WO2022124342A1 - Agent for cancer therapy, and screening method for active ingredient thereof - Google Patents

Agent for cancer therapy, and screening method for active ingredient thereof Download PDF

Info

Publication number
WO2022124342A1
WO2022124342A1 PCT/JP2021/045165 JP2021045165W WO2022124342A1 WO 2022124342 A1 WO2022124342 A1 WO 2022124342A1 JP 2021045165 W JP2021045165 W JP 2021045165W WO 2022124342 A1 WO2022124342 A1 WO 2022124342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cdkal1
cells
translation
gene
rna
Prior art date
Application number
PCT/JP2021/045165
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 藤村
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2022568314A priority Critical patent/JPWO2022124342A1/ja
Publication of WO2022124342A1 publication Critical patent/WO2022124342A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/99Enzyme inactivation by chemical treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters

Definitions

  • the present invention relates to an agent for treating cancer and a method for screening an active ingredient thereof.
  • Gene expression in mammalian cells consists of two processes: transcription from DNA to messenger RNA (hereinafter sometimes referred to as "mRNA") and translation into which a protein is synthesized using the transcript mRNA as a template. ..
  • mRNA messenger RNA
  • mRNA messenger RNA
  • Cancer stem cells are cancer cells existing in cancer tissue that show stem cell properties, and an extremely small number of cancer stem cells present in cancer tissue cause proliferation, metastasis, recurrence, etc. of the cancer tissue. It is believed to be the cause. If it is possible to suppress the growth of cancer stem cells or lose the stem cell nature of cancer stem cells by inhibiting translation in cancer cells or cancer stem cells, it is expected to be applied as a therapeutic drug for cancer. However, as far as the present inventors know, there is no known drug that exerts a therapeutic effect by selectively inhibiting translation in cancer cells or cancer stem cells.
  • CDKAL1 Cdk5 regulatory subunit assisted protein 1-like 1 selectively recognizes tRNALys (UUU), which is a tRNA corresponding to the lysine codon AAA and AAG, and has a function of thiomethylating the 37th adenine of the tRNA. It is a tRNA modifying enzyme having (Non-Patent Document 1). Mutations in the gene encoding CDKAL1 are known to be associated with decreased insulin responsiveness and increased risk of developing type 2 diabetes (Non-Patent Document 2), and CDKAL1 has been widely studied in the field of diabetes research. Has been done.
  • Non-Patent Document 3
  • the relationship between CDKAL1 and cancer cells is unknown.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and targets a cancer cell or a cancer stem cell-specific translation, or a gene expressed by such translation.
  • a substance for cancer treatment which can suppress the proliferation of these cells or lose the stem cell property of cancer stem cells, or a substance which can be suitably used as an active ingredient of such an agent. It is an object to provide a screening method for the above.
  • the present inventors translate CDKAL1 into genes in cancer stem cells, and more specifically, to form translation initiation factor complexes on rough endoplasmic reticulum. Found to be involved in.
  • CDKAL1 has only been reported to be involved in the development of type 2 diabetes by modifying lysine tRNA, and CDKAL1 is involved in the translation of mRNA into protein in cells and in cancer stem cells.
  • the finding that it is done was a completely unexpected finding for the present inventors. Therefore, as a result of further diligent research efforts, the present inventors focused on the role of genes translated by the translation mechanism involved in CDKAL1 in cancer stem cells, and as a result, surprisingly, cancer stem cells.
  • the present invention solves the above-mentioned problems by providing an agent for treating cancer, which comprises, as an active ingredient, a component in which CDKAL1 suppresses the expression of a gene involved in its translation.
  • the translation mechanism in which CDKAL1 is involved is specifically activated in cancer cells, particularly cancer stem cells, and the expression of genes translated through the translation mechanism. Plays an important role in maintaining the stem cell nature of cancer stem cells, maintaining their self-renewal ability, and maintaining their tumorigenicity. Therefore, by suppressing the expression of the gene involved in the translation of CDKAL1, the self-renewal ability or tumor-forming ability of cancer cells can be suppressed, and thus an antitumor effect can be obtained.
  • the agent according to one aspect of the present invention is any stage of the gene expression process leading from DNA to protein production, as long as CDKAL1 can selectively suppress the expression of the gene involved in its translation. Alternatively, it may act on any molecule to suppress gene expression. Suppression of the expression of a gene in which CDKAL1 is involved in its translation is, for example, suppression of the expression of CDKAL1, reduction of mRNA in which CDKAL1 is a transcript of the gene involved in its translation, or from mRNA to protein. It can be achieved by inhibiting translation.
  • the present invention solves the above-mentioned problems by providing a method for screening a substance that inhibits translation in which CDKAL1 is involved.
  • the screening method according to the invention uses the following nucleic acid constructs; The first RNA sequence encoding the reporter protein and On the 5'end side, a second RNA sequence containing an RNA sequence represented by the following formula 1 and / or an RNA sequence represented by the following formula 2 and Nucleic acid construct encoding an RNA construct with (Equation 1) 5'-GGCGGGCGGGCGCGCGGC-3'(In the equation, the first G may be A, the second G may be C, the third C may be A, and the fourth G may be A.
  • the fifth G may be C
  • the sixth C may be A
  • the seventh G may be A or C
  • the eighth G may be A
  • the ninth C may be U or A
  • the 10th G may be A or U
  • the 11th G may be C
  • the 12th C may be A
  • the 13th G may be U or C or A
  • the 14th G may be U or A.
  • Or C, and the fifteenth C may be G, A, or U.
  • the 5th C may be U
  • the 6th C may be A or U
  • the 7th G may be U
  • the 8th C may be U
  • the 9th C may be G.
  • the 10th G can be U
  • the 11th C can be G
  • the 12th C can be U
  • the 13th G can be U
  • the 14th C can be U
  • the 15th. C may be G.
  • the mRNA translated by the translation mechanism in which CDKAL1 is involved has an RNA sequence characteristic of the untranslated region on the 5'end side thereof, in more detail.
  • the reporter protein reflecting the activity of the translation mechanism in which CDKAL1 is involved. Can be obtained. This makes it possible to easily and quickly screen substances that suppress or activate the translation mechanism in which CDKAL1 is involved.
  • the screening method according to the present invention is: (1) A step of introducing the nucleic acid construct into cells, (2) A step of contacting the cells into which the nucleic acid construct has been introduced with a solution containing a test substance or a solution not containing the test substance. (3) A step of measuring the intensity of a signal derived from the reporter protein in the cells contacted with the solution containing the test substance, and (4) A step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance. including.
  • a substance that inhibits the translation of the mRNA of the gene involved in the translation of CDKAL1 into a protein can be efficiently obtained.
  • the agent according to one aspect of the present invention is translated by involving a specific translation mechanism in cancer cells or cancer stem cells, and is used for maintaining the tumor-forming ability or self-renewal ability of cancer stem cells.
  • a specific translation mechanism in cancer cells or cancer stem cells By suppressing the expression of the genes involved, the growth of cancer stem cells can be suppressed.
  • the screening method according to another aspect of the present invention a substance that inhibits a translation mechanism specifically activated in cancer cells or cancer stem cells can be efficiently screened.
  • FIG. 3 is a microscopic image showing the expression state of stem cell markers (Vimentin, MSI1, Sox2, Nestin) or differentiation markers into nerve cells (SYS, MAP2) in malignant brain tumor cells JK2 infected with a lentiviral vector expressing shCDKAL1.
  • stem cell markers Vimentin, MSI1, Sox2, Nestin
  • SYS, MAP2 nerve cells
  • (A) It is a figure which shows the decrease in the sphere forming ability and the knockdown of CDKAL1 in human malignant melanoma cells A2058, SK-Mel-28, HMV-II infected with the lentiviral vector expressing shCDKAL1; (B). It is a figure which shows the decrease of the colony formation ability in A2058, SK-Mel-28, HMV-II which knocked down CDKAL1; (C) with the malignant melanoma stem cell marker in A2058, SK-Mel-28 which knocked down CDKAL1. It is a figure which shows the attenuation of the expression of a certain HMV1 and CD44.
  • (C) is the figure which shows the attenuation of the expression of ALDH1 and CD44 which are gastric cancer stem cell markers in NUGC3, HGC27 which knocked down CDKAL1.
  • (A) It is a figure showing the attenuation of the expression of SOX2, CD133, POU3F2, OLIG2, and CD44, which are malignant brain tumor stem cell markers in human malignant brain tumor stem cells MGG4, MGG8, and MGG18 infected with a lentiviral vector expressing shCDKAL1;
  • B) It is a figure which shows the decrease of the sphere formation ability in MGG4, MGG8, MGG18 which knocked down CDKAL1.
  • FIG. 1 It is a figure which shows the change of the tumor size with time in the mouse which was inoculated with the rhabdomyosarcoma cell RMS-YM cell which was infected with the lentiviral vector expressing shSALL2.
  • A A micrograph showing the morphology of Control-C2C12 cells prepared as a model of normal cells and HRas / skip53-C2C12 cells prepared as a model of malignant tumor cells, and a vector used for preparing a model of malignant tumor cells. It is a diagram showing the structure;
  • FIG. 1 is a diagram showing the primary structure and domain of CDKAL1;
  • B is a diagram showing the structure of wild-type CDKAL1 and the prepared CDKAL1 mutant;
  • C overexpressing wild-type CDKAL1 or CDKAL1 mutant.
  • the expression of CDKAL1 was knocked down by RNAi in the human rhombus myoma cell RD.
  • the composition of the protein contained in the cell lysate (input) obtained from the RD cells in which the expression of CDKAL1 was knocked down and the fraction (m7G bead precipitation) recovered from the cell lysate with m7GTP beads was analyzed by Western blotting.
  • CDKAL1 expression was knocked down by RNAi in human rhizome myoma cell RD overexpressing wild-type CDKAL1 or CDKAL1 variant. It is a figure which shows the result of having evaluated the sphere forming ability and the expression level of SALL2 protein by Western blotting in the RD cell which knocked down the expression of CDKAL1.
  • A is a diagram showing amino acids that may undergo post-translational modification in the amino acid sequences 1 to 202 from the amino end of CDKAL1 predicted by PhosphoSitePlus and ELM;
  • B wild-type CDKAL1 or CDKAL1 variants.
  • Reporter protein with or without knockdown of CDKAL1 in RD cells transfected with SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH-5'UTR-firefly luciferase reporter plasmid, or ACTB-5'UTR-firefly luciferase plasmid It is a figure which shows the change of the expression level (luciferase activity) of.
  • SALL2 is an RD cell transfected with the SALL2-5'UTR-firefly luciferase reporter plasmid
  • GAPDH is an RD cell transfected with the GAPDH-5'UTR-firefly luciferase reporter plasmid
  • ⁇ -ACTIN is ACTB-5'UTR.
  • (A) (i) DNA sequence encoding a first shRNA (shCDKAL1 # 1) targeting human CDKAL1, (ii) RNA sequence of shCDKAL1 # 1, (iii) RNA of siRNA that can result from shCDKAL1 # 1. Sequences; (B) (i) DNA sequence encoding a second shRNA targeting human CDKAL1 (shCDKAL1 # 2), (ii) RNA sequence of shCDKAL1 # 2, (iii) siRNA that can result from shCDKAL1 # 2. RNA sequence.
  • (A) (i) DNA sequence encoding a first shRNA (shSALL2 # 1) targeting human SALL2, (ii) RNA sequence of shRNA2 # 1, (iii) RNA of siRNA that can result from shSALL2 # 1. Sequences; (B) (i) DNA sequence encoding a second shRNA (shSALL2 # 2) targeting human SALL2, (ii) RNA sequence of shRNA2 # 2, (iii) siRNA that can result from shSALL2 # 2. RNA sequence.
  • the agent according to one aspect of the present invention is an agent for treating cancer, and more specifically, a component in which CDKAL1 (Cdk5 active substance subunit associated protein 1-like 1) suppresses the expression of a gene involved in its translation.
  • CDKAL1 CDK5 active substance subunit associated protein 1-like 1
  • CDKAL1 is involved in the formation of a translation initiation factor complex on the rough endoplasmic reticulum, which is one of the sites of protein synthesis, in cancer cells or cancer stem cells. It is based on the findings found by them.
  • gene expression is achieved by the process of transcription from DNA to mRNA, followed by translation from the transcript mRNA to protein.
  • translation from mRNA to protein is generally divided into three steps: "initiation” of translation, "elongation” of amino acid chain (protein) which is a translation product, and “termination” of translation.
  • the "initiation” of translation is the translation initiation factor complex formed by the binding of multiple eukaryotic translation Initiation Factor (eIF), and the 5'end 5'cap and 5'untranslation of the mRNA. It is said that it is started by the interaction of the regions.
  • eIF4A and eIF4G which are eukaryotic initiation factors, and eIF4E in cancer cells or cancer stem cells.
  • the translation initiation factor complex is formed by the action of CDKAL1.
  • CDKAL1 in the present specification means human CDKAL1 unless otherwise specified.
  • the expression of a gene means that the protein encoded by the gene is produced, and the suppression of the expression of the gene means reducing the production amount of the protein encoded by the gene, or reducing the production amount of the protein encoded by the gene. It means that the amount of production is reduced to zero.
  • the "treatment" of cancer includes not only the cure of the cancer but also the reduction of the cancer, the alleviation or improvement of the symptoms of the cancer, and the delay of the progression of the cancer. Is done.
  • the gene in which CDKAL1 is involved in the translation means a gene in which CDKAL1 is involved in the process of translating the mRNA of the gene into a protein, and more specifically, a gene in which CDKAL1 is involved in initiating translation of the gene. More specifically, it means a gene in which CDKAL1 is involved in the formation of a translation initiation factor complex involved in initiating translation of that gene.
  • the gene for which the agent according to the present invention suppresses its expression is not particularly limited as long as it is a gene in which CDKAL1 is involved in the translation of the gene in cancer cells or cancer stem cells, but is a preferred embodiment. In, it is preferable that it is a gene encoding a transcription factor. Examples of such genes include SALL2 gene, SP9 gene, IRF2BPL gene, ZNF276 gene, IFI35 gene, YAP1 gene, MIER1 gene, HOXA7 gene, PHF3 gene, LBX2 gene, KLF7 gene, HOXB6 gene, PLAG1 gene, ZNF484 gene.
  • the above genes are genes whose translations are regulated by the translation mechanism in which CDKAL1 is involved in cancer stem cells, and the transcription factors encoded by such genes are cancer stem cells.
  • the agent according to the present invention can exert a therapeutic effect on cancer by suppressing the expression of the gene subject to translation control by CDKAL1.
  • CDKAL1 Genes involved in the translation of CDKAL1 can be easily identified by those skilled in the art using genetic engineering techniques. For example, as shown in an experiment described later, in cells in which the expression of CDKAL1 was suppressed, the amount of each mRNA produced in the cell and the amount of each mRNA bound to a polysome (polyribosome), which is a place of translation, were measured. The measurement results are compared with the amount of each mRNA produced in the cell and the amount of each mRNA bound to the polysome when the expression of CDKAL1 is not suppressed in the same cell, and the amount of mRNA produced does not change. Nevertheless, it is only necessary to find a gene that reduces the amount of mRNA bound to polysomes (polyribosomes).
  • a gene whose intracellular mRNA production amount does not change due to suppression of CDKAL1 expression is a gene that is not affected at the transcription level by suppression of CDKAL1 expression.
  • Genes that reduce the amount of mRNA bound to polysomes, which are the sites of translation in cells, even though the amount of mRNA produced does not change, are genes that are regulated by CDKAL1 at the translation level, not at the transcription level, in other words.
  • CDKAL1 is a gene involved in its translation.
  • polysomes are granular organelles formed mainly on rough surface vesicles in eukaryotes, and have a structure in which a plurality of ribosomes are bound to one molecule of mRNA. Generally, it is considered that the greater the amount of mRNA bound to polysomes, the more actively translated mRNA.
  • the agent containing, as an active ingredient, a component in which CDKAL1 according to one aspect of the present invention suppresses the expression of a gene involved in its translation is not limited to those described below, and is not limited to those described below.
  • CDKAL1 may act on any stage or any molecule to suppress the expression of the gene involved in the translation.
  • the agent according to the present invention is, in one preferred embodiment thereof, an agent containing an ingredient that suppresses the expression of CDKAL1 as an active ingredient.
  • Such agents reduce the number of CDKAL1s that can participate in translation by suppressing the expression of CDKAL1, in other words, by reducing the amount of CDKAL1 produced in the cells, so that CDKAL1 is a gene involved in the translation. Can be suppressed.
  • knockout of CDKAL1 does not cause abnormalities in ontogeny, organ formation, etc. (Fan-Yan Wei et al. The Journal of Clinical Investment 2011, 121 (9).
  • the suppression of the expression of CDKAL1 is, for example, siRNA (small interfering RNA) for CDKAL1, shRNA ( It can be achieved by introducing short hairpin RNA), antisense nucleic acid, sgRNA (single guide RNA), or the like into a target cell.
  • the agent according to one aspect of the present invention may contain siRNA, shRNA, or sgRNA for CDKAL1 as an active ingredient in a preferred embodiment thereof.
  • siRNA means double-stranded RNA capable of knocking down a gene by RNA interference.
  • the number of base pairs constituting the double-stranded RNA is not particularly limited, but is, for example, 18 to 30 base pairs, 20 to 27 base pairs, and typically 21 to 23 base pairs of double-stranded RNA.
  • RISC RNA-induced silencing complex
  • siRNA is introduced into cells, it forms an RNA-protein complex called an RNA-induced silencing complex (RISC) with Argonaute protein, and forms a sequence complementary to the antisense strand of siRNA. Suppresses the expression of mRNA. That is, the siRNA for CDKAL1 can be a double-stranded RNA containing an RNA having a base sequence complementary to the mRNA of CDKAL1.
  • complementary means that the first base forms a classical Watson-Crick base pair or a non-Watson-Crick base pair with a second base and hydrogen bonds. Means that can be formed. Also, in the present specification, when two base sequences are “complementary", all consecutive bases in the first base sequence are complementary to the same number of consecutive bases in the second base sequence, that is, Not only when hydrogen bonds can be formed (this case may be referred to as “fully complementary"), but of all the bases in the first base sequence, for example, 70% or more, 80% or more, or 90. Includes the case where% or more of the bases can form hydrogen bonds with the bases of the second base sequence.
  • siRNA may contain RNA having a base sequence completely complementary to a part of mRNA which is a transcript of the CDKAL1 gene, or from a completely complementary base sequence. A few bases may contain RNA having a modified base sequence. Also, in one preferred embodiment, each 3'end of the sense strand and antisense strand constituting the siRNA may have an overhang of 2 to 5 nucleotides or modified nucleotides, for example. It may have two deoxy-thymidines (dTdT).
  • the siRNA for CDKAL1 can be appropriately designed by those skilled in the art based on the DNA sequence of CDKAL1 (A. Birmingham et al. Nature Protocols, 2007, 2, 2068-2078; E. Fakhr et al. Cancer Gene. Therapy, 2016, 23, 73-82.). Also known software (Yuki Naito et al. Nucleic Acids Research, Volume 32, Issue suppl_2, 1, July 2004, Pages W124-W129; Simone Sciabola et al. InvivoGen)) and the like may be used.
  • the DNA sequence of human CDKAL1 can be obtained from a public database, for example, the National Center for Biotechnology Information (NCBI), and the DNA sequence set forth in SEQ ID NO: 20 of the sequence listing. May be used.
  • the RNA sequence of siRNA for human CDKAL1 is, for example, the RNA sequence shown in FIG. 27A (SEQ ID NOs: 3 and 4), the RNA sequence shown in FIG. 27B (SEQ ID NOs: 7 and 8), or the arrangement.
  • the RNA sequences set forth in SEQ ID NOs: 41 and 42 in the column table can be used, but the sequence of siRNA for CDKAL1 that can be used in the present invention is not limited thereto.
  • any of the above siRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted.
  • the number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
  • shRNA is a hairpin-type RNA used for knocking down a gene by RNA interference.
  • the hairpin structure of shRNA is cleaved in the cell to produce double-stranded RNA of about 21 to 23 base pairs.
  • the generated double-stranded RNA forms an RNA-protein complex called RISC with the Argonaute protein, as described for siRNA, and expresses an mRNA having a sequence complementary to the antisense strand of the double-stranded RNA.
  • the shRNA for CDKAL1 can be a hairpin-type RNA containing a base sequence complementary to the mRNA of CDKAL1.
  • the shRNA for human CDKAL1 can be appropriately designed by those skilled in the art based on the DNA sequence of human CDKAL1, and can also be designed using known software.
  • sequence of shRNA for human CDKAL1 for example, the RNA sequence shown in FIG. 27A (SEQ ID NO: 2) or the RNA sequence shown in FIG. 27B (SEQ ID NO: 6) can be used, but the present invention.
  • the sequence of shRNA for CDKAL1 that can be used in is not limited to these.
  • any of the above shRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted.
  • the number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
  • Antisense nucleic acid is a single-stranded DNA or RNA having an action of inducing translational repression of the mRNA by hybridizing with the mRNA of the target gene. That is, the antisense nucleic acid for CDKAL1 can be a single-stranded DNA or RNA containing a base sequence complementary to the mRNA of CDKAL1.
  • the antisense nucleic acid for CDKAL1 can be appropriately designed by those skilled in the art based on the DNA sequence of CDKAL1 (J. HP Chan et al. Clinical and Experimental Pharmacology and Physiology, 2006, Vol. 33, Vol. 33, Vol. 540.). Further, known software (for example, Simone Sciabola et al.
  • the antisense nucleic acid may be one in which RNA or DNA complementary to the sequence is bound, and the antisense nucleic acid to which such complementary RNA or DNA is bound may be used.
  • it can be a hetero double-stranded nucleic acid (DNA / RNA) or a homo double-stranded nucleic acid (DNA / DNA) (K. Nishina et al. Nat. Commun. 2015, 6, 7769; Y. Asami et al. Molecular. Therapy, 2021, 29, 838-847.).
  • sgRNA is a single-stranded RNA having a sequence complementary to the target DNA, and when sgRNA is introduced into a cell together with a specific endonuclease, the DNA double strand having a sequence complementary to sgRNA is cleaved.
  • the gene encoded by the DNA can be specifically knocked out.
  • the endonuclease is a Cas9 nuclease derived from Streptococcus pyogenes or a variant thereof.
  • the sgRNA can be appropriately designed by those skilled in the art based on the base sequence of the target gene.
  • RNA molecules such as siRNA, ThenRNA, antisense nucleic acid or sgRNA used in the present invention are intended to improve stability, gene expression inhibitory effect, cell introduction efficiency and the like.
  • it may be chemically modified.
  • the phosphate group of the RNA molecule may be replaced with a chemically modified phosphate group such as phosphorothioate, methylphosphonate, or phosphorodithionate, or the RNA molecule may be replaced with a chemically modified phosphate group.
  • a part of the constituent nucleic acid may be replaced with peptide nucleic acid (PNA).
  • a polymer such as polyethylene glycol, a peptide such as cholesterol or a cell-permeable peptide, a sugar or sugar chain such as GalNAc (N-Acetylgalactosamine), an antibody, an antibody fragment, an aptamer, etc. are bound to the 3'end or 5'end. It may be the one that has been used.
  • the agent according to the present invention comprises, in a preferred embodiment thereof, an expression vector expressing siRNA, shRNA, antisense nucleic acid or sgRNA in the cell instead of siRNA, ThenRNA, antisense nucleic acid or sgRNA.
  • expression vectors include plasmids, cosmids, phagemids, viral vectors and the like, and examples of viral vectors include lentivirus vectors, retroviral vectors, adenoviral vectors, adeno-associated virus vectors, Sendai virus vectors and the like. Viral vectors are exemplified, but not limited to these.
  • These expression vectors can be appropriately prepared by those skilled in the art (G. Sui et al., Proc. Natl. Acad. Sci. USA 2002, 99 (8), 5515-5520. .).
  • RNA molecules such as siRNA, shRNA or sgRNA can be introduced into cells by an appropriate method regardless of physical or chemical methods, depending on the type of cell to be introduced and the environment in which the cells are present. Then, an appropriate method may be selected. Examples of the physical introduction method include an electroporation method, a sonoporation method, and a microinjection method. On the other hand, as a chemical introduction method, in addition to the calcium phosphate method and the lipofection method using liposomes, cationic lipids, lipidoids, cationic polymers, membrane-permeable peptides, antibodies, antibody fragments, proteins, nanoparticles, and microparticles.
  • RNA molecule may be administered systemically in combination with an appropriate delivery means if necessary, or the tissue. May be administered topically by injection or application to.
  • the agent according to the present invention may be an agent containing a component in which CDKAL1 reduces the mRNA of a gene involved in its translation in a preferred embodiment thereof.
  • the agent containing a component in which CDKAL1 reduces the mRNA of the gene involved in its translation the expression of the gene can be suppressed.
  • the reduction of mRNA can be achieved by suppressing the production of mRNA or by degrading the produced mRNA.
  • the mRNA of the gene may not be produced by knocking out the gene that is transcribed to produce the mRNA in the target cell.
  • agents include, for example, shRNA, siRNA, antisense nucleic acid or sgRNA for the gene as an active ingredient.
  • the siRNA for the gene in which CDKAL1 is involved in its translation can be a double-stranded RNA comprising an RNA having a base sequence complementary to the mRNA that is the transcript of the gene.
  • the specific genes in which CDKAL1 is involved in its translation are as described above, but for example, in one preferred embodiment, the gene can be SALL2.
  • a person skilled in the art can appropriately design siRNA for a certain gene based on the DNA sequence of the gene.
  • Human SALL2 DNA sequences can also be obtained from public databases, such as the National Center for Biotechnology Information (NCBI). Specific examples of the siRNA sequence for human SALL2 include the RNA sequences set forth in FIG.
  • any of the above siRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted.
  • the number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
  • the shRNA for the gene in which CDKAL1 is involved in its translation can be a hairpin-type RNA containing a base sequence complementary to mRNA which is a transcript of the gene.
  • the specific genes in which CDKAL1 is involved in its translation are as described above, but for example, in one preferred embodiment, the gene can be SALL2. That is, in one preferred embodiment, the shRNA for the gene in which CDKAL1 is involved in its translation can be shRNA for SALL2.
  • Specific examples of the shRNA sequence for human SALL2 include the RNA sequence shown in FIG. 28A (SEQ ID NO: 10) or the RNA sequence shown in FIG. 28B (SEQ ID NO: 14). The sequence of shRNA for SALL2 that can be used in is not limited to these.
  • any of the above shRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted.
  • the number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
  • siRNA siRNA, antisense nucleic acid, and sgRNA, other parts including the introduction method and preparation method thereof are as described above.
  • the agent according to the present invention may be an agent containing a component that inhibits the translation of the gene involved in the translation of CDKAL1 from mRNA to protein in a preferred embodiment thereof.
  • Inhibiting translation here means inhibiting the process of protein synthesis using mRNA, which is a transcript of a gene, as a template, and the translation is a translation involving CDKAL1, more specifically, CDKAL1.
  • the translation involved in the initiation When the above agent inhibits the translation involving CDKAL1, and more specifically, the translation of the mRNA initiated by the involvement of CDKAL1, the production amount of the protein corresponding to the mRNA is reduced. In other words, CDKAL1 suppresses the expression of genes involved in its translation.
  • the present inventors have been able to stabilize the translation initiation factor complex in which CDKAL1 is involved at positions 1 to 202 from the amino terminus containing the UPF domain of CDKAL1.
  • the amino acid sequence of is playing an important role.
  • the present inventors have made post-translational modifications in the amino acid sequences 1 to 202 from the amino terminus containing the UPF domain of CDKAL1, specifically, N-binding in the amino acid sequence.
  • Type glycosylation and phosphorylation by GSK3 (Glycogen synthesis kinase 3), more specifically, N-linked glycosylation of the 107th asparagine from the N-terminus of CDKAL1, and the 18th and 22nd from the N-terminus of CDKAL1.
  • GSK3 Glycogen synthesis kinase 3
  • N-linked glycosylation of the 107th asparagine from the N-terminus of CDKAL1 and the 18th and 22nd from the N-terminus of CDKAL1.
  • phosphorylation of the 153rd serine by GSK3 plays an important role in stabilizing the translational initiation factor complex in which CDKAL1 is involved, and according to the N-linked glycosylation inhibitor or GSK3 inhibitor, CDKAL1 It was found that the stabilizing effect of the translation initiation factor complex involving CDKAL1 was significantly reduced, and the translation involving CDKAL1 was inhibited.
  • the component that inhibits translation involving CDKAL1 can be an N-linked glycosylation inhibitor or a GSK3 inhibitor.
  • N-linked glycosylation inhibitors or GSK3 inhibitors there are no particular restrictions on the types of N-linked glycosylation inhibitors or GSK3 inhibitors that can be used, such as tunicamycin as an N-linked glycosylation inhibitor and BIO or CHIR-98014 as a GSK3 inhibitor. Can be used.
  • the component that inhibits the translation of the gene involved in its translation from mRNA to protein can be a component that specifically binds to CDKAL1.
  • Translation involving CDKAL1 requires the formation of a translation initiation factor complex involving CDKAL1, whereas a component that specifically binds to CDKAL1 inhibits the interaction between CDKAL1 and the translation initiation factor complex. This can inhibit translations involving CDKAL1.
  • the amino acid sequences 1 to 202 from the amino terminus containing the UPF domain of CDKAL1 are important for stabilizing the translation initiation factor complex in which CDKAL1 is involved. Playing a role. Therefore, the component that specifically binds to the amino acid sequence 1 to 202 from the amino terminus including the UPF domain of CDKAL1 inhibits the interaction between CDKAL1 and the translation initiation factor complex and suppresses the translation mechanism in which CDKAL1 is involved. Can be suitably used for this purpose.
  • Glycosylation and GSK3 phosphorylation of the 18th, 22nd, and 153rd serines from the N-terminus of CDKAL1 play important roles in stabilizing the translation initiation factor complex in which CDKAL1 is involved. Therefore, the amino acid sequence 1 to 202 from the amino terminus of CDKAL1 that specifically binds to the amino acid sequence containing one or more post-translational modifications of (1) to (4) below is the same as CDKAL1.
  • CDKAL1 It may be particularly preferably used to inhibit interaction with the translational initiation factor complex and suppress the translational mechanism involving CDKAL1: (1) Phosphorylation of the 18th serine from the N-terminal; (2) Phosphorylation of the 22nd serine from the N-terminal; (3) N-linked glycosylation of the 107th asparagine from the N-terminus; (4) Phosphorylation of the 153rd serine from the N-terminal.
  • the type of component that specifically binds to CDKAL1 is not particularly limited, but may be, for example, a peptide, an antibody, an antibody fragment, an aptamer, or the like. Those skilled in the art can prepare these substances by an appropriate method based on the disclosed contents of the present specification and known techniques.
  • peptide means a molecule in which natural or non-natural amino acids are dehydrated and condensed, and whether it is a linear peptide or a branched chain peptide. It may be a cyclic peptide.
  • the number of amino acids constituting the peptide is not particularly limited, but is typically 50 or less, preferably 40 or less, more preferably 30 or less, still more preferably 20 or less.
  • Peptides that specifically bind to CDKAL1 can be described by those skilled in the art using the phage display method (GP Smith, Science 1985, Vol. 228, Issue 4705, pp. 1315-1317.), Ribosome display method (L. C. Mattheakis et al. Proc. Natl. Acad.
  • a phage library presenting a peptide library having a random amino acid sequence is prepared, and a target protein or a group of phage that binds to a part of the target protein is selected from the phage library. ..
  • the phage library is contacted with the immobilized target protein to remove the phage group that did not bind to the target protein, and then the phage bound to the target protein is eluted, infected with Escherichia coli, and amplified.
  • phages having high binding property to the target protein can be obtained, in other words, the amino acid sequence of the peptide having high binding property to the target protein can be determined.
  • a part or all of the amino acid sequence of CDKAL1 can be used, but preferably a part or all of the amino acid sequence 1 to 202 from the amino end of CDKAL1, and more preferably the amino acid of CDKAL1.
  • a region which is a part or all of the amino acid sequence 1 to 202 from the terminal and contains 1 or 2 or more of the following (1) to (4) can be preferably used: (1) Phosphorylated N-terminal 18th serine; (2) Phosphorylated N-terminal 22nd serine; (3) N-linked glycosylated asparagine 107th from the N-terminus; (4) The 153rd serine from the phosphorylated N-terminal.
  • the term "antibody” refers to an immunoglobulin molecule that is naturally produced or produced using genetic recombination technology, and the "antibody fragment” is an antigen-binding molecule contained in the immunoglobulin molecule. Say a fragment.
  • the antibody may be any of a polyclonal antibody, a monoclonal antibody, and a recombinant antibody.
  • a polyclonal antibody refers to a set of a plurality of types of immunoglobulins that recognize and bind to different epitopes of the same antigen, while a monoclonal antibody refers to a clone group of a single immunoglobulin.
  • Recombinant antibody means an antibody produced by combining amino acid sequences of antibodies derived from different animals such as chimeric antibody and humanized antibody.
  • Antibody fragments include, for example, F (ab') 2 , F (ab) 2 , Fab', Fab, Fv, scFv and the like.
  • an antibody or antibody fragment that specifically binds to CDKAL1 can be prepared by those skilled in the art using known techniques.
  • polyclonal antibodies can be obtained from plasma of immune animals administered with an antigen and, if necessary, an adjuvant.
  • a monoclonal antibody can also be obtained by the hybridoma method. More specifically, antibody-producing cells (for example, B cells) were obtained from an immune animal to which an antigen and, if necessary, an adjuvant were administered, and the obtained antibody-producing cells were fused with myeloma or the like to prepare a hybridoma.
  • a monoclonal antibody can be obtained by purifying the antibody produced by the hybridoma.
  • the antigen used for immunization may be a part or all of the amino acid sequence of CDKAL1, but preferably a part or all of the amino acid sequence 1 to 202 from the amino end of CDKAL1, more preferably CDKAL1.
  • a region having an amino acid sequence including 1 or 2 or more of the following (1) to (4), which is a part or all of the amino acid sequence 1 to 202 from the amino end of the above, can be preferably used: (1) Phosphorylated N-terminal 18th serine; (2) Phosphorylated N-terminal 22nd serine; (3) N-linked glycosylated asparagine 107th from the N-terminus; (4) The 153rd serine from the phosphorylated N-terminal.
  • the method for producing an antibody or antibody fragment is not limited to the above, and may be produced using a gene recombination technique.
  • the monoclonal antibody produced by the hybridoma produced by the above procedure the gene encoding the heavy chain variable region or light chain variable region, heavy chain CDR, light chain CDR, etc. of the monoclonal antibody is cloned to obtain the gene.
  • the obtained vector is introduced into a host cell to transform the host cell, whereby a cell producing an antibody or an antibody fragment thereof can be obtained.
  • An antibody or an antibody fragment thereof can also be obtained by purifying the antibody produced by the cells.
  • Those skilled in the art can appropriately set the type of host cell, the type of vector, the culture conditions, etc. used for preparing the antibody or the antibody fragment thereof.
  • the term "aptamer” as used herein refers to a nucleic acid that specifically binds to a specific substance.
  • the aptamer for CDKAL1 can be produced by a person skilled in the art by an appropriate method.
  • Such a method includes, for example, the SELEX method (Systematic Evolution of Ligands by EXPonential evolution) (Tuerk, C .; Gold, L. Science 1990, 249, 505.).
  • SELEX method Systematic Evolution of Ligands by EXPonential evolution
  • a nucleic acid library having a random base sequence is prepared, and a target protein or a group of nucleic acids that bind to a part of the target protein is selected from the library.
  • the selected nucleic acid group is amplified by the PCR method to obtain a nucleic acid library.
  • a nucleic acid library By repeating the selection and amplification cycle several to several tens of times, it is possible to identify a sequence of a nucleic acid having a strong binding force to a target protein or a part of the target protein.
  • the component that inhibits translation involving CDKAL1 can be a small molecule compound.
  • a large number of small molecule compounds that inhibit translation involving CDKAL1 can be efficiently obtained by the screening method according to one aspect of the present invention, which will be described later.
  • such low molecular weight compounds include, for example, Go6983, tunicamycin, Ozanimod, Gramicidin, Lomitapide, Fenticonazole (Nitrate), Asenapine (hydrochloride), Proph.
  • the small molecule compound having an action of suppressing the translation mechanism in which CDKAL1 is involved can be suitably used as an active ingredient of an agent for treating cancer.
  • the component that inhibits translation involving CDKAL1 that can be used in the agent according to another aspect of the present invention may have an activity that inhibits translation involving CDKAL1, and the type thereof is not particularly limited. do not have. It may be a natural substance, a synthetic substance, an organic compound or an inorganic compound, a low molecular weight compound having a molecular weight of up to about 500, a medium molecular weight compound having a molecular weight of about 500 to 1000, or more. It may be a polymer compound having a molecular weight of.
  • it may be a linear or cyclic peptide, amino acid, protein, antibody, antibody fragment, nucleic acid, sugar, lipid, natural polymer, synthetic polymer, inorganic compound, organic compound, or a combination thereof. ..
  • a substance that inhibits translation in which CDKAL1 is involved can be easily obtained by the screening method according to one aspect of the present invention, which will be described later.
  • cancer there is no particular limitation on the types of cancer to which the agent according to one aspect of the present invention can be applied, and the translation mechanism in which CDKAL1 is involved in the cancer cells constituting the cancer to be treated, more specifically, CDKAL1
  • CDKAL1 basically any cancer can be used as long as the translation mechanism involved in its initiation is activated.
  • cancer refers to a hematopoietic malignant tumor such as leukemia, lymphoma, and sarcoma, and a malignant tumor (cancer or malignant tumor) originating from epithelial cells such as lung cancer, breast cancer, gastric cancer, and colon cancer.
  • Carcinoma) and malignant tumors (sarcoma or sarcoma) originating from non-epithelial cells such as osteosarcoma, chondrosarcoma, rhizome myoma, and smooth myoma) are included.
  • the cancer to be treated by the agent according to the present invention is a sarcoma or an epithelial malignant tumor, more preferably a rhabdomyosarcoma or a malignant brain tumor such as a glioma.
  • Glioblastoma includes glioblastoma (glioblastoma), and glioblastoma may be mesenchymal type or proneural type.
  • CDKAL1 by suppressing the translation mechanism involved in CDKAL1, it is possible to suppress the growth of a wide variety of cancers including rare cancers such as malignant brain tumors and rhabdomyosarcoma.
  • the agent according to the invention further comprises water, a buffer (eg, a phosphate buffer, a borate buffer, a citric acid buffer, a tartrate buffer, an acetate buffer, depending on its use.
  • a buffer eg, a phosphate buffer, a borate buffer, a citric acid buffer, a tartrate buffer, an acetate buffer, depending on its use.
  • Agents, amino acids, etc.), preservatives eg, quaternary ammonium salts such as benzalconium chloride, paraoxybenzoic acid esters such as methyl paraoxybenzoate, benzyl alcohol, sorbic acid and its salts, thimerosal, parabens, etc.
  • chelates eg, quaternary ammonium salts such as benzalconium chloride, paraoxybenzoic acid esters such as methyl paraoxybenzoate, benzyl alcohol, sorbic acid and its salts, thimerosal, paraben
  • Pharmaceutically acceptable 1 to be incorporated into agents eg, sodium edetate, citric acid, etc.
  • antioxidants eg, sodium hydrogen sulfite, sodium sulfite, sodium pyrosulfate, etc.
  • the agent according to the present invention can be provided as a pharmaceutical composition.
  • the administration route of the agent according to the present invention is not particularly limited, and an appropriate administration route may be selected according to the cancer tissue to be applied.
  • oral administration, sublingual administration, intravenous administration, intraarterial administration, intramuscular administration, subcutaneous administration, local administration and the like are exemplified, but not limited thereto.
  • the drug may be formulated in a dosage form suitable for the route of administration according to the route of administration.
  • Dosage forms suitable for oral administration include, for example, tablets, capsules, powders, granules, syrups, etc.
  • dosage forms suitable for parenteral administration include, for example, solution-type injections, suspensions, etc. Examples thereof include injections such as liquid injections and time-prepared injections.
  • the following nucleic acid constructs are provided: The first RNA sequence encoding the reporter protein and On the 5'end side, a second RNA sequence containing an RNA sequence represented by the following formula 1 and / or an RNA sequence represented by the following formula 2 and Nucleic acid construct encoding an RNA construct with (Equation 1) 5'-GGCGGGCGGGCGCGGC-3'(In the equation, the first G may be A, the second G may be C, the third C may be A, and the fourth G may be A.
  • the fifth G may be C, the sixth C may be A, the seventh G may be A or C, the eighth G may be A, the ninth C may be U or A, and so on.
  • the 10th G may be A or U
  • the 11th G may be C
  • the 12th C may be A
  • the 13th G may be U or C or A
  • the 14th G may be U or A
  • the fifteenth C may be G, A, or U.
  • (Equation 2) 5'-GCCGCCGCCGCCGCC-3'(In the equation, the first G may be U or C, the second C may be G, the third C may be U, and the fourth G may be U.
  • the 5th C may be U
  • the 6th C may be A or U
  • the 7th G may be U
  • the 8th C may be U
  • the 9th C may be G.
  • the 10th G can be U
  • the 11th C can be G
  • the 12th C can be U
  • the 13th G can be U
  • the 14th C can be U
  • the 15th. C may be G.
  • the mRNA translated by the translation mechanism involving CDKAL1 is an RNA sequence characteristic of the untranslated region on the 5'end side thereof, more specifically, cytosine (C). And an RNA sequence rich in guanine (G), more specifically, an RNA sequence represented by the above formula 1 or formula 2.
  • Cytosine and guanine-rich RNA sequences are known to form complex secondary structures, and translation factor complexes have such RNA sequences in the untranslated region on the 5'end to translate mRNAs. It is believed that involvement is needed. That is, the amount of the reporter protein encoded by the RNA construct in the cell reflects the activity of the translation mechanism in which CDKAL1 is involved in the cell. Therefore, the nucleic acid construct encoding the RNA construct can be suitably used, for example, for screening a substance having an activity of inhibiting or promoting a translation mechanism in which CDKAL1 is involved.
  • RNA sequences represented by the above formula 1 or 2 contained in the second RNA sequence of the RNA construct there is no particular limitation on the number of RNA sequences represented by the above formula 1 or 2 contained in the second RNA sequence of the RNA construct, but for example, 1 to 12, preferably 1 to 10 pieces. , More preferably 2 to 8, and even more preferably 4 to 8.
  • the upper limit (4) and the lower limit (8) are included unless otherwise specified. It means a numerical range.
  • the second RNA sequence of the RNA construct can be the RNA sequence of the 5'untranslated region of the mRNA of the gene in which CDKAL1 is involved in its translation.
  • an RNA sequence in the 5'untranslated region of the mRNA of the human SALL2 gene can be preferably used, but is not limited thereto.
  • the DNA sequence corresponding to the RNA sequence of the 5'untranslated region of the human SALL2 gene mRNA is as set forth in SEQ ID NO: 32 of the sequence listing.
  • the second RNA sequence possessed by the RNA construct is the RNA sequence of the 5'untranslated region of the mRNA of the gene involved in the translation of CDKAL1.
  • the RNA sequence contains an RNA sequence in which CDKAL1 is substantially the same as the RNA sequence of the 5'untranslated region of the mRNA of the gene involved in its translation.
  • an RNA sequence that is substantially the same as an RNA sequence is an RNA sequence having 80-100%, preferably 90-100%, more preferably 95-100% identity as compared to an RNA sequence. Means.
  • the identity of the RNA sequence can be appropriately determined by those skilled in the art based on a sequence analysis algorithm such as BLAST.
  • the RNA construct encoded by the nucleic acid construct according to one aspect of the present invention has a first RNA sequence encoding a reporter protein.
  • the reporter protein is not particularly limited in its type as long as it is a protein capable of directly or indirectly measuring a signal reflecting the amount of the present reporter protein, and can be used by the user.
  • Appropriate reporter proteins may be used depending on the measuring instrument. For example, when a luminescence photometer is available, luminescent enzyme proteins such as firefly luciferase, sea urchin luciferase, and marine copepod luciferase can be used as reporter proteins.
  • a blue fluorescent protein (BFP: Blue Fluorescent Protein)
  • GFP green fluorescent protein
  • YFP yellow fluorescent protein
  • RFP Red Fluorescent Protein
  • a fluorescent protein such as a protein (RFP: Red Fluorescent Protein) may be used as a reporter protein.
  • RFP Red Fluorescent Protein
  • a color-developing enzyme protein such as ⁇ -galactosidase can be used as a reporter protein.
  • the base sequence encoding the reporter protein can be obtained from a public database, for example, a database of the National Center for Biotechnology Information (NCBI).
  • the nucleic acid construct can typically be a DNA construct encoding the RNA construct, but may be an expression vector prepared by inserting the RNA construct or the DNA encoding the RNA construct.
  • expression vectors include plasmids, phages, cosmids, phagemids, viral vectors, and examples of virus vectors include lentivirus vectors, retroviral vectors, adenovirus vectors, adeno-associated virus vectors, and Sendai virus.
  • Vectors and the like are exemplified.
  • the type of expression vector is not particularly limited, and a vector that can be expressed in a target cell and can produce the RNA construct may be appropriately selected.
  • the cells containing the nucleic acid construct described above can express the reporter protein depending on the activity of CDKAL1. Therefore, cells containing the nucleic acid construct can be suitably used, for example, for screening substances having an activity of inhibiting or promoting the translation mechanism in which CDKAL1 is involved. Thus, according to another aspect of the invention, a cell containing the nucleic acid construct is provided.
  • the cells containing the nucleic acid construct according to one aspect of the present invention are not particularly limited, but are preferably mammalian cells, more preferably human cells.
  • cells in which the translation mechanism in which CDKAL1 is involved are activated, for example, cancer cells are preferable, and in particular, cancer stem cells are more preferable.
  • cancer cells are preferable, and in particular, cancer stem cells are more preferable.
  • type of cancer cells or cancer stem cells but for example, malignant melanoma, liver cancer, prostate cancer, gastric cancer, malignant brain tumor, cancer cells derived from rhizome myoma, or cancer stem cells. It is more preferable that it is a cancer cell derived from a malignant brain tumor or a collateral myoma, or a cancer stem cell.
  • RD cells include, but are not limited to, RD cells, JK2 cells, and RMS-YM cells.
  • Whether or not the translation mechanism in which CDKAL1 is involved is activated in a certain cell can be confirmed by a person skilled in the art by an appropriate method. For example, according to the method described in Experiment 2 described later, the effect of the presence or absence of knockdown of CDKAL1 on the formation of the translation initiation factor complex may be analyzed by Western blotting.
  • the nucleic acid construct according to one aspect of the present invention or the cell containing the nucleic acid construct can be suitably used for screening a substance that inhibits translation in which CDKAL1 is involved. That is, the present invention is, in another aspect, a method for screening a substance that inhibits translation in which CDKAL1 is involved.
  • the step of introducing the nucleic acid construct encoding the RNA construct having, into a cell (2) A step of contacting the cells into which the nucleic acid construct has been introduced with a solution containing a test substance or a solution not containing the test substance. (3) A step of measuring the intensity of a signal derived from the reporter protein in the cells contacted with the solution containing the test substance, and (4) A step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance.
  • the present invention relates to a screening method comprising.
  • the type of substance to be screened there is no particular limitation on the type of substance to be screened, and it may be a natural substance or a synthetic substance, and an organic compound or an inorganic compound. May be there.
  • the molecular weight of the substance to be screened is not particularly limited, and may be a low molecular weight compound having a molecular weight of about 500, a medium molecular weight compound having a molecular weight of about 500 to 1000, or a high molecular weight compound having a molecular weight higher than that.
  • the substance to be screened may be provided as a library such as a small molecule compound library, a medium molecule compound library, a peptide library, and an antibody library. If the efficiency of introducing these substances into cells is low, screening may be performed using an appropriate delivery means such as liposomes.
  • Step (1) Step of introducing a nucleic acid construct into a cell This is a step of introducing the nucleic acid construct into a cell by bringing the nucleic acid construct into contact with the cell.
  • the RNA construct is produced intracellularly.
  • the RNA construct produced in the cell is translated by a translation mechanism involving CDKAL1, a reporter protein encoded by the first RNA sequence is produced.
  • the nucleic acid construct can be introduced into cells by an appropriate method regardless of a physical method or a chemical method, depending on the type of cell to which the nucleic acid construct is introduced and the environment in which the cells are present.
  • the appropriate method may be selected.
  • Examples of the method for introducing a physical nucleic acid construct include an electroporation method, a sonoporation method, and a microinjection method.
  • As a method for introducing a chemical nucleic acid construct in addition to the calcium phosphate method and the lipofection method using liposomes, cationic lipids, lipidoids, cationic polymers, membrane-permeable peptides, antibodies, antibody fragments, proteins, and nanoparticles. , Microparticles, emulsions and the like, the transfection method using an appropriate delivery means is exemplified.
  • the cells into which the nucleic acid construct has been introduced are preferably used in the step (2) described later after the incubation for a predetermined time after the step (1). That is, from the viewpoint of sufficiently introducing the nucleic acid construct into the cell and sufficiently producing the RNA construct in the cell, it is preferable to incubate the nucleic acid construct for 6 hours or more after contacting the cell. It is preferable to incubate for 12 hours or longer, more preferably 24 hours or longer, and even more preferably 48 hours or longer.
  • Step (2) Step of contacting cells with a solution containing a test substance or a solution not containing a test substance
  • a solution containing a test substance to be screened or a solution containing the test substance to be screened on the cells contacted with the nucleic acid construct As a control, it is a step of contacting a solution containing no test substance. That is, in the cell into which the nucleic acid construct was introduced in the step (1), the cell is brought into contact with the test substance in a state where the RNA construct is present in the cell.
  • the solution containing the test substance may be prepared by dissolving the test substance to be screened in water, a buffer solution, a physiological saline solution, or an appropriate solvent such as a cell culture medium.
  • the test substance to be screened is insoluble in water, it may be prepared by dissolving it in an organic solvent having low cytotoxicity such as DMSO and being miscible with water.
  • the solution containing the test substance can be brought into contact with the cells.
  • a cell culture medium can be used, but it is preferable to use the same solvent as the solvent used to prepare the solution containing the test substance.
  • the cells can be brought into contact with the solution containing no test substance by adding a predetermined amount of the solution containing no test substance to the cell culture solution.
  • the amount of the solution containing the test substance added is equal to the amount of the solution containing the test substance.
  • step (3) incubation for a predetermined time after the step (2). After that, it is preferable to use it in the step (3) described later. For example, it is preferable to use it in step (3) after incubating for 6 hours or more after contacting the cells with the solution containing or not containing the test substance, and more preferably after incubating for 12 hours or more, and incubating for 18 hours or more. It is more preferable to use it after incubating for 24 hours or more, and it is further preferable to use it after incubating for 24 hours or more.
  • Step (3) Measuring the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance
  • the cells contacted with the solution containing the test substance to be screened This is a step of quantitatively evaluating the intensity of a signal derived from a reporter protein that reflects the expression level of the reporter protein encoded by the RNA construct.
  • the RNA sequence represented by the above formula 1 and / or the above formula 2 is represented on the upstream side (5'end side) of the first RNA sequence encoding the reporter protein and on the 5'end side thereof.
  • the RNA construct having a second RNA sequence containing the RNA sequence is translated by a translation mechanism involving CDKAL1. Therefore, the expression level of the reporter protein encoded by the RNA construct, i.e., the intensity of the signal derived from the reporter protein, reflects the activity of the translation mechanism involved in CDKAL1 in the cell.
  • the intensity of the signal derived from the reporter protein can be measured by an appropriate means according to the type of the reporter protein used in the screening method.
  • a luminescent enzyme protein such as firefly luciferase, sea urchin luciferase, or marine luciferase
  • a substrate having the property of emitting light by receiving an enzymatic reaction by the luminescent enzyme protein for example, luciferin
  • the intensity of the signal derived from the reporter protein can be measured.
  • a fluorescent protein such as blue fluorescent protein (BFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), or red fluorescent protein (RFP)
  • BFP blue fluorescent protein
  • GFP green fluorescent protein
  • YFP yellow fluorescent protein
  • RFP red fluorescent protein
  • the fluorescence intensity emitted by the fluorescent protein is emitted. May be measured using a fluorescent photometer.
  • a color-developing enzyme protein such as ⁇ -galactosidase is used as a reporter protein
  • a substrate having the property of absorbing light of a specific wavelength or emitting light by receiving an enzymatic reaction by the color-developing enzyme protein for example, for example.
  • the chromogenic enzyme protein is ⁇ -galactosidase, 5-bromo-4-chloro-3-indrill- ⁇ -D-galactopyranoside, 2-nitrophenyl- ⁇ -D-galactopyranoside, fluorescein- By using ⁇ -D-galactopyranoside, etc.) and an absorptiometer for measuring the absorbance, or a fluorescence photometer for measuring the fluorescence intensity, the intensity of the signal derived from the reporter protein can be measured.
  • the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance is also the same as the measurement of the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance. Needless to say, it is measured.
  • Step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance the nucleic acid construct or the above.
  • the expression level of the reporter protein encoded by the RNA construct i.e., the intensity of the signal derived from the reporter protein, reflects the activity of the translation mechanism involved in CDKAL1 in the cell. Therefore, by comparing the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance. , The effect of the test substance to be screened on the activity of the translation mechanism involved in CDKAL1 can be evaluated.
  • the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance is the signal derived from the reporter protein in the cells contacted with the solution containing the test substance.
  • the test substance is a substance having an action of suppressing the translation mechanism in which CDKAL1 is involved.
  • test substance in which the intensity of the signal is reduced by 10% or more as compared with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance, and more preferably 20%. As described above, it is more preferable to select a test substance having a reduction of 30% or more.
  • a pLKO.1 puro-shRNA plasmid expressing shRNA targeting each of CDKAL1, eIF4E, and eIF4G was prepared according to a conventional method.
  • SEQ ID NO: 1 and FIG. 27A of the sequence listing and the two types of DNA sequences shown in SEQ ID NO: 5 and FIG. 27B of the sequence listing were used.
  • the base sequence underlined in FIGS. 27A and 27B is a region encoding an RNA sequence complementary to the mRNA of CDKAL1.
  • shRNA encoded by the DNA sequence of SEQ ID NO: 1 in the sequence listing is referred to as “shCDKAL1 # 1”
  • shRNA encoded by the DNA sequence of SEQ ID NO: 5 in the sequence listing is referred to as “shCDKAL1 # 2”.
  • the RNA sequences of shCDKAL1 # 1 and shCDKAL1 # 2 are shown in FIG. 27A and SEQ ID NO: 2, and FIG. 27B and SEQ ID NO: 5, respectively.
  • 293FT cells (Thermo Fisher Scientific, Catalog No .: R70027) were cultured on a cell culture dish having a diameter of 10 cm so as to have a cell density of 80%.
  • fetal bovine serum (Corning, catalog number: 35-079-CV) with a final concentration of 10%
  • penicillin-streptomycin-L-glutamine solution (x100) (Fuji Film Wako Pure Chemical Industries, Ltd., catalog number) : 161-23201) was added so as to have a final concentration ⁇ 1 (high glucose) (containing L-glutamine and phenol red) (Fuji Film Wako Junyaku Co., Ltd., Catalog No .: 048-29763) (hereinafter , This mixed medium is sometimes called "basic medium").
  • the plasmid prepared in the above experiment was transfected into 293FT cells. That is, pLKO.1 puro-shRNA plasmid (10 ⁇ g) expressing shRNA targeting CDKAL1, eIF4E or eIF4G and psPAX2 (psPAX2) were added to 293FT cells cultured on a cell culture dish having a diameter of 10 cm so as to have a cell density of 80%.
  • Addgene, catalog number: 12260) (7.5 ⁇ g)
  • pMD2.G addgene, catalog number: 12259) (2.5 ⁇ g) were transfected by lipofection method, followed by 37 ° C., 5% CO.
  • the lentiviral vectors expressing shCDKAL1 # 1 or shCDKAL1 # 2 obtained by the above procedure are referred to as Lenti-shCDKAL1 # 1 and Lenti-shCDKAL1 # 2, respectively.
  • a outside virus vector expressing shRNA having a scrambled sequence that does not target any gene hereinafter referred to as “shControl”. This lenti-virus vector is called Lenti-shControl.
  • Glioma stem cells corresponding to "JKGIC2". Further, in the following procedure, the malignant brain tumor cell line JK2 has B-27 Supplement (50x), Serum Free (Thermo Fisher Scientific, Catalog No .: 17504044) at the final concentration ⁇ 1, N-2 Supplement ( ⁇ 100) (ThermoFis).
  • EGF Epithelial cell growth factor
  • Neurobasal medium ThermoFisher Scientific, Catalog No .: 21103049
  • this mixed medium may also be referred to as "JK2 basic medium”
  • JK2 basic medium added to a concentration of 002 mg / mL.
  • JK2 cells were infected with a lentiviral vector by the procedure shown below. That is, a lentiviral vector or any gene expressing shRNA targeting CDKAL1, eIF4E, or eIF4G prepared in Experiment 1 in a suspension of about 500,000 JK2 cells in 4 mL of JK2 basal medium. 1 mL of a lentiviral vector-containing medium containing a lenti-sh Control not targeted was added to make a total of 5 mL. The mixed solution was seeded in a cell culture dish having a diameter of 60 mm and incubated in an environment of 37 ° C. and 5% CO 2 for 4 days according to a conventional method.
  • RNaseA Sigma-Aldrich, Catalog No .: R6513
  • concentration in the cell lysate 100 ⁇ g / mL.
  • RNaseA was added for the purpose of removing RNA and promoting the formation of a translation initiation factor complex.
  • the obtained cytolytic solution (containing 1.5 mg of protein) was washed with an immunoprecipitation buffer, and the immunoprecipitation buffer was adjusted to twice the initial amount.
  • 60 ⁇ L of m7GTP beads product name “Immobilated ⁇ -Aminophenyl-m7GTP (C10-spacer)”, Jena Bioscience, Catalog No .: AC-155S) resuspended in 1 was added and mixed at 4 ° C. for 16 hours.
  • CDKAL1 antibodies product name "CDKAL1 antibody rabbit polyclonal", Proteintech, Catalog No .: 22988-1-, respectively.
  • eIF4E antibody product name "eIF4E (C46H6) Rabbit mAb", Cell Signaling technology, catalog number: 2067
  • eIF4A antibody product name "eIF4A (C32B4) Rabbit mAb", Cell signal 2013
  • eIF4G antibody product name "eIF4G (C45A4) Rabbit mAb", Cell Signaling technology, catalog number: 2469
  • the secondary antibody is an HRP-labeled anti-rabbit IgG antibody (product name "Anti-rabbit IgG”).
  • HRP-linked Antibody was used. Detection was performed by using Clarity Max Western ECL Substrate (Bio-Rad Laboratories, Catalog No .: 1705062) and ChemiDoc Touch Imaging System (Bio-Rad Laboratories) according to the respective instructions.
  • FIG. 1 The results of Western blotting are shown in Fig. 1.
  • a cytolytic solution of JK2 cells infected with Lenti-shCDKAL1 # 1 (a cytolytic solution before protein recovery by m7GTP beads.
  • Lenti-shCDKAL1 # 1 a cytolytic solution before protein recovery by m7GTP beads.
  • FIG. 1 corresponds to "Input” and shRNA "CDKAL1”.
  • the intensity of the band corresponding to CDKAL1 was significantly diminished as compared to the cytolytic solution obtained from JK2 cells infected with Lenti-shControl. This result indicates that infection with Lenti-shCDKAL1 # 1 reduces the expression level of CDKAL1 in the cells, that is, the expression of CDKAL1 is knocked down.
  • CDKAL1 is essential for the formation of a translation initiation factor complex formed by binding eIF4E to eIF4A and eIF4G in cancer stem cells. It is not known at all that CDKAL1 is involved in the formation of the translation initiation factor complex, and the above results are completely surprising findings for the present inventors.
  • the resulting cell suspension was placed in a 24-well ultra-low adhesive plate (product name "Costar ultra-low adhesive surface plate with 24-well flat bottom lid", Corning, Catalog No .: 3473) in an amount of 2 mL per well.
  • a total of 4 wells were sown and incubated for 1 week in an environment of 37 ° C. and 5% CO 2 according to a conventional method. After 1 week of incubation, the number of spheres formed was visually counted. After measuring the number of spheres, cells were isolated by allowing trypsin to act on the formed spheres. The isolated cells were suspended again in JK2 basal medium, seeded and incubated for 1 week according to the procedure described above, and then the number of spheres formed was visually counted. The results are shown in FIG.
  • a chamber slide coated with a Matrigel basement membrane matrix (Corning, Catalog No .: 356231, diluted with PBS to a final concentration of 10% and used for coding) (product name "Lab-TekII Chamber Slide System”).
  • Thermo Fisher Scientific, Catalog No .: 154534 PK suspended JK2 cells were seeded to a cell count of about 50,000. After incubating for 24 hours in an environment of 37 ° C. and 5% CO 2 , the cell culture medium was removed, washed once with PBS, and then 4% paraformaldehyde / phosphate buffer (Fuji Film Wako Junyaku Co., Ltd.).
  • the primary antibody used in the above procedure was a rabbit anti-Vimentin antibody (product name "Vimentin (D21H3) XP Rabbit mAb", Cell Signaling Technology, catalog number: 5741), anti-MSI1 antibody (product name "Human”). / Mouse / Rat Musashi-1 Antibody ”, R & D Systems, Catalog number: AF2628), Goat anti-SOX2 antibody (Santa Cruz Biotechnology, Catalog number: sc-17320), Rabbit anti-Nestin antibody (product name: anti-Nestin antibody).
  • Rabbit host antibody ”, Sigma-Aldrich, catalog number: N5413
  • mouse anti-SYS antibody product name“ monoclonal anti-synaptophidin mouse host antibody ”, Sigma-Aldrich, catalog number: S5768
  • anti-MAP2 antibody Santa
  • Cruz Biotechnology Catalog No .: sc-5359
  • PBS containing antibody diluted solution 3% bovine serum albumin and 0.01% Triton X-100
  • the cells were washed 3 times with PBS and the secondary antibody diluted with the antibody diluent was reacted in a moist environment at room temperature for 1 hour.
  • the secondary antibody used was an anti-rabbit, anti-mouse, or anti-goat antibody labeled with Alexa488 or Alexa594, all of which were diluted with an antibody diluent so that the final antibody concentration was 10 ⁇ g / mL.
  • the encapsulation was performed by using according to the document. After allowing to stand at room temperature for 24 hours to fix the encapsulant, an image was acquired using a confocal laser scanning microscope FV3000 (manufactured by Olympus Co., Ltd.). Shown in 4.
  • the RD infected with the lentiviral vector was used in the same manner as in Experiment 3 except that the horizontal print myoma cell line RD (purchased from JCRB cell bank, cell number: JCRB9072) was used instead of JK2 cells.
  • the ability of cells to form spheres was evaluated. That is, a medium containing a lentivirus vector containing either Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl in a medium in which about 500,000 RD cells are suspended in 4 mL of basal medium. 1 mL was added to make a total of 5 mL, and the mixture was seeded in a 60 mm cell culture dish.
  • the sphere-forming ability of RD cells infected with the lentiviral vector was evaluated according to the same procedure as described in Experiment 3. The obtained results are shown in FIG. 5A.
  • CDKAL1 is an essential factor for maintaining the self-renewal ability of many cancer stem cells, including not only malignant brain tumor cells JK2 but also rhabdomyosarcoma cells RD cells. Is shown.
  • Suspended cells were seeded in 6-well cell culture plates for a total of 3 wells so that the number of cells per well was about 2,000.
  • the amount of basal medium per well is 3 mL.
  • Two weeks after sowing, fixation and staining were performed according to a conventional method, and the number of colonies remaining on the surface of the cell culture plate was visually measured. The obtained results are shown in FIG. 5B.
  • the sources of the cells used in this experiment are as follows: Human malignant melanoma cells A2058 (obtained from JCRB cell bank, model number: IFO50276), SK-Mel-28 (obtained from ATCC, model number: HTB-).
  • HMV-II (Riken BioResource Research Center, model number: RCB0777), human liver cancer cell Huh-7 (obtained from JCRB cell bank, model number: JCRB0403), HepG2 (obtained from JCRB cell bank, model number: JCRB1054) ), Human prostate cancer cell PC3 (obtained from ATCC, model number: CRL-3470 TM ), LNCaP (Riken BioResource Research Center, model number: RCB2144), human gastric cancer cell NUGC3 (obtained from JCRB cell bank, model number: JCRB0822), HGC27 (obtained from Riken BioResearch Research Center, model number: RCB20500), MKN45 (obtained from JCRB cell bank, model number: JCRB0254).
  • the expression of cancer stem cell markers after knocking down CDKAL1 was observed using a confocal microscope.
  • the procedure is the same as the procedure described in Experiment 5 except that the above cells were used instead of JK2 cells and the antibody used for immunostaining was appropriately changed.
  • the primary antibodies used were as follows: anti-ALDH1A1 antibody (Novus Biologicals, catalog number: NBP1-89152), anti-CD44 antibody (BioLegend, catalog number: 103001), anti-CD133 antibody (Proteintech, Inc., Catalog number: 66666-1-Ig).
  • human malignant brain tumor cells MGG4, MGG8, and MGG18 the expression level of cancer stem cell markers after knockdown of CDKAL1 was evaluated by Western blotting.
  • human malignant brain tumor cells MGG4, MGG8, and MGG18 were infected with a lentiviral vector expressing shCDKAL1 according to the procedure of Experiment 6. That is, a medium containing a lentivirus vector containing Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl as a control in a medium in which about 500,000 cells are suspended in 4 mL of the medium having the above composition.
  • the antibodies used for detection were GAPDH antibody (ProteinTech, catalog number: 6004-1-Ig), SOX2 antibody (Santa Cruz Biotechnology, catalog number: sc-17320), CD133 antibody (ProteinTech, catalog number:). 18470-1-AP), POU3F3 antibody (Cell Signaling Technology, catalog number: 12137S), OLIG2 antibody (Abcam, catalog number: ab109186), HRP-labeled anti-rabbit IgG antibody (Cell Signaling Technology, catalog number: 74).
  • HRP-labeled anti-mouse IgG antibody (Sigma Aldrich, catalog number: A9044), HRP-labeled anti-goat IgG antibody (Sigma Aldrich, catalog number: A4174), and HRP-labeled anti-rat IgG antibody (Sigma Aldrich, catalog number). : A5795). Detection was performed by using Clarity Max Western ECL Substrate (Bio-Rad Laboratories, Catalog No .: 1705062) and ChemiDoc Touch Imaging System (Bio-Rad Laboratories) according to the respective instructions.
  • FIGS. 6 to 10 The obtained results are shown in FIGS. 6 to 10.
  • malignant melanoma FIGS. 6 to 10
  • liver cancer FIG. 7
  • prostate cancer FIG. 8
  • gastric cancer FIG. 9
  • malignant brain tumor FIG. 10
  • the sphere-forming ability which is an index of self-renewal ability
  • the colony-forming ability which is an index of tumor-forming ability
  • attenuation of the expression of cancer stem cell markers was observed in all cancer types. It has been shown that in all cancer types, antitumor activity can be obtained by inhibiting the translation mechanism in which CDKAL1 is involved.
  • RMS-YM cells were harvested using trypsin according to conventional methods, and the recovered cells were resuspended in PBS to a cell concentration of 1 million cells / 100 ⁇ L. 100 ⁇ L of the obtained suspension (corresponding to 1 million cells) is injected subcutaneously into a 5-week-old female BALB / c-nu / nu mouse, followed by the time course of tumor size at the injection site. Changes were evaluated according to the report of Wu et al. (Wu W. et al., Clinical Cancer Research 2013 Oct 15; 19 (20): 5699-5710).
  • the maximum diameter of the tumor (Length) and the tumor diameter (Width) in the direction perpendicular to the maximum diameter are measured with a nogis over time, and the measurement results are applied to the following formula to measure the volume of the tumor (Tumor Volume). ) was asked.
  • Pi represents pi
  • Length represents the maximum diameter of the tumor
  • Width represents the tumor diameter in the direction perpendicular to Length.
  • Figure 11 shows the change in tumor size over time.
  • FIG. 11 in mice injected with RMS-YM cells infected with a lentivirus vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2) and knocked down CDKAL1, Lenti-shControl Significant suppression of tumor growth was observed compared to mice injected with RMS-YM cells infected with.
  • This result indicates that knockdown of CDKAL1 significantly reduces the growth ability of tumors formed from RMS-YM cells, which are rhabdomyosarcoma cells, and knockdown of CDKAL1 significantly reduces the ability to grow tumors at the in vivo level. Also show that a remarkable antitumor effect can be obtained.
  • cytolytic fluid for obtaining a polysome fraction from RD cells was collected according to the following procedure.
  • cycloheximide was added to the cell culture medium on the cell culture dish at a rate of 100 ⁇ g / mL and incubated at 37 ° C. for 5 minutes.
  • the cells were then lysed with RNA Lysis Buffer (15 mM Tris-HCl (pH 7.4), 15 mM MgCl 2 , 0.3 M NaCl, 1% TritonX-100, 0.1 mg / mL cycloheximide, 100 units / mL RNase inhibitor).
  • the obtained cell lysate was fractionated by sucrose density gradient (10-50%) ultracentrifugation. Ultracentrifugation was performed at 39,000 rpm for 90 minutes at 4 ° C.
  • RNA recovered from the heaviest fraction (9th to 11th fractions) is analyzed by RNA sequence as the most actively translated RNA (Actively Translated RNA), and as a comparison, cell lysis before fractionation is performed.
  • Total RNA contained in the fluid was analyzed by RNA sequence. The acquisition of RNA sequence information was outsourced to Rhelixa Co., Ltd.
  • the evaluation of the obtained analysis results is performed by plotting the amount of change in the expression level of RNA in cells on the horizontal axis and the amount of change in the amount of RNA contained in the polysome fraction on the vertical axis for RNA of each gene. gone.
  • the amount of change in the expression level of RNA in the cell is the total amount recovered from the cell lysate of RD cells infected with the lentivirus vector expressing shCDKAL1 without undergoing a fractionation step.
  • the fact that the expression level of RNA in a cell is changed by knockdown of CDKAL1 indicates that the gene corresponding to the RNA is regulated at the transcription level.
  • the amount of change in the amount of RNA contained in the polysome fraction is the RNA contained in the polysome fraction recovered from the cell lysate of RD cells infected with a lentivirus vector expressing shCDKAL1.
  • shCDKAL1 the fact that the amount of the RNA contained in the polysome fraction is changed even though the expression level of the RNA in the cell is not changed due to the knockdown of CDKAL1 corresponds to the RNA. It is shown that the gene is regulated at the translation level.
  • FIG. 12 shows the results of plotting the obtained measured values as described above.
  • infection with a lentiviral vector expressing shCDKAL1, that is, knockdown of CDKAL1 causes no change in the amount of RNA at the transcription level (the value on the horizontal axis does not change).
  • a plurality of gene groups in which the amount of RNA contained in the polysome fraction fluctuates (the value on the vertical axis fluctuates), that is, a group of genes subject to translation control by CDKAL1 have been identified.
  • FIG. 13 Among the gene clusters whose translation is suppressed by knockdown of CDKAL1 shown in FIG. 12 (that is, in FIG. 12, the gene cluster in which the value on the vertical axis decreases even though the value on the horizontal axis does not change). , Transcription factors were focused on and extracted, and changes in gene expression of each gene are shown in FIG. 13 as a heat map. As shown in FIG. 13, including SALL2, SP9, IRF2BPL, ZNF276, IFI35, YAP1, MIER1, HOXA7, PHF3, LBX2, KLF7, HOXB6, PLAG1, ZNF484, ZNF516, HLTF, HIC1, MAML2.
  • the translation inhibition rate was even higher for the SALL2, SP9, IRF2BPL, ZNF276, IFI35, YAP, and MIER1 genes.
  • Particularly strong translational repression was confirmed for the SALL2, SP9, IRF2BPL, ZNF276, and IFI35 genes, and the largest translational repression was observed for the SALL2 gene.
  • RD cells were infected with a lentiviral vector expressing shCDKAL1 and CDKAL1 was knocked down. That is, a medium containing Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl containing Lenti-shControl as a control was added to a medium in which about 500,000 RD cells were suspended in 4 mL of basal medium. 1 mL was added to make a total of 5 mL, and the mixture was seeded in a 60 mm cell culture dish.
  • cytolysates of RD cells were obtained and subjected to Western blotting according to the procedure described in Experiment 2.
  • the antibodies used for detection were GAPDH antibody (mouse monoclonal) (proteintech, catalog number: 6004-1-Ig), SALL2 antibody (Bethyl Laboratories, catalog number: A303-208A), HRP-labeled anti-rabbit IgG antibody. (Cell Signaling Technology, Catalog No .: 7074) and HRP-labeled anti-mouse IgG antibody (Cell Signaling Technology, Catalog No .: 7076).
  • FIG. 14A in RD cells infected with a lentiviral vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2), compared with RD cells infected with Lenti-shControl. It was confirmed that the expression of SALL2 was decreased. This result indicates that knockdown of CDKAL1 reduces the expression level of SALL2 at the protein level.
  • FIG. 14B when the expression level of the mRNA corresponding to SALL2 was confirmed by RT-PCR in the RD cells in which CDKAL1 was knocked down, the decrease in the expression of the SALL2 gene was observed at the level of the mRNA expression level. Not confirmed. That is, it was suggested that the decrease in the expression level of SALL2 confirmed by Western blotting was due to the suppression of translation by knockdown of CDKAL1.
  • shRNA encoded by the nucleotide sequence of SEQ ID NO: 9 and FIG. 28A in the sequence listing is referred to as “shSALL2 # 1”
  • shRNA encoded by the nucleotide sequence of SEQ ID NO: 13 and FIG. 28B of the sequence listing is referred to as “shSALL2 #”. 2 ".
  • the RNA sequences of shSALL2 # 1 and shSALL2 # 2 are as shown in FIGS. 28A and 10 and 28B and 14 respectively.
  • the lentiviral vectors expressing shSALL2 # 1 or shSALL2 # 2 are referred to as Lenti-shSALL2 # 1 and Lenti-shSALL2 # 2, respectively.
  • the RD cells were infected with the lentivirus vector expressing shSALL2 according to the procedure described in Experiment 6, except that the lentiviral vector expressing shSALL2 was used instead of the lentiviral vector expressing shCDKAL1. ..
  • Four days after infection RD cells infected with a lentiviral vector expressing shSALL2 were evaluated for sphere-forming ability and colonization ability of the RD cells according to the procedure described in Experiment 6. The obtained results are shown in FIGS. 14C and 14D.
  • Lenti-shControl was used in mice infected with a lentiviral vector expressing shSALL2 (Lenti-shSALL2 # 1 or Lenti-shSALL2 # 2) and injected with RMS-YM cells in which SALL2 was knocked down.
  • Significant suppression of tumor growth was observed as compared to mice injected with RMS-YM cells infected with.
  • This result indicates that knockdown of SALL2 significantly reduces the growth ability of tumors formed from RMS-YM cells, which are rhabdomyosarcoma cells, and knockdown of SALL2 significantly reduces the ability to grow tumors at the in vivo level. Also show that a remarkable antitumor effect can be obtained.
  • a plasmid (pTomo-HRas / hp53) constructed to express HRas in response to the expression of Cre recombinase and to express shRNA against the cancer suppressor gene p53 according to a conventional method (vector skeleton: obtained from pTomo vector (Addgene), Catalog number: 26291)) (FIG. 16A) was prepared, a lentiviral vector incorporating the plasmid was prepared according to the procedure of Experiment 1, and the obtained lentiviral vector was infected with C2C12 cells.
  • an adenovirus expressing Cre recombinase (Vector Biolabs, catalog number: 1045) was further infected at a ratio of 10 MOI (multiplicity of infection). After infecting with the adenovirus, the cells were cultured for another 7 days to obtain HRas / skip53-C2C12.
  • Control-C2C12 into which a control vector (pTomo-RFP-ires-GFP) was introduced into C2C12 cells instead of pTomo-HRas / shp53 was obtained according to the above procedure.
  • the medium used for cell culture in the above procedure is a basal medium.
  • Control-C2C12 cells did not form a tumor mass when subcutaneously infused into immunocompromised mice, whereas HRas / shp53-C2C12 cells were histopathologically rhabdomyosarcoma. Formed a tumor mass very similar to. This confirmed the establishment of a malignant tumor cell model and a normal cell model.
  • the expression level of CDKAL1 was increased in HRas / shop53-C2C12 cells as compared with Control-C2C12 cells. As a result, it was found that the expression level of CDKAL1 was increased in C2C12 cells in the process of malignant transformation.
  • the sphere forming ability was evaluated as an index of the self-renewal ability of Control-C2C12 cells and HRas / skip53-C2C12 cells. Specifically, Control-C2C12 cells and HRas / skip53-C2C12 cells were used instead of JK2 cells, and the sphere forming ability was determined in the same manner as in the procedure of Experiment 3 except that the lentiviral vector was not infected. evaluated. In this experiment, in addition to measuring the number of spheres, the state of sphere formation was photographed using an inverted research microscope (model number "IX71", Olympus Corporation). The obtained results are shown in FIG. 16D.
  • Control-C2C12 cells do not form spheres, i.e., do not have self-renewal ability, whereas HRas / skip53-C2C12 cells form spheres, i.e. acquire self-renewal ability. It became clear that they were doing it.
  • a lentiviral vector for expressing shRNA specific to mouse CDKAL1 was prepared according to the procedure described in Experiment 1. That is, as the DNA sequence encoding the shRNA targeting CDKAL1, instead of the DNA sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 5, SEQ ID NO: 17 or SEQ ID NO: 18, which is a base sequence specific to mouse CDKAL1, is used. A lentivirus vector was prepared in the same procedure as shown in Experiment 1 except that the described DNA sequence was used.
  • the lenti-mouse shCDKAL1 # 1 lenti-mouse shCDKAL1 prepared using the DNA sequence set forth in SEQ ID NO: 17 and the lenti-mouse shCDKAL1 prepared using the DNA sequence set forth in SEQ ID NO: 17 are used. # 2 ".
  • the knockdown of CDKAL1 and the evaluation of the sphere forming ability were performed according to the procedure described in Experiment 3. That is, except that Control-C2C12 cells and HRas / shp53-C2C12 cells were used instead of JK2 cells, and Lenti-mouse shCDKAL1 # 1 or Lenti-mouse shCDKAL1 # 2 was used as the lenti-mouse shCDKAL1 # 2, in Experiment 3.
  • the cells were infected with a lentiviral vector, knocked down CDKAL1, and then evaluated for sphere-forming ability in the same procedure as described. Further, after infecting the lentiviral vector in the same manner and knocking down CDKAL1, the expression level of CDKAL1 was evaluated by Western blotting according to the procedure shown in Experiment 2. The obtained results are shown in FIG. 16E.
  • the knockdown of CDKAL1 and the evaluation of the sphere forming ability were performed according to the procedure described in Experiment 6. That is, Experiment 6 except that Control-C2C12 cells and HRas / shp53-C2C12 cells were used instead of RD cells, and Lenti-mouse shCDKAL1 # 1 or Lenti-mouse shCDKAL1 # 2 was used as the lenti-mouse shCDKAL1 # 2 as a lenti-virus vector. Control-C2C12 cells and HRas / skip53-C2C12 cells were infected with a lentiviral vector in the same procedure as described in 1 and evaluated for colony viability. The obtained results are shown in FIG. 16F.
  • CDKAL1 is not essential for the maintenance and proliferation of normal cells, whereas CDKAL1 is essential for the maintenance and proliferation of cancerous cells. That is, suppression of CDKAL1 expression, inhibition of translation involving CDKAL1, or suppression of expression of a gene translated with CDKAL1 involved has a very small effect on normal cells, and is a low-toxic and effective cancer. It has been shown that it can be a means of treatment.
  • CDKAL1 has an UPF domain, a Radical SAM domain, a TRAM domain, and a Hydrophobic domain in order from the amino-terminal (N-terminal) side. ..
  • various CDKAL1 variants in which each domain was deleted or mutated were prepared, and which domain of CDKAL1 was important for the stabilizing action of the translation initiation factor complex by CDKAL1 was examined.
  • CDKAL1 WT represents wild-type CDKAL1 and has the amino acid sequence represented by SEQ ID NO: 19.
  • CDKAL1 6CA is a variant in which 6 cysteines in the UPF domain and Radical SAM domain are replaced with alanine, and lacks the function as a tRNA modifying enzyme.
  • the amino acid sequence is as set forth in SEQ ID NO: 21.
  • CDKAL1 deltaC , CDKAL1 deltaTC , CDKAL1 UPF , and CDKAL1 deltaN are deletion variants as shown in FIG. 17B.
  • CDKAL1 UPF deletes the amino acid sequence on the C-terminal side including the Radical SAM domain, TRAM domain and Hydrophobic domain
  • CDKAL1 deltaN deletes the amino acid sequence on the N-terminal side including the UPF domain.
  • the amino acid sequences of CDKAL1 deltaC , CDKAL1 deltaTC , CDKAL1 UPF , and CDKAL1 deltaN are as set forth in SEQ ID NOs: 23, 25, 27, and 29, respectively.
  • Lentiviral vectors expressing each variant of CDKAL1 WT and CDKAL1 were prepared according to the procedure described in Experiment 1. That is, pLKO. Instead of 1 puro-SHRNA plasmid (10 ⁇ g), pTomo plasmid (10 ⁇ g; vector skeleton (pTomo vector) was obtained from Addgene, catalog number: 26291) in which the DNA sequence encoding each CDKAL1 mutant was inserted was obtained from psPAX2 (7. 5 ⁇ g) and pMD 2. It was prepared in the same manner as in Experiment 1 except that it was transfected into 293FT cells together with G (2.5 ⁇ g).
  • CDKAL1 WT The DNA sequences encoding CDKAL1 WT , CDKAL1 6CA , CDKAL1 deltaC , CDKAL1 deltaTC , CDKAL1 UPF , and CDKAL1 deltaN are as described in SEQ ID NOs: 20, 22, 24, 26, 28, and 30, respectively. be.
  • CDKAL1 variant on translation initiation factor complex stabilizing action CDKAL1 expression in RD cells in which the above lentivirus vector was infected with RD cells and overexpressed wild-type CDKAL1 or CDKAL1 variant.
  • the variant of CDKAL1 can stabilize the translation initiation factor complex. We verified whether it would contribute. The specific procedure is as shown below.
  • RD cells were infected with a lentiviral vector to express wild-type CDKAL1 or CDKAL1 mutants. That is, wild-type CDKAL1, a variant of CDKAL1, or green fluorescent protein as a negative control in a cell suspension in which approximately 500,000 (5 ⁇ 10 5 ) RD cells were suspended in 4 mL of basal medium. 1 mL of a lentiviral vector-containing medium containing a lentiviral vector expressing (GFP) was added to make a total of 5 mL. The mixed solution was seeded in a cell culture dish having a diameter of 60 mm and incubated in an environment of 37 ° C. and 5% CO 2 for 3 days according to a conventional method. This overexpressed wild-type CDKAL1, a mutant of CDKAL1, or GFP in RD cells.
  • wild-type CDKAL1, a variant of CDKAL1, or green fluorescent protein as a negative control in a cell suspension in which approximately 500,000 (5 ⁇ 10 5 )
  • a lenti-shCDKAL1 # 1 lentiviral vector (Lenti-shCDKAL1 # 1) expressing shRNA targeting CDKAL1 prepared in Experiment 1 was applied to RD cells expressing wild-type CDKAL1, a mutant of CDKAL1, or GFP. Infected. That is, three days after infection with the wild-type CDKAL1, a mutant of CDKAL1, or a lentiviral vector expressing GFP, Lenti-shCDKAL1 # 1 or Lenti-shControl as a negative control was further infected.
  • a lentiviral vector-containing medium containing Lenti-shCDKAL1 # 1 or Lenti-shControl was added to a cell suspension in which approximately 500,000 RD cells were suspended in 4 mL of basal medium, for a total of. The volume was 5 mL.
  • the mixed solution was seeded in a cell culture dish having a diameter of 60 mm and incubated in an environment of 37 ° C. and 5% CO 2 for 3 days according to a conventional method. After incubation for 3 days, precipitation with m7GTP beads and Western blotting were performed in the same procedure as shown in Experiment 2. The obtained results are shown in FIG. 17C.
  • a mutant library in which amino acids that may undergo post-translational modification shown in FIG. 18A were mutated was prepared.
  • Variants were prepared by site-directed mutagenesis according to a conventional method. More specifically, for the amino acid to which the mutation is to be introduced, oligo primers (forward primer and reverse primer) designed to contain the post-mutation DNA sequence in the center were prepared, and PCR was performed using pTomo-CDKAL1 WT as a template. ..
  • the reagent used for PCR was KOD FX (Toyobo Co., Ltd., catalog number: KFX-101), and was used according to the package insert attached to the product.
  • coli-containing solution was seeded on an LB plate containing 50 ⁇ g / mL ampicillin and cultured at 37 ° C. for 16 hours. The next day, the colonies formed on the LB plate were collected, mixed with LB medium containing 50 ⁇ g / mL ampicillin, and further cultured at 37 ° C. for 16 hours. From the obtained culture medium, a DNA plasmid was purified according to a conventional method, and it was confirmed by DNA sequence analysis that the mutation was introduced.
  • the CDKAL1 mutant having the S18A / S22A, N107Q, and S153A mutations could not rescue the decrease in self-renewal ability due to the suppression of CDKAL1 expression by RNAi. rice field.
  • the above results indicate that the stabilizing effect of the translation initiation factor complex is impaired in the CDKAL1 mutant having the S18A / S22A, N107Q, and S153A mutations.
  • RD cells were seeded in a culture dish having a diameter of 35 mm so as to be about 80% confluent.
  • tunicamycin (CAS number: 11089-65-9) as an N-linked glycosylation inhibitor
  • BIO (6-bromoindirubin-30-oxime, CAS number: 667463-62-9) as an inhibitor of phosphorylation by GSK3.
  • CHIR-98014 (CAS number: 252935-94-7), or K252a (CAS number: 97161-97-2) as an inhibitor of phosphorylation by phosphorylase kinase was replaced with a medium containing a concentration of 5 ⁇ M, 37.
  • RNA and protein were extracted according to a conventional method and subjected to cDNA preparation and Western blotting for quantitative PCR, respectively.
  • RNA extraction was used according to the package insert attached to the product.
  • the extracted RNA was treated with DNase I (Takara Bio Inc., catalog number: 2270A, used according to the package insert), and cDNA was prepared based on this.
  • DNase I Takara Bio Inc., catalog number: 2270A, used according to the package insert
  • cDNA was prepared based on this.
  • PrimeScript RT Master Mix Takara Bio Inc., catalog number: RR036B was used according to the package insert attached to the product.
  • the obtained cDNA was subjected to quantitative PCR.
  • Quantitative PCR was performed using Luna Universal qPCR Master Mix (New England Biolabs, catalog number: M3003E) and Rotor-Gene Q (QIAGEN, catalog number: 9001630) according to the package insert attached to each product.
  • Western blotting was performed according to the procedure shown in Experiment 2. The obtained results are shown in FIG. 18C.
  • the specific experimental procedure is as follows.
  • the RD cells were cultured in the same procedure as described in Experiment 15.3, except that the RD cells were seeded in a 100 mm culture dish so as to be about 80% confluent instead of the 35 mm diameter culture dish. , Treated with each inhibitor. Then, according to the procedure described in Experiment 2, the protein was recovered, fractionated, and subjected to Western blotting. The obtained results are shown in FIG. 18D.
  • N-linked glycosylation inhibitors and GSK3 inhibitors showed that the above post-translational modifications were inhibited and that the expression of genes involved in the translation of CDKAL1 was effectively suppressed.
  • N-linked glycosylation inhibitors and GSK3 inhibitors having an action of inhibiting the translation mechanism involved in CDKAL1 can be suitably used for the treatment of rare cancers including rhabdomyosarcoma and malignant brain tumor.
  • the translation mechanism in which CDKAL1 is involved is considered to be an essential translation mechanism for the translation of specific genes such as SALL2.
  • the 5'untranslated region (5'UTR: 5'Untranslated Region) of the mRNA to be translated is cytosine (C) and guanine (5'UTR: 5'Untranslated Region). It is known to be rich in G) and have a characteristic secondary structure. Therefore, we have described 2 of the base sequence encoding the reporter protein and the base sequence of 5'UTR of mRNA translated by the translation mechanism involving CDKAL1 on the upstream side, that is, the 5'end side.
  • RNA construct having one base sequence it may be possible to easily evaluate the activity of the translation mechanism in which CDKAL1 is involved by measuring the production amount of the reporter protein which is the translation product of the RNA construct. It was verified by the experiment shown in.
  • RNA construct having a base sequence encoding firefly luciferase as a reporter protein and a base sequence of 5'UTR of the plasmid of SALL2 as an untranslated region on the upstream side, that is, on the 5'end side (upper part of FIG. 19).
  • a plasmid produced as a transcript in cells (hereinafter, this plasmid is referred to as "SALL2-5'UTR-firefly luciferase reporter plasmid”) was prepared according to a conventional method.
  • the base sequence encoding SALL2-5'UTR-firefly luciferase in the prepared SALL2-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 31 in the sequence listing, and SALL2 is included in the base sequence.
  • the base sequence corresponding to the 5'untranslated region is as shown in SEQ ID NO: 32 of the sequence listing.
  • a plasmid that produces an RNA construct having a sequence (middle, bottom in FIG. 19) as a transcript in cells (hereinafter, these plasmids are referred to as "GAPDH-5'UTR-firefly luciferase reporter plasmid" or "ACTB-5'UTR-”.
  • a firefly luciferase reporter plasmid ) was prepared according to a conventional method.
  • the base sequence encoding GAPDH-5'UTR-firefly luciferase in the prepared GAPDH-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 33 in the sequence listing.
  • the base sequence corresponding to the 5'untranslated region is as shown in SEQ ID NO: 34 in the sequence listing.
  • the base sequence encoding ACTB-5'UTR-firefly luciferase in the prepared ACTB-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 35 in the sequence listing, and in the base sequence, ACTB The base sequence corresponding to the 5'untranslated region is as shown in SEQ ID NO: 36 of the sequence listing.
  • the lentiviral vector expressing shCDKAL1 was infected and the CDKAL1 was knocked.
  • the above plasmid was transfected into downed RD cells and RD cells infected with a lentiviral vector expressing shControl.
  • RD cells infected with a lentiviral vector expressing shCDKAL1 and incubated for 4 days were isolated by trypsin treatment according to a conventional method, and isolated RD cells.
  • 2 ⁇ g of SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH-5'UTR-firefly luciferase reporter plasmid, or ACTB-5'UTR-firefly luciferase reporter plasmid were efficiency of introducing the plasmid into cells.
  • pGL4.74 [hRluc / TK] vector Luciferase reporter plasmid As an index internal standard, 2 ⁇ g of pGL4.74 [hRluc / TK] vector Luciferase reporter plasmid (Promega, Catalog No .: E6921) was transfected. The transfection was performed using TransIT-LT1 Reagent (Takara Bio Inc., catalog number: MIR2300) as a lipofection reagent. The mixing ratio and procedure of each reagent followed the instructions attached to the product.
  • the luciferase activity in the cell into which each reporter plasmid was introduced is shown by the value obtained by dividing the luciferase activity of the sea urchin shiitake mushroom, which is an internal standard, by the luciferase activity.
  • RD cells were cultured in a 60 mm culture dish to a cell density of 80% confluent.
  • the medium used for cell culture is the basic medium.
  • 4 ⁇ g of SALL2-5'UTR-firefly luciferase reporter plasmid and 2 ⁇ g of pGL4.74 [hRluc / TK] vector Umi Shiitake mushroom luciferase reporter plasmid (Promega, Catalog No .: E6921) were transfected.
  • the transfection was performed using TransIT-LT1 Reagent (Takara Bio Inc., catalog number: MIR2300) as a lipofection reagent.
  • each reagent followed the instructions attached to the product.
  • luciferase activity was measured in the cells to which each test target compound was added, or to the cells to which the control substance DMSO was added as a control.
  • luciferase activity use the Dual-Glo Luciferase Assay System (Promega, catalog number: E2940) and luminometer (product name "MicroLumat Plus LB 96V", BERTHOLD) according to the respective package inserts. Was done by.
  • tunicamycin exerts a stronger inhibitory effect on translations involving CDKAL1 than Go6983. Therefore, the effect of tunicamycin, which is a hit compound obtained by the above-mentioned screening method, on the tumorigenicity of RD cells was evaluated. That is, 6-well cells with RD cells suspended in a basal medium containing 0 ⁇ M, 0.1 ⁇ M, 0.5 ⁇ M, 2 ⁇ M, or 5 ⁇ M tunicamycin so that the number of cells per well is about 5,000. A total of 3 wells were sown on the culture plate. The amount of basal medium per well is 3 mL.
  • FIG. 23 shows a photograph (FIG. 23A) of colony formation by RD cells after culturing in a basal medium containing 0 ⁇ M or 5 ⁇ M tunicamycin for 2 weeks as a typical appearance of experimental results, and RD cells having each concentration.
  • the measurement result (FIG. 23B) of the number of colonies formed after culturing in the basal medium containing tunicamycin for 2 weeks is shown.
  • RD cells cultured in a medium containing 0.1 ⁇ M or more of tunicamycin did not form any observable colonies. This result indicates that tunicamycin has an effect of suppressing the tumorigenicity of RD cells.
  • these compounds can be suitably used as a substance that inhibits translation involving CDKAL1 and further as a substance that suppresses the tumorigenicity of cancer stem cells.
  • a substance that inhibits translation in which CDKAL1 is involved can be efficiently and easily obtained.
  • the above 101 compounds are classified based on the diseases for which the compounds have been conventionally used (in the case of compounds used for a plurality of diseases, the diseases that are the main target of application (FIGS. 24 and 25).
  • the diseases were classified based on the diseases listed on the left side), and the breakdown was 16 types of cardiovascular disease-related drugs, 5 types of endocrine disease-related drugs, 32 types of infectious disease-related drugs, and inflammation / immune diseases. There are 11 related drugs, 8 metabolic disease-related drugs, 24 neurological disease-related drugs, and 5 other drugs.
  • CDKAL1 is involved among FDA-approved compounds that have not been used for cancer treatment in the past. A large number of compounds have been found that have activity that inhibits translation. This result strongly indicates that the translation mechanism involving CDKAL1 is a completely new drug discovery target, and these compounds that strongly inhibit the translation involving CDKAL1 are active ingredients of agents for the treatment of cancer. It has been shown that it can be suitably used.
  • RNA sequencing was performed. Specifically, a sequence common to a group of genes (FIG. 26A, in a trapezoid) whose translation is suppressed by suppressing the expression of CDKAL1 was analyzed using a MEME (Multiple Em for Motif Elicitation) program.
  • MEME Multiple Em for Motif Elicitation
  • GES Guide-enriched sequence
  • CES Cytosine-enriched sequence
  • the identified minimal GES (hereinafter, also referred to as "mGES") is as shown in FIG. 26B, with GGCGGGCGGGCGCGCGCC as the basic sequence, the first G may be A, the second G may be C, and the second G may be C.
  • the third C may be A
  • the fourth G may be A
  • the fifth G may be C
  • the sixth C may be A
  • the seventh G may be A or C
  • the eighth G may be A
  • 9th C may be U or A
  • 10th G may be A or U
  • 11th G may be C
  • 12th C may be A, 13th G. May be U or C or A
  • the 14th G may be U or A or C
  • the 15th C may be G or A or U.
  • the identified minimal CES (hereinafter, also referred to as "mCES") is as shown in FIG. 26B, with GCCGCCGCCGCCGCC as the basic sequence, the first G may be U or C, and the second C may be.
  • the third C may be U
  • the fourth G may be U or C
  • the fifth C may be U
  • the sixth C may be A or U
  • the seventh G may be U.
  • the 8th C may be U
  • the 9th C may be G
  • the 10th G may be U
  • the 11th C may be G
  • the 12th C may be U
  • G may be U
  • 14th C may be U
  • 15th C may be G.
  • mRNA containing mGES or mCES in 5'UTR was subject to translation control by CDKAL1.
  • a base sequence encoding firefly luciferase as a reporter protein, and a base sequence containing four mGES (4 ⁇ mGES) in the 5'UTR on the upstream side, that is, the untranslated region on the 5'end side Alternatively, a plasmid that produces an mRNA having a base sequence containing 4 mCES (4 ⁇ mCES) as a transcript in cells (hereinafter, this plasmid is referred to as “4 ⁇ mGES-5'UTR-firefly luciferase reporter plasmid” and "4 x mCES-5'UTR-firefly luciferase reporter plasmid" was prepared according to a conventional method.
  • the base sequence encoding 4 ⁇ mGES-5'UTR-firefly luciferase in the 4 ⁇ mGES-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 37 in the sequence listing.
  • the base sequence corresponding to the 5'untranslated region containing 4 ⁇ mGES is as shown in SEQ ID NO: 38 in the sequence listing.
  • the base sequence corresponding to mGES is as shown in FIG. 29A.
  • the base sequence encoding 4 ⁇ mCES-5'UTR-firefly luciferase in the 4 ⁇ mCES-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 39 in the sequence listing.
  • the base sequence corresponding to the 5'untranslated region containing 4 ⁇ mCES is as shown in SEQ ID NO: 40 in the sequence listing.
  • the base sequence corresponding to mCES in the base sequence corresponding to the 5'untranslated region containing 4 ⁇ mCES is as shown in FIG. 29B.
  • siRNA siRNA targeting CDKAL1.
  • siRNA siRNA targeting CDKAL1
  • siControl siRNA that does not target any gene as a negative control
  • siRNA siRNA targeting CDKAL1
  • the base sequence of siRNA (siCDKAL1) targeting CDKAL1 is as described in SEQ ID NOs: 41 and 42 in the sequence listing.
  • siRNA Silence Select Negative Control No. 1 siRNA (Thermo Fisher Scientific, Catalog No .: 4390843) (hereinafter, this siRNA is referred to as "siControl”) was used.
  • siCDKAL1 or siControl was introduced into RD cells. That is, RD cells were seeded into a 35 mm culture dish so as to be about 80% confluent. The next day, mix 60 pm Albanyl of siRNA (siCDKAL1 or siControl) with 10 ⁇ L of Lipofectamine TM RNAiMAX Transfection Regent (Thermo Fisher Scientific) and 500 ⁇ L of Opti-MEM. A mixture was prepared, the resulting mixture was added dropwise to the medium, and then incubated in an environment of 37 ° C. and 5% CO 2 for 48 hours.
  • cells are isolated by trypsin treatment, the isolated cells are suspended in a basal medium, and the number of cells per well is 1 ⁇ 10 4 (10,000 cells). Seeded into 96-well plates and incubated for 24 hours.
  • each reporter plasmid was introduced into RD cells by the following procedure. That is, SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH-5'UTR-firefly luciferase reporter plasmid, ACTB-5'UTR-firefly luciferase reporter plasmid, 4 ⁇ mGES-5 at a dose of 0.1 ⁇ g per well.
  • SALL2-5'UTR-firefly luciferase reporter plasmid GAPDH-5'UTR-firefly luciferase reporter plasmid
  • ACTB-5'UTR-firefly luciferase reporter plasmid 4 ⁇ mGES-5 at a dose of 0.1 ⁇ g per well.
  • the expression of the luciferase reporter having the 5'UTR base sequence of GAPDH and ACTB mRNA is not affected by the knockdown of CDKAL1, whereas the expression of 5'UTR containing mGES or mCES is unaffected.
  • the expression of the luciferase reporter having a base sequence was significantly reduced by knockdown of CDKAL1.
  • the degree of decrease in the expression of the luciferase reporter by knockdown of CDKAL1 was the degree of decrease in the expression of the luciferase reporter in the 5'UTR of SALL2 mRNA, which is a positive control.
  • the expression was as low as or higher than that of the luciferase reporter having a base sequence.
  • This result indicates that mRNA having mGES or mCES in 5'UTR is subject to translational control by the translation mechanism in which CDKAL1 is involved. Even when the number of mGES or mCES contained in the 5'UTR was changed from 4, 2, 6, or 8, a decrease in the expression of the luciferase reporter due to knockdown of CDKAL1 was observed.
  • SEQ ID NO: 1 DNA sequence encoding the first shRNA targeting human CDKAL1 (shCDKAL1 # 1)
  • SEQ ID NO: 2 RNA of shCDKAL1 # 1
  • SEQ ID NO: 3 of the sense strand of siRNA that can arise from shCDKAL1 # 1.
  • RNA SEQ ID NO: 4 RNA sequence number 5 of the antisense strand of siRNA that can result from shCDKAL1 # 1: DNA sequence number 6: shCDKAL1 encoding a second shRNA (shCDKAL1 # 2) that targets human CDKAL1.
  • RNA sequence of # 2 SEQ ID NO: 7 RNA sequence of siRNA sense strand that can result from shCDKAL1 # 2: RNA sequence number 8: RNA sequence of siRNA antisense strand that can result from shCDKAL1 # 2: Targeting human SALL2 RNA sequence of the DNA sequence encoding the first shRNA (shSALL2 # 1) 10: RNA sequence of shSALL2 # 1 11: RNA sequence of the sense strand of siRNA that can be derived from shSALL2 # 1 From shSALL2 # 1 RNA sequence of antisense strand of possible siRNA SEQ ID NO: 13: DNA sequence encoding a second shRNA (shSALL2 # 2) targeting human SALL2 SEQ ID NO: 14: RNA sequence of shSALL2 # 2 SEQ ID NO: 15: shSALL2 RNA sequence number 16 of the sense strand of siRNA that can result from # 2: RNA sequence number 17 of the antisense strand of siRNA that can arise from shSALL2 # 2: first shRNA
  • SEQ ID NO: 33 DNA sequence encoding GAPDH-5'UTR-firefly luciferase
  • SEQ ID NO: 34 Corresponding to the 5'untranslated region of the mRNA of the human GAPDH gene in the DNA sequence encoding the GAPDH-5'UTR-firefly luciferase reporter.
  • DNA sequence to be sequenced SEQ ID NO: 35: DNA sequence encoding ACTB-5'UTR-firefly luciferase
  • SEQ ID NO: 36 5'untranslated human ACTB gene mRNA in the DNA sequence encoding ACTB-5'UTR-firefly luciferase reporter.
  • DNA sequence corresponding to the RNA sequence of the 5'untranslated region of an mRNA SEQ ID NO: 39: 4 ⁇ mCES-5'UTR-DNA sequence encoding the firefly luciferase
  • a new agent for cancer treatment targeting a specific translation mechanism in cancer cells or cancer stem cells is provided. Further, according to the screening method according to another aspect of the present invention, it is possible to efficiently screen a substance that inhibits a specific translation mechanism in cancer cells or cancer stem cells. These agents or substances obtained by the screening method can be expected to be applied as therapeutic agents for cancer, and the industrial applicability of the present invention is great.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention addresses the problem of providing an agent for cancer therapy, said agent targeting translation specific to cancer cells or cancer stem cells or a gene expressed by the translation and, as a result, being capable of inhibiting the proliferation of the cells or eliminating the stemness thereof. To solve this problem, provided is an agent for cancer therapy that comprises, as an active ingredient, an ingredient capable of inhibiting the expression of a gene in the translation of which CDKAL1 participates.

