space in which a fluid can move therein; , a photovoltaic module installed on the upper part of the outer frame and receiving sunlight to generate electric energy while transferring heat to the air gap space to collect heat and a lower baffle sheet positioned to protrude toward the air gap space and in contact with the fluid but having a plurality of baffle members capable of guiding a curved movement path of the fluid, the baffle member being introduced into the air gap space and arranging in a zigzag form spaced apart from each other in the flow direction of the fluid so that the fluid can flow along the movement path of the wave, wherein the baffle member is contactable in response to the movement direction of the fluid toward the air gap space
  • the inclined guide surface of the baffle member is curved upward and inclined at an acute angle from the lower baffle sheet.
  • a first inclined surface forming, a second inclined surface formed on the opposite side of the first inclined surface and forming an inclination angle of 55 to 65° with respect to the lower baffle sheet, and a gentle curved surface between the first inclined surface and the second inclined surface
  • BIPVT Building Integrated Photovoltaic-Thermal
  • the heat pump air conditioning system maintains the indoor temperature lower than the outdoor temperature in summer and maintains the indoor temperature higher than the outdoor temperature in winter to adjust the indoor temperature to a comfortable state for activity.
  • a heat pump is a technology and heating/cooling system that uses Freon refrigerant to raise the heat from a low temperature place to a high place. Gas engine heat pump).
  • the smart grid is a next-generation power grid that improves energy efficiency by combining information and communication technology (ICT) with the existing power grid to enable two-way communication of power generation and consumption information in real time.
  • ICT information and communication technology
  • the smart grid utilizes electricity and information and communication technology to intelligently and sophisticate the power grid to provide high-quality power service and maximize energy use efficiency.
  • the present invention has been proposed to solve the above-mentioned problems, and predicts the amount of power generation of a photovoltaic complex that produces a heat source and electricity required for a building according to temperature and weather by date and time, and analyzes electricity and heat load demand patterns in the building
  • An object of the present invention is to provide a smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar power complex.
  • the present invention intends to improve the amount of power generation by installing a solar cell module cleaning system corresponding to a solar thermal complex.
  • the smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar power complex for achieving the above object is to select a power generation forecast day including weather and temperature for each time period that a user wants to predict the power generation amount step, collecting the existing generation amount data stored one week before the generation amount prediction date from among the existing generation amount data including the weather and temperature for each date and time period stored in advance before the generation amount prediction date, each of the collected existing generation amount data Filtering the existing power generation data belonging to a weather region similar to the weather included in the power generation forecasting date, and extracting the maximum power generation data and the average power generation data from the filtered existing power generation data, and then excluding the generation amount data with an error rate of 10% or more and comparing the weather for each time period based on the average power generation data and extracting existing power generation data of weather that is close to the weather included in the power generation forecasting date, and the extracted existing power generation data based on the average power generation data.
  • Normalizing estimating the generation amount by time period using the normalized existing generation amount data, selecting a demand forecast date including weather and temperature for each time period for which the user wants to predict the demand amount, the demand forecast date classifying into weekdays and weekends; and, when the demand forecasting date is a weekday, from among the existing demand data including the weather and temperature for each time and date stored in advance before the demand forecasting date, the existing data stored one week before the demand forecasting date Collecting demand data, and when the demand forecasting date is a weekend, from among the existing demand data including the weather and temperature by date and time period stored in advance before the demand forecasting date, the existing data stored three weeks before the demand forecasting date collecting demand data; filtering existing demand data belonging to a weather region similar to the weather included in the demand forecast day from among the collected existing demand data; Extracting the maximum demand data and the average demand data from the quantity data and then excluding the demand data with an error rate of 10% or more, and comparing the weather for each time period based on the average demand data to determine the approximate weather with the weather included
  • the present invention it is possible to predict the amount of power generation of the solar power complex that produces the heat source and electricity required for a building according to the temperature and weather by date and time, and analyze the electricity and heat load demand pattern in the building. It is possible to effectively manage the electricity supply, which has the effect of greatly improving the convenience of management.
  • FIG. 1 is a flowchart for predicting power generation of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention
  • FIG. 2 is a flowchart for analyzing electricity and heat load demand patterns of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention
  • FIG. 3 is a power generation prediction screen of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention
  • FIG. 4 is a demand forecast screen of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention.
  • FIG. 1 is a flow chart for predicting power generation of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention
  • FIG. 2 is a building-integrated solar system according to an embodiment of the present invention.
  • It is a flowchart for the analysis of electricity and heat load demand pattern of a smart grid monitoring method for a heat pump heating/cooling system using an optical thermal composite
  • FIG. 3 is a heat pump heating and cooling system using a building-integrated solar power composite according to an embodiment of the present invention is a power generation forecasting screen of a smart grid monitoring method for
  • a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to a preferred embodiment of the present invention, as shown in Figs. choose a job
  • the weather and temperature for each time period in the power generation forecasting date may be classified by day of the week.
  • the existing power generation data should be stored in the weather, temperature, and demand by date and time.
  • the weather information on rain, snow, cloud, sun, wind, sunny, cloudy is stored, and it is preferable to predetermine similar weather such as rain and snow as a group in advance.
  • the maximum generation amount data and the average generation amount data are extracted from the filtered existing generation amount data to derive an error rate between the maximum generation amount data and the average generation amount data. Thereafter, the generated data with an error rate of 10% or more is excluded.
  • the weather for each time period is compared to extract the existing power generation data of the weather included in the power generation forecast date and approximate weather. That is, by extracting the existing power generation data of the same weather as the weather included in the power generation forecasting date, the reliability of the existing power generation data can be improved.
  • the extracted existing power generation data is normalized based on the average power generation data.
  • the amount of power generation for each time period is predicted using the normalized existing power generation data. It is possible to predict the amount of power generation for the power generation prediction date.
  • the demand forecast days are classified into weekdays and weekends.
  • the demand forecast day is first classified as a day of the week and then classified into weekdays and weekends.
  • the demand forecast day is a public day, it is preferable to classify it as a weekend.
  • the existing demand data stored one week before the demand forecast date is collected from among the existing demand data including the weather and temperature for each time and date previously stored before the demand forecast date.
  • the existing demand data that is one week before the demand forecast date of one year before is collected.
  • the demand forecast date is a weekday
  • the demand forecast date is a weekend
  • the demand data with an error rate of 10% or more is excluded.
  • the error rate may be derived using the maximum demand data and the average demand data.
  • the weather for each time period is compared to extract the existing demand data of the weather included in the demand forecast date and approximate weather.
  • the existing demand data of the same weather as the weather included in the demand forecasting day is extracted.
  • the extracted existing demand data is normalized so that it can be modified and used according to a certain rule.
  • a demand amount for each time period is predicted using the normalized existing demand amount data.
  • the predicted power generation and demand may be converted into a table or graph for each time period and displayed as shown in FIGS. 3 to 4, and may be provided by predicting the power generation and demand by receiving weather information from the Meteorological Administration. .
  • the amount of power generation of the photovoltaic complex that produces the heat source and electricity required for the building is predicted according to the temperature and weather by date and time, and the building It is possible to analyze the electricity and heat load demand patterns in the building, so it is possible to effectively manage the electricity supply in the building, which has the effect of greatly improving the convenience of management.
  • a current sensor unit 310 installed for each cable 301 introduced from the solar power plant connection panel 200 to the inverter 300; a communication unit 320 for collecting and transmitting current data measured by the current sensor unit 310; and
  • the current data is classified according to the connection panel 200 that is introduced for each inverter 300, and the current data of the connection panel 200 for each inverter is compared with each other to form a solar cell array 100, a connection panel 200, and an inverter.
  • the photovoltaic system monitoring device comprising a monitoring unit 400 for determining whether at least any one of (300) is abnormal,
  • the solar cell array 100 outputs a DC current and provides it to the connection panel 200, but a first solar cell in which the upper plane of the first solar cell module 100a is periodically cleaned in a position close to the solar cell array 100
  • the amount of power generated by the module (100a) is installed in the vicinity of the solar cell array (100),
  • It includes a monitoring unit for cleaning the entire plane of the solar cell array 100 when there is a difference of more than a reference value compared to the amount of power generated by the second solar cell module 100b that is not to clean the upper plane of the second solar cell module 100b.
  • a driving motor 500 is installed on one side of the first solar cell module 100a.
  • a water tank 530 that temporarily receives rainwater on one side of the first solar cell module 100a, and the water tank 530
  • the driving motor 500 is driven through the control unit according to the on/off signal of the buoyancy level sensor 540a and the buoyancy level sensor 540 with a buoy 540 rising and falling by the buoyancy therein, the driving unit ( The brush connected to the 510 is moved to clean the plane of the first solar cell panel 100a.
