WO2022124302A1 - 有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株 - Google Patents

有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株 Download PDF

Info

Publication number
WO2022124302A1
WO2022124302A1 PCT/JP2021/044910 JP2021044910W WO2022124302A1 WO 2022124302 A1 WO2022124302 A1 WO 2022124302A1 JP 2021044910 W JP2021044910 W JP 2021044910W WO 2022124302 A1 WO2022124302 A1 WO 2022124302A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
plasmid
dna
production
gene
Prior art date
Application number
PCT/JP2021/044910
Other languages
English (en)
French (fr)
Inventor
誠久 蓮沼
昭彦 近藤
純 石井
謙爾 柘植
涼太 秀瀬
香奈江 酒井
武藏 竹中
崇弘 番場
智量 白井
悟朗 寺井
Original Assignee
国立大学法人神戸大学
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 国立大学法人 東京大学 filed Critical 国立大学法人神戸大学
Priority to JP2022568290A priority Critical patent/JPWO2022124302A1/ja
Publication of WO2022124302A1 publication Critical patent/WO2022124302A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine

Definitions

  • the present invention relates to a method for constructing a metabolically modified microbial strain that produces a high production of useful compounds and a metabolically modified Escherichia coli strain.
  • Microorganisms have long been used in the production of various useful substances such as alcohols, amino acids, nucleic acids, organic acids, lipids, vitamins and antibiotics. Microorganisms that excel in the production of certain useful substances have been isolated and used industrially. In recent years, basic technologies for the production of useful substances using microbial fermentation have been attracting attention, and related markets are expected to expand rapidly.
  • An object of the present invention is to provide a method for constructing a metabolically modified microbial strain that produces a high production of useful compounds, and to provide a metabolically modified microbial strain that highly produces a useful compound.
  • the present inventors have focused on the fact that many of the useful substances targeted for microbial fermentation can produce specific common metabolites as hub compounds, and strains capable of producing such hub compounds at high levels.
  • the parent strain was subjected to metabolic modification based on metabolic flux analysis (FBA) to construct a base strain, and Combi-OGAB using artificial DNA parts not subject to endogenous metabolic regulation.
  • FBA metabolic flux analysis
  • ⁇ -ketoglutaric acid AKG
  • we targeted ⁇ -ketoglutaric acid (AKG) as a hub compound (useful compound) succeeded in developing a workflow for high-speed breeding of this compound, and found a gene that contributes to high AKG production. That is, the gist of the present invention is as follows.
  • a method for constructing a metabolically modified microbial strain that produces a high production of useful compounds.
  • a step of constructing a base strain by subjecting the parent strain to metabolic modification (B) A unit DNA cassette in which a promoter for strong expression and a terminator sequence are linked to DNA encoding each enzyme of the group of enzymes that operably constructs the biosynthetic pathway of the above useful compound in the cell, and each enzyme.
  • (C) A step of introducing the constructed plasmid library into the base strain and measuring the production amount of the useful compound of each strain.
  • (D) A step of analyzing the sequence information of the plasmid introduced into each strain obtained in the steps (C).
  • (E) Statistical analysis or machine learning is performed by associating the production amount of the useful compound of each strain obtained in the step (C) with the sequence information of the plasmid obtained in the step (D) to produce the useful compound.
  • Construction of a metabolically modified microbial strain comprising a step of identifying a useful gene that contributes and a step of preparing a strain obtained by recombination of a useful gene that contributes to the production of the useful compound identified in steps (F) and (E).
  • the above useful compounds are ⁇ -ketoglutaric acid, tyrosine, L-glutamic acid, pyruvic acid, UDP-glucose, succinic acid, acetic acid, farnesylpyrophosphate, glutathione, formic acid, formaldehyde, L-methionine, glycine, glyoxylic acid,
  • the useful compound is ⁇ -ketoglutaric acid, and the enzyme group in the step (B) is glk, pgi, pfkA, fbaA, tipA, gapA, pgk, gpmA, eno, pykF, lpdA, aceE, aceF.
  • a metabolically modified microbial strain of the present invention it is possible to efficiently construct a strain that highly produces useful compounds such as hub compounds in microbial fermentation.
  • Combi-OGAB long-chain DNA using artificial DNA parts that are not subject to endogenous metabolic regulation, and a base strain is constructed by subjecting the parent strain to metabolic modification based on metabolic flux analysis (FBA).
  • FBA metabolic flux analysis
  • a metabolically modified microbial strain in which the production amount of useful compounds is significantly increased as compared with the parent strain.
  • ⁇ -ketoglutaric acid was targeted as a hub compound (useful compound), and a strain capable of producing this was successfully constructed.
  • the metabolically modified microbial strain constructed by the method of the present invention can highly produce hub compounds in microbial fermentation, it can be utilized for the production of various substances using these as starting materials.
  • FIG. 1 is a diagram showing the results of flask culture of BW25113 and the base strain.
  • FIG. 2 is a diagram showing genes whose expression levels are regulated by the Combi-OGAB method.
  • FIG. 3 is a diagram showing the results of a culture test of a first-generation Combi-OGAB plasmid-introduced strain on a 96-well plate.
  • FIG. 4-1 is a diagram showing the statistical analysis results of the first-generation Combi-OGAB plasmid-introduced strain.
  • FIG. 4-2 is a diagram showing the statistical analysis results of the first-generation Combi-OGAB plasmid-introduced strain.
  • FIG. 1 is a diagram showing the results of flask culture of BW25113 and the base strain.
  • FIG. 2 is a diagram showing genes whose expression levels are regulated by the Combi-OGAB method.
  • FIG. 3 is a diagram showing the results of a culture test of a first-generation Combi-OGAB
  • FIG. 4-3 is a diagram showing the statistical analysis results of the first-generation Combi-OGAB plasmid-introduced strain.
  • FIG. 5 is a diagram showing the results of a culture test of ppc and aceF overexpressing strains.
  • FIG. 6 is a diagram showing the results of a culture test of a second-generation Combi-OGAB plasmid-introduced strain.
  • FIG. 7-1 is a diagram showing the statistical analysis results of the second generation Combi-OGAB plasmid-introduced strain.
  • FIG. 7-2 is a diagram showing the statistical analysis results of the second generation Combi-OGAB plasmid-introduced strain.
  • FIG. 5 is a diagram showing the results of a culture test of ppc and aceF overexpressing strains.
  • FIG. 6 is a diagram showing the results of a culture test of a second-generation Combi-OGAB plasmid-introduced strain.
  • FIG. 7-1 is a diagram showing the
  • FIG. 7-3 is a diagram showing the statistical analysis results of the second generation Combi-OGAB plasmid-introduced strain.
  • FIG. 8 shows the sequence information of the Combi-OGAB plasmid introduced into the Cy1-A8 strain.
  • FIG. 9 shows the production test results of homocitrate, GABA, and theanine.
  • the molecular biological method can be carried out by the method described in a general experimental document known to those skilled in the art or a method similar thereto, unless otherwise specified.
  • the terms used herein are to be construed as commonly used in the art, unless otherwise noted.
  • the present invention relates to a method for constructing a metabolically modified microbial strain that produces a highly useful compound. Specifically, the present invention relates to a method for constructing a metabolically modified microbial strain including the following steps (A) to (F). (A) A step of subjecting a parent strain to a metabolic modification to construct a base strain (B) Strongly expressed in the DNA encoding each of the enzymes in the group of enzymes that make the biosynthetic pathway of the above-mentioned useful compound functionally functional in the cell.
  • a unit DNA cassette in which a promoter and a terminator sequence are linked, and a unit DNA cassette in which a promoter for low expression (or no promoter) and a terminator sequence are linked to DNA encoding each enzyme are prepared, and the OGAB method is used.
  • steps (C) of introducing the constructed plasmid library into the base strain and measuring the production amount of the useful compound of each strain (D) (C).
  • Steps to analyze the sequence information of the plasmid introduced into each of the obtained strains E
  • the useful compound is not particularly limited as long as it is a compound produced by microbial fermentation, and for example, ⁇ -ketoglutaric acid, tyrosine, L-glutamic acid, pyruvic acid, UDP-glucose, succinic acid, acetic acid, farnesylpyrrophosphate, etc.
  • Glutamic acid formic acid, formaldehyde, L-methionine, glycine, glyoxylic acid, geranylgeranyl diphosphate, acetyl-CoA and the like can be mentioned.
  • Step (A) This step is a step of subjecting the parent strain to metabolic modification to construct a base strain.
  • microbial strains such as Escherichia coli, yeast, microalgae, cyanobacteria (cyanobacteria), actinomycetes, and coryneform bacteria can be selected. These parent strains may be naturally occurring strains or genetically modified strains.
  • the above-mentioned base strain is the OGAB method (Tsuge, K., Matsui, K. & Itaya, M. One step assembly of multiple DNA fragments with a design to complete assembly) after the step (B). It is a microbial strain used for introducing a plasmid library constructed by performing gene accumulation using .31, e133 (2003)).
  • Metabolic flux analysis Flux Balance Analysis
  • FBA Fluorescence Balance Analysis
  • a metabolic pathway is constructed based on genomic information and prediction, and the increase (for example, synthesis reaction, uptake transport, etc.) and decrease (decomposition / conversion reaction, excretion transport) of each node (metabolic molecule) are expressed by a determinant.
  • the equation is solved on the assumption that the metabolic system is in a steady state, that is, the metabolic intermediates in the model are kept at a constant amount, and the solution obtained by adding constraints such as the reaction direction and the upper limit of the speed is limited.
  • the phenomenon to be known for example, inactivation of enzyme or increase in biomass production
  • the flux is predicted by finding a solution that satisfies it.
  • the above-mentioned parent strain is subjected to metabolic modification necessary for improving the production efficiency of useful compounds, that is, enhancement of gene expression necessary for improving production efficiency of useful compounds, and unnecessary gene expression. Suppress and build a base stock.
  • the prediction by FBA is not perfect, the analysis results should be examined and the gene to be enhanced or suppressed should be appropriately selected by the researcher.
  • the target useful compound is ⁇ -ketoglutaric acid (AKG)
  • AKG ⁇ -ketoglutaric acid
  • ackA acetate kinase gene
  • pta phosphate acetate gene
  • zwf glucose-6-phosphate 1-dehydrogenase gene
  • Acid Create an E. coli strain lacking the gene (ptsHI) encoding a protein involved in glucose uptake by the glycophosphotransferase system (PTS).
  • a plasmid for overexpressing the galP gene and the glk gene can be introduced into this Escherichia coli strain and used as a base strain.
  • Step (B) In this step, overexpression unit DNA in which a promoter for strong expression and a terminator sequence are linked to DNA encoding each enzyme of a group of enzymes that operably construct the biosynthetic pathway of the target useful compound in the cell.
  • a non-overexpressing unit DNA cassette in which a promoter for low expression (or no promoter) and a terminator sequence are ligated to the cassette and the DNA encoding each enzyme is prepared, and the combi-OGAB method applied to the OGAB method is used for combinatorial live. This is the process of building a rally.
  • the above-mentioned enzyme group is a group of enzymes necessary for the biosynthetic pathway of the target useful compound, and needs to be a group of enzymes that function in the above-mentioned base strain.
  • a biosynthetic pathway and an enzyme group when the target useful compound is ⁇ -ketoglutaric acid (AKG), the biosynthetic pathway and the necessary enzyme group shown in FIG. 2 can be mentioned.
  • AKG ⁇ -ketoglutaric acid
  • glk, pgi, pfkA, fbaA, tipA, gapA, pgk, gpmA, eno, pykF, lpdA, aceE, aceF, gltA, acnB, icd and ppc are the enzymes required for the biosynthesis of AKG from glucose. be.
  • the expression of these genes can be optimized using the Combi-OGAB method. Optimization includes the following two elements. That is, among the above enzyme groups, it is better to find the optimum combination of overexpressing genes effective for improving the production amount of useful compounds, and not to overexpress (or destroy) effective for improving the production amount of useful compounds. Better) to find a combination of genes.
  • a non-overexpressing unit DNA cassette to which the terminator sequence is ligated is prepared.
  • two types of unit DNA cassettes, an overexpressed DNA cassette and a non-overexpressed DNA cassette, are used for each enzyme gene.
  • the overexpressed DNA cassette is composed of a promoter sequence, a ribosome binding sequence (RBS), a CDS, and a terminator sequence.
  • non-overexpression cassette one composed of CDS and a terminator sequence from which the start codon has been removed, or one composed of a promoter sequence for low expression, a ribosome binding sequence (RBS), CDS, and a terminator sequence can be used.
  • RBS ribosome binding sequence
  • CDS ribosome binding sequence
  • terminator sequence It is preferable to use one composed of CDS from which the start codon has been removed and a terminator sequence.
  • CDS The origin of CDS is not particularly limited, but it is appropriately selected for each enzyme. Examples thereof include sequences derived from Escherichia coli, sequences derived from Klebsiella pneumoniae, sequences into which mutations have been introduced to prevent allosteric inhibition, and the like. Further, as the promoter sequence and terminator sequence, an appropriate sequence is appropriately selected for each enzyme.
  • the non-overexpressing unit DNA cassette can be produced by artificial synthesis.
  • the unit DNA cassette is, for example, a DNA fragment amplified by a polymerase chain reaction (PCR) using a primer in which a restriction enzyme recognition sequence for generating each protruding end is added to a base sequence on a template DNA, or an arbitrary end in advance.
  • PCR polymerase chain reaction
  • a chemically synthesized DNA fragment or the like incorporating a restriction enzyme recognition sequence so as to generate a protruding sequence is cloned into a plasmid vector, and the base sequence is confirmed before use.
  • Each unit DNA is designed to be linked in a specific order to finally obtain the desired microbial transformation DNA fragment.
  • the DNA fragment containing the accumulation vector is ligated to the unit DNA cassette of each enzyme gene of the enzyme group by the OGAB method.