Description

がん治療のための剤、及び、その有効成分のスクリーニング方法Screening method for agents for cancer treatment and their active ingredients
 本発明は、がん治療のための剤、及び、その有効成分のスクリーニング方法に関する。 The present invention relates to an agent for treating cancer and a method for screening an active ingredient thereof.
 哺乳動物細胞における遺伝子の発現は、DNAからメッセンジャーRNA(以下、「mRNA」ということもある)への転写と、転写産物であるmRNAを鋳型としてタンパク質を合成する翻訳の2つのプロセスから成り立っている。上記2つのプロセスのうち、転写を制御する因子に関しては、転写産物であるmRNAの網羅的な解析技術の発展により理解が進んできているが、その一方で、翻訳を制御する因子に関しては、技術点な制約もあり十分に理解が進んでいるとは言えない。 Gene expression in mammalian cells consists of two processes: transcription from DNA to messenger RNA (hereinafter sometimes referred to as "mRNA") and translation into which a protein is synthesized using the transcript mRNA as a template. .. Of the above two processes, the factors that control transcription have been better understood due to the development of comprehensive analysis technology for mRNA, which is a transcript, while the factors that control translation have been developed. It cannot be said that the understanding is sufficiently advanced due to some restrictions.
 一方、近年の核酸解析技術の進歩により、がん研究の分野において、がん幹細胞の幹細胞性を司る因子の多くが、翻訳によって発現制御されていることが明らかとなってきている。がん幹細胞とは、がん組織に存在するがん細胞のうち幹細胞性を示す細胞であり、がん組織に存在する極めて少数のがん幹細胞が、がん組織の増殖、転移、再発等を引き起こす原因であると考えられている。がん細胞、又は、がん幹細胞における翻訳を阻害することにより、がん幹細胞の増殖を抑制、又は、がん幹細胞の幹細胞性を失わせることができれば、がんの治療薬としての応用が期待できるが、本発明者らの知る限り、がん細胞、又は、がん幹細胞において選択的に翻訳を阻害することにより治療効果を奏する医薬品は知られていない。 On the other hand, due to recent advances in nucleic acid analysis technology, it has become clear that in the field of cancer research, the expression of many of the factors that control the stem cell nature of cancer stem cells is regulated by translation. Cancer stem cells are cancer cells existing in cancer tissue that show stem cell properties, and an extremely small number of cancer stem cells present in cancer tissue cause proliferation, metastasis, recurrence, etc. of the cancer tissue. It is believed to be the cause. If it is possible to suppress the growth of cancer stem cells or lose the stem cell nature of cancer stem cells by inhibiting translation in cancer cells or cancer stem cells, it is expected to be applied as a therapeutic drug for cancer. However, as far as the present inventors know, there is no known drug that exerts a therapeutic effect by selectively inhibiting translation in cancer cells or cancer stem cells.
 mRNAからタンパク質への翻訳を阻害することにより、細胞殺傷効果を示す化合物は数多く知られているが、いずれも、細胞内のタンパク質合成を非選択的に阻害する。例えば、細菌の一種であるStreptomyces griseusが産生するシクロヘキシミドは、翻訳過程にあるmRNA上に存在するリボソームの移動を阻害することで蛋白質の合成、すなわち、翻訳を阻害する。また、抗生物質の一つであるピューロマイシンは、正常なアミノアシルtRNAの代わりにリボソームに入り込み蛋白質の合成を阻害する。このように既存の翻訳阻害剤は、非選択的にタンパク質の翻訳を阻害するため、正常細胞に対しても強い毒性を示したり、催奇形性を有したりするという欠点がある。 Many compounds that exhibit cell-killing effects by inhibiting the translation of mRNA into protein are known, but all of them non-selectively inhibit intracellular protein synthesis. For example, cycloheximide produced by Streptomyces griseus, a type of bacterium, inhibits protein synthesis, that is, translation by inhibiting the migration of ribosomes present on mRNA during translation. In addition, puromycin, which is one of the antibiotics, enters the ribosome instead of normal aminoacyl-tRNA and inhibits protein synthesis. As described above, existing translation inhibitors have the drawbacks of being highly toxic to normal cells and having teratogenicity because they non-selectively inhibit the translation of proteins.
 一方、CDKAL1(Cdk5 regulator subunit associated protein 1-like 1)は、リジンコドンAAA及びAAGに対応するtRNAであるtRNALys(UUU)を選択的に認識し、当該tRNAの37番目のアデニンをチオメチル化する働きを有するtRNAの修飾酵素である(非特許文献1)。CDKAL1をコードする遺伝子の変異は、インスリン応答性の低下や2型糖尿病の発症リスクの上昇に関係していることが知られており(非特許文献2)、CDKAL1は糖尿病の研究分野において広く研究されている。例えば、膵β細胞においては、CDKAL1の発現量が低下、又は、CDKAL1の活性が低下し、リジンtRNAのチオメチル化率が低下すると、インスリン分泌量が低下することが報告されている(非特許文献3)。しかしながら、本発明者らの知る限りにおいて、CDKAL1とがん細胞との関わりについては知られていない。 On the other hand, CDKAL1 (Cdk5 regulatory subunit assisted protein 1-like 1) selectively recognizes tRNALys (UUU), which is a tRNA corresponding to the lysine codon AAA and AAG, and has a function of thiomethylating the 37th adenine of the tRNA. It is a tRNA modifying enzyme having (Non-Patent Document 1). Mutations in the gene encoding CDKAL1 are known to be associated with decreased insulin responsiveness and increased risk of developing type 2 diabetes (Non-Patent Document 2), and CDKAL1 has been widely studied in the field of diabetes research. Has been done. For example, in pancreatic β cells, it has been reported that when the expression level of CDKAL1 decreases or the activity of CDKAL1 decreases and the thiomethylation rate of lysine tRNA decreases, the insulin secretion amount decreases (Non-Patent Document). 3). However, as far as the present inventors know, the relationship between CDKAL1 and cancer cells is unknown.
 本発明は、上述したような従来技術の課題に鑑みて為されたものであり、がん細胞又はがん幹細胞に特異的な翻訳、又は、そのような翻訳により発現する遺伝子を標的とすることにより、これらの細胞の増殖を抑制、又は、がん幹細胞の幹細胞性を失わせることができる、がん治療のための剤、又は、そのような剤の有効成分として好適に用いることができる物質のスクリーニング方法を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and targets a cancer cell or a cancer stem cell-specific translation, or a gene expressed by such translation. A substance for cancer treatment, which can suppress the proliferation of these cells or lose the stem cell property of cancer stem cells, or a substance which can be suitably used as an active ingredient of such an agent. It is an object to provide a screening method for the above.
 本発明者らは、上記課題を解決しようと鋭意研究努力を続ける過程において、CDKAL1が、がん幹細胞において、遺伝子の翻訳、より詳細には、粗面小胞体上における翻訳開始因子複合体の形成に関与していることを見出した。上述したとおり、CDKAL1はリジンtRNAを修飾する働きにより、2型糖尿病の発症との関わりが報告されているにとどまり、CDKAL1が、細胞において、しかも、がん幹細胞においてmRNAからタンパク質への翻訳に関与しているという知見は、本発明者らにとって全く意外な知見であった。そこで、本発明者らは、がん幹細胞において、CDKAL1が関与する翻訳機構により翻訳される遺伝子群が有する役割に着目して、さらに鋭意研究努力を重ねた結果、驚くべきことに、がん幹細胞において、CDKAL1が翻訳に関与する遺伝子の発現を抑制することにより、がん幹細胞の幹細胞性、造腫瘍能又は自己複製能が失われ、優れた抗腫瘍効果が得られることを見出し、本発明を完成した。 In the process of continuing research efforts to solve the above problems, the present inventors translate CDKAL1 into genes in cancer stem cells, and more specifically, to form translation initiation factor complexes on rough endoplasmic reticulum. Found to be involved in. As mentioned above, CDKAL1 has only been reported to be involved in the development of type 2 diabetes by modifying lysine tRNA, and CDKAL1 is involved in the translation of mRNA into protein in cells and in cancer stem cells. The finding that it is done was a completely unexpected finding for the present inventors. Therefore, as a result of further diligent research efforts, the present inventors focused on the role of genes translated by the translation mechanism involved in CDKAL1 in cancer stem cells, and as a result, surprisingly, cancer stem cells. In the present invention, it was found that by suppressing the expression of a gene involved in translation by CDKAL1, the stem cell property, tumorigenicity or self-renewal ability of cancer stem cells is lost, and an excellent antitumor effect can be obtained. completed.
 すなわち、本発明は、CDKAL1がその翻訳に関与する遺伝子の発現を抑制する成分を有効成分として含む、がん治療のための剤、を提供することにより上記課題を解決するものである。本発明者らが見出した知見によれば、CDKAL1が関与する翻訳機構は、がん細胞、特に、がん幹細胞において特異的に活性化しており、当該翻訳機構を介して翻訳される遺伝子の発現は、がん幹細胞の幹細胞性の維持、自己複製能の維持、造腫瘍能の維持に重要な役割を果たしている。従って、CDKAL1がその翻訳に関与する遺伝子の発現を抑制することにより、がん細胞の自己複製能又は造腫瘍能を抑制することができ、ひいては、抗腫瘍効果を得ることができる。 That is, the present invention solves the above-mentioned problems by providing an agent for treating cancer, which comprises, as an active ingredient, a component in which CDKAL1 suppresses the expression of a gene involved in its translation. According to the findings found by the present inventors, the translation mechanism in which CDKAL1 is involved is specifically activated in cancer cells, particularly cancer stem cells, and the expression of genes translated through the translation mechanism. Plays an important role in maintaining the stem cell nature of cancer stem cells, maintaining their self-renewal ability, and maintaining their tumorigenicity. Therefore, by suppressing the expression of the gene involved in the translation of CDKAL1, the self-renewal ability or tumor-forming ability of cancer cells can be suppressed, and thus an antitumor effect can be obtained.
 本発明の一態様に係る前記剤は、CDKAL1がその翻訳に関与する遺伝子の発現を選択的に抑制することができる限りにおいて、DNAからタンパク質の産生に至る遺伝子の発現プロセスのうち、いずれの段階、或いは、いずれの分子に作用して遺伝子の発現を抑制するものであっても良い。CDKAL1がその翻訳に関与する遺伝子の発現の抑制は、例えば、CDKAL1の発現を抑制すること、CDKAL1がその翻訳に関与する遺伝子の転写産物であるmRNAを減少させること、あるいは、mRNAから蛋白質への翻訳を阻害することにより達成され得る。 The agent according to one aspect of the present invention is any stage of the gene expression process leading from DNA to protein production, as long as CDKAL1 can selectively suppress the expression of the gene involved in its translation. Alternatively, it may act on any molecule to suppress gene expression. Suppression of the expression of a gene in which CDKAL1 is involved in its translation is, for example, suppression of the expression of CDKAL1, reduction of mRNA in which CDKAL1 is a transcript of the gene involved in its translation, or from mRNA to protein. It can be achieved by inhibiting translation.
 また、本発明は、他の一側面において、CDKAL1が関与する翻訳を阻害する物質のスクリーニング方法を提供することにより上記課題を解決するものである。ある好適な一態様において、本発明に係るスクリーニング方法には、次の核酸構築物を用いられる;
 レポータータンパク質をコードする第1のRNA配列と、
 その5’末端側に、下記式1で表されるRNA配列及び/又は下記式2で表されるRNA配列を含む第2のRNA配列と、
を有するRNA構築物をコードする核酸構築物:
(式1)5’-GGCGGCGGCGGCGGC-3’(式中、1番目のGはAでもよく、2番目のGはCでもよく、3番目のCはAでもよく、4番目のGはAでもよく、5番目のGはCでもよく、6番目のCはAでもよく、7番目のGはAまたはCでもよく、8番目のGはAでもよく、9番目のCはUまたはAでもよく、10番目のGはAまたはUでもよく、11番目のGはCでもよく、12番目のCはAでもよく、13番目のGはUまたはCまたはAでもよく、14番目のGはUまたはAまたはCでもよく、15番目のCはGまたはAまたはUでもよい。);
(式2)5’-GCCGCCGCCGCCGCC-3’(式中、1番目のGはUまたはCでもよく、2番目のCはGでもよく、3番目のCはUでもよく、4番目のGはUまたはCでもよく、5番目のCはUでもよく、6番目のCはAまたはUでもよく、7番目のGはUでもよく、8番目のCはUでもよく、9番目のCはGでもよく、10番目のGはUでもよく、11番目のCはGでもよく、12番目のCはUでもよく、13番目のGはUでもよく、14番目のCはUでもよく、15番目のCはGでもよい。)。
Further, in another aspect, the present invention solves the above-mentioned problems by providing a method for screening a substance that inhibits translation in which CDKAL1 is involved. In one preferred embodiment, the screening method according to the invention uses the following nucleic acid constructs;
The first RNA sequence encoding the reporter protein and
On the 5'end side, a second RNA sequence containing an RNA sequence represented by the following formula 1 and / or an RNA sequence represented by the following formula 2 and
Nucleic acid construct encoding an RNA construct with
(Equation 1) 5'-GGCGGGCGGGCGCGGC-3'(In the equation, the first G may be A, the second G may be C, the third C may be A, and the fourth G may be A. The fifth G may be C, the sixth C may be A, the seventh G may be A or C, the eighth G may be A, the ninth C may be U or A, and so on. The 10th G may be A or U, the 11th G may be C, the 12th C may be A, the 13th G may be U or C or A, and the 14th G may be U or A. Or C, and the fifteenth C may be G, A, or U.);
(Equation 2) 5'-GCCGCCGCCGCCGCC-3'(In the equation, the first G may be U or C, the second C may be G, the third C may be U, and the fourth G may be U. Or C, the 5th C may be U, the 6th C may be A or U, the 7th G may be U, the 8th C may be U, and the 9th C may be G. Well, the 10th G can be U, the 11th C can be G, the 12th C can be U, the 13th G can be U, the 14th C can be U, and the 15th. C may be G.).
 詳しくは後述するが、本発明者らが得た知見によれば、CDKAL1が関与する翻訳機構により翻訳されるmRNAは、その5’末端側の非翻訳領域に特徴的なRNA配列、より詳細には、上記式1又は式2で表されるRNA配列を有している。上記式1又は式2で表されるRNA配列のようにシトシン及びグアニンに富むRNA配列は複雑な二次構造を形成することが知られており、このようなRNA配列を5’末端側の非翻訳領域に有するmRNAの翻訳にはCDKAL1が関与する翻訳開始因子複合体の関与が必要であると考えられる。すなわち、レポータータンパク質をコードするRNA配列の上流の非翻訳領域に上記式1又は式2で表されるRNA配列を有する前記核酸構築物によれば、CDKAL1が関与する翻訳機構の活性を反映するレポータータンパク質の発現を得ることができる。これにより、CDKAL1が関与する翻訳機構を抑制あるいは活性化させる物質を簡易迅速にスクリーニングすることができる。 Although details will be described later, according to the findings obtained by the present inventors, the mRNA translated by the translation mechanism in which CDKAL1 is involved has an RNA sequence characteristic of the untranslated region on the 5'end side thereof, in more detail. Has an RNA sequence represented by the above formula 1 or formula 2. It is known that cytosine- and guanine-rich RNA sequences such as the RNA sequence represented by the above formula 1 or 2 form a complicated secondary structure, and such an RNA sequence is not on the 5'end side. It is considered that the translation of mRNA contained in the translation region requires the involvement of the translation initiation factor complex in which CDKAL1 is involved. That is, according to the nucleic acid construct having the RNA sequence represented by the above formula 1 or 2 in the upstream untranslated region of the RNA sequence encoding the reporter protein, the reporter protein reflecting the activity of the translation mechanism in which CDKAL1 is involved. Can be obtained. This makes it possible to easily and quickly screen substances that suppress or activate the translation mechanism in which CDKAL1 is involved.
 すなわち、ある好適な一態様において、本発明に係るスクリーニング方法は、
(1)前記核酸構築物を、細胞に導入する工程、
(2)前記核酸構築物を導入した前記細胞を、被験物質を含む溶液又は被験物質を含まない溶液と接触させる工程、
(3)前記被験物質を含む溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度を測定する工程、及び、
(4)測定された前記シグナルの強度を、被験物質を含まない溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度と比較する工程、
を含む。後述する実験例に示されるとおり、上記スクリーニング方法によれば、CDKAL1がその翻訳に関与する遺伝子のmRNAから蛋白質への翻訳を阻害する物質を効率的に得ることができる。
That is, in one preferred embodiment, the screening method according to the present invention is:
(1) A step of introducing the nucleic acid construct into cells,
(2) A step of contacting the cells into which the nucleic acid construct has been introduced with a solution containing a test substance or a solution not containing the test substance.
(3) A step of measuring the intensity of a signal derived from the reporter protein in the cells contacted with the solution containing the test substance, and
(4) A step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance.
including. As shown in the experimental examples described later, according to the above screening method, a substance that inhibits the translation of the mRNA of the gene involved in the translation of CDKAL1 into a protein can be efficiently obtained.
 本発明の一態様に係る剤によれば、がん細胞、又は、がん幹細胞において特異的な翻訳機構が関与して翻訳され、がん幹細胞の造腫瘍能の維持又は自己複製能の維持に関与する遺伝子の発現を抑制することにより、がん幹細胞の増殖を抑制することができる。一方、本発明の他の一態様に係るスクリーニング方法によれば、がん細胞、又は、がん幹細胞において特異的に活性化している翻訳機構を阻害する物質を効率的にスクリーニングすることができる。 According to the agent according to one aspect of the present invention, it is translated by involving a specific translation mechanism in cancer cells or cancer stem cells, and is used for maintaining the tumor-forming ability or self-renewal ability of cancer stem cells. By suppressing the expression of the genes involved, the growth of cancer stem cells can be suppressed. On the other hand, according to the screening method according to another aspect of the present invention, a substance that inhibits a translation mechanism specifically activated in cancer cells or cancer stem cells can be efficiently screened.
CDKAL1、eIF4E、又は、eIF4Gを標的とするshRNAを発現するレンチウイルスベクター、又は、いずれの遺伝子をも標的としていないshRNAを発現するレンチウイルスベクターを感染させた悪性脳腫瘍細胞JK2の細胞溶解液(Input)及び細胞溶解液からm7GTPビーズにて回収された画分(m7GTP pull-down)に含まれるタンパク質の組成をウエスタンブロッティングで分析した結果を示す図である。Cell lysate (Input) of malignant brain tumor cells JK2 infected with a lentiviral vector expressing shRNA targeting CDKAL1, eIF4E, or eIF4G, or a lentiviral vector expressing shRNA that does not target any gene. ) And the composition of the protein contained in the fraction (m7GTP pull-down) recovered from the cell lysate with m7GTP beads is shown in the figure showing the result of analysis by western blotting. shCDKAL1を発現するレンチウイルスベクターを感染させた悪性脳腫瘍細胞JK2のスフェア形成能を示す図である。It is a figure which shows the sphere formation ability of the malignant brain tumor cell JK2 which was infected with the lentiviral vector expressing shCDKAL1. shCDKAL1を発現するレンチウイルスベクターを感染させた悪性脳腫瘍細胞JK2におけるCDKAL1の酵素活性を示す図である。It is a figure which shows the enzyme activity of CDKAL1 in the malignant brain tumor cell JK2 infected with the lentiviral vector expressing shCDKAL1. shCDKAL1を発現するレンチウイルスベクターを感染させた悪性脳腫瘍細胞JK2における、幹細胞性マーカー(Vimentin、MSI1、Sox2、Nestin)又は神経細胞への分化マーカー(SYP、MAP2)の発現状態を示す顕微鏡画像である。FIG. 3 is a microscopic image showing the expression state of stem cell markers (Vimentin, MSI1, Sox2, Nestin) or differentiation markers into nerve cells (SYS, MAP2) in malignant brain tumor cells JK2 infected with a lentiviral vector expressing shCDKAL1. .. shCDKAL1を発現するレンチウイルスベクターを感染させた横紋筋肉腫細胞RDのスフェア形成能、及び、コロニー形成能を示す図である。It is a figure which shows the sphere formation ability and the colony formation ability of the rhabdomyosarcoma cell RD infected with the lentiviral vector expressing shCDKAL1. (A)shCDKAL1を発現するレンチウイルスベクターを感染させたヒト悪性黒色腫細胞A2058、SK-Mel-28、HMV-IIにおけるスフェア形成能の低下とCDKAL1のノックダウンを示す図である;(B)CDKAL1をノックダウンしたA2058、SK-Mel-28、HMV-IIにおけるコロニー形成能の低下を示す図である;(C)CDKAL1をノックダウンしたA2058、SK-Mel-28における悪性黒色腫幹細胞マーカーであるALDH1及びCD44の発現の減弱を示す図である。(A) It is a figure which shows the decrease in the sphere forming ability and the knockdown of CDKAL1 in human malignant melanoma cells A2058, SK-Mel-28, HMV-II infected with the lentiviral vector expressing shCDKAL1; (B). It is a figure which shows the decrease of the colony formation ability in A2058, SK-Mel-28, HMV-II which knocked down CDKAL1; (C) with the malignant melanoma stem cell marker in A2058, SK-Mel-28 which knocked down CDKAL1. It is a figure which shows the attenuation of the expression of a certain HMV1 and CD44. (A)shCDKAL1を発現するレンチウイルスベクターを感染させたヒト肝臓癌細胞Huh-7、HepG2におけるスフェア形成能の低下とCDKAL1のノックダウンを示す図である;(B)CDKAL1をノックダウンしたHepG2におけるコロニー形成能の低下を示す図である;(C)CDKAL1をノックダウンしたHuh-7、HepG2における肝臓癌幹細胞マーカーであるCD133及びCD44の発現の減弱を示す図である。(A) Decreased sphere-forming ability and knockdown of CDKAL1 in human liver cancer cells Huh-7, HepG2 infected with a lentiviral vector expressing shCDKAL1; (B) in HepG2 in which CDKAL1 was knocked down. It is a figure which shows the decrease of the colonization ability; (C) is the figure which shows the attenuation of the expression of CD133 and CD44 which are liver cancer stem cell markers in Huh-7, HepG2 which knocked down CDKAL1. (A)shCDKAL1を発現するレンチウイルスベクターを感染させたヒト前立腺癌細胞PC3、LNCaPにおけるスフェア形成能の低下とCDKAL1のノックダウンを示す図である;(B)CDKAL1をノックダウンしたPC3、LNCaPにおける前立腺癌幹細胞マーカーであるCD133及びCD44の発現の減弱を示す図である。(A) Decreased sphere-forming ability and knockdown of CDKAL1 in human prostate cancer cells PC3 and LNCaP infected with a lentiviral vector expressing shCDKAL1; (B) in PC3 and LNCaP knocked down by CDKAL1. It is a figure which shows the attenuation of the expression of CD133 and CD44 which are the prostate cancer stem cell markers. (A)shCDKAL1を発現するレンチウイルスベクターを感染させたヒト胃癌細胞NUGC3、HGC27、MKN45におけるスフェア形成能の低下とCDKAL1のノックダウンを示す図である;(B)CDKAL1をノックダウンしたNUGC3、MKN45におけるコロニー形成能の低下を示す図である;(C)CDKAL1をノックダウンしたNUGC3、HGC27における胃癌幹細胞マーカーであるALDH1及びCD44の発現の減弱を示す図である。(A) It is a figure which shows the decrease of the sphere forming ability and the knockdown of CDKAL1 in the human gastric cancer cells NUGC3, HGC27, MKN45 infected with the lentiviral vector expressing shCDKAL1; (B) NUGC3, MKN45 which knocked down CDKAL1. It is a figure which shows the decrease of the colonization ability in | (C) is the figure which shows the attenuation of the expression of ALDH1 and CD44 which are gastric cancer stem cell markers in NUGC3, HGC27 which knocked down CDKAL1. (A)shCDKAL1を発現するレンチウイルスベクターを感染させたヒト悪性脳腫瘍幹細胞MGG4、MGG8、MGG18における悪性脳腫瘍幹細胞マーカーであるSOX2、CD133,POU3F2、OLIG2、CD44の発現の減弱を示す図である;(B)CDKAL1をノックダウンしたMGG4、MGG8、MGG18におけるスフィア形成能の低下を示す図である。(A) It is a figure showing the attenuation of the expression of SOX2, CD133, POU3F2, OLIG2, and CD44, which are malignant brain tumor stem cell markers in human malignant brain tumor stem cells MGG4, MGG8, and MGG18 infected with a lentiviral vector expressing shCDKAL1; B) It is a figure which shows the decrease of the sphere formation ability in MGG4, MGG8, MGG18 which knocked down CDKAL1. shCDKAL1を発現するレンチウイルスベクターを感染させた横紋筋肉腫細胞RMS-YM細胞を播種したマウスにおける経時的な腫瘍の大きさの変化を示す図である。It is a figure which shows the change of the tumor size with time in the mouse which was inoculated with the rhabdomyosarcoma cell RMS-YM cell which was infected with the lentiviral vector expressing shCDKAL1. 横紋筋肉腫細胞RDにおける、CDKAL1のノックダウンによる全RNAの変化量を横軸に、ポリソーム画分に含まれるRNAの変化量を縦軸にプロットした図である。In the rhabdomyosarcoma cell RD, the amount of change in total RNA due to knockdown of CDKAL1 is plotted on the horizontal axis, and the amount of change in RNA contained in the polysome fraction is plotted on the vertical axis. 横紋筋肉腫細胞RDにおいて、CDKAL1のノックダウンにより翻訳抑制を受ける遺伝子群を示すヒートマップである。It is a heat map showing a group of genes that receive translational repression by knockdown of CDKAL1 in rhabdomyosarcoma cell RD. (A)shCDKAL1を発現するレンチウイルスベクターを感染させた横紋筋肉腫細胞RDにおけるSALL2のタンパク質の量をウェスタンブロッティングで評価した結果と、(B)SALL2のmRNAの量をRT-PCTで評価した結果を示す図である。(C)shSALL2を発現するレンチウイルスベクターを感染させた横紋筋肉腫細胞RDのスフェア形成能、及び、(D)コロニー形成能を示す図である。(A) The amount of SALL2 protein in the rhombic myoma cell RD infected with the lentiviral vector expressing shCDKAL1 was evaluated by Western blotting, and (B) the amount of SALL2 mRNA was evaluated by RT-PCT. It is a figure which shows the result. (C) It is a figure which shows the sphere formation ability of the rhabdomyosarcoma cell RD infected with the lentiviral vector expressing shSALL2, and (D) the colonization ability. shSALL2を発現するレンチウイルスベクターを感染させた横紋筋肉腫細胞RMS-YM細胞を播種したマウスにおける経時的な腫瘍の大きさの変化を示す図である。It is a figure which shows the change of the tumor size with time in the mouse which was inoculated with the rhabdomyosarcoma cell RMS-YM cell which was infected with the lentiviral vector expressing shSALL2. (A)正常細胞のモデルとして作製したControl-C2C12細胞及び悪性腫瘍細胞のモデルとして作製したHRas/shp53-C2C12細胞の形態を示す顕微鏡写真、及び、悪性腫瘍細胞のモデルの作製に用いたベクターの構造を示す図である;(B)Control-C2C12細胞及びHRas/shp53-C2C12細胞を播種したマウスにおける経時的な腫瘍の大きさの変化、及び、組織染色の結果を示す図である;(C)Control-C2C12細胞及びHRas/shp53-C2C12細胞におけるCDKAL1の発現量をウェスタンブロッティングで評価した結果を示す図である;(D)Control-C2C12細胞及びHRas/shp53-C2C12細胞のスフェア形成能を評価した結果を示す図である;(E)RNAiによってCDKAL1の発現を抑制した場合のHRas/shp53-C2C12細胞のスフェア形成能の低下を示す図である;(F)RNAiによるCDKAL1の発現抑制が、Control-C2C12細胞及びHRas/shp53-C2C12細胞の増殖能・コロニー形成能へ与える影響を示す図である。(A) A micrograph showing the morphology of Control-C2C12 cells prepared as a model of normal cells and HRas / skip53-C2C12 cells prepared as a model of malignant tumor cells, and a vector used for preparing a model of malignant tumor cells. It is a diagram showing the structure; (B) changes in tumor size over time in mice seeded with Control-C2C12 cells and HRas / shp53-C2C12 cells, and the results of tissue staining; (C). ) It is a figure which shows the result of having evaluated the expression level of CDKAL1 in Control-C2C12 cell and HRas / shp53-C2C12 cell by western blotting; It is a figure which shows the decrease of the sphere formation ability of HRas / skip53-C2C12 cells when the expression of CDKAL1 is suppressed by (E) RNAi; (F) is the figure which shows the decrease of the expression of CDKAL1 by RNAi. It is a figure which shows the influence on the proliferation ability and colony formation ability of Control-C2C12 cell and HRas / skip53-C2C12 cell. (A)CDKAL1の一次構造とドメインを示す図である;(B)野生型のCDKAL1及び作製したCDKAL1変異体の構造を示す図である;(C)野生型のCDKAL1又はCDKAL1変異体を過剰発現させたヒト横紋筋肉腫細胞RDにおいて、CDKAL1の発現をRNAiによりノックダウンした。CDKAL1の発現をノックダウンしたRD細胞から得られた細胞溶解液(インプット)及び細胞溶解液からm7GTPビーズにて回収された画分(m7Gビーズ沈降)に含まれるタンパク質の組成をウェスタンブロッティングで分析した結果を示す図である;(D)野生型のCDKAL1又はCDKAL1変異体を過剰発現させたヒト横紋筋肉腫細胞RDにおいて、CDKAL1の発現をRNAiによりノックダウンした。CDKAL1の発現をノックダウンしたRD細胞における、スフェア形成能、及び、SALL2タンパク質の発現量をウェスタンブロッティングで評価した結果を示す図である。(A) is a diagram showing the primary structure and domain of CDKAL1; (B) is a diagram showing the structure of wild-type CDKAL1 and the prepared CDKAL1 mutant; (C) overexpressing wild-type CDKAL1 or CDKAL1 mutant. The expression of CDKAL1 was knocked down by RNAi in the human rhombus myoma cell RD. The composition of the protein contained in the cell lysate (input) obtained from the RD cells in which the expression of CDKAL1 was knocked down and the fraction (m7G bead precipitation) recovered from the cell lysate with m7GTP beads was analyzed by Western blotting. The results are shown; (D) CDKAL1 expression was knocked down by RNAi in human rhizome myoma cell RD overexpressing wild-type CDKAL1 or CDKAL1 variant. It is a figure which shows the result of having evaluated the sphere forming ability and the expression level of SALL2 protein by Western blotting in the RD cell which knocked down the expression of CDKAL1. (A)PhosphoSitePlus及びELMによって予測されたCDKAL1のアミノ末端から1~202番目のアミノ酸配列において翻訳後修飾を受ける可能性のあるアミノ酸を示す図である;(B)野生型のCDKAL1又はCDKAL1変異体を過剰発現させたRDにおいて、CDKAL1の発現をRNAiによりノックダウンし、そのスフェア形成能を評価した結果を示す図である;(C)N-結合型グリコシル化阻害剤であるTunicamycin、GSK3阻害剤であるBIO及びCHIR-98014、並びに、Phosphorylase Kinase阻害剤であるK252aをRD細胞に作用させた場合のSALL2のタンパク質の発現、及び、SALL2のmRNAの発現量を評価した結果を示す図である;(D)N-結合型グリコシル化阻害剤であるTunicamycin、GSK3阻害剤であるBIO及びCHIR-98014を作用させたRD細胞から得られた細胞溶解液(Input)及び細胞溶解液からm7GTPビーズにて回収された画分(m7GTP pulldown)に含まれるタンパク質の組成をウェスタンブロッティングで分析した結果を示す図である。(A) is a diagram showing amino acids that may undergo post-translational modification in the amino acid sequences 1 to 202 from the amino end of CDKAL1 predicted by PhosphoSitePlus and ELM; (B) wild-type CDKAL1 or CDKAL1 variants. It is a figure showing the result of knocking down the expression of CDKAL1 by RNAi and evaluating its sphere-forming ability in RD overexpressing; (C) N-linked glycosylation inhibitor Tunamycin, GSK3 inhibitor. It is a figure which shows the result of having evaluated the expression | expression of the protein of SALL2 and the expression level of the mRNA of SALL2 when BIO and CHIR-98014 which are | (D) In m7GTP beads from RD cells obtained from RD cells on which Tunamycin, an N-linked glycosylation inhibitor, BIO and CHIR-98014, which are GSK3 inhibitors, were allowed to act. It is a figure which shows the result of having analyzed the composition of the protein contained in the recovered fraction (m7GTP celldown) by western blotting. SALL2-5’UTR-ホタルルシフェラーゼレポータープラスミド、GAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミド、及び、ACTB-5’UTR-ホタルルシフェラーゼプラスミドに由来して産生されるRNA構築物の構造を示す概念図である。SALL2-5’UTRは、GAPDH-5’UTR及びACTB-5’UTRと比較して、複雑な二次構造をとるため、SALL2-5’UTRを有するRNA構築物の翻訳には、CDKAL1が関与して形成される翻訳開始因子複合体が必須であると考えられる。It is a conceptual diagram showing the structure of the RNA construct produced from the SALL2-5'UTR-firefly luciferase reporter plasmid, the GAPDH-5'UTR-firefly luciferase reporter plasmid, and the ACTB-5'UTR-firefly luciferase plasmid. .. Since SALL2-5'UTR has a complex secondary structure compared to GAPDH-5'UTR and ACTB-5'UTR, CDKAL1 is involved in the translation of RNA constructs with SALL2-5'UTR. It is considered that the translation initiation factor complex formed in the above is essential. SALL2-5’UTR-ホタルルシフェラーゼレポータープラスミド、GAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミド、又は、ACTB-5’UTR-ホタルルシフェラーゼプラスミドをトランスフェクションしたRD細胞における、CDKAL1のノックダウンの有無によるレポータータンパク質の発現量(ルシフェラーゼ活性)の変化を示す図である。図中、SALL2はSALL2-5’UTR-ホタルルシフェラーゼレポータープラスミドをトランスフェクションしたRD細胞、GAPDHはGAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミドをトランスフェクションしたRD細胞、β-ACTINはACTB-5’UTR-ホタルルシフェラーゼプラスミドをトランスフェクションしたRD細胞におけるルシフェラーゼ活性の測定結果を示す。Reporter protein with or without knockdown of CDKAL1 in RD cells transfected with SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH-5'UTR-firefly luciferase reporter plasmid, or ACTB-5'UTR-firefly luciferase plasmid. It is a figure which shows the change of the expression level (luciferase activity) of. In the figure, SALL2 is an RD cell transfected with the SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH is an RD cell transfected with the GAPDH-5'UTR-firefly luciferase reporter plasmid, and β-ACTIN is ACTB-5'UTR. -The measurement result of the luciferase activity in the RD cell transfected with the firefly luciferase plasmid is shown. スクリーニング実験の結果を示す図である。Go6983及びtunicamycinがヒット化合物として選別された。It is a figure which shows the result of a screening experiment. Go6983 and tunicamycin were selected as hit compounds. (A)0μM又は5μMのtunicamycin又は(B)Go6983を含む基本培地で24週間培養したRD細胞におけるCDKAL1及びSALL2の発現量をウェスタンブロッティングにより分析した結果を示す図である。It is a figure which shows the result of having analyzed the expression level of CDKAL1 and SALL2 in RD cells cultured for 24 weeks in the basal medium containing (A) 0 μM or 5 μM tunicamycin or (B) Go6983 by Western blotting. (A)0μM又は5μMのtunicamycinを含む基本培地で2週間培養した後のRD細胞によるコロニー形成の様子を撮影した顕微鏡写真、及び、(B)RD細胞を各濃度のtunicamycinを含む基本培地で2週間培養した後に形成されたコロニー数の測定結果を示す図である。(A) Microscopic photographs of colonization by RD cells after culturing in a basal medium containing 0 μM or 5 μM tunicamycin for 2 weeks, and (B) RD cells in a basal medium containing each concentration of tunicamycin 2 It is a figure which shows the measurement result of the number of colonies formed after culturing for a week. スクリーニング実験の結果を示す図である。It is a figure which shows the result of a screening experiment. スクリーニング実験の結果を示す図である。It is a figure which shows the result of a screening experiment. (A)RNAiによるCDKAL1の発現抑制により翻訳レベルで発現が減少する遺伝子群(図中、台形内)に共通する配列を、MEMEプログラムで解析した結果、グアニンに富んだ配列(GES)及びシトシンに富んだ配列(CES)が同定された;(B)GES及びCESのコア領域として同定されたminimal GES(mGES)及びminimal CES(mCES)を示す図である;(C)CDKAL1の発現をRNAiによりノックダウンしたRD細胞に対し、mGES及びmCESを5’末端側に付加したルシフェラーゼレポータをトランスフェクションした後の、ルシフェラーゼレポータの発現量を示す図である。(A) As a result of analyzing the sequence common to the gene group (inside the trapezoid in the figure) whose expression is reduced at the translation level due to the suppression of the expression of CDKAL1 by RNAi by the MEME program, the guanine-rich sequence (GES) and cytosine were obtained. Rich sequences (CES) were identified; (B) GES and diagrams showing minimal GES (mGES) and minimal CES (mCES) identified as core regions of CES; (C) expression of CDKAL1 by RNAi. It is a figure which shows the expression level of the luciferase reporter after transfecting the luciferase reporter which added mGES and mCES to the 5'end side to the knocked-down RD cell. (A)(i)ヒトのCDKAL1を標的とする第1のshRNA(shCDKAL1#1)をコードするDNA配列、(ii)shCDKAL1#1のRNA配列、(iii)shCDKAL1#1から生じ得るsiRNAのRNA配列;(B)(i)ヒトのCDKAL1を標的とする第2のshRNA(shCDKAL1#2)をコードするDNA配列、(ii)shCDKAL1#2のRNA配列、(iii)shCDKAL1#2から生じ得るsiRNAのRNA配列。(A) (i) DNA sequence encoding a first shRNA (shCDKAL1 # 1) targeting human CDKAL1, (ii) RNA sequence of shCDKAL1 # 1, (iii) RNA of siRNA that can result from shCDKAL1 # 1. Sequences; (B) (i) DNA sequence encoding a second shRNA targeting human CDKAL1 (shCDKAL1 # 2), (ii) RNA sequence of shCDKAL1 # 2, (iii) siRNA that can result from shCDKAL1 # 2. RNA sequence. (A)(i)ヒトのSALL2を標的とする第1のshRNA(shSALL2#1)をコードするDNA配列、(ii)shSALL2#1のRNA配列、(iii)shSALL2#1から生じ得るsiRNAのRNA配列;(B)(i)ヒトのSALL2を標的とする第2のshRNA(shSALL2#2)をコードするDNA配列、(ii)shSALL2#2のRNA配列、(iii)shSALL2#2から生じ得るsiRNAのRNA配列。(A) (i) DNA sequence encoding a first shRNA (shSALL2 # 1) targeting human SALL2, (ii) RNA sequence of shRNA2 # 1, (iii) RNA of siRNA that can result from shSALL2 # 1. Sequences; (B) (i) DNA sequence encoding a second shRNA (shSALL2 # 2) targeting human SALL2, (ii) RNA sequence of shRNA2 # 2, (iii) siRNA that can result from shSALL2 # 2. RNA sequence. (A)4×mGES-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、転写産物であるmRNAの5’非翻訳領域のRNA配列に対応するDNA配列(下線はmGESを示す。);(B)4×mCES-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、転写産物であるmRNAの5’非翻訳領域のRNA配列に対応するDNA配列(下線はmCESを示す。)。(A) In the DNA sequence encoding the 4 × mGES-5'UTR-firefly luciferase reporter, the DNA sequence corresponding to the RNA sequence in the 5'untranslated region of the transcript mRNA (underlined indicates mGES); ( B) In the DNA sequence encoding the 4 × mCES-5'UTR-firefly luciferase reporter, the DNA sequence corresponding to the RNA sequence in the 5'untranslated region of the transcript mRNA (underlined indicates mCES).
 以下、本発明について、より詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の一側面に係る剤は、がん治療のための剤であり、より詳細には、CDKAL1(Cdk5 regulator subunit associated protein 1-like 1)がその翻訳に関与する遺伝子の発現を抑制する成分を有効成分として含む、がん治療のための剤である。 The agent according to one aspect of the present invention is an agent for treating cancer, and more specifically, a component in which CDKAL1 (Cdk5 active substance subunit associated protein 1-like 1) suppresses the expression of a gene involved in its translation. Is a drug for cancer treatment, which contains the above as an active ingredient.
 本発明は、CDKAL1が、がん細胞、又は、がん幹細胞において、タンパク質合成の場の一つである粗面小胞体上での翻訳開始因子複合体の形成に関与しているという本発明者らが見出した知見に基づくものである。前述したとおり、真核生物において、遺伝子の発現は、DNAからmRNAへの転写、次いで、転写産物であるmRNAからタンパク質への翻訳というプロセスにより達成される。ここで、mRNAからタンパク質への翻訳は、翻訳の「開始」、翻訳産物であるアミノ酸鎖(タンパク質)の「伸長」、翻訳の「終結」の三つのステップに分別されるところ、一般的に、翻訳の「開始」は複数の真核生物翻訳開始因子(eukaryotic translation Initiation Factor:eIF)が結合して形成される翻訳開始因子複合体と、mRNAの5’末端の5’キャップ及び5’非翻訳領域の相互作用をきっかけとして開始されるといわれている。本発明者らが見出した知見によれば、CDKAL1は、がん細胞、又は、がん幹細胞において、真核生物翻訳開始因子であるeIF4A及びeIF4Gと、eIF4Eとの結合を媒介する役割を担っており、CDKAL1の働きにより翻訳開始因子複合体が形成される。なお、後述する実験例に示されるとおり、がん幹細胞において、CDKAL1が関与して形成される翻訳開始因子複合体が関与して翻訳が開始される遺伝子群は、がん幹細胞の幹細胞性の維持、造腫瘍能の維持、又は、自己複製能の維持に深く関係している。よって、CDKAL1がその翻訳に関与する遺伝子の発現を抑制することにより、がんの治療が可能となる。なお、本明細書において「CDKAL1」という場合、特に断らない限り、ヒトのCDKAL1を意味する。 The present invention states that CDKAL1 is involved in the formation of a translation initiation factor complex on the rough endoplasmic reticulum, which is one of the sites of protein synthesis, in cancer cells or cancer stem cells. It is based on the findings found by them. As mentioned above, in eukaryotes, gene expression is achieved by the process of transcription from DNA to mRNA, followed by translation from the transcript mRNA to protein. Here, translation from mRNA to protein is generally divided into three steps: "initiation" of translation, "elongation" of amino acid chain (protein) which is a translation product, and "termination" of translation. The "initiation" of translation is the translation initiation factor complex formed by the binding of multiple eukaryotic translation Initiation Factor (eIF), and the 5'end 5'cap and 5'untranslation of the mRNA. It is said that it is started by the interaction of the regions. According to the findings found by the present inventors, CDKAL1 plays a role in mediating the binding between eIF4A and eIF4G, which are eukaryotic initiation factors, and eIF4E in cancer cells or cancer stem cells. The translation initiation factor complex is formed by the action of CDKAL1. As shown in the experimental examples described later, in cancer stem cells, the gene group in which translation is initiated by the involvement of the translation initiation factor complex formed by the involvement of CDKAL1 maintains the stem cell property of the cancer stem cells. , Is deeply involved in the maintenance of tumorigenicity or the maintenance of self-renewal ability. Therefore, by suppressing the expression of genes involved in the translation of CDKAL1, cancer can be treated. In addition, the term "CDKAL1" in the present specification means human CDKAL1 unless otherwise specified.
 本明細書において、遺伝子の発現とは、当該遺伝子がコードするタンパク質が産生されることを意味し、遺伝子の発現の抑制とは、当該遺伝子がコードするタンパク質の産生量を減少させること、又は、産生量をゼロにすることを意味する。一方、本明細書において、がんの「治療」には、がんが根治することのみならず、がんの縮小、がんの症状の緩和乃至改善、及び、がんの進行の遅延が含まれる。 In the present specification, the expression of a gene means that the protein encoded by the gene is produced, and the suppression of the expression of the gene means reducing the production amount of the protein encoded by the gene, or reducing the production amount of the protein encoded by the gene. It means that the amount of production is reduced to zero. On the other hand, in the present specification, the "treatment" of cancer includes not only the cure of the cancer but also the reduction of the cancer, the alleviation or improvement of the symptoms of the cancer, and the delay of the progression of the cancer. Is done.
 CDKAL1がその翻訳に関与する遺伝子とは、当該遺伝子のmRNAがタンパク質へ翻訳される過程にCDKAL1が関与する遺伝子を意味し、より詳細には、CDKAL1がその遺伝子の翻訳の開始に関与する遺伝子、さらに詳細には、CDKAL1がその遺伝子の翻訳の開始に関与する翻訳開始因子複合体の形成に関与する遺伝子を意味する。 The gene in which CDKAL1 is involved in the translation means a gene in which CDKAL1 is involved in the process of translating the mRNA of the gene into a protein, and more specifically, a gene in which CDKAL1 is involved in initiating translation of the gene. More specifically, it means a gene in which CDKAL1 is involved in the formation of a translation initiation factor complex involved in initiating translation of that gene.
 本発明に係る剤が、その発現を抑制する遺伝子は、がん細胞、又は、がん幹細胞において、その遺伝子の翻訳にCDKAL1が関与する遺伝子である限りにおいて特に制限されないが、ある好適な一態様においては、転写因子をコードする遺伝子であることが好ましい。このような遺伝子としては、例えば、SALL2遺伝子、SP9遺伝子、IRF2BPL遺伝子、ZNF276遺伝子、IFI35遺伝子、YAP1遺伝子、MIER1遺伝子、HOXA7遺伝子、PHF3遺伝子、LBX2遺伝子、KLF7遺伝子、HOXB6遺伝子、PLAG1遺伝子、ZNF484遺伝子、ZNF516遺伝子、HLTF遺伝子、HIC1遺伝子、MAML2遺伝子、IKZF5遺伝子が含まれ、好ましくは、SALL2遺伝子、SP9遺伝子、IRF2BPL遺伝子、ZNF276遺伝子、IFI35遺伝子、YAP1遺伝子、MIER1遺伝子、よりに好ましくはSALL2遺伝子、SP9遺伝子、IRF2BPL遺伝子、ZNF276遺伝子、IFI35遺伝子、さらに好ましくはSALL2遺伝子であり得る。本発明者らが得た知見によれば、以上の遺伝子は、がん幹細胞においてCDKAL1が関与する翻訳機構により翻訳制御される遺伝子であり、このような遺伝子がコードする転写因子は、がん幹細胞の幹細胞性、自己複製能、又は造腫瘍能の維持に深く関与していると考えられる。ある好適な一態様において、本発明に係る剤は、CDKAL1による翻訳制御を受ける上記遺伝子の発現を抑制することにより、がんの治療効果を発揮し得る。 The gene for which the agent according to the present invention suppresses its expression is not particularly limited as long as it is a gene in which CDKAL1 is involved in the translation of the gene in cancer cells or cancer stem cells, but is a preferred embodiment. In, it is preferable that it is a gene encoding a transcription factor. Examples of such genes include SALL2 gene, SP9 gene, IRF2BPL gene, ZNF276 gene, IFI35 gene, YAP1 gene, MIER1 gene, HOXA7 gene, PHF3 gene, LBX2 gene, KLF7 gene, HOXB6 gene, PLAG1 gene, ZNF484 gene. , ZNF516 gene, HLTF gene, HIC1 gene, MAML2 gene, IKZF5 gene, preferably SALL2 gene, SP9 gene, IRF2BPL gene, ZNF276 gene, IFI35 gene, YAP1 gene, MIER1 gene, more preferably SALL2 gene. It can be the SP9 gene, the IRF2BPL gene, the ZNF276 gene, the IFI35 gene, and more preferably the SALL2 gene. According to the findings obtained by the present inventors, the above genes are genes whose translations are regulated by the translation mechanism in which CDKAL1 is involved in cancer stem cells, and the transcription factors encoded by such genes are cancer stem cells. It is considered to be deeply involved in the maintenance of stem cell property, self-renewal ability, or tumorigenicity. In one preferred embodiment, the agent according to the present invention can exert a therapeutic effect on cancer by suppressing the expression of the gene subject to translation control by CDKAL1.
 CDKAL1がその翻訳に関与する遺伝子は、遺伝子工学的技術を用いて、当業者であれば容易に特定することができる。例えば、後述する実験で示すように、CDKAL1の発現を抑制した細胞において、細胞内における各mRNAの産生量、及び、翻訳の場であるポリソーム(ポリリボソーム)への各mRNAの結合量を測定し、その測定結果を、同じ細胞の、CDKAL1の発現を抑制しない場合における、細胞内の各mRNAの産生量、及び、ポリソームへの各mRNAの結合量と比較し、mRNAの産生量が変化しないにもかかわらず、ポリソーム(ポリリボソーム)へのmRNAの結合量が低下する遺伝子を見つければ良い。すなわち、CDKAL1の発現の抑制により、細胞内におけるmRNAの産生量が変化しない遺伝子は、CDKAL1の発現の抑制により転写レベルでは影響を受けない遺伝子であるので、CDKAL1の発現の抑制により、細胞内のmRNAの産生量が変化しないにもかかわらず、細胞内における翻訳の場であるポリソームへのmRNAの結合量が低下する遺伝子は、転写レベルではなく、翻訳レベルでCDKAL1による制御を受ける遺伝子、換言すれば、CDKAL1がその翻訳に関与する遺伝子であるということができる。ちなみに、ポリソームは、真核生物において主に粗面小胞体上に形成される顆粒状の細胞小器官であり、一分子のmRNAに複数のリボソームが結合した構造を有している。一般的に、ポリソームへの結合量が多いmRNAほど、活発に翻訳されているmRNAであると考えられている。 Genes involved in the translation of CDKAL1 can be easily identified by those skilled in the art using genetic engineering techniques. For example, as shown in an experiment described later, in cells in which the expression of CDKAL1 was suppressed, the amount of each mRNA produced in the cell and the amount of each mRNA bound to a polysome (polyribosome), which is a place of translation, were measured. The measurement results are compared with the amount of each mRNA produced in the cell and the amount of each mRNA bound to the polysome when the expression of CDKAL1 is not suppressed in the same cell, and the amount of mRNA produced does not change. Nevertheless, it is only necessary to find a gene that reduces the amount of mRNA bound to polysomes (polyribosomes). That is, a gene whose intracellular mRNA production amount does not change due to suppression of CDKAL1 expression is a gene that is not affected at the transcription level by suppression of CDKAL1 expression. Genes that reduce the amount of mRNA bound to polysomes, which are the sites of translation in cells, even though the amount of mRNA produced does not change, are genes that are regulated by CDKAL1 at the translation level, not at the transcription level, in other words. For example, it can be said that CDKAL1 is a gene involved in its translation. Incidentally, polysomes are granular organelles formed mainly on rough surface vesicles in eukaryotes, and have a structure in which a plurality of ribosomes are bound to one molecule of mRNA. Generally, it is considered that the greater the amount of mRNA bound to polysomes, the more actively translated mRNA.
 以下、本発明の一側面に係る剤の、より具体的な態様について説明する。ただし、本発明の一側面に係るCDKAL1がその翻訳に関与する遺伝子の発現を抑制する成分を有効成分として含む剤は、以下に説明するものに限られず、DNAからmRNAへの転写から、mRNAからタンパク質への翻訳に至るまでの遺伝子の発現プロセスのうち、いずれの段階、或いは、いずれの分子に作用して、CDKAL1がその翻訳に関与する遺伝子の発現を抑制するものであっても良い。 Hereinafter, a more specific embodiment of the agent according to one aspect of the present invention will be described. However, the agent containing, as an active ingredient, a component in which CDKAL1 according to one aspect of the present invention suppresses the expression of a gene involved in its translation is not limited to those described below, and is not limited to those described below. Of the gene expression processes leading up to translation into a protein, CDKAL1 may act on any stage or any molecule to suppress the expression of the gene involved in the translation.
 本発明に係る剤は、その好適な一態様において、CDKAL1の発現を抑制する成分を有効成分として含む剤である。このような剤は、CDKAL1の発現を抑制する、換言すれば、細胞中のCDKAL1の産生量を減少させることにより、翻訳に関与できるCDKAL1の数を減少させるので、CDKAL1がその翻訳に関与する遺伝子の発現を抑制することができる。なお、マウスを用いた実験に基づいて、CDKAL1のノックアウトは個体発生や臓器形成等に異常を与えないことが報告されており(Fan-Yan Wei et al. The Journal of Clinical Investigation 2011,121(9),3598-3608.)、CDKAL1そのものの発現を抑制しても、がん細胞以外の通常の細胞への影響は小さいものと考えられる。また、後述する実験例においても、CDKAL1が関与する翻訳機構の阻害が正常細胞へ与える影響は極めて小さいことが確認されている。 The agent according to the present invention is, in one preferred embodiment thereof, an agent containing an ingredient that suppresses the expression of CDKAL1 as an active ingredient. Such agents reduce the number of CDKAL1s that can participate in translation by suppressing the expression of CDKAL1, in other words, by reducing the amount of CDKAL1 produced in the cells, so that CDKAL1 is a gene involved in the translation. Can be suppressed. Based on experiments using mice, it has been reported that knockout of CDKAL1 does not cause abnormalities in ontogeny, organ formation, etc. (Fan-Yan Wei et al. The Journal of Clinical Investment 2011, 121 (9). ), 3598-3608.), It is considered that even if the expression of CDKAL1 itself is suppressed, the effect on normal cells other than cancer cells is small. Also, in the experimental examples described later, it has been confirmed that the influence of inhibition of the translation mechanism involved in CDKAL1 on normal cells is extremely small.
 本発明に係る剤に含まれるCDKAL1の発現を抑制する成分に特段の制限はないが、ある好適な一態様において、CDKAL1の発現の抑制は、例えば、CDKAL1に対するsiRNA(small interfering RNA)、shRNA(short hairpin RNA)、アンチセンス核酸、又は、sgRNA(single guide RNA)等を、標的となる細胞に導入することにより達成され得る。すなわち、本発明の一側面に係る剤は、その好適な一態様において、CDKAL1に対するsiRNA、shRNA、又は、sgRNAを有効成分として含み得る。 There is no particular limitation on the component that suppresses the expression of CDKAL1 contained in the agent according to the present invention, but in one preferred embodiment, the suppression of the expression of CDKAL1 is, for example, siRNA (small interfering RNA) for CDKAL1, shRNA ( It can be achieved by introducing short hairpin RNA), antisense nucleic acid, sgRNA (single guide RNA), or the like into a target cell. That is, the agent according to one aspect of the present invention may contain siRNA, shRNA, or sgRNA for CDKAL1 as an active ingredient in a preferred embodiment thereof.
 ここで、siRNAとは、RNA干渉(RNA interference)によって遺伝子をノックダウンすることができる二本鎖RNAを意味する。二本鎖RNAを構成する塩基対の数に特段の制限はないが、例えば、18~30塩基対、20~27塩基対であり、典型的には、21~23塩基対の二本鎖RNAである。siRNAは細胞内に導入されると、Argonauteタンパク質とRNA誘導サイレンシング複合体(RISC:RNA-Induced Silencing Complex)と呼ばれるRNA-タンパク質複合体を形成し、siRNAのアンチセンス鎖と相補的な配列を持つmRNAの発現を抑制する。すなわち、CDKAL1に対するsiRNAは、CDKAL1のmRNAに相補的な塩基配列を有するRNAを含む二本鎖RNAであり得る。 Here, siRNA means double-stranded RNA capable of knocking down a gene by RNA interference. The number of base pairs constituting the double-stranded RNA is not particularly limited, but is, for example, 18 to 30 base pairs, 20 to 27 base pairs, and typically 21 to 23 base pairs of double-stranded RNA. Is. When siRNA is introduced into cells, it forms an RNA-protein complex called an RNA-induced silencing complex (RISC) with Argonaute protein, and forms a sequence complementary to the antisense strand of siRNA. Suppresses the expression of mRNA. That is, the siRNA for CDKAL1 can be a double-stranded RNA containing an RNA having a base sequence complementary to the mRNA of CDKAL1.
 本明細書において、「相補的」とは、第一の塩基が、第二の塩基と、古典的なワトソン-クリック型の塩基対、または非ワトソン-クリック型の塩基対を形成し、水素結合を形成できることを意味する。また、本明細書において、二つの塩基配列が「相補的」という場合、第一の塩基配列の全ての連続する塩基が、第二の塩基配列における同じ数の連続する塩基と相補的、すなわち、水素結合を形成できる場合(この場合を「完全に相補的」ということもある。)のみならず、第一の塩基配列の全ての塩基のうち、例えば、70%以上、80%以上、又は90%以上の塩基が、第二の塩基配列の塩基と水素結合を形成できる場合をも含む。すなわち、本明細書において、siRNAは、CDKAL1遺伝子の転写産物であるmRNAの一部に完全に相補的な塩基配列を有するRNAを含むものであっても良いし、完全に相補的な塩基配列から数個の塩基が変更された塩基配列を有するRNAを含むものであっても良い。また、ある好適な一態様において、siRNAを構成するセンス鎖とアンチセンス鎖の各3'末端には、2個乃至5個のヌクレオチド又は修飾ヌクレオチドのオーバーハングを有していてもよく、例えば、2個のデオキシ-チミジン(dTdT)を有するものであっても良い。 As used herein, "complementary" means that the first base forms a classical Watson-Crick base pair or a non-Watson-Crick base pair with a second base and hydrogen bonds. Means that can be formed. Also, in the present specification, when two base sequences are "complementary", all consecutive bases in the first base sequence are complementary to the same number of consecutive bases in the second base sequence, that is, Not only when hydrogen bonds can be formed (this case may be referred to as "fully complementary"), but of all the bases in the first base sequence, for example, 70% or more, 80% or more, or 90. Includes the case where% or more of the bases can form hydrogen bonds with the bases of the second base sequence. That is, in the present specification, siRNA may contain RNA having a base sequence completely complementary to a part of mRNA which is a transcript of the CDKAL1 gene, or from a completely complementary base sequence. A few bases may contain RNA having a modified base sequence. Also, in one preferred embodiment, each 3'end of the sense strand and antisense strand constituting the siRNA may have an overhang of 2 to 5 nucleotides or modified nucleotides, for example. It may have two deoxy-thymidines (dTdT).
 CDKAL1に対するsiRNAは、CDKAL1のDNA配列に基づいて、当業者であれば適宜設計することができる(A. Birmingham et al. Nature Protocols, 2007, 2, 2068-2078;E. Fakhr et al. Cancer Gene Therapy, 2016, 23, 73-82.)。また、公知のソフトウェア(Yuki Naito et al. Nucleic Acids Research, Volume 32, Issue suppl_2, 1, July 2004, Pages W124‐W129;Simone Sciabola et al. PLoS ONE 16(1):e0238753.;siRNA WizardTM(InvivoGen))等を用いても良い。ヒトCDKAL1のDNA配列は、公共のデータベース、例えば、アメリカ国立生物工学情報センター(NCBI:National Center for Biotechnology Information)から取得することができるし、また、配列表の配列番号20に記載されたDNA配列を用いてもよい。ヒトのCDKAL1に対するsiRNAが有するRNAの配列としては、例えば、図27Aに記載されたRNA配列(配列番号3及び4)、図27Bに記載されたRNA配列(配列番号7及び8)、或いは、配列表の配列番号41及び42に記載されたRNA配列を用いることができるが、本発明に用いられ得るCDKAL1に対するsiRNAの配列は、これらに限定されない。例えば、CDKAL1に対するRNAi活性を有する限りにおいて、上記いずれかのsiRNAにおいて、ヌクレオチド残基が挿入、欠失または置換するなどの変異をしたものであっても良い。当該変異の数に特段の制限はないが、例えば、1個~5個、好ましくは、1個~3個、より好ましくは1個~2個、更に好ましくは1個であり得る。 The siRNA for CDKAL1 can be appropriately designed by those skilled in the art based on the DNA sequence of CDKAL1 (A. Birmingham et al. Nature Protocols, 2007, 2, 2068-2078; E. Fakhr et al. Cancer Gene. Therapy, 2016, 23, 73-82.). Also known software (Yuki Naito et al. Nucleic Acids Research, Volume 32, Issue suppl_2, 1, July 2004, Pages W124-W129; Simone Sciabola et al. InvivoGen)) and the like may be used. The DNA sequence of human CDKAL1 can be obtained from a public database, for example, the National Center for Biotechnology Information (NCBI), and the DNA sequence set forth in SEQ ID NO: 20 of the sequence listing. May be used. The RNA sequence of siRNA for human CDKAL1 is, for example, the RNA sequence shown in FIG. 27A (SEQ ID NOs: 3 and 4), the RNA sequence shown in FIG. 27B (SEQ ID NOs: 7 and 8), or the arrangement. The RNA sequences set forth in SEQ ID NOs: 41 and 42 in the column table can be used, but the sequence of siRNA for CDKAL1 that can be used in the present invention is not limited thereto. For example, as long as it has RNAi activity against CDKAL1, any of the above siRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted. The number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
 一方、shRNAとは、RNA干渉によって遺伝子をノックダウンするために用いられるヘアピン型のRNAである。shRNAは、細胞内において、そのヘアピン構造が切断され、21~23塩基対程度の二本鎖RNAを生成する。生成した当該二本鎖RNAは、siRNAについて述べたと同様に、Argonauteタンパク質とRISCと呼ばれるRNA-タンパク質複合体を形成し、当該二本鎖RNAのアンチセンス鎖と相補的な配列を持つmRNAの発現を抑制し得る。すなわち、CDKAL1に対するshRNAは、CDKAL1のmRNAに相補的な塩基配列を含むヘアピン型のRNAであり得る。 On the other hand, shRNA is a hairpin-type RNA used for knocking down a gene by RNA interference. The hairpin structure of shRNA is cleaved in the cell to produce double-stranded RNA of about 21 to 23 base pairs. The generated double-stranded RNA forms an RNA-protein complex called RISC with the Argonaute protein, as described for siRNA, and expresses an mRNA having a sequence complementary to the antisense strand of the double-stranded RNA. Can be suppressed. That is, the shRNA for CDKAL1 can be a hairpin-type RNA containing a base sequence complementary to the mRNA of CDKAL1.
 siRNAについて述べたと同様に、ヒトCDKAL1に対するshRNAは、ヒトCDKAL1のDNA配列に基づいて、当業者であれば適宜設計することができ、また、公知のソフトウェアを用いて設計することもできる。ヒトのCDKAL1に対するshRNAの配列としては、例えば、図27Aに記載されたRNA配列(配列番号2)、又は、図27Bに記載されたRNA配列(配列番号6)を用いることができるが、本発明に用いられ得るCDKAL1に対するshRNAの配列は、これらに限定されない。例えば、CDKAL1に対するRNAi活性を有する限りにおいて、上記いずれかのshRNAにおいて、ヌクレオチド残基が挿入、欠失または置換するなどの変異をしたものであっても良い。当該変異の数に特段の制限はないが、例えば、1個~5個、好ましくは、1個~3個、より好ましくは1個~2個、更に好ましくは1個であり得る。 Similar to the siRNA described, the shRNA for human CDKAL1 can be appropriately designed by those skilled in the art based on the DNA sequence of human CDKAL1, and can also be designed using known software. As the sequence of shRNA for human CDKAL1, for example, the RNA sequence shown in FIG. 27A (SEQ ID NO: 2) or the RNA sequence shown in FIG. 27B (SEQ ID NO: 6) can be used, but the present invention. The sequence of shRNA for CDKAL1 that can be used in is not limited to these. For example, as long as it has RNAi activity against CDKAL1, any of the above shRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted. The number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
 アンチセンス核酸(ASO)とは、標的とする遺伝子のmRNAにハイブリダイズすることにより、当該mRNAの翻訳抑制を引き起こす作用を有する一本鎖DNA又はRNAである。すなわち、CDKAL1に対するアンチセンス核酸は、CDKAL1のmRNAに相補的な塩基配列を含む一本鎖DNA又はRNAであり得る。CDKAL1に対するアンチセンス核酸は、CDKAL1のDNA配列に基づいて、当業者であれば適宜設計することができる(J. HP Chan et al. Clinical and Experimental Pharmacology and Physiology, 2006, Vol. 33, pages 533-540.)。また、公知のソフトウェア(例えば、Simone Sciabola et al. PLoS ONE 16(1):e0238753.等)を用いても良い。なお、ある好適な一態様において、アンチセンス核酸は、その配列に相補的なRNA又はDNAが結合したものであっても良く、このような相補的なRNA又はDNAが結合したアンチセンス核酸は、例えば、ヘテロ二本鎖核酸(DNA/RNA)又はホモ二本鎖核酸(DNA/DNA)であり得る(K. Nishina et al. Nat. Commun. 2015, 6, 7969;Y. Asami et al. Molecular Therapy, 2021, 29, 838-847.)。 Antisense nucleic acid (ASO) is a single-stranded DNA or RNA having an action of inducing translational repression of the mRNA by hybridizing with the mRNA of the target gene. That is, the antisense nucleic acid for CDKAL1 can be a single-stranded DNA or RNA containing a base sequence complementary to the mRNA of CDKAL1. The antisense nucleic acid for CDKAL1 can be appropriately designed by those skilled in the art based on the DNA sequence of CDKAL1 (J. HP Chan et al. Clinical and Experimental Pharmacology and Physiology, 2006, Vol. 33, Vol. 33, Vol. 540.). Further, known software (for example, Simone Sciabola et al. PLos ONE 16 (1): e0238753. Etc.) may be used. In one preferred embodiment, the antisense nucleic acid may be one in which RNA or DNA complementary to the sequence is bound, and the antisense nucleic acid to which such complementary RNA or DNA is bound may be used. For example, it can be a hetero double-stranded nucleic acid (DNA / RNA) or a homo double-stranded nucleic acid (DNA / DNA) (K. Nishina et al. Nat. Commun. 2015, 6, 7769; Y. Asami et al. Molecular. Therapy, 2021, 29, 838-847.).