  • a brush mounted on the first solar cell panel 100a on one side of the solar cell module 100 corresponding to the solar cell array 100 in which a plurality of solar cell modules 100 are configured as an array. It can be cleaned by mounting a brush as shown in 520 .
  • the buoy 540 when water flows into the water tank 530, the buoy 540 rises along with the water level, and the switch of the buoyancy water level sensor 540a is turned on to control the power produced by the solar module (not shown) Power is supplied to the driving motor 500 through the
  • the driving motor 500 operates the brush 520 to clean the solar stop module.
  • the buoy 540 rises only when the water level rises to turn on the switch 540b, and when there is no water level, the buoy descends and the switch 540b is turned off.
  • a timer (not shown) is configured in the control unit to supply power to the driving motor 500 for a certain period of time and then cut off the power.
  • the cleaning of the first solar cell module 100a for data measurement can be compared with the first solar cell module 100a as a comparison target and the second solar cell module 100b as the comparison target even when cleaning only on a rainy day .
  • the small water tank 530 when it rains, the small water tank 530 is filled with water, and thereby the water level rises with the buoy 540 to turn on the switch 540b.
  • the brush 520 connected to the driving unit 510 moves left and right or up and down to move the first solar cell
  • the plane of the module 100a is cleaned.
  • the solar cell array installed in the entire solar cell array power plant is cleaned. It is monitored and transmitted to the manager.
  • the water tank 530 includes a sieve 550 for blocking the inflow of foreign substances to the upper side of the water tank 530 so that water flows into the water from the upper side;
  • buoy 540 rising by the water level inside the water tank 530;
  • a switch 540b that is connected to the buoy 540 and operates when the buoy 540 rises to turn on/off the electric temperature, and the driving motor 500 through the control unit according to the on/off signal of the switch 540b. is a working configuration.
  • the driving motor 500 receives power from the solar cell module 100a.
  • a drain port 560 is formed at the bottom of the water tank 530, but when the amount of water (including rainwater) flowing into the upper side of the water tank 530 is less than the amount discharged through the drain hole 560, the water level in the water tank 530 rises. It is a structure in which the buoy 540 is raised by the raised water level to do so.
  • the reason for doing this is to keep the water tank 530 empty when water does not continuously flow into the water tank. If it is not left empty, freezing may occur and foreign substances introduced into the water tank may accumulate.
  • the water inlet at the upper side of the water tank 530 is large, and the drain port 560 at the lower end of the water tank 530 is smaller than the water inlet.
  • the reason for operating the buoyancy level sensor 540a by the buoy is to prevent the driving motor from operating when the operating part such as the buoy is frozen in winter.
  • the driving motor 500 and the driving unit 510 may operate when humidity is detected.
  • the driving motor is heated by the power applied to the driving motor 500, which can lead to a fire, and can operate even in moisture caused by dew.
  • one side of the brush is connected to the driving unit 510 and when the driving motor rotates, the other side of the brush rotates to clean the first solar cell module.
  • the buoyancy level sensor 540a is a switch water level sensor that can be purchased in the market, and is a product configured to be switched on when the buoy rises.
  • a water channel 610 for forming a rain gutter (which may be a solar cell array) at the lower end of the solar cell array 100 and collecting water flowing down from the rain gutter 600 to be discharged to one side; an operation unit 620 that moves or descends when it is interfered with by rainwater flowing into the waterway 610 on one side of the waterway 610;
  • lever device 624 having one side of the lever 621 connected to the operation unit 620, a weight 622 formed on the other side of the lever 621, and a central portion of the lever connected by a hinge 623;
  • a switch 630 that turns on/off the power
  • the switch 630 When the switch 630 is turned on/off, it is configured with a driving motor 500 that operates by receiving or blocking power produced by the solar cell module.
  • the operation unit 620 descends a certain distance by the water pressure of water flowing down into the water channel 610 . Therefore, as shown, when the lever device 624 rotates about the hinge 623 as a central axis, the weight 622 of the lever device 624 rises to turn on the switch 630 located above the weight. Then, the power of the solar cell array 100 is applied to the driving motor.
  • the brush cleans the plane of the first solar cell module as described above.
  • the solar cell array 100 may serve as a drip tray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention relates to a smart grid monitoring method for a heat-pump cooling and heating system using a building-integrated photovoltaic and thermal hybrid, the method being capable of effectively managing electricity supply in a building by estimating the amount of power generation by the photovoltaic and thermal hybrid that produces heat source and electricity required for the building and analyzing electrical and thermal load demand patterns within the building.

Description

건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법Smart grid monitoring method for heat pump heating/cooling system using building-integrated solar power complex
본 발명은 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법에 관한 것으로, 보다 상세하게는 건물에 필요한 열원과 전기를 생산하는 태양광열복합의 발전량을 예측하고 건물 내의 전기 및 열부하 수요 패턴을 분석하여 효과적으로 건물 내의 전기 공급을 관리할 수 있는 건물일체형 태양광 열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법에 관한 것이다.The present invention relates to a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated photovoltaic complex, and more particularly, predicts the amount of power generation of a solar thermal complex that produces a heat source and electricity required for a building, and the electricity and heat load in the building It relates to a smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar thermal composite that can effectively manage the electricity supply in a building by analyzing demand patterns.
특히, 본 발명은 태양광열복합에 해당하는 태양광전지 모듈 청소시스템을 설치하여 발전량을 향상시키고자 한다In particular, the present invention intends to improve the amount of power generation by installing a solar cell module cleaning system corresponding to a solar thermal complex.
상기 청소시스템을 장착한 제 1태양전지 모듈의 발전 전력량이 청소시스템 장치가 없는 제 2태양전지 모듈의 발전 전력량에 비해 기준치 이상 차이가 있으면 태양전지 어레이 발전소 전체에 시설된 태양전지 어레이를 청소하도록 하는 모니터링 시스템을 제공한다.To clean the solar cell array installed in the entire solar cell array power plant if there is a difference of more than a reference value in the amount of power generated by the first solar cell module equipped with the cleaning system compared to the amount of power generated by the second solar cell module without the cleaning system device A monitoring system is provided.
최근 들어서 태양에너지를 이용하여 전력을 생산할 수 있는 태양광 발전설비의 사용이 점차 보편화되고 있다.In recent years, the use of solar power generation facilities capable of generating electric power using solar energy has become increasingly common.
이러한 태양에너지를 이용하는 태양전지는 석탄이나 석유와 같은 화석 연료를 사용하지 않고, 무공해이며 무한의 에너지원인 태양광 내지 태양열을 이용하므로 미래의 새로운 대체 에너지원으로서 각광을 받고 있다.Solar cells using such solar energy do not use fossil fuels such as coal or petroleum, but are in the spotlight as a new alternative energy source in the future because they use sunlight or solar heat, which are pollution-free and infinite energy sources.
이러한 태양전지는 현재에는 태양광 발전소나 건축물, 자동차 등의 발전 전력을 얻는데 이용되고 있다.These solar cells are currently being used to obtain electricity generated by solar power plants, buildings, automobiles, and the like.
일반적으로, 태양광발전은 태양전지(PV: Photovoltaic)를 이용하여 직접 전기를 생산하는 기술이다. 상기 태양 전지는 광전효과를 이용하여 빛 에너지를 전기에너지로 변환시키는 반도체 소자로서, 각각이 플러스(+)와 마이 너스(-) 극성을 띠는 2장의 반도체 박막으로 구성된다. 또한, 다수의 태양전지 셀(cell)들은 직/병렬로 연결되어 사용자가 필요로 하는 전압 및 전류를 발생시키고, 사용자는 이러한 태양전지에서 발생된 전력을 사용할 수있게 되는 것이다.In general, photovoltaic power generation is a technology for directly producing electricity using a solar cell (PV: Photovoltaic). The solar cell is a semiconductor device that converts light energy into electrical energy using the photoelectric effect, and is composed of two semiconductor thin films each having positive (+) and negative (-) polarity. In addition, a plurality of solar cells (cells) are connected in series/parallel to generate the voltage and current required by the user, and the user can use the power generated by the solar cell.
태양광 발전은 다양한 응용분야가 있지만 그 중에서도 태양전지(PV)를 건축물의 외피 마감재로 사용하는 건물일 체화(BIPV: Building Integrated Photovoltaic) 기술에 대한 관심이 높아지고 있는 추세이다.Although photovoltaic power generation has various application fields, among them, interest in building integrated photovoltaic (BIPV) technology, which uses solar cells (PV) as a building envelope finishing material, is on the rise.