  • the OGAB method For gene clusters involved in the metabolic pathways of useful compounds, prepare overexpressing and non-overexpressing DNA cassettes for each enzyme.
  • the useful compound is ⁇ -ketoglutaric acid (AKG) will be described as an example.
  • Eighteen DNA fragments including the accumulation vector are ligated by the OGAB method to the unit DNA cassette of the genes of the 17 enzymes required for the biosynthetic pathway shown in FIG.
  • a total of 17 enzyme gene overexpressing and non-overexpressing DNA cassettes involved in the AKG metabolic pathway are defined as the 1st to 17th unit DNA cassettes in order.
  • the integration vector is defined as the 18th unit DNA cassette.
  • the 1st to 18th unit DNA cassettes are continuous according to numbers, and the 18th to 1st unit DNA cassettes are connected to each other to form one insertion unit.
  • At the end of each unit DNA cassette there are 3'end overhanging bases of 3 bases unique to each unit DNA cassette number on the left and right sides of the fragment.
  • the coupling partner is specified by this complementarity.
  • the structure of this protrusion is not particularly limited, except for the palindrome, including the difference in the shape of the protrusion of the 5'end protrusion and the 3'end protrusion.
  • the protruding end may be produced by digestion with a restriction enzyme.
  • restriction enzyme As a restriction enzyme, if an enzyme that can recognize a specific sequence and create a protruding end of an arbitrary sequence in the vicinity thereof is used, the protruding end of the unit DNA fragment can be different at each connection site, so that the enzyme is linked. The order is maintained.
  • restriction enzymes include restriction enzymes used in ordinary molecular biology, TALEN and ZNF artificial restriction enzymes, and CRISPR technology-related enzymes capable of purifying protruding ends such as CRISPR-Cpf1.
  • this is preferably AarI, AlwNI, BbsI, BbvI, BcoDI, BfuAI, BglI, BsaI, BsaXI, BsmAI, BsmBI, BsmFI, BspMI, BspQI, BtgZI, DraIII, FokI, Pf It is preferable to use a restriction enzyme.
  • the multiple overhanging sequences obtained by these restriction enzyme treatments need to be the only sequence within a single species plasmid.
  • the seed plasmid group is a recombination unit of a combinatorial library (in many cases, the unit DNA corresponds to the unit, but in some cases, the recombination unit may consist of a plurality of unit DNAs in some seed plasmids. It is necessary to have the same overhanging sequence in the same chain in the same order.
  • one insertion unit containing the above-mentioned genes involved in the AKG metabolic pathway can be considered to have the following configuration, for example. That is, (18th unit DNA) -GTT- (1st unit DNA) -TGA- (2nd unit DNA) -CGA- (3rd unit DNA) -TGT- (4th unit DNA) -GAT- (5th unit DNA).
  • unit DNAs among the unit DNAs constituting the inserted DNA unit it is necessary to include an effective origin of replication in the host cell.
  • Other unit DNAs are elements that make up a continuous base sequence, such as a metabolic pathway cluster, a part or all of a continuous genome sequence of an organism, an artificial gene, an artificial gene circuit, etc., but a single unit DNA is an organism. There is no restriction that it must match the scientific functional unit.
  • the above-mentioned unit DNA is not limited to the starting material for gene accumulation, and any accumulation method can be used as long as it has a structure that can be finally divided into each unit DNA. Aggregates prepared in are also available.
  • the method of linking the unit DNA is not particularly limited, but it is preferably performed in the presence of polyethylene glycol and a salt.
  • a salt a monovalent alkali metal salt is preferable.
  • concentration of each unit DNA in the reaction solution is not particularly limited, but is preferably 1 fmol / ⁇ L or more and equimolar.
  • the ligation enzyme, reaction temperature, and time are not particularly limited, but are preferably 37 ° C. for 30 minutes or more with T4DNA polymerase.
  • the host microorganism in the DNA fragment for microbial transformation of the present invention is not particularly limited as long as it has a natural transforming ability.
  • microorganisms include those having a natural transforming ability to process and take up single-stranded DNA when taking up DNA. Specific examples thereof include Escherichia coli, Bacillus bacterium, Streptococcus bacterium, Haemophilus bacterium, Neisseria genus and the like.
  • a bacterium of the genus Bacillus B. Subtilis (Bacillus subtilis), B.I. Megaterium (giant ground sloth), B. Examples thereof include stearothermophilus (moderate thermophile).
  • more preferable microorganisms include Escherichia coli and Bacillus subtilis, which are excellent in their natural transformation ability and recombination ability.
  • a known method suitable for each microorganism can be selected. Specifically, for example, in the case of Bacillus subtilis, Anagnostopoulou, C.I. And Spiriten, J.M. J. Bacteriol. , 81, 741-746 (1961). Further, as a transformation method, a known method suitable for each microorganism can be used.
  • the amount of liquid of the ligation product given to the competent cells is also not particularly limited. The amount is preferably 1/20 to equal to that of the competent cell culture medium, and more preferably half.
  • a known method can also be used as a method for purifying a plasmid from a transformant.
  • the plasmid obtained by the above method has the desired inserted DNA by the size pattern of the fragment generated by restriction enzyme cleavage, the PCR method, or the base sequence determination method. If the inserted DNA has a function such as substance production, it can be confirmed by detecting the function.
  • the seed plasmid used in the construction of the combinatorial library can be prepared by any general method for purifying a circular plasmid, but it is desirable that there is no risk of contamination with DNA other than the plasmid DNA. Specifically, the cesium chloride-ethidium bromide density gradient ultracentrifugation method is preferable.
  • Two plasmids a seed plasmid 1 in which overexpressed DNA cassettes of each enzyme are connected and a seed plasmid 2 in which non-overexpressed DNA cassettes of each enzyme are connected, are constructed by the OGAB method.
  • the prepared seed plasmid is treated with a restriction enzyme suitable for each of them and decomposed into unit DNA to prepare a mixture of a plurality of types of unit DNA.
  • the prepared seed plasmid is purified to high purity and then decomposed into unit DNA.
  • the seed plasmid is purified with extremely high purity, so that there are no DNA fragments other than the plasmid DNA.
  • a DNA fragment solution (unit DNA mixed solution) in which the molar concentration ratio of all DNA fragments approaches 1 can be obtained.
  • the mixed solution of the unit DNA cassettes derived from the two types of seed plasmids is a DNA fragment solution (unit DNA mixed solution) in which the molar concentration ratio of all the DNA fragments approaches 1 as much as possible.
  • the unit DNA of this DNA fragment is re-accumulated by the OGAB method to prepare a DNA fragment, and the DNA fragment is transformed to construct a plasmid library.
  • OGAB method gene accumulation method
  • a plasmid library (Combi-OGAB plasmid library) can be constructed.
  • Step (C) This step is a step of introducing the constructed plasmid library into the base strain and measuring the production amount of the useful compound of each strain.
  • the Combi-OGAB plasmid library obtained in step (B) is transformed into Escherichia coli or the like by a conventionally known method such as an electroporation method.
  • the cells after electroporation are suspended in a medium, and recovery culture is performed for about 1 hour under conditions such as 30 ° C. and 150 rpm.
  • Step (D) This step is a step of analyzing the sequence information of the plasmid introduced into each strain obtained in the step (C).
  • a primer that sandwiches the joint of the accumulated cassette and a primer that specifically anneads to the promoter of the overexpressing DNA cassette are designed and used for each gene of the enzyme. ..
  • a PCR reaction is carried out using a cell suspension after culturing and seed plasmids 1 and 2.
  • the accumulation cassette of the Combi-OGAB plasmid introduced into the E. coli strain can be determined by collating the melting curve profile of the enzyme gene obtained by PCR with the melting curve profile of the seed plasmid.
  • Step (E) In this step, statistical analysis or machine learning is performed in which the production amount of the useful compound of each strain obtained in the step (C) is associated with the sequence information of the plasmid obtained in the step (D) to produce the useful compound.
  • This is the process of identifying useful genes that contribute to.
  • statistical analysis is performed using the data on the production of useful compounds and the data on the sequence analysis of the combinatorial plasmid. This makes it possible to find a gene in which overexpression or non-overexpression significantly affects the improvement in the production of useful compounds.
  • Step (F) This step is a step of preparing a strain obtained by recombining a useful gene that contributes to the production of the useful compound identified in step (E).
  • a single overexpression plasmid of a useful gene found to contribute to the production of a useful compound and a plasmid for simultaneously overexpressing all genes are prepared and introduced into the base strain. It is confirmed that the production of useful compounds is improved in these strains.
  • the prepared 2nd generation combinatorial plasmid library was introduced into the base strain, and statistical analysis or statistical analysis in which the above-mentioned useful compound production amount of each obtained strain was associated with the sequence information of the plasmid or Machine learning is performed to further identify useful genes that contribute to the production of the above useful compounds.
  • a third-generation combinatorial plasmid library can be introduced into the base strain, and a metabolically modified microbial strain with an improved production of useful compounds can be obtained.
  • the present invention also includes a metabolically modified Escherichia coli strain in which the expression of aceF, ppc, and glk is enhanced as a specific microbial strain constructed by the above-mentioned method for constructing a metabolically modified microbial strain of the present invention.
  • This metabolically modified Escherichia coli strain is a strain in which the production amount of ⁇ -ketoglutaric acid is improved.
  • the parameters were set so that nitrogen, which is the minimum nutrient for E. coli to grow, can be freely taken up in the state of ammonium ion, phosphorus in the state of phosphate ion, and sulfur in the state of sulfate ion.
  • metal ions such as iron and magnesium are also set so that they can be freely taken in.
  • An environment was set up for E. coli to grow using glucose as a single carbon source.
  • the amount of oxygen uptake was gradually increased from zero (anaerobic condition), and the condition was set so that the amount of oxygen uptake could be varied until the growth rate did not increase (completely aerobic condition).
  • the open software GLPK Ga Linear Programming Kit
  • the objective functions of the above linear programming method were set to (1) E. coli growth maximization and (2) target compound maximization, and calculations were performed respectively.
  • the prediction results of the intracellular metabolic fluxes of both cells were compared, and the flux value existed in the calculation of (1), but the flux value of 0 was regarded as a defect candidate in the calculation of (2).
  • the flux value is absent or present, but in the calculation of (2), the one whose flux value is increasing is a candidate reaction to be strengthened. There was.
  • a pKD46 plasmid containing a gene encoding a recombinase was transformed into a BW25113 strain by an electroporation method to prepare a BW25113 / pKD46 strain.
  • the prepared DNA fragment was transformed into the BW25113 / pKD46 strain by electroporation to obtain a transformant showing kanamycin resistance (transformant in which ptsHI was replaced with a kanamycin resistance gene).
  • a flippase (FLP) expression plasmid was introduced by electroporation to obtain a transformant (BW ⁇ ptsHI / pKD46) showing kanamycin sensitivity.
  • a DNA fragment for replacing the accA-pta gene with a kanamycin resistance gene and disrupting it is PCR using pKD13 as a template and primers d-ackA-pta F and d-ackA-pta R (SEQ ID NOs: 3 and 4). Created by.
  • the prepared DNA fragment was transformed into the BW ⁇ ptsHI / pKD46 strain by electroporation to obtain a transformant showing kanamycin resistance (transformant in which accA-pta was replaced with a kanamycin resistance gene).
  • a flippase (FLP) expression plasmid was introduced by electroporation to obtain a transformant (BW ⁇ ptsHI ⁇ ackA-pta / pKD46) showing kanamycin sensitivity.
  • a DNA fragment for replacing the zwf gene with a kanamycin resistance gene and disrupting it was prepared by PCR using pKD13 as a template and primers d-zwf F and d-zwf R (SEQ ID NOs: 5 and 6).
  • the prepared DNA fragment was transformed into the BW ⁇ ptsHI ⁇ ackA-pta / pKD46 strain by electroporation to obtain a transformant showing kanamycin resistance (transformant in which zwf was replaced with a kanamycin resistance gene).
  • kanamycin resistance marker a flippase (FLP) expression plasmid was introduced by electroporation to obtain a strain showing kanamycin sensitivity (BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf / pKD46).
  • BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf / pKD46 was cultured overnight in 5 mL of LB liquid medium containing no antibiotics, and then seeded on LB agar medium containing no antibiotics.
  • a transformant showing sensitivity (BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf) was acquired.
  • the transformant obtained by introducing the plasmid for overexpression of galP-glk described later was used as an AKG-base strain in the subsequent experiments.
  • Plasmid construction The plasmid was constructed using Escherichia coli DH5 ⁇ strain, and the culture was performed using LB medium (10 g / L tryptone, 5 g / L yeast extract, and 5 g / L NaCl). The plasmid for galP-glk overexpression was prepared by the procedure shown below.
  • the galP-glk overexpression plasmid is a plasmid in which the ⁇ pR promoter, the galP-glk gene, and the TrrnB terminator fragment are linked in this order and cloned into a plasmid excluding the MCS and lacI gene regions of the pETDuet-1 plasmid (Novagen). Each fragment was amplified by PCR using KOD one PCR Master Mix. The primers and templates used are described below.
  • a fragment of 1428bp was obtained using the genome of Escherichia coli BW25113 strain as a template and primers Pr-galP-F and galP-R-glk (SEQ ID NOs: 7 and 8).
  • Pr-galP-F and galP-R-glk SEQ ID NOs: 7 and 8.
  • PCR was performed using the galP gene fragment obtained by PCR as a template using Pr-F1 and galP-R-glk (SEQ ID NOs: 9 and 8).
  • PCR was performed using Pr-F2 and galP-R-glk (SEQ ID NOs: 10 and 8) to obtain a fragment of 1570 bp in which the ⁇ pR promoter was added to the galP gene.
  • glk gene For the glk gene, a fragment of 1006 bp was obtained using the genome of Escherichia coli BW25113 strain as a template and primers galP-glk-F and glk-R-TrrnB (SEQ ID NOs: 11 and 12). GalP and glk allowed the two fragments to bind to form an operon.