 一方、sgRNAとは、標的とするDNAに相補的な配列を有する一本鎖RNAであり、sgRNAを特定のエンドヌクレアーゼとともに細胞に導入すると、sgRNAと相補的な配列を有するDNA二本鎖が切断され、当該DNAによりコードされる遺伝子を特異的にノックアウトすることができる。なお、好適な一態様において、前記エンドヌクレアーゼは、化膿レンサ球菌由来のCas9ヌクレアーゼ、又は、その変異体である。sgRNAは、標的とする遺伝子の塩基配列に基づいて、当業者であれば適宜設計することができる。 On the other hand, sgRNA is a single-stranded RNA having a sequence complementary to the target DNA, and when sgRNA is introduced into a cell together with a specific endonuclease, the DNA double strand having a sequence complementary to sgRNA is cleaved. The gene encoded by the DNA can be specifically knocked out. In a preferred embodiment, the endonuclease is a Cas9 nuclease derived from Streptococcus pyogenes or a variant thereof. The sgRNA can be appropriately designed by those skilled in the art based on the base sequence of the target gene.
 なお、ある好適な一態様において、本発明に用いられるsiRNA、shRNA、アンチセンス核酸又はsgRNA等のRNA分子は、安定性や遺伝子発現の抑制効果、又は、細胞への導入効率等を向上させるために、化学修飾されたものであっても良い。例えば、生体内の分解酵素によるRNA分子の分解を防ぐために、RNA分子のリン酸基をホスホロチオエート、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸基に置換してもよいし、RNA分子を構成する核酸の一部をペプチド核酸(PNA)に置換しても良い。また、その3’末端又は5’末端にポリエチレングリコールなどの高分子、コレステロール、細胞透過性ペプチドなどのペプチド、GalNAc(N-Acetylgalactosamine)などの糖或いは糖鎖、抗体、抗体フラグメント、アプタマーなどが結合したものであっても良い。 In one preferred embodiment, RNA molecules such as siRNA, ThenRNA, antisense nucleic acid or sgRNA used in the present invention are intended to improve stability, gene expression inhibitory effect, cell introduction efficiency and the like. In addition, it may be chemically modified. For example, in order to prevent the degradation of an RNA molecule by a degrading enzyme in a living body, the phosphate group of the RNA molecule may be replaced with a chemically modified phosphate group such as phosphorothioate, methylphosphonate, or phosphorodithionate, or the RNA molecule may be replaced with a chemically modified phosphate group. A part of the constituent nucleic acid may be replaced with peptide nucleic acid (PNA). Further, a polymer such as polyethylene glycol, a peptide such as cholesterol or a cell-permeable peptide, a sugar or sugar chain such as GalNAc (N-Acetylgalactosamine), an antibody, an antibody fragment, an aptamer, etc. are bound to the 3'end or 5'end. It may be the one that has been used.
 また、本発明に係る前記剤は、その好適な一態様において、siRNA、shRNA、アンチセンス核酸又はsgRNAに代えて、細胞内で、siRNA、shRNA、アンチセンス核酸又はsgRNAを発現する発現ベクターを含んでいても良い。これらの発現ベクターとしては、例えば、プラスミド、コスミド、ファージミド、ウイルスベクターなどが例示され、ウイルスベクターとしては、例えば、レンチウイルスベクター、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどのウイルスベクターが例示されるが、これらに限定されない。これらの発現ベクターは、当業者であれば、適宜作製することができる(G. Sui et al., Proc. Natl. Acad. Sci. U.S.A. 2002, 99(8), 5515-5520.)。 Further, the agent according to the present invention comprises, in a preferred embodiment thereof, an expression vector expressing siRNA, shRNA, antisense nucleic acid or sgRNA in the cell instead of siRNA, ThenRNA, antisense nucleic acid or sgRNA. You can go out. Examples of these expression vectors include plasmids, cosmids, phagemids, viral vectors and the like, and examples of viral vectors include lentivirus vectors, retroviral vectors, adenoviral vectors, adeno-associated virus vectors, Sendai virus vectors and the like. Viral vectors are exemplified, but not limited to these. These expression vectors can be appropriately prepared by those skilled in the art (G. Sui et al., Proc. Natl. Acad. Sci. USA 2002, 99 (8), 5515-5520. .).
 siRNA、shRNA又はsgRNA等のRNA分子は、物理的方法又は化学的方法を問わず適宜の方法により、細胞に導入することができ、導入対象となる細胞の種類や、細胞が存在する環境に応じて、適宜の方法を選択すれば良い。物理的な導入方法としては、例えば、エレクトロポレーション法、ソノポレーション法、マイクロインジェクション法などが例示される。一方、化学的な導入方法としては、リン酸カルシウム法や、リポソームを用いたリポフェクション法に加え、カチオン性脂質、リピドイド、カチオン性ポリマー、膜透過性ペプチド、抗体、抗体フラグメント、タンパク質、ナノ粒子、マイクロ粒子、エマルジョン等の適宜の送達手段を用いたトランスフェクション法が例示される。RNA分子の導入対象である細胞が、生体組織の一部である場合には、RNA分子を、必要であれば適宜の送達手段と組み合わせた上で、全身投与しても良く、また、当該組織に注射又は塗布することにより局所的に投与しても良い。 RNA molecules such as siRNA, shRNA or sgRNA can be introduced into cells by an appropriate method regardless of physical or chemical methods, depending on the type of cell to be introduced and the environment in which the cells are present. Then, an appropriate method may be selected. Examples of the physical introduction method include an electroporation method, a sonoporation method, and a microinjection method. On the other hand, as a chemical introduction method, in addition to the calcium phosphate method and the lipofection method using liposomes, cationic lipids, lipidoids, cationic polymers, membrane-permeable peptides, antibodies, antibody fragments, proteins, nanoparticles, and microparticles. , A transfection method using an appropriate delivery means such as an emulsion is exemplified. When the cell to which the RNA molecule is introduced is a part of a living tissue, the RNA molecule may be administered systemically in combination with an appropriate delivery means if necessary, or the tissue. May be administered topically by injection or application to.
 また、本発明に係る前記剤は、その好適な一態様において、CDKAL1がその翻訳に関与する遺伝子のmRNAを減少させる成分を含む剤であってもよい。細胞内においてタンパク質合成の鋳型となるmRNAの数が減少すると、mRNAがコードするタンパク質の産生量が減少する。したがって、CDKAL1がその翻訳に関与する遺伝子のmRNAを減少させる成分を含む前記剤によれば、当該遺伝子の発現を抑制することができる。なお、mRNAの減少は、mRNAの産生を抑制すること、又は、産生されたmRNAを分解することにより達成することができる。また、標的細胞において、転写されて当該mRNAを産生する遺伝子をノックアウトすることにより、当該遺伝子のmRNAを産生されないようにしても良いことは言うまでもない。このような剤は、例えば、前記遺伝子に対するshRNA、siRNA、アンチセンス核酸又はsgRNAを有効成分として含む。 Further, the agent according to the present invention may be an agent containing a component in which CDKAL1 reduces the mRNA of a gene involved in its translation in a preferred embodiment thereof. When the number of mRNA that serves as a template for protein synthesis in the cell decreases, the amount of protein encoded by the mRNA decreases. Therefore, according to the agent containing a component in which CDKAL1 reduces the mRNA of the gene involved in its translation, the expression of the gene can be suppressed. The reduction of mRNA can be achieved by suppressing the production of mRNA or by degrading the produced mRNA. Needless to say, the mRNA of the gene may not be produced by knocking out the gene that is transcribed to produce the mRNA in the target cell. Such agents include, for example, shRNA, siRNA, antisense nucleic acid or sgRNA for the gene as an active ingredient.
 ある好適な一態様において、CDKAL1がその翻訳に関与する遺伝子に対するsiRNAは、前記遺伝子の転写産物であるmRNAに相補的な塩基配列を有するRNAを含む二本鎖RNAであり得る。CDKAL1がその翻訳に関与する具体的な遺伝子については前述したとおりであるが、例えば、ある好適な一態様において、前記遺伝子はSALL2であり得る。ある遺伝子に対するsiRNAは、当該遺伝子のDNA配列に基づいて、当業者であれば、適宜設計することができることは既に述べたとおりである。また、ヒトSALL2のDNA配列は、公共のデータベース、例えば、アメリカ国立生物工学情報センター(NCBI)から取得することができる。ヒトSALL2に対するsiRNAの配列の具体例としては、例えば、図28Aに記載されたRNA配列(配列番号11及び12)、又は、図28Bに記載されたRNA配列(配列番号15及び16)が挙げられるが、本発明に用いられ得るsiRNAの配列は、これらに限定されない。例えば、SALL2に対するRNAi活性を有する限りにおいて、上記いずれかのsiRNAにおいて、ヌクレオチド残基が挿入、欠失または置換するなどの変異をしたものであっても良い。当該変異の数に特段の制限はないが、例えば、1個~5個、好ましくは、1個~3個、より好ましくは1個~2個、更に好ましくは1個であり得る。 In one preferred embodiment, the siRNA for the gene in which CDKAL1 is involved in its translation can be a double-stranded RNA comprising an RNA having a base sequence complementary to the mRNA that is the transcript of the gene. The specific genes in which CDKAL1 is involved in its translation are as described above, but for example, in one preferred embodiment, the gene can be SALL2. As already described, a person skilled in the art can appropriately design siRNA for a certain gene based on the DNA sequence of the gene. Human SALL2 DNA sequences can also be obtained from public databases, such as the National Center for Biotechnology Information (NCBI). Specific examples of the siRNA sequence for human SALL2 include the RNA sequences set forth in FIG. 28A (SEQ ID NOs: 11 and 12) or the RNA sequences set forth in FIG. 28B (SEQ ID NOs: 15 and 16). However, the sequence of siRNA that can be used in the present invention is not limited thereto. For example, as long as it has RNAi activity against SALL2, any of the above siRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted. The number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
 また、ある好適な一態様において、CDKAL1がその翻訳に関与する遺伝子に対するshRNAは、前記遺伝子の転写産物であるmRNAに相補的な塩基配列を含むヘアピン型のRNAであり得る。CDKAL1がその翻訳に関与する具体的な遺伝子については前述したとおりであるが、例えば、ある好適な一態様において、前記遺伝子はSALL2であり得る。すなわち、ある好適な一態様において、CDKAL1がその翻訳に関与する遺伝子に対するshRNAは、SALL2に対するshRNAであり得る。ヒトSALL2に対するshRNAの配列の具体例としては、例えば、図28Aに記載されたRNA配列(配列番号10)、又は、図28Bに記載されたRNA配列(配列番号14)が挙げられるが、本発明に用いられ得るSALL2に対するshRNAの配列は、これらに限定されない。例えば、SALL2に対するRNAi活性を有する限りにおいて、上記いずれかのshRNAにおいて、ヌクレオチド残基が挿入、欠失または置換するなどの変異をしたものであっても良い。当該変異の数に特段の制限はないが、例えば、1個~5個、好ましくは、1個~3個、より好ましくは1個~2個、更に好ましくは1個であり得る。 Further, in one preferred embodiment, the shRNA for the gene in which CDKAL1 is involved in its translation can be a hairpin-type RNA containing a base sequence complementary to mRNA which is a transcript of the gene. The specific genes in which CDKAL1 is involved in its translation are as described above, but for example, in one preferred embodiment, the gene can be SALL2. That is, in one preferred embodiment, the shRNA for the gene in which CDKAL1 is involved in its translation can be shRNA for SALL2. Specific examples of the shRNA sequence for human SALL2 include the RNA sequence shown in FIG. 28A (SEQ ID NO: 10) or the RNA sequence shown in FIG. 28B (SEQ ID NO: 14). The sequence of shRNA for SALL2 that can be used in is not limited to these. For example, as long as it has RNAi activity against SALL2, any of the above shRNAs may be mutated such that a nucleotide residue is inserted, deleted or substituted. The number of the mutations is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, more preferably 1 to 2, and even more preferably 1.
 shRNA、siRNA、アンチセンス核酸、及びsgRNAに関し、それらの導入方法や調製方法等を含むその他の部分については、既に述べたとおりである。 Regarding shRNA, siRNA, antisense nucleic acid, and sgRNA, other parts including the introduction method and preparation method thereof are as described above.
 一方、本発明に係る剤は、その好適な一態様において、CDKAL1がその翻訳に関与する遺伝子のmRNAからタンパク質への翻訳を阻害する成分を含む剤であってもよい。ここで翻訳を阻害するとは、遺伝子の転写産物であるmRNAを鋳型としてタンパク質が合成される過程を阻害することを意味し、当該翻訳は、CDKAL1が関与する翻訳、より詳細には、CDKAL1がその開始に関与する翻訳である。上記剤により、CDKAL1が関与する翻訳、より詳細には、CDKAL1が関与して開始されるmRNAの翻訳が阻害されると、当該mRNAに対応するタンパク質の産生量が低下する。換言すれば、CDKAL1が、その翻訳に関与する遺伝子の発現が抑制される。 On the other hand, the agent according to the present invention may be an agent containing a component that inhibits the translation of the gene involved in the translation of CDKAL1 from mRNA to protein in a preferred embodiment thereof. Inhibiting translation here means inhibiting the process of protein synthesis using mRNA, which is a transcript of a gene, as a template, and the translation is a translation involving CDKAL1, more specifically, CDKAL1. The translation involved in the initiation. When the above agent inhibits the translation involving CDKAL1, and more specifically, the translation of the mRNA initiated by the involvement of CDKAL1, the production amount of the protein corresponding to the mRNA is reduced. In other words, CDKAL1 suppresses the expression of genes involved in its translation.
 後述する実験例に示すとおり、本発明者らは、鋭意研究努力を重ねた結果、CDKAL1が関与する翻訳開始因子複合体の安定化には、CDKAL1のUPFドメインを含むアミノ末端から1~202番目のアミノ酸配列が重要な役割を果たしていることを見出した。また、本発明者らは、さらに鋭意研究努力を重ねた結果、CDKAL1のUPFドメインを含むアミノ末端から1~202番目のアミノ酸配列における翻訳後修飾、具体的には、当該アミノ酸配列におけるN-結合型グリコシル化及びGSK3(Glycogen synthase kinase 3)によるリン酸化、さらに具体的には、CDKAL1のN末端から107番目のアスパラギンのN-結合型グリコシル化、並びに、CDKAL1のN末端から18番目、22番目、及び153番目のセリンのGSK3によるリン酸化が、CDKAL1が関与する翻訳開始因子複合体の安定化に重要な役割を果たしており、N-結合型グリコシル化阻害剤又はGSK3阻害剤によれば、CDKAL1が関与する翻訳開始因子複合体の安定化作用が顕著に低下し、CDKAL1が関与する翻訳が阻害されることを見出した。すなわち、ある好適な一態様において、CDKAL1が関与する翻訳を阻害する前記成分は、N-結合型グリコシル化阻害剤又はGSK3阻害剤であり得る。用いられ得るN-結合型グリコシル化阻害剤又はGSK3阻害剤の種類に特段の制限はないが、例えば、N-結合型グリコシル化阻害剤としてはtunicamycin、GSK3阻害剤としてはBIO又はCHIR-98014が用いられ得る。 As shown in the experimental examples described later, as a result of diligent research efforts, the present inventors have been able to stabilize the translation initiation factor complex in which CDKAL1 is involved at positions 1 to 202 from the amino terminus containing the UPF domain of CDKAL1. We found that the amino acid sequence of is playing an important role. In addition, as a result of further diligent research efforts, the present inventors have made post-translational modifications in the amino acid sequences 1 to 202 from the amino terminus containing the UPF domain of CDKAL1, specifically, N-binding in the amino acid sequence. Type glycosylation and phosphorylation by GSK3 (Glycogen synthesis kinase 3), more specifically, N-linked glycosylation of the 107th asparagine from the N-terminus of CDKAL1, and the 18th and 22nd from the N-terminus of CDKAL1. , And phosphorylation of the 153rd serine by GSK3 plays an important role in stabilizing the translational initiation factor complex in which CDKAL1 is involved, and according to the N-linked glycosylation inhibitor or GSK3 inhibitor, CDKAL1 It was found that the stabilizing effect of the translation initiation factor complex involving CDKAL1 was significantly reduced, and the translation involving CDKAL1 was inhibited. That is, in one preferred embodiment, the component that inhibits translation involving CDKAL1 can be an N-linked glycosylation inhibitor or a GSK3 inhibitor. There are no particular restrictions on the types of N-linked glycosylation inhibitors or GSK3 inhibitors that can be used, such as tunicamycin as an N-linked glycosylation inhibitor and BIO or CHIR-98014 as a GSK3 inhibitor. Can be used.
 また、ある好適な一態様において、CDKAL1がその翻訳に関与する遺伝子のmRNAからタンパク質への翻訳を阻害する前記成分は、CDKAL1に特異的に結合する成分であり得る。CDKAL1が関与する翻訳にはCDKAL1が関与する翻訳開始因子複合体の形成が必要であるところ、CDKAL1に特異的に結合する成分によれば、CDKAL1と翻訳開始因子複合体との相互作用が阻害されることにより、CDKAL1が関与する翻訳が阻害され得る。 Further, in one preferred embodiment, the component that inhibits the translation of the gene involved in its translation from mRNA to protein can be a component that specifically binds to CDKAL1. Translation involving CDKAL1 requires the formation of a translation initiation factor complex involving CDKAL1, whereas a component that specifically binds to CDKAL1 inhibits the interaction between CDKAL1 and the translation initiation factor complex. This can inhibit translations involving CDKAL1.
 上述したとおり、本発明者らが得た知見によれば、CDKAL1が関与する翻訳開始因子複合体の安定化には、CDKAL1のUPFドメインを含むアミノ末端から1~202番目のアミノ酸配列が重要な役割を果たしている。したがって、CDKAL1のUPFドメインを含むアミノ末端から1~202番目のアミノ酸配列に特異的に結合する成分は、CDKAL1と翻訳開始因子複合体との相互作用を阻害し、CDKAL1が関与する翻訳機構を抑制するために好適に用いられ得る。 As described above, according to the findings obtained by the present inventors, the amino acid sequences 1 to 202 from the amino terminus containing the UPF domain of CDKAL1 are important for stabilizing the translation initiation factor complex in which CDKAL1 is involved. Playing a role. Therefore, the component that specifically binds to the amino acid sequence 1 to 202 from the amino terminus including the UPF domain of CDKAL1 inhibits the interaction between CDKAL1 and the translation initiation factor complex and suppresses the translation mechanism in which CDKAL1 is involved. Can be suitably used for this purpose.
 また、上述したとおり、本発明者らが見出した知見によれば、CDKAL1のUPFドメインを含むアミノ末端から1~202番目のアミノ酸配列における、CDKAL1のN末端から107番目のアスパラギンのN-結合型グリコシル化、並びに、CDKAL1のN末端から18番目、22番目、及び153番目のセリンのGSK3によるリン酸化は、CDKAL1が関与する翻訳開始因子複合体の安定化に重要な役割を果たしている。したがって、CDKAL1のアミノ末端から1~202番目のアミノ酸配列であって、下記(1)~(4)の1又は2以上の翻訳後修飾を含むアミノ酸配列に特異的に結合する成分は、CDKAL1と翻訳開始因子複合体との相互作用を阻害し、CDKAL1が関与する翻訳機構を抑制するために特に好適に用いられ得る:
(1)N末端から18番目のセリンのリン酸化;
(2)N末端から22番目のセリンのリン酸化;
(3)N末端から107番目のアスパラギンのN-結合型グリコシル化;
(4)N末端から153番目のセリンのリン酸化。
Further, as described above, according to the findings found by the present inventors, the N-linked type of asparagine at the 107th position from the N-terminal of CDKAL1 in the amino acid sequence 1 to 202 from the amino terminal containing the UPF domain of CDKAL1. Glycosylation and GSK3 phosphorylation of the 18th, 22nd, and 153rd serines from the N-terminus of CDKAL1 play important roles in stabilizing the translation initiation factor complex in which CDKAL1 is involved. Therefore, the amino acid sequence 1 to 202 from the amino terminus of CDKAL1 that specifically binds to the amino acid sequence containing one or more post-translational modifications of (1) to (4) below is the same as CDKAL1. It may be particularly preferably used to inhibit interaction with the translational initiation factor complex and suppress the translational mechanism involving CDKAL1:
(1) Phosphorylation of the 18th serine from the N-terminal;
(2) Phosphorylation of the 22nd serine from the N-terminal;
(3) N-linked glycosylation of the 107th asparagine from the N-terminus;
(4) Phosphorylation of the 153rd serine from the N-terminal.
 CDKAL1に特異的に結合する成分の種類に特段の制限はないが、例えば、ペプチド、抗体、抗体フラグメント、アプタマー等であり得る。これらの物質は、当業者であれば、本願明細書の開示内容及び公知の技術に基づき、適宜の方法により調製することができる。 The type of component that specifically binds to CDKAL1 is not particularly limited, but may be, for example, a peptide, an antibody, an antibody fragment, an aptamer, or the like. Those skilled in the art can prepare these substances by an appropriate method based on the disclosed contents of the present specification and known techniques.
 本明細書において「ペプチド」という場合、天然型または非天然型のアミノ酸が脱水縮合して結合した分子を意味し、直鎖状のペプチドであっても、分岐鎖状のペプチドであっても、環状のペプチドであっても良い。ペプチドを構成するアミノ酸の個数に特段の制限はないが、典型的には50個以下、好ましくは40個以下、より好ましくは30個以下、更に好ましくは20個以下である。CDKAL1に特異的に結合するペプチドは、当業者であれば、ファージディスプレイ法(G. P. Smith, Science 1985, Vol. 228, Issue 4705, pp. 1315-1317.)、リボソームディスプレイ法(L. C. Mattheakis et al. Proc. Natl. Acad. Sci. U.S.A., 1994, 91(19),9022-9026.)、In vitro virus法(N. Nemoto et al. FEBS Lett., 1997, 414(2),405-408.)、cDNAディスプレイ法(J. Yamaguchi et al. Nucleic Acids Research, 2009,Vol. 37,Issue 16, e108)、TRAP display法(Ishizawa, T. et al. Journal of the American Chemical Society 2013, 135, 5433-40.)などの公知の技術を適宜用いて得ることができる。例えば、ファージディスプレイ法を用いる場合、ランダムなアミノ酸配列を持つペプチドライブラリを提示させたファージライブラリを調製し、その中から標的となるタンパク質又は標的となるタンパク質の一部に結合するファージ群を選択する。例えば、固定化した標的タンパク質にファージライブラリを接触させ、標的タンパク質に結合しなかったファージ群を除去した後に,標的タンパク質に結合したファージを溶出し、大腸菌に感染させ、増幅させる。この一連の操作を繰り返し行うことで、標的タンパク質に高い結合性を有するファージを得ること、換言すれば、標的タンパク質に高い結合性を有するペプチドのアミノ酸配列を決定することができる。標的タンパク質としては、CDKAL1のアミノ酸配列の一部又は全部が用いられ得るが、好ましくは、CDKAL1のアミノ末端から1~202番目のアミノ酸配列の一部又は全部であり、さらに好ましくは、CDKAL1のアミノ末端から1~202番目のアミノ酸配列の一部又は全部であって、下記(1)~(4)の1又は2以上を含む領域が好適に用いられ得る:
(1)リン酸化されたN末端から18番目のセリン;
(2)リン酸化されたN末端から22番目のセリン;
(3)N-結合型グリコシル化されたN末端から107番目のアスパラギン;
(4)リン酸化されたN末端から153番目のセリン。
As used herein, the term "peptide" means a molecule in which natural or non-natural amino acids are dehydrated and condensed, and whether it is a linear peptide or a branched chain peptide. It may be a cyclic peptide. The number of amino acids constituting the peptide is not particularly limited, but is typically 50 or less, preferably 40 or less, more preferably 30 or less, still more preferably 20 or less. Peptides that specifically bind to CDKAL1 can be described by those skilled in the art using the phage display method (GP Smith, Science 1985, Vol. 228, Issue 4705, pp. 1315-1317.), Ribosome display method (L. C. Mattheakis et al. Proc. Natl. Acad. Sci. USA, 1994, 91 (19), 9022-9026.), In vitro virus method (N. Nemoto et al. FEBS Let., 19). , 414 (2), 405-408.), cDNA display method (J. Yamaguchi et al. Nucleic Acids Research, 2009, Vol. 37, Issue 16, e108), TRAP peptide method (Ishizawa, T. It can be obtained by appropriately using known techniques such as of the American Chemical Society 2013, 135, 5433-40.). For example, when the phage display method is used, a phage library presenting a peptide library having a random amino acid sequence is prepared, and a target protein or a group of phage that binds to a part of the target protein is selected from the phage library. .. For example, the phage library is contacted with the immobilized target protein to remove the phage group that did not bind to the target protein, and then the phage bound to the target protein is eluted, infected with Escherichia coli, and amplified. By repeating this series of operations, phages having high binding property to the target protein can be obtained, in other words, the amino acid sequence of the peptide having high binding property to the target protein can be determined. As the target protein, a part or all of the amino acid sequence of CDKAL1 can be used, but preferably a part or all of the amino acid sequence 1 to 202 from the amino end of CDKAL1, and more preferably the amino acid of CDKAL1. A region which is a part or all of the amino acid sequence 1 to 202 from the terminal and contains 1 or 2 or more of the following (1) to (4) can be preferably used:
(1) Phosphorylated N-terminal 18th serine;
(2) Phosphorylated N-terminal 22nd serine;
(3) N-linked glycosylated asparagine 107th from the N-terminus;
(4) The 153rd serine from the phosphorylated N-terminal.
 本明細書において「抗体」とは、天然に産生されるか、遺伝子組み換え技術を用いて産生される免疫グロブリン分子をいい、「抗体フラグメント」とは、当該免疫グロブリン分子に含まれる抗原結合性のフラグメントを言う。抗体は、ポリクローナル抗体、モノクローナル抗体、及び、組換え抗体のいずれであっても良い。ポリクローナル抗体とは、同一抗原の異なるエピトープを認識して結合する複数の種類の免疫グロブリンの集合をいい、一方、モノクローナル抗体とは、単一免疫グロブリンのクローン群をいう。組換え抗体は、キメラ抗体及びヒト化抗体等の異なる動物由来の抗体のアミノ酸配列を組み合わせて作製される抗体を意味する。抗体フラグメントには、例えば、F(ab’)、F(ab)、Fab’、Fab、Fv、scFvなどが含まれる。 As used herein, the term "antibody" refers to an immunoglobulin molecule that is naturally produced or produced using genetic recombination technology, and the "antibody fragment" is an antigen-binding molecule contained in the immunoglobulin molecule. Say a fragment. The antibody may be any of a polyclonal antibody, a monoclonal antibody, and a recombinant antibody. A polyclonal antibody refers to a set of a plurality of types of immunoglobulins that recognize and bind to different epitopes of the same antigen, while a monoclonal antibody refers to a clone group of a single immunoglobulin. Recombinant antibody means an antibody produced by combining amino acid sequences of antibodies derived from different animals such as chimeric antibody and humanized antibody. Antibody fragments include, for example, F (ab') 2 , F (ab) 2 , Fab', Fab, Fv, scFv and the like.
 CDKAL1に特異的に結合する抗体又は抗体フラグメントは、当業者であれば、公知の技術を用いて作製することができる。例えば、抗原と必要であればアジュバントとを投与した免疫動物の血漿からポリクローナル抗体を得ることができる。また、ハイブリドーマ法によりモノクローナル抗体を得ることもできる。より具体的には、抗原と必要であればアジュバントとを投与した免疫動物から抗体産生細胞(例えば、B細胞)を得て、得られた抗体産生細胞をミエローマ等と融合させハイブリドーマを作製し、当該ハイブリドーマが産生した抗体を精製することによってモノクローナル抗体を得ることができる。ここで、免疫に用いられる抗原は、CDKAL1のアミノ酸配列の一部又は全部であり得るが、好ましくは、CDKAL1のアミノ末端から1~202番目のアミノ酸配列の一部又は全部、さらに好ましくは、CDKAL1のアミノ末端から1~202番目のアミノ酸配列の一部又は全部であって、下記(1)~(4)の1又は2以上を含むアミノ酸配列を有する領域が好適に用いられ得る:
(1)リン酸化されたN末端から18番目のセリン;
(2)リン酸化されたN末端から22番目のセリン;
(3)N-結合型グリコシル化されたN末端から107番目のアスパラギン;
(4)リン酸化されたN末端から153番目のセリン。
An antibody or antibody fragment that specifically binds to CDKAL1 can be prepared by those skilled in the art using known techniques. For example, polyclonal antibodies can be obtained from plasma of immune animals administered with an antigen and, if necessary, an adjuvant. A monoclonal antibody can also be obtained by the hybridoma method. More specifically, antibody-producing cells (for example, B cells) were obtained from an immune animal to which an antigen and, if necessary, an adjuvant were administered, and the obtained antibody-producing cells were fused with myeloma or the like to prepare a hybridoma. A monoclonal antibody can be obtained by purifying the antibody produced by the hybridoma. Here, the antigen used for immunization may be a part or all of the amino acid sequence of CDKAL1, but preferably a part or all of the amino acid sequence 1 to 202 from the amino end of CDKAL1, more preferably CDKAL1. A region having an amino acid sequence including 1 or 2 or more of the following (1) to (4), which is a part or all of the amino acid sequence 1 to 202 from the amino end of the above, can be preferably used:
(1) Phosphorylated N-terminal 18th serine;
(2) Phosphorylated N-terminal 22nd serine;
(3) N-linked glycosylated asparagine 107th from the N-terminus;
(4) The 153rd serine from the phosphorylated N-terminal.
 抗体又は抗体フラグメントの産生方法は以上に限られず、遺伝子組換え技術を用いて製造しても良い。例えば、上述した手順にて作製したハイブリドーマが産生するモノクローナル抗体、前記モノクローナル抗体の重鎖可変領域や軽鎖可変領域、重鎖CDR、軽鎖CDR等をコードする遺伝子をクローニングして、前記遺伝子を含むベクターを作製した後、得られたベクターを宿主細胞に導入して、当該宿主細胞を形質転換させることによって、抗体又はその抗体フラグメントを産生する細胞を得ることができる。当該細胞が産生する抗体を精製することによっても抗体又はその抗体フラグメントを得ることができる。なお、抗体又はその抗体フラグメントの調製に用いられる宿主細胞の種類、ベクターの種類、培養条件等は、当業者であれば、適宜設定し得る。 The method for producing an antibody or antibody fragment is not limited to the above, and may be produced using a gene recombination technique. For example, the monoclonal antibody produced by the hybridoma produced by the above procedure, the gene encoding the heavy chain variable region or light chain variable region, heavy chain CDR, light chain CDR, etc. of the monoclonal antibody is cloned to obtain the gene. After preparing the containing vector, the obtained vector is introduced into a host cell to transform the host cell, whereby a cell producing an antibody or an antibody fragment thereof can be obtained. An antibody or an antibody fragment thereof can also be obtained by purifying the antibody produced by the cells. Those skilled in the art can appropriately set the type of host cell, the type of vector, the culture conditions, etc. used for preparing the antibody or the antibody fragment thereof.
 一方、本明細書において「アプタマー」とは、特定の物質と特異的に結合する核酸をいう。CDKAL1に対するアプタマーは、当業者であれば、適宜の方法により作製することができる。このような方法には、例えば、SELEX法(Systematic Evolution of Ligands by EXponential enrichment)(Tuerk, C.; Gold, L. Science 1990, 249, 505.)が含まれる。SELEX法では、まず、ランダムな塩基配列を持つ核酸ライブラリを調製し、その中から標的となるタンパク質又は標的となるタンパク質の一部に結合する核酸群を選択する。選択した核酸群をPCR法で増幅し核酸ライブラリを得る。当該選択と増幅のサイクルを数回~数十回繰り返し行うことによって、標的となるタンパク質又は標的となるタンパク質の一部に結合力が強い核酸の配列を同定することができる。 On the other hand, the term "aptamer" as used herein refers to a nucleic acid that specifically binds to a specific substance. The aptamer for CDKAL1 can be produced by a person skilled in the art by an appropriate method. Such a method includes, for example, the SELEX method (Systematic Evolution of Ligands by EXPonential evolution) (Tuerk, C .; Gold, L. Science 1990, 249, 505.). In the SELEX method, first, a nucleic acid library having a random base sequence is prepared, and a target protein or a group of nucleic acids that bind to a part of the target protein is selected from the library. The selected nucleic acid group is amplified by the PCR method to obtain a nucleic acid library. By repeating the selection and amplification cycle several to several tens of times, it is possible to identify a sequence of a nucleic acid having a strong binding force to a target protein or a part of the target protein.
 一方、ある好適な一態様において、CDKAL1が関与する翻訳を阻害する成分は、低分子化合物であり得る。CDKAL1が関与する翻訳を阻害する低分子化合物は、後述する本発明の一側面に係るスクリーニング方法によって効率よく、且つ、数多く得ることができる。本発明者らが見出した知見によれば、このような低分子化合物としては、例えば、Go6983、tunicamycin、Ozanimod、Gramicidin、Lomitapide、Fenticonazole(Nitrate)、Asenapine(hydrochloride)、Propafenone(hydrochloride)、Sertraline(hydrochloride)、Arterolane、Bepridil hydrochloride、Levomepromazine、Esaxerenone、Dronedarone(Hydrochloride)、Amorolfine(hydrochloride)、Doxycycline(hyclate)、Loperamide(hydrochloride)、Flupirtine(Maleate)、Sulfameter、Revaprazan(hydrochloride)、Clevidipine、Vinburnine、Ethacridine(lactate)、Lamivudine、Ecabet(sodium)、Pramipexole(dihydrochloride)、AZD7545、Ceftezole(sodium)、Medetomidine(hydrochloride)、Lactose、Cloperastine fendizoate、Cyclobenzaprine(hydrochloride)、Cefathiamidine、L-Arginine(hydrochloride)、Gestrinone、Doravirine、Norepinephrine、Clomiphene(citrate)、Nomegestrol acetate、Cinacalcet、Talc、Amoxapine、Clodronic acid(disodium salt)、Phenylbutazone、Upadacitinib、Bacitracin、Cimetropium(Bromide)、Dihydroergotoxine(mesylate)、Bedaquiline(fumarate)、Solriamfetol、Delavirdine(mesylate)、Tiratricol、Afoxolaner、Ledipasvir、Dapsone、Oxiconazole nitrate、Argipressin、Ronidazole、Ticlopidine(hydrochloride)、Isopropamide(iodide)、Meropenem(trihydrate)、Deoxycholic acid sodium salt、Oxiracetam、Ethacridine(lactate monohydrate)、Amrinone、Moxidectin、(S)-Flurbiprofen、Diphylline、Metaproterenol(hemisulfate)、Fidarestat、Sultamicillin(tosylate)、Piperonyl butoxide、Verapamil(hydrochloride)、Laropiprant、Tegaserod(maleate)、Ornipressin、L-Ornithine(hydrochloride)、Perphenazine、Nitrendipine、Tofogliflozin(hydrate)、Sulfamerazine、Fosfluconazole、Vitamin D2、Oxybuprocaine hydrochloride、Triflupromazine(hydrochloride)、Alibendol、Sulbutiamine、Toloxatone、Emamectin(Benzoate)、Pimethixene maleate、Dronedarone、Dihydroergocristine(mesylate)、Rocuronium(Bromide)、Sulpiride、Dobutamine (hydrochloride)、Cilnidipine、Cyproheptadine(hydrochloride)、Diclofenac(diethylamine)、Sulfachloropyridazine、Ioxilan、Pinacidil monohydrate、Halofantrine hydrochloride、Cyproheptadine(hydrochloride sesquihydrate)が含まれるが、これらに限定されない。後述する実験例に示されるとおり、CDKAL1が関与する翻訳機構を抑制することにより、悪性脳腫瘍や横紋筋肉腫などの希少がんを含む実に様々な種類の癌の増殖を抑制することができる。したがって、CDKAL1が関与する翻訳機構を抑制する作用を奏する上記低分子化合物は、がん治療のための剤の有効成分として好適に用いられ得る。 On the other hand, in one preferred embodiment, the component that inhibits translation involving CDKAL1 can be a small molecule compound. A large number of small molecule compounds that inhibit translation involving CDKAL1 can be efficiently obtained by the screening method according to one aspect of the present invention, which will be described later. According to the findings found by the present inventors, such low molecular weight compounds include, for example, Go6983, tunicamycin, Ozanimod, Gramicidin, Lomitapide, Fenticonazole (Nitrate), Asenapine (hydrochloride), Proph. hydrochloride)、Arterolane、Bepridil hydrochloride、Levomepromazine、Esaxerenone、Dronedarone(Hydrochloride)、Amorolfine(hydrochloride)、Doxycycline(hyclate)、Loperamide(hydrochloride)、Flupirtine(Maleate)、Sulfameter、Revaprazan(hydrochloride)、Clevidipine、Vinburnine、Ethacridine( lactate)、Lamivudine、Ecabet(sodium)、Pramipexole(dihydrochloride)、AZD7545、Ceftezole(sodium)、Medetomidine(hydrochloride)、Lactose、Cloperastine fendizoate、Cyclobenzaprine(hydrochloride)、Cefathiamidine、L-Arginine(hydrochloride)、Gestrinone、Doravirine、 Norepinephrine、Clomiphene(citrate)、Nomegestrol acetate、Cinacalcet、Talc、Amoxapine、Clodronic acid(disodium salt)、Phenylbutazone、Upadacitinib、Bacitracin、Cimetropium(Bromide)、Dihydroergotoxine(mesylate)、Bedaquiline(fumarate)、Solriamfetol、Delavirdine(mesylate) , Tiratricol, Afoxolaner, Ladypasvir, Dapsone, Oxiconazole nitra te、Argipressin、Ronidazole、Ticlopidine(hydrochloride)、Isopropamide(iodide)、Meropenem(trihydrate)、Deoxycholic acid sodium salt、Oxiracetam、Ethacridine(lactate monohydrate)、Amrinone、Moxidectin、(S)-Flurbiprofen、Diphylline、Metaproterenol(hemisulfate) 、Fidarestat、Sultamicillin(tosylate)、Piperonyl butoxide、Verapamil(hydrochloride)、Laropiprant、Tegaserod(maleate)、Ornipressin、L-Ornithine(hydrochloride)、Perphenazine、Nitrendipine、Tofogliflozin(hydrate)、Sulfamerazine、Fosfluconazole、Vitamin D2、Oxybuprocaine hydrochloride 、Triflupromazine(hydrochloride)、Alibendol、Sulbutiamine、Toloxatone、Emamectin(Benzoate)、Pimethixene maleate、Dronedarone、Dihydroergocristine(mesylate)、Rocuronium(Bromide)、Sulpiride、Dobutamine (hydrochloride)、Cilnidipine、Cyproheptadine(hydrochloride)、Diclofenac(diethylamine) , Sulfachloropyridazine, Ioxylan, Pinacidil monohydrate, Hydrofantrine chloride, Cyproheptedine (not limited to, but not limited to, chloride). As shown in the experimental examples described later, by suppressing the translation mechanism involved in CDKAL1, it is possible to suppress the growth of a wide variety of cancers including rare cancers such as malignant brain tumors and rhabdomyosarcoma. Therefore, the small molecule compound having an action of suppressing the translation mechanism in which CDKAL1 is involved can be suitably used as an active ingredient of an agent for treating cancer.
 本発明の他の一側面に係る前記剤に用いられ得るCDKAL1が関与する翻訳を阻害する成分は、CDKAL1が関与する翻訳を阻害する活性を有していればよく、その種類に特段の制限はない。天然物質であっても合成物質であっても、有機化合物であっても無機化合物であっても良く、また、分子量500程度までの低分子化合物、分子量500乃至1000程度の中分子化合物、それ以上の分子量を有する高分子化合物であっても良い。例えば、直鎖状又は環状のペプチド、アミノ酸、タンパク質、抗体、抗体フラグメント、核酸、糖質、脂質、天然高分子、合成高分子、無機化合物、有機化合物、又はそれらの結合物であっても良い。CDKAL1が関与する翻訳を阻害する物質は、後述する本発明の一側面に係るスクリーニング方法によって容易に得ることができる。 The component that inhibits translation involving CDKAL1 that can be used in the agent according to another aspect of the present invention may have an activity that inhibits translation involving CDKAL1, and the type thereof is not particularly limited. do not have. It may be a natural substance, a synthetic substance, an organic compound or an inorganic compound, a low molecular weight compound having a molecular weight of up to about 500, a medium molecular weight compound having a molecular weight of about 500 to 1000, or more. It may be a polymer compound having a molecular weight of. For example, it may be a linear or cyclic peptide, amino acid, protein, antibody, antibody fragment, nucleic acid, sugar, lipid, natural polymer, synthetic polymer, inorganic compound, organic compound, or a combination thereof. .. A substance that inhibits translation in which CDKAL1 is involved can be easily obtained by the screening method according to one aspect of the present invention, which will be described later.
 本発明の一側面に係る剤が適用され得るがんの種類に特段の制限はなく、治療対象となるがんを構成するがん細胞において、CDKAL1が関与する翻訳機構、より詳細には、CDKAL1が、その開始に関与する翻訳機構が活性化している限りにおいて、基本的に、どのようながんであっても良い。ちなみに、本明細書において、「がん」は、白血病、リンパ腫、骨髄腫などの造血器悪性腫瘍と、肺がん、乳がん、胃がん、大腸がんなどの上皮細胞から発生する悪性腫瘍(癌、又は、carcinoma)、及び、骨肉腫、軟骨肉腫、横紋筋肉腫、平滑筋肉腫などの非上皮細胞から発生する悪性腫瘍(肉腫、又は、sarcoma)を含んで意味している。好ましい一態様において、本発明に係る剤の治療対象とされるがんは、肉腫又は上皮性の悪性腫瘍であり、より好ましくは、横紋筋肉腫、又は神経膠腫(グリオーマ)などの悪性脳腫瘍である。神経膠腫には膠芽腫(グリオブラストーマ)が含まれ、膠芽腫は間葉系(mesenchymal type)であっても、前神経系(proneural type)であっても良い。後述する実験例に示されるとおり、CDKAL1が関与する翻訳機構を抑制することにより、悪性脳腫瘍や横紋筋肉腫などの希少がんを含む実に様々な種類の癌の増殖を抑制することができる。 There is no particular limitation on the types of cancer to which the agent according to one aspect of the present invention can be applied, and the translation mechanism in which CDKAL1 is involved in the cancer cells constituting the cancer to be treated, more specifically, CDKAL1 However, basically any cancer can be used as long as the translation mechanism involved in its initiation is activated. By the way, in the present specification, "cancer" refers to a hematopoietic malignant tumor such as leukemia, lymphoma, and sarcoma, and a malignant tumor (cancer or malignant tumor) originating from epithelial cells such as lung cancer, breast cancer, gastric cancer, and colon cancer. Carcinoma) and malignant tumors (sarcoma or sarcoma) originating from non-epithelial cells such as osteosarcoma, chondrosarcoma, rhizome myoma, and smooth myoma) are included. In a preferred embodiment, the cancer to be treated by the agent according to the present invention is a sarcoma or an epithelial malignant tumor, more preferably a rhabdomyosarcoma or a malignant brain tumor such as a glioma. Is. Glioblastoma includes glioblastoma (glioblastoma), and glioblastoma may be mesenchymal type or proneural type. As shown in the experimental examples described later, by suppressing the translation mechanism involved in CDKAL1, it is possible to suppress the growth of a wide variety of cancers including rare cancers such as malignant brain tumors and rhabdomyosarcoma.
 ある好適な一態様において、本発明に係る剤は、その用途に応じて、さらに、水、緩衝剤(例えば、リン酸緩衝剤、ホウ酸緩衝剤、クエン酸緩衝剤、酒石酸緩衝剤、酢酸緩衝剤、アミノ酸など)、防腐剤(例えば、塩化ベンザルコニウムなどの第四級アンモニウム塩、パラオキシ安息香酸メチルなどのパラオキシ安息香酸エステル、ベンジルアルコール、ソルビン酸およびその塩、チメロサール、パラベンなど)、キレート剤(例えば、エデト酸ナトリウム、クエン酸など)、抗酸化剤(例えば、亜硫酸水素ナトリウム、亜硫酸ナトリウム、ピロ亜硫酸ナトリウムなど)及び/又はその他の通常の医薬品に配合される薬学的に許容可能な1種又は2種以上の成分を含んでいても良い。すなわち、ある好適な一態様において、本発明に係る剤は医薬組成物として提供され得る。 In one preferred embodiment, the agent according to the invention further comprises water, a buffer (eg, a phosphate buffer, a borate buffer, a citric acid buffer, a tartrate buffer, an acetate buffer, depending on its use. Agents, amino acids, etc.), preservatives (eg, quaternary ammonium salts such as benzalconium chloride, paraoxybenzoic acid esters such as methyl paraoxybenzoate, benzyl alcohol, sorbic acid and its salts, thimerosal, parabens, etc.), chelates. Pharmaceutically acceptable 1 to be incorporated into agents (eg, sodium edetate, citric acid, etc.), antioxidants (eg, sodium hydrogen sulfite, sodium sulfite, sodium pyrosulfate, etc.) and / or other conventional pharmaceuticals. It may contain seeds or two or more components. That is, in one preferred embodiment, the agent according to the present invention can be provided as a pharmaceutical composition.
 また、本発明に係る剤の投与経路に特段の制限はなく、適用対象となるがん組織に応じて適宜の投与経路を選択すれば良い。例えば、経口投与、舌下投与、静脈内投与、動脈内投与、筋肉内投与、皮下投与、局所投与等が例示されるがこれらに限られるものではない。また、投与経路に応じて、その経路に適した剤形に製剤して良いことは言うでもない。経口投与に適した剤形としては、例えば、錠剤、カプセル剤、散剤、顆粒剤、シロップ剤などが挙げられ、また非経口投与に適した剤形としては、例えば、溶液型注射剤、懸濁液型注射剤、用時調製型注射剤などの注射剤が例示される。 Further, the administration route of the agent according to the present invention is not particularly limited, and an appropriate administration route may be selected according to the cancer tissue to be applied. For example, oral administration, sublingual administration, intravenous administration, intraarterial administration, intramuscular administration, subcutaneous administration, local administration and the like are exemplified, but not limited thereto. In addition, it is not necessary to say that the drug may be formulated in a dosage form suitable for the route of administration according to the route of administration. Dosage forms suitable for oral administration include, for example, tablets, capsules, powders, granules, syrups, etc., and dosage forms suitable for parenteral administration include, for example, solution-type injections, suspensions, etc. Examples thereof include injections such as liquid injections and time-prepared injections.
 また、本発明の他の一側面によれば、以下の核酸構築物が提供される:
 レポータータンパク質をコードする第1のRNA配列と、
 その5’末端側に、下記式1で表されるRNA配列及び/又は下記式2で表されるRNA配列を含む第2のRNA配列と、
を有するRNA構築物をコードする核酸構築物:
(式1)5’-GGCGGCGGCGGCGGC-3’(式中、1番目のGはAでもよく、2番目のGはCでもよく、3番目のCはAでもよく、4番目のGはAでもよく、5番目のGはCでもよく、6番目のCはAでもよく、7番目のGはAまたはCでもよく、8番目のGはAでもよく、9番目のCはUまたはAでもよく、10番目のGはAまたはUでもよく、11番目のGはCでもよく、12番目のCはAでもよく、13番目のGはUまたはCまたはAでもよく、14番目のGはUまたはAまたはCでもよく、15番目のCはGまたはAまたはUでもよい。);
(式2)5’-GCCGCCGCCGCCGCC-3’(式中、1番目のGはUまたはCでもよく、2番目のCはGでもよく、3番目のCはUでもよく、4番目のGはUまたはCでもよく、5番目のCはUでもよく、6番目のCはAまたはUでもよく、7番目のGはUでもよく、8番目のCはUでもよく、9番目のCはGでもよく、10番目のGはUでもよく、11番目のCはGでもよく、12番目のCはUでもよく、13番目のGはUでもよく、14番目のCはUでもよく、15番目のCはGでもよい。)。
Also, according to another aspect of the invention, the following nucleic acid constructs are provided:
The first RNA sequence encoding the reporter protein and
On the 5'end side, a second RNA sequence containing an RNA sequence represented by the following formula 1 and / or an RNA sequence represented by the following formula 2 and
Nucleic acid construct encoding an RNA construct with
(Equation 1) 5'-GGCGGGCGGGCGCGGC-3'(In the equation, the first G may be A, the second G may be C, the third C may be A, and the fourth G may be A. The fifth G may be C, the sixth C may be A, the seventh G may be A or C, the eighth G may be A, the ninth C may be U or A, and so on. The 10th G may be A or U, the 11th G may be C, the 12th C may be A, the 13th G may be U or C or A, and the 14th G may be U or A. Or C, and the fifteenth C may be G, A, or U.);
(Equation 2) 5'-GCCGCCGCCGCCGCC-3'(In the equation, the first G may be U or C, the second C may be G, the third C may be U, and the fourth G may be U. Or C, the 5th C may be U, the 6th C may be A or U, the 7th G may be U, the 8th C may be U, and the 9th C may be G. Well, the 10th G can be U, the 11th C can be G, the 12th C can be U, the 13th G can be U, the 14th C can be U, and the 15th. C may be G.).
 本発明者らが得た知見によれば、CDKAL1が関与する翻訳機構により翻訳されるmRNAは、その5’末端側の非翻訳領域に特徴的なRNA配列、より詳細には、シトシン(C)及びグアニン(G)に富むRNA配列、さらに詳細には、上記式1又は式2で表されるRNA配列を有している。シトシン及びグアニンに富むRNA配列は複雑な二次構造を形成することが知られており、このようなRNA配列を5’末端側の非翻訳領域に有するmRNAの翻訳には翻訳開始因子複合体の関与が必要であると考えられている。すなわち、細胞内における、前記RNA構築物がコードするレポータータンパク質の産生量は、当該細胞内におけるCDKAL1が関与する翻訳機構の活性を反映する。したがって、前記RNA構築物をコードする核酸構築物は、例えば、CDKAL1が関与する翻訳機構を阻害乃至促進する活性を有する物質のスクリーニングに好適に使用され得る。 According to the findings obtained by the present inventors, the mRNA translated by the translation mechanism involving CDKAL1 is an RNA sequence characteristic of the untranslated region on the 5'end side thereof, more specifically, cytosine (C). And an RNA sequence rich in guanine (G), more specifically, an RNA sequence represented by the above formula 1 or formula 2. Cytosine and guanine-rich RNA sequences are known to form complex secondary structures, and translation factor complexes have such RNA sequences in the untranslated region on the 5'end to translate mRNAs. It is believed that involvement is needed. That is, the amount of the reporter protein encoded by the RNA construct in the cell reflects the activity of the translation mechanism in which CDKAL1 is involved in the cell. Therefore, the nucleic acid construct encoding the RNA construct can be suitably used, for example, for screening a substance having an activity of inhibiting or promoting a translation mechanism in which CDKAL1 is involved.
 前記RNA構築物の第2のRNA配列に含まれる上記式1又は式2で表されるRNA配列の個数に特段の制限はないが、例えば、1個~12個、好ましくは、1個~10個、さらに好ましくは、2個~8個、より更に好ましくは4個~8個とすることができる。なお、本明細書で、例えば、「4個~8個」のように「~」を用いて数値範囲を表す場合、特に断らない限り、その上限(4個)及び下限(8個)を含む数値範囲を意味する。 There is no particular limitation on the number of RNA sequences represented by the above formula 1 or 2 contained in the second RNA sequence of the RNA construct, but for example, 1 to 12, preferably 1 to 10 pieces. , More preferably 2 to 8, and even more preferably 4 to 8. In this specification, for example, when a numerical range is expressed by using "-" such as "4 to 8", the upper limit (4) and the lower limit (8) are included unless otherwise specified. It means a numerical range.
 ある好適な一態様において、前記RNA構築物が有する第2のRNA配列は、CDKAL1がその翻訳に関与する遺伝子のmRNAの5’非翻訳領域のRNA配列であり得る。このようなRNA配列としては、例えば、ヒトSALL2遺伝子のmRNAの5’非翻訳領域のRNA配列が好適に用いられ得るが、これに限定されない。ヒトのSALL2遺伝子のmRNAの5’非翻訳領域のRNA配列に対応するDNA配列は、配列表の配列番号32に記載したとおりである。 In one preferred embodiment, the second RNA sequence of the RNA construct can be the RNA sequence of the 5'untranslated region of the mRNA of the gene in which CDKAL1 is involved in its translation. As such an RNA sequence, for example, an RNA sequence in the 5'untranslated region of the mRNA of the human SALL2 gene can be preferably used, but is not limited thereto. The DNA sequence corresponding to the RNA sequence of the 5'untranslated region of the human SALL2 gene mRNA is as set forth in SEQ ID NO: 32 of the sequence listing.
 なお、本発明の一態様に係る前記核酸構築物において、前記RNA構築物が有する第2のRNA配列が、CDKAL1がその翻訳に関与する遺伝子のmRNAの5’非翻訳領域のRNA配列である場合、当該RNA配列には、CDKAL1が、その翻訳に関与する遺伝子のmRNAの5’非翻訳領域のRNA配列と実質的に同じRNA配列が含まれる。ここで、あるRNA配列と実質的に同じRNA配列とは、あるRNA配列と比較して、80-100%、好ましくは90-100%、より好ましくは95-100%の同一性を有するRNA配列を意味する。RNA配列の同一性は、例えばBLAST等の配列解析アルゴリズムに基づいて、当業者であれば適宜決定することができる In the nucleic acid construct according to one aspect of the present invention, when the second RNA sequence possessed by the RNA construct is the RNA sequence of the 5'untranslated region of the mRNA of the gene involved in the translation of CDKAL1. The RNA sequence contains an RNA sequence in which CDKAL1 is substantially the same as the RNA sequence of the 5'untranslated region of the mRNA of the gene involved in its translation. Here, an RNA sequence that is substantially the same as an RNA sequence is an RNA sequence having 80-100%, preferably 90-100%, more preferably 95-100% identity as compared to an RNA sequence. Means. The identity of the RNA sequence can be appropriately determined by those skilled in the art based on a sequence analysis algorithm such as BLAST.
 一方、本発明の一態様に係る前記核酸構築物がコードする前記RNA構築物は、レポータータンパク質をコードする第1のRNA配列を有する。ここで、レポータータンパク質とは、存在するレポータータンパク質の量を反映するシグナルを直接的又は間接的に測定することが可能なタンパク質である限りにおいて、その種類に特段の制限はなく、ユーザーが利用可能な測定機器に応じて、適宜のレポータータンパク質が用いられ得る。例えば、発光光度計を利用できる場合には、ホタルルシフェラーゼ、ウミシイタケルシフェラーゼ、及び、海生カイアシ類ルシフェラーゼなどの発光酵素蛋白質をレポータータンパク質として用いることができる。一方、蛍光光度計や蛍光顕微鏡を利用できる場合には、青色蛍光蛋白質(BFP:Blue Fluorecent Protein)、緑色蛍光蛋白質(GFP:Green Fluorescent Protein)、黄色蛍光蛋白質(YFP:Yellow Fluorescent Protein)、赤色蛍光蛋白質(RFP:Red Fluorescent Protein)などの蛍光蛋白質をレポータータンパク質として用いても良い。また、吸光光度計を利用できる場合には、β-ガラクトシダーゼなどの発色酵素蛋白質をレポータータンパク質として用いることができる。レポータータンパク質をコードする塩基配列は、公共のデータベース、例えば、アメリカ国立生物工学情報センター(NCBI:National Center for Biotechnology Information)のデータベース等から取得することができる。 On the other hand, the RNA construct encoded by the nucleic acid construct according to one aspect of the present invention has a first RNA sequence encoding a reporter protein. Here, the reporter protein is not particularly limited in its type as long as it is a protein capable of directly or indirectly measuring a signal reflecting the amount of the present reporter protein, and can be used by the user. Appropriate reporter proteins may be used depending on the measuring instrument. For example, when a luminescence photometer is available, luminescent enzyme proteins such as firefly luciferase, sea urchin luciferase, and marine copepod luciferase can be used as reporter proteins. On the other hand, when a fluorescence photometer or a fluorescence microscope can be used, a blue fluorescent protein (BFP: Blue Fluorescent Protein), a green fluorescent protein (GFP: Green Fluorescent Protein), a yellow fluorescent protein (YFP: Yellow Fluorescent Protein), and red fluorescence A fluorescent protein such as a protein (RFP: Red Fluorescent Protein) may be used as a reporter protein. If an absorptiometer is available, a color-developing enzyme protein such as β-galactosidase can be used as a reporter protein. The base sequence encoding the reporter protein can be obtained from a public database, for example, a database of the National Center for Biotechnology Information (NCBI).
 前記核酸構築物は、典型的には、前記RNA構築物をコードするDNA構築物であり得るが、前記RNA構築物又は前記RNA構築物をコードするDNAを挿入することで作製された発現ベクターであっても良い。このような発現ベクターとしては、例えば、プラスミド、ファージ、コスミド、ファージミド、ウイルスベクターなどが例示され、ウイルスベクターとしては例えば、レンチウイルスベクター、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどが例示される。しかしながら、発現ベクターの種類は特に限定されるものではなく、標的となる細胞で発現し、前記RNA構築物を産生できるベクターを適宜選択すれば良い。 The nucleic acid construct can typically be a DNA construct encoding the RNA construct, but may be an expression vector prepared by inserting the RNA construct or the DNA encoding the RNA construct. Examples of such expression vectors include plasmids, phages, cosmids, phagemids, viral vectors, and examples of virus vectors include lentivirus vectors, retroviral vectors, adenovirus vectors, adeno-associated virus vectors, and Sendai virus. Vectors and the like are exemplified. However, the type of expression vector is not particularly limited, and a vector that can be expressed in a target cell and can produce the RNA construct may be appropriately selected.
 以上説明した核酸構築物を含む細胞は、CDKAL1の活性に応じて、レポータータンパク質を発現し得る。したがって、前記核酸構築物を含む細胞は、例えば、CDKAL1が関与する翻訳機構を阻害乃至促進する活性を有する物質のスクリーニングに好適に使用され得る。このように本発明の他の一側面によれば、上記核酸構築物を含む細胞が提供される。 The cells containing the nucleic acid construct described above can express the reporter protein depending on the activity of CDKAL1. Therefore, cells containing the nucleic acid construct can be suitably used, for example, for screening substances having an activity of inhibiting or promoting the translation mechanism in which CDKAL1 is involved. Thus, according to another aspect of the invention, a cell containing the nucleic acid construct is provided.
 なお、本発明の一側面に係る前記核酸構築物が含まれる細胞に、特段の制限はないが、哺乳類の細胞であることが好ましく、ヒトの細胞であることがより好ましい。特に、CDKAL1が関与する翻訳機構が活性化している細胞、例えば、がん細胞であることが好ましく、とりわけ、がん幹細胞であることがより好ましい。がん細胞、又は、がん幹細胞の種類に特段の制限はないが、例えば、悪性黒色腫、肝臓癌、前立腺癌、胃癌、悪性脳腫瘍、横紋筋肉腫由来のがん細胞、又はがん幹細胞であることが好ましく、悪性脳腫瘍又は横紋筋肉腫由来のがん細胞、又は、がん幹細胞であることがより好ましい。具体的に例示するのであれば、例えば、RD細胞、JK2細胞、RMS-YM細胞を好適に用いることができるが、これらに限定されない。なお、ある細胞においてCDKAL1が関与する翻訳機構が活性化しているか否かは、当業者であれば適宜の方法で確認することができる。例えば、後述する実験2に記載の方法に従って、CDKAL1のノックダウンの有無による翻訳開始因子複合体の形成への影響をウェスタンブロッティングにより分析すれば良い。 The cells containing the nucleic acid construct according to one aspect of the present invention are not particularly limited, but are preferably mammalian cells, more preferably human cells. In particular, cells in which the translation mechanism in which CDKAL1 is involved are activated, for example, cancer cells are preferable, and in particular, cancer stem cells are more preferable. There are no particular restrictions on the type of cancer cells or cancer stem cells, but for example, malignant melanoma, liver cancer, prostate cancer, gastric cancer, malignant brain tumor, cancer cells derived from rhizome myoma, or cancer stem cells. It is more preferable that it is a cancer cell derived from a malignant brain tumor or a collateral myoma, or a cancer stem cell. Specific examples include, but are not limited to, RD cells, JK2 cells, and RMS-YM cells. Whether or not the translation mechanism in which CDKAL1 is involved is activated in a certain cell can be confirmed by a person skilled in the art by an appropriate method. For example, according to the method described in Experiment 2 described later, the effect of the presence or absence of knockdown of CDKAL1 on the formation of the translation initiation factor complex may be analyzed by Western blotting.
 前述したとおり、本発明の一態様に係る核酸構築物又は当該核酸構築物を含む細胞は、CDKAL1が関与する翻訳を阻害する物質のスクリーニングに好適に用いられ得る。すなわち、本発明は、他の一側面において、CDKAL1が関与する翻訳を阻害する物質のスクリーニング方法であって、
(1)レポータータンパク質をコードする第1のRNA配列と、その5’末端側に、前記式1で表されるRNA配列及び/又は前記式2で表されるRNA配列を含む第2のRNA配列と、を有するRNA構築物をコードする前記核酸構築物を、細胞に導入する工程、
(2)前記核酸構築物を導入した前記細胞を、被験物質を含む溶液又は被験物質を含まない溶液と接触させる工程、
(3)前記被験物質を含む溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度を測定する工程、及び、
(4)測定された前記シグナルの強度を、被験物質を含まない溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度と比較する工程、
を含むことを特徴とするスクリーニング方法に係るものである。
As described above, the nucleic acid construct according to one aspect of the present invention or the cell containing the nucleic acid construct can be suitably used for screening a substance that inhibits translation in which CDKAL1 is involved. That is, the present invention is, in another aspect, a method for screening a substance that inhibits translation in which CDKAL1 is involved.
(1) A first RNA sequence encoding a reporter protein, and a second RNA sequence containing the RNA sequence represented by the above formula 1 and / or the RNA sequence represented by the above formula 2 on the 5'end side thereof. The step of introducing the nucleic acid construct encoding the RNA construct having, into a cell,
(2) A step of contacting the cells into which the nucleic acid construct has been introduced with a solution containing a test substance or a solution not containing the test substance.
(3) A step of measuring the intensity of a signal derived from the reporter protein in the cells contacted with the solution containing the test substance, and
(4) A step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance.
The present invention relates to a screening method comprising.