최근, 건물일체화 태양전지(BIPV: Building Integrated Photovoltaic)의 온도상승에 다른 효율감소를 최소화하기 위해 열과 전기를 동시에 생산하는 태양광열복합(Photovoltaic-Thermal)기술이 적용된 등록특허 제10-1687700호 등이 개발되고 있다.Recently, registration patent No. 10-1687700, which uses a photovoltaic-thermal technology that produces heat and electricity at the same time to minimize the reduction in efficiency due to the temperature rise of BIPV (Building Integrated Photovoltaic), etc. is being developed
상기 등록특허 제10-1687700호(등록일자: 2016년 12월 13일)은, 건물의 외벽면에 매립하여 일체로 장착가능하게 구비되고 내부에 유체가 이동가능한 에어갭공간을 형성하는 외곽프레임과, 상기 외곽프레임의 상부에 설치되고 태양 빛을 수광하여 전기에너지를 생성시키면서 상기 에어갭공간에 열을 전달하여 집열시키는 태양광모듈과, 상기 외곽프레임의 하부에 설치되어 상기 태양광모듈로부터 간격을 두고 위치하고, 상기 에어갭공간을 향해 돌출 형성되어 유체와 접촉하되 유체의 굴곡진 이동경로를 안내가능한 복수 개의 베플부재를 구비하는 하부베플시트를 포함하고, 상기 베플부재는 상기 에어갭공간 내 유입된 유체가 파형의 이동경로를 따라 유동될 수 있게 유체의 유동방향으로 서로 간격을 두고 지그재그 형태로 배열배치됨을 포함하며, 상기 베플부재는 유체의 이동방향에 대응하여 접촉가능하게 상기 에어갭공간을 향해 상향 굴곡지며 상기 하부베플시트로부터 예각으로 경사진 경사유도면을 형성하고, 상기 베플부재의 경사유도면은 유체의 유입방향에 대응되게 형성되고 상기 하부베플시트를 기준으로 30~40°의 경사각을 이루는 제1경사면과, 상기 제1경사면의 반대편에 형성되되 상기 하부베플시트를 기준으로 55~65°의 경사각을 이루는 제2경사면과, 상기 제1경사면과 상기 제2경사면의 사이에 완만한 곡면을 형성하여 유체를 유도하는 만곡면을 포함하는 모듈러 방식의 공기식 건물 일체형 태양광열 시스템이다.The registration patent No. 10-1687700 (Registration date: December 13, 2016) is provided with an outer frame embedded in the outer wall surface of a building so that it can be mounted integrally and forming an air gap space in which a fluid can move therein; , a photovoltaic module installed on the upper part of the outer frame and receiving sunlight to generate electric energy while transferring heat to the air gap space to collect heat and a lower baffle sheet positioned to protrude toward the air gap space and in contact with the fluid but having a plurality of baffle members capable of guiding a curved movement path of the fluid, the baffle member being introduced into the air gap space and arranging in a zigzag form spaced apart from each other in the flow direction of the fluid so that the fluid can flow along the movement path of the wave, wherein the baffle member is contactable in response to the movement direction of the fluid toward the air gap space The inclined guide surface of the baffle member is curved upward and inclined at an acute angle from the lower baffle sheet. A first inclined surface forming, a second inclined surface formed on the opposite side of the first inclined surface and forming an inclination angle of 55 to 65° with respect to the lower baffle sheet, and a gentle curved surface between the first inclined surface and the second inclined surface It is a modular type air-type building-integrated solar thermal system that includes a curved surface that forms and induces a fluid.
상기 등록특허와 같이 건물일체화 태양광열복합(BIPVT: Building Integrated Photovoltaic-Thermal)을 이용한 기술은 제작공정이 단순하고 기존의 태양열집열기와 달리 공기를 열매체로 사용하기 때문에 과열, 누수, 동파 등의 문제가 발생하지 않아 용이하게 사용할 수 있다.The technology using Building Integrated Photovoltaic-Thermal (BIPVT) as in the above registered patent has a simple manufacturing process and uses air as a heating medium unlike conventional solar collectors. It does not occur and can be used easily.
또한, 히트펌프 냉난방 시스템은 여름철에 실내의 온도를 외부온도 보다 낮게 유지하고, 겨울철에는 실내의 온도를 외부온도보다 높게 유지하여 활동하기에 쾌적한 상태로 실내온도를 조정한다. 즉, 이러한 히트펌프는 프레온 냉매를 이용해 온도가 낮은 곳의 열을 높은 곳으로 끌어올리는 기술이자 냉난방 시스템이며, 사용하는 열원에 따라 전기히트펌프(EHP:Electric Heat Pump)와 가스히트펌프(GHP:Gas engine Heat Pump)로 구분된다.In addition, the heat pump air conditioning system maintains the indoor temperature lower than the outdoor temperature in summer and maintains the indoor temperature higher than the outdoor temperature in winter to adjust the indoor temperature to a comfortable state for activity. In other words, such a heat pump is a technology and heating/cooling system that uses Freon refrigerant to raise the heat from a low temperature place to a high place. Gas engine heat pump).
이러한 히트펌프 냉난방 시스템을 상기 건물일체화 태양광열복합(BIPVT: Building Integrated PhotovoltaicThermal)기술과 연동하여 사용함으로써 히트펌프의 난방 COP 및 전체 에너지 효율을 높일 수 있다.By using such a heat pump heating/cooling system in conjunction with the Building Integrated Photovoltaic Thermal (BIPVT) technology, it is possible to increase the heating COP and overall energy efficiency of the heat pump.
스마트 그리드는 기존 전력망에 정보통신기술(ICT)을 접목시켜 전력 생산과 소비정보를 실시간으로 양방향 통신할 수 있음으로 인해 에너지 효율을 높이는 차세대 전력망이다. 또한, 스마트 그리드는 전기와 정보통신기술을 활용해 전력망을 지능화 및 고도화해 고품질 전력서비스를 제공하고 에너지 이용효율을 극대화하는 것이다.The smart grid is a next-generation power grid that improves energy efficiency by combining information and communication technology (ICT) with the existing power grid to enable two-way communication of power generation and consumption information in real time. In addition, the smart grid utilizes electricity and information and communication technology to intelligently and sophisticate the power grid to provide high-quality power service and maximize energy use efficiency.
이에, 상기 건물일체화 태양광열복합을 이용한 히트펌프 냉난방 시스템을 모니터링하여 관리할 수 있는 스마트 그리드에 대한 기술이 요구되고 있다. Accordingly, there is a need for a technology for a smart grid capable of monitoring and managing a heat pump heating/cooling system using the building-integrated solar power complex.
본 발명은 상술한 문제점을 해결하기 위해 제안된 것으로, 건물에 필요한 열원과 전기를 생산하는 태양광열복합의 발전량을 날짜별, 시간대별로 온도와 날씨 등에 따라 예측하고 건물 내의 전기 및 열부하 수요 패턴을 분석할 수 있는 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법을 제공하는 목적이 있다.The present invention has been proposed to solve the above-mentioned problems, and predicts the amount of power generation of a photovoltaic complex that produces a heat source and electricity required for a building according to temperature and weather by date and time, and analyzes electricity and heat load demand patterns in the building An object of the present invention is to provide a smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar power complex.
또한, 태양광열복합을 이용한 히트펌프 냉난방시스템을 모니터링하여 건물 내의 자체 소비를 최대화하고 부하를 억제할 수 있는 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법을 제공하는 목적이 있다.In addition, it is an object to provide a smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar thermal composite that can maximize self-consumption in a building and suppress the load by monitoring the heat pump heating and cooling system using the solar thermal composite. .
특히, 본 발명은 태양광열복합에 해당하는 태양광전지 모듈 청소시스템을 설치하여 발전량을 향상시키고자 한다.In particular, the present invention intends to improve the amount of power generation by installing a solar cell module cleaning system corresponding to a solar thermal complex.