  • the TrrnB terminator used the genome of Escherichia coli BW25113 strain as a template and used primers glk-TrrnB-F and TrrnB-R (SEQ ID NOs: 13 and 14) to obtain a fragment of 102 bp.
  • pETDuet plasmid As a skeleton, a fragment of 2532bp was obtained using pETDuet-1 as a template and primers pET-F and pET-R (SEQ ID NOs: 15 and 16).
  • pCP-ppc The plasmid for overexpression of ppc (pCP-ppc) was prepared by the procedure shown below.
  • pCP-ppc is a ppc overexpressing fragment obtained by PCR from the seed plasmid 1 cloned into a plasmid of the pCOLADuet-1 plasmid (Novagen) excluding the MCS and lacI gene regions.
  • the ppc overexpressing fragment was amplified by PCR using KOD one PCR Master Mix and ppc_exp-F and ppc_exp-R (SEQ ID NOs: 17 and 18) using the seed plasmid 1 as a template.
  • the obtained PCR fragment was purified using FastGene Gel / PCR Extraction kit.
  • PCR fragment and pCOLADuet-1 were cleaved with restriction enzymes HpaI and PacI (New England Biolabs), respectively, and then purified using FastGene Gel / PCR Extraction kit.
  • PCR fragments cleaved with HpaI and PacI and pCOLADuet-1 are described in Ligation high Ver. 2 (TOYOBO) was used for ligation reaction according to the attached manual, and cloned into Escherichia coli DH5 ⁇ strain. After the plasmid was extracted, the sequence was confirmed, and the plasmid confirmed to be the correct sequence was used as a plasmid for ppc overexpression.
  • pCP-aceF The plasmid for overexpression of aceF (pCP-aceF) was prepared by the procedure shown below.
  • pCP-aceF is obtained by cloning an aceF overexpressing fragment obtained by PCR from seed plasmid 1 into a plasmid excluding the MCS and lacI gene regions of the pCOLADuet-1 plasmid (Novagen).
  • the aceF overexpressing fragment was amplified by PCR using KOD one PCR Master Mix and aceF_exp-F and aceF_exp-R (SEQ ID NOs: 19 and 20) using the seed plasmid 1 as a template.
  • the obtained PCR fragment was purified using FastGene Gel / PCR Extraction kit.
  • PCR fragment and pCOLADuet-1 were cleaved with restriction enzymes HpaI and PacI (New England Biolabs), respectively, and then purified using FastGene Gel / PCR Extraction kit.
  • PCR fragments cleaved with HpaI and PacI and pCOLADuet-1 are described in Ligation high Ver. 2 (TOYOBO) was used for ligation reaction according to the attached manual, and cloned into Escherichia coli DH5 ⁇ strain. After the plasmid was extracted, the sequence was confirmed, and the plasmid confirmed to be the correct sequence was used as the aceF overexpression plasmid.
  • the plasmid for overexpression of ppc-aceF was prepared by the procedure shown below.
  • pCP-ppc-aceF is obtained by cloning the ppc overexpressing fragment and the aceF overexpressing fragment obtained by PCR from the seed plasmid 1 into a plasmid excluding the MCS and lacI gene regions of the pCOLADuet-1 plasmid (Novagen).
  • the ppc overexpressing fragment was amplified by PCR using KOD one PCR Master Mix and duet-Pppc-F and PaceF_Tppc-R (SEQ ID NOs: 21 and 22) using the seed plasmid 1 as a template.
  • the aceF overexpressing fragment was amplified by PCR using KOD one PCR Master Mix and Tppc_PaceF-F and duet-TaceF-R (SEQ ID NOs: 23 and 24) using the seed plasmid 1 as a template.
  • the vector was also amplified by PCR using pCOLADuet-1 as a template and duet geneart-F and duet geneart-R (SEQ ID NOs: 25 and 26).
  • the three PCR fragments obtained were purified using the FastGene Gel / PCR Extraction kit.
  • the three purified PCR fragments were assembled by GeneArt Seamlies Cloning and Assembly Enzyme Mix and cloned into Escherichia coli DH5 ⁇ strain. After the plasmid was extracted, the sequence was confirmed, and the plasmid confirmed to be the correct sequence was used as a plasmid for overexpression of ppc-aceF.
  • the overexpressed DNA cassette is composed of a promoter sequence, a ribosome binding sequence (RBS), a CDS, and a terminator sequence.
  • a CDS having the starting codon removed and a terminator sequence, or a low expression promoter sequence, a ribosome binding sequence (RBS), a CDS, and a terminator sequence can be used.
  • a CDS with the starting codon removed and a terminator sequence were used.
  • the 17 gene overexpressing DNA cassettes are shown in SEQ ID NOs: 112-128, and the non-overexpressing DNA cassettes are shown in SEQ ID NOs: 129-145.
  • sequences derived from E. coli were used for the 15 genes of glk, pgi, pfkA, faA, tpia, gapA, pgk, gpmA, eno, pykF, ppc, aceE, aceF, acnB, and id.
  • Kp_lpdA_E354K which encodes an enzyme in which E354K was introduced into LpdA derived from Klebsiella pneumoniae, which is more active than the Escherichia coli enzyme LpdA, in order to prevent allosteric inhibition by NADH was used.
  • gltA in order to prevent allosteric inhibition by NADH, gltA_R164L encoding an enzyme in which the R164L mutation was introduced into GltA of Escherichia coli was used.
  • the promoter sequence is described in Jensen et al. (Jensen, PR, Hammer, K., 1998. The sequence of spacers beween the consensus sequences mode. 17 different constitutive expression type artificial promoters were used.
  • the RBS is basically native of each gene, and for Kp_lpdA_E354K and gltA_R164L, the translation intensity is similar to that of the native sequence using the RBS calculator (https://salislab.net/software/).
  • the artificial RBS sequence designed in 1 was used.
  • the terminator sequence is described in Chen et al.
  • Overexpression unit DNA of 17 genes of glk, pgi, pfkA, faA, tipA, gapA, pgk, gpmA, eno, pykF, ppc, Kp_lpdA (E354K), aceE, aceF, gltA (R164L), acnB, icd. 112-128) and the non-overexpressing unit DNA (SEQ ID NOs: 129-145) were prepared by artificial synthesis (Integrated DNA Technologies).
  • the accumulation vector pGETS118 is combined with the unit DNA cassette of 17 genes, and a total of 18 DNA fragments are ligated by the OGAB method.
  • the integration vector is defined as the 18th unit DNA cassette.
  • the 1st to 18th unit DNA cassettes are continuous according to numbers, and the 18th to 1st unit DNA cassettes are connected to each other to form one insertion unit.
  • each unit DNA cassette there are 3'end overhanging bases of 3 bases unique to each unit DNA cassette number on the left and right sides of the fragment.
  • the coupling partner is specified by this complementarity. Specifically, it has the following configuration. (18th unit DNA) -GTT- (1st unit DNA) -TGA- (2nd unit DNA) -CGA- (3rd unit DNA) -TGT- (4th unit DNA) -GAT- (5th unit DNA) ) -TTG- (6th unit DNA) -GTC- (7th unit DNA) -ATG- (8th unit DNA) -TGG- (9th unit DNA) -TAG- (10th unit DNA) -ACT- ( 11th unit DNA) -GTA- (12th unit DNA) -CTT- (13th unit DNA) -CAG- (14th unit DNA) -GAA- (15th unit DNA) -CTC- (16th unit DNA) -CAC- (17th unit DNA)-TCT- (18th unit DNA)
  • This migration gel was stained for 30 minutes with 100 ml of 1 ⁇ TAE buffer containing 1 ⁇ g / ml ethidium bromide (Sigma), and visualized by illuminating with long wavelength ultraviolet rays (366 mn) to obtain the target size of the PCR product. It was cut out with a razor and collected in a 1.5 ml tube. The total volume was adjusted to about 700 ⁇ l by adding 1 ⁇ TAE buffer to the recovered low melting point agarose gel (about 300 mg), and the gel was dissolved by keeping the temperature at 65 ° C. for 10 min. Then, an equal amount of TE saturated phenol (Nacalai Tesque) was added and mixed well to inactivate the restriction enzyme.
  • 1 ⁇ TAE buffer containing 1 ⁇ g / ml ethidium bromide (Sigma)
  • the phenol phase and the aqueous phase were separated by centrifugation (20,000 ⁇ g, 10 min), and the aqueous phase (about 900 ⁇ l) was collected in a new 1.5 ml tube.
  • the volume of the aqueous phase was reduced by repeating until the volume of was 450 ⁇ l or less.
  • the obtained DNA fragment was cloned into an E. coli plasmid vector by the TA cloning method by the method shown below.
  • To 8 ⁇ l of DNA fragment add 0.5 ⁇ l of 100 mM dATP and 0.5 ⁇ l of Ex-Taq to 1 ⁇ l of 10 ⁇ Ex-Taq Buffer attached to TAKARA's PCR reaction enzyme Ex-Taq, and keep the temperature at 65 ° C. for 10 min. Therefore, the protrusion of A was added to the 3'end of the DNA fragment.
  • the mixture was smeared on an LB plate containing 1.5% agar containing carbenicillin at a concentration of 100 ⁇ g / ml, and cultured at 37 ° C. overnight to obtain a plasmid transformant.
  • the obtained colonies were prepared using a template DNA preparation reagent for PCR (Sikagenius DNA preparation reagent, Kanto Chemical Co., Inc.). Specifically, 2.5 ⁇ l of a solution in which reagent a and reagent b in the reagent kit are mixed at a ratio of 1:10 is prepared, and a small amount of colonies on the plate collected with a toothpick is suspended and then 72. After the treatment at ° C. for 6 min, the treatment was performed at 94 ° C. for 3 min.
  • a template DNA preparation reagent for PCR Sikagenius DNA preparation reagent, Kanto Chemical Co., Inc.
  • TAKARA Ex-Taq 10 ⁇ enzyme 2.5 ⁇ l and 2.5 mM dNTP solution 2 ⁇ l, 10 pmol / ⁇ l M13F primer 0.25 ⁇ l and 10 pmol / ⁇ l M13R primer 0.25 ⁇ l, sterile water 17 ⁇ l, Ex. -Add 0.5 ⁇ l of TaqHS, incubate at 94 ° C for 5 min, and then perform 30 cycles of 98 ° C, 20 sec, 55 ° C, 30 sec, 72 ° C, 1 min to amplify the DNA and examine the base sequence of this PCR product. By doing so, I checked whether it exactly matched the desired sequence. Finally, the correct sequences were obtained from all clones.
  • Escherichia coli transformants having a plasmid for cloning a DNA fragment having a desired sequence were cultured overnight at 37 ° C. and 120 spm overnight in 2 ml of 100 ⁇ g / ml LB medium containing carbenicillin, and the obtained cells were cultured in QIAfilter Plasmamid mini. Purification was performed according to the manual using Kit (Qiagen). The obtained plasmid was cleaved with SfiI, and the overexpressed DNA cassette and the non-overexpressed DNA cassette were recovered by size fractionation by electrophoresis. Escherichia coli transformants having a plasmid for cloning a DNA fragment having a desired sequence were cultured overnight at 37 ° C.
  • the plasmid was subjected to 1 ⁇ TAE (in the presence of a buffer, a general-purpose agarose gel electrophoresis device, a voltage of 50 V (about 4 V / cm)) and electrophoresed for 1 hour on a 0.7% low melting point agarose gel.
  • the vector and the unit DNA cassette were separated.
  • This migration gel was stained for 30 minutes with 100 ml of 1 ⁇ TAE buffer containing 1 ⁇ g / ml ethidium bromide (Sigma) and visualized by illuminating with long wavelength ultraviolet rays (366 nm). Then, a band of the desired length was cut out with a razor and collected in a 1.5 ml tube.
  • the recovered low melting point agarose gel (about 300 mg) was purified as described above and dissolved in 20 ⁇ l of TE.
  • the unit DNA cassette prepared in the above was quantified by a nucleic acid fluorescent dye SYBR GreenII fluorescent plate reader using a calibration line prepared based on a commercially available plasmid DNA (TOYOBO) dilution series.
  • each unit DNA cassette of SEQ ID NO: 129-145, and 1 f mol / ⁇ L of the gene accumulation vector pGETS118 (SEQ ID NO: 146).
  • 20 ⁇ l of 2 ⁇ ligation buffer was added to a total of 18 ⁇ l of DNA mixed solution in which 1 ⁇ L of the solution was mixed, 2 ⁇ l of T4 DNA ligase (Takara) was added, and the temperature was kept constant at 37 ° C. for 4 hours.
  • 10 ⁇ l of the ligation reaction solution was collected in a new tube, 100 ⁇ l of Bacillus subtilis competent cell was added, and the cells were rotated and cultured at 37 ° C. for 30 minutes in a duck rotor. .. Then, 300 ⁇ l of LB medium was added, and the cells were subjected to rotary culture at 30 ° C. for 2 hours on a duck rotor, and then the culture solution was spread on an LB plate containing 10 ⁇ g / ml tetracycline and cultured at 30 ° C. overnight.
  • Bacillus subtilis colonies were obtained from both the overexpressed DNA cassette aggregate (seed plasmid 1) and the non-overexpressed DNA cassette aggregate (seed plasmid 2). 17 primer sets designed to sandwich the seams of DNA cassettes (SEQ ID NOs: 27 and 28, SEQ ID NOs: 29 and 30, SEQ ID NOs: 31 and 32, SEQ ID NOs: 33 and 34, SEQ ID NOs: 35 and 36, SEQ ID NOs: 37 and 38.
  • High-purity purification of seed plasmids High-purity plasmid DNA was procured by cesium chloride / ethidium bromide density gradient ultracentrifugation. Specifically, 200 ml of LB medium to which an antibiotic (tetracycline) was added was prepared, 100 ml each was placed in a 500 ml Erlenmeyer flask, and the cells were cultured at 30 ° C. overnight. After sufficient growth, 100 ⁇ l of 1 M IPTG was added to each flask in order to increase the number of copies of the plasmid, and the cells were further cultured for about 3 to 12 hours.