 本発明の一側面に係るスクリーニング方法において、スクリーニング対象となる物質の種類に特段の制限はなく、天然物質であっても合成物質であっても良く、また、有機化合物であっても無機化合物であっても良い。例示するのであれば、直鎖状又は環状のペプチド、アミノ酸、タンパク質、抗体、抗体フラグメント、核酸、糖質、脂質、天然高分子、合成高分子、無機化合物、有機化合物、又はそれらの結合物を好適に用いることができる。また、スクリーニング対象となる物質の分子量に特段の制限はなく、分子量500程度までの低分子化合物、分子量500乃至1000程度の中分子化合物、それ以上の分子量を有する高分子化合物であっても良い。スクリーニング対象となる物質は、低分子化合物ライブラリ、中分子化合物ライブラリ、ペプチドライブラリ、抗体ライブラリなどのようにライブラリとして提供されても良い。なお、これらの物質の細胞への導入効率が低い場合には、リポソーム等の適宜の送達手段を用いてスクリーニングを行っても良い。 In the screening method according to one aspect of the present invention, there is no particular limitation on the type of substance to be screened, and it may be a natural substance or a synthetic substance, and an organic compound or an inorganic compound. May be there. By way of examples, linear or cyclic peptides, amino acids, proteins, antibodies, antibody fragments, nucleic acids, sugars, lipids, natural macromolecules, synthetic macromolecules, inorganic compounds, organic compounds, or combinations thereof. It can be suitably used. Further, the molecular weight of the substance to be screened is not particularly limited, and may be a low molecular weight compound having a molecular weight of about 500, a medium molecular weight compound having a molecular weight of about 500 to 1000, or a high molecular weight compound having a molecular weight higher than that. The substance to be screened may be provided as a library such as a small molecule compound library, a medium molecule compound library, a peptide library, and an antibody library. If the efficiency of introducing these substances into cells is low, screening may be performed using an appropriate delivery means such as liposomes.
 以下、本発明の一態様に係るスクリーニング方法の各工程について説明する。 Hereinafter, each step of the screening method according to one aspect of the present invention will be described.
工程(1):核酸構築物を細胞に導入する工程
 前記核酸構築物を細胞と接触させることにより、前記核酸構築物を細胞に導入する工程である。CDKAL1が関与する翻訳機構が活性化している細胞に、前記核酸構築物が導入されると、前記RNA構築物が細胞内で産生される。細胞内で産生された前記RNA構築物が、CDKAL1が関与する翻訳機構により翻訳されると、前記第1のRNA配列がコードするレポータータンパク質が産生されることとなる。
Step (1): Step of introducing a nucleic acid construct into a cell This is a step of introducing the nucleic acid construct into a cell by bringing the nucleic acid construct into contact with the cell. When the nucleic acid construct is introduced into a cell in which the translation mechanism involved in CDKAL1 is activated, the RNA construct is produced intracellularly. When the RNA construct produced in the cell is translated by a translation mechanism involving CDKAL1, a reporter protein encoded by the first RNA sequence is produced.
 前記核酸構築物は、物理的方法、化学的方法を問わず適宜の方法により、細胞に導入することができ、前記核酸構築物を導入する対象となる細胞の種類や、細胞が存在する環境に応じて、適宜の方法を選択すれば良い。物理的な核酸構築物の導入方法としては、例えば、エレクトロポレーション法、ソノポレーション法、マイクロインジェクション法などが例示される。一方、化学的な核酸構築物の導入方法としては、リン酸カルシウム法や、リポソームを用いたリポフェクション法に加え、カチオン性脂質、リピドイド、カチオン性ポリマー、膜透過性ペプチド、抗体、抗体フラグメント、タンパク質、ナノ粒子、マイクロ粒子、エマルジョン等の適宜の送達手段を用いたトランスフェクション法が例示される。 The nucleic acid construct can be introduced into cells by an appropriate method regardless of a physical method or a chemical method, depending on the type of cell to which the nucleic acid construct is introduced and the environment in which the cells are present. , The appropriate method may be selected. Examples of the method for introducing a physical nucleic acid construct include an electroporation method, a sonoporation method, and a microinjection method. On the other hand, as a method for introducing a chemical nucleic acid construct, in addition to the calcium phosphate method and the lipofection method using liposomes, cationic lipids, lipidoids, cationic polymers, membrane-permeable peptides, antibodies, antibody fragments, proteins, and nanoparticles. , Microparticles, emulsions and the like, the transfection method using an appropriate delivery means is exemplified.
 なお、前記核酸構築物を導入した細胞は、工程(1)の後、所定時間のインキュベーションの後に、後述する工程(2)に用いることが好ましい。すなわち、前記核酸構築物を十分に細胞へ導入するとともに、前記RNA構築物を細胞内で十分に産生させるという観点から、前記核酸構築物と細胞を接触させた後、6時間以上インキュベーションすることが好ましく、より好ましくは、12時間以上、さらに好ましくは24時間以上、よりさらに好ましくは48時間以上インキュベーションすることが好ましい。 The cells into which the nucleic acid construct has been introduced are preferably used in the step (2) described later after the incubation for a predetermined time after the step (1). That is, from the viewpoint of sufficiently introducing the nucleic acid construct into the cell and sufficiently producing the RNA construct in the cell, it is preferable to incubate the nucleic acid construct for 6 hours or more after contacting the cell. It is preferable to incubate for 12 hours or longer, more preferably 24 hours or longer, and even more preferably 48 hours or longer.
工程(2)細胞を被験物質を含む溶液又は被験物質を含まない溶液と接触させる工程
 工程(1)において、前記核酸構築物と接触させた細胞に、スクリーニング対象となる被験物質を含む溶液、又は、コントロールとして、被験物質を含まない溶液を接触させる工程である。すなわち、工程(1)において前記核酸構築物を導入した細胞において、細胞内に前記RNA構築物が存在する状態で、当該細胞と被験物質を接触させる工程である。
Step (2) Step of contacting cells with a solution containing a test substance or a solution not containing a test substance In the step (1), a solution containing a test substance to be screened or a solution containing the test substance to be screened on the cells contacted with the nucleic acid construct. As a control, it is a step of contacting a solution containing no test substance. That is, in the cell into which the nucleic acid construct was introduced in the step (1), the cell is brought into contact with the test substance in a state where the RNA construct is present in the cell.
 被験物質を含む溶液は、スクリーニング対象となる被験物質を水、緩衝液、生理食塩水、又は、細胞培養培地などの適宜の溶媒へと溶解させることにより調製すれば良い。また、スクリーニング対象となる被験物質が水に不溶である場合には、例えば、DMSOなどの細胞毒性が低く、且つ、水と混和する有機溶媒に溶解して調製すれば良い。このようにして調製した被験物質を含む溶液を、細胞培養液に所定量添加することによって、被験物質を含む溶液と細胞を接触させることができる。一方、被験物質を含まない溶液としては、例えば、細胞培養培地を用いることができるが、被験物質を含む溶液を調製するのに用いた溶媒と、同じ溶媒を用いることが好ましい。被験物質を含む溶液の場合と同様に、被験物質を含まない溶液を細胞培養液に所定量添加することによって、被験物質を含まない溶液と細胞を接触させることができる。ここで被験物質を含まない溶液の添加量は、被験物質を含む溶液の添加量と等量とすることが好ましい。 The solution containing the test substance may be prepared by dissolving the test substance to be screened in water, a buffer solution, a physiological saline solution, or an appropriate solvent such as a cell culture medium. When the test substance to be screened is insoluble in water, it may be prepared by dissolving it in an organic solvent having low cytotoxicity such as DMSO and being miscible with water. By adding a predetermined amount of the solution containing the test substance thus prepared to the cell culture solution, the solution containing the test substance can be brought into contact with the cells. On the other hand, as the solution containing no test substance, for example, a cell culture medium can be used, but it is preferable to use the same solvent as the solvent used to prepare the solution containing the test substance. As in the case of the solution containing the test substance, the cells can be brought into contact with the solution containing no test substance by adding a predetermined amount of the solution containing no test substance to the cell culture solution. Here, it is preferable that the amount of the solution containing the test substance added is equal to the amount of the solution containing the test substance.
 ちなみに、被験物質を細胞へ十分に導入し、後述する工程(3)において被験物質の翻訳抑制作用を十分に反映した測定結果を得るという観点からは、工程(2)の後、所定時間のインキュベーションの後に、後述する工程(3)に用いることが好ましい。例えば、細胞と被験物質を含む溶液又は含まない溶液との接触後、6時間以上インキュベーションした後に工程(3)に用いることが好ましく、12時間以上インキュベーションした後に用いることがより好ましく、18時間以上インキュベーションした後に用いることがさらに好ましく、24時間以上インキュベーションした後に用いることがさらに好ましい。 By the way, from the viewpoint of sufficiently introducing the test substance into the cells and obtaining a measurement result that sufficiently reflects the translation-suppressing effect of the test substance in the step (3) described later, incubation for a predetermined time after the step (2). After that, it is preferable to use it in the step (3) described later. For example, it is preferable to use it in step (3) after incubating for 6 hours or more after contacting the cells with the solution containing or not containing the test substance, and more preferably after incubating for 12 hours or more, and incubating for 18 hours or more. It is more preferable to use it after incubating for 24 hours or more, and it is further preferable to use it after incubating for 24 hours or more.
工程(3):被験物質を含む溶液と接触させた細胞におけるレポータータンパク質に由来するシグナルの強度を測定する工程
 工程(2)において、スクリーニング対象となる被験物質を含む溶液と接触させた細胞における、前記RNA構築物がコードするレポータータンパク質の発現量を反映するレポータータンパク質に由来するシグナルの強度を定量的に評価する工程である。上述したとおり、レポータータンパク質をコードする第1のRNA配列の上流側(5’末端側)に、その5’末端側に、前記式1で表されるRNA配列及び/又は前記式2で表されるRNA配列を含む第2のRNA配列を有する前記RNA構築物は、CDKAL1が関与する翻訳機構によって翻訳される。したがって、前記RNA構築物がコードするレポータータンパク質の発現量、すなわち、レポータータンパク質に由来するシグナルの強度は、細胞におけるCDKAL1が関与する翻訳機構の活性を反映する。
Step (3): Measuring the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance In the step (2), the cells contacted with the solution containing the test substance to be screened. This is a step of quantitatively evaluating the intensity of a signal derived from a reporter protein that reflects the expression level of the reporter protein encoded by the RNA construct. As described above, the RNA sequence represented by the above formula 1 and / or the above formula 2 is represented on the upstream side (5'end side) of the first RNA sequence encoding the reporter protein and on the 5'end side thereof. The RNA construct having a second RNA sequence containing the RNA sequence is translated by a translation mechanism involving CDKAL1. Therefore, the expression level of the reporter protein encoded by the RNA construct, i.e., the intensity of the signal derived from the reporter protein, reflects the activity of the translation mechanism involved in CDKAL1 in the cell.
 ここで、レポータータンパク質に由来するシグナルの強度は、スクリーニング方法に用いるレポータータンパク質の種類に応じて、適宜の手段で測定することができる。例えば、レポータータンパク質として、ホタルルシフェラーゼ、ウミシイタケルシフェラーゼ、海生カイアシ類ルシフェラーゼなどの発光酵素蛋白質を用いる場合には、当該発光酵素蛋白質による酵素反応を受けて発光する性質を有する基質(例えば、ルシフェリン)と、発光強度を測定する発光光度計を用いることにより、レポータータンパク質に由来するシグナルの強度を測定することができる。一方、レポータータンパク質として、青色蛍光蛋白質(BFP)、緑色蛍光蛋白質(GFP)、黄色蛍光蛋白質(YFP)、赤色蛍光蛋白質(RFP)などの蛍光蛋白質を用いる場合には、当該蛍光蛋白質が発する蛍光強度を蛍光光度計を用いて測定すれば良い。また、β-ガラクトシダーゼなどの発色酵素蛋白質をレポータータンパク質として用いる場合には、当該発色酵素蛋白質による酵素反応を受けて特定の波長の光を吸収する、又は、蛍光を発する性質を有する基質(例えば、発色酵素蛋白質がβ-ガラクトシダーゼである場合には、5-ブロモ-4-クロロ-3-インドリル-β-D-ガラクトピラノシド、2-ニトロフェニル-β-D-ガラクトピラノシド、フルオレセイン-β-D-ガラクトピラノシド等)と、吸光度を測定する吸光光度計、又は、蛍光強度を測定する蛍光光度計を用いることにより、レポータータンパク質に由来するシグナルの強度を測定することができる。 Here, the intensity of the signal derived from the reporter protein can be measured by an appropriate means according to the type of the reporter protein used in the screening method. For example, when a luminescent enzyme protein such as firefly luciferase, sea urchin luciferase, or marine luciferase is used as the reporter protein, a substrate having the property of emitting light by receiving an enzymatic reaction by the luminescent enzyme protein (for example, luciferin). By using a luciferous luminometer that measures the luciferous intensity, the intensity of the signal derived from the reporter protein can be measured. On the other hand, when a fluorescent protein such as blue fluorescent protein (BFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), or red fluorescent protein (RFP) is used as the reporter protein, the fluorescence intensity emitted by the fluorescent protein is emitted. May be measured using a fluorescent photometer. When a color-developing enzyme protein such as β-galactosidase is used as a reporter protein, a substrate having the property of absorbing light of a specific wavelength or emitting light by receiving an enzymatic reaction by the color-developing enzyme protein (for example, for example). When the chromogenic enzyme protein is β-galactosidase, 5-bromo-4-chloro-3-indrill-β-D-galactopyranoside, 2-nitrophenyl-β-D-galactopyranoside, fluorescein- By using β-D-galactopyranoside, etc.) and an absorptiometer for measuring the absorbance, or a fluorescence photometer for measuring the fluorescence intensity, the intensity of the signal derived from the reporter protein can be measured.
 なお、被験物質を含まない溶液と接触させた細胞におけるレポータータンパク質に由来するシグナルの強度も、被験物質を含む溶液と接触させた細胞におけるレポータータンパク質に由来するシグナルの強度の測定と同様の方法で測定されることは言うまでもない。 The intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance is also the same as the measurement of the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance. Needless to say, it is measured.
(4)測定された前記シグナルの強度を、被験物質を含まない溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度と比較する工程
 上述したとおり、前記核酸構築物、又は、前記RNA構築物がコードするレポータータンパク質の発現量、すなわち、レポータータンパク質に由来するシグナルの強度は、細胞におけるCDKAL1が関与する翻訳機構の活性を反映する。したがって、被験物質を含む溶液と接触させた細胞における前記レポータータンパク質に由来するシグナルの強度を、被験物質を含まない溶液と接触させた細胞における前記レポータータンパク質に由来するシグナルの強度と比較することにより、スクリーニング対象となる被験物質が有する、CDKAL1が関与する翻訳機構の活性への影響を評価することができる。すなわち、ある被験物質について、その被験物質を含む溶液と接触させた細胞における前記レポータータンパク質に由来するシグナルの強度が、被験物質を含まない溶液と接触させた細胞における前記レポータータンパク質に由来するシグナルの強度と比較して減少している場合には、その被験物質は、CDKAL1が関与する翻訳機構を抑制する作用を有する物質ということになる。
(4) Step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance. As described above, the nucleic acid construct or the above. The expression level of the reporter protein encoded by the RNA construct, i.e., the intensity of the signal derived from the reporter protein, reflects the activity of the translation mechanism involved in CDKAL1 in the cell. Therefore, by comparing the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance. , The effect of the test substance to be screened on the activity of the translation mechanism involved in CDKAL1 can be evaluated. That is, for a certain test substance, the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing the test substance is the signal derived from the reporter protein in the cells contacted with the solution containing the test substance. When it is decreased as compared with the intensity, the test substance is a substance having an action of suppressing the translation mechanism in which CDKAL1 is involved.
 なお、シグナル強度の減少の程度が大きいほど、CDKAL1が関与する翻訳機構を強く抑制する作用があるということを示しており、被験物質を含む溶液と接触させた細胞における前記レポータータンパク質に由来するシグナルの強度が、被験物質を含まない溶液と接触させた細胞における前記レポータータンパク質に由来するシグナルの強度と比較して10%以上減少している被験物質を選択することが好ましく、より好ましくは20%以上、さらに好ましくは30%以上減少している被験物質を選択することが好ましい。 It is shown that the greater the decrease in signal intensity, the stronger the effect of suppressing the translation mechanism involved in CDKAL1, and the signal derived from the reporter protein in the cells contacted with the solution containing the test substance. It is preferable to select a test substance in which the intensity of the signal is reduced by 10% or more as compared with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance, and more preferably 20%. As described above, it is more preferable to select a test substance having a reduction of 30% or more.
 本明細書において引用されたすべての文献の開示内容は、全体として明細書に参照により組み込まれる。また、本明細書が英語に翻訳された場合において、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものを含むものとする。 The disclosures of all documents cited herein are incorporated herein by reference in their entirety. Also, if this specification is translated into English and contains the singular words "a", "an", and "the", unless the context clearly indicates otherwise. It shall include not only a single but also multiple ones.
 以下、実験例を挙げて本発明を更に詳細に説明するが、これらの実験例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to experimental examples, but these experimental examples are merely examples of embodiments of the present invention and do not limit the scope of the present invention at all.
<実験1. レンチウイルスベクターの作製>
 CDKAL1、eIF4E、eIF4Gに対するノックダウン実験を行うために、常法に従って、それぞれを標的とするshRNAを発現するレンチウイルスベクターを作製した。その手順は、次のとおりである。
<Experiment 1. Preparation of lentiviral vector>
In order to perform knockdown experiments on CDKAL1, eIF4E, and eIF4G, outside virus vectors expressing shRNA targeting each were prepared according to a conventional method. The procedure is as follows.
 まず、CDKAL1、eIF4E、eIF4Gのそれぞれを標的とするshRNAを発現するpLKO.1puro-shRNAプラスミドを、常法に従って調製した。なお、CDKAL1を標的とするshRNAをコードするDNA配列としては、配列表の配列番号1及び図27A、並びに、配列表の配列番号5及び図27Bに示した2種類のDNA配列を用いた。なお、図27A及び図27Bにおいて下線で示す塩基配列は、CDKAL1のmRNAに相補的なRNA配列をコードする領域である。以下、本明細書において、配列表の配列番号1のDNA配列によりコードされるshRNAを、「shCDKAL1#1」、配列表の配列番号5のDNA配列によりコードされるshRNAを「shCDKAL1#2」ということもある。shCDKAL1#1及びshCDKAL1#2のRNA配列を、それぞれ図27Aと配列番号2、及び、図27Bと配列番号5に示した。 First, a pLKO.1 puro-shRNA plasmid expressing shRNA targeting each of CDKAL1, eIF4E, and eIF4G was prepared according to a conventional method. As the DNA sequence encoding the shRNA targeting CDKAL1, SEQ ID NO: 1 and FIG. 27A of the sequence listing and the two types of DNA sequences shown in SEQ ID NO: 5 and FIG. 27B of the sequence listing were used. The base sequence underlined in FIGS. 27A and 27B is a region encoding an RNA sequence complementary to the mRNA of CDKAL1. Hereinafter, in the present specification, the shRNA encoded by the DNA sequence of SEQ ID NO: 1 in the sequence listing is referred to as “shCDKAL1 # 1”, and the shRNA encoded by the DNA sequence of SEQ ID NO: 5 in the sequence listing is referred to as “shCDKAL1 # 2”. Sometimes. The RNA sequences of shCDKAL1 # 1 and shCDKAL1 # 2 are shown in FIG. 27A and SEQ ID NO: 2, and FIG. 27B and SEQ ID NO: 5, respectively.
 次に、293FT細胞(ThermoFisher Scientific社、カタログ番号:R70007)を直径10cm細胞培養皿上で80%の細胞密度となるように培養した。なお、293FT細胞はウシ胎児血清(Corning社、カタログ番号:35-079-CV)を最終濃度10%、ペニシリン-ストレプトマイシン-L-グルタミン溶液(×100)(富士フィルム和光純薬株式会社、カタログ番号:161-23201)を最終濃度×1となるように添加したD-MEM(高グルコース)(L-グルタミン、フェノールレッド含有)(富士フィルム和光純薬株式会社、カタログ番号:048-29763)(以下、この混合培地を「基本培地」と呼ぶこともある。)で培養した。 Next, 293FT cells (Thermo Fisher Scientific, Catalog No .: R70027) were cultured on a cell culture dish having a diameter of 10 cm so as to have a cell density of 80%. For 293FT cells, fetal bovine serum (Corning, catalog number: 35-079-CV) with a final concentration of 10%, penicillin-streptomycin-L-glutamine solution (x100) (Fuji Film Wako Pure Chemical Industries, Ltd., catalog number) : 161-23201) was added so as to have a final concentration × 1 (high glucose) (containing L-glutamine and phenol red) (Fuji Film Wako Junyaku Co., Ltd., Catalog No .: 048-29763) (hereinafter , This mixed medium is sometimes called "basic medium").
 次に、shRNAを発現するレンチウイルスベクターを得るために、以上の実験で作製したプラスミドを293FT細胞にトランスフェクションした。すなわち、直径10cm細胞培養皿上で80%の細胞密度となるように培養した293FT細胞へ、CDKAL1、eIF4E又はeIF4Gを標的とするshRNAを発現するpLKO.1puro-shRNAプラスミド(10μg)と、psPAX2(addgene社、カタログ番号:12260)(7.5μg)、及び、pMD2.G(addgene社、カタログ番号:12259)(2.5μg)を、リポフェクション法によってトランスフェクションし、その後、37℃、5%COの環境で24時間インキュベートした。24時間のインキュベート後に、細胞培養皿上の培地を除去し、新たな基本培地を添加した。その後、さらに48時間培養を継続した後に、細胞培養皿上の培地の上清を採取し、得られた上清を滅菌濾過フィルター(製品名「ニューステラディスク」、倉敷紡績株式会社、カタログ番号:S-2504)で濾過し、CDKAL1、eIF4E又はeIF4Gを標的とするshRNAを発現するレンチウイルスベクター含有培地を得た。なお、以上の手順において、トランスフェクションは、リポフェクション試薬としてTransIT-LT1 Reagent(タカラバイオ株式会社、カタログ番号:MIR2300)を用いて行った。各試薬の混合比や手順は同製品に付属の説明書に従った。 Next, in order to obtain a shRNA-expressing lentiviral vector, the plasmid prepared in the above experiment was transfected into 293FT cells. That is, pLKO.1 puro-shRNA plasmid (10 μg) expressing shRNA targeting CDKAL1, eIF4E or eIF4G and psPAX2 (psPAX2) were added to 293FT cells cultured on a cell culture dish having a diameter of 10 cm so as to have a cell density of 80%. Addgene, catalog number: 12260) (7.5 μg) and pMD2.G (addgene, catalog number: 12259) (2.5 μg) were transfected by lipofection method, followed by 37 ° C., 5% CO. Incubated in 2 environments for 24 hours. After 24 hours of incubation, the medium on the cell culture dish was removed and new basal medium was added. Then, after continuing the culture for another 48 hours, the supernatant of the medium on the cell culture dish was collected, and the obtained supernatant was used as a sterile filtration filter (product name "New Stella Disk", Kurashiki Spinning Co., Ltd., Catalog No .: The cells were filtered through S-2504) to obtain a medium containing a lentiviral vector expressing a shRNA targeting CDKAL1, eIF4E or eIF4G. In the above procedure, transfection was performed using TransIT-LT1 Reagent (Takara Bio Inc., catalog number: MIR2300) as a lipofection reagent. The mixing ratio and procedure of each reagent followed the instructions attached to the product.
 以下、上述した手順で得たshCDKAL1#1又はshCDKAL1#2を発現するレンチウイルスベクターを、それぞれLenti-shCDKAL1#1及びLenti-shCDKAL1#2と呼ぶ。また、併せて、コントロールとして、いずれの遺伝子も標的としないスクランブル配列を有するshRNA(以下、「shControl」と呼ぶ。)を発現するレンチウイルスベクターを作製した。このレンチウイルスベクターをLenti-shControlと呼ぶ。 Hereinafter, the lentiviral vectors expressing shCDKAL1 # 1 or shCDKAL1 # 2 obtained by the above procedure are referred to as Lenti-shCDKAL1 # 1 and Lenti-shCDKAL1 # 2, respectively. At the same time, as a control, a outside virus vector expressing shRNA having a scrambled sequence that does not target any gene (hereinafter referred to as “shControl”) was prepared. This lenti-virus vector is called Lenti-shControl.
<実験2. 悪性脳腫瘍細胞株JK2におけるCDKAL1のノックダウンと、ウェスタンブロッティングによるタンパク質発現分析>
 がん幹細胞のモデルである悪性脳腫瘍細胞株JK2に、実験1にて作製したレンチウイルスベクターを感染させ、CDKAL1、eIF4E、又はeIF4Gをノックダウンし、それぞれの発現をノックダウンしたJK2細胞における翻訳開始因子複合体の形成をウェスタンブロッティングにて評価した。
 なお、悪性脳腫瘍細胞株JK2は国立大学法人熊本大学より供与されたものであり、Takahiro Yamamoto, Atsushi Fujimura,et al.,iScience 21, 42-56, November 22, 2019に記載の「JKGIC2」に相当するグリオーマ幹細胞である。また、以下の手順において、悪性脳腫瘍細胞株JK2は、B-27 Supplement(50x),Serum Free(ThermoFisher Scientific社、カタログ番号:17504044)を最終濃度×1、N-2 Supplement(×100)(ThermoFisher Scientific社、カタログ番号:17502001)を最終濃度×1、上皮細胞成長因子(EGF)(富士フィルム和光純薬株式会社、カタログ番号:053-07871)を最終濃度20ng/mL、塩基性線維芽細胞成長因子(bFGF)(富士フィルム和光純薬株式会社、カタログ番号:068-05384)を最終濃度20ng/mL、及び、ヘパリンナトリウム塩(Sigma-Aldrich社、カタログ番号:H3149-10KU)を最終濃度0.002mg/mLとなるように添加したNeurobasal medium(ThermoFisher Scientific社、カタログ番号:21103049)(以下、この混合培地を「JK2基本培地」と呼ぶこともある。)で培養した。
<Experiment 2. Knockdown of CDKAL1 in malignant brain tumor cell line JK2 and protein expression analysis by Western blotting>
The malignant brain tumor cell line JK2, which is a model of cancer stem cells, was infected with the lentiviral vector prepared in Experiment 1, and CDKAL1, eIF4E, or eIF4G was knocked down, and translation initiation in JK2 cells in which the expression of each was knocked down. The formation of the factor complex was evaluated by Western blotting.
The malignant brain tumor cell line JK2 was donated by Kumamoto University, a national university corporation, and was provided by Takahiro Yamamoto, Atsushi Fujimura, et al. , IScience 21, 42-56, November 22, 2019. Glioma stem cells corresponding to "JKGIC2". Further, in the following procedure, the malignant brain tumor cell line JK2 has B-27 Supplement (50x), Serum Free (Thermo Fisher Scientific, Catalog No .: 17504044) at the final concentration × 1, N-2 Supplement (× 100) (ThermoFis). Scientific, Catalog No .: 17502001) at final concentration x 1, Epithelial cell growth factor (EGF) (Fuji Film Wako Junyaku Co., Ltd., Catalog No .: 053-07871) at final concentration 20 ng / mL, Basic fibroblast growth The final concentration of factor (bFGF) (Fuji Film Wako Pure Chemical Industries, Ltd., catalog number: 068-05384) is 20 ng / mL, and the final concentration of heparin sodium salt (Sigma-Aldrich, catalog number: H3149-10KU) is 0. The cells were cultured in Neurobasal medium (ThermoFisher Scientific, Catalog No .: 21103049) (hereinafter, this mixed medium may also be referred to as "JK2 basic medium") added to a concentration of 002 mg / mL.
 まず、以下に示す手順にてJK2細胞にレンチウイルスベクターを感染させた。すなわち、約500,000個のJK2細胞を4mLのJK2基本培地へ懸濁したものに、実験1にて作製したCDKAL1、eIF4E、又はeIF4Gを標的とするshRNAを発現するレンチウイルスベクター又はいずれの遺伝子も標的としないレンチウイルスベクター(Lenti-shControl)を含むレンチウイルスベクター含有培地1mLを添加し、合計で5mLとした。当該混合液を直径60mmの細胞培養皿に播種し、常法に従って、37℃、5%COの環境で4日間インキュベートした。 First, JK2 cells were infected with a lentiviral vector by the procedure shown below. That is, a lentiviral vector or any gene expressing shRNA targeting CDKAL1, eIF4E, or eIF4G prepared in Experiment 1 in a suspension of about 500,000 JK2 cells in 4 mL of JK2 basal medium. 1 mL of a lentiviral vector-containing medium containing a lenti-sh Control not targeted was added to make a total of 5 mL. The mixed solution was seeded in a cell culture dish having a diameter of 60 mm and incubated in an environment of 37 ° C. and 5% CO 2 for 4 days according to a conventional method.
 次に、レンチウイルスベクターの感染により、eIF4E、又はeIF4Gの発現をノックダウンしたJK2細胞における翻訳開始因子複合体の形成をウェスタンブロッティングにて評価した。その手順を以下に示す。 Next, the formation of translation initiation factor complex in JK2 cells in which the expression of eIF4E or eIF4G was knocked down by infection with a lentiviral vector was evaluated by Western blotting. The procedure is shown below.
 上述した細胞の播種から4日後に、細胞を回収し、免疫沈降バッファーを添加してタンパク質濃度が1mg/mLの細胞溶解液を得た。なお、免疫沈降バッファーは50mM Tris-HCl pH=7.5、150mM NaCl、1mM EDTA、1mM EGTA、1% Triton X-100、0.5% NP-40をバッファーの基本組成とし、プロテアーゼ阻害剤(製品名「cOmplete、EDTAフリー、プロテアーゼ阻害剤カクテル」、Sigma-Aldrich社、カタログ番号:11873580001)、及び、ホスファターゼ阻害剤(製品名「PhosSTOP」、Sigma-Aldrich社、カタログ番号:4906845001)をそれぞれの製品に付属の添付文書に従い使用し、さらに、RNaseA(Sigma-Aldrich社、カタログ番号:R6513)を細胞溶解液中での濃度が100μg/mLとなるように適量加え、調製したものである。ちなみに、RNaseAは、RNAを除去し、翻訳開始因子複合体の形成を促進する目的で添加したものである。 Four days after seeding of the above-mentioned cells, the cells were collected and an immunoprecipitation buffer was added to obtain a cytolytic solution having a protein concentration of 1 mg / mL. The immunoprecipitation buffer contains 50 mM Tris-HCl pH = 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.5% NP-40 as the basic composition of the buffer, and is a protease inhibitor ( Product names "couple, EDTA-free, protease inhibitor cocktail", Sigma-Aldrich, catalog number: 11873580001), and phosphatase inhibitors (product name "PhosSTOP", Sigma-Aldrich, catalog number: 49864501), respectively. It is used according to the attached document attached to the product, and further prepared by adding an appropriate amount of RNaseA (Sigma-Aldrich, Catalog No .: R6513) so that the concentration in the cell lysate is 100 μg / mL. Incidentally, RNaseA was added for the purpose of removing RNA and promoting the formation of a translation initiation factor complex.
 次に、得られた細胞溶解液1.5mL(タンパク質を1.5mg含有する)に対して、免疫沈降バッファーで洗浄し、初期の液量の2倍量の液量となるように免疫沈降バッファーで再懸濁したm7GTPビーズ(製品名「Immobilized γ-Aminophenyl-m7GTP(C10-spacer)」、Jena Bioscience社、カタログ番号:AC-155S)を60μL添加し、4℃で16時間混和した。その後、遠心によるm7GTPビーズの沈殿、上清の除去、免疫沈降バッファーによる再懸濁を繰り返した後、遠心分離したm7GTPビーズに、2×SDSサンプルバッファー(120mM Tris-HCl pH=6.8、4%SDS、20% グリセロール、0.05% ブロモフェノールブルー、40mM DTT)を60μL添加し、95℃で5分間インキュベートした。その後、遠心によりm7GTPビーズを分離して得られた上清15μLをウェスタンブロッティングに供した。なお、前記上清に加えて、m7GTPビーズによる蛋白質の回収を行う前の細胞溶解液を、インプットサンプルとしてウェスタンブロッティングに供した。 Next, the obtained cytolytic solution (containing 1.5 mg of protein) was washed with an immunoprecipitation buffer, and the immunoprecipitation buffer was adjusted to twice the initial amount. 60 μL of m7GTP beads (product name “Immobilated γ-Aminophenyl-m7GTP (C10-spacer)”, Jena Bioscience, Catalog No .: AC-155S) resuspended in 1 was added and mixed at 4 ° C. for 16 hours. Then, after repeating precipitation of m7GTP beads by centrifugation, removal of supernatant, and resuspension with immunoprecipitation buffer, 2 × SDS sample buffer (120 mM Tris-HCl pH = 6.8, 4) was added to the centrifuged m7GTP beads. % SDS, 20% glycerol, 0.05% bromophenol blue, 40 mM DTT) were added in an amount of 60 μL, and the mixture was incubated at 95 ° C. for 5 minutes. Then, 15 μL of the supernatant obtained by separating the m7GTP beads by centrifugation was subjected to Western blotting. In addition to the supernatant, a cytolytic solution before protein recovery by m7GTP beads was used for Western blotting as an input sample.
 なお、ウェスタンブロッティングにおいて、CDKAL1、eIF4E、eIF4A、及び、eIF4Gの検出に使用した一次抗体は、それぞれ、CDKAL1抗体(製品名「CDKAL1抗体 ウサギポリクロ―ナル」、Proteintech社、カタログ番号:22988-1-AP)、eIF4E抗体(製品名「eIF4E(C46H6) Rabbit mAb」、Cell Signaling technology社、カタログ番号:2067)、eIF4A抗体(製品名「eIF4A(C32B4) Rabbit mAb」、Cell Signaling technology社、カタログ番号:2013)、eIF4G抗体(製品名「eIF4G(C45A4) Rabbit mAb」、Cell Signaling technology社、カタログ番号:2469)であり、二次抗体としては、HRP標識抗ウサギIgG抗体(製品名「Anti-rabbit IgG、 HRP-linked Antibody」、Cell Signaling technology社、カタログ番号:7074)を用いた。検出はClarity Max Western ECL Substrate(Bio-Rad Laboratories社、カタログ番号:1705062)、及び、ChemiDoc Touchイメージングシステム(Bio-Rad Laboratories社製)を、それぞれの説明書に従って用いることにより行った。 The primary antibodies used for the detection of CDKAL1, eIF4E, eIF4A, and eIF4G in Western blotting are CDKAL1 antibodies (product name "CDKAL1 antibody rabbit polyclonal", Proteintech, Catalog No .: 22988-1-, respectively. AP), eIF4E antibody (product name "eIF4E (C46H6) Rabbit mAb", Cell Signaling technology, catalog number: 2067), eIF4A antibody (product name "eIF4A (C32B4) Rabbit mAb", Cell signal 2013), eIF4G antibody (product name "eIF4G (C45A4) Rabbit mAb", Cell Signaling technology, catalog number: 2469), and the secondary antibody is an HRP-labeled anti-rabbit IgG antibody (product name "Anti-rabbit IgG"). , HRP-linked Antibody ”, Cell Signaling technology, Catalog No .: 7074) was used. Detection was performed by using Clarity Max Western ECL Substrate (Bio-Rad Laboratories, Catalog No .: 1705062) and ChemiDoc Touch Imaging System (Bio-Rad Laboratories) according to the respective instructions.
 ウェスタンブロッティングの結果を図1に示す。図1に示されるとおり、Lenti-shCDKAL1#1を感染させたJK2細胞の細胞溶解液(m7GTPビーズによるタンパク質回収前の細胞溶解液である。図1において「Input」、shRNA「CDKAL1」に対応するレーンを参照されたい。)においては、Lenti-shControlを感染させたJK2細胞から得られた細胞溶解液と比較して、CDKAL1に対応するバンドの強度が著しく減弱していた。この結果は、Lenti-shCDKAL1#1の感染により、細胞内においてCDKAL1の発現量が低下、すなわち、CDKAL1の発現がノックダウンされていることを示している。一方、Lenti-shCDKAL1#1を感染させた細胞において、CDKAL1以外のeIF4E、eIF4A及びeIF4Gの発現量の低下は観察されなかった。この結果は、Lenti-shCDKAL1#1の感染による遺伝子のノックダウンがCDKAL1に特異的なものであることを示している。 The results of Western blotting are shown in Fig. 1. As shown in FIG. 1, a cytolytic solution of JK2 cells infected with Lenti-shCDKAL1 # 1 (a cytolytic solution before protein recovery by m7GTP beads. In FIG. 1, it corresponds to "Input" and shRNA "CDKAL1". In (see Lane), the intensity of the band corresponding to CDKAL1 was significantly diminished as compared to the cytolytic solution obtained from JK2 cells infected with Lenti-shControl. This result indicates that infection with Lenti-shCDKAL1 # 1 reduces the expression level of CDKAL1 in the cells, that is, the expression of CDKAL1 is knocked down. On the other hand, in the cells infected with Lenti-shCDKAL1 # 1, no decrease in the expression levels of eIF4E, eIF4A and eIF4G other than CDKAL1 was observed. This result indicates that the gene knockdown due to infection with Lenti-shCDKAL1 # 1 is specific to CDKAL1.
 一方、各レンチウイルスベクターを感染させた細胞の細胞溶解液からm7GTPビーズとの共沈により回収された画分を、ウェスタンブロッティングにて分析した結果を図1の右側「m7GTP pull-down」に対応するレーンに示す。ここで、m7GTPはeIF4Eと結合する性質を有するため、通常、m7GTPビーズによる共沈によっては、eIF4Eと共に、eIF4Eに結合する因子であるeIF4A及びeIF4Gが回収される。したがって、CDKAL1がノックダウンされていない細胞においては、eIF4Eと共に、eIF4A及びeIF4Gに対応するバンドが観察される(図1において、「m7GTP pull-down」、shRNA「Cont.」、RNaseA「+」の試料を参照されたい。)。これに対して、Lenti-shCDKAL1#1を感染させたJK2細胞の細胞溶解液から、m7GTPビーズとの共沈により回収された画分(図1において「m7GTP pull-down」、shRNA「CDKAL1」に対応するレーンを参照されたい。)からはeIF4Eに対応する強いバンドが確認されたものの、eIF4A及びeIF4Gに対応するバンドは殆ど確認されなかった。この結果はCDKAL1をノックダウンしたJK2細胞においては、eIF4A及びeIF4Gと、eIF4Eとの結合が減弱していることを示している。 On the other hand, the fraction recovered by coprecipitation with m7GTP beads from the cell lysate of the cells infected with each lentiviral vector was analyzed by Western blotting, and the result corresponds to "m7GTP pull-down" on the right side of FIG. Shown in the lane. Here, since m7GTP has a property of binding to eIF4E, normally, coprecipitation by m7GTP beads recovers eIF4E and eIF4A and eIF4G, which are factors that bind to eIF4E, together with eIF4E. Therefore, in cells in which CDKAL1 is not knocked down, bands corresponding to eIF4A and eIF4G are observed together with eIF4E (in FIG. 1, "m7GTP pull-down", shRNA "Cont.", RNaseA "+". See sample.). On the other hand, from the cytolysate of JK2 cells infected with Lenti-shCDKAL1 # 1, the fractions recovered by coprecipitation with m7GTP beads (“m7GTP pull-down” and shRNA “CDKAL1” in FIG. 1). (Refer to the corresponding lane.) Although a strong band corresponding to eIF4E was confirmed, a band corresponding to eIF4A and eIF4G was hardly confirmed. This result indicates that the binding between eIF4A and eIF4G and eIF4E is attenuated in JK2 cells in which CDKAL1 is knocked down.
 以上の結果は、がん幹細胞において、CDKAL1が、eIF4Eと、eIF4A及びeIF4Gが結合して形成される翻訳開始因子複合体の形成に必須であることを示している。CDKAL1が翻訳開始因子複合体の形成に関与することは全く知られておらず、以上の結果は本発明者らにとっても全く意外な知見である。 The above results indicate that CDKAL1 is essential for the formation of a translation initiation factor complex formed by binding eIF4E to eIF4A and eIF4G in cancer stem cells. It is not known at all that CDKAL1 is involved in the formation of the translation initiation factor complex, and the above results are completely surprising findings for the present inventors.
<実験3. CDKAL1のノックダウンによるJK2細胞の自己複製能への影響>
 実験2と同様の手順で、悪性脳腫瘍幹細胞JK2に、実験1で準備したレンチウイルスベクター(Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又はLenti-shControl)を感染させた。レンチウイルスベクター感染の4日後に、常法に従って、トリプシン(富士フィルム和光純薬株式会社製、カタログ番号:204-16935)を用いて細胞を単離した後、1000cell/mLの細胞濃度でJK2基本培地に懸濁した。得られた細胞懸濁液を24ウェルの超低接着プレート(製品名「Costar 超低接着表面プレート24ウェル平底フタ付」、Corning社、カタログ番号:3473)に、1ウェルあたり2mLずつの量で、計4ウェル分播種し、常法に従って、37℃、5%COの環境で1週間インキュベートした。1週間のインキュベートの後、形成されたスフェア数を目視で数えた。スフェア数の測定の後、形成されたスフェアにトリプシンを作用させることにより、細胞を単離した。単離された細胞を上述した手順に従って、再度JK2基本培地に懸濁、播種、1週間インキュベートした後に、形成されたスフェア数を目視で数えた。その結果を図2に示す。
<Experiment 3. Effect of knockdown of CDKAL1 on self-renewal ability of JK2 cells>
In the same procedure as in Experiment 2, malignant brain tumor stem cells JK2 were infected with the lentiviral vector (Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl) prepared in Experiment 1. Four days after Lentiviral vector infection, cells were isolated using trypsin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., Catalog No .: 204-16935) according to a conventional method, and then JK2 basic at a cell concentration of 1000 cell / mL. Suspended in medium. The resulting cell suspension was placed in a 24-well ultra-low adhesive plate (product name "Costar ultra-low adhesive surface plate with 24-well flat bottom lid", Corning, Catalog No .: 3473) in an amount of 2 mL per well. , A total of 4 wells were sown and incubated for 1 week in an environment of 37 ° C. and 5% CO 2 according to a conventional method. After 1 week of incubation, the number of spheres formed was visually counted. After measuring the number of spheres, cells were isolated by allowing trypsin to act on the formed spheres. The isolated cells were suspended again in JK2 basal medium, seeded and incubated for 1 week according to the procedure described above, and then the number of spheres formed was visually counted. The results are shown in FIG.
 図2に示されるとおり、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1及びLenti-shCDKAL1#2)を感染させることによりCDKAL1をノックダウンしたJK2細胞においては、Lenti-shControlを感染させたJK2細胞と比較して、1週間のインキュベーション後に形成されたスフェアの数が顕著に少なかった。がん幹細胞のスフェア形成能は、がん幹細胞の自己複製能の指標とされていることから、以上の結果より、CDKAL1の発現を抑制することにより、悪性脳腫瘍細胞JK2の自己複製能が失われることが分かる。換言すれば、以上の結果は、CDKAL1が、悪性脳腫瘍細胞JK2の自己複製能の維持に必須の因子であることを示している。 As shown in FIG. 2, in JK2 cells in which CDKAL1 was knocked down by infection with lentiviral vectors expressing shCDKAL1 (Lenti-shCDKAL1 # 1 and Lenti-shCDKAL1 # 2), JK2 infected with Lenti-shControl. The number of spheres formed after 1 week of incubation was significantly lower compared to the cells. Since the sphere-forming ability of cancer stem cells is regarded as an index of the self-renewal ability of cancer stem cells, from the above results, the self-renewal ability of malignant brain tumor cells JK2 is lost by suppressing the expression of CDKAL1. You can see that. In other words, the above results indicate that CDKAL1 is an essential factor for maintaining the self-renewal ability of malignant brain tumor cells JK2.
<実験4. CDKAL1を標的とするshRNAを発現するレンチウイルスベクターを感染させたJK2細胞におけるCDKAL1の酵素活性>
 次に、CDKAL1を標的とするshRNAを発現するレンチウイルスベクターを感染させたJK2細胞におけるCDKAL1の酵素活性を以下の手順にて評価した。すなわち、実験2と同様の手順で、実験1で準備したレンチウイルスベクター(Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又はLenti-shControl)を、悪性脳腫瘍幹細胞JK2に感染させ、感染から4日後に、常法に従って、細胞からRNAを回収し、回収したRNAを鋳型として、リジンtRNAの修飾率を、Peiyu Xie et al.,Clinical Chemistry, 59, 11, 2013, 1604-1612.に報告された方法に準拠して解析した。その結果を、図3に示す。
<Experiment 4. Enzyme activity of CDKAL1 in JK2 cells infected with a lentiviral vector expressing shRNA targeting CDKAL1>
Next, the enzymatic activity of CDKAL1 in JK2 cells infected with a lentiviral vector expressing shRNA targeting CDKAL1 was evaluated by the following procedure. That is, the lentiviral vector (Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl) prepared in Experiment 1 was infected with malignant brain tumor stem cell JK2 by the same procedure as in Experiment 2, and 4 days after the infection. Later, RNA was recovered from the cells according to a conventional method, and the modification rate of lysine tRNA was determined by using the recovered RNA as a template. The analysis was performed according to the method reported in. The results are shown in FIG.
 図3に示されるとおり、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1又はLenti-shCDKAL1#2)を感染させたJK2細胞においては、Lenti-shControlを感染させたJK2細胞と比較して、リジンtRNAの修飾率が80%超低下しており、CDKAL1の活性の大幅な低下が確認された。この結果は、shCDKAL1を発現するレンチウイルスベクターを感染させたJK2細胞において、CDKAL1がノックダウンされていることを示している。 As shown in FIG. 3, in JK2 cells infected with a lentiviral vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2), compared with JK2 cells infected with Lenti-shControl, The modification rate of lysine tRNA was reduced by more than 80%, confirming a significant decrease in the activity of CDKAL1. This result indicates that CDKAL1 is knocked down in JK2 cells infected with a lentiviral vector expressing shCDKAL1.
<実験5. CDKAL1のノックダウンによるがん幹細胞の幹細胞性への影響>
 次に、CDKAL1を標的とするshRNAを発現するレンチウイルスベクターを感染させたJK2細胞を用いて、CDKAL1のノックダウンによるがん幹細胞の幹細胞性への影響を調べた。まず、実験2と同様の手順で、実験1で準備したレンチウイルスベクター(Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又はLenti-shControl)を悪性脳腫瘍幹細胞JK2に感染させた。レンチウイルスベクター感染の4日後に、常法に従って、トリプシンを用いて細胞を単離し、JK2基本培地に懸濁した。その後、マトリゲル基底膜マトリックス(Corning社、カタログ番号:356231、最終濃度10%となるようにPBSで希釈してコーディングに使用した。)でコートしたチャンバースライド(製品名「Lab-TekIIチェンバースライドシステム」、ThermoFisher Scientific社、カタログ番号:154534PK)上へ、懸濁したJK2細胞を約50,000個の細胞数となるように播種した。37℃、5%COの環境で24時間インキュベートした後に、細胞培養培地を除去し、PBSで1回洗浄した上で、4%パラフォルムアルデヒド・りん酸緩衝液(富士フィルム和光純薬株式会社、カタログ番号:163-20145)を加え、15分間室温でインキュベートすることにより細胞を固定した。固定後、PBSで1回洗浄した後、3%ウシ血清アルブミン(Sigma-Aldrich社、カタログ番号:A7030-100G)及び0.05%Triton X-100(Sigma-Aldrich社、カタログ番号:11332481001)を含むPBSを加え、30分間室温でインキュベートすることによりブロッキングを行った。ブロッキング後に、抗体希釈液(3%ウシ血清アルブミン、及び、0.01%Triton X-100を含むPBS)で希釈した1次抗体を4℃の湿潤環境で16時間反応させた。
<Experiment 5. Effect of knockdown of CDKAL1 on stem cell properties of cancer stem cells>
Next, the effect of knockdown of CDKAL1 on the stem cell property of cancer stem cells was investigated using JK2 cells infected with a leasin viral vector expressing shRNA targeting CDKAL1. First, the malignant brain tumor stem cell JK2 was infected with the lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl prepared in Experiment 1 by the same procedure as in Experiment 2. Four days after infection with the lentiviral vector, cells were isolated using trypsin according to conventional methods and suspended in JK2 basal medium. Then, a chamber slide coated with a Matrigel basement membrane matrix (Corning, Catalog No .: 356231, diluted with PBS to a final concentration of 10% and used for coding) (product name "Lab-TekII Chamber Slide System"). , Thermo Fisher Scientific, Catalog No .: 154534 PK), suspended JK2 cells were seeded to a cell count of about 50,000. After incubating for 24 hours in an environment of 37 ° C. and 5% CO 2 , the cell culture medium was removed, washed once with PBS, and then 4% paraformaldehyde / phosphate buffer (Fuji Film Wako Junyaku Co., Ltd.). , Catalog number: 163-20145), and cells were fixed by incubating at room temperature for 15 minutes. After fixation, wash once with PBS, then add 3% bovine serum albumin (Sigma-Aldrich, catalog number: A7030-100G) and 0.05% Triton X-100 (Sigma-Aldrich, catalog number: 11332481001). Blocking was performed by adding the containing PBS and incubating at room temperature for 30 minutes. After blocking, the primary antibody diluted with antibody diluent (3% bovine serum albumin and PBS containing 0.01% Triton X-100) was reacted in a moist environment at 4 ° C. for 16 hours.
 なお、以上の手順において、使用した1次抗体は、ウサギ抗Vimentin抗体(製品名「Vimentin(D21H3)XP Rabbbit mAb」、Cell Signaling Technology社、カタログ番号:5741)、抗MSI1抗体(製品名「Human/Mouse/Rat Musashi-1 Antibody」、R&D Systems社、カタログ番号:AF2628)、ヤギ抗SOX2抗体(Santa Cruz Biotechnology社、カタログ番号:sc-17320)、ウサギ抗Nestin抗体(製品名「抗-ネスチン・ウサギ宿主抗体」、Sigma-Aldrich社、カタログ番号:N5413)、マウス抗SYP抗体(製品名「モノクロナール抗シナプトフィジン・マウス宿主抗体」、Sigma-Aldrich社、カタログ番号:S5768)、抗MAP2抗体(Santa Cruz Biotechnology社、カタログ番号:sc-5359)であり、いずれも最終抗体濃度が2μg/mLとなるように抗体希釈液(3%ウシ血清アルブミン、及び、0.01%Triton X-100を含むPBS)で希釈して用いた。 The primary antibody used in the above procedure was a rabbit anti-Vimentin antibody (product name "Vimentin (D21H3) XP Rabbit mAb", Cell Signaling Technology, catalog number: 5741), anti-MSI1 antibody (product name "Human"). / Mouse / Rat Musashi-1 Antibody ”, R & D Systems, Catalog number: AF2628), Goat anti-SOX2 antibody (Santa Cruz Biotechnology, Catalog number: sc-17320), Rabbit anti-Nestin antibody (product name: anti-Nestin antibody). Rabbit host antibody ”, Sigma-Aldrich, catalog number: N5413), mouse anti-SYS antibody (product name“ monoclonal anti-synaptophidin mouse host antibody ”, Sigma-Aldrich, catalog number: S5768), anti-MAP2 antibody (Santa) Cruz Biotechnology, Catalog No .: sc-5359), both of which are PBS containing antibody diluted solution (3% bovine serum albumin and 0.01% Triton X-100) so that the final antibody concentration is 2 μg / mL. ) Was diluted before use.
 1次抗体の反応後、PBSで3回洗浄し、抗体希釈液で希釈した2次抗体を室温の湿潤環境で1時間反応させた。なお、使用した2次抗体はAlexa488またはAlexa594で標識した抗ウサギ、抗マウス、又は抗ヤギ抗体であり、いずれも最終抗体濃度が10μg/mLとなるように抗体希釈液で希釈して使用した。2次抗体の反応後、PBSで3回洗浄し、細胞核染色試薬DAPIを含む封入剤(製品名「DAPI Fluoromount-G」(Southern Biotech社、カタログ番号:0100-20)を同製品に付属の手順書に従って用いることで封入した。24時間室温で静置し封入剤を固定させたのち、共焦点レーザー走査型顕微鏡FV3000(オリンパス株式会社製)を用いて画像を取得した。得られた結果を図4に示す。 After the reaction of the primary antibody, the cells were washed 3 times with PBS and the secondary antibody diluted with the antibody diluent was reacted in a moist environment at room temperature for 1 hour. The secondary antibody used was an anti-rabbit, anti-mouse, or anti-goat antibody labeled with Alexa488 or Alexa594, all of which were diluted with an antibody diluent so that the final antibody concentration was 10 μg / mL. After the reaction of the secondary antibody, wash with PBS three times, and apply the encapsulant containing the cell nucleus staining reagent DAPI (product name "DAPI Fluoromount-G" (Southern Biotech, catalog number: 0100-20)) to the product. The encapsulation was performed by using according to the document. After allowing to stand at room temperature for 24 hours to fix the encapsulant, an image was acquired using a confocal laser scanning microscope FV3000 (manufactured by Olympus Co., Ltd.). Shown in 4.
 図4に示されるとおり、Lenti-shControlを感染させたJK2細胞においては、がん幹細胞の幹細胞性を示すマーカーであるVimentin、MSI1、Sox2、Nestinの発現が強く確認され、その一方で、正常な神経細胞への分化マーカーであるSYPやMAP2の発現は殆ど観察されなかった。この結果は、悪性脳腫瘍細胞JK2が幹細胞性を有する細胞であることを示している。これに対して、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1又はLenti-shCDKAL1#2)を感染させたJK2細胞においては、がん幹細胞の幹細胞性マーカーであるVimentin、MSI1、Sox2、Nestinの発現は殆ど観察されず、その一方で、正常な神経細胞への分化マーカーであるSYPやMAP2の強い発現が観察された。以上の結果は、悪性脳腫瘍幹細胞JK2細胞においてCDKAL1の発現をノックダウンすると、JK2細胞のがん幹細胞性が失われること、また、これにより、正常な神経細胞への分化が起こることを示している。すなわち、CDKAL1は、がん幹細胞の幹細胞性の維持に必須の因子であることを示している。 As shown in FIG. 4, in JK2 cells infected with Lenti-shControl, the expression of Vimentin, MSI1, Sox2, and Nestin, which are markers indicating the stem cell nature of cancer stem cells, was strongly confirmed, while normal. Almost no expression of SYP or MAP2, which are markers of differentiation into nerve cells, was observed. This result indicates that the malignant brain tumor cell JK2 is a cell having stem cell properties. On the other hand, in JK2 cells infected with a lentiviral vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2), Vimentin, MSI1, Sox2, Nestin, which are stem cell markers of cancer stem cells, On the other hand, strong expression of SYP and MAP2, which are markers for differentiation into normal neurons, was observed. The above results indicate that knocking down the expression of CDKAL1 in malignant brain tumor stem cells JK2 cells causes the loss of cancer stem cell properties of JK2 cells, which in turn causes differentiation into normal neurons. .. That is, it is shown that CDKAL1 is an essential factor for maintaining the stem cell property of cancer stem cells.
<実験6. CDKAL1のノックダウンによるRD細胞の自己複製能への影響>
 CDKAL1のノックダウンの他のがん幹細胞への影響を調べるため、横紋筋肉腫細胞株RDを用いて、CDKAL1のノックダウン後のスフェア形成能、及び、コロニー形成能を評価した。
<Experiment 6. Effect of knockdown of CDKAL1 on self-renewal ability of RD cells>
In order to investigate the effect of CDKAL1 knockdown on other cancer stem cells, the rhabdomyosarcoma cell line RD was used to evaluate the sphere-forming ability and colony-forming ability of CDKAL1 after knockdown.
 まず、JK2細胞に代えて、横紋筋肉腫細胞株RD(JCRB細胞バンクより購入、細胞番号:JCRB9072)を用いた以外は、実験3の手順と同様にして、レンチウイルスベクターを感染させたRD細胞のスフェア形成能を評価した。すなわち、約500,000個のRD細胞を4mLの基本培地に懸濁したものに、Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又は、Lenti-shControlのいずれかを含有するレンチウイルスベクター含有培地1mLを添加し、合計で5mLとしたものを60mmの細胞培養皿へ播種した。細胞の播種から4日後に、実験3で述べたのと同様の手順に従って、レンチウイルスベクターを感染させたRD細胞のスフェア形成能を評価した。得られた結果を図5Aに示す。 First, the RD infected with the lentiviral vector was used in the same manner as in Experiment 3 except that the horizontal print myoma cell line RD (purchased from JCRB cell bank, cell number: JCRB9072) was used instead of JK2 cells. The ability of cells to form spheres was evaluated. That is, a medium containing a lentivirus vector containing either Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl in a medium in which about 500,000 RD cells are suspended in 4 mL of basal medium. 1 mL was added to make a total of 5 mL, and the mixture was seeded in a 60 mm cell culture dish. Four days after seeding the cells, the sphere-forming ability of RD cells infected with the lentiviral vector was evaluated according to the same procedure as described in Experiment 3. The obtained results are shown in FIG. 5A.
 図5Aに示されるとおり、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1又はLenti-shCDKAL1#2)を感染させることによりCDKAL1をノックダウンしたRD細胞においては、Lenti-shControlを感染させたJK2細胞と比較して、自己複製能の指標とされるスフェア形成能の大幅な低下が確認された。以上の結果より、悪性脳腫瘍細胞JK2において見られたのと同様に、横紋筋肉腫細胞RDにおいても、CDKAL1の発現を抑制することにより自己複製能が失われることを示している。換言すれば、以上の結果は、CDKAL1が、悪性脳腫瘍細胞JK2のみならず、横紋筋肉腫細胞であるRD細胞を含む、多くのがん幹細胞の自己複製能の維持に必須の因子であることを示している。 As shown in FIG. 5A, in RD cells in which CDKAL1 was knocked down by infection with a lentiviral vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2), JK2 infected with Lenti-shControl. Compared with cells, a significant decrease in sphere-forming ability, which is an index of self-renewal ability, was confirmed. From the above results, it is shown that the self-renewal ability is lost by suppressing the expression of CDKAL1 in the rhabdomyosarcoma cell RD as well as in the malignant brain tumor cell JK2. In other words, the above results indicate that CDKAL1 is an essential factor for maintaining the self-renewal ability of many cancer stem cells, including not only malignant brain tumor cells JK2 but also rhabdomyosarcoma cells RD cells. Is shown.
 次に、スフェア形成能の評価について上述したと同様に、約500,000個のRD細胞を4mLの基本培地に懸濁したものに、Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又は、Lenti-shControlのいずれかを含有するレンチウイルスベクター含有培地1mLを添加し、合計で5mLとしたものを60mmの細胞培養皿へ播種した。細胞の播種から4日後に、常法に従って、トリプシン(富士フィルム和光純薬株式会社製、カタログ番号:204-16935)を用いて細胞を単離し、基本培地に懸濁した。懸濁した細胞を、1ウェルあたり約2,000個の細胞数となるように、6ウェルの細胞培養プレートに計3ウェル分播種した。なお、各ウェル当たりの基本培地の量は3mLである。播種の2週間後に常法に従って、固定・染色を行い、細胞培養プレートの表面上に残存するコロニーの数を目視にて計測した。得られた結果を図5Bに示す。 Next, regarding the evaluation of the sphere forming ability, in the same manner as described above, about 500,000 RD cells were suspended in 4 mL of the basal medium, and Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti 1 mL of a lentiviral vector-containing medium containing any of -shControl was added, and a total of 5 mL was inoculated into a 60 mm cell culture dish. Four days after seeding of the cells, the cells were isolated using trypsin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., Catalog No .: 204-16935) according to a conventional method, and suspended in a basal medium. Suspended cells were seeded in 6-well cell culture plates for a total of 3 wells so that the number of cells per well was about 2,000. The amount of basal medium per well is 3 mL. Two weeks after sowing, fixation and staining were performed according to a conventional method, and the number of colonies remaining on the surface of the cell culture plate was visually measured. The obtained results are shown in FIG. 5B.
 図5Bに示されるとおり、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1又はLenti-shCDKAL1#2)を感染させることによりCDKAL1をノックダウンしたRD細胞においては、Lenti-shControlを感染させたRD細胞と比較して、2週間のインキュベーション後に形成されたコロニーの数が顕著に少なかった。がん幹細胞のコロニー形成能は、がん幹細胞の造腫瘍能の指標とされていることから、以上の結果より、CDKAL1の発現を抑制することにより、横紋筋肉腫細胞RDの造腫瘍能が失われることが分かる。換言すれば、以上の結果は、CDKAL1が、横紋筋肉腫細胞RDの自己複製能の維持に必須の因子であることを示している。 As shown in FIG. 5B, in RD cells in which CDKAL1 was knocked down by infection with a lentiviral vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2), RD infected with Lenti-shControl was used. The number of colonies formed after 2 weeks of incubation was significantly lower compared to the cells. Since the colony-forming ability of cancer stem cells is used as an index of the tumor-forming ability of cancer stem cells, based on the above results, the tumor-forming ability of rhabdomyosarcoma cells RD can be improved by suppressing the expression of CDKAL1. It turns out that it will be lost. In other words, the above results indicate that CDKAL1 is an essential factor for maintaining the self-renewal ability of rhabdomyosarcoma cells RD.
<実験7. CDKAL1のノックダウンによる他の癌細胞への影響>
 CDKAL1のノックダウンの更に他の癌細胞への影響を調べるため、ヒト悪性黒色腫細胞株A2058、SK-Mel-28、HMV-II、ヒト肝臓癌細胞株Huh-7、HepG2、ヒト前立腺癌細胞株PC3、LNCaP、ヒト胃癌細胞株NUGC3、HGC27、MKN45、及び、ヒト悪性脳腫瘍細胞株MGG4、MGG8、MGG18を用いて、CDKAL1のノックダウン後のスフェア形成能、コロニー形成能、及び、癌幹細胞マーカーの発現量を評価した。
<Experiment 7. Effect of knockdown of CDKAL1 on other cancer cells>
To investigate the effect of CDKAL1 knockdown on other cancer cells, human malignant melanoma cell line A2058, SK-Mel-28, HMV-II, human liver cancer cell line Huh-7, HepG2, human prostate cancer cell Using the strains PC3, LNCaP, human gastric cancer cell lines NUGC3, HGC27, MKN45, and human malignant brain tumor cell lines MGG4, MGG8, MGG18, sphere-forming ability, colony-forming ability, and cancer stem cell marker after knockdown of CDKAL1. The expression level of was evaluated.
 具体的な手順を以下に示す。ヒト悪性黒色腫細胞A2058、SK-Mel-28、HMV-II、ヒト肝臓癌細胞Huh-7、HepG2、ヒト前立腺癌細胞PC3、LNCaP、及び、ヒト胃癌細胞NUGC3、HGC27、MKN45については、RD細胞に代えて、これらの細胞を用いた以外は、実験6と同様の手順にて、レンチウイルスベクターを感染させCDKAL1のノックダウンし、スフェア形成能及びコロニー形成能を評価した。なお、本実験に用いた細胞の入手元は次のとおりである:ヒト悪性黒色腫細胞A2058(JCRB細胞バンクより入手、型番:IFO50276)、SK-Mel-28(ATCCより入手、型番:HTB-72TM)、HMV-II(Riken BioResource Research Centerより入手、型番:RCB0777)、ヒト肝臓癌細胞Huh-7(JCRB細胞バンクより入手、型番:JCRB0403)、HepG2(JCRB細胞バンクより入手、型番:JCRB1054)、ヒト前立腺癌細胞PC3(ATCCより入手、型番:CRL-3470TM)、LNCaP(Riken BioResource Research Centerより入手、型番:RCB2144)、ヒト胃癌細胞NUGC3(JCRB細胞バンクより入手、型番:JCRB0822)、HGC27(Riken BioResource Research Centerより入手、型番:RCB20500)、MKN45(JCRB細胞バンクより入手、型番:JCRB0254)。 The specific procedure is shown below. For human malignant melanoma cells A2058, SK-Mel-28, HMV-II, human liver cancer cells Huh-7, HepG2, human prostate cancer cells PC3, LNCaP, and human gastric cancer cells NUGC3, HGC27, MKN45, RD cells. Instead of using these cells, the lentivirus vector was infected and CDKAL1 was knocked down by the same procedure as in Experiment 6, and the sphere-forming ability and the colony-forming ability were evaluated. The sources of the cells used in this experiment are as follows: Human malignant melanoma cells A2058 (obtained from JCRB cell bank, model number: IFO50276), SK-Mel-28 (obtained from ATCC, model number: HTB-). 72 TM ), HMV-II (Riken BioResource Research Center, model number: RCB0777), human liver cancer cell Huh-7 (obtained from JCRB cell bank, model number: JCRB0403), HepG2 (obtained from JCRB cell bank, model number: JCRB1054) ), Human prostate cancer cell PC3 (obtained from ATCC, model number: CRL-3470 TM ), LNCaP (Riken BioResource Research Center, model number: RCB2144), human gastric cancer cell NUGC3 (obtained from JCRB cell bank, model number: JCRB0822), HGC27 (obtained from Riken BioResearch Research Center, model number: RCB20500), MKN45 (obtained from JCRB cell bank, model number: JCRB0254).