상기의 목적을 달성하기 위한 본 발명에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법은, 사용자가 발전량을 예측하길 원하는 시간대별 날씨와 온도를 포함한 발전량 예측일을 선정하는 단계와, 상기 발전량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 발전량 데이터 중에서 상기 발전량예측일의 일주일 이전에 저장된 기존 발전량 데이터를 수집하는 단계와, 상기 수집된 기존 발전량 데이터 중에서 각각 상기 발전량예측일에 포함된 날씨와 유사한 날씨 영역에 속하는 기존 발전량 데이터를 필터링하는 단계와, 상기 필터링된 기존 발전량 데이터 중에서 최대 발전량 데이터와 평균 발전량 데이터를 추출한 후 오차율 10% 이상의 발전량 데이터를 제외하는 단계와, 상기 평균 발전량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 발전량예측일에 포함된 날씨와 근사한 날씨의 기존 발전량 데이터를 추출하는 단계와, 상기 평균 발전량 데이터를 기반으로 상기 추출된 기존 발전량 데이터를 정규화하는 단계와, 상기 정규화된 기존 발전량 데이터를 이용하여 시간대별 발전량을 예측하는 단계와, 사용자가 수요량을 예측하길 원하는 시간대별 날씨와 온도를 포함한 수요량예측일을 선정하는 단계와, 상기 수요량예측일을 평일과 주말로 분류하는 단계와, 상기 수요량예측일이 평일일 경우에 상기 수요량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 수요량 데이터 중에서 상기 수요량예측일의 일주일 이전에 저장된 기존 수요량 데이 터를 수집하는 단계와, 상기 수요량예측일이 주말일 경우에 상기 수요량예측일 이전에 미리 저장된 날짜와 시간 대별 날씨와 온도를 포함한 기존 수요량 데이터 중에서 상기 수요량예측일의 삼주일 이전에 저장된 기존 수요량 데이터를 수집하는 단계와, 상기 수집된 기존 수요량 데이터 중에서 각각 상기 수요량예측일에 포함된 날씨와 유사한 날씨 영역에 속하는 기존 수요량 데이터를 필터링하는 단계와, 상기 필터링된 기존 수요량 데이터 중에서 최대 수요량 데이터와 평균 수요량 데이터를 추출한 후 오차율 10% 이상의 수요량 데이터를 제외하는 단계와, 상기 평균 수요량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 수요량예측일에 포함된 날씨와 근사한 날씨의 기존 수요량 데이터를 추출하는 단계와, 상기 평균 수요량 데이터를 기반으로 상기 추출된 기존 수요량 데이터를 정규화하는 단계와, 상기 정규화된 기존 수요량 데이터를 이용하여 시간대별 수요량을 예측하는 단계를 포함한다.The smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar power complex according to the present invention for achieving the above object is to select a power generation forecast day including weather and temperature for each time period that a user wants to predict the power generation amount step, collecting the existing generation amount data stored one week before the generation amount prediction date from among the existing generation amount data including the weather and temperature for each date and time period stored in advance before the generation amount prediction date, each of the collected existing generation amount data Filtering the existing power generation data belonging to a weather region similar to the weather included in the power generation forecasting date, and extracting the maximum power generation data and the average power generation data from the filtered existing power generation data, and then excluding the generation amount data with an error rate of 10% or more and comparing the weather for each time period based on the average power generation data and extracting existing power generation data of weather that is close to the weather included in the power generation forecasting date, and the extracted existing power generation data based on the average power generation data. Normalizing, estimating the generation amount by time period using the normalized existing generation amount data, selecting a demand forecast date including weather and temperature for each time period for which the user wants to predict the demand amount, the demand forecast date classifying into weekdays and weekends; and, when the demand forecasting date is a weekday, from among the existing demand data including the weather and temperature for each time and date stored in advance before the demand forecasting date, the existing data stored one week before the demand forecasting date Collecting demand data, and when the demand forecasting date is a weekend, from among the existing demand data including the weather and temperature by date and time period stored in advance before the demand forecasting date, the existing data stored three weeks before the demand forecasting date collecting demand data; filtering existing demand data belonging to a weather region similar to the weather included in the demand forecast day from among the collected existing demand data; Extracting the maximum demand data and the average demand data from the quantity data and then excluding the demand data with an error rate of 10% or more, and comparing the weather for each time period based on the average demand data to determine the approximate weather with the weather included in the demand forecast day extracting the existing demand data; normalizing the extracted existing demand data based on the average demand data; and predicting the demand for each time period using the normalized existing demand data.
상술한 바와 같이 본 발명에 따르면, 건물에 필요한 열원과 전기를 생산하는 태양광열복합의 발전량을 날짜별, 시간대별로 온도와 날씨 등에 따라 예측하고 건물 내의 전기 및 열부하 수요 패턴을 분석할 수 있어 건물 내의 전기 공급을 효과적으로 관리할 수 있어 관리의 편의성을 대폭 향상시킬 수 있는 효과가 있다.As described above, according to the present invention, it is possible to predict the amount of power generation of the solar power complex that produces the heat source and electricity required for a building according to the temperature and weather by date and time, and analyze the electricity and heat load demand pattern in the building. It is possible to effectively manage the electricity supply, which has the effect of greatly improving the convenience of management.
또한, 태양광열복합을 이용한 히트펌프 냉난방시스템을 모니터링하여 건물 내의 자체 소비를 최대화하고 부하를 억제할 수 있어 전력계통에 유연성을 제공할 수 있어 제품의 품질을 향상시킬 수 있는 효과가 있다.In addition, by monitoring the heat pump heating/cooling system using the solar power complex, it is possible to maximize the self-consumption in the building and suppress the load, thereby providing flexibility to the power system, thereby improving the quality of the product.
도 1은 본 발명의 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트그리드 모니터링방법의 발전량예측에 대한 순서도,1 is a flowchart for predicting power generation of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention;
도 2는 본 발명의 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 전기 및 열부하 수요 패턴 분석에 대한 순서도,2 is a flowchart for analyzing electricity and heat load demand patterns of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention;
도 3은 본 발명의 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 발전량예측 화면,3 is a power generation prediction screen of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention;
도 4는 본 발명의 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 수요량예측 화면.4 is a demand forecast screen of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법을 상세히 설명한다.Hereinafter, a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar thermal composite according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 발전량예측에 대한 순서도이고, 도 2는 본 발명의 일실시 예에 의한 건물일체형 태양광 열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 전기 및 열부하 수요 패턴 분석에 대한 순서도이며, 도 3은 본 발명의 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 발전량예측 화면이고, 도 4는 본 발명의 일실시 예에 의한 건물일 체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법의 수요량예측 화면이 다.1 is a flow chart for predicting power generation of a smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to an embodiment of the present invention, and FIG. 2 is a building-integrated solar system according to an embodiment of the present invention. It is a flowchart for the analysis of electricity and heat load demand pattern of a smart grid monitoring method for a heat pump heating/cooling system using an optical thermal composite, and FIG. 3 is a heat pump heating and cooling system using a building-integrated solar power composite according to an embodiment of the present invention is a power generation forecasting screen of a smart grid monitoring method for
상기 도면의 구성 요소들에 인용부호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 동일한 부호를 가지도록 하고 있으며, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단 되는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 또한, '상부', '하부', '앞', '뒤', '선단', '전방', '후단' 등과 같은 방향성 용어는 개시된 도면(들)의 배향과 관련하여 사용된다. 본 발명의 실시 예의 구성요소는 다양한 배향으로 위치설정될 수 있기 때문에 방향성 용어는 예시를 목적으로 사용되는 것이지 이를 제한하는 것은 아니다.In adding reference numerals to the components of the drawings, only the same components are to have the same reference numerals as possible even if they are displayed on different drawings, and a known function determined to unnecessarily obscure the gist of the present invention. and detailed description of the configuration will be omitted. Also, directional terms such as 'top', 'bottom', 'front', 'back', 'lead', 'front', 'rear', etc. are used in connection with the orientation of the disclosed figure(s). Since components of embodiments of the present invention may be positioned in various orientations, the directional terminology is used for purposes of illustration and not limitation.
본 발명의 바람직한 일실시 예에 의한 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법은, 상기 도 1 내지 도 2에 도시된 바와 같이, 사용자가 발전량을 예측하길 원하는 발전 량예측일을 선정한다.A smart grid monitoring method for a heat pump heating/cooling system using a building-integrated solar power complex according to a preferred embodiment of the present invention, as shown in Figs. choose a job
상기 발전량예측일에는 시간대별 날씨와 온도를 포함하는 것이 바람직하며, 상기 발전량예측일을 요일별로 분류할 수도 있다,It is preferable to include the weather and temperature for each time period in the power generation forecasting date, and the power generation forecasting date may be classified by day of the week.
상기 발전량예측일 이전에 기존 발전량 데이터 중에서 상기 발전량예측일의 일주일 이전에 저장된 기존 발전량 데이터를 수집한다.Existing generation amount data stored one week before the generation amount prediction date from among the existing generation amount data before the generation amount prediction date is collected.
이때, 상기 기존 발전량 데이터는 날짜와 시간대별 날씨, 온도, 수요량이 저장되어 있어야 한다.In this case, the existing power generation data should be stored in the weather, temperature, and demand by date and time.
또한, 상기 발전량예측일 이전에 기존 발전량 데이터 중에서 상기 발전량예측일의 일주일 이전의 기존 발전량 데이터가 없을 경우에는 1년 이전의 발전량 예측일로부터 일주일 이전의 기존 발전량 데이터를 수집하는 것이 바람직하다.In addition, when there is no existing generation amount data one week before the generation amount prediction date among the existing generation amount data before the generation amount prediction date, it is preferable to collect the existing generation amount data one week before the generation amount prediction date one year before.