  • an antibiotic tetracycline
  • a solution (final concentration 10 ⁇ g / ml) in which 10 ⁇ l of 10 mg / ml RNaseA solution was added to 10 ml of TE was added to each tube by 2.5 ml to dissolve the precipitate.
  • the liquids in the four tubes were combined into one and incubated for 30 minutes in a gas phase incubator at 37 ° C. After completion of the incubation, 5 ml of phenol chloroform was added, mixed well, and then centrifuged at 5,000 rpm for 10 min. Transfer the supernatant to a new 50 ml tube and remove Sol. After adding 1 ml of III, 25 ml of 100% ethanol was added and mixed.
  • One ultracentrifugal tube (Beckman 362181) was prepared and the supernatant was transferred to the ultracentrifugal tube.
  • the weight was finely adjusted by adding a 1.1 g / ml cesium chloride solution (specific gravity of about 1.5 g / ml) so that the difference in weight from the balance was within 20 mg. Centrifugation was carried out for 15 hours or more under the following conditions with an ultracentrifuge (Beckman Coulter). Temperature 18 ° C., speed 50,000 rpm, acceleration Max, deceleration Max.
  • the unit DNA cassette from the seed plasmid was prepared as follows. Approximately 30 ⁇ g of the seed plasmid purified to high purity by the ultracentrifugation method is separated, and after measuring to 40 ⁇ l with sterile water, 5 ⁇ l of 10 ⁇ NEBbuffer # 2 and 5 ⁇ l of the restriction enzyme SfiI (NEB) are added, and the temperature is 50 ° C. I made it react all night. It was confirmed that 1 ⁇ l of the reaction solution was electrophoresed and cleaved.
  • reaction solutions of the two seed plasmids were integrated, 450 ⁇ l phenol, chloroform, isoamyl alcohol (25: 24: 1) (Nakalitesk) was added, and the mixture was mixed and then centrifuged (20,000 ⁇ g, 10 min). The mixture was separated into a phenol phase and an aqueous phase, and the aqueous phase (about 900 ⁇ l) was collected in a new 1.5 ml tube. Add 500 ⁇ l of 1-butanol (Wako Pure Chemical Industries, Ltd.) to this, mix well, and then separate by centrifugation (20,000 xg, 1 min) to remove 1-butanol saturated with water.
  • 1-butanol Wang Chemical Industries, Ltd.
  • the volume of the aqueous phase was reduced by repeating until the volume of was 450 ⁇ l or less.
  • 50 ⁇ l of 3M potassium acetate-acetate buffer (pH 5.2) and 900 ⁇ l of ethanol were added, and the mixture was centrifuged (20,000 ⁇ g, 10 min) to precipitate DNA, which was 70% ethanol. It was rinsed with and dissolved in 20 ⁇ l of TE.
  • SEQ ID NOs: 33 and 34 SEQ ID NOs: 35 and 36, SEQ ID NOs: 37 and 38, SEQ ID NOs: 39 and 40, SEQ ID NOs: 41 and 42, SEQ ID NOs: 43 and 44, SEQ ID NOs: 45 and 46, SEQ ID NOs: 47 and 48, SEQ ID NOs: PCR was performed using the colony suspension as a template using Nos. 49 and 50, SEQ ID NOs: 51 and 52, SEQ ID NOs: 53 and 54, SEQ ID NOs: 55 and 56, SEQ ID NOs: 57 and 58, and SEQ ID NOs: 59 and 60). As a result, it was confirmed that 17 gene cassettes were randomly accumulated in all 24 clones.
  • Combi-OGAB plasmid library into Escherichia coli AKG chassis strain by an electroporation method (condition). Electroporation was performed using GenePulser Xcell TM (BIO-RAD) (1500V, 25 ⁇ F, 200 ⁇ ). The cells after electroporation were suspended in 1 mL of SOC medium (Toyobo) and subjected to recovery culture at 30 ° C. and 150 rpm for 1 hour. The culture broth was spread on an LB plate containing 12.5 ⁇ g / ml chloramphenicol and cultured at 30 ° C. overnight. About 100 colonies of transformants were obtained per plate.
  • GenePulser Xcell TM BIO-RAD
  • SOC medium Toyobo
  • a primer that sandwiches the joint of the accumulated 17 cassettes and a primer that specifically annealings to the promoter of the overexpressing DNA cassette were designed ( SEQ ID NO: 61-63, SEQ ID NO: 64-66, SEQ ID NO: 67-69, SEQ ID NO: 70-72, SEQ ID NO: 73-75, SEQ ID NO: 76-78, SEQ ID NO: 79-81, SEQ ID NO: 82-84, SEQ ID NO: 85-87, SEQ ID NO: 88-90, SEQ ID NO: 91-93, SEQ ID NO: 94-96, SEQ ID NO: 97-99, SEQ ID NO: 100-102, SEQ ID NO: 103-105, SEQ ID NO: 106-108, SEQ ID NO: 109- 111).
  • KOD SYBR registered trademark
  • TOYOBO KOD SYBR (registered trademark) qPCR Mix
  • a PCR reaction solution was prepared according to the attached manual.
  • As a PCR template 1 ⁇ L of the cell suspension after culturing in a 96-well plate was directly added to the PCR reaction solution, and each of the three primers was added at a final concentration of 0.3 pmol.
  • the PCR reaction and melting curve analysis were performed using LightCycler (registered trademark) 96 System (Roche).
  • LightCycler registered trademark
  • 96 System 96 System
  • v (P, A, P, A, A, A, A, P, A, P, P, A, A, P, P, A, P, P, A, P, P, A, P, P). It is described as a 17-dimensional vector as in.
  • v is called a cassette vector, and the i-th element thereof indicates whether the i-th unit DNA cassette is an overexpressed type or a non-overexpressed type.
  • the data of the strains having the same cassette vector among the strains subjected to the culture test were summarized into one. Specifically, when a plurality of stocks have the same cassette vector v', those stocks are deleted from the data, and instead, one virtual stock having the cassette vector v'is added to the data. The glutamic acid production amount of the added strain was taken as the average value of the glutamic acid production amount of the deleted strain.
  • the unit DNA cassette was purified from the seed plasmid 1 and the seed plasmid 3 by the method shown in the above item 9, respectively, and a combinatorial library by Combi-OGAB was prepared by the method shown in the above item 10.
  • the obtained plasmid solution was transformed into an Escherichia coli strain by the same method as in item 11 above, and a culture test was conducted in the same manner as in items 12 and 13 above to measure the amount of glutamine produced and evaluated.
  • the integration cassette of the Combi-OGAB plasmid introduced into the strain was determined.
  • the obtained data was statistically analyzed by the method shown in item 14 above.
  • a pKD46 plasmid containing a gene encoding a recombinase was transformed into a BW25113 strain and a BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf strain by an electroporation method to prepare a BW25113 / pKD46 strain and a BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf / pKD46 strain.
  • a DNA fragment for replacing the gabT gene with the kanamycin resistance gene and disrupting it was prepared by PCR using pKD13 containing the kanamycin resistance gene as a template and primers d-gabTF and dgabTR (SEQ ID NOs: 147 and 148).
  • the prepared DNA fragment was transformed into the BW25113 / pKD46 strain and the BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf / pKD46 strain by electroporation to obtain a transformant showing kanamycin resistance (transformant in which gabT was replaced with a kanamycin resistance gene). did.
  • kanamycin resistance marker a flippase (FLP) expression plasmid was introduced by electroporation to obtain transformants showing kanamycin sensitivity (BW ⁇ gabT / pKD46 and BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf strain ⁇ gabT / pKD46).
  • FLP flippase
  • BW ⁇ gabT / pKD46 and BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf strain ⁇ gabT / pKD46 strains were cultured overnight in 5 mL of LB liquid medium containing no antibiotics, and then seeded in LB agar medium containing no antibiotics. , PKD46-deficient ampicillin-sensitive transformants (BW ⁇ gabT and BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf ⁇ gabT strains) were obtained.
  • pTrc-nifV The nifV overexpressing plasmid (pTrc-nifV) was prepared by the procedure shown below.
  • pTrc-nifV is a clone of the nifV gene (SEQ ID NO: 149) derived from Azotobacter vinelandii obtained by artificial synthesis (Thermo Fisher Scientific) into the MCS of the pTrc99a plasmid (Pharmacia).
  • the DNA fragment for cloning was amplified by PCR using KOD one PCR Master Mix and pTrc NifVF and pTrc NifVR (SEQ ID NOs: 154 and 155) using the artificially synthesized nifV gene as a template.
  • the plasmid pTrc99a was cleaved with restriction enzymes NcoI and BamHI (New England Biolabs).
  • the obtained PCR fragment and restriction enzyme-treated plasmid were purified using the FastGene Gel / PCR Execution kit, and the purified fragment was assembled by GeneArt Series Cloning and Assembury Enzyme Mix and cloned into Escherichia coli DH5 ⁇ strain. After the plasmid was extracted, the sequence was confirmed, and the one confirmed to be the correct sequence was called pTrc-nifV and used in the subsequent experiment.
  • pTrc-gdhA-gadBm The gdhA and gadB overexpression plasmids (ptrc-gdhA-gadBm) were prepared by the procedure shown below.
  • pTrc-gdhA-gadBm is a gene (SEQ ID NO: 151) obtained by introducing E. coli-derived gdhA gene (SEQ ID NO: 150) obtained by PCR and E. coli-derived gadB mutated with E89Q and ⁇ 452-466 into the MCS of the pTrc99a plasmid. It is a clone.
  • the gdhA gene was obtained using the genome of Escherichia coli BW25113 strain as a template and primers pTrc gdhA F and pTrc gdhA R (SEQ ID NOs: 156 and 157).
  • the plasmid pTrc99a was cleaved with restriction enzymes NcoI and BamHI (New England Biolabs).
  • the obtained PCR fragment and restriction enzyme-treated plasmid were purified using FastGene Gel / PCR Extraction kit, and the purified fragment was assembled by GeneArt Samples Cloning and Assembury Enzyme Mix and cloned into Escherichia coli DH5 ⁇ strain.
  • the gadB (E89Q, ⁇ 452-466) gene uses the genome of Escherichia coli BW25113 strain as a template and two types of primer sets gdhA-gadBm F and gadB_E89Q R (SEQ ID NOs: 158 and 159), gadB_E89Q F and gdhA-gadBm R (SEQ ID NO: 160). 161) was used.
  • the plasmid pTrc-gdhA was cleaved with the restriction enzyme BamHI (New England Biolabs).
  • the obtained two types of PCR fragments and restriction enzyme-treated plasmids were purified using FastGene Gel / PCR Extraction kit, and the purified fragments were assembled into GeneArt Sequence Cloning and Asshemly Enzyme Mix, and Escherichia coli DH5 ⁇ strain was cloned into Escherichia coli DH5 ⁇ . After the plasmid extraction, the sequence was confirmed, and the one confirmed to be the correct sequence was called pTrc-gdhA-gadBm and used in the subsequent experiment.
  • ptrc-gmas The ⁇ -glutamylmethylamide synthase (GMAS) overexpression plasmid (ptrc-gmas) was prepared by the procedure shown below.
  • pTrc-gmas is a clone of the GMAS gene (SEQ ID NO: 152) derived from Pseudomonas syringae optimized for Escherichia coli codons obtained by artificial synthesis (Thermo Fisher Scientific) into the MCS of the pTrc99a plasmid.
  • the DNA fragment for cloning was amplified by PCR using KOD one PCR Master Mix and pTrc gmas F and pTrc gmas R (SEQ ID NOs: 162 and 163) using the artificially synthesized GMAS gene as a template.
  • the plasmid pTrc99a was cleaved with restriction enzymes NcoI and BamHI (New England Biolabs).
  • the obtained PCR fragment and restriction enzyme-treated plasmid were purified using FastGene Gel / PCR Extraction kit, and the purified fragment was assembled by GeneArt Samples Cloning and Assembury Enzyme Mix and cloned into Escherichia coli DH5 ⁇ strain. After the plasmid was extracted, the sequence was confirmed, and the one confirmed to be the correct sequence was called pTrc-gmas and used in the subsequent experiment.
  • BW25113 ⁇ gabT strain and Cy1-A8 ⁇ gabT strain by electroporation BW25113 ⁇ gabT / gdhA-gadBm and Cy1-A8 ⁇ gabT / gdhA-gadBm strains were obtained to obtain ⁇ -aminobutyric acid. Used for the test.
  • BW25113 / gmas and Cy1-A8 / gmas strains were obtained and used for theanine production test.
  • BW25113 / gdhA-gadBm strain with 100 ⁇ g / ml ampicillin in 5 mL LB medium
  • Cy1-A8 ⁇ gabT / gdhA-gadBm strain with 100 ⁇ g / ml ampicillin and 12.5 ⁇ g / ml chloramphenicol in 5 mL.
  • the cells were cultured in LB medium at 37 ° C., 200 rpm, and 16 hours, respectively.
  • the cells were cultured at 37 ° C., 200 rpm, and 16 hours, respectively.
  • MSTFA N-methyl-N-trimethylsilyltrifluoroacetamide
  • the GC-MS (GCMS-QP2010 Ultra; Shimadzu) was equipped with a DB-5 ms column (15 m lensgth ⁇ 0.25 mm id., Film sickness of 0.25 ⁇ m; Agilent).
  • the settings of each parameter of GC-MS are as follows; the temperature of the sample vaporization chamber was set to 230 ° C.
  • the sample injection volume was 1 ⁇ L and the split ratio was set to 1:25.
  • Helium was used as the carrier gas and the flow rate was set to 1.12 mL / min.
  • the column temperature was kept at 80 ° C. for 2 minutes, then raised to 330 ° C. at 15 ° C./min, and kept warm at 330 ° C. for 6 minutes.