 また、CDKAL1をノックダウンした後の癌幹細胞性マーカーの発現を共焦点顕微鏡を用いて観察した。その手順は、JK2細胞に代えて、上記の細胞を用いたこと、及び、免疫染色に用いた抗体を適宜変更した以外は、実験5に記載した手順と同様である。なお、使用した1次抗体は次のとおりである:抗ALDH1A1抗体(Novus Biologicals社、カタログ番号:NBP1-89152)、抗CD44抗体(BioLegend社、カタログ番号:103001)、抗CD133抗体(Proteintech社、カタログ番号:66666-1-Ig)。 In addition, the expression of cancer stem cell markers after knocking down CDKAL1 was observed using a confocal microscope. The procedure is the same as the procedure described in Experiment 5 except that the above cells were used instead of JK2 cells and the antibody used for immunostaining was appropriately changed. The primary antibodies used were as follows: anti-ALDH1A1 antibody (Novus Biologicals, catalog number: NBP1-89152), anti-CD44 antibody (BioLegend, catalog number: 103001), anti-CD133 antibody (Proteintech, Inc., Catalog number: 66666-1-Ig).
 一方、ヒト悪性脳腫瘍細胞MGG4、MGG8、MGG18については、RD細胞に代えて、これらの細胞を用い、基本培地に代えて次の組成の培地を用いた以外は実験6と同様の手順にて、レンチウイルスベクターを感染させ、CDKAL1をノックダウンし、スフェア形成能を評価した:NeurobasalTM Medium(Thermo Fisher Scientific社)+1×B-27TM supplement(Thermo Fisher Scientific社)+1×N-2 supplement(Thermo Fisher Scientific社)+20ng/mL EGF(富士フィルム和光純薬株式会社)+20ng/mL bFGF(富士フィルム和光純薬株式会社)+10μg/mL ヘパリン(Sigma-Aldrich社)。なお、本実験に用いたヒト悪性脳腫瘍細胞MGG4、MGG8、MGG18は、いずれもMassachusetts General Hospitalの脇本浩明博士より分与を受けたものである。 On the other hand, for human malignant brain tumor cells MGG4, MGG8, and MGG18, the procedure was the same as in Experiment 6 except that these cells were used instead of RD cells and a medium having the following composition was used instead of the basal medium. Infected with a lentiviral vector, knocked down CDKAL1, and evaluated sphere-forming ability: Neurobasal TM Medium (Thermo Fisher Scientific) + 1 x B-27 TM supplement (Thermo Fisher Scientific) Fisher Scientific) + 20 ng / mL EGF (Fuji Film Wako Junyaku Co., Ltd.) + 20 ng / mL bFGF (Fuji Film Wako Junyaku Co., Ltd.) + 10 μg / mL Heparin (Sigma-Aldrich). The human malignant brain tumor cells MGG4, MGG8, and MGG18 used in this experiment were all provided by Dr. Hiroaki Wakimoto of Massachusetts General Hospital.
 また、ヒト悪性脳腫瘍細胞MGG4、MGG8、MGG18について、CDKAL1のノックダウン後の癌幹細胞性マーカーの発現量は、ウェスタンブロッティングにより評価した。まず、実験6の手順に準じて、ヒト悪性脳腫瘍細胞MGG4、MGG8、MGG18にshCDKAL1を発現するレンチウイルスベクターを感染させた。すなわち、約500,000個の細胞を4mLの上記組成の培地に懸濁したものに、Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又は、コントールとしてLenti-shControlを含有するレンチウイルスベクター含有培地を1mL添加し、合計で5mLとしたものを60mmの細胞培養皿へ播種した。細胞の播種から4日後に、実験2に記載した手順に従って、細胞溶解液を得、ウェスタンブロッティングに供した。 In addition, for human malignant brain tumor cells MGG4, MGG8, and MGG18, the expression level of cancer stem cell markers after knockdown of CDKAL1 was evaluated by Western blotting. First, human malignant brain tumor cells MGG4, MGG8, and MGG18 were infected with a lentiviral vector expressing shCDKAL1 according to the procedure of Experiment 6. That is, a medium containing a lentivirus vector containing Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl as a control in a medium in which about 500,000 cells are suspended in 4 mL of the medium having the above composition. 1 mL was added to make a total of 5 mL, and the mixture was seeded in a 60 mm cell culture dish. Four days after seeding the cells, cytolysates were obtained and subjected to Western blotting according to the procedure described in Experiment 2.
 なお、検出に使用した抗体は、GAPDH抗体(ProteinTech社、カタログ番号:60004-1-Ig)、SOX2抗体(Santa Cruz Biotechnology社、カタログ番号:sc-17320)、CD133抗体(ProteinTech社、カタログ番号:18470-1-AP)、POU3F3抗体(Cell Signaling Technology社、カタログ番号:12137S)、OLIG2抗体(Abcam社、カタログ番号:ab109186)、HRP標識抗ウサギIgG抗体(Cell Signaling Technology社、カタログ番号:7074)、HRP標識抗マウスIgG抗体(Sigma Aldrich社、カタログ番号:A9044)、HRP標識抗ヤギIgG抗体(Sigma Aldrich社、カタログ番号:A4174)、及び、HRP標識抗ラットIgG抗体(Sigma Aldrich社、カタログ番号:A5795)である。検出はClarity Max Western ECL Substrate(Bio-Rad Laboratories社、カタログ番号:1705062)、及び、ChemiDoc Touchイメージングシステム(Bio-Rad Laboratories社製)を、それぞれの説明書に従って用いることにより行った。 The antibodies used for detection were GAPDH antibody (ProteinTech, catalog number: 6004-1-Ig), SOX2 antibody (Santa Cruz Biotechnology, catalog number: sc-17320), CD133 antibody (ProteinTech, catalog number:). 18470-1-AP), POU3F3 antibody (Cell Signaling Technology, catalog number: 12137S), OLIG2 antibody (Abcam, catalog number: ab109186), HRP-labeled anti-rabbit IgG antibody (Cell Signaling Technology, catalog number: 74). , HRP-labeled anti-mouse IgG antibody (Sigma Aldrich, catalog number: A9044), HRP-labeled anti-goat IgG antibody (Sigma Aldrich, catalog number: A4174), and HRP-labeled anti-rat IgG antibody (Sigma Aldrich, catalog number). : A5795). Detection was performed by using Clarity Max Western ECL Substrate (Bio-Rad Laboratories, Catalog No .: 1705062) and ChemiDoc Touch Imaging System (Bio-Rad Laboratories) according to the respective instructions.
 得られた結果を図6~図10に示す。図6~図10に示されるとおり、CDKAL1をノックダウンすることにより悪性黒色腫(図6)、肝臓癌(図7)、前立腺癌(図8)、胃癌(図9)、悪性脳腫瘍(図10)のいずれにおいても、自己複製能の指標であるスフィア形成能及び造腫瘍能の指標であるコロニー形成能が著しく低下した。また、CDKAL1をノックダウンすることにより、いずれの癌種においても癌幹細胞マーカーの発現の減弱が観察された。いずれの癌種においても、CDKAL1が関与する翻訳機構を阻害することにより抗腫瘍活性が得られることを示された。以上の結果は、CDKAL1が関与する翻訳機構が、癌種を問わず、癌幹細胞性の維持に必須であることを強く示唆するものである。 The obtained results are shown in FIGS. 6 to 10. As shown in FIGS. 6 to 10, malignant melanoma (FIG. 6), liver cancer (FIG. 7), prostate cancer (FIG. 8), gastric cancer (FIG. 9), and malignant brain tumor (FIG. 10) by knocking down CDKAL1. ), The sphere-forming ability, which is an index of self-renewal ability, and the colony-forming ability, which is an index of tumor-forming ability, were significantly reduced. In addition, by knocking down CDKAL1, attenuation of the expression of cancer stem cell markers was observed in all cancer types. It has been shown that in all cancer types, antitumor activity can be obtained by inhibiting the translation mechanism in which CDKAL1 is involved. The above results strongly suggest that the translation mechanism in which CDKAL1 is involved is essential for the maintenance of cancer stem cell property regardless of the type of cancer.
<実験8. CDKAL1のノックダウンによる横紋筋肉腫細胞株RMS-YMの腫瘍増大性への影響>
 次に、横紋筋肉腫細胞株RMS-YMにおける、CDKAL1のノックダウンによる腫瘍増大性への影響を検討した。まず、約500,000個のRMS-YM細胞を4mLの基本培地へ懸濁したものに、Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又はLenti-shControlを含有するレンチウイルスベクター含有培地1mLを添加し、合計で5mLとしたものを60mmの細胞培養皿へ播種した。播種から4日後、常法に従って、トリプシンを用いてRMS-YM細胞を回収し、回収した細胞を100万個/100μLの細胞濃度となるようにPBSに再懸濁した。得られた懸濁液100μL(細胞数100万個に相当)を5週齢のメスのBALB/c-nu/nuマウスの皮下に注射により注入し、その後、注入部位における腫瘍の大きさの経時的な変化を、Wuらの報告(Wu W.et al.,Clinical Cancer Research 2013 Oct 15;19(20):5699-5710)に従って評価した。すなわち、腫瘍の最大径(Length)と、その最大直径に垂直な方向の腫瘍径(Width)を経時的にノギスにて測定し、測定した結果を下式に当てはめることによって腫瘍の体積(Tumor Volume)を求めた。なお、以下の式において、Piは円周率、Lengthは腫瘍の最大径、Widthは、Lengthに垂直な方向の腫瘍径を表す。
<Experiment 8. Effect of CDKAL1 knockdown on tumor growth of rhabdomyosarcoma cell line RMS-YM>
Next, in the rhabdomyosarcoma cell line RMS-YM, the effect of knockdown of CDKAL1 on tumor growth was investigated. First, about 500,000 RMS-YM cells were suspended in 4 mL of basal medium, and 1 mL of a lentiviral vector-containing medium containing Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl was added. A total of 5 mL was added and seeded in a 60 mm cell culture dish. Four days after seeding, RMS-YM cells were harvested using trypsin according to conventional methods, and the recovered cells were resuspended in PBS to a cell concentration of 1 million cells / 100 μL. 100 μL of the obtained suspension (corresponding to 1 million cells) is injected subcutaneously into a 5-week-old female BALB / c-nu / nu mouse, followed by the time course of tumor size at the injection site. Changes were evaluated according to the report of Wu et al. (Wu W. et al., Clinical Cancer Research 2013 Oct 15; 19 (20): 5699-5710). That is, the maximum diameter of the tumor (Length) and the tumor diameter (Width) in the direction perpendicular to the maximum diameter are measured with a nogis over time, and the measurement results are applied to the following formula to measure the volume of the tumor (Tumor Volume). ) Was asked. In the following equation, Pi represents pi, Length represents the maximum diameter of the tumor, and Width represents the tumor diameter in the direction perpendicular to Length.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 経時的な腫瘍の大きさの変化を図11に示す。図11に示されるとおり、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1又はLenti-shCDKAL1#2)を感染させ、CDKAL1をノックダウンしたRMS-YM細胞を注入したマウスにおいては、Lenti-shControlを感染させたRMS-YM細胞を注入したマウスと比較して、著しい腫瘍増大性の抑制が観察された。この結果は、CDKAL1をノックダウンすることにより、横紋筋肉腫細胞であるRMS-YM細胞から形成される腫瘍の増殖能が著しく低下することを示しており、CDKAL1のノックダウンによりin vivoレベルにおいても顕著な抗腫瘍効果が得られることを示している。 Figure 11 shows the change in tumor size over time. As shown in FIG. 11, in mice injected with RMS-YM cells infected with a lentivirus vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2) and knocked down CDKAL1, Lenti-shControl Significant suppression of tumor growth was observed compared to mice injected with RMS-YM cells infected with. This result indicates that knockdown of CDKAL1 significantly reduces the growth ability of tumors formed from RMS-YM cells, which are rhabdomyosarcoma cells, and knockdown of CDKAL1 significantly reduces the ability to grow tumors at the in vivo level. Also show that a remarkable antitumor effect can be obtained.
<実験9. がん幹細胞においてCDKAL1により翻訳制御を受ける遺伝子群の同定>
 横紋筋肉腫細胞株RD(JCRB細胞バンクより購入、細胞番号:JCRB9072)に対して、実験6と同様の手順にて、shCDKAL1を発現するレンチウイルスベクターを感染させ、CDKAL1をノックダウンした。すなわち、約500,000個のRD細胞を4mLの基本培地に懸濁したものに、Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又はLenti-shControlを含有するレンチウイルスベクター含有培地を1mL添加し、合計で5mLとしたものを60mmの細胞培養皿へ播種し、37℃、5%COの環境で4日間インキュベートした。細胞の播種から4日後に、以下の手順に従ってRD細胞からポリソーム分画を得るための細胞溶解液を回収した。
<Experiment 9. Identification of genes that are translated and regulated by CDKAL1 in cancer stem cells>
The rhabdomyosarcoma cell line RD (purchased from JCRB cell bank, cell number: JCRB9072) was infected with a lentiviral vector expressing shCDKAL1 by the same procedure as in Experiment 6, and CDKAL1 was knocked down. That is, 1 mL of a lentiviral vector-containing medium containing Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl was added to a suspension of about 500,000 RD cells in 4 mL of basal medium. A total of 5 mL was seeded in a 60 mm cell culture dish and incubated in an environment of 37 ° C. and 5% CO 2 for 4 days. Four days after seeding the cells, cytolytic fluid for obtaining a polysome fraction from RD cells was collected according to the following procedure.
 まず、シクロヘキシミドを100μg/mLの割合で細胞培養皿上の細胞培養培地へと加え、37℃で5分間インキュベートした。その後、RNA Lysis Buffer(15mM Tris-HCl(pH7.4),15mM MgCl,0.3M NaCl,1%TritonX-100,0.1mg/mL シクロヘキシミド,100units/mL RNase inhibitor)により細胞を溶解し、得られた細胞溶解液をショ糖密度勾配(10-50%)超遠心法により分画した。超遠心は、SW-41-Tiスウィングローター(Beckman Coulter社)を用いて、39,000rpmで90分間、4℃で行った。超遠心の後、波長254nmにおける吸収をモニタリングしながら、計11個の等量の画分に分画した。なお、各分画の回収にはトライアックス・グラジェントプロファイリング・システム(BioComp社製)を使用した。 First, cycloheximide was added to the cell culture medium on the cell culture dish at a rate of 100 μg / mL and incubated at 37 ° C. for 5 minutes. The cells were then lysed with RNA Lysis Buffer (15 mM Tris-HCl (pH 7.4), 15 mM MgCl 2 , 0.3 M NaCl, 1% TritonX-100, 0.1 mg / mL cycloheximide, 100 units / mL RNase inhibitor). The obtained cell lysate was fractionated by sucrose density gradient (10-50%) ultracentrifugation. Ultracentrifugation was performed at 39,000 rpm for 90 minutes at 4 ° C. using a SW-41-Ti swing rotor (Beckman Coulter). After ultracentrifugation, a total of 11 equal fractions were fractionated while monitoring absorption at a wavelength of 254 nm. A triax gradient profiling system (manufactured by BioComp) was used to collect each fraction.
 次に、TRIzol試薬(ThermoFisher Scientific社、カタログ番号:15596018))を製品に付属の手順書に従って用いることで、各画分からRNAの回収を行った。最も重い画分(9乃至11番目の画分)から回収されたRNAを最も活発に翻訳されているRNA(Actively Translated RNA)としてRNAシークエンスで解析するとともに、比較対象として、分画前の細胞溶解液に含まれる全RNAをRNAシークエンスで解析した。なお、RNAシークエンス情報の取得は、株式会社Rhelixaに委託して行った。 Next, RNA was recovered from each fraction by using the TRIzol reagent (Thermo Fisher Scientific, catalog number: 15596018) according to the procedure manual attached to the product. RNA recovered from the heaviest fraction (9th to 11th fractions) is analyzed by RNA sequence as the most actively translated RNA (Actively Translated RNA), and as a comparison, cell lysis before fractionation is performed. Total RNA contained in the fluid was analyzed by RNA sequence. The acquisition of RNA sequence information was outsourced to Rhelixa Co., Ltd.
 得られた解析結果の評価は、各遺伝子のRNAについて、細胞内におけるRNAの発現量の変化量を横軸に、ポリソーム画分に含まれるRNAの量の変化量を縦軸にプロットすることによって行った。 The evaluation of the obtained analysis results is performed by plotting the amount of change in the expression level of RNA in cells on the horizontal axis and the amount of change in the amount of RNA contained in the polysome fraction on the vertical axis for RNA of each gene. gone.
 ここで、あるRNAについて、細胞内におけるRNAの発現量の変化量とは、shCDKAL1を発現するレンチウイルスベクターを感染させたRD細胞の細胞溶解液から、分画工程を経ずに回収された全RNAに含まれる当該RNAの量と、shControlを発現するレンチウイルスベクターを感染させたRD細胞の細胞溶解液から、分画工程を経ずに回収された全RNAに含まれる当該RNAの量との差である。あるRNAについて、CDKAL1のノックダウンにより、細胞内におけるRNAの発現量に変化があるということは、当該RNAに対応する遺伝子は転写レベルにて発現制御を受けていることを示している。 Here, for a certain RNA, the amount of change in the expression level of RNA in the cell is the total amount recovered from the cell lysate of RD cells infected with the lentivirus vector expressing shCDKAL1 without undergoing a fractionation step. The amount of the RNA contained in the RNA and the amount of the RNA contained in the total RNA recovered from the cell lysate of the RD cells infected with the lentivirus vector expressing shControl without the fractionation step. It's a difference. The fact that the expression level of RNA in a cell is changed by knockdown of CDKAL1 indicates that the gene corresponding to the RNA is regulated at the transcription level.
 一方、あるRNAについて、ポリソーム画分に含まれるRNAの量の変化量とは、shCDKAL1を発現するレンチウイルスベクターを感染させたRD細胞の細胞溶解液から回収されたポリソーム画分に含まれる当該RNAの量と、shControlを発現するレンチウイルスベクターを感染させたRD細胞の細胞溶解液から回収されたポリソーム画分に含まれる当該RNAの量との差である。あるRNAについて、CDKAL1のノックダウンにより、細胞内における当該RNAの発現量に変化がないにもかかわらず、ポリソーム画分に含まれる当該RNAの量に変化があるということは、当該RNAに対応する遺伝子は、翻訳レベルにて発現制御を受けていることを示している。 On the other hand, for a certain RNA, the amount of change in the amount of RNA contained in the polysome fraction is the RNA contained in the polysome fraction recovered from the cell lysate of RD cells infected with a lentivirus vector expressing shCDKAL1. The difference between the amount of RNA and the amount of RNA contained in the polysome fraction recovered from the cell lysate of RD cells infected with a lentivirus vector expressing shControl. For a certain RNA, the fact that the amount of the RNA contained in the polysome fraction is changed even though the expression level of the RNA in the cell is not changed due to the knockdown of CDKAL1 corresponds to the RNA. It is shown that the gene is regulated at the translation level.
 得られた測定値を、以上のようにしてプロットした結果を図12に示す。図12に示すように、shCDKAL1を発現するレンチウイルスベクターの感染、すなわち、CDKAL1のノックダウンによって、転写レベルでのRNA量の変動がない(横軸の値には変動がない)にもかかわらず、ポリソーム画分に含まれるRNA量に変動がある(縦軸の値に変動がある)遺伝子群、すなわち、CDKAL1により翻訳制御を受ける遺伝子群が複数特定された。 FIG. 12 shows the results of plotting the obtained measured values as described above. As shown in FIG. 12, infection with a lentiviral vector expressing shCDKAL1, that is, knockdown of CDKAL1, causes no change in the amount of RNA at the transcription level (the value on the horizontal axis does not change). , A plurality of gene groups in which the amount of RNA contained in the polysome fraction fluctuates (the value on the vertical axis fluctuates), that is, a group of genes subject to translation control by CDKAL1 have been identified.
 図12に示したCDKAL1のノックダウンによって翻訳が抑制される遺伝子群(すなわち、図12において、横軸の値には変動がないにもかかわらず、縦軸の値が減少する遺伝子群)のうち、転写調節因子に着目して抽出し、各遺伝子の遺伝子発現の変化をヒートマップとして図13に示した。図13に示されるとおり、SALL2を始め、SP9、IRF2BPL、ZNF276、IFI35、YAP1、MIER1、HOXA7、PHF3、LBX2、KLF7、HOXB6、PLAG1、ZNF484、ZNF516、HLTF、HIC1、MAML2、IKZF5、IRX3、NR2F1、ZNF621、MEIS2、JUNB、ZNF337、E2F5、ZKSCAN1、EGR1、NKX6-3、ELK4、HES7、ZIC1、PSIP1、RFX5、E2F3、BARX1、OCEL1、MXI1、MYCL、SOX4、RBP1などの遺伝子群が、CDKAL1のノックダウンにより翻訳抑制を受ける遺伝子群として特定された。その中でも、SALL2、SP9、IRF2BPL、ZNF276、IFI35、YAP1、MIER1、HOXA7、PHF3、LBX2、KLF7、HOXB6、PLAG1、ZNF484、ZNF516、HLTF、HIC1、MAML2、IKZF5の遺伝子群については、CDKAL1のノックダウンによる翻訳抑制率が大きく、その中でも、SALL2、SP9、IRF2BPL、ZNF276、IFI35、YAP、MIER1の遺伝子については翻訳抑制率がさらに大きかった。SALL2、SP9、IRF2BPL、ZNF276、IFI35の遺伝子については特に強い翻訳抑制が確認され、最も大きな翻訳抑制はSALL2遺伝子について観察された。 Among the gene clusters whose translation is suppressed by knockdown of CDKAL1 shown in FIG. 12 (that is, in FIG. 12, the gene cluster in which the value on the vertical axis decreases even though the value on the horizontal axis does not change). , Transcription factors were focused on and extracted, and changes in gene expression of each gene are shown in FIG. 13 as a heat map. As shown in FIG. 13, including SALL2, SP9, IRF2BPL, ZNF276, IFI35, YAP1, MIER1, HOXA7, PHF3, LBX2, KLF7, HOXB6, PLAG1, ZNF484, ZNF516, HLTF, HIC1, MAML2. , ZNF621, MEIS2, JUNB, ZNF337, E2F5, ZKSCAN1, EGR1, NKX6-3, ELK4, HES7, ZIC1, PSIP1, RFX5, E2F3, BARX1, OCEL1, MXI1, MYCL, SOX4, RBP1 It was identified as a group of genes subject to translational repression by knockdown. Among them, SALL2, SP9, IRF2BPL, ZNF276, IFI35, YAP1, MIER1, HOXA7, PHF3, LBX2, KLF7, HOXB6, PLAG1, ZNF484, ZNF516, HLTF, HIC1, HIC1, MAML2, IKZF5 Among them, the translation inhibition rate was even higher for the SALL2, SP9, IRF2BPL, ZNF276, IFI35, YAP, and MIER1 genes. Particularly strong translational repression was confirmed for the SALL2, SP9, IRF2BPL, ZNF276, and IFI35 genes, and the largest translational repression was observed for the SALL2 gene.
<実験10. SALL2ノックダウンのRD細胞の自己複製能及び造腫瘍能への影響>
 実験6と同様の手順にて、RD細胞にshCDKAL1を発現するレンチウイルスベクターを感染させ、CDKAL1をノックダウンした。すなわち、約500,000個のRD細胞を4mLの基本培地に懸濁したものに、Lenti-shCDKAL1#1、Lenti-shCDKAL1#2、又は、コントールとしてLenti-shControlを含有するレンチウイルスベクター含有培地を1mL添加し、合計で5mLとしたものを60mmの細胞培養皿へ播種した。細胞の播種から4日後に、実験2に記載した手順に従って、RD細胞の細胞溶解液を得、ウェスタンブロッティングに供した。なお、検出に使用した抗体は、GAPDH抗体(マウスモノクローナル)(proteintech社、カタログ番号:60004-1-Ig)、SALL2抗体(Bethyl Laboratories社、カタログ番号:A303-208A)、HRP標識抗ウサギIgG抗体(Cell Signaling Technology社、カタログ番号:7074)、及び、HRP標識抗マウスIgG抗体(Cell Signaling Technology社、カタログ番号:7076)である。検出はClarity Max Western ECL Substrate(Bio-Rad Laboratories社、カタログ番号:1705062)、及び、ChemiDoc Touchイメージングシステム(Bio-Rad Laboratories社製)を、それぞれの説明書に従って用いることにより行った。得られた結果を図14Aに示す。
<Experiment 10. Effect of SALL2 knockdown on self-renewal ability and tumorigenicity of RD cells>
In the same procedure as in Experiment 6, RD cells were infected with a lentiviral vector expressing shCDKAL1 and CDKAL1 was knocked down. That is, a medium containing Lenti-shCDKAL1 # 1, Lenti-shCDKAL1 # 2, or Lenti-shControl containing Lenti-shControl as a control was added to a medium in which about 500,000 RD cells were suspended in 4 mL of basal medium. 1 mL was added to make a total of 5 mL, and the mixture was seeded in a 60 mm cell culture dish. Four days after seeding the cells, cytolysates of RD cells were obtained and subjected to Western blotting according to the procedure described in Experiment 2. The antibodies used for detection were GAPDH antibody (mouse monoclonal) (proteintech, catalog number: 6004-1-Ig), SALL2 antibody (Bethyl Laboratories, catalog number: A303-208A), HRP-labeled anti-rabbit IgG antibody. (Cell Signaling Technology, Catalog No .: 7074) and HRP-labeled anti-mouse IgG antibody (Cell Signaling Technology, Catalog No .: 7076). Detection was performed by using the Clarity Max Western ECL Substrate (Bio-Rad Laboratories, Catalog No .: 1705062) and the ChemiDoc Touch Imaging System (Bio-Rad Laboratories) according to the respective instructions. The obtained results are shown in FIG. 14A.
 図14Aに示されるとおり、shCDKAL1を発現するレンチウイルスベクター(Lenti-shCDKAL1#1、又は、Lenti-shCDKAL1#2)を感染させたRD細胞においては、Lenti-shControlを感染させたRD細胞と比較して、SALL2の発現が低下していることが確認された。この結果は、CDKAL1のノックダウンによりSALL2の発現量がタンパク質レベルで減少していることを示している。なお、図14Bに示すとおり、CDKAL1をノックダウンしたRD細胞において、SALL2に対応するmRNAの発現量をRT-PCRにて確認したところ、mRNAの発現量のレベルにおいてはSALL2遺伝子の発現の低下は確認されなかった。すなわち、ウェスタンブロッティングで確認されたSALL2の発現量の低下は、CDKAL1のノックダウンによる翻訳抑制によるものであることが示唆された。 As shown in FIG. 14A, in RD cells infected with a lentiviral vector expressing shCDKAL1 (Lenti-shCDKAL1 # 1 or Lenti-shCDKAL1 # 2), compared with RD cells infected with Lenti-shControl. It was confirmed that the expression of SALL2 was decreased. This result indicates that knockdown of CDKAL1 reduces the expression level of SALL2 at the protein level. As shown in FIG. 14B, when the expression level of the mRNA corresponding to SALL2 was confirmed by RT-PCR in the RD cells in which CDKAL1 was knocked down, the decrease in the expression of the SALL2 gene was observed at the level of the mRNA expression level. Not confirmed. That is, it was suggested that the decrease in the expression level of SALL2 confirmed by Western blotting was due to the suppression of translation by knockdown of CDKAL1.
<実験11. SALL2のノックダウンによるRD細胞のスフェア形成能及びコロニー形成能への影響>
 SALL2に対するノックダウン実験を行うために、実験1に記載の手順に従って、SALL2を標的とするshRNAを発現するレンチウイルスベクターを作製した。なお、SALL2を標的とするshRNAをコードするDNA配列としては2種類のDNA配列を用いた。それぞれのDNA配列を配列表の配列番号9及び図28A又は配列表の配列番号13及び図28Bに示した。なお、図28A及び図28Bにおいて下線で示す塩基配列は、標的とするSALL2のmRNAに相補的なRNA配列をコードする領域である。以下、本明細書において、配列表の配列番号9及び図28Aの塩基配列がコードするshRNAを「shSALL2#1」、配列表の配列番号13及び図28Bの塩基配列がコードするshRNAを「shSALL2#2」という。shSALL2#1及びshSALL2#2のRNA配列は、それぞれ図28Aと配列番号10、及び、図28Bと配列番号14に示したとおりである。また、shSALL2#1又はshSALL2#2を発現するレンチウイルスベクターを、それぞれLenti-shSALL2#1及びLenti-shSALL2#2と呼ぶ。
<Experiment 11. Effect of knockdown of SALL2 on sphere formation ability and colonization ability of RD cells>
To perform a knockdown experiment on SALL2, a leasin viral vector expressing shRNA targeting SALL2 was prepared according to the procedure described in Experiment 1. Two types of DNA sequences were used as the DNA sequences encoding the shRNA targeting SALL2. The respective DNA sequences are shown in SEQ ID NO: 9 and FIG. 28A of the sequence listing or SEQ ID NO: 13 and FIG. 28B of the sequence listing. The base sequence underlined in FIGS. 28A and 28B is a region encoding an RNA sequence complementary to the target SALL2 mRNA. Hereinafter, in the present specification, the shRNA encoded by the nucleotide sequence of SEQ ID NO: 9 and FIG. 28A in the sequence listing is referred to as “shSALL2 # 1”, and the shRNA encoded by the nucleotide sequence of SEQ ID NO: 13 and FIG. 28B of the sequence listing is referred to as “shSALL2 #”. 2 ". The RNA sequences of shSALL2 # 1 and shSALL2 # 2 are as shown in FIGS. 28A and 10 and 28B and 14 respectively. Further, the lentiviral vectors expressing shSALL2 # 1 or shSALL2 # 2 are referred to as Lenti-shSALL2 # 1 and Lenti-shSALL2 # 2, respectively.
 次に、shCDKAL1を発現するレンチウイルスベクターに代えて、shSALL2を発現するレンチウイルスベクターを用いた以外は、実験6に記載の手順に従って、RD細胞に、shSALL2を発現するレンチウイルスベクターを感染させた。感染から4日後、shSALL2を発現するレンチウイルスベクターを感染させたRD細胞について、実験6に記載の手順に従って、当該RD細胞のスフェア形成能、及び、コロニー形成能を評価した。得られた結果を図14C、図14Dに示す。 Next, the RD cells were infected with the lentivirus vector expressing shSALL2 according to the procedure described in Experiment 6, except that the lentiviral vector expressing shSALL2 was used instead of the lentiviral vector expressing shCDKAL1. .. Four days after infection, RD cells infected with a lentiviral vector expressing shSALL2 were evaluated for sphere-forming ability and colonization ability of the RD cells according to the procedure described in Experiment 6. The obtained results are shown in FIGS. 14C and 14D.
 図14C、図14Dに示されるとおり、shSALL2を発現するレンチウイルスベクター(Lenti-shSALL2#1又はLenti-shSALL2#2)を感染させることによりSALL2をノックダウンしたRD細胞においては、スフェア形成能(自己複製能)(図14C)及びコロニー形成能(造腫瘍能)(図14D)の大幅な低下が確認された。この結果は、SALL2が横紋筋肉腫細胞であるRD細胞の自己複製能や造腫瘍能の維持に必須であることを示している。 As shown in FIGS. 14C and 14D, in RD cells in which SALL2 was knocked down by infection with a lentiviral vector expressing shSALL2 (Lenti-shSALL2 # 1 or Lenti-shSALL2 # 2), sphere-forming ability (self). A significant decrease in replication ability (Fig. 14C) and colony formation ability (tumor-forming ability) (Fig. 14D) was confirmed. This result indicates that SALL2 is essential for maintaining the self-renewal ability and tumorigenicity of RD cells, which are rhabdomyosarcoma cells.
<実験12. SALL2のノックダウンによる横紋筋肉腫細胞RMS-YMの腫瘍増大性への影響>
 次に、横紋筋肉腫細胞株RMS-YMを用いて、SALL2のノックダウンによる抗腫瘍効果への影響を検討した。なお、本実験は、shCDKAL1を発現するレンチウイルスベクターに代えて、shSALL2を発現するレンチウイルスベクターを用いた以外は実験8と同様の手順にて行った。得られた結果を図15に示す。
<Experiment 12. Effect of knockdown of SALL2 on tumor growth of rhabdomyosarcoma cells RMS-YM>
Next, using the rhabdomyosarcoma cell line RMS-YM, the effect of knockdown of SALL2 on the antitumor effect was investigated. This experiment was carried out in the same procedure as in Experiment 8 except that a lentiviral vector expressing shSALL2 was used instead of the lentiviral vector expressing shCDKAL1. The obtained results are shown in FIG.
 図15に示されるとおり、shSALL2を発現するレンチウイルスベクター(Lenti-shSALL2#1又はLenti-shSALL2#2)を感染させ、SALL2をノックダウンしたRMS-YM細胞を注入したマウスにおいては、Lenti-shControlを感染させたRMS-YM細胞を注入したマウスと比較して、著しい腫瘍増大性の抑制が観察された。この結果は、SALL2をノックダウンすることにより、横紋筋肉腫細胞であるRMS-YM細胞から形成される腫瘍の増殖能が著しく低下することを示しており、SALL2のノックダウンによりin vivoレベルにおいても顕著な抗腫瘍効果が得られることを示している。 As shown in FIG. 15, in mice infected with a lentiviral vector expressing shSALL2 (Lenti-shSALL2 # 1 or Lenti-shSALL2 # 2) and injected with RMS-YM cells in which SALL2 was knocked down, Lenti-shControl was used. Significant suppression of tumor growth was observed as compared to mice injected with RMS-YM cells infected with. This result indicates that knockdown of SALL2 significantly reduces the growth ability of tumors formed from RMS-YM cells, which are rhabdomyosarcoma cells, and knockdown of SALL2 significantly reduces the ability to grow tumors at the in vivo level. Also show that a remarkable antitumor effect can be obtained.
<実験13. 正常細胞の維持・増殖に対するCDKAL1の影響>
13.1 悪性腫瘍細胞モデル及び正常細胞モデルの作製
 まず、悪性腫瘍細胞モデル及び正常細胞モデルを作製した。悪性腫瘍細胞のモデルとしては、マウス筋芽細胞株C2C12(Riken BioResource Research Centerより入手、カタログ番号:RCB0987)をHRasの過剰発現及びp53のノックダウンによって悪性転化させたHRas/shp53-C2C12細胞を作製した。その手順は次に示すとおりである。
<Experiment 13. Effect of CDKAL1 on maintenance and proliferation of normal cells>
13.1 Preparation of malignant tumor cell model and normal cell model First, a malignant tumor cell model and a normal cell model were prepared. As a model of malignant tumor cells, HRas / shp53-C2C12 cells obtained by obtaining mouse myoblast line C2C12 (Riken BioResource Research Center, catalog number: RCB0987) by overexpression of HRas and knockdown of p53 were produced. did. The procedure is as follows.
 常法に従って、HRasをCre recombinaseの発現に応じて発現し、かつ、癌抑制遺伝子p53に対するshRNAを発現するよう構築されたプラスミド(pTomo-HRas/shp53)(ベクター骨格:pTomoベクター(Addgeneより入手、カタログ番号:26291))(図16A)を作製し、実験1の手順に準じて、当該プラスミドを組み込んだレンチウイルスベクターを作製の上、得られたレンチウイルスベクターをC2C12細胞に感染させた。感染から7日後に、さらに、Cre recombinaseを発現するアデノウイルス(Vector Biolabs社、カタログ番号:1045)を10 MOI(multiplicity of infection)の割合で感染させた。前記アデノウイルスを感染させた後、さらに7日間培養することで、HRas/shp53-C2C12を得た。一方、正常細胞のモデルとしては、以上の手順に準じて、C2C12細胞に、pTomo-HRas/shp53に代えて、コントロールベクター(pTomo-RFP-ires-GFP)を導入したControl-C2C12を得た。なお、以上の手順において細胞培養に用いた培地は、基本培地である。 A plasmid (pTomo-HRas / hp53) constructed to express HRas in response to the expression of Cre recombinase and to express shRNA against the cancer suppressor gene p53 according to a conventional method (vector skeleton: obtained from pTomo vector (Addgene), Catalog number: 26291)) (FIG. 16A) was prepared, a lentiviral vector incorporating the plasmid was prepared according to the procedure of Experiment 1, and the obtained lentiviral vector was infected with C2C12 cells. Seven days after the infection, an adenovirus expressing Cre recombinase (Vector Biolabs, catalog number: 1045) was further infected at a ratio of 10 MOI (multiplicity of infection). After infecting with the adenovirus, the cells were cultured for another 7 days to obtain HRas / skip53-C2C12. On the other hand, as a model of normal cells, Control-C2C12 into which a control vector (pTomo-RFP-ires-GFP) was introduced into C2C12 cells instead of pTomo-HRas / shp53 was obtained according to the above procedure. The medium used for cell culture in the above procedure is a basal medium.
13.2 造腫瘍能の評価
 HRas/shp53-C2C12細胞及びControl-C2C12細胞の造腫瘍能を評価した。詳細には、両細胞の細胞懸濁液100μL(細胞数10×10個に相当)を6週齢のメスのBALB/c-nu/nuマウスの皮下に注射により注入し、その後、注入部位における腫瘍の大きさの経時的な変化を実験8においてと同様に、Wuらの報告(Wu W.et al.,Clinical Cancer Research 2013 Oct 15;19(20):5699-5710)に従って評価した。得られた結果を図16Bに示す。
13.2 Evaluation of tumorigenicity The tumorigenicity of HRas / skip53-C2C12 cells and Control-C2C12 cells was evaluated. Specifically, 100 μL of a cell suspension of both cells (corresponding to 10 × 10 6 cells) is injected subcutaneously into a 6-week-old female BALB / c-nu / nu mouse, and then the injection site. Changes in tumor size over time were evaluated according to the report of Wu et al. (Wu W. et al., Clinical Cancer Research 2013 Oct 15; 19 (20): 5699-5710) as in Experiment 8. The obtained results are shown in FIG. 16B.
 図16Bに示されるとおり、Control-C2C12細胞は免疫不全マウスの皮下に接種しても腫瘍塊を形成しなかったのに対して、HRas/shp53-C2C12細胞は病理組織学的に横紋筋肉腫に酷似した腫瘍塊を形成した。これにより悪性腫瘍細胞モデル及び正常細胞モデルの樹立が確認された。 As shown in FIG. 16B, Control-C2C12 cells did not form a tumor mass when subcutaneously infused into immunocompromised mice, whereas HRas / shp53-C2C12 cells were histopathologically rhabdomyosarcoma. Formed a tumor mass very similar to. This confirmed the establishment of a malignant tumor cell model and a normal cell model.
13.3 CDKAL1の発現量の評価
 Control-C2C12細胞及びHRas/shp53-C2C12細胞におけるCDKAL1の発現量をウェスタンブロッティングで評価した。なお、ウェスタンブロッティングは実験2に示した手順に準じて行った。得られた結果を図16Cに示す。
13.3 Evaluation of the expression level of CDKAL1 The expression level of CDKAL1 in Control-C2C12 cells and HRas / skip53-C2C12 cells was evaluated by Western blotting. Western blotting was performed according to the procedure shown in Experiment 2. The obtained results are shown in FIG. 16C.
 図16Cに示されるとおり、Control-C2C12細胞と比較して、HRas/shp53-C2C12細胞においてはCDKAL1の発現量が増加していた。これにより、C2C12細胞は悪性転化の過程でCDKAL1の発現量が上昇することが判明した。 As shown in FIG. 16C, the expression level of CDKAL1 was increased in HRas / shop53-C2C12 cells as compared with Control-C2C12 cells. As a result, it was found that the expression level of CDKAL1 was increased in C2C12 cells in the process of malignant transformation.
13.4 自己複製能の評価
 次に、Control-C2C12細胞及びHRas/shp53-C2C12細胞の自己複製能の指標としてスフェア形成能を評価した。具体的には、JK2細胞に代えて、Control-C2C12細胞及びHRas/shp53-C2C12細胞を用い、レンチウイルスベクターを感染させなかったこと以外は、実験3の手順と同様にして、スフェア形成能を評価した。また、本実験においては、スフェア数の計測に加え、スフェア形成の様子を、倒立型リサーチ顕微鏡(型番「IX71」、オリンパス株式会社)を用いて撮影した。得られた結果を図16Dに示す。
13.4 Evaluation of self-renewal ability Next, the sphere forming ability was evaluated as an index of the self-renewal ability of Control-C2C12 cells and HRas / skip53-C2C12 cells. Specifically, Control-C2C12 cells and HRas / skip53-C2C12 cells were used instead of JK2 cells, and the sphere forming ability was determined in the same manner as in the procedure of Experiment 3 except that the lentiviral vector was not infected. evaluated. In this experiment, in addition to measuring the number of spheres, the state of sphere formation was photographed using an inverted research microscope (model number "IX71", Olympus Corporation). The obtained results are shown in FIG. 16D.
 図16Dに示されるとおり、Control-C2C12細胞はスフェアを形成しない、すなわち、自己複製能を有していないのに対して、HRas/shp53-C2C12細胞はスフェアを形成、すなわち、自己複製能を獲得していることが明らかとなった。 As shown in FIG. 16D, Control-C2C12 cells do not form spheres, i.e., do not have self-renewal ability, whereas HRas / skip53-C2C12 cells form spheres, i.e. acquire self-renewal ability. It became clear that they were doing it.
13.5 CDKAL1のノックダウンによるスフェア形成能への影響
 次に、HRas/shp53-C2C12細胞においてCDKAL1をノックダウンすることによるスフェア形成能の変化を観察することで、HRas/shp53-C2C12細胞の自己複製能へのCDKAL1の影響を検討した。具体的な実験手順は以下に示すとおりである。
13.5 Effect of knockdown of CDKAL1 on sphere-forming ability Next, by observing changes in sphere-forming ability by knocking down CDKAL1 in HRas / skip53-C2C12 cells, the self-self of HRas / shp53-C2C12 cells. The effect of CDKAL1 on replication ability was investigated. The specific experimental procedure is as shown below.
 まず、マウスのCDKAL1に特異的なshRNAを発現させるためのレンチウイルスベクターを実験1に記載した手順に準じて作製した。すなわち、CDKAL1を標的とするshRNAをコードするDNA配列として、配列番号1又は配列番号5に記載のDNA配列に代えて、マウスのCDKAL1に特異的な塩基配列である配列番号17又は配列番号18に記載のDNA配列を用いた以外は、実験1に示した手順と同様にして、レンチウイルスベクターを調製した。以下、配列番号17に記載のDNA配列を用いて作製したレンチウイルスベクターを「Lenti-mouse shCDKAL1#1」、配列番号17に記載のDNA配列を用いて作製したレンチウイルスベクターを「Lenti-mouse shCDKAL1#2」という。 First, a lentiviral vector for expressing shRNA specific to mouse CDKAL1 was prepared according to the procedure described in Experiment 1. That is, as the DNA sequence encoding the shRNA targeting CDKAL1, instead of the DNA sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 5, SEQ ID NO: 17 or SEQ ID NO: 18, which is a base sequence specific to mouse CDKAL1, is used. A lentivirus vector was prepared in the same procedure as shown in Experiment 1 except that the described DNA sequence was used. Hereinafter, the lenti-mouse shCDKAL1 # 1 lenti-mouse shCDKAL1 prepared using the DNA sequence set forth in SEQ ID NO: 17 and the lenti-mouse shCDKAL1 prepared using the DNA sequence set forth in SEQ ID NO: 17 are used. # 2 ".
 CDKAL1のノックダウン、及び、スフェア形成能の評価は実験3に記載した手順に準じて行った。すなわち、JK2細胞に代えてControl-C2C12細胞及びHRas/shp53-C2C12細胞を用い、また、レンチウイルスベクターとしてLenti-mouse shCDKAL1#1又はLenti-mouse shCDKAL1#2を用いたこと以外は、実験3に記載した手順と同様にして、細胞にレンチウイルスベクターを感染させ、CDKAL1をノックダウンした後、スフェア形成能を評価した。また、同様にしてレンチウイルスベクターを感染させ、CDKAL1をノックダウンした後、実験2に示した手順に準じて、ウェスタンブロッティングによりCDKAL1の発現量を評価した。得られた結果を図16Eに示す。 The knockdown of CDKAL1 and the evaluation of the sphere forming ability were performed according to the procedure described in Experiment 3. That is, except that Control-C2C12 cells and HRas / shp53-C2C12 cells were used instead of JK2 cells, and Lenti-mouse shCDKAL1 # 1 or Lenti-mouse shCDKAL1 # 2 was used as the lenti-mouse shCDKAL1 # 2, in Experiment 3. The cells were infected with a lentiviral vector, knocked down CDKAL1, and then evaluated for sphere-forming ability in the same procedure as described. Further, after infecting the lentiviral vector in the same manner and knocking down CDKAL1, the expression level of CDKAL1 was evaluated by Western blotting according to the procedure shown in Experiment 2. The obtained results are shown in FIG. 16E.
 図16Eに示されるとおり、Lenti-mouse shCDKAL1#1、Lenti-mouse shCDKAL1#2を感染させたHRas/shp53-C2C12細胞においてはCDKAL1の発現量の低下が観察されるとともに、スフェア形成数の顕著な低下が観察された。これにより、CDKAL1の発現を抑制することによりHRas/shp53-C2C12細胞の自己複製能は有意に抑制されることが示された。 As shown in FIG. 16E, a decrease in the expression level of CDKAL1 was observed in HRas / sheep53-C2C12 cells infected with Lenti-mouse shCDKAL1 # 1 and Lenti-mouse shCDKAL1 # 2, and the number of spheres formed was remarkable. A decrease was observed. This showed that the self-renewal ability of HRas / skip53-C2C12 cells was significantly suppressed by suppressing the expression of CDKAL1.
13.6 CDKAL1のノックダウンのコロニー形成能への影響
 次に、HRas/shp53-C2C12細胞においてCDKAL1をノックダウンすることによるコロニー形成能の変化を観察することで、HRas/shp53-C2C12細胞の造腫瘍能へのCDKAL1の影響を検討した。具体的な実験手順は以下に示すとおりである。
13.6 Effect of CDKAL1 knockdown on colonization ability Next, by observing changes in colonization ability by knocking down CDKAL1 in HRas / skip53-C2C12 cells, the production of HRas / shp53-C2C12 cells was observed. The effect of CDKAL1 on tumor capacity was investigated. The specific experimental procedure is as shown below.
 CDKAL1のノックダウン、及び、スフェア形成能の評価は実験6に記載した手順に準じて行った。すなわち、RD細胞に代えて、Control-C2C12細胞及びHRas/shp53-C2C12細胞を用い、また、レンチウイルスベクターとしてLenti-mouse shCDKAL1#1又はLenti-mouse shCDKAL1#2を用いたこと以外は、実験6に記載した手順と同様にて、Control-C2C12細胞及びHRas/shp53-C2C12細胞にレンチウイルスベクターを感染させ、コロニー成能を評価した。得られた結果を図16Fに示す。 The knockdown of CDKAL1 and the evaluation of the sphere forming ability were performed according to the procedure described in Experiment 6. That is, Experiment 6 except that Control-C2C12 cells and HRas / shp53-C2C12 cells were used instead of RD cells, and Lenti-mouse shCDKAL1 # 1 or Lenti-mouse shCDKAL1 # 2 was used as the lenti-mouse shCDKAL1 # 2 as a lenti-virus vector. Control-C2C12 cells and HRas / skip53-C2C12 cells were infected with a lentiviral vector in the same procedure as described in 1 and evaluated for colony viability. The obtained results are shown in FIG. 16F.
 図16Fに示されるとおり、CDKAL1のノックダウンによる細胞増殖・コロニー形成能への影響は、HRas/shp53-C2C12細胞では観察されたのに対し、Control-C2C12細胞では観察されなかった。このことは、正常細胞の維持・増殖にはCDKAL1は必須ではないのに対して、癌化した細胞の維持・増殖にはCDKAL1は必須であることを表している。すなわち、CDKAL1の発現の抑制や、CDKAL1が関与する翻訳の阻害、或いは、CDKAL1が関与して翻訳される遺伝子の発現の抑制は、正常細胞に与える影響が極めて小さい、低毒性且つ有効ながん治療手段であり得ることが示された。 As shown in FIG. 16F, the effect of knockdown of CDKAL1 on cell proliferation and colonization ability was observed in HRas / skip53-C2C12 cells, whereas it was not observed in Control-C2C12 cells. This indicates that CDKAL1 is not essential for the maintenance and proliferation of normal cells, whereas CDKAL1 is essential for the maintenance and proliferation of cancerous cells. That is, suppression of CDKAL1 expression, inhibition of translation involving CDKAL1, or suppression of expression of a gene translated with CDKAL1 involved has a very small effect on normal cells, and is a low-toxic and effective cancer. It has been shown that it can be a means of treatment.
<実験14. CDKAL1の各ドメインが翻訳開始因子複合体の安定化に与える影響>
 CDKAL1の一次構造は例えば図17Aに示すとおりであると考えられており、CDKAL1は、アミノ末端(N末端)側から順に、UPFドメイン、Radical SAMドメイン、TRAMドメイン、及びHydrophobicドメインを有している。本実験では、各ドメインを欠失乃至変異させた種々のCDKAL1の変異体を作製し、CDKAL1による翻訳開始因子複合体の安定化作用において、CDKAL1のどのドメインが重要であるかを検証した。
<Experiment 14. Effect of each domain of CDKAL1 on stabilization of translation initiation factor complex>
The primary structure of CDKAL1 is considered to be, for example, as shown in FIG. 17A, where CDKAL1 has an UPF domain, a Radical SAM domain, a TRAM domain, and a Hydrophobic domain in order from the amino-terminal (N-terminal) side. .. In this experiment, various CDKAL1 variants in which each domain was deleted or mutated were prepared, and which domain of CDKAL1 was important for the stabilizing action of the translation initiation factor complex by CDKAL1 was examined.
14.1 CDKAL1の変異体の作製
 作製した変異体を図17Bに示す。CDKAL1WTは野生型のCDKAL1を表し、配列番号19で表されるアミノ酸配列を有する。CDKAL16CAは、UPFドメイン及びRadical SAMドメインにおける6つのシステインがアラニンに置換された変異体であり、tRNA修飾酵素としての機能を欠失している。そのアミノ酸配列は配列番号21に記載されているとおりである。CDKAL1deltaC、CDKAL1deltaTC、CDKAL1UPF、CDKAL1deltaNは図17Bに示すとおりの欠失変異体であり、CDKAL1deltaCは、Hydrophobicドメインを含むC末端側のアミノ酸配列を、CDKAL1deltaTCはTRAMドメイン及びHydrophobicドメインを含むC末端側のアミノ酸配列を、CDKAL1UPFはRadical SAMドメイン、TRAMドメイン及びHydrophobicドメインを含むC末端側のアミノ酸配列を、CDKAL1deltaNはUPFドメインを含むN末端側のアミノ酸配列を、それぞれ欠失している。CDKAL1deltaC、CDKAL1deltaTC、CDKAL1UPF、及びCDKAL1deltaNのアミノ酸配列は、それぞれ配列番号23、25、27、及び29に記載されているとおりである。
14.1 Preparation of mutant of CDKAL1 The mutant produced is shown in FIG. 17B. CDKAL1 WT represents wild-type CDKAL1 and has the amino acid sequence represented by SEQ ID NO: 19. CDKAL1 6CA is a variant in which 6 cysteines in the UPF domain and Radical SAM domain are replaced with alanine, and lacks the function as a tRNA modifying enzyme. The amino acid sequence is as set forth in SEQ ID NO: 21. CDKAL1 deltaC , CDKAL1 deltaTC , CDKAL1 UPF , and CDKAL1 deltaN are deletion variants as shown in FIG. 17B. CDKAL1 UPF deletes the amino acid sequence on the C-terminal side including the Radical SAM domain, TRAM domain and Hydrophobic domain, and CDKAL1 deltaN deletes the amino acid sequence on the N-terminal side including the UPF domain. ing. The amino acid sequences of CDKAL1 deltaC , CDKAL1 deltaTC , CDKAL1 UPF , and CDKAL1 deltaN are as set forth in SEQ ID NOs: 23, 25, 27, and 29, respectively.
 CDKAL1WT及びCDKAL1の各変異体を発現するレンチウイルスベクターは、実験1に記載した手順に準じて調製した。すなわち、pLKO.1puro-shRNAプラスミド(10μg)の代わりに、各CDKAL1変異体をコードするDNA配列を挿入したpTomoプラスミド(10μg;ベクター骨格(pTomoベクター)はAddgeneより入手、カタログ番号:26291))をpsPAX2(7.5μg)とpMD2.G(2.5μg)とともに293FT細胞にトランスフェクションした以外は実験1に記載した手順と同様にして調製したものである。なお、CDKAL1WT、CDKAL16CA、CDKAL1deltaC、CDKAL1deltaTC、CDKAL1UPF、及びCDKAL1deltaNをコードするDNA配列は、それぞれ、配列番号20、22、24、26、28、及び30に記載されているとおりである。 Lentiviral vectors expressing each variant of CDKAL1 WT and CDKAL1 were prepared according to the procedure described in Experiment 1. That is, pLKO. Instead of 1 puro-SHRNA plasmid (10 μg), pTomo plasmid (10 μg; vector skeleton (pTomo vector) was obtained from Addgene, catalog number: 26291) in which the DNA sequence encoding each CDKAL1 mutant was inserted was obtained from psPAX2 (7. 5 μg) and pMD 2. It was prepared in the same manner as in Experiment 1 except that it was transfected into 293FT cells together with G (2.5 μg). The DNA sequences encoding CDKAL1 WT , CDKAL1 6CA , CDKAL1 deltaC , CDKAL1 deltaTC , CDKAL1 UPF , and CDKAL1 deltaN are as described in SEQ ID NOs: 20, 22, 24, 26, 28, and 30, respectively. be.
14.2 CDKAL1変異体の翻訳開始因子複合体安定化作用への影響
 以上のレンチウイルスベクターをRD細胞に感染させ、野生型のCDKAL1又はCDKAL1変異体を過剰発現させたRD細胞において、CDKAL1の発現をRNAiにより抑制した場合に、CDKAL1が関与する翻訳開始因子複合体の安定化作用の低下がレスキューされるか否かを評価することにより、CDKAL1の変異体が翻訳開始因子複合体の安定化に寄与するか否かを検証した。具体的な手順は以下に示すとおりである。
14.2 Effect of CDKAL1 variant on translation initiation factor complex stabilizing action CDKAL1 expression in RD cells in which the above lentivirus vector was infected with RD cells and overexpressed wild-type CDKAL1 or CDKAL1 variant. By evaluating whether or not the decrease in the stabilizing effect of the translation initiation factor complex involving CDKAL1 is rescued when the virus is suppressed by RNAi, the variant of CDKAL1 can stabilize the translation initiation factor complex. We verified whether it would contribute. The specific procedure is as shown below.
 まず、RD細胞にレンチウイルスベクターを感染させ、野生型のCDKAL1又はCDKAL1変異体を発現させた。すなわち、約500,000個(5×10個)のRD細胞を4mLの基本培地へ懸濁した細胞懸濁液に、野生型のCDKAL1、CDKAL1の変異体、又は、陰性対照として緑色蛍光たんぱく質(GFP)を発現するレンチウイルスベクターを含むレンチウイルスベクター含有培地1mLを添加し、合計で5mLとした。当該混合液を直径60mmの細胞培養皿に播種し、常法に従って、37℃、5%COの環境で3日間インキュベートした。これにより、RD細胞において、野生型のCDKAL1、CDKAL1の変異体、又はGFPを過剰発現させた。 First, RD cells were infected with a lentiviral vector to express wild-type CDKAL1 or CDKAL1 mutants. That is, wild-type CDKAL1, a variant of CDKAL1, or green fluorescent protein as a negative control in a cell suspension in which approximately 500,000 (5 × 10 5 ) RD cells were suspended in 4 mL of basal medium. 1 mL of a lentiviral vector-containing medium containing a lentiviral vector expressing (GFP) was added to make a total of 5 mL. The mixed solution was seeded in a cell culture dish having a diameter of 60 mm and incubated in an environment of 37 ° C. and 5% CO 2 for 3 days according to a conventional method. This overexpressed wild-type CDKAL1, a mutant of CDKAL1, or GFP in RD cells.
 次に、野生型のCDKAL1、CDKAL1の変異体、又はGFPを発現させたRD細胞に対して、実験1で作製したCDKAL1を標的とするshRNAを発現するレンチウイルスベクター(Lenti-shCDKAL1#1)を感染させた。すなわち、野生型のCDKAL1、CDKAL1の変異体、又は、GFPを発現するレンチウイルスベクターを感染させてから3日後に、Lenti-shCDKAL1#1、又は、陰性対照としてLenti-shControlを更に感染させた。具体的には、約500,000個のRD細胞を4mLの基本培地へ懸濁した細胞懸濁液に、Lenti-shCDKAL1#1又はLenti-shControlを含むレンチウイルスベクター含有培地1mLを添加し、合計で5mLとした。当該混合液を直径60mmの細胞培養皿に播種し、常法に従って、37℃、5%COの環境で3日間インキュベートした。3日間のインキュベートの後、実験2に示したのと同様の手順にて、m7GTPビーズによる沈降と、ウェスタンブロッティングを行った。得られた結果を図17Cに示す。 Next, a lenti-shCDKAL1 # 1 lentiviral vector (Lenti-shCDKAL1 # 1) expressing shRNA targeting CDKAL1 prepared in Experiment 1 was applied to RD cells expressing wild-type CDKAL1, a mutant of CDKAL1, or GFP. Infected. That is, three days after infection with the wild-type CDKAL1, a mutant of CDKAL1, or a lentiviral vector expressing GFP, Lenti-shCDKAL1 # 1 or Lenti-shControl as a negative control was further infected. Specifically, 1 mL of a lentiviral vector-containing medium containing Lenti-shCDKAL1 # 1 or Lenti-shControl was added to a cell suspension in which approximately 500,000 RD cells were suspended in 4 mL of basal medium, for a total of. The volume was 5 mL. The mixed solution was seeded in a cell culture dish having a diameter of 60 mm and incubated in an environment of 37 ° C. and 5% CO 2 for 3 days according to a conventional method. After incubation for 3 days, precipitation with m7GTP beads and Western blotting were performed in the same procedure as shown in Experiment 2. The obtained results are shown in FIG. 17C.
 図17Cに示されるとおり、GFPを過剰発現させたRD細胞においては、Lenti-shCDKAL1#1を導入した場合、m7GTPビーズ沈降により回収された分画において、eIF4G及びeIF4Aに対応するバンドは確認されなかった。これに対して、野生型のCDKAL1であるCDKAL1WTを過剰発現させたRD細胞においては、Lenti-shCDKAL1#1を導入した場合であっても、eIF4G及びeIF4Aに対応するバンドが確認され、また、CDKAL1WTに付加したMyc-tagに基づいて検出されたCDKAL1WTに対応するバンドも確認された。この結果は、CDKAL1WTとeIF4G及びeIF4Aがm7GTPビーズと共沈したこと、換言すれば、翻訳開始因子複合体の形成を示している。すなわち、GFPの過剰発現によっては、CDKAL1のRNAiによる翻訳開始因子複合体の安定化作用の抑制はレスキューされないが、CDKAL1WTの過剰発現によれば、翻訳開始因子複合体の安定化作用の抑制がレスキューされた。 As shown in FIG. 17C, in RD cells overexpressing GFP, when Lenti-shCDKAL1 # 1 was introduced, bands corresponding to eIF4G and eIF4A were not confirmed in the fraction recovered by m7GTP bead precipitation. rice field. On the other hand, in RD cells overexpressing CDKAL1 WT , which is a wild-type CDKAL1, bands corresponding to eIF4G and eIF4A were confirmed even when Lenti-shCDKAL1 # 1 was introduced. A band corresponding to the CDKAL1 WT detected based on the Myc-tag added to the CDKAL1 WT was also confirmed. This result indicates that CDKAL1 WT and eIF4G and eIF4A coprecipitated with the m7GTP beads, in other words, the formation of a translation initiation factor complex. That is, overexpression of GFP does not rescue the suppression of the stabilizing effect of the translation initiation factor complex by RNAi of CDKAL1, but overexpression of CDKAL1 WT suppresses the stabilizing effect of the translation initiation factor complex. Was rescued.
 一方、CDKAL1の変異体であるCDKAL1deltaC、CDKAL1deltaTC、及びCDKAL1UPFを発現させたRD細胞においては、CDKAL1WTを発現されたRD細胞においてと同様、Lenti-shCDKAL1#1を導入した場合であっても、m7GTPビーズ沈降により回収された分画において、eIF4G及びeIF4Aに対応するバンド、及び、CDKAL1変異体に付加されたMyc-tagに基づいて検出されたCDKAL1変異体に対応するバンドも確認された。この結果は、CDKAL1deltaC、CDKAL1deltaTC、及びCDKAL1UPFの過剰発現によれば翻訳開始因子複合体の安定化作用の抑制がレスキューされることを示している。すなわち、これらのCDKAL1の変異体は野生型のCDKAL1と同様に、翻訳開始因子複合体の安定化作用を奏することが示された。 On the other hand, in the RD cells expressing the CDKAL1 mutants CDKAL1 deltaC , CDKAL1 deltaTC , and CDKAL1 UPF , as in the case of the RD cells expressing CDKAL1 WT , Lenti-sh CDKAL1 # 1 was introduced. In addition, in the fraction recovered by m7GTP bead precipitation, a band corresponding to eIF4G and eIF4A and a band corresponding to the CDKAL1 mutant detected based on the Myc-tag added to the CDKAL1 mutant were also confirmed. .. This result indicates that overexpression of CDKAL1 deltaC , CDKAL1 deltaTC , and CDKAL1 UPF rescues suppression of the stabilizing effect of the translation initiation factor complex. That is, it was shown that these mutants of CDKAL1 exert a stabilizing effect on the translation initiation factor complex, similar to the wild-type CDKAL1.
 これに対して、驚くべきことに、CDKAL1の変異体でのうち、CDKAL1deltaNを発現させたRD細胞においては、Lenti-shCDKAL1#1を導入した場合、m7GTPビーズ沈降により回収された分画において、eIF4G及びeIF4Aに対応するバンドは確認されず、またCDKAL1deltaNに対応するバンドも確認されなかった。この結果は、CDKAL1deltaNの過剰発現によっては翻訳開始因子複合体の安定化作用の抑制がレスキューされないこと、すなわち、CDKAL1deltaNにおいては翻訳開始因子複合体の安定化作用が損なわれていることを示している。 On the other hand, surprisingly, among the mutants of CDKAL1, in the RD cells expressing CDKAL1 deltaN , when Lenti-shCDKAL1 # 1 was introduced, in the fraction recovered by m7GTP bead precipitation, No band corresponding to eIF4G and eIF4A was confirmed, and no band corresponding to CDKAL1 deltaN was confirmed. This result indicates that the suppression of the stabilizing effect of the translation initiation factor complex is not rescued by the overexpression of CDKAL1 deltaN , that is, the stabilizing effect of the translation initiation factor complex is impaired in CDKAL1 deltaN . ing.
14.3 CDKAL1変異体のスフェア形成能への影響
 次に、野生型のCDKAL1又はCDKAL1変異体を過剰発現させたRD細胞において、CDKAL1の発現をRNAiにより抑制した場合に、スフェア形成能(自己複製能)の低下がレスキューされるか否かを評価した。具体的には、実験14.2と同様の手順にて、野生型のCDKAL1、CDKAL1の変異体、又はGFPを過剰発現させたRD細胞に対して、Lenti-shCDKAL1#1又はLenti-shControlを感染させた後、実験6に示した手順に従ってスフェア数の計測を行った。また、実験10に示した手順に従ってウェスタンブロッティングにてSALL2のタンパク質の発現量を評価した。得られた結果を図17Dに示す。
14.3 Effect of CDKAL1 mutant on sphere-forming ability Next, in RD cells overexpressing wild-type CDKAL1 or CDKAL1 mutant, when CDKAL1 expression is suppressed by RNAi, sphere-forming ability (self-renewal) It was evaluated whether or not the decrease in ability) was rescued. Specifically, Lenti-shCDKAL1 # 1 or Lenti-shControl is infected with wild-type CDKAL1, a mutant of CDKAL1, or RD cells overexpressing GFP by the same procedure as in Experiment 14.2. After that, the number of spheres was measured according to the procedure shown in Experiment 6. In addition, the expression level of SALL2 protein was evaluated by Western blotting according to the procedure shown in Experiment 10. The obtained results are shown in FIG. 17D.
 図17Dに示すとおり、CDKAL1変異体としてCDKAL1deltaC、CDKAL1deltaTC、又はCDKAL1UPFを発現させたRD細胞においては、CDKAL1のRNAi後もスフェア形成能が維持されていたのに対し、CDKAL1deltaNを発現させたRD細胞においては、CDKAL1のRNAi後、スフェア形成能が顕著に低下した。この結果は、図17Cの結果と一致するものであり、CDKAL1の変異体の中で、CDKAL1deltaNのみがRD細胞の自己複製能の低下をレスキューできなかったことを意味している。また、CDKAL1が関与する翻訳機構により翻訳制御を受ける遺伝子であるSALL2のタンパク質の発現レベルの低下もまた、CDKAL1deltaNの発現によってはレスキューされなかった。以上の結果は、CDKAL1が関与する翻訳開始因子複合体の安定化作用には、CDKAL1のN末端のアミノ酸配列、具体的には、UPFドメインを含むCDKAL1のN末端から1~202番目のアミノ酸から構成される領域が重要であることを示すものである。 As shown in FIG. 17D, in RD cells expressing CDKAL1 deltaC , CDKAL1 deltaTC , or CDKAL1 UPF as CDKAL1 mutants, the sphere-forming ability was maintained even after RNAi of CDKAL1, whereas CDKAL1 deltaN was expressed. In RD cells, the ability to form spheres was significantly reduced after RNAi of CDKAL1. This result is consistent with the result in FIG. 17C, and means that among the mutants of CDKAL1, only CDKAL1 deltaN could not rescue the decrease in self-renewal ability of RD cells. In addition, the decrease in the expression level of the protein of SALL2, which is a gene whose translation is regulated by the translation mechanism involved in CDKAL1, was also not rescued by the expression of CDKAL1 deltaN . The above results show that the stabilizing action of the translation initiation factor complex involving CDKAL1 is from the amino acid sequence at the N-terminal of CDKAL1, specifically, the amino acids 1 to 202 from the N-terminal of CDKAL1 containing the UPF domain. It shows that the constituent areas are important.
<実験15. 翻訳後修飾の翻訳開始因子複合体安定化作用への影響>
 実験14により、UPFドメインを含むCDKAL1のN末端から1~202番目のアミノ酸から構成される領域が、翻訳開始因子複合体の安定化に重要であることが示された。そこで、本実験では、当該領域における翻訳後修飾が、CDKAL1による翻訳開始因子複合体安定化作用に影響を及ぼすのではないかという仮説のもと、この仮説の検証を行った。
<Experiment 15. Effect of post-translational modification on translation initiation factor complex stabilizing effect>
Experiment 14 showed that the region composed of the 1st to 202nd amino acids from the N-terminus of CDKAL1 containing the UPF domain is important for the stabilization of the translation initiation factor complex. Therefore, in this experiment, we tested this hypothesis based on the hypothesis that post-translational modification in the region may affect the effect of CDKAL1 on stabilizing the translation initiation factor complex.
15.1 CDKAL1変異体ライブラリの作製
 まず、CDKAL1のN末端から1~202番目のアミノ酸から構成される領域において、翻訳後修飾を受ける可能性のあるアミノ酸を、PhosphoSitePlusから得られるデータ、並びに、ELM(Eukaryotic Linear Motif)プログラムに基づいて探索した。その結果は図18Aに示すとおりである。
15. Preparation of CDKAL1 mutant library First, in the region composed of amino acids 1 to 202 from the N-terminal of CDKAL1, amino acids that may undergo post-translational modification are obtained from PhosphoSitePlus, and ELM. (Eukaryotic Liner Motif) Search based on the program. The results are shown in FIG. 18A.