상기 수집된 기존 발전량 데이터 중에서 각각 상기 발전량예측일에 포함된 날씨와 유사한 날씨 영역에 속하는 기존 발전량 데이터를 필터링한다.Existing power generation data belonging to a weather region similar to the weather included in the power generation forecasting date, respectively, from among the collected existing power generation data is filtered.
상기 날씨는 비, 눈, 구름, 해, 바람, 맑음, 흐림에 대한 정보가 저장되어 있으며, 유사한 날씨는 비와 눈 등으로 서로 유사한 날씨를 하나의 그룹으로 미리 정하는 것이 바람직하다. As for the weather, information on rain, snow, cloud, sun, wind, sunny, cloudy is stored, and it is preferable to predetermine similar weather such as rain and snow as a group in advance.
이때, 상기 수집된 기존 발전량 데이터 중에서 상기 발전량 예측일에 포함된 온도의 일정범위 내에 속하는 기존 발전량 데이터를 더 필터링할 수 있다.In this case, it is possible to further filter the existing generation amount data that falls within a certain range of the temperature included in the generation amount prediction date from among the collected existing generation amount data.
상기 필터링된 기존 발전량 데이터 중에서 최대 발전량 데이터와 평균 발전량 데이터를 추출하여 각 최대 발전량 데이터와 평균 발전량 데이터의 오차율을 도출한다. 그 후 상기 도출된 오차율 10% 이상의 발전량 데이터를 제외한다.The maximum generation amount data and the average generation amount data are extracted from the filtered existing generation amount data to derive an error rate between the maximum generation amount data and the average generation amount data. Thereafter, the generated data with an error rate of 10% or more is excluded.
상기 평균 발전량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 발전량예측일에 포함된 날씨와 근사한 날씨의 기존 발전량 데이터를 추출한다. 즉, 상기 발전량예측일에 포함된 날씨와 동일한 날씨의 기존 발전량 데이 터를 추출함으로써 상기 기존 발전량 데이터의 신뢰도를 향상시킬 수 있게 된다.Based on the average power generation data, the weather for each time period is compared to extract the existing power generation data of the weather included in the power generation forecast date and approximate weather. That is, by extracting the existing power generation data of the same weather as the weather included in the power generation forecasting date, the reliability of the existing power generation data can be improved.
상기 평균 발전량 데이터를 기반으로 상기 추출된 기존 발전량 데이터를 정규화한다.The extracted existing power generation data is normalized based on the average power generation data.
상기 추출된 기존 발전량 데이터를 정규화함으로 인해 상기 기존 발전량 데이터를 일정한 규칙에 따라 변형하여 이용하기 쉽게 만들 수 있게 된다.By normalizing the extracted existing generation amount data, it is possible to make the existing generation amount data easy to use by transforming it according to a certain rule.
상기 정규화된 기존 발전량 데이터를 이용하여 시간대별 발전량을 예측한다. 상기 발전량예측일에 대한 발전량을 예측할 수 있게 된다. The amount of power generation for each time period is predicted using the normalized existing power generation data. It is possible to predict the amount of power generation for the power generation prediction date.
사용자가 수요량을 예측하길 원하는 시간대별 날씨와 온도를 포함한 수요량예측일을 선정한다. Select a demand forecast date including weather and temperature for each time period that the user wants to forecast demand.
상기 수요량예측일을 평일과 주말로 분류한다. 다시 말해, 상기 수요량예측일을 요일로 1차 분류한 다음에 평일과 주말로 분류하게 된다. The demand forecast days are classified into weekdays and weekends. In other words, the demand forecast day is first classified as a day of the week and then classified into weekdays and weekends.
이때, 상기 수요량예측일이 공유일일 경우에는 주말로 분류하는 것이 바람직하다. In this case, if the demand forecast day is a public day, it is preferable to classify it as a weekend.
상기 수요량예측일이 평일일 경우에 상기 수요량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 수요량 데이터 중에서 상기 수요량예측일의 일주일 이전에 저장된 기존 수요량 데이터를 수집한다.When the demand forecast date is a weekday, the existing demand data stored one week before the demand forecast date is collected from among the existing demand data including the weather and temperature for each time and date previously stored before the demand forecast date.
여기서, 상기 수요량예측일 이전에 기존 수요량 데이터가 없을 경우에는 1년 이전의 상기 수요량예측일로부터 일주일 이전인 기존 수요량 데이터를 수집한다.Here, when there is no existing demand data before the demand forecast date, the existing demand data that is one week before the demand forecast date of one year before is collected.
또한, 상기 수요량예측일이 평일일 때는 상기 수요량예측일의 일주일 이전의 평일인 기존 수요량 데이터를 수집 하는 것이 바람직하다. In addition, when the demand forecast date is a weekday, it is preferable to collect the existing demand data that is a weekday before the demand forecast date.
상기 수요량예측일이 주말일 경우에 상기 수요량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 수요량 데이터 중에서 상기 수요량예측일의 삼주일 이전에 저장된 기존 수요량 데이터를 수집한다.When the demand forecasting date is a weekend, existing demand data stored three weeks before the demand forecasting day is collected from among the existing demand data including the weather and temperature for each time and date stored in advance before the demand forecasting date.
여기서, 상기 수요량예측일 이전에 기존 수요량 데이터가 없을 경우에는 1년 이전의 상기 수요량예측일로부터 삼주일 이전부터 일주일 이전의 기존 수요량 데이터를 수집하여야 한다.Here, when there is no existing demand data before the demand forecast date, the existing demand data from three weeks to one week before the demand forecast date of one year before must be collected.
이때, 상기 수요량예측일이 주말일 때는 상기 수요량예측일의 삼주 이전부터 상기 수요량예측일 이전의 주말인 기존 수요량 데이터를 수집하는 것이 바람직하다.In this case, when the demand forecast date is a weekend, it is preferable to collect existing demand data that is a weekend before the demand forecast day from three weeks before the demand forecast date.
상기 수집된 기존 수요량 데이터 중에서 각각 상기 수요량예측일에 포함된 날씨와 유사한 날씨 영역에 속하는 기존 수요량 데이터를 필터링한다.Existing demand data belonging to a weather region similar to the weather included in the demand forecast date, respectively, from among the collected existing demand data is filtered.
상기 필터링된 기존 수요량 데이터 중에서 최대 수요량 데이터와 평균 수요량 데이터를 추출한 후 오차율 10% 이상의 수요량 데이터를 제외한다.After extracting the maximum demand data and the average demand data from the filtered existing demand data, the demand data with an error rate of 10% or more is excluded.
상기 오차율은 상기 최대 수요량 데이터와 평균 수요량 데이터를 이용하여 도출할 수 있다.The error rate may be derived using the maximum demand data and the average demand data.
상기 평균 수요량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 수요량예측일에 포함된 날씨와 근사한 날씨의 기존 수요량 데이터를 추출한다.Based on the average demand data, the weather for each time period is compared to extract the existing demand data of the weather included in the demand forecast date and approximate weather.
다시 말해 상기 평균 수요량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 수요량예측일에 포함된 날씨와 동일한 날씨의 기존 수요량 데이터를 추출하는 것이다.In other words, by comparing the weather for each time period based on the average demand data, the existing demand data of the same weather as the weather included in the demand forecasting day is extracted.
상기 평균 수요량 데이터를 기반으로 상기 추출된 기존 수요량 데이터를 일정한 규칙에 따라 변형하여 이용할수 있도록 정규화한다.Based on the average demand data, the extracted existing demand data is normalized so that it can be modified and used according to a certain rule.
상기 정규화된 기존 수요량 데이터를 이용하여 시간대별 수요량을 예측한다. A demand amount for each time period is predicted using the normalized existing demand amount data.
상기 예측된 발전량과 수요량을 모니터링할 수 있게 된다. 이때, 상기 예측된 발전량과 수요량은 상기 도 3 내지 도 4에 도시된 바와 같이 시간대별로 표 또는 그래프로 변환되어 디스플레이될 수 있으며, 기상청으로부터 날씨정보를 제공받아 발전량과 수요량을 예측하여 제공할 수도 있다.It is possible to monitor the predicted power generation amount and demand amount. At this time, the predicted power generation and demand may be converted into a table or graph for each time period and displayed as shown in FIGS. 3 to 4, and may be provided by predicting the power generation and demand by receiving weather information from the Meteorological Administration. .
상기와 같은 건물일체형 태양광열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법을 통해 건물에 필요한 열원과 전기를 생산하는 태양광열복합의 발전량을 날짜별, 시간대별로 온도와 날씨 등에 따라 예측하고 건물 내의 전기 및 열부하 수요 패턴을 분석할 수 있어 건물 내의 전기 공급을 효과적으로 관리할 수 있어 관리의 편의성을 대폭 향상시킬 수 있는 효과가 있다.Through the smart grid monitoring method for the heat pump heating and cooling system using the building-integrated solar power complex as described above, the amount of power generation of the photovoltaic complex that produces the heat source and electricity required for the building is predicted according to the temperature and weather by date and time, and the building It is possible to analyze the electricity and heat load demand patterns in the building, so it is possible to effectively manage the electricity supply in the building, which has the effect of greatly improving the convenience of management.