  • the interface temperature and the ion source temperature were set to 250 ° C and 200 ° C, respectively.
  • Ionization (EI) was performed at 70 eV.
  • the analysis was performed in parallel with the Scan mode (85-500 m / z) and the Selected ion monitoring (SIM) mode (m / z 103 for ribitol) in the Fast Automated Scan / SIM (FASTT) mode.
  • BW ⁇ ptsHI ⁇ ackA lacking the glucose-6-phosphate 1-dehydlogenase gene (zwf), which is responsible for the reaction to the acid pathway, and the gene encoding the protein involved in glucose uptake by the phosphoenolpyruvate: glycophosphotransferase system (PTS) (ptsHI).
  • pET-PR-galP-glk a plasmid for overexpressing the galP gene and the glk gene was introduced into the BW ⁇ ptsHI ⁇ ackA-pta ⁇ zwf strain, and the prepared Escherichia coli strain was named the AKG-based strain.
  • FIG. 1 shows the production amounts of AKG contained in the culture supernatant and succinic acid and glutamic acid produced from AKG in a one-step reaction. It was confirmed that in the AKG-based strain, the production amount of AKG and the metabolites produced from AKG was increased as compared with the BW25113 strain.
  • FIG. 2 shows 17 genes encoding the major enzymes responsible for the metabolic reaction from glucose to AKG.
  • a combinatorial plasmid library was constructed using the Oldered Gene Assembury in Bacillus subtilis method (OGAB).
  • OGAB Bacillus subtilis method
  • 24 colonies were randomly selected from the colonies that grew on the plate, and a colony suspension was prepared using a set of 17 primers designed to sandwich the joint of the DNA cassette. PCR was performed on the template. As a result, it was confirmed that 17 gene cassettes were randomly accumulated in all 24 clones.
  • a fermentation test using 96 well plates was performed using 88 strains randomly selected from the obtained transformant colonies. At the same time, 4 colonies of each of the overexpressed control strain and the non-overexpressed control strain were also subjected to the culture test. The results of the culture test are shown in FIG.
  • the glutamic acid production amounts of the non-overexpression control strain and the overexpression control strain were 100 mg / L and 1330 mg / L.
  • the glutamic acid production amount of the combinatorial library-introduced strain varied from 97 mg / L to 2180 mg / L, and a strain with improved productivity could be obtained from the overexpressing control strain in which all 17 genes were overexpressed.
  • a single overexpression plasmid (pCP-ppc and pCP-aceF) of ppc and aceF and a plasmid (pCP-ppc-aceF) for simultaneously overexpressing both genes were prepared.
  • the prepared plasmid was introduced into the BW25113 strain.
  • a culture test was conducted using a BW25113 strain, a ppc overexpressing strain, an aceF overexpressing strain, and a ppc-aceF overexpressing strain. The results of the culture test are shown in FIG. The amount of glutamic acid produced was improved in the strains overexpressing aceF and ppc.
  • the prepared 2nd generation combinatorial plasmid library was introduced into the base strain. After transformation, 88 colonies picked up at random were used for culture testing on 96-well plates. The results of the culture test are shown in FIG.
  • the gene cassette accumulated in the combinatorial plasmid introduced into each E. coli strain used for the culture was determined in the same manner as when the first-generation combinatorial plasmid library was introduced.
  • the combinatorial plasmid in which 17 gene cassettes were correctly accumulated was introduced in 65 strains.
  • a combinatorial plasmid in which a part of the cassette was deleted was introduced.
  • 64 different sequences were found to be duplicated for one sequence.
  • Wild strains of Escherichia coli do not produce homocitrate, but by introducing the homocitrate synthase gene, it becomes possible to produce homocitrate by condensing AKG and acetyl-CoA.
  • the nifV gene (SEQ ID NO: 149) derived from Azotobacter vinelandii (Zheng L, White RH, Dean DR: Azotobacter of the Azotobacter vineliandii vinevernidii nifV-engine. ) was introduced into BW25113 and Cy1-A8 strains, and the amount of homocitrate produced was evaluated.
  • the homocitrate production of the BW25113 / nifV strain and the Cy1-A8 / nifV strain was 422 mg / L and 775 mg / L, respectively, and the Cy1-A8 / nifV strain produced 1.8 times more homocitrate than the BW25113 / nifV strain. The amount is shown (Fig. 9-a).
  • GABA is produced from AKG by the action of glutamate dehydrogenase (gdhA) and glutamate decarboxylase (gadB), and is degraded by GABA transaminase (GabT). Therefore, in this study, the GabT gene was first disrupted from the BW25113 strain and the Cy1-A8 strain.
  • glutamic acid decarboxylase (gadB) in Escherichia coli is known to be extremely low at pH 6 or higher (Tu Ho NA, How CY, Kim WH, Kang TJ: Expanding the active pH range ech). E. coli glutamate decarboxylase by breaking the cooperativees. J.
  • Wild strains of Escherichia coli do not produce theanine, but by introducing the ⁇ -glutamylmethylamide synthase gene, theanine can be produced by the condensation of glutamic acid and ethylamine.
  • the gmas gene SEQ ID NO: 152 (WO2018190398A1) derived from Pseudomonas syringae was introduced into BW25113 and Cy1-A8 strains, and the production of theanine was evaluated.
  • the theanine production of the BW25113 / gmas strain and the Cy1-A8 / gmas strain was 0.93 g / L and 1.87 g / L, respectively, and the Cy1-A8 / gmas strain was 2.0 times higher than that of the BW25113 / gmas strain.
  • the theanine production is shown (Fig. 9-c).
  • a metabolically modified microbial strain of the present invention it is possible to efficiently construct a strain that highly produces useful compounds such as hub compounds in microbial fermentation.
  • Combi-OGAB long-chain DNA using artificial DNA parts that are not subject to endogenous metabolic regulation, and a base strain is constructed by subjecting the parent strain to metabolic modification based on metabolic flux analysis (FBA).
  • FBA metabolic flux analysis
  • a metabolically modified microbial strain in which the production amount of useful compounds is significantly increased as compared with the parent strain.
  • ⁇ -ketoglutaric acid was targeted as a hub compound (useful compound), and a strain capable of producing this was successfully constructed.
  • the metabolically modified microbial strain constructed by the method of the present invention can highly produce hub compounds in microbial fermentation, it can be utilized for the production of various substances using these as starting materials.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、有用化合物を高生産する代謝改変微生物株の構築方法を提供すること、及び有用化合物を高生産する代謝改変微生物株を提供することを目的とする。 本発明は、有用化合物を高生産する代謝改変微生物株の構築方法であって、(A)親株に代謝改変を施し、ベース株を構築する工程、(B)上記有用化合物の生合成経路を細胞内で機能可能に構成する酵素群の、各酵素をそれぞれコードするDNAに、強発現用プロモーター及びターミネーター配列を連結させた単位DNAカセット、並びに各酵素をそれぞれコードするDNAに、低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた単位DNAカセットを準備し、OGAB法を用いて遺伝子集積を行い、プラスミドライブラリーを構築する工程、(C)上記構築したプラスミドライブラリーを上記ベース株に導入し、各株の上記有用化合物生産量を測定する工程、(D)(C)工程において得られた各株に導入されたプラスミドの配列情報を解析する工程、(E)(C)工程において得られた各株の上記有用化合物生産量と、(D)工程において得られたプラスミドの配列情報を関連づけた統計解析又は機械学習を行い、上記有用化合物の生産に寄与する有用遺伝子を同定する工程、及び(F)(E)工程において同定された有用化合物の生産に寄与する有用遺伝子について組換えを行った株を作成する工程を含む、代謝改変微生物株の構築方法である。

Description