 次に、図18Aに示された翻訳後修飾を受ける可能性のあるアミノ酸を変異させた変異体ライブラリを作製した。変異体は、常法に従って、部位特異的変異導入(Site-directed mutagenesis)により作製した。より具体的には、変異を導入したいアミノ酸について、変異後のDNA配列を中央に含むように設計したオリゴプライマー(フォワードプライマー及びリバースプライマー)を用意し、pTomo-CDKAL1WTを鋳型としてPCRを行った。PCRに使用した試薬は、KOD FX(東洋紡株式会社、カタログ番号:KFX-101)であり、製品に付属の添付文書に従って使用した。得られたPCR産物50μLに、1μLの制限酵素DpnIを添加し、37℃で1時間反応させ、鋳型DNAを分解した。得られたDpnI反応後のPCR産物のうち2μLを用いて、50μLの大腸菌(NEB Stable Competent E. coli、New England BioLabs社、カタログ番号:C3040H)をヒートショック法(42℃、30秒)により形質転換した。得られた形質転換後の大腸菌含有溶液に、300μLのSOC培地を添加し、37℃で30分間振盪培養した。得られた大腸菌含有溶液を、50μg/mLのアンピシリンを含有するLBプレートに播種し、37℃で16時間培養した。翌日、LBプレート上に形成したコロニーを採取して、50μg/mLのアンピシリンを含有するLB培地に混ぜ、さらに37℃16時間培養した。得られた培養液から、常法に従って、DNAプラスミドを精製し、DNAシーケンス解析にて変異が導入されていることを確認した。 Next, a mutant library in which amino acids that may undergo post-translational modification shown in FIG. 18A were mutated was prepared. Variants were prepared by site-directed mutagenesis according to a conventional method. More specifically, for the amino acid to which the mutation is to be introduced, oligo primers (forward primer and reverse primer) designed to contain the post-mutation DNA sequence in the center were prepared, and PCR was performed using pTomo-CDKAL1 WT as a template. .. The reagent used for PCR was KOD FX (Toyobo Co., Ltd., catalog number: KFX-101), and was used according to the package insert attached to the product. To 50 μL of the obtained PCR product, 1 μL of the restriction enzyme DpnI was added and reacted at 37 ° C. for 1 hour to decompose the template DNA. Using 2 μL of the obtained PCR product after the DpnI reaction, 50 μL of E. coli (NEB Table Compentent E. coli, New England BioLabs, Catalog No .: C3040H) was transformed by a heat shock method (42 ° C., 30 seconds). Converted. To the obtained E. coli-containing solution after transformation, 300 μL of SOC medium was added, and the mixture was shake-cultured at 37 ° C. for 30 minutes. The obtained E. coli-containing solution was seeded on an LB plate containing 50 μg / mL ampicillin and cultured at 37 ° C. for 16 hours. The next day, the colonies formed on the LB plate were collected, mixed with LB medium containing 50 μg / mL ampicillin, and further cultured at 37 ° C. for 16 hours. From the obtained culture medium, a DNA plasmid was purified according to a conventional method, and it was confirmed by DNA sequence analysis that the mutation was introduced.
15.2 CDKAL1変異体の翻訳開始因子複合体安定化作用への影響
 以上のようにして得られたCDKAL1の各変異体をコードするDNAプラスミドを用い、実験14に記載した手順に準じて、レンチウイルスベクターを作製し、得られたレンチウイルスベクターを用いてRD細胞にCDKAL1変異体を発現させ、更に、CDKAL1変異体を発現させたRD細胞に対してLenti-shCDKAL1#1を感染させ、CDKAL1をノックダウンした。その後、実験6に示した手順に従って、スフェア数の計測を行った。得られた結果を図18Bに示す。
15. Effect of CDKAL1 mutant on translation initiation factor complex stabilizing effect Using the DNA plasmid encoding each variant of CDKAL1 obtained as described above, a wrench according to the procedure described in Experiment 14. A viral vector was prepared, and the obtained lentiviral vector was used to express the CDKAL1 mutant in RD cells. Further, the RD cells expressing the CDKAL1 mutant were infected with Lenti-shCDKAL1 # 1 to obtain CDKAL1. Knocked down. Then, the number of spheres was measured according to the procedure shown in Experiment 6. The obtained results are shown in FIG. 18B.
 図18Bに示されるとおり、検討した変異体ライブラリのうちS18A/S22A、N107Q、S153Aの変異を有するCDKAL1の変異体は、RNAiによるCDKAL1の発現抑制による自己複製能の低下をレスキューすることができなかった。以上の結果は、S18A/S22A、N107Q、S153Aの変異を有するCDKAL1の変異体においては、翻訳開始因子複合体の安定化作用が損なわれていることを示している。 As shown in FIG. 18B, among the mutant libraries examined, the CDKAL1 mutant having the S18A / S22A, N107Q, and S153A mutations could not rescue the decrease in self-renewal ability due to the suppression of CDKAL1 expression by RNAi. rice field. The above results indicate that the stabilizing effect of the translation initiation factor complex is impaired in the CDKAL1 mutant having the S18A / S22A, N107Q, and S153A mutations.
15.3 翻訳後修飾阻害のCDKAL1が関与する翻訳機構への影響
 S18A/S22A、N107Q、S153Aは、それぞれGSK3(Glycogen synthase kinase 3)によるリン酸化、又は、N-結合型グリコシル化、ホスホリラーゼキナーゼによるリン酸化を受けると予測された配列であった。そこで、それぞれの阻害剤を用い、CDKAL1の翻訳後修飾を阻害することによって、CDKAL1が関与する翻訳機構が抑制されるか否かを検証するため、阻害剤を作用させた後のSALL2の発現を、mRNAの産生量及びタンパク質の発現量のレベルで評価した。
15.3 Effects of post-translational modification inhibition on the translation mechanism involving CDKAL1 S18A / S22A, N107Q, and S153A are phosphorylated by GSK3 (Glycogen synthase kinase 3), or by N-linked glycosylation and phosphorylase kinase, respectively. It was a sequence predicted to undergo phosphorylation. Therefore, in order to verify whether or not the translational mechanism in which CDKAL1 is involved is suppressed by inhibiting the post-translational modification of CDKAL1 using each inhibitor, the expression of SALL2 after the inhibitor is applied is expressed. , The level of mRNA production and protein expression.
 具体的な手順を次に示す。まず、RD細胞を、直径35mmの培養皿に約80%コンフルエントとなるように播種した。その翌日、N-結合型グリコシル化阻害剤としてtunicamycin(CAS番号:11089-65-9)、GSK3によるリン酸化の阻害剤としてBIO(6-bromoindirubin-30-oxime、CAS番号:667463-62-9)又はCHIR-98014(CAS番号:252935-94-7)、或いは、ホスホリラーゼキナーゼによるリン酸化の阻害剤としてK252a(CAS番号:97161-97-2)を5μMの濃度で含む培地に交換し、37℃、5%COの環境で24時間インキュベートした。その後、常法に従って、RNA及びタンパク質を抽出し、それぞれ定量的PCR用のcDNAの調製及びウェスタンブロッティングに供した。 The specific procedure is shown below. First, RD cells were seeded in a culture dish having a diameter of 35 mm so as to be about 80% confluent. The next day, tunicamycin (CAS number: 11089-65-9) as an N-linked glycosylation inhibitor, BIO (6-bromoindirubin-30-oxime, CAS number: 667463-62-9) as an inhibitor of phosphorylation by GSK3. ) Or CHIR-98014 (CAS number: 252935-94-7), or K252a (CAS number: 97161-97-2) as an inhibitor of phosphorylation by phosphorylase kinase was replaced with a medium containing a concentration of 5 μM, 37. Incubated for 24 hours in an environment of ° C. and 5% CO 2 . Then, RNA and protein were extracted according to a conventional method and subjected to cDNA preparation and Western blotting for quantitative PCR, respectively.
 なお、以上の手順において、RNAの抽出には、TRIzol Reagent(Thermo Fisher Scientific社、カタログ番号:15596018)を製品に付属の添付文書に従って用いた。抽出したRNAを、DNaseI(タカラバイオ株式会社、カタログ番号:2270A、添付文書に従って用いた)で処理し、これをもとにcDNAを調製した。cDNAの調製には、PrimeScript RT Master Mix(タカラバイオ株式会社、カタログ番号:RR036B)を製品に付属の添付文書に従って用いた。得られたcDNAを定量的PCRに供した。定量的PCRは、Luna Universal qPCR Master Mix(New England Biolabs社、カタログ番号:M3003E)及びRotor-Gene Q(QIAGEN社、カタログ番号:9001630)をそれぞれの製品に付属の添付文書に従って用いて行った。一方、ウェスタンブロッティングは、実験2に示した手順に準じて行った。得られた結果を図18Cに示す。 In the above procedure, TRIzol Reagent (Thermo Fisher Scientific, Catalog No .: 15596018) was used for RNA extraction according to the package insert attached to the product. The extracted RNA was treated with DNase I (Takara Bio Inc., catalog number: 2270A, used according to the package insert), and cDNA was prepared based on this. For the preparation of cDNA, PrimeScript RT Master Mix (Takara Bio Inc., catalog number: RR036B) was used according to the package insert attached to the product. The obtained cDNA was subjected to quantitative PCR. Quantitative PCR was performed using Luna Universal qPCR Master Mix (New England Biolabs, catalog number: M3003E) and Rotor-Gene Q (QIAGEN, catalog number: 9001630) according to the package insert attached to each product. On the other hand, Western blotting was performed according to the procedure shown in Experiment 2. The obtained results are shown in FIG. 18C.
 図18Cに示されるとおり、N-結合型グリコシル化阻害剤であるtunicamycin、並びに、GSK3阻害剤であるBIO又はCHIR-98014を作用させた場合には、SALL2のmRNAの産生量に変化は見られなかったものの、SALL2のタンパク質の発現レベルが顕著に低下した。この結果は、N-結合型グリコシル化阻害剤であるtunicamycin、並びに、GSK3によるリン酸化の阻害剤であるBIO又はCHIR-98014は、CDKAL1が関与する翻訳機構を阻害する作用を有することを示している。これに対して、ホスホリラーゼキナーゼによるリン酸化の阻害剤であるK252aは、SALL2のmRNAの産生量レベルにも、SALL2のタンパク質の発現レベルにも影響を与えなかった。 As shown in FIG. 18C, when tunicamycin, which is an N-linked glycosylation inhibitor, and BIO or CHIR-98014, which is a GSK3 inhibitor, are allowed to act, changes in the production of SALL2 mRNA are observed. Although not, the expression level of SALL2 protein was significantly reduced. This result indicates that tunicamycin, which is an N-linked glycosylation inhibitor, and BIO or CHIR-98014, which is an inhibitor of phosphorylation by GSK3, have an action of inhibiting the translation mechanism in which CDKAL1 is involved. There is. In contrast, K252a, an inhibitor of phosphorylase kinase phosphorylation, did not affect the level of SALL2 mRNA production or the level of SALL2 protein expression.
15.4 翻訳後修飾阻害の翻訳開始因子複合体安定化作用への影響
 以上のとおり、N-結合型グリコシル化阻害剤及びGSK3阻害剤で処理したRD細胞においては、CDKAL1が関与する翻訳の阻害が確認された。そこで、CDKAL1が関与する翻訳が阻害されるメカニズムを更に詳細に検討するため、N-結合型グリコシル化阻害剤であるtunicamycin、並びに、GSK3阻害剤であるBIO又はCHIR-98014について、CDKAL1が関与する翻訳開始因子複合体の形成に与える影響を検討した。
15.4 Effect of Post-Translational Modification Inhibition on Translation Initiation Factor Complex Stabilizing Action As described above, CDKAL1-related translational inhibition in RD cells treated with N-linked glycosylation inhibitors and GSK3 inhibitors. Was confirmed. Therefore, in order to investigate in more detail the mechanism by which translation involving CDKAL1 is inhibited, CDKAL1 is involved in the N-linked glycosylation inhibitor tunicamycin and the GSK3 inhibitor BIO or CHIR-98014. The effect on the formation of the translation initiation factor complex was investigated.
 具体的な実験手順は次のとおりである。RD細胞を、直径35mmの培養皿に代えて、100mmの培養皿に約80%コンフルエントとなるように播種したこと以外は、実験15.3に記載した手順と同様にして、RD細胞を培養し、各阻害剤で処理した。その後、実験2に記載した手順に準じて、タンパク質を回収、分画し、ウェスタンブロッティングに供した。得られた結果を図18Dに示す。 The specific experimental procedure is as follows. The RD cells were cultured in the same procedure as described in Experiment 15.3, except that the RD cells were seeded in a 100 mm culture dish so as to be about 80% confluent instead of the 35 mm diameter culture dish. , Treated with each inhibitor. Then, according to the procedure described in Experiment 2, the protein was recovered, fractionated, and subjected to Western blotting. The obtained results are shown in FIG. 18D.
 図18Dに示されるとおり、N-結合型グリコシル化阻害剤であるtunicamycin、並びに、GSK3阻害剤であるBIO又はCHIR-98014を作用させた場合、m7GTPビーズ共沈により回収された分画において、eIF4G、eIF4A、及び、CDKAL1に対応するバンドは観察されなかった。この結果から、N-結合型グリコシル化阻害剤及びGSK3阻害剤は、CDKAL1が関与する翻訳開始因子複合体の形成を著しく抑制することが示された。 As shown in FIG. 18D, when tunicamycin, which is an N-linked glycosylation inhibitor, and BIO or CHIR-98014, which is a GSK3 inhibitor, are allowed to act, eIF4G is used in the fraction recovered by coprecipitation of m7GTP beads. , EIF4A, and CDKAL1 corresponding bands were not observed. From this result, it was shown that the N-linked glycosylation inhibitor and the GSK3 inhibitor significantly suppress the formation of the translation initiation factor complex in which CDKAL1 is involved.
 以上から、CDKAL1のアミノ酸末端から1~202番目のアミノ酸配列の中でも、18番目のセリン、22番目のセリン、107番目のアルギン、及び153番目のセリンの翻訳後修飾が、CDKAL1による翻訳開始因子複合体の安定化に重要であることが示された。また、N-結合型グリコシル化阻害剤及びGSK3阻害剤によれば、上記の翻訳後修飾が阻害され、CDKAL1がその翻訳に関与する遺伝子の発現が効果的に抑制されることが示された。このようにCDKAL1が関与する翻訳機構を阻害する作用を奏するN-結合型グリコシル化阻害剤及びGSK3阻害剤は、横紋筋肉腫や悪性脳腫瘍を含む希少がんの治療に好適に用いられ得る。 From the above, among the amino acid sequences 1 to 202 from the amino acid terminal of CDKAL1, the post-translational modification of serine at position 18, serine at position 22, argin at position 107, and serine at position 153 is a translation initiation factor complex by CDKAL1. It has been shown to be important for body stabilization. In addition, N-linked glycosylation inhibitors and GSK3 inhibitors showed that the above post-translational modifications were inhibited and that the expression of genes involved in the translation of CDKAL1 was effectively suppressed. As described above, N-linked glycosylation inhibitors and GSK3 inhibitors having an action of inhibiting the translation mechanism involved in CDKAL1 can be suitably used for the treatment of rare cancers including rhabdomyosarcoma and malignant brain tumor.
<実験16:CDKAL1による翻訳機構の活性を測定するためのレポータープラスミド>
 以上の実験より、SALL2はCDKAL1が関与する翻訳機構によって翻訳される遺伝子であるという知見が得られたが、その一方で、CDKAL1をノックダウンした細胞においても、ハウスキーピング遺伝子であるGAPDH(グリセルアルデヒドリン酸デヒドロゲナーゼ)やACTB(β-アクチン)のタンパク質レベルでの発現の低下は観察されなかった(GAPDHの発現レベルがタンパク質レベルで変化していないことについては、図14に示すウェスタンブロッティングの分析結果を参照されたい。)。すなわち、CDKAL1が関与する翻訳機構は、SALL2をはじめとする特定の遺伝子の翻訳に必須の翻訳機構であると考えられる。また、一般的に、翻訳開始因子複合体の形成を必須とする翻訳において、翻訳対象となるmRNAの5’非翻訳領域(5’UTR:5’Untranslated Region)は、シトシン(C)及びグアニン(G)に富み、特徴的な二次構造をとることが知られている。そこで、本発明者らは、レポータータンパク質をコードする塩基配列と、その上流側、すなわち、5’末端側に、CDKAL1が関与する翻訳機構によって翻訳されるmRNAの5’UTRの塩基配列の、2つの塩基配列を有するRNA構築物を用いれば、当該RNA構築物の翻訳産物であるレポータータンパク質の産生量を測定することにより、CDKAL1が関与する翻訳機構の活性を容易に評価できるのではないかと考え、以下に示す実験にて検証した。
<Experiment 16: Reporter plasmid for measuring the activity of the translation mechanism by CDKAL1>
From the above experiments, it was found that SALL2 is a gene translated by the translation mechanism involved in CDKAL1, but on the other hand, GAPDH (glycer), which is a housekeeping gene, is also found in cells in which CDKAL1 is knocked down. No decrease in the expression of aldehyde phosphate dehydrogenase) or ACTB (β-actin) at the protein level was observed (the Western blotting analysis shown in FIG. 14 for the fact that the expression level of GAPDH did not change at the protein level. Please refer to the result.). That is, the translation mechanism in which CDKAL1 is involved is considered to be an essential translation mechanism for the translation of specific genes such as SALL2. In general, in translations that require the formation of a translation initiation factor complex, the 5'untranslated region (5'UTR: 5'Untranslated Region) of the mRNA to be translated is cytosine (C) and guanine (5'UTR: 5'Untranslated Region). It is known to be rich in G) and have a characteristic secondary structure. Therefore, we have described 2 of the base sequence encoding the reporter protein and the base sequence of 5'UTR of mRNA translated by the translation mechanism involving CDKAL1 on the upstream side, that is, the 5'end side. By using an RNA construct having one base sequence, it may be possible to easily evaluate the activity of the translation mechanism in which CDKAL1 is involved by measuring the production amount of the reporter protein which is the translation product of the RNA construct. It was verified by the experiment shown in.
 まず、レポータータンパク質としてホタルルシフェラーゼをコードする塩基配列と、その上流側、すなわち、5’末端側に、非翻訳領域として、SALL2のmRNAの5’UTRの塩基配列を有するRNA構築物(図19上段)を、細胞内で転写産物として産生するプラスミド(以下、このプラスミドを「SALL2-5’UTR-ホタルルシフェラーゼレポータープラスミド」と呼ぶ。)を、常法に従って作製した。なお、作製したSALL2-5’UTR-ホタルルシフェラーゼレポータープラスミドにおけるSALL2-5’UTR-ホタルルシフェラーゼをコードする塩基配列は、配列表の配列番号31に記載したとおりであり、その塩基配列中、SALL2の5’非翻訳領域に対応する塩基配列は、配列表の配列番号32に記載したとおりである。 First, an RNA construct having a base sequence encoding firefly luciferase as a reporter protein and a base sequence of 5'UTR of the plasmid of SALL2 as an untranslated region on the upstream side, that is, on the 5'end side (upper part of FIG. 19). A plasmid produced as a transcript in cells (hereinafter, this plasmid is referred to as "SALL2-5'UTR-firefly luciferase reporter plasmid") was prepared according to a conventional method. The base sequence encoding SALL2-5'UTR-firefly luciferase in the prepared SALL2-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 31 in the sequence listing, and SALL2 is included in the base sequence. The base sequence corresponding to the 5'untranslated region is as shown in SEQ ID NO: 32 of the sequence listing.
 また、コントロールとして、レポータータンパク質としてホタルルシフェラーゼをコードする塩基配列と、その上流側、すなわち、5’末端側に、非翻訳領域として、GAPDH又はβ-アクチン(ACTB)のmRNAの5’UTRの塩基配列を有するRNA構築物(図19中段、下段)を、細胞内で転写産物として産生するプラスミド(以下、これらのプラスミドを「GAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミド」又は「ACTB-5’UTR-ホタルルシフェラーゼレポータープラスミド」と呼ぶ。)を、常法に従って作製した。なお、作製したGAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミドにおけるGAPDH-5’UTR-ホタルルシフェラーゼをコードする塩基配列は、配列表の配列番号33に記載したとおりであり、その塩基配列中、GAPDHの5’非翻訳領域に対応する塩基配列は、配列表の配列番号34に記載したとおりである。一方、作製したACTB-5’UTR-ホタルルシフェラーゼレポータープラスミドにおけるACTB-5’UTR-ホタルルシフェラーゼをコードする塩基配列は、配列表の配列番号35に記載したとおりであり、その塩基配列中、ACTBの5’非翻訳領域に対応する塩基配列は、配列表の配列番号36に記載したとおりである。 In addition, as a control, a base sequence encoding firefly luciferase as a reporter protein and a base of 5'UTR of GAPDH or β-actin (ACTB) mRNA as an untranslated region on the upstream side, that is, on the 5'end side thereof. A plasmid that produces an RNA construct having a sequence (middle, bottom in FIG. 19) as a transcript in cells (hereinafter, these plasmids are referred to as "GAPDH-5'UTR-firefly luciferase reporter plasmid" or "ACTB-5'UTR-". A firefly luciferase reporter plasmid ") was prepared according to a conventional method. The base sequence encoding GAPDH-5'UTR-firefly luciferase in the prepared GAPDH-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 33 in the sequence listing. The base sequence corresponding to the 5'untranslated region is as shown in SEQ ID NO: 34 in the sequence listing. On the other hand, the base sequence encoding ACTB-5'UTR-firefly luciferase in the prepared ACTB-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 35 in the sequence listing, and in the base sequence, ACTB The base sequence corresponding to the 5'untranslated region is as shown in SEQ ID NO: 36 of the sequence listing.
 次に、各レポータープラスミドを導入した細胞におけるレポータータンパク質の発現が、その細胞におけるCDKAL1の発現レベルを反映するか否かを検証するために、shCDKAL1を発現するレンチウイルスベクターを感染させ、CDKAL1をノックダウンしたRD細胞、及び、shControlを発現するレンチウイルスベクターを感染させたRD細胞に対して、上記プラスミドをトランスフェクションした。 Next, in order to verify whether the expression of the reporter protein in the cells into which each reporter plasmid was introduced reflects the expression level of CDKAL1 in the cells, the lentiviral vector expressing shCDKAL1 was infected and the CDKAL1 was knocked. The above plasmid was transfected into downed RD cells and RD cells infected with a lentiviral vector expressing shControl.
 より詳細には、実験6と同様の手順にて、shCDKAL1を発現するレンチウイルスベクターを感染させ、4日間インキュベートを行ったRD細胞を、常法に従って、トリプシン処理により単離し、単離したRD細胞を基本培地に懸濁した上で、35mm培養皿に播種し、約80%コンフルエントの細胞密度となるように培養した。そこへ、2μgのSALL2-5’UTR-ホタルルシフェラーゼレポータープラスミド、GAPDH-5’UTR-firefly luciferaseレポータープラスミド、又は、ACTB-5’UTR-firefly luciferaseレポータープラスミド、及び、細胞へのプラスミドの導入効率の指標となる内部標準として、2μgのpGL4.74[hRluc/TK]vectorウミシイタケルシフェラーゼレポータープラスミド(Promega社、カタログ番号:E6921)をトランスフェクションした。なお、トランスフェクションは、リポフェクション試薬としてTransIT-LT1 Reagent(タカラバイオ株式会社、カタログ番号:MIR2300)を用いて行った。各試薬の混合比や手順は同製品に付属の説明書に従った。 More specifically, in the same procedure as in Experiment 6, RD cells infected with a lentiviral vector expressing shCDKAL1 and incubated for 4 days were isolated by trypsin treatment according to a conventional method, and isolated RD cells. Was suspended in a basal medium, seeded in a 35 mm culture dish, and cultured to a cell density of about 80% confluent. There, 2 μg of SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH-5'UTR-firefly luciferase reporter plasmid, or ACTB-5'UTR-firefly luciferase reporter plasmid, and efficiency of introducing the plasmid into cells. As an index internal standard, 2 μg of pGL4.74 [hRluc / TK] vector Luciferase reporter plasmid (Promega, Catalog No .: E6921) was transfected. The transfection was performed using TransIT-LT1 Reagent (Takara Bio Inc., catalog number: MIR2300) as a lipofection reagent. The mixing ratio and procedure of each reagent followed the instructions attached to the product.
 トランスフェクションから24時間後に、常法に従って、細胞をトリプシンで処理することにより単離し、基本培地に懸濁して細胞懸濁液を調製した後、当該細胞懸濁液を、1ウェル当たりの細胞数が10,000個となるように96ウェルプレートへ播種した。播種から24時間後に、各被験対象化合物が添加された細胞におけるルシフェラーゼ活性を測定した。なお、ルシフェラーゼ活性の測定は、Dual-Glo Luciferase Assay System(Promega社、カタログ番号:E2940)、及び、ルミノメーター(製品名「MicroLumat Plus LB 96V」、BERTHOLD社)を、それぞれの添付文書に従って用いることにより行った。得られた結果を図20に示す。なお、図20においては、各レポータープラスミドを導入した細胞におけるルシフェラーゼ活性を、内部標準であるウミシイタケルシフェラーゼのルシフェラーゼ活性で除した値で示した。 Twenty-four hours after transfection, cells are isolated by treatment with trypsin according to a conventional method, suspended in basal medium to prepare a cell suspension, and then the cell suspension is subjected to the number of cells per well. The seeds were sown on a 96-well plate so that the number of cells was 10,000. Twenty-four hours after seeding, the luciferase activity in the cells to which each test subject compound was added was measured. For the measurement of luciferase activity, use Dual-Glo Luciferase Assay System (Promega, catalog number: E2940) and Luminometer (product name "MicroLumat Plus LB 96V", BERTHOLD) according to the respective package inserts. Was done by. The obtained results are shown in FIG. In addition, in FIG. 20, the luciferase activity in the cell into which each reporter plasmid was introduced is shown by the value obtained by dividing the luciferase activity of the sea urchin shiitake mushroom, which is an internal standard, by the luciferase activity.
 図20に示されるとおり、SALL2-5’UTR-ホタルルシフェラーゼレポータープラスミドを導入したRD細胞において、CDKAL1の発現をノックダウンすると、当該細胞におけるホタルルシフェラーゼの発現量を反映する値であるルシフェラーゼ活性が低下することが確認された。これに対して、SALL2の5’UTRの塩基配列に代えて、GAPDH又はACTBの5’UTRの塩基配列を有するmRNAを産生する、GAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミド、又は、ACTB-5’UTR-ホタルルシフェラーゼレポータープラスミドを導入したRD細胞においては、CDKAL1の発現のノックダウンによる、ルシフェラーゼ活性の変化は観察されなかった。以上の結果は、SALL2-5’UTR-ホタルルシフェラーゼレポータープラスミドを導入した細胞におけるルシフェラーゼ活性は、CDKAL1が関与する翻訳機構の活性を反映することを示している。 As shown in FIG. 20, knockdown of CDKAL1 expression in RD cells into which the SALL2-5'UTR-firefly luciferase reporter plasmid has been introduced reduces the luciferase activity, which is a value that reflects the expression level of firefly luciferase in the cells. It was confirmed that In contrast, the GAPDH-5'UTR-firefly luciferase reporter plasmid or ACTB-5, which produces mRNA having the 5'UTR base sequence of GAPDH or ACTB instead of the 5'UTR base sequence of SALL2. In RD cells into which the'UTR-firefly luciferase reporter plasmid was introduced, no change in luciferase activity was observed due to knockdown of CDKAL1 expression. These results indicate that the luciferase activity in cells into which the SALL2-5'UTR-firefly luciferase reporter plasmid has been introduced reflects the activity of the translational mechanism in which CDKAL1 is involved.
<実験17:CDKAL1による翻訳機構を阻害する物質のスクリーニング>
 60mm培養皿に80%コンフルエントの細胞密度となるようにRD細胞を培養した。なお、細胞培養に用いた培地は基本培地である。そこへ、4μgのSALL2-5’UTR-ホタルルシフェラーゼレポータープラスミド及び2μgのpGL4.74[hRluc/TK]vectorウミシイタケルシフェラーゼレポータープラスミド(Promega社、カタログ番号:E6921)をトランスフェクションした。なお、トランスフェクションは、リポフェクション試薬としてTransIT-LT1 Reagent(タカラバイオ株式会社、カタログ番号:MIR2300)を用いて行った。各試薬の混合比や手順は同製品に付属の説明書に従った。トランスフェクションから24時間後に、常法に従って、細胞をトリプシンで処理することにより単離し、10,000個/100μLの細胞濃度となるように基本培地に懸濁して細胞懸濁液を調製した。その後、当該細胞懸濁液を、1ウェル当たり100μLずつ、すなわち、1ウェル当たりの細胞数が10,000個となるように96ウェルプレートへ播種した。播種の24時間後に、スクリーニング対象となる複数の被験対象化合物の各々をDMSOに溶解し、被験物質の濃度が20μMとなるように基本培地で希釈したものを、被験物質の最終濃度が10μMとなるように各ウェルに100μLずつ添加した。また、コントロールとして、対照物質であるDMSO0.1μLと基本培地99.9μLの混合液計100μLを、細胞培養培地に添加した。被験対象化合物を添加した24時間後に、各被験対象化合物を添加した細胞、又はコントロールとして対照物質であるDMSOを添加した細胞におけるルシフェラーゼ活性を測定した。なお、ルシフェラーゼ活性の測定は、Dual-Glo Luciferase Assay System(Promega社、カタログ番号:E2940)、及び、ルミノメーター(製品名「MicroLumat Plus LB 96V」、BERTHOLD社)を、それぞれの添付文書に従って用いることにより行った。
<Experiment 17: Screening for substances that inhibit the translation mechanism by CDKAL1>
RD cells were cultured in a 60 mm culture dish to a cell density of 80% confluent. The medium used for cell culture is the basic medium. There, 4 μg of SALL2-5'UTR-firefly luciferase reporter plasmid and 2 μg of pGL4.74 [hRluc / TK] vector Umi Shiitake mushroom luciferase reporter plasmid (Promega, Catalog No .: E6921) were transfected. The transfection was performed using TransIT-LT1 Reagent (Takara Bio Inc., catalog number: MIR2300) as a lipofection reagent. The mixing ratio and procedure of each reagent followed the instructions attached to the product. Twenty-four hours after transfection, cells were isolated by treatment with trypsin according to conventional methods and suspended in basal medium to a cell concentration of 10,000 cells / 100 μL to prepare a cell suspension. Then, the cell suspension was seeded in a 96-well plate so that 100 μL per well, that is, the number of cells per well was 10,000. Twenty-four hours after seeding, each of the plurality of test target compounds to be screened was dissolved in DMSO and diluted with a basal medium so that the concentration of the test substance was 20 μM, and the final concentration of the test substance was 10 μM. 100 μL was added to each well as described above. As a control, a total of 100 μL of a mixed solution of 0.1 μL of DMSO as a control substance and 99.9 μL of basal medium was added to the cell culture medium. Twenty-four hours after the addition of the test target compound, the luciferase activity was measured in the cells to which each test target compound was added, or to the cells to which the control substance DMSO was added as a control. For the measurement of luciferase activity, use the Dual-Glo Luciferase Assay System (Promega, catalog number: E2940) and luminometer (product name "MicroLumat Plus LB 96V", BERTHOLD) according to the respective package inserts. Was done by.
 DMSOを添加した細胞におけるルシフェラーゼ活性を基準(ルシフェラーゼ活性100%)として、各被験対象化合物を10μMの濃度で添加した細胞におけるルシフェラーゼ活性の低下の程度を評価した。その結果を図21に示す。スクリーニングの結果、スクリーニング対象とした計50個の被験対象物質のうち、Go6983を添加した細胞において、最も強いルシフェラーゼ活性の低下が確認された(図21A、矢印はGo6983に対応)。また、tunicamycinを添加した細胞においても、約30%のルシフェラーゼ活性の低下が確認された(図21B)。以上のとおり、スクリーニングの結果、Go6983およびtunicamycinがヒット化合物として選別された。 Using the luciferase activity in cells to which DMSO was added as a reference (luciferase activity 100%), the degree of decrease in luciferase activity in cells to which each test target compound was added at a concentration of 10 μM was evaluated. The result is shown in FIG. As a result of the screening, it was confirmed that the strongest decrease in luciferase activity was confirmed in the cells to which Go6983 was added among the total of 50 test target substances targeted for screening (FIG. 21A, arrow corresponds to Go6983). It was also confirmed that the luciferase activity was reduced by about 30% in the cells to which tunicamycin was added (FIG. 21B). As described above, as a result of screening, Go6983 and tunicamycin were selected as hit compounds.
<実験18:ヒット化合物によるCDKAL1の翻訳抑制効果>
 次に、実験17のスクリーニング実験にて得られたヒット化合物であるGo6983およびtunicamycinが、CDKAL1が関与する翻訳機構を抑制するか否かを検討した。すなわち、Go6983又はtunicamycinを、それぞれ5μM及び10μM含有する基本培地で、RD細胞を24時間培養した後、実験2に記載の手順にしたがって、RD細胞の細胞溶解液を得て、ウェスタンブロッティングに供した。その結果を図14に示す。
<Experiment 18: Translation suppression effect of CDKAL1 by hit compound>
Next, it was examined whether or not the hit compounds Go6983 and tunicamycin obtained in the screening experiment of Experiment 17 suppress the translation mechanism in which CDKAL1 is involved. That is, after RD cells were cultured for 24 hours in a basal medium containing Go6983 or tunicamycin, respectively, for 24 hours, a cell lysate of RD cells was obtained and subjected to Western blotting according to the procedure described in Experiment 2. .. The result is shown in FIG.
 図22に示されるとおり、Go6983又はtunicamycinを含有する培地で培養したRD細胞においては、対照物質であるDMSOを含有する培地で培養したRD細胞と比較して、SALL2に対応するバンドの強度の明らかな低下が観察された。この結果は、Go6983又はtunicamycinと接触した細胞においてSALL2の発現量がタンパク質レベルで減少していることを示している。一方、同じ細胞について、CDKAL1に対応するバンドの強度は、対照物質であるDMSOを含有する培地で培養したRD細胞と比較しても変化がなかった。この結果は、Go6983又はtunicamycinは、CDKAL1の発現量を変化させることなく、SALL2の発現量を低下させること、すなわち、CDKAL1が関与する翻訳機構を阻害することにより、SALL2の発現量を低下させることを示している。 As shown in FIG. 22, in the RD cells cultured in the medium containing Go6983 or tunicamycin, the intensity of the band corresponding to SALL2 was clarified as compared with the RD cells cultured in the medium containing the control substance DMSO. A decrease was observed. This result indicates that the expression level of SALL2 is reduced at the protein level in cells in contact with Go6983 or tunicamycin. On the other hand, for the same cells, the intensity of the band corresponding to CDKAL1 did not change even when compared with RD cells cultured in a medium containing DMSO as a control substance. The result is that Go6983 or tunicamycin reduces the expression level of SALL2 without changing the expression level of CDKAL1, that is, the expression level of SALL2 is reduced by inhibiting the translation mechanism in which CDKAL1 is involved. Is shown.
 また、図22の結果から、tunicamycinは、CDKAL1が関与する翻訳に対して、Go6983より強い抑制作用を発揮することが示唆された。そこで、上述したスクリーニング方法によって得られたヒット化合物であるtunicamycinがRD細胞の造腫瘍能に与える影響を評価した。すなわち、0μM、0.1μM、0.5μM、2μM、又は5μMのtunicamycinを含む基本培地に懸濁したRD細胞を、1ウェルあたり約5,000個の細胞数となるように、6ウェルの細胞培養プレートに計3ウェル分播種した。なお、各ウェル当たりの基本培地の量は3mLである。播種の2週間後に常法に従って、固定・染色を行い、細胞培養プレートの表面上に残存するコロニーの数を目視にて計測した。図23に、典型的な実験結果の外観として0μM又は5μMのtunicamycinを含む基本培地で2週間培養した後のRD細胞によるコロニー形成の様子を撮影した写真(図23A)と、RD細胞を各濃度のtunicamycinを含む基本培地で2週間培養した後に形成されたコロニー数の測定結果(図23B)を示す。 In addition, the results in FIG. 22 suggest that tunicamycin exerts a stronger inhibitory effect on translations involving CDKAL1 than Go6983. Therefore, the effect of tunicamycin, which is a hit compound obtained by the above-mentioned screening method, on the tumorigenicity of RD cells was evaluated. That is, 6-well cells with RD cells suspended in a basal medium containing 0 μM, 0.1 μM, 0.5 μM, 2 μM, or 5 μM tunicamycin so that the number of cells per well is about 5,000. A total of 3 wells were sown on the culture plate. The amount of basal medium per well is 3 mL. Two weeks after sowing, fixation and staining were performed according to a conventional method, and the number of colonies remaining on the surface of the cell culture plate was visually measured. FIG. 23 shows a photograph (FIG. 23A) of colony formation by RD cells after culturing in a basal medium containing 0 μM or 5 μM tunicamycin for 2 weeks as a typical appearance of experimental results, and RD cells having each concentration. The measurement result (FIG. 23B) of the number of colonies formed after culturing in the basal medium containing tunicamycin for 2 weeks is shown.
 図23に示されるとおり、tunicamycinを0.1μM以上含む培地で培養したRD細胞は、観察可能なコロニーを一切形成しなかった。この結果は、tunicamycinがRD細胞の造腫瘍能を抑制する効果を奏することを示している。 As shown in FIG. 23, RD cells cultured in a medium containing 0.1 μM or more of tunicamycin did not form any observable colonies. This result indicates that tunicamycin has an effect of suppressing the tumorigenicity of RD cells.
 以上の結果より、SALL2-5’UTR-ホタルルシフェラーゼレポータープラスミドを用いたスクリーニング方法により、CDKAL1が関与する翻訳を抑制する物質を選別することができること、及び、当該スクリーニング方法は、CDKAL1が関与する翻訳を抑制することにより、がん幹細胞の造腫瘍能を抑制する物質をスクリーニングする方法として好適に用いられることが示された。 From the above results, it is possible to select a substance that suppresses translation involving CDKAL1 by a screening method using a SALL2-5'UTR-firefly luciferase reporter plasmid, and the screening method is a translation involving CDKAL1. It has been shown that it is suitably used as a method for screening a substance that suppresses the tumorigenicity of cancer stem cells.
<実験19. CDKAL1が関与する翻訳機構を阻害する物質のスクリーニング-その2->
 FDA承認の2203の化合物からなる化合物ライブラリ(MedChemExpress社より購入)を用いて、CDKAL1が関与する翻訳を抑制する物質の更なるスクリーニングを行った。なお、スクリーニングの手順は、スクリーニング対象となる化合物を変更した以外は、実験17に示したと同様である。
<Experiment 19. Screening for substances that inhibit the translational mechanism involved in CDKAL1-Part 2->
A compound library of 2203 compounds approved by the FDA (purchased from MedChemExpress) was used to further screen for translation-inhibiting substances involving CDKAL1. The screening procedure is the same as that shown in Experiment 17, except that the compound to be screened is changed.
 スクリーニングの結果、CDKAL1のRNAiと同等以上の阻害作用を有する化合物として、101の化合物が同定された。同定された101の化合物の名称と、それぞれの化合物が示したCDKAL1の相対活性値を図24及び図25に示す。なお、図24及び図25においては、各化合物で処理した場合のCDKAL1の活性値を、陰性対照であるDMSOで処置した場合の活性値を100%とした場合の相対活性値(%)として示した。図24及び図25に示されるとおり、スクリーニングにより得られた101の化合物は、tunicamycinやGo6983と同等又はそれ以上にCDKAL1の相対活性値を低下させた。この結果は、上記101の化合物が、CDKAL1が関与する翻訳を抑制することを示している。すなわち、これらの化合物はCDKAL1が関与する翻訳を阻害する物質として、更には、がん幹細胞の造腫瘍能を抑制する物質として好適に使用され得る。このように本発明の一実施態様に係るスクリーニング方法によれば、CDKAL1が関与する翻訳を阻害する物質を効率的、且つ、容易に得ることができる。 As a result of the screening, 101 compounds were identified as compounds having an inhibitory effect equal to or higher than that of CDKAL1 RNAi. The names of the identified 101 compounds and the relative activity values of CDKAL1 shown by each compound are shown in FIGS. 24 and 25. In addition, in FIG. 24 and FIG. 25, the activity value of CDKAL1 when treated with each compound is shown as a relative activity value (%) when the activity value when treated with DMSO which is a negative control is 100%. rice field. As shown in FIGS. 24 and 25, 101 compounds obtained by screening reduced the relative activity value of CDKAL1 to the same level as or higher than that of tunicamycin and Go6983. This result indicates that the above 101 compounds suppress the translation involving CDKAL1. That is, these compounds can be suitably used as a substance that inhibits translation involving CDKAL1 and further as a substance that suppresses the tumorigenicity of cancer stem cells. As described above, according to the screening method according to one embodiment of the present invention, a substance that inhibits translation in which CDKAL1 is involved can be efficiently and easily obtained.
 また、上記101の化合物を、その化合物が従来用いられてきた疾患に基づいて分類(なお、複数の疾患に用いられる化合物の場合、主要な適用対象とされる疾患(図24、図25の「分類」の欄において、左側に記載の疾患)に基づいて分類)したところ、その内訳は、循環器疾患関連薬16種、内分泌疾患関連薬5種、感染症関連薬32種、炎症・免疫疾患関連薬11種、代謝疾患関連薬8種、神経疾患関連薬24種、その他5種であり、驚くべきことに、従来癌治療に用いられていなかったFDA承認化合物の中から、CDKAL1が関与する翻訳を阻害する活性を有する化合物が非常に多く見出された。この結果は、CDKAL1が関与する翻訳機構が全く新しい創薬標的であることを強く物語っており、CDKAL1が関与する翻訳を強く阻害するこれらの化合物は、がん治療のための剤の有効成分として好適に用いられ得ることが示された。 In addition, the above 101 compounds are classified based on the diseases for which the compounds have been conventionally used (in the case of compounds used for a plurality of diseases, the diseases that are the main target of application (FIGS. 24 and 25). In the "Classification" column, the diseases were classified based on the diseases listed on the left side), and the breakdown was 16 types of cardiovascular disease-related drugs, 5 types of endocrine disease-related drugs, 32 types of infectious disease-related drugs, and inflammation / immune diseases. There are 11 related drugs, 8 metabolic disease-related drugs, 24 neurological disease-related drugs, and 5 other drugs. Surprisingly, CDKAL1 is involved among FDA-approved compounds that have not been used for cancer treatment in the past. A large number of compounds have been found that have activity that inhibits translation. This result strongly indicates that the translation mechanism involving CDKAL1 is a completely new drug discovery target, and these compounds that strongly inhibit the translation involving CDKAL1 are active ingredients of agents for the treatment of cancer. It has been shown that it can be suitably used.
<実験20. CDKAL1により翻訳制御を受けるmRNAの5’UTRに共通する塩基配列の同定>
 CDKAL1によって翻訳レベルで発現制御されている遺伝子群のmRNAの5’UTRに共通する塩基配列を同定するため、実験9にて得られた、全RNA及びポリソーム分画後の重画分のRNAについて、RNAシーケンシングを実施した。具体的には、CDKAL1の発現抑制によって翻訳抑制を受ける遺伝子群(図26A、台形内)に共通する配列を、MEME(Multiple Em for Motif Elicitation)プログラムを用いて解析した。その結果、CDKAL1の発現抑制によって翻訳抑制を受ける遺伝子群に共通する配列として、図26Aに示すGES(Guanine-enriched sequence)及びCES(Cytosine-enriched sequence)が同定された。同定されたGES及びCESのコア領域を抽出するために、さらにMEMEプログラムで解析したところ、GES及びCESのコア領域として、それぞれ、図26Bに示すminimal GES及びminimal CESが同定された。
<Experiment 20. Identification of the base sequence common to 5'UTR of mRNA whose translation is regulated by CDKAL1>
In order to identify the base sequence common to 5'UTR of the mRNA of the gene group whose expression is regulated at the translation level by CDKAL1, the total RNA and the RNA of the heavy fraction after the polysome fraction obtained in Experiment 9 are used. , RNA sequencing was performed. Specifically, a sequence common to a group of genes (FIG. 26A, in a trapezoid) whose translation is suppressed by suppressing the expression of CDKAL1 was analyzed using a MEME (Multiple Em for Motif Elicitation) program. As a result, GES (Guanine-enriched sequence) and CES (Cytosine-enriched sequence) shown in FIG. 26A were identified as sequences common to the gene clusters whose translation was suppressed by suppressing the expression of CDKAL1. Further analysis by the MEME program to extract the identified GES and CES core regions identified the minimal GES and minimal CES shown in FIG. 26B, respectively, as the core regions of GES and CES.
 同定されたminimal GES(以下、「mGES」ということもある。)は図26Bに示すとおりであり、GGCGGCGGCGGCGGCを基本配列とし、1番目のGはAでもよく、2番目のGはCでもよく、3番目のCはAでもよく、4番目のGはAでもよく、5番目のGはCでもよく、6番目のCはAでもよく、7番目のGはAまたはCでもよく、8番目のGはAでもよく、9番目のCはUまたはAでもよく、10番目のGはAまたはUでもよく、11番目のGはCでもよく、12番目のCはAでもよく、13番目のGはUまたはCまたはAでもよく、14番目のGはUまたはAまたはCでもよく、15番目のCはGまたはAまたはUでもよい。 The identified minimal GES (hereinafter, also referred to as "mGES") is as shown in FIG. 26B, with GGCGGGCGGGCGCGCGCC as the basic sequence, the first G may be A, the second G may be C, and the second G may be C. The third C may be A, the fourth G may be A, the fifth G may be C, the sixth C may be A, the seventh G may be A or C, and the eighth G. G may be A, 9th C may be U or A, 10th G may be A or U, 11th G may be C, 12th C may be A, 13th G. May be U or C or A, the 14th G may be U or A or C, and the 15th C may be G or A or U.
 一方、同定されたminimal CES(以下、「mCES」ということもある。)は図26Bに示すとおりであり、GCCGCCGCCGCCGCCを基本配列とし、1番目のGはUまたはCでもよく、2番目のCはGでもよく、3番目のCはUでもよく、4番目のGはUまたはCでもよく、5番目のCはUでもよく、6番目のCはAまたはUでもよく、7番目のGはUでもよく、8番目のCはUでもよく、9番目のCはGでもよく、10番目のGはUでもよく、11番目のCはGでもよく、12番目のCはUでもよく、13番目のGはUでもよく、14番目のCはUでもよく、15番目のCはGでもよい。 On the other hand, the identified minimal CES (hereinafter, also referred to as "mCES") is as shown in FIG. 26B, with GCCGCCGCCGCCGCC as the basic sequence, the first G may be U or C, and the second C may be. The third C may be U, the fourth G may be U or C, the fifth C may be U, the sixth C may be A or U, and the seventh G may be U. The 8th C may be U, the 9th C may be G, the 10th G may be U, the 11th C may be G, the 12th C may be U, and the 13th. G may be U, 14th C may be U, and 15th C may be G.
 次に、mGES又はmCESを5’UTRに含むmRNAがCDKAL1に翻訳制御を受けるか否かを検証した。具体的には、レポータータンパク質としてホタルルシフェラーゼをコードする塩基配列と、その上流側の5’UTR、すなわち、5’末端側の非翻訳領域に、4つのmGES(4×mGES)を含む塩基配列、又は4つのmCES(4×mCES)を含む塩基配列を有するmRNAを、細胞内で転写産物として産生するプラスミド(以下、このプラスミドを、それぞれ「4×mGES-5’UTR-ホタルルシフェラーゼレポータープラスミド」及び「4×mCES-5’UTR-ホタルルシフェラーゼレポータープラスミド」という。)を常法に従って作製した。 Next, it was verified whether or not mRNA containing mGES or mCES in 5'UTR is subject to translation control by CDKAL1. Specifically, a base sequence encoding firefly luciferase as a reporter protein, and a base sequence containing four mGES (4 × mGES) in the 5'UTR on the upstream side, that is, the untranslated region on the 5'end side, Alternatively, a plasmid that produces an mRNA having a base sequence containing 4 mCES (4 × mCES) as a transcript in cells (hereinafter, this plasmid is referred to as “4 × mGES-5'UTR-firefly luciferase reporter plasmid” and "4 x mCES-5'UTR-firefly luciferase reporter plasmid") was prepared according to a conventional method.
 なお、4×mGES-5’UTR-ホタルルシフェラーゼレポータープラスミドにおける4×mGES-5’UTR-ホタルルシフェラーゼをコードする塩基配列は、配列表の配列番号37に記載したとおりであり、その塩基配列中、4×mGESを含む5’非翻訳領域に対応する塩基配列は、配列表の配列番号38に記載したとおりである。なお、4×mGESを含む5’非翻訳領域に対応する塩基配列中、mGESに対応する塩基配列は、図29Aに示したとおりである。 The base sequence encoding 4 × mGES-5'UTR-firefly luciferase in the 4 × mGES-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 37 in the sequence listing. The base sequence corresponding to the 5'untranslated region containing 4 × mGES is as shown in SEQ ID NO: 38 in the sequence listing. In the base sequence corresponding to the 5'untranslated region containing 4 × mGES, the base sequence corresponding to mGES is as shown in FIG. 29A.
 一方、4×mCES-5’UTR-ホタルルシフェラーゼレポータープラスミドにおける4×mCES-5’UTR-ホタルルシフェラーゼをコードする塩基配列は、配列表の配列番号39に記載したとおりであり、その塩基配列中、4×mCESを含む5’非翻訳領域に対応する塩基配列は、配列表の配列番号40に記載したとおりである。なお、4×mCESを含む5’非翻訳領域に対応する塩基配列中、mCESに対応する塩基配列は、図29Bに示したとおりである。 On the other hand, the base sequence encoding 4 × mCES-5'UTR-firefly luciferase in the 4 × mCES-5'UTR-firefly luciferase reporter plasmid is as shown in SEQ ID NO: 39 in the sequence listing. The base sequence corresponding to the 5'untranslated region containing 4 × mCES is as shown in SEQ ID NO: 40 in the sequence listing. The base sequence corresponding to mCES in the base sequence corresponding to the 5'untranslated region containing 4 × mCES is as shown in FIG. 29B.
 次に、各レポータープラスミドを導入した細胞におけるレポータータンパク質の発現が、その細胞におけるCDKAL1の発現レベルを反映するか否かを検証するため、CDKAL1を標的とするsiRNA(siCDKAL1)をトランスフェクションすることによりCDKAL1の発現を抑制したRD細胞、又は、陰性対照として、いずれの遺伝子をも標的としないsiRNA(siControl)をトランスフェクションしたRD細胞に対して、各レポータープラスミドをトランスフェクションし、各細胞におけるレポータータンパク質の発現量を評価した。なお、CDKAL1を標的とするsiRNA(siCDKAL1)の塩基配列は、配列表の配列番号41及び42に記載のとおりである。一方、陰性対照としては、Silence Select Negative Control No.1 siRNA(Thermo Fisher Scientific社、カタログ番号:4390843)(以下、このsiRNAを「siControl」という。)を用いた。 Next, in order to verify whether the expression of the reporter protein in the cells into which each reporter plasmid was introduced reflects the expression level of CDKAL1 in the cells, by transfecting siRNA (siCDKAL1) targeting CDKAL1. Each reporter plasmid is transfected into RD cells in which the expression of CDKAL1 is suppressed, or RD cells transfected with siRNA (siControl) that does not target any gene as a negative control, and the reporter protein in each cell. The expression level of was evaluated. The base sequence of siRNA (siCDKAL1) targeting CDKAL1 is as described in SEQ ID NOs: 41 and 42 in the sequence listing. On the other hand, as a negative control, Silence Select Negative Control No. 1 siRNA (Thermo Fisher Scientific, Catalog No .: 4390843) (hereinafter, this siRNA is referred to as "siControl") was used.
 具体的な実験手順は次のとおりである。まず、siCDKAL1又はsiControlをRD細胞に導入した。すなわち、RD細胞を約80%コンフルエントとなるように35mm培養皿へと播種した。その翌日、60pmоlのsiRNA(siCDKAL1又はsiControl)と、10μLのLipofectamineTM RNAiMAX Transfection Regeant(Thermo Fisher Scientific社)と500μLのOpti-MEMを混和して、30分間静置することによりsiRNAのトランスフェクション用の混合液を調製し、得られた混合液を培地中へ滴下し、その後、37℃、5%COの環境で48時間インキュベートした。その後、常法に従って、トリプシン処理によって細胞を単離し、単離した細胞を基本培地に懸濁した上で、1ウェル当たりの細胞数が1×10個(10,000個)となるように96ウェルプレートへと播種し、24時間インキュベートした。 The specific experimental procedure is as follows. First, siCDKAL1 or siControl was introduced into RD cells. That is, RD cells were seeded into a 35 mm culture dish so as to be about 80% confluent. The next day, mix 60 pmоl of siRNA (siCDKAL1 or siControl) with 10 μL of Lipofectamine TM RNAiMAX Transfection Regent (Thermo Fisher Scientific) and 500 μL of Opti-MEM. A mixture was prepared, the resulting mixture was added dropwise to the medium, and then incubated in an environment of 37 ° C. and 5% CO 2 for 48 hours. Then, according to a conventional method, cells are isolated by trypsin treatment, the isolated cells are suspended in a basal medium, and the number of cells per well is 1 × 10 4 (10,000 cells). Seeded into 96-well plates and incubated for 24 hours.
 その後、各レポータープラスミドを次の手順にてRD細胞に導入した。すなわち、各ウェル当たり0.1μgの投与量でSALL2-5’UTR-ホタルルシフェラーゼレポータープラスミド、GAPDH-5’UTR-ホタルルシフェラーゼレポータープラスミド、ACTB-5’UTR-ホタルルシフェラーゼレポータープラスミド、4×mGES-5’UTR-ホタルルシフェラーゼレポータープラスミド、又は、4×mCES-5’UTR-ホタルルシフェラーゼレポータープラスミド、及び、細胞へのプラスミドの導入効率の指標となる内部標準として、0.1μgの投与量でpGL.4.74[hRLuc/TK]vectorウミシイタケルシフェラーゼレポータープラスミド(Promega社、カタログ番号:E6921)をトランスフェクションした。なお、プラスミドのトランスフェクションは、市販のリポフェクション試薬(TransIT-LT1 Regeant、タカラバイオ株式会社、カタログ番号:MIR2300)を用い、同製品に付属の説明書に記載の手順に従って行った。プラスミドのトランスフェクションから24時間後に、各細胞におけるルシフェラーゼ活性を測定した。ルシフェラーゼ活性の測定は、Dual-Glo Luciferase Assay System(Promega社、カタログ番号:E2940)及びルミノメーター(製品名「MicroLumat Plus LB96V」、BERTHOLD社)を用い、それぞれの製品に付属の説明書に記載の手順に従って行った。得られた結果を図26Cに示す。 After that, each reporter plasmid was introduced into RD cells by the following procedure. That is, SALL2-5'UTR-firefly luciferase reporter plasmid, GAPDH-5'UTR-firefly luciferase reporter plasmid, ACTB-5'UTR-firefly luciferase reporter plasmid, 4 × mGES-5 at a dose of 0.1 μg per well. As an internal standard for the efficiency of introduction of the'UTR-firefly luciferase reporter plasmid or the 4 × mCES-5'UTR-firefly luciferase reporter plasmid into cells, pGL. 4.74 [hRLuc / TK] vector sea shiitake luciferase reporter plasmid (Promega, Catalog No .: E6921) was transfected. The plasmid was transfected using a commercially available lipofection reagent (TransIT-LT1 Reagent, Takara Bio Inc., catalog number: MIR2300) according to the procedure described in the instruction manual attached to the product. Luciferase activity in each cell was measured 24 hours after plasmid transfection. The measurement of luciferase activity is described in the manual attached to each product using a Dual-Glo Luciferase Assay System (Promega, catalog number: E2940) and a luminometer (product name "MicroLumat Plus LB96V", BERTHOLD). I followed the procedure. The obtained results are shown in FIG. 26C.
 図26Cに示されるとおり、GAPDHやACTBのmRNAの5’UTRの塩基配列を有するルシフェラーゼレポータの発現は、CDKAL1のノックダウンによる影響を受けないのに対して、mGES又はmCESを含む5’UTRの塩基配列を有するルシフェラーゼレポータの発現は、CDKAL1のノックダウンにより顕著に減少した。また、mGES又はmCESを含む5’UTRの塩基配列を有するルシフェラーゼレポータを導入した細胞において、CDKAL1のノックダウンによるルシフェラーゼレポータの発現の低下の程度は、陽性対照であるSALL2のmRNAの5’UTRの塩基配列を有するルシフェラーゼレポータの発現の低下と同程度、もしくは、それ以上であった。この結果は、mGES又はmCESを5’UTRに有するmRNAは、CDKAL1が関与する翻訳機構により翻訳制御を受けることを示している。なお、5’UTRに含まれるmGES又はmCESの数を4個から、2個、6個、8個と変えた場合であってもCDKAL1のノックダウンによるルシフェラーゼレポータの発現の低下が観察された。 As shown in FIG. 26C, the expression of the luciferase reporter having the 5'UTR base sequence of GAPDH and ACTB mRNA is not affected by the knockdown of CDKAL1, whereas the expression of 5'UTR containing mGES or mCES is unaffected. The expression of the luciferase reporter having a base sequence was significantly reduced by knockdown of CDKAL1. In addition, in cells into which a luciferase reporter having a 5'UTR base sequence containing mGES or mCES was introduced, the degree of decrease in the expression of the luciferase reporter by knockdown of CDKAL1 was the degree of decrease in the expression of the luciferase reporter in the 5'UTR of SALL2 mRNA, which is a positive control. The expression was as low as or higher than that of the luciferase reporter having a base sequence. This result indicates that mRNA having mGES or mCES in 5'UTR is subject to translational control by the translation mechanism in which CDKAL1 is involved. Even when the number of mGES or mCES contained in the 5'UTR was changed from 4, 2, 6, or 8, a decrease in the expression of the luciferase reporter due to knockdown of CDKAL1 was observed.
[配列表の説明]
配列番号1:ヒトのCDKAL1を標的とする第1のshRNA(shCDKAL1#1)をコードするDNA配列
配列番号2:shCDKAL1#1のRNA配列
配列番号3:shCDKAL1#1から生じ得るsiRNAのセンス鎖のRNA配列
配列番号4:shCDKAL1#1から生じ得るsiRNAのアンチセンス鎖のRNA配列
配列番号5:ヒトのCDKAL1を標的とする第2のshRNA(shCDKAL1#2)をコードするDNA配列
配列番号6:shCDKAL1#2のRNA配列
配列番号7:shCDKAL1#2から生じ得るsiRNAのセンス鎖のRNA配列
配列番号8:shCDKAL1#2から生じ得るsiRNAのアンチセンス鎖のRNA配列
配列番号9:ヒトのSALL2を標的とする第1のshRNA(shSALL2#1)をコードするDNA配列
配列番号10:shSALL2#1のRNA配列
配列番号11:shSALL2#1から生じ得るsiRNAのセンス鎖のRNA配列
配列番号12:shSALL2#1から生じ得るsiRNAのアンチセンス鎖のRNA配列
配列番号13:ヒトのSALL2を標的とする第2のshRNA(shSALL2#2)をコードするDNA配列
配列番号14:shSALL2#2のRNA配列
配列番号15:shSALL2#2から生じ得るsiRNAのセンス鎖のRNA配列
配列番号16:shSALL2#2から生じ得るsiRNAのアンチセンス鎖のRNA配列
配列番号17:マウスのCDKAL1を標的とする第1のshRNA(mouse shCDKAL1#1)をコードするDNA配列
配列番号18:マウスのCDKAL1を標的とする第2のshRNA(mouse shCDKAL1#2)をコードするDNA配列
配列番号19:ヒトのCDKAL1(CDKAL1WT)のアミノ酸配列
配列番号20:ヒトのCDKAL1(CDKAL1WT)をコードするDNA配列
配列番号21:ヒトのCDKAL1の変異体(CDKAL16CA)のアミノ酸配列
配列番号22:ヒトのCDKAL1の変異体(CDKAL16CA)をコードするDNA配列
配列番号23:ヒトのCDKAL1の変異体(CDKAL1deltaC)のアミノ酸配列
配列番号24:ヒトのCDKAL1の変異体(CDKAL1deltaC)をコードするDNA配列
配列番号25:ヒトのCDKAL1の変異体(CDKAL1deltaTC)のアミノ酸配列
配列番号26:ヒトのCDKAL1の変異体(CDKAL1deltaTC)をコードするDNA配列
配列番号27:ヒトのCDKAL1の変異体(CDKAL1UPF)のアミノ酸配列
配列番号28:ヒトのCDKAL1の変異体(CDKAL1UPF)をコードするDNA配列
配列番号29:ヒトのCDKAL1の変異体(CDKAL1deltaN)のアミノ酸配列
配列番号30:ヒトのCDKAL1の変異体(CDKAL1deltaN)をコードするDNA配列
配列番号31:SALL2-5’UTR-ホタルルシフェラーゼをコードするDNA配列
配列番号32:SALL2-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、ヒトSALL2遺伝子のmRNAの5’非翻訳領域に対応するDNA配列
配列番号33:GAPDH-5’UTR-ホタルルシフェラーゼをコードするDNA配列
配列番号34:GAPDH-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、ヒトGAPDH遺伝子のmRNAの5’非翻訳領域に対応するDNA配列
配列番号35:ACTB-5’UTR-ホタルルシフェラーゼをコードするDNA配列
配列番号36:ACTB-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、ヒトACTB遺伝子のmRNAの5’非翻訳領域に対応するDNA配列
配列番号37:4×mGES-5’UTR-ホタルルシフェラーゼをコードするDNA配列
配列番号38:4×mGES-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、転写産物であるmRNAの5’非翻訳領域のRNA配列に対応するDNA配列
配列番号39:4×mCES-5’UTR-ホタルルシフェラーゼをコードするDNA配列
配列番号40:4×mCES-5’UTR-ホタルルシフェラーゼレポーターをコードするDNA配列において、転写産物であるmRNAの5’非翻訳領域のRNA配列に対応するDNA配列
配列番号41:ヒトのCDKAL1を標的とするsiRNA(siCDKAL1)のセンス鎖のRNA配列。
配列番号42:ヒトのCDKAL1を標的とするsiRNA(siCDKAL1)のアンチセンス鎖のRNA配列。
[Description of sequence listing]
SEQ ID NO: 1: DNA sequence encoding the first shRNA targeting human CDKAL1 (shCDKAL1 # 1) SEQ ID NO: 2: RNA of shCDKAL1 # 1 SEQ ID NO: 3: of the sense strand of siRNA that can arise from shCDKAL1 # 1. RNA SEQ ID NO: 4: RNA sequence number 5 of the antisense strand of siRNA that can result from shCDKAL1 # 1: DNA sequence number 6: shCDKAL1 encoding a second shRNA (shCDKAL1 # 2) that targets human CDKAL1. RNA sequence of # 2 SEQ ID NO: 7: RNA sequence of siRNA sense strand that can result from shCDKAL1 # 2: RNA sequence number 8: RNA sequence of siRNA antisense strand that can result from shCDKAL1 # 2: Targeting human SALL2 RNA sequence of the DNA sequence encoding the first shRNA (shSALL2 # 1) 10: RNA sequence of shSALL2 # 1 11: RNA sequence of the sense strand of siRNA that can be derived from shSALL2 # 1 From shSALL2 # 1 RNA sequence of antisense strand of possible siRNA SEQ ID NO: 13: DNA sequence encoding a second shRNA (shSALL2 # 2) targeting human SALL2 SEQ ID NO: 14: RNA sequence of shSALL2 # 2 SEQ ID NO: 15: shSALL2 RNA sequence number 16 of the sense strand of siRNA that can result from # 2: RNA sequence number 17 of the antisense strand of siRNA that can arise from shSALL2 # 2: first shRNA (mouse shCDKAL1 # 1) that targets CDKAL1 in mice. ) Encoding DNA sequence No. 18: DNA sequence encoding a second shRNA (mouse shCDKAL1 # 2) targeting mouse CDKAL1 SEQ ID NO: 19: Human CDKAL1 (CDKAL1 WT ) amino acid sequence No. 20: RNA sequence number 21 encoding human CDKAL1 (CDKAL1 WT ): amino acid sequence number 22 of human CDKAL1 variant ( CDKAL1 6CA ): DNA sequence number encoding human CDKAL1 variant ( CDKAL1 6CA ) 23: Amino acid sequence of human CDKAL1 variant ( CDKAL1 deltaC ) SEQ ID NO: 24: DNA sequence encoding human CDKAL1 variant ( CDKAL1 deltaC ) SEQ ID NO: 25: Human CDKAL1 variant (CD) KAL1 deltaTC ) amino acid sequence SEQ ID NO: 26: DNA sequence encoding a human CDKAL1 variant ( CDKAL1 deltaTC ) SEQ ID NO: 27: Human CDKAL1 variant (CDKAL1 UPF ) amino acid sequence SEQ ID NO: 28: Human CDKAL1 DNA sequence encoding the variant (CDKAL1 UPF ) SEQ ID NO: 29: Amino acid sequence of the human CDKAL1 variant ( CDKAL1 deltaN ) SEQ ID NO: 30: DNA sequence encoding the human CDKAL1 variant ( CDKAL1 deltaN ) 31 : DNA sequence encoding SALL2-5'UTR-firefly luciferase SEQ ID NO: 32: DNA sequence corresponding to the 5'untranslated region of the mRNA of the human SALL2 gene in the DNA sequence encoding SALL2-5'UTR-firefly luciferase reporter. SEQ ID NO: 33: DNA sequence encoding GAPDH-5'UTR-firefly luciferase SEQ ID NO: 34: Corresponding to the 5'untranslated region of the mRNA of the human GAPDH gene in the DNA sequence encoding the GAPDH-5'UTR-firefly luciferase reporter. DNA sequence to be sequenced SEQ ID NO: 35: DNA sequence encoding ACTB-5'UTR-firefly luciferase SEQ ID NO: 36: 5'untranslated human ACTB gene mRNA in the DNA sequence encoding ACTB-5'UTR-firefly luciferase reporter. DNA sequence corresponding to the region SEQ ID NO: 37: 4 x mGES-5'UTR-Firefly Luciferase in the DNA sequence encoding the reporter. DNA sequence corresponding to the RNA sequence of the 5'untranslated region of an mRNA SEQ ID NO: 39: 4 × mCES-5'UTR-DNA sequence encoding the firefly luciferase SEQ ID NO: 40: 4 × mCES-5'UTR-firefly luciferase reporter DNA sequence corresponding to the RNA sequence of the 5'untranslated region of the transcript mRNA in the DNA sequence encoding SEQ ID NO: 41: RNA sequence of the sense strand of siRNA (siCDKAL1) targeting human CDKAL1.
SEQ ID NO: 42: RNA sequence of the antisense strand of siRNA (siCDKAL1) targeting human CDKAL1.
 本発明の一側面に係る剤によれば、がん細胞、又は、がん幹細胞において特異的な翻訳機構を標的とするがん治療のための新たな剤が提供される。また、本発明の他の一側面に係るスクリーニング方法によれば、がん細胞、又は、がん幹細胞において特異的な翻訳機構を阻害する物質を効率的にスクリーニングすることができる。これらの剤、又は、スクリーニング方法で得られる物質は、がん治療剤としての応用が期待でき、本発明の産業上の利用可能性は大きいものである。 According to the agent according to one aspect of the present invention, a new agent for cancer treatment targeting a specific translation mechanism in cancer cells or cancer stem cells is provided. Further, according to the screening method according to another aspect of the present invention, it is possible to efficiently screen a substance that inhibits a specific translation mechanism in cancer cells or cancer stem cells. These agents or substances obtained by the screening method can be expected to be applied as therapeutic agents for cancer, and the industrial applicability of the present invention is great.