또한, 태양광열복합을 이용한 히트펌프 냉난방시스템을 모니터링하여 건물 내의 자체 소비를 최대화하고 부하를 억제할 수 있어 전력계통에 유연성을 제공할 수 있어 제품의 품질을 향상시킬 수 있게 된다.In addition, by monitoring the heat pump heating/cooling system using the solar power complex, it is possible to maximize the self-consumption in the building and suppress the load, thereby providing flexibility to the power system and improving the quality of the product.
다음은 청구항에 해당하는 구성을 살펴본다.Next, look at the configuration corresponding to the claim.
태양광 발전소 접속반(200)으로부터 인버터(300)로 인입되는 케이블(301)별로 각각 설치되는 전류 센서부(310); 상기 전류 센서부(310)에서 측정한 전류 데이터를 수집하여 전송하는 통신부(320); 및 a current sensor unit 310 installed for each cable 301 introduced from the solar power plant connection panel 200 to the inverter 300; a communication unit 320 for collecting and transmitting current data measured by the current sensor unit 310; and
상기 전류 데이터를 인버터(300)별로 인입되는 접속반(200)에 따라 데이터를 분류하고, 인버터별 접속반(200) 전류 데이터를 상호 비교하여 태양전지 어레이(100), 접속반(200) 및 인버터(300) 중 적어도 어느 하나의 이상 여부를 판단하는 모니터링부(400)를 포함하는 태양광발전시스템 모니터링 장치에 있어서,The current data is classified according to the connection panel 200 that is introduced for each inverter 300, and the current data of the connection panel 200 for each inverter is compared with each other to form a solar cell array 100, a connection panel 200, and an inverter. In the photovoltaic system monitoring device comprising a monitoring unit 400 for determining whether at least any one of (300) is abnormal,
태양전지 어레이(100)는 직류전류를 출력하여 접속반(200)에 제공하되 상기 태양전지 어레이(100) 근접위치에 제1태양전지 모듈(100a)의 상측 평면을 주기적으로 청소되는 제1태양전지 모듈(100a)의 발전 전력량이 상기 태양전지 어레이(100) 근접위치에 설치되고,The solar cell array 100 outputs a DC current and provides it to the connection panel 200, but a first solar cell in which the upper plane of the first solar cell module 100a is periodically cleaned in a position close to the solar cell array 100 The amount of power generated by the module (100a) is installed in the vicinity of the solar cell array (100),
제 2태양전지 모듈(100b)의 상측 평면을 청소하지 않을 제 2태양전지 모듈(100b)의 발전 전력량에 비해 기준치 이상 차이가 있으면 태양전지 어레이(100) 전체 평면을 청소하도록 하는 모니터링부를 포함한다.It includes a monitoring unit for cleaning the entire plane of the solar cell array 100 when there is a difference of more than a reference value compared to the amount of power generated by the second solar cell module 100b that is not to clean the upper plane of the second solar cell module 100b.
상기 제1태양전지 모듈(100a)의 일측에 구동모터(500)를A driving motor 500 is installed on one side of the first solar cell module 100a.
설치하고 상기 구동모터(500)의 구동부(510)에 브러시(520)를 설치하며, 상기 제1태양전지 모듈(100a) 일측에 일시적으로 빗물을 받아 두는 수조(530)와, 상기 수조(530) 내부에 부력에 의해 승하강하는 부표(540)가 있는 부력수위센서(540a)와, 상기 부력수위센서(540)의 온/오프신호에 따라 제어부를 통해 구동모터(500)가 구동하면 상기 구동부(510)에 연결된 브러시가 움직여 상기 제 1태양전지 판넬(100a) 평면을 청소하는 구성이다.A water tank 530 that temporarily receives rainwater on one side of the first solar cell module 100a, and the water tank 530 When the driving motor 500 is driven through the control unit according to the on/off signal of the buoyancy level sensor 540a and the buoyancy level sensor 540 with a buoy 540 rising and falling by the buoyancy therein, the driving unit ( The brush connected to the 510 is moved to clean the plane of the first solar cell panel 100a.
본 발명은 도시한 바와 같이,복수개의 태양전지 모듈(100)이 어레이로 구성된 태양전지 어레이(100)에 해당하는 태양전지 모듈(100) 일측에 상기 제 1태양전지 판넬(100a)에 장착한 브러시(520)와 같이 브러시를 장착하여 청소할 수 있다.As shown in the present invention, a brush mounted on the first solar cell panel 100a on one side of the solar cell module 100 corresponding to the solar cell array 100 in which a plurality of solar cell modules 100 are configured as an array. It can be cleaned by mounting a brush as shown in 520 .
상기 구성에 대한 실시예, 수조(530)에 물이 유입되면 수위와 함께 부표(540)가 상승하여 부력수위센서(540a)의 스위치가 온되어 태양광 모듈에서 생산된 전력에 제어부(미도시)를 통해 구동모터(500)에 전력을 공급한다. In an embodiment of the above configuration, when water flows into the water tank 530, the buoy 540 rises along with the water level, and the switch of the buoyancy water level sensor 540a is turned on to control the power produced by the solar module (not shown) Power is supplied to the driving motor 500 through the
그러면 구동모터(500)가 브러스(520)를 동작하여 태양정지 모듈을 청소한다.Then, the driving motor 500 operates the brush 520 to clean the solar stop module.
상기 부표(540)는 수위가 상승할 경우에만 상승하여 스위치(540b)를 온하고 수위가 없을 경우 부표가 하강하여 스위치(540b)는 오프된다.The buoy 540 rises only when the water level rises to turn on the switch 540b, and when there is no water level, the buoy descends and the switch 540b is turned off.
그러므로 수위가 지속되는 경우 구동모터(500)가 지속적으로 작동함으로 이를 정지시키기 위해 제어부에 타이머(미도시)를 구성하여 일정시간 구동모터(500)에 전원을 공급하고 그 후 전원을 차단하도록 한다.Therefore, when the water level continues, the driving motor 500 continuously operates, so to stop it, a timer (not shown) is configured in the control unit to supply power to the driving motor 500 for a certain period of time and then cut off the power.
실시예에 있어서, 데이터 측정용 제 1태양전지 모듈(100a) 청소는 비오는 날에만 청소 하더라도 비교대상인 제 1태양전지 모듈(100a)과, 비교대상인 제 2태양전지 모듈(100b)과 비교가 가능하다. In an embodiment, the cleaning of the first solar cell module 100a for data measurement can be compared with the first solar cell module 100a as a comparison target and the second solar cell module 100b as the comparison target even when cleaning only on a rainy day .
즉, 매일 비교하는 것이 아니라 간혹 분기별로 비교하기 때문이다.That is, not every day, but sometimes quarterly.
다음은 청소시기를 설명하고자 한다. The following is an explanation of the cleaning period.
본 발명의 비가오는날 청소하기 때문에 수조(530)에 인이적으로 물을 채워 둘 필요가 없다.There is no need to fill the water tank 530 with water because it is cleaned on a rainy day of the present invention.
그래서 본 발명은 비가 내리면 작은 수조(530)에 물이 채워지고 그로인해 수위가 부표(540)와 함께 상승하여 스위치(540b)를 온한다.So, in the present invention, when it rains, the small water tank 530 is filled with water, and thereby the water level rises with the buoy 540 to turn on the switch 540b.
그로인해 태양전지 모듈에서 생산된 전원이 인가되어 구동모터(500)가 동작하면 구동부(510)와 연결시킨 브러시(520)가 좌우나 상하로 움직여 제 1태양전지 Therefore, when the power produced by the solar cell module is applied and the driving motor 500 operates, the brush 520 connected to the driving unit 510 moves left and right or up and down to move the first solar cell
모듈(100a)의 평면을 청소한다.The plane of the module 100a is cleaned.
이와 같이 청소한 제 1태양전지 모듈(100a)과 청소하지 않은 제 2태양전지 모듈(100b)은 전력생산에 있어 차이점이 발생된다. A difference occurs between the cleaned first solar cell module 100a and the uncleaned second solar cell module 100b in power production.
즉, 제 1태양전지 모듈(100a)의 발전 전력량이 청소시스템 장치가 없는 제 2태양전지 모듈(100b)의 발전 전력량에 비해 기준치 이상 차이가 있으면 태양전지 어레이 발전소 전체에 시설된 태양전지 어레이를 청소하도록 모니터링하여 관리자측에 전송한다.That is, if the amount of power generated by the first solar cell module 100a differs by more than a reference value compared to the amount of power generated by the second solar cell module 100b without the cleaning system device, the solar cell array installed in the entire solar cell array power plant is cleaned. It is monitored and transmitted to the manager.