有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株
 本発明は、有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株に関する。
 微生物は古くからアルコール、アミノ酸、核酸、有機酸、脂質、ビタミン、抗生物質等の様々な有用物質の生産に用いられてきた。特定の有用物質の生産に優れた微生物が単離され、工業的に利用されてきた。近年、微生物発酵を利用した有用物質の生産ための基盤技術が注目されており、関連市場が急速に拡大していくと予想されている。
 従来、代謝工学的なアプローチにおいて、分子生物学的な手法を利用した微生物株の改良、目的代謝産物の生産性向上のための多様な試みが行われてきた。しかし、分子生物学的な手法を利用した既存の代謝工学的な微生物株の改良方法は、試行錯誤に多大な労力と時間を要するものであった。近年、有用微生物のゲノム配列が明らかになったことで、代謝ネットワークモデルの構築が可能になった。中でも代謝フラックス解析(Flux Balance Analysis;FBA)に基づく代謝シミュレーション法は、大胆な簡略化で複雑性の問題を回避し、代謝工学分野で広く利用されている実用的な手法である(McClosky,D. et al.:Mol.Sys.Biol.,9,661(2013)、特表2008-527992号公報)。このFBAを用いて、有用化合物の生産効率を向上させるために必要な遺伝子、不要な遺伝子をある程度予測することができる。しかし、この方法で導き出された結果だけではまだ不十分な場合が多いため、さらに効率よく有用化合物の生産効率を向上させた微生物株を構築する方法が求められている。
特表2008-527992号公報
McClosky, D. et al.: Mol. Sys. Biol., 9, 661 (2013)
 本発明は、有用化合物を高生産する代謝改変微生物株の構築方法を提供すること、及び有用化合物を高生産する代謝改変微生物株を提供することを目的とする。
 このような状況の中、本発明者らは、微生物発酵のターゲットとなる有用物質の多くは特定の共通した代謝物質をハブ化合物として生産できることに着目し、このようなハブ化合物を高生産できる株のラインナップを揃えておくことで有用物質を高生産できる株を短期間で育種することが可能になると考え研究を進めた。その結果、親株に対し、代謝フラックス解析(Flux balance analysis;FBA)に基づく代謝改変を施してベース株を構築し、さらに内生の代謝調節を受けない人工的なDNAパーツを用いたCombi-OGAB長鎖DNAライブラリーをベース株に導入することで、ハブ化合物高生産株の構築に成功した。また、情報解析技術を活用してハブ化合物高生産に寄与する遺伝子を選定することにも成功した。具体的には、ハブ化合物(有用化合物)としてα-ケトグルタール酸(AKG)をターゲットとし、この化合物の高速育種のためのワークフロー開発に成功し、AKG高生産に寄与する遺伝子を見出した。即ち、本発明の要旨は以下のとおりである。
[1]有用化合物を高生産する代謝改変微生物株の構築方法であって、
(A)親株に代謝改変を施し、ベース株を構築する工程、
(B)上記有用化合物の生合成経路を細胞内で機能可能に構成する酵素群の、各酵素をそれぞれコードするDNAに、強発現用プロモーター及びターミネーター配列を連結させた単位DNAカセット、並びに各酵素をそれぞれコードするDNAに、低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた単位DNAカセットを準備し、OGAB法を用いて遺伝子集積を行い、プラスミドライブラリーを構築する工程、
(C)上記構築したプラスミドライブラリーを上記ベース株に導入し、各株の上記有用化合物生産量を測定する工程、
(D)(C)工程において得られた各株に導入されたプラスミドの配列情報を解析する工程、
(E)(C)工程において得られた各株の上記有用化合物生産量と、(D)工程において得られたプラスミドの配列情報を関連づけた統計解析又は機械学習を行い、上記有用化合物の生産に寄与する有用遺伝子を同定する工程、及び
(F)(E)工程において同定された有用化合物の生産に寄与する有用遺伝子について組換えを行った株を作成する工程
を含む、代謝改変微生物株の構築方法。
[2](B)工程~(E)工程の一連の工程を複数回繰り返す、[1]に記載の代謝改変微生物株の構築方法。
[3](A)工程における代謝改変が、上記有用化合物生産のための代謝フラックス解析(Flux balance analysis;FBA)に基づく代謝改変である、[1]又は[2]に記載の代謝改変微生物株の構築方法。
[4]上記有用化合物が、α-ケトグルタール酸、チロシン、L-グルタミン酸、ピルビン酸、UDP-グルコース、コハク酸、酢酸、ファルネシルピロリン酸、グルタチオン、ギ酸、ホルムアルデヒド、L-メチオニン、グリシン、グリオキシル酸、ゲラニルゲラニル二リン酸、アセチル-CoAのいずれかである、[1]から[3]のいずれかに記載の代謝改変微生物株の構築方法。
[5]上記代謝改変微生物株が、大腸菌、酵母、微細藻類、シアノバクテリア(ラン藻)、放線菌、コリネ型細菌のいずれかである、[1]から[4]のいずれかに記載の代謝改変微生物株の構築方法。
[6]上記有用化合物が、α-ケトグルタール酸であり、(B)工程における上記酵素群が、glk,pgi,pfkA,fbaA,tpiA,gapA,pgk,gpmA,eno,pykF,lpdA,aceE,aceF,gltA,acnB,icd及びppcを含む、[1]から[5]のいずれかに記載の代謝改変微生物株の構築方法。
[7][6]に記載の方法により構築された、aceF、ppc、glkの発現が亢進している代謝改変大腸菌株。
 本発明の代謝改変微生物株の構築方法によると、微生物発酵におけるハブ化合物等の有用化合物を高生産する株を効率よく構築することが可能である。親株に対し、代謝フラックス解析(Flux balance analysis;FBA)に基づく代謝改変を施してベース株を構築し、さらに内生の代謝調節を受けない人工的なDNAパーツを用いたCombi-OGAB長鎖DNAライブラリーをベース株に導入することで、親株と比較して有用化合物の生産量が顕著に増加した代謝改変微生物株を構築することができる。実施例で示したとおり、本発明の方法により、ハブ化合物(有用化合物)としてα-ケトグルタール酸をターゲットとし、これを高生産できる株を構築することに成功した。本発明の方法によると、上記の化合物以外の有用化合物についても、高生産株を構築することが可能である。また、本発明の方法によって構築された代謝改変微生物株は、微生物発酵におけるハブ化合物を高生産できるため、これらを出発原料としたさまざまな物質の生産に活用することができる。
図1はBW25113及びベース株のフラスコ培養結果を示す図である。 図2は、Combi-OGAB法で発現量を調節する遺伝子を示す図である。 図3は、第1世代Combi-OGABプラスミド導入株の96wellプレートでの培養試験結果を示す図である。 図4-1は、第1世代Combi-OGABプラスミド導入株の統計解析結果を示す図である。 図4-2は、第1世代Combi-OGABプラスミド導入株の統計解析結果を示す図である。 図4-3は、第1世代Combi-OGABプラスミド導入株の統計解析結果を示す図である。 図5は、ppc、aceF過剰発現株の培養試験結果を示す図である。 図6は、第2世代Combi-OGABプラスミド導入株の培養試験結果を示す図である。 図7-1は、第2世代Combi-OGABプラスミド導入株の統計解析結果を示す図である。 図7-2は、第2世代Combi-OGABプラスミド導入株の統計解析結果を示す図である。 図7-3は、第2世代Combi-OGABプラスミド導入株の統計解析結果を示す図である。 図8は、Cy1-A8株に導入されているCombi-OGABプラスミドの配列情報である。 図9は、ホモクエン酸、GABA、テアニンの生産試験結果である。
 以下、本発明について詳細に説明する。なお、本明細書において、分子生物学的手法は特に明記しない限り当業者に公知の一般的実験書に記載の方法又はそれに準じた方法により行うことができる。また、本明細書中で使用される用語は、特に言及しない限り、当該技術分野で通常用いられる意味で解釈される。
<代謝改変微生物株の構築方法>
 本発明は有用化合物を高生産する代謝改変微生物株の構築方法に関する。具体的には、以下の(A)~(F)の工程を含む代謝改変微生物株の構築方法に関する。
(A)親株に代謝改変を施し、ベース株を構築する工程
(B)上記有用化合物の生合成経路を細胞内で機能可能に構成する酵素群の、各酵素をそれぞれコードするDNAに、強発現用プロモーター及びターミネーター配列を連結させた単位DNAカセット、並びに各酵素をそれぞれコードするDNAに、低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた単位DNAカセットを準備し、OGAB法を用いて遺伝子集積を行い、プラスミドライブラリーを構築する工程
(C)上記構築したプラスミドライブラリーを上記ベース株に導入し、各株の上記有用化合物生産量を測定する工程
(D)(C)工程において得られた各株に導入されたプラスミドの配列情報を解析する工程
(E)(C)工程において得られた各株の上記有用化合物生産量と、(D)工程において得られたプラスミドの配列情報を関連づけた統計解析又は機械学習を行い、上記有用化合物の生産に寄与する有用遺伝子を同定する工程
(F)(E)工程において同定された有用化合物の生産に寄与する有用遺伝子について組換えを行った株を作成する工程
 上記有用化合物としては、微生物発酵によって生産される化合物であれば特に限定されないが、例えば、α-ケトグルタール酸、チロシン、L-グルタミン酸、ピルビン酸、UDP-グルコース、コハク酸、酢酸、ファルネシルピロリン酸、グルタチオン、ギ酸、ホルムアルデヒド、L-メチオニン、グリシン、グリオキシル酸、ゲラニルゲラニル二リン酸、アセチル-CoA等が挙げられる。
 以下に、本発明の代謝改変微生物株の構築方法の各工程を詳細に説明する。
[工程(A)]
 本工程は、親株に代謝改変を施し、ベース株を構築する工程である。
 上記親株としては、大腸菌、酵母、微細藻類、シアノバクテリア(ラン藻)、放線菌、コリネ型細菌等の微生物株を選定することができる。これらの親株は、天然に存在する株でもよいし、遺伝子改変がなされている株でもよい。
 上記ベース株とは、工程(B)以降において、OGAB法(Tsuge,K.,Matsui,K.&Itaya,M.One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res.31,e133(2003))を用いて遺伝子集積を行って構築したプラスミドライブラリーを導入するために用いられる微生物株である。親株に、後述する代謝フラックス解析の手法等を用いて、有用化合物の生産効率を向上させるための代謝改変を行った微生物株をいう。即ち、親株に対して有用化合物の生産効率を向上させるために必要な遺伝子発現を増強し、生産効率の向上への寄与が少ない或いは寄与がない遺伝子発現を抑制(破壊)することを行った株である。
 上記選定した親株について、代謝フラックス解析(フラックスバランス解析)(Flux Balabce Analysis;FBA)を行い、有用化合物の生産効率を向上させるために必要な遺伝子、生産効率の向上への寄与が少ない或いは寄与がない遺伝子を予測する。ここで、代謝フラックス解析(FBA)とは、代謝シミュレーションで近年よく使用される手法のひとつである。ゲノム情報や予測に基づいて代謝経路を構築し、各ノード(代謝分子)の増加(例えば合成反応や取り込み輸送等)と、減少(分解・変換反応や排出輸送)を行列式で表現する。このとき、代謝系が定常状態、つまりモデル内の代謝中間体が一定量に保たれるという前提で式を解き、また反応の方向や速度上限といった制約条件を加えることで得られる解を制限していく。この結果に対して、知りたい現象(例えば酵素の不活化やバイオマスの生産量の増加)を目的関数として与え、それを満たす解を求めることでフラックスの予測を行う。この予測に基づいて、上記親株に、有用化合物の生産効率を向上させるために必要な代謝改変、即ち、有用化合物の生産効率を向上させるために必要な遺伝子発現を増強し、不要な遺伝子発現を抑制することを行い、ベース株を構築する。但し、FBAによる予測は完全ではないため、解析結果を検討し、増強又は抑制すべき遺伝子は研究者により適切に選択されるべきである。
 目的とする有用化合物がα-ケトグルタール酸(AKG)である場合、FBAの結果から、例えば次のようなベース株を作成することが考えられる。即ち、酢酸の生合成を担うacetate kinase遺伝子(ackA)とphosphate acetyltransferase遺伝子(pta)、解糖系からペントースリン酸経路への反応を担うglucose-6-phosphate 1-dehydrogenase遺伝子(zwf)、ホスホエノールピルビン酸:糖ホスホトランスフェラーゼシステム(PTS)によるグルコース取り込みに関与するタンパク質をコードする遺伝子(ptsHI)を欠損した大腸菌株を作成する。続いて、この大腸菌株にgalP遺伝子及びglk遺伝子を過剰発現するためのプラスミドを導入し、ベース株とすることができる。
[工程(B)]
 本工程は、目的とする有用化合物の生合成経路を細胞内で機能可能に構成する酵素群の、各酵素をそれぞれコードするDNAに、強発現用プロモーター及びターミネーター配列を連結させた過剰発現単位DNAカセット、並びに各酵素をそれぞれコードするDNAに、低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた非過剰発現単位DNAカセットを準備し、OGAB法を応用したCombi-OGAB法によりコンビナトリアルライブラリーを構築する工程である。
 上記ベース株内の中央代謝経路は内生の代謝調節機構により厳しく制御されているため、FBAで導出された結果通りに、有用化合物生産経路遺伝子の発現を最適化することは難しい。そこで、内生の代謝調節を受けない人工的なDNAパーツを用いたCombi-OGAB長鎖DNAライブラリーの設計・構築を行い、上記工程(A)で構築したベース株に導入する。また、情報解析技術を活用して有用化合物高生産に寄与する遺伝子を選定することもできる。
 上記酵素群は、目的とする有用化合物の生合成経路において必要な酵素群であり、上記ベース株内で機能する酵素群である必要がある。例えばこのような生合成経路及び酵素群の例として、目的とする有用化合物がα-ケトグルタール酸(AKG)である場合、図2に示す生合成経路及び必要な酵素群が挙げられる。図2中、glk,pgi,pfkA,fbaA,tpiA,gapA,pgk,gpmA,eno,pykF,lpdA,aceE,aceF,gltA,acnB,icd及びppcがグルコースからAKGの生合成に必要な酵素群である。これらの遺伝子発現をCombi-OGAB法を用いて最適化することができる。最適化には、以下の2つの要素が含まれる。即ち、上記酵素群のうち、有用化合物の生産量向上に有効な、最適な過剰発現遺伝子の組み合わせを見出すこと、及び有用化合物の生産量向上に有効な、過剰発現しない方がよい(或いは破壊した方がよい)遺伝子の組み合わせを見出すことである。
 本工程においては、各酵素をそれぞれコードするDNAに、強発現用プロモーター及びターミネーター配列を連結させた過剰発現単位DNAカセット、並びに各酵素をそれぞれコードするDNAに、低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた非過剰発現単位DNAカセットを準備する。有用化合物の代謝経路に存在する酵素群の各項の遺伝子の網羅的な過剰発現の組み合わせを検証するために、各酵素遺伝子について過剰発現DNAカセットと非過剰発現DNAカセットの2種類の単位DNAカセットを作成する。過剰発現DNAカセットは、プロモータ配列、リボソーム結合配列(RBS)、CDS、ターミネーター配列から構成される。非過剰発現カセットとしては、開始コドンを除去したCDSとターミネーター配列から構成されるもの、又は低発現用プロモーター配列、リボソーム結合配列(RBS)、CDS、ターミネーター配列から構成されるものが使用されうるが、開始コドンを除去したCDSとターミネーター配列から構成されるものを使用することが好ましい。
 CDSについて、その由来等は特に限定されないが、酵素毎に適宜選択される。例えば、大腸菌由来の配列、Klebsiella pneumoniae由来の配列、それぞれについてアロステリック阻害を防ぐために変異を導入した配列等が挙げられる。また、プロモーター配列、ターミネーター配列は、酵素毎に適宜適切な配列が選択される。各酵素をそれぞれコードするDNAに強発現用プロモーター及びターミネーター配列を連結させた過剰発現単位DNAカセット、並びに各酵素をそれぞれコードするDNAに低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた非過剰発現単位DNAカセットは人工合成により作製することができる。