Claims (18)

  1.  CDKAL1がその翻訳に関与する遺伝子の発現を抑制する成分を有効成分として含む、がん治療のための剤。 An agent for cancer treatment that contains as an active ingredient a component that suppresses the expression of genes involved in the translation of CDKAL1.
  2.  前記成分が、CDKAL1の発現を抑制する成分であることを特徴とする請求項1に記載の剤。 The agent according to claim 1, wherein the component is a component that suppresses the expression of CDKAL1.
  3.  前記成分が、CDKAL1に対するsiRNA、shRNA、アンチセンス核酸又はsgRNA、又は前記siRNA、shRNA、アンチセンス核酸又はsgRNAを発現するベクターであることを特徴とする請求項2に記載の剤。 The agent according to claim 2, wherein the component is a vector expressing siRNA, shRNA, antisense nucleic acid or sgRNA against CDKAL1, or the siRNA, SHRNA, antisense nucleic acid or sgRNA.
  4.  前記成分が、前記遺伝子のmRNAを減少させる成分であることを特徴とする請求項1に記載の剤。 The agent according to claim 1, wherein the component is a component that reduces mRNA of the gene.
  5.  前記成分が、前記遺伝子に対するsiRNA、shRNA、アンチセンス核酸又はsgRNA、又は前記siRNA、shRNA、アンチセンス核酸又はsgRNAを発現するベクターであることを特徴とする請求項4に記載の剤。 The agent according to claim 4, wherein the component is a vector expressing siRNA, shRNA, antisense nucleic acid or sgRNA for the gene, or the siRNA, shRNA, antisense nucleic acid or sgRNA.
  6.  前記遺伝子が、SALL2遺伝子であることを特徴とする請求項1乃至5のいずれかに記載の剤。 The agent according to any one of claims 1 to 5, wherein the gene is a SALL2 gene.
  7.  前記成分が前記遺伝子のmRNAから蛋白質への翻訳を阻害する成分であることを特徴とする請求項1に記載の剤。 The agent according to claim 1, wherein the component is a component that inhibits the translation of the gene from mRNA to protein.
  8.  前記成分が、GSK3阻害剤及び/又はN-結合型グリコシル化阻害剤であることを特徴とする請求項7に記載の剤。 The agent according to claim 7, wherein the component is a GSK3 inhibitor and / or an N-linked glycosylation inhibitor.
  9.  前記成分が、CDKAL1に特異的に結合するペプチド、抗体、抗体フラグメント、又はアプタマーであることを特徴とする請求項7に記載の剤。 The agent according to claim 7, wherein the component is a peptide, antibody, antibody fragment, or aptamer that specifically binds to CDKAL1.
  10.  前記成分が、CDKAL1のアミノ末端から1~202番目のアミノ酸配列に特異的に結合することを特徴とする請求項9に記載の剤。 The agent according to claim 9, wherein the component specifically binds to the amino acid sequence 1 to 202 from the amino terminus of CDKAL1.
  11.  前記成分が、CDKAL1のアミノ末端から1~202番目のアミノ酸配列であって、下記(1)~(4)の1又は2以上の翻訳後修飾を含むアミノ酸配列に特異的に結合することを特徴とする請求項9に記載の剤:
    (1)N末端から18番目のセリンのリン酸化;
    (2)N末端から22番目のセリンのリン酸化;
    (3)N末端から107番目のアスパラギンのN-結合型グリコシル化;
    (4)N末端から153番目のセリンのリン酸化。
    The component is the amino acid sequence 1 to 202 from the amino terminus of CDKAL1 and is characterized by specifically binding to the amino acid sequence containing one or more post-translational modifications of the following (1) to (4). The agent according to claim 9:
    (1) Phosphorylation of the 18th serine from the N-terminal;
    (2) Phosphorylation of the 22nd serine from the N-terminal;
    (3) N-linked glycosylation of the 107th asparagine from the N-terminus;
    (4) Phosphorylation of the 153rd serine from the N-terminal.
  12.  前記成分が、Go6983、tunicamycin、Ozanimod、Gramicidin、Lomitapide、Fenticonazole(Nitrate)、Asenapine(hydrochloride)、Propafenone(hydrochloride)、Sertraline(hydrochloride)、Arterolane、Bepridil hydrochloride、Levomepromazine、Esaxerenone、Dronedarone(Hydrochloride)、Amorolfine(hydrochloride)、Doxycycline(hyclate)、Loperamide(hydrochloride)、Flupirtine(Maleate)、Sulfameter、Revaprazan(hydrochloride)、Clevidipine、Vinburnine、Ethacridine(lactate)、Lamivudine、Ecabet(sodium)、Pramipexole(dihydrochloride)、AZD7545、Ceftezole(sodium)、Medetomidine(hydrochloride)、Lactose、Cloperastine fendizoate、Cyclobenzaprine(hydrochloride)、Cefathiamidine、L-Arginine(hydrochloride)、Gestrinone、Doravirine、Norepinephrine、Clomiphene(citrate)、Nomegestrol acetate、Cinacalcet、Talc、Amoxapine、Clodronic acid(disodium salt)、Phenylbutazone、Upadacitinib、Bacitracin、Cimetropium(Bromide)、Dihydroergotoxine(mesylate)、Bedaquiline(fumarate)、Solriamfetol、Delavirdine(mesylate)、Tiratricol、Afoxolaner、Ledipasvir、Dapsone、Oxiconazole nitrate、Argipressin、Ronidazole、Ticlopidine(hydrochloride)、Isopropamide(iodide)、Meropenem(trihydrate)、Deoxycholic acid sodium salt、Oxiracetam、Ethacridine(lactate monohydrate)、Amrinone、Moxidectin、(S)-Flurbiprofen、Diphylline、Metaproterenol(hemisulfate)、Fidarestat、Sultamicillin(tosylate)、Piperonyl butoxide、Verapamil(hydrochloride)、Laropiprant、Tegaserod(maleate)、Ornipressin、L-Ornithine(hydrochloride)、Perphenazine、Nitrendipine、Tofogliflozin(hydrate)、Sulfamerazine、Fosfluconazole、Vitamin D2、Oxybuprocaine hydrochloride、Triflupromazine(hydrochloride)、Alibendol、Sulbutiamine、Toloxatone、Emamectin(Benzoate)、Pimethixene maleate、Dronedarone、Dihydroergocristine(mesylate)、Rocuronium(Bromide)、Sulpiride、Dobutamine (hydrochloride)、Cilnidipine、Cyproheptadine(hydrochloride)、Diclofenac(diethylamine)、Sulfachloropyridazine、Ioxilan、Pinacidil monohydrate、Halofantrine hydrochloride、Cyproheptadine(hydrochloride sesquihydrate)からなる群から選択される一又は二以上であることを特徴とする請求項7に記載の剤。 前記成分が、Go6983、tunicamycin、Ozanimod、Gramicidin、Lomitapide、Fenticonazole(Nitrate)、Asenapine(hydrochloride)、Propafenone(hydrochloride)、Sertraline(hydrochloride)、Arterolane、Bepridil hydrochloride、Levomepromazine、Esaxerenone、Dronedarone(Hydrochloride)、Amorolfine( hydrochloride)、Doxycycline(hyclate)、Loperamide(hydrochloride)、Flupirtine(Maleate)、Sulfameter、Revaprazan(hydrochloride)、Clevidipine、Vinburnine、Ethacridine(lactate)、Lamivudine、Ecabet(sodium)、Pramipexole(dihydrochloride)、AZD7545、Ceftezole( sodium)、Medetomidine(hydrochloride)、Lactose、Cloperastine fendizoate、Cyclobenzaprine(hydrochloride)、Cefathiamidine、L-Arginine(hydrochloride)、Gestrinone、Doravirine、Norepinephrine、Clomiphene(citrate)、Nomegestrol acetate、Cinacalcet、Talc、Amoxapine、Clodronic acid( disodium salt)、Phenylbutazone、Upadacitinib、Bacitracin、Cimetropium(Bromide)、Dihydroergotoxine(mesylate)、Bedaquiline(fumarate)、Solriamfetol、Delavirdine(mesylate)、Tiratricol、Afoxolaner、Ledipasvir、Dapsone、Oxiconazole nitrate、Argipressin、Ronidazole、Ticl opidine(hydrochloride)、Isopropamide(iodide)、Meropenem(trihydrate)、Deoxycholic acid sodium salt、Oxiracetam、Ethacridine(lactate monohydrate)、Amrinone、Moxidectin、(S)-Flurbiprofen、Diphylline、Metaproterenol(hemisulfate)、Fidarestat、Sultamicillin(tosylate )、Piperonyl butoxide、Verapamil(hydrochloride)、Laropiprant、Tegaserod(maleate)、Ornipressin、L-Ornithine(hydrochloride)、Perphenazine、Nitrendipine、Tofogliflozin(hydrate)、Sulfamerazine、Fosfluconazole、Vitamin D2、Oxybuprocaine hydrochloride、Triflupromazine(hydrochloride)、 Alibendol、Sulbutiamine、Toloxatone、Emamectin(Benzoate)、Pimethixene maleate、Dronedarone、Dihydroergocristine(mesylate)、Rocuronium(Bromide)、Sulpiride、Dobutamine (hydrochloride)、Cilnidipine、Cyproheptadine(hydrochloride)、Diclofenac(diethylamine)、Sulfachloropyridazine、Ioxilan、Pinacidil The agent according to claim 7, wherein the agent is one or more selected from the group consisting of monohydrate, hydrochloride, chloride, and Cyproheptazine (hydrochloride sequihydrate).
  13.  治療対象となるがんが、横紋筋肉腫又は悪性脳腫瘍であることを特徴とする請求項1乃至12のいずれかに記載の剤。 The agent according to any one of claims 1 to 12, wherein the cancer to be treated is rhabdomyosarcoma or malignant brain tumor.
  14.  レポータータンパク質をコードする第1のRNA配列と、
     その5’末端側に、下記式1で表されるRNA配列及び/又は下記式2で表されるRNA配列を含む第2のRNA配列と、
    を有するRNA構築物をコードする核酸構築物:
    (式1)5’-GGCGGCGGCGGCGGC-3’(式中、1番目のGはAでもよく、2番目のGはCでもよく、3番目のCはAでもよく、4番目のGはAでもよく、5番目のGはCでもよく、6番目のCはAでもよく、7番目のGはAまたはCでもよく、8番目のGはAでもよく、9番目のCはUまたはAでもよく、10番目のGはAまたはUでもよく、11番目のGはCでもよく、12番目のCはAでもよく、13番目のGはUまたはCまたはAでもよく、14番目のGはUまたはAまたはCでもよく、15番目のCはGまたはAまたはUでもよい。);
    (式2)5’-GCCGCCGCCGCCGCC-3’(式中、1番目のGはUまたはCでもよく、2番目のCはGでもよく、3番目のCはUでもよく、4番目のGはUまたはCでもよく、5番目のCはUでもよく、6番目のCはAまたはUでもよく、7番目のGはUでもよく、8番目のCはUでもよく、9番目のCはGでもよく、10番目のGはUでもよく、11番目のCはGでもよく、12番目のCはUでもよく、13番目のGはUでもよく、14番目のCはUでもよく、15番目のCはGでもよい。)。
    The first RNA sequence encoding the reporter protein and
    On the 5'end side, a second RNA sequence containing an RNA sequence represented by the following formula 1 and / or an RNA sequence represented by the following formula 2 and
    Nucleic acid construct encoding an RNA construct with
    (Equation 1) 5'-GGCGGGCGGGCGCGGC-3'(In the equation, the first G may be A, the second G may be C, the third C may be A, and the fourth G may be A. The fifth G may be C, the sixth C may be A, the seventh G may be A or C, the eighth G may be A, the ninth C may be U or A, and so on. The 10th G may be A or U, the 11th G may be C, the 12th C may be A, the 13th G may be U or C or A, and the 14th G may be U or A. Or C, and the fifteenth C may be G, A, or U.);
    (Equation 2) 5'-GCCGCCGCCGCCGCC-3'(In the equation, the first G may be U or C, the second C may be G, the third C may be U, and the fourth G may be U. Or C, the 5th C may be U, the 6th C may be A or U, the 7th G may be U, the 8th C may be U, and the 9th C may be G. Well, the 10th G can be U, the 11th C can be G, the 12th C can be U, the 13th G can be U, the 14th C can be U, and the 15th. C may be G.).
  15.  前記第2のRNA配列が、SALL2遺伝子の転写産物であるmRNAが有する5’非翻訳領域のRNA配列であることを特徴とする請求項13に記載の剤。 The agent according to claim 13, wherein the second RNA sequence is an RNA sequence in the 5'untranslated region of mRNA which is a transcript of the SALL2 gene.
  16.  請求項14又は15に記載の前記核酸構築物を含むベクター。 A vector containing the nucleic acid construct according to claim 14 or 15.
  17.  請求項14又は15に記載の前記核酸構築物を含む細胞。 A cell containing the nucleic acid construct according to claim 14 or 15.
  18.  細胞において、CDKAL1が関与する翻訳を阻害する物質のスクリーニング方法であって、
    (1)請求項14又は15に記載の前記核酸構築物を、前記細胞に導入する工程、
    (2)前記核酸構築物を導入した前記細胞を、被験物質を含む溶液又は被験物質を含まない溶液と接触させる工程、
    (3)前記被験物質を含む溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度を測定する工程、及び、
    (4)測定された前記シグナルの強度を、被験物質を含まない溶液と接触させた前記細胞における、前記レポータータンパク質に由来するシグナルの強度と比較する工程、
    を含むことを特徴とするスクリーニング方法。