상기 수조(530)는 상측으로부터 내부로 물이 유입되도록 하되 상기 수조(530) 상측에 이물질 유입을 차단하는 거름망(550)과; The water tank 530 includes a sieve 550 for blocking the inflow of foreign substances to the upper side of the water tank 530 so that water flows into the water from the upper side;
상기 수조(530) 내부에 수위에 의해 상승하는 부표(540)와; a buoy 540 rising by the water level inside the water tank 530;
상기 부표(540)와 연결되어 상기 부표(540)가 상승하면 동작하여 전온이 온/오프하는 스위치(540b)와, 상기 스위치(540b)의 온/오프 신호에 따라 제어부를 통해 구동모터(500)가 동작하는 구성이다.A switch 540b that is connected to the buoy 540 and operates when the buoy 540 rises to turn on/off the electric temperature, and the driving motor 500 through the control unit according to the on/off signal of the switch 540b. is a working configuration.
상기 구동모터(500)는 태양전지 모듈(100a)에서 전원을 공급받는다.The driving motor 500 receives power from the solar cell module 100a.
상기 수조(530) 하단에 배수구(560)를 형성하되 수조(530)상측으로 유입되는 물(빗물 포함) 유입량보다 상기 배수구(560)로 배출되는 배출량이 적을 경우에 수조(530)에 수위가 상승하도록 하여 그 상승된 수위에 의해 부표(540)가 상승되는 구조이다.A drain port 560 is formed at the bottom of the water tank 530, but when the amount of water (including rainwater) flowing into the upper side of the water tank 530 is less than the amount discharged through the drain hole 560, the water level in the water tank 530 rises. It is a structure in which the buoy 540 is raised by the raised water level to do so.
상기처럼 하는 이유는, 물이 지속적으로 수조에 유입되지 않을 경우 수조(530)를 비워두기 위함이다. 비워두지 않을 경우 동파가 발생할 수 있고 수조로 유입된 이물질이 쌓일수 있고, 유입된 이물질이 있더라도 물이 배수되는 과정에 이물질과 같이 함께 배출되도록 하기 위함이다.The reason for doing this is to keep the water tank 530 empty when water does not continuously flow into the water tank. If it is not left empty, freezing may occur and foreign substances introduced into the water tank may accumulate.
즉, 수조(530) 상측의 물 유입구는 크고, 상기 수조(530)하단의 배수구(560)는 상기 물유입구보다 작다.That is, the water inlet at the upper side of the water tank 530 is large, and the drain port 560 at the lower end of the water tank 530 is smaller than the water inlet.
상기 부력수위센서(540a)를 부표에 의해 동작하도록 하는 이유는 겨울철 부표 등 동작 부분이 얼게 되는데 이때 구동모터가 동작하지 않도록 하기 위함이다.The reason for operating the buoyancy level sensor 540a by the buoy is to prevent the driving motor from operating when the operating part such as the buoy is frozen in winter.
예를들어 습도센서를 적용할 경우 눈이 내리는 날 구동모터(500) 구동부(510) 등이 얼어 있어도 습도가 감지되면 구동모터가 동작할 수 있다.For example, when a humidity sensor is applied, even if the driving motor 500 and the driving unit 510 are frozen on a snowy day, the driving motor may operate when humidity is detected.
특히 폭설이 내리면 브러시는 그 눈을 쓸어내릴 수 없어 구동모터가 작동하게 되면 그 구동모터가 과열된다.In particular, when heavy snow falls, the brush cannot sweep the snow, and when the drive motor operates, the drive motor overheats.
그러면 구동모터(500)에 인가된 전원에 의해 구동모터가 가열되어 화제로 이어질 수 있고, 이슬에 의한 수분에도 작동할 수 있기 때문이다.Then, the driving motor is heated by the power applied to the driving motor 500, which can lead to a fire, and can operate even in moisture caused by dew.
물론 제어부에 복잡한 기능을 추가하면 문제점을 해결할 수 있으나 비용면에서 비현실적이다.Of course, adding complex functions to the control unit can solve the problem, but it is unrealistic in terms of cost.
상기 브러시는 도시와 같이 구동부(510)에 일측이 연결되어 구동모터가 회전을 하면 브러시 타측이 회전하면서 제 1태양전지 모듈을 청소할 수 있고 구동부가 정회전 역회전을 반복하면 좌우운동을 반복하면서 청소할 수 있다.As shown in the figure, one side of the brush is connected to the driving unit 510 and when the driving motor rotates, the other side of the brush rotates to clean the first solar cell module. can
상기 부력수위센서(540a)는 시중에서 구입할 수 있는 스위치 수위센서로서 부표가 상승하면 스위치가 온 되도록 구성된 제품이다. The buoyancy level sensor 540a is a switch water level sensor that can be purchased in the market, and is a product configured to be switched on when the buoy rises.
즉 스위치와 한 몸체이다.That is, it is one body with the switch.
구글, 다음, 네이버등에서 '스위치수위센서'를 검색하면 쉽게 확인할 수 있고 그 기능도 확인할 수 있다.If you search for 'switch water level sensor' on Google, Daum, Naver, etc., you can easily check it and check its function.
상기 태양전지 어레이(100) 하단에 빗물받이(태양전지 어레이가 될 수 있음)를 형성하고 상기 빗물받이(600)로부터 흘러내리는 물을 모아 일측으로 배출되도록하는 수로(610)와; 상기 수로(610)일측에 상기 수로(610)로 흘러내리는 빗물에 간섭을 받으면 움직이거나 하강하는 동작부(620)와;a water channel 610 for forming a rain gutter (which may be a solar cell array) at the lower end of the solar cell array 100 and collecting water flowing down from the rain gutter 600 to be discharged to one side; an operation unit 620 that moves or descends when it is interfered with by rainwater flowing into the waterway 610 on one side of the waterway 610;
상기 작동부(620)에 레버(621) 일측이 연결되고 상기 레버(621) 타측은 중량물(622)이 형성되며 상기 레버 중심부은 힌지(623)로 연결된 레버장치(624)와;a lever device 624 having one side of the lever 621 connected to the operation unit 620, a weight 622 formed on the other side of the lever 621, and a central portion of the lever connected by a hinge 623;
상기 레버장치 상측내지는 하측에 상기 레버장치(624)에 간섭을 받아 Interfered with the lever device 624 on the upper or lower side of the lever device
전원이 온/오프되는 스위치(630)와;a switch 630 that turns on/off the power;
상기 상기 스위치(630)가 온/오프되면 태양전지 모듈에서 생산된 전력을 인가 받거나 차단받아 동작하는 구동모터(500)로 구성된다.When the switch 630 is turned on/off, it is configured with a driving motor 500 that operates by receiving or blocking power produced by the solar cell module.
상기 구성의 실시예, 수로(610)로 흘러내리는 물의 수압에 의해 동작부(620)가 일정거리 하강한다. 그로인해 도시와 같이 레버장치(624)가 힌지(623)를 중심축으로 하여 회전하면 상기 레버장치(624)의 중량물(622)이 상승하여 상기 중량물 상측에 있는 스위치(630)를 온한다. 그러면 태양전지 어레이(100)의 전력이 구동모터에 인가 된다.In the embodiment of the above configuration, the operation unit 620 descends a certain distance by the water pressure of water flowing down into the water channel 610 . Therefore, as shown, when the lever device 624 rotates about the hinge 623 as a central axis, the weight 622 of the lever device 624 rises to turn on the switch 630 located above the weight. Then, the power of the solar cell array 100 is applied to the driving motor.
그러나 빗물이 없을 경우 동작부가 원위치 된다. 이때는 스위치가 오프된다. However, if there is no rainwater, the moving part returns to its original position. At this time, the switch is turned off.
이러한 과정에 구동모터에 전원이 인가되면서 앞에서 설명한 바와 같이 제 1태양전지 모듈 평면을 브러시가 청소한다.In this process, as power is applied to the driving motor, the brush cleans the plane of the first solar cell module as described above.
상기 태양전지 어레이(100)가 경사지게 설치되므로 상기 태양전지 어레이(100)가 물받이가 될 수 있다Since the solar cell array 100 is installed at an angle, the solar cell array 100 may serve as a drip tray.