 単位DNAカセットは、例えば、鋳型DNA上の塩基配列に各突出末端を生成する制限酵素認識配列を付加したプライマーを用いたポリメラーゼチェインリアクション(PCR)により増幅したDNA断片、あるいは、予め末端に任意の突出配列を生成するように制限酵素認識配列を組み込んだ化学合成DNA断片等をプラスミドベクターにクローニングし塩基配列を確認後用いる。各単位DNAは、特定の順序で連結して最終的に取得したい微生物形質転換用DNA断片となるように設計される。
 次に、酵素群の各酵素遺伝子の単位DNAカセットに、集積用ベクターを合わせたDNA断片をOGAB法により連結する。有用化合物の代謝経路に関わる遺伝子群について、それぞれの酵素の過剰発現及び非過剰発現DNAカセットを準備する。例えば、有用化合物がα-ケトグルタール酸(AKG)である場合を例にとって説明する。図2に示す生合成経路に必要な17種の酵素の遺伝子の単位DNAカセットに、集積用ベクターを合わせた18のDNA断片をOGAB法により連結する。AKG代謝経路に関わる全部で17の酵素遺伝子の過剰発現及び非過剰発現DNAカセットを順に第1から第17単位DNAカセットと定義する。集積ベクターを第18単位DNAカセットと定義する。第1~第18単位DNAカセットは数字通りに連続し、第18と第1単位DNAカセットが連結する構造になることで、1つの挿入ユニットを形成する。各単位DNAカセットの末端には、断片の左右にそれぞれに単位DNAカセットの番号ごとに指定されたに固有の3塩基の3’末端突出塩基が存在する。この相補性により連結相手が指定されている。この突出の構造は、回分構造(パリンドローム)以外であれば、5’末端突出、3’末端突出の突出の形状の違いも含めて、特に制限はない。ただし、単位DNAの作製の際に突出末端を制限酵素の消化により作製してもよい。制限酵素としては、特定の配列を認識してその近傍に任意の配列の突出末端を作成可能な酵素を用いると、単位DNA断片の突出末端が各連結部位で異なるものにできるため、その連結する順序が保たれる。これらの制限酵素の例としては、通常の分子生物学に用いられる制限酵素の他に、人工制限酵素のTALENやZNF、あるいはCRISPR-Cpf1等の突出末端精製可能なCRISPR技術関連酵素等が挙げられるが、このましくはAarI、AlwNI、BbsI、BbvI、BcoDI、BfuAI、BglI、BsaI、BsaXI、BsmAI、BsmBI、BsmFI、BspMI、BspQI、BtgZI、DraIII、FokI、PflMI、SfaNI、SfiI等のようなTypeII制限酵素を用いることが好ましい。これらの制限酵素処理により得られる複数の突出配列は、単一種プラスミド内で唯一の配列となっている必要がある。また、種プラスミド群は、コンビナトリアルライブラリーの組換え単位(多くの場合単位DNAがその単位に一致するが、場合により組換え単位が一部の種プラスミドにおいては、複数の単位DNAからなる場合がある。)において同一の突出配列を、同一の鎖に、同一の順番で有する必要がある。
 上記のAKG代謝経路に関わる遺伝子群を含む1つの挿入ユニットは、具体的には、例えば次のような構成が考えられる。即ち、(第18単位DNA)-GTT-(第1単位DNA)-TGA-(第2単位DNA)-CGA-(第3単位DNA)-TGT-(第4単位DNA)-GAT-(第5単位DNA)-TTG-(第6単位DNA)-GTC-(第7単位DNA)-ATG-(第8単位DNA)-TGG-(第9単位DNA)-TAG-(第10単位DNA)-ACT-(第11単位DNA)-GTA-(第12単位DNA)-CTT-(第13単位DNA)-CAG-(第14単位DNA)-GAA-(第15単位DNA)-CTC-(第16単位DNA)-CAC-(第17単位DNA))-TCT-(第18単位DNA)である。
 挿入DNAユニットを構成する単位DNAのうち一つ以上の単位DNAについては、宿主細胞で有効な複製開始点を含む必要がある。それ以外の単位DNAについては、代謝経路クラスター、生物の連続したゲノム配列の一部もしくは全部、人工遺伝子、人工遺伝子回路等、連続した塩基配列を構成する要素であるが、単独の単位DNAが生物学的な機能単位と一致しなければならないという制約はない。
 OGAB種プラスミドの構築においては、即ち、上述の各単位DNAをほぼ等モルとなるように調整した単位DNA混合液中、DNAリガーゼ等を用いて連結(ライゲーション)することにより微生物形質転換用DNA断片を作製することも可能であるが、上記の各単位DNAのみが遺伝子集積の出発材料に限定されるわけではなく、最終的に各単位DNAに分割可能な構造となっていれは、いかなる集積方法で準備された集積体も利用可能である。
 単位DNAの連結方法は特に制限されないが、ポリエチレングリコールと塩の存在下で行うことが好ましい。塩としては、1価のアルカリ金属の塩が好ましい。具体的には、10%のポリエチレングリコール6000と250mMの塩化ナトリウムを含むライゲーション反応液で行うことがより好ましい。また、各単位DNAの反応液中の濃度は特に制限はないが、好ましくは、各々1fmol/μL以上の濃度でかつ等モルである。ライゲーションの酵素、反応温度、時間は特に制限はないが、好ましくは、T4DNAポリメラーゼで37℃、30分以上である。
 本発明の微生物形質転換用DNA断片における宿主微生物としては、自然形質転換能を有するものであれば、特に限定されない。このような微生物としては、DNAを取り込む際に一本鎖DNAに処理して取り込む自然形質転換能を有するもの等が挙げられる。具体的には、大腸菌、Bacillus属細菌、Streptococcus属細菌、Haemophilus属細菌、及びNeisseria属等が挙げられる。また、Bacillus属細菌としては、B.subtilis(枯草菌)、B.megaterium(巨大菌)、B.stearothermophilus(中度高熱菌)等が挙げられる。このうちより好ましい微生物としては、その自然形質転換能及び組換え能に優れた大腸菌、枯草菌が挙げられる。
 微生物細胞をコンピテントとする方法は、それぞれの微生物に適した公知の方法を選択することができる。具体的には、例えば、枯草菌の場合には、Anagnostopoulou, C. and Spizizen, J. J. Bacteriol., 81, 741-746(1961)に記載の方法を用いることが好ましい。また、形質転換の方法もそれぞれの微生物に適した公知の方法を用いることができる。コンピテント細胞に与えるライゲーション産物の液量も特に制限はない。好ましくは、コンピテント細胞培養液に対し、1/20から等量であり、より好ましくは、半量である。形質転換体からプラスミドを精製する方法としても公知の方法を用いることができる。
 上述の方法により得られたプラスミドが目的とする挿入DNAを有していることは、制限酵素切断により発生する断片のサイズパターンや、PCR法、塩基配列決定法により確認することができる。また、挿入DNAが物質生産等の機能を有する場合は、その機能を検出することにより確認することが可能である。
 コンビナトリアルライブラリー構築おいて用いる種プラスミドの調整は、一般的な環状プラスミドの精製法であればどのような方法でも用いることが出来るが、望ましくは、プラスミドDNA以外のDNAの混入の恐れのない方法が良く、具体的には塩化セシウムーエチジウムブロマイド密度勾配超遠心法が好ましい。
 各酵素の過剰発現DNAカセットが連なった種プラスミド1と、各酵素の非過剰発現DNAカセットが連なった種プラスミド2の、2つのプラスミドをOGAB法により構築する。調製した種プラスミドを、それぞれに適した制限酵素で処理して、単位DNAに分解し、複数種類の単位DNA混合液を調製する。調製した種プラスミドは、高純度に精製された後、単位DNAに分解される。
 本工程で得られる単位DNA混合液は、種プラスミドが極めて高純度に精製されるため、プラスミドDNA以外のDNA断片が存在しないようになっている。調製した長鎖DNAを制限酵素で切断し、制限酵素を取り除くことにより、全てのDNA断片のモル濃度の比率が限りなく1に近づいたDNA断片溶液(単位DNA混合液)を得ることができる。
 2種類の種プラスミドに由来する単位DNAカセットの混合溶液は、全てのDNA断片のモル濃度の比率が限りなく1に近づいたDNA断片溶液(単位DNA混合液)である。このDNA断片をOGAB法により単位DNAを再集積させてDNA断片を調製し、形質転換してプラスミドライブラリーを構築する。全てのDNA断片のモル濃度の比率が限りなく1に近づいたDNA断片溶液(単位DNA混合液)を出発材料として遺伝子集積法(OGAB法)を行うことで、より効率的に遺伝子集積を行い、プラスミドライブラリー(Combi-OGABプラスミドライブラリー)を構築することができる。
[工程(C)]
 本工程は、上記構築したプラスミドライブラリーを上記ベース株に導入し、各株の上記有用化合物生産量を測定する工程である。
 工程(B)で得られたCombi-OGABプラスミドライブラリーはエレクトロポレーション法等の従来公知の方法により大腸菌等に形質転換する。エレクトロポレーション後の菌体を培地に懸濁して、30℃、150rpm等の条件で1時間程度の回復培養を行う。培養液をクロラムフェニコール入りLBプレートに広げ、形質転換体を得る。
 上記で得られた、Combi-OGABプラスミドライブラリーの形質転換プレートからランダムに選択したコロニーと、種プラスミド1と2をそれぞれ形質転換した大腸菌株のプレートからのコロニーを掻き取り、常法に従ってそれぞれ24時間程度培養し、さらにM9YE培地等で、37℃、1,000rpm程度で攪拌して培養を行う。18時間程度培養後、培養上清に含まれる有用化合物或いは有用化合物の変換体を測定する。各サンプル中の有用化合物の量は、バイオセンサーにより測定することができる。
[工程(D)]
 本工程は、(C)工程において得られた各株に導入されたプラスミドの配列情報を解析する工程である。
 大腸菌株等に導入されたCombi-OGABプラスミドにおいて、有用化合物の産生量が多かったプラスミドについて、過剰発現又は非過剰発現DNAカセットのどちらが集積されたかを判定するために、リアルタイムPCRによる融解曲線解析を行う。
 即ち、集積カセットの判定のために、酵素の各遺伝子について、集積されたカセットの繋ぎ目を挟み込むようなプライマー及び、過剰発現DNAカセットのプロモーターに特異的にアニーリングするようなプライマーを設計して用いる。PCRのテンプレートとして、培養後の菌体懸濁液、種プラスミド1と2を用いPCR反応を行う。大腸菌株に導入されたCombi-OGAB プラスミドの集積カセットの判定は、PCRにより得られた酵素遺伝子の融解曲線プロファイルを、種プラスミドの融解曲線プロファイルと照合することで行うことができる。
[工程(E)]
 本工程は、(C)工程において得られた各株の上記有用化合物生産量と、(D)工程において得られたプラスミドの配列情報を関連づけた統計解析又は機械学習を行い、上記有用化合物の生産に寄与する有用遺伝子を同定する工程である。酵素群の各遺伝子の中で有用化合物生産量の増加に寄与する遺伝子を同定するために、有用化合物生産量のデータとコンビナトリアルプラスミドの配列解析のデータを用いて統計解析を行う。これにより各遺伝子のうち過剰発現又は非過剰発現が有用化合物の生産量向上に有意に影響する遺伝子を見出すことができる。
[工程(F)]
 本工程は、(E)工程において同定された有用化合物の生産に寄与する有用遺伝子について組換えを行った株を作成する工程である。有用化合物の生産に寄与することがわかった有用遺伝子の単独過剰発現プラスミド及び、全遺伝子を同時に過剰発現するためのプラスミドを作成し、それぞれをベース株に導入する。これらの株で、有用化合物の生産量が向上していることを確認する。
 本発明の代謝改変微生物株の構築方法においては、(B)工程~(E)工程の一連の工程を複数回繰り返すことが好ましい。
 即ち、第二世代コンビナトリアルプラスミドライブラリーとして、有用化合物の生産に寄与することがわかった有用遺伝子(過剰発現することが好ましい遺伝子)は過剰発現DNAカセットのみを用いて、残りの遺伝子については過剰発現及び非過剰発現DNAカセットの両方を用いることで、第一世代で見出した有用遺伝子の過剰発現に加えて、有用化合物生産量の向上に寄与する遺伝子の探索を行う。
 第一世代コンビナトリアルプラスミドライブラリーと同様に、作成した第二世代コンビナトリアルプラスミドライブラリーをベース株に導入し、得られた各株の上記有用化合物生産量と、プラスミドの配列情報を関連づけた統計解析又は機械学習を行い、上記有用化合物の生産に寄与する有用遺伝子をさらに同定する。さらに同様の方法を繰り返すことにより第三世代コンビナトリアルプラスミドライブラリーをベース株に導入し、さらに有用化合物の生産量が向上した代謝改変微生物株を取得することが可能である。
 本発明には、上述の本発明の代謝改変微生物株の構築方法により構築された具体的な微生物株として、aceF、ppc、glkの発現が亢進している代謝改変大腸菌株も含まれる。この代謝改変大腸菌株はα-ケトグルタール酸の生産量が向上した株である。
 以下の実施例にて本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
<実験方法>
1.AKG高生産のためのフラックスバランスシミュレーション(FBA)
 グルコースからのAKG生産量向上に見込みのある遺伝子破壊ターゲットをFBAにより導出した。グルコースの消費速度を10mmol/gDCW/hに固定し大腸菌のゲノムスケールモデル:iJO1366(PMID:21988831,PMCID:PMC3261703,DOI:10.1038/msb.2011.65)を用いて、線形計画法によるコンピュータ計算を行った(Orth, J.D., Thiele, I., Palsson, B.O., 2010. What is flux balance analysis? Nat. Biotechnol. 28, 245-248. https://doi.org/10.1038/nbt.1614)。大腸菌が増殖するための最低限の栄養素である、窒素はアンモニウムイオンの状態で、リンはリン酸イオンの状態で、硫黄は硫酸イオンの状態で自由に取り込めるようにパラメータ設定を行なった。その他、鉄やマグネシウム等の金属イオンも同様に自由に取り込めるように設定した。大腸菌がグルコースを単一炭素源として増殖できるための環境を設定した。また、酸素の取り込み量はゼロ(嫌気条件)から次第に増やし、増殖速度が上昇しなくなるまで(完全好気条件)取り込み酸素量を可変できる条件に設定した。計算のためのソルバーはオープンソフトウェアのGLPK(Gnu Linear Programming Kit)を用いた。欠損及び強化すべき代謝反応酵素の探索のために、上記線形計画法の目的関数を、(1)大腸菌の増殖最大化と(2)ターゲット化合物最大化に設定し、それぞれ計算を行った。両者の細胞内代謝フラックスの予測結果を比較し、(1)の計算においてはフラックスの値が存在するが、(2)の計算においてはフラックス値が0になるものは欠損の候補とした。また、反対に、(1)の計算においてはフラックスの値がないか又は存在しているが、(2)の計算においては、そのフラックス値が増加しているものについては強化すべき候補反応であるとした。
2.FBAを基にしたAKGベース株の構築
 FBAによりptsHI、ackA-pta、zwfがAKG高生産のための破壊ターゲットに選定された。これらの遺伝子は、λ-red recombination法により(Datsenko, K.A., Wanner, B.L., 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640-6645. https://doi.org/10.1073/pnas.120163297)、大腸菌BW25113株から破壊した。簡単には、まず、リコンビナーゼをコードする遺伝子を含むpKD46プラスミドをBW25113株に、エレクトロポレーション法により形質転換しBW25113/pKD46株を作成した。
 ptsHI遺伝子をカナマイシン耐性遺伝子で置換して破壊するためのDNA断片を、カナマイシン耐性遺伝子を含むpKD13をテンプレートにプライマーd-ptsHI F及びd-ptsHI R(配列番号1と2)を用いて、PCRにより作成した。作成したDNA断片を、BW25113/pKD46株にエレクトロポレーションにより形質転換して、カナマイシン耐性を示す形質転換体(ptsHIがカナマイシン耐性遺伝子で置換された形質転換体)を獲得した。続いて、カナマイシン耐性マーカーの脱落のために、フリッパーゼ(FLP)発現プラスミドをエレクトロポレーションにより導入し、カナマイシン感受性を示す形質転換体(BWΔptsHI/pKD46)を獲得した。