     
    A method for screening a substance that inhibits translation involving CDKAL1 in cells.
    (1) A step of introducing the nucleic acid construct according to claim 14 or 15 into the cell.
    (2) A step of contacting the cells into which the nucleic acid construct has been introduced with a solution containing a test substance or a solution not containing the test substance.
    (3) A step of measuring the intensity of a signal derived from the reporter protein in the cells contacted with the solution containing the test substance, and
    (4) A step of comparing the measured intensity of the signal with the intensity of the signal derived from the reporter protein in the cells contacted with the solution containing no test substance.
    A screening method comprising.

PCT/JP2021/045165 2020-12-09 2021-12-08 Agent for cancer therapy, and screening method for active ingredient thereof WO2022124342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568314A JPWO2022124342A1 (en) 2020-12-09 2021-12-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204100 2020-12-09
JP2020-204100 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124342A1 true WO2022124342A1 (en) 2022-06-16

Family

ID=81973333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045165 WO2022124342A1 (en) 2020-12-09 2021-12-08 Agent for cancer therapy, and screening method for active ingredient thereof

Country Status (2)

Country Link
JP (1) JPWO2022124342A1 (en)
WO (1) WO2022124342A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287286A (en) * 2022-06-24 2022-11-04 中国人民解放军军事科学院军事医学研究院 Application of long-chain non-coding RNA lnc1267 in regulation of cell proliferation and survival
CN115475166A (en) * 2022-09-13 2022-12-16 中南大学湘雅医院 Application of revaprazan compound, medicine and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060741A (en) * 2014-09-12 2016-04-25 国立大学法人 鹿児島大学 Adult t-cell leukemia therapeutic agent
US20160116474A1 (en) * 2013-06-20 2016-04-28 The Broad Institute, Inc. Compositions and methods for detecting and treating glioblastoma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116474A1 (en) * 2013-06-20 2016-04-28 The Broad Institute, Inc. Compositions and methods for detecting and treating glioblastoma
JP2016060741A (en) * 2014-09-12 2016-04-25 国立大学法人 鹿児島大学 Adult t-cell leukemia therapeutic agent

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DE-FREITAS-JUNIOR JULIO CESAR MADUREIRA, BASTOS LILIAN GOLÇALVES, FREIRE-NETO CARLOS ALBERTO, ROCHER BÁRBARA DU, ABDELHAY ELIANA S: "N-glycan biosynthesis inhibitors induce in vitro anticancer activity in colorectal cancer cells", JOURNAL OF CELLULAR BIOCHEMISTRY JOHN WILEY & SONS, INC., vol. 113, no. 9, 1 September 2012 (2012-09-01), pages 2957 - 2966, XP055941246, ISSN: 0730-2312, DOI: 10.1002/jcb.24173 *
HOU HELEI, GE CHAO, SUN HEFEN, LI HONG, LI JINJUN, TIAN HUA: "Tunicamycin inhibits cell proliferation and migration in hepatocellular carcinoma through suppression ofCD44s and the ERK1/2 pathway", CANCER SCIENCE, vol. 109, no. 4, 1 April 2018 (2018-04-01), JP , pages 1088 - 1100, XP055941250, ISSN: 1347-9032, DOI: 10.1111/cas.13518 *
IRIMURA TATSURO, GONZALEZ ROBERT, NICOLSON2 GARTH L: "Effects of Tunicamycin on B16 Metastatic Melanoma Cell Surface Glycoproteins and Blood-borne Arrest and Survival Properties1", CANCER RESEARCH, vol. 41, no. 9, 1 January 1981 (1981-01-01), pages 3411 - 3418, XP055941251 *
OLSSON A Y; FEBER A; EDWARDS S; TE POELE R; GIDDINGS I; MERSON S; COOPER C S: "Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells", ONCOGENE, vol. 26, no. 7, 14 August 2006 (2006-08-14), London , pages 1028 - 1037, XP037741984, ISSN: 0950-9232, DOI: 10.1038/sj.onc.1209854 *
TAKESUE YOSHIHIRO, WEI FAN-YAN, FUKUDA HIROYUKI, TANOUE YUKI, YAMAMOTO TAKAHIRO, CHUJO TAKESHI, SHINOJIMA NAOKI, YANO SHIGETOSHI, : "Regulation of growth hormone biosynthesis by Cdk5 regulatory subunit associated protein 1-like 1 (CDKAL1) in pituitary adenomas", ENDOCRINE JOURNAL, vol. 66, no. 9, 1 January 2019 (2019-01-01), JP , pages 807 - 816, XP055941261, ISSN: 0918-8959, DOI: 10.1507/endocrj.EJ18-0536 *
YU DOU, KHAN OMAR F., SUVÀ MARIO L., DONG BIQIN, PANEK WOJCIECH K., XIAO TING, WU MEIJING, HAN YU, AHMED ATIQUE U., BALYASNIKOVA I: "Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 114, no. 30, 25 July 2017 (2017-07-25), pages E6147 - E6156, XP055941242, ISSN: 0027-8424, DOI: 10.1073/pnas.1701911114 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287286A (en) * 2022-06-24 2022-11-04 中国人民解放军军事科学院军事医学研究院 Application of long-chain non-coding RNA lnc1267 in regulation of cell proliferation and survival
CN115287286B (en) * 2022-06-24 2023-03-07 中国人民解放军军事科学院军事医学研究院 Application of long-chain non-coding RNA lnc1267 in regulation of cell proliferation and survival
CN115475166A (en) * 2022-09-13 2022-12-16 中南大学湘雅医院 Application of revaprazan compound, medicine and preparation method
CN115475166B (en) * 2022-09-13 2023-11-21 中南大学湘雅医院 Application, medicine and preparation method of revaprazan compound

Also Published As

Publication number Publication date
JPWO2022124342A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
Baglio et al. Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species
Meng et al. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3
Chen et al. Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer
Di Agostino et al. YAP enhances the pro‐proliferative transcriptional activity of mutant p53 proteins
Zhang et al. A transforming growth factor‐β and H19 signaling axis in tumor‐initiating hepatocytes that regulates hepatic carcinogenesis
Civenni et al. Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer
Gallo et al. MLL5 orchestrates a cancer self-renewal state by repressing the histone variant H3. 3 and globally reorganizing chromatin
Shi et al. Circular RNA ANAPC7 inhibits tumor growth and muscle wasting via PHLPP2–AKT–TGF-β signaling Axis in pancreatic cancer
Fu et al. Set7 mediated Gli3 methylation plays a positive role in the activation of Sonic Hedgehog pathway in mammals
WO2022124342A1 (en) Agent for cancer therapy, and screening method for active ingredient thereof
Ren et al. AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis
CA3017586A1 (en) Therapeutic membrane vesicles
Gross et al. Loss of slug compromises DNA damage repair and accelerates stem cell aging in mammary epithelium
US20230285439A1 (en) Methods for treating triple-negative breast cancer
Cheng et al. MicroRNA-449a suppresses hepatocellular carcinoma cell growth via G1 phase arrest and the HGF/MET c-Met pathway
Qi et al. A plant immune protein enables broad antitumor response by rescuing microRNA deficiency
Mao et al. MEG3 aggravates hypoxia/reoxygenation induced apoptosis of renal tubular epithelial cells via the miR‐129‐5p/HMGB1 axis
Nagashima et al. CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells
Menendez et al. Etoposide-induced DNA damage is increased in p53 mutants: identification of ATR and other genes that influence effects of p53 mutations on Top2-induced cytotoxicity
He et al. LncRNA‐EWSAT1 promotes hepatocellular carcinoma metastasis via activation of the Src‐YAP signaling axis
WO2020196737A1 (en) Pharmaceutical composition for inhibiting production of hepatitis b virus protein, and method for screening same
Guo et al. Circular RNA circARHGEF28 inhibited the progression of prostate cancer via the miR‐671‐5p/LGALS3BP/NF‐κB axis
Alvarez et al. A two-hit mechanism for pre-mitotic arrest of cancer cell proliferation by a polyamide-alkylator conjugate
Xu et al. ApoM suppresses kidney renal clear cell carcinoma growth and metastasis via the Hippo-YAP signaling pathway
Cao et al. miR-449a ameliorates acute rejection after liver transplantation via targeting procollagen-lysine1, 2-oxoglutarate5-dioxygenase 1 in macrophages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903441

Country of ref document: EP

Kind code of ref document: A1