Claims (1)

  1. 사용자가 발전량을 예측하길 원하는 시간대별 날씨와 온도를 포함한 발전량예측일을 선정하는 단계와,Selecting a power generation forecasting date including weather and temperature for each time period that the user wants to predict the amount of power generation;
    상기 발전량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 발전량 데이터 중에서 상기 발전량예측일의 일주일 이전에 저장된 기존 발전량 데이터를 수집하는 단계와,Collecting the existing generation amount data stored one week before the generation amount prediction date from among the existing generation amount data including weather and temperature for each date and time period stored in advance before the generation amount prediction date;
    상기 수집된 기존 발전량 데이터 중에서 각각 상기 발전량예측일에 포함된 날씨와 유사한 날씨 영역에 속하는 기존 발전량 데이터를 필터링하는 단계와,filtering the existing power generation data belonging to a weather region similar to the weather included in the power generation forecasting date, respectively, from among the collected existing power generation data;
    상기 필터링된 기존 발전량 데이터 중에서 최대 발전량 데이터와 평균 발전량 데이터를 추출한 후 오차율 10% 이상의 발전량 데이터를 제외하는 단계와,extracting maximum power generation data and average power generation data from the filtered existing power generation data, and then excluding power generation data with an error rate of 10% or more;
    상기 평균 발전량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 발전량예측일에 포함된 날씨와 근사한 날씨의 기존 발전량 데이터를 추출하는 단계와,Comparing the weather for each time period based on the average power generation data and extracting the existing power generation data of the weather included in the power generation forecast date and approximate weather;
    상기 평균 발전량 데이터를 기반으로 상기 추출된 기존 발전량 데이터를 정규화하는 단계와,Normalizing the extracted existing power generation data based on the average power generation data;
    상기 정규화된 기존 발전량 데이터를 이용하여 시간대별 발전량을 예측하는 단계와,Predicting the generation amount by time period using the normalized existing generation amount data;
    사용자가 수요량을 예측하길 원하는 시간대별 날씨와 온도를 포함한 수요량예측일을 선정하는 단계와,Selecting a demand forecasting date including weather and temperature for each time period that the user wants to predict the demand for;
    상기 수요량예측일을 평일과 주말로 분류하는 단계와,classifying the demand forecast days into weekdays and weekends;
    상기 수요량예측일이 평일일 경우에 상기 수요량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 수요량 데이터 중에서 상기 수요량예측일의 일주일 이전에 저장된 기존 수요량 데이터를 수집하는 단계와,When the demand forecasting day is a weekday, collecting existing demand data stored one week before the demand forecasting day from among the existing demand data including weather and temperature for each date and time period stored in advance before the demand forecasting day;
    상기 수요량예측일이 주말일 경우에 상기 수요량예측일 이전에 미리 저장된 날짜와 시간대별 날씨와 온도를 포함한 기존 수요량 데이터 중에서 상기 수요량예측일의 삼주일 이전에 저장된 기존 수요량 데이터를 수집하는 단계와,When the demand forecast date is a weekend, collecting existing demand data stored three weeks before the demand forecast day from among the existing demand data including weather and temperature for each date and time period stored in advance before the demand forecast day,
    상기 수집된 기존 수요량 데이터 중에서 각각 상기 수요량예측일에 포함된 날씨와 유사한 날씨 영역에 속하는 기존 수요량 데이터를 필터링하는 단계와,filtering the existing demand data belonging to a weather region similar to the weather included in the demand forecast date from among the collected existing demand data, respectively;
    상기 필터링된 기존 수요량 데이터 중에서 최대 수요량 데이터와 평균 수요량 데이터를 추출한 후 오차율 10% 이상의 수요량 데이터를 제외하는 단계와,Extracting the maximum demand data and the average demand data from the filtered existing demand data, and then excluding the demand data with an error rate of 10% or more;
    상기 평균 수요량 데이터를 기반으로 시간대별 날씨를 비교하여 상기 수요량예측일에 포함된 날씨와 근사한 날씨의 기존 수요량 데이터를 추출하는 단계와,Comparing the weather for each time period based on the average demand data, and extracting the existing demand data of the weather included in the demand forecast date and approximate weather;
    상기 평균 수요량 데이터를 기반으로 상기 추출된 기존 수요량 데이터를 정규화하는 단계와,Normalizing the extracted existing demand data based on the average demand data;
    상기 정규화된 기존 수요량 데이터를 이용하여 시간대별 수요량을 예측하는 단계를 포함하는 건물일체형 태양광 열복합을 이용한 히트펌프 냉난방 시스템을 위한 스마트 그리드 모니터링방법.A smart grid monitoring method for a heat pump heating and cooling system using a building-integrated solar thermal complex, comprising the step of predicting demand by time period using the normalized existing demand data.
PCT/KR2020/018074 2020-12-09 2020-12-10 Smart grid monitoring method for heat-pump cooling and heating system using building-integrated photovoltaic and thermal hybrid WO2022124447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200171145 2020-12-09
KR10-2020-0171145 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124447A1 true WO2022124447A1 (en) 2022-06-16

Family

ID=81973636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018074 WO2022124447A1 (en) 2020-12-09 2020-12-10 Smart grid monitoring method for heat-pump cooling and heating system using building-integrated photovoltaic and thermal hybrid

Country Status (1)

Country Link
WO (1) WO2022124447A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512625A (en) * 2011-04-22 2014-05-22 エクスパナージー,エルエルシー System and method for analyzing energy usage
US20160043694A1 (en) * 2012-04-18 2016-02-11 Solight Solar, Inc. Solar thermal collectors and thin plate heat exchangers for solar applications
KR20190031354A (en) * 2017-09-15 2019-03-26 한국에너지기술연구원 Apparatus for adjust production amount of electricity and heat of photovoltaic-thermal module
KR20200126619A (en) * 2019-04-30 2020-11-09 주식회사 비온시이노베이터 Smart grid monitoring method for heatpump heating and cooling system using building integrated photovoltaic-thermal
KR20200131030A (en) * 2019-05-13 2020-11-23 한국기계연구원 Fusion system and method of simultaneous supplying fresh water and electric power linked with HCPVT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512625A (en) * 2011-04-22 2014-05-22 エクスパナージー,エルエルシー System and method for analyzing energy usage
US20160043694A1 (en) * 2012-04-18 2016-02-11 Solight Solar, Inc. Solar thermal collectors and thin plate heat exchangers for solar applications
KR20190031354A (en) * 2017-09-15 2019-03-26 한국에너지기술연구원 Apparatus for adjust production amount of electricity and heat of photovoltaic-thermal module
KR20200126619A (en) * 2019-04-30 2020-11-09 주식회사 비온시이노베이터 Smart grid monitoring method for heatpump heating and cooling system using building integrated photovoltaic-thermal
KR20200131030A (en) * 2019-05-13 2020-11-23 한국기계연구원 Fusion system and method of simultaneous supplying fresh water and electric power linked with HCPVT

Similar Documents

Publication Publication Date Title
WO2019103230A1 (en) Solar light power generation management system
US20200305246A1 (en) Photovoltaic lighting system having integrated control board, and monitoring system using same
KR100796245B1 (en) High- efficiency automatic twofolded-window for building integrated photovoltaic system
CN101322444A (en) Remote-controlled self-generating streetlamp
WO2009139586A2 (en) Photovoltaic module management system using water jet
CN208158486U (en) The unattended electricity generating and supplying system of solar energy under oil and gas industry low light intensities
CN114669569B (en) Big data-based automatic cleaning system for photovoltaic module
KR101965812B1 (en) Solar Panel Cooling System
Haba Monitoring solar panels using machine learning techniques
WO2013094839A1 (en) Multi-inverter photovoltaic power generation system
KR20170113939A (en) Solar photovoltaic power generation system and device having cleaning function
KR101378405B1 (en) Parking control system using solar cell
KR20200126619A (en) Smart grid monitoring method for heatpump heating and cooling system using building integrated photovoltaic-thermal
CN113284432A (en) Intelligent electronic stop board with self-cooling and dust-removing functions
CN113451889A (en) Box-type substation with remote monitoring function
WO2012011634A1 (en) Efficiency enhancement equipment for solar photovoltaic power facilities
WO2022124447A1 (en) Smart grid monitoring method for heat-pump cooling and heating system using building-integrated photovoltaic and thermal hybrid
KR100930599B1 (en) Driving control method for solar cell module
CN110081366A (en) Light rain complementation binodal energy streetlight
WO2023074928A1 (en) Smart grid monitoring method for heat-pump cooling and heating system using building-integrated photovoltaic thermal hybrid
KR20220075078A (en) Monitoring and control of energy management for economic operation of building-integrated photovoltaic power generation facilities
Khayyat et al. The Soiling Impact Effects on the Performance of the Solar Panels in Rabigh, Saudi Arabia
KR102397092B1 (en) Smart grid monitoring method for heatpump heating and cooling system using building integrated photovoltaic-thermal
CN213093883U (en) Multifunctional automatic switching device of photovoltaic power generation energy storage system
KR20230059921A (en) Smart grid monitoring method for heatpump heating and cooling system using building integrated photovoltaic-thermal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965203

Country of ref document: EP

Kind code of ref document: A1