 ackA-pta遺伝子をカナマイシン耐性遺伝子で置換して破壊するためのDNA断片を、pKD13をテンプレートにプライマーd-ackA-pta F及びd-ackA-pta R(配列番号3と4)を用いて、PCRにより作成した。作成したDNA断片を、BWΔptsHI/pKD46株にエレクトロポレーションにより形質転換して、カナマイシン耐性を示す形質転換体(ackA-ptaがカナマイシン耐性遺伝子で置換された形質転換体)を獲得した。続いて、カナマイシン耐性マーカーの脱落のために、フリッパーゼ(FLP)発現プラスミドをエレクトロポレーションにより導入し、カナマイシン感受性を示す形質転換体(BWΔptsHIΔackA-pta/pKD46)を獲得した。
 zwf遺伝子をカナマイシン耐性遺伝子で置換して破壊するためのDNA断片を、pKD13をテンプレートにプライマーd-zwf F及びd-zwf R(配列番号5と6)を用いて、PCRにより作成した。作成したDNA断片を、BWΔptsHIΔackA-pta/pKD46株にエレクトロポレーションにより形質転換して、カナマイシン耐性を示す形質転換体(zwfがカナマイシン耐性遺伝子で置換された形質転換体)を獲得した。続いて、カナマイシン耐性マーカーの脱落のために、フリッパーゼ(FLP)発現プラスミドをエレクトロポレーションにより導入し、カナマイシン感受性を示す株(BWΔptsHIΔackA-ptaΔzwf/pKD46)を獲得した。
 BWΔptsHIΔackA-ptaΔzwf/pKD46を、抗生物質を含まない5mLのLB液体培地で1晩培養後、抗生物質を含まないLB寒天培地に播種して、得られたコロニーの中から、pKD46が脱落したアンピシリンに感受性を示す形質転換体(BWΔptsHIΔackA-ptaΔzwf)を獲得した。さらに、後述のgalP-glk過剰発現用プラスミドを導入して得られた形質転換体をAKG-ベース株として以降の実験に用いた。
3.プラスミド構築
 プラスミドの構築には、大腸菌DH5α株を用いて、培養はLB培地(10g/L tryptone、5g/L yeast extract、及び5g/L NaCl)を用いて行った。galP-glk過剰発現用プラスミドは下記に示す手順により作成した。
 galP-glk過剰発現プラスミドは、λpRプロモーター、galP-glk遺伝子、TrrnBターミネーター断片を順につなげたものをpETDuet-1プラスミド(Novagen社)のMCSとlacI遺伝子領域を除いたプラスミドにクローニングしたものである。各断片はKOD one PCR Master Mixを用いてPCRで増幅した。以下に、使用したプライマーとテンプレートについて記載する。
 galP遺伝子は大腸菌BW25113株のゲノムをテンプレートにプライマーPr-galP-FとgalP-R-glk(配列番号7と8)を用いて1428bpの断片を得た。galP遺伝子にλpRプロモーターを付与するために、PCRにより得られたgalP遺伝子断片をテンプレートにPr-F1とgalP-R-glk(配列番号9と8)を用いてPCRを行った。さらに得られた断片をテンプレートに、Pr-F2とgalP-R-glk(配列番号10と8)を用いてPCRを行い、galP遺伝子にλpRプロモーターが付与された、1570bpの断片を得た。
 glk遺伝子は大腸菌BW25113株のゲノムをテンプレートにプライマーgalP-glk-Fとglk-R-TrrnB(配列番号11と12)を用いて1006bpの断片を得た。galPとglkはオペロンになるように2断片が結合できるようにした。TrrnBターミネーターは大腸菌BW25113株のゲノムをテンプレートにプライマーglk-TrrnB-FとTrrnB-R(配列番号13と14)を用いて102bpの断片を得た。骨格となるpETDuetプラスミドはpETDuet-1をテンプレートにプライマーpET-FとpET-R(配列番号15と16)を用いて2532bpの断片を得た。
 PCRの後、5種類の断片は電気泳動を行い目的長の断片をゲルから切り出し、FastGene Gel/PCR Extraction kit (日本ジェネティクス社)を用いて回収した。回収した断片をGeneArt Seamless Cloning and Assembly Enzyme Mix (Thermo Fisher社)によってアセンブルし、大腸菌DH5α株にクローニングした。プラスミド抽出の後、配列確認を行い、正しい配列であることを確認したものをgalP-glk過剰発現用プラスミドとした。
 ppc過剰発現用プラスミド(pCP-ppc)は下記に示す手順により作成した。pCP-ppcは、種プラスミド1からPCRにより得たppc過剰発現フラグメントをpCOLADuet-1プラスミド(Novagen社)のMCSとlacI遺伝子領域を除いたプラスミドにクローニングしたものである。ppc過剰発現フラグメントはKOD one PCR Master Mixを用いて、種プラスミド1をテンプレートにppc_exp-Fとppc_exp-R(配列番号17と18)を用いてPCRにより増幅した。得られたPCR断片は、FastGene Gel/PCR Extraction kitを用いて精製した。精製したPCR断片及びpCOLADuet-1をそれぞれ、制限酵素HpaIとPacI(New England Biolabs社)で切断した後に、FastGene Gel/PCR Extraction kit を用いて精製した。HpaIとPacIで切断したPCR断片及びpCOLADuet-1はLigation high Ver.2(TOYOBO社)を用いて添付のマニュアルに従いライゲーション反応を行い、大腸菌DH5α株にクローニングした。プラスミド抽出の後配列確認を行い、正しい配列であることを確認したものをppc過剰発現用プラスミドとした。
 aceF過剰発現用プラスミド(pCP-aceF)は下記に示す手順により作成した。pCP-aceFは、種プラスミド1からPCRにより得たaceF過剰発現フラグメントをpCOLADuet-1プラスミド(Novagen社)のMCSとlacI遺伝子領域を除いたプラスミドにクローニングしたものである。aceF過剰発現フラグメントはKOD one PCR Master Mixを用いて、種プラスミド1をテンプレートにaceF_exp-FとaceF_exp-R(配列番号19と20)を用いてPCRにより増幅した。得られたPCR断片は、FastGene Gel/PCR Extraction kitを用いて精製した。精製したPCR断片及びpCOLADuet-1をそれぞれ、制限酵素HpaIとPacI(New England Biolabs社)で切断した後に、FastGene Gel/PCR Extraction kit を用いて精製した。HpaIとPacIで切断したPCR断片及びpCOLADuet-1はLigation high Ver.2(TOYOBO社)を用いて添付のマニュアルに従いライゲーション反応を行い、大腸菌DH5α株にクローニングした。プラスミド抽出の後配列確認を行い、正しい配列であることを確認したものをaceF過剰発現用プラスミドとした。
 ppc-aceF過剰発現用プラスミド(pCP-ppc-aceF)は下記に示す手順により作成した。pCP-ppc-aceFは、種プラスミド1からPCRにより得たppc過剰発現フラグメント及びaceF過剰発現フラグメントをpCOLADuet-1プラスミド(Novagen社)のMCSとlacI遺伝子領域を除いたプラスミドにクローニングしたものである。ppc過剰発現フラグメントはKOD one PCR Master Mixを用いて、種プラスミド1をテンプレートにduet-Pppc-FとPaceF_Tppc-R(配列番号21と22)を用いてPCRにより増幅した。aceF過剰発現フラグメントはKOD one PCR Master Mixを用いて、種プラスミド1をテンプレートにTppc_PaceF-Fとduet-TaceF-R(配列番号23と24)を用いてPCRにより増幅した。またべクターについても、pCOLADuet-1をテンプレートにduet geneart-Fとduet geneart-R(配列番号25と26)を用いてPCRにより増幅した。得られた3つのPCR断片は、FastGene Gel/PCR Extraction kitを用いて精製した。精製した3つのPCR断片は、GeneArt Seamless Cloning and Assembly Enzyme Mix によってアセンブルし、大腸菌DH5α株にクローニングした。プラスミド抽出の後配列確認を行い、正しい配列であることを確認したものをppc-aceF過剰発現用プラスミドとした。
4.OGAB法用DNAカセットのデザイン
 グルコースからAKGまでの代謝経路に存在する17遺伝子の網羅的な過剰発現の組み合わせを検証するために、17遺伝子について過剰発現DNAカセットと非過剰発現DNAカセットの2種類の単位DNAカセットを作成した。過剰発現DNAカセットは、プロモータ配列、リボソーム結合配列(RBS)、CDS、ターミネーター配列から構成される。非過剰発現カセットとしては、開始コドンを除去したCDSとターミネーター配列から構成されるもの、又は低発現用プロモーター配列、リボソーム結合配列(RBS)、CDS、ターミネーター配列から構成されるものが使用されうるが、本試験においては、開始コドンを除去したCDSとターミネーター配列から構成されるものを使用した。17遺伝子の過剰発現DNAカセットは配列番号112~128、及び非過剰発現DNAカセットは配列番号129~145に示す。
 CDSについては、glk、pgi、pfkA、faA、tpiA、gapA、pgk、gpmA、eno、pykF、ppc、aceE、aceF、acnB、icdの15遺伝子については、大腸菌由来の配列を用いた。lpdAについては、大腸菌の酵素LpdAに比べて嫌気状態でも高活性なKlebsiella pneumoniae由来のLpdAにNADHによるアロステリック阻害を防ぐためにE354Kを導入した酵素をコードするKp_lpdA_E354Kを用いた。また、gltAについても、NADHによるアロステリック阻害を防ぐために、大腸菌のGltAにR164L変異を導入した酵素をコードするgltA_R164Lを用いた。
 プロモーター配列は、Jensen et al.(Jensen, P.R., Hammer, K., 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64, 82-87.)で報告されている、配列の異なる17の恒常発現型の人工プロモーターを用いた。RBSは基本的には、それぞれの遺伝子のnativeのものを用いて、Kp_lpdA_E354KとgltA_R164Lについては、RBS calculator(https://salislab.net/software/)を用いてnativeの配列と同程度の翻訳強度に設計した人工RBS配列を用いた。ターミネーター配列は、Chen et al.(Chen, Y.J., Liu, P., Nielsen, A.A.K., Brophy, J.A.N., Clancy, K., Peterson, T., Voigt, C.A., 2013. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659-664. https://doi.org/10.1038/nmeth.2515)により報告されている、配列の異なる17の人工ターミネーターを用いた。
 glk、pgi、pfkA、faA、tpiA、gapA、pgk、gpmA、eno、pykF、ppc、Kp_lpdA(E354K)、aceE、aceF、gltA(R164L)、acnB、icdの17遺伝子の過剰発現単位DNA(配列番号112~128)及び非過剰発現単位DNA(配列番号129~145)は、人工合成(Integrated DNA Technologies社)して作成した。
5.単位DNAカセット突出配列の設計
 本発明では、17遺伝子の単位DNAカセットに集積用ベクターpGETS118を合わせて、全部で18のDNA断片をOGAB法により連結する。大腸菌中でAKG代謝経路に関わる遺伝子群は全部で17あり、これらの過剰発現及び非過剰発現DNAカセットを順に第1から第17単位DNAカセットと定義する。集積ベクターを第18単位DNAカセットと定義する。第1~第18単位DNAカセットは数字通りに連続し、第18と第1単位DNAカセットが連結する構造になることで、1つの挿入ユニットを形成する。各単位DNAカセットの末端には、断片の左右にそれぞれに単位DNAカセットの番号ごとに指定されたに固有の3塩基の3’末端突出塩基が存在する。この相補性により連結相手が指定されている。具体的には、次のような構成となる。(第18単位DNA)-GTT-(第1単位DNA)-TGA-(第2単位DNA)-CGA-(第3単位DNA)-TGT-(第4単位DNA)-GAT-(第5単位DNA)-TTG-(第6単位DNA)-GTC-(第7単位DNA)-ATG-(第8単位DNA)-TGG-(第9単位DNA)-TAG-(第10単位DNA)-ACT-(第11単位DNA)-GTA-(第12単位DNA)-CTT-(第13単位DNA)-CAG-(第14単位DNA)-GAA-(第15単位DNA)-CTC-(第16単位DNA)-CAC-(第17単位DNA))-TCT-(第18単位DNA)
6.単位DNAカセットプラスミドの構築
 増幅したDNA断片は、0.7%の低融点アガロースゲル(2-Hydroxyeth yl Agarose TypeVII,シグマ社)で、1×TAE(Tris-Ace tate-EDTA Buffer)バッファー存在下で、汎用アガロースゲル電気泳動装置(i-MyRun.N 核酸用電気泳動システム、コスモバイオ社)で、100V(約8V/cm)の電圧を印加し、30min泳動することにより、プラスミドベクターと単位DNAを分離した。この泳動ゲルを、1μg/mlの臭化エチジウム(シグマ社)を含む1 ×TAEバッファー100mlで30min染色し、長波長の紫外線(366mn)で照らすことにより可視化することで、PCR産物の目的サイズをカミソリで切り出し、1.5mlチューブに回収した。回収した低融点アガロースゲル(約300mg程度)に、1×TAEバッファーを添加することにより全体積を約700μlとし、これを65℃、10min恒温することにより、ゲルを溶解した。その後、等量のTE飽和フェノール(ナカライテスク社)を添加し、良く混合することで制限酵素を失活させた。遠心分離(20,000×g、10min)によりフェノール相と水相に分離し、水相(約900μl)を新しい1.5mlチューブに回収した。ここに1-ブタノール(和光純薬工業社)を500μl添加し、良く混合後、遠心分離(20,000×g、1min)により分離し、水分を飽和した1-ブタノールを取り除くという操作を水相の体積が450μl以下になるまで繰り返すことで、水相の体積を減少させた。これに、3M酢酸カリウム-酢酸緩衝液(pH5.2)を50μlと、エタノール900μlを添加し、遠心分離(20,000×g、10min)することにより、DNAを沈殿し、これを70%エタノールでリンスして、20μlのTE(10mM Tris-HCl,1mM EDTA,pH8.0)に溶解した。この回収DNAは、使用まで-20℃で保存した。
 得られたDNA断片は、以下に示す方法によりTAクローニング法により大腸菌プラスミドベクター中にクローニングした。DNA断片8μlに、TAKARA社のPCR反応用酵素Ex-Taqに付属する10×Ex-Taq Buffer 1μlに、100mM dATP 0.5μl、Ex-Taq 0.5μlを添加して、65℃で10min恒温することで、DNA断片の3’末端にAの突出を付加した。このDNA断片溶液1μlに、TAKARA社のpMD19-Simple 1μlと滅菌水3μlを混合後、TAKARA Ligation(Mighty)Mix 5μlを加え、16℃で30m in恒温した。このライゲーション溶液の5μlを50μlの大腸菌DH5αのケミカルコンピテントセルに添加して、氷上で15min恒温後、42℃で30sec熱ショックを与え、2min氷上で放置後、LB培地を200μl添加して、37℃で1h恒温後、カルベニシリンを100μg/mlの濃度で含む、1.5%寒天を含むLBプレートに塗抹し、37℃で終夜培養することによりプラスミドの形質転換体を得た。
 得られたコロニーを、PCR用鋳型DNA調製試薬(シカジーニアスDNA調製試薬、関東化学)を用いて調製した。具体的には、試薬キット内の試薬aと試薬bを1:10の比率で混合した溶液を2.5μl用意し、ここにプレート上のコロニーをつまようじで少量採取したものを懸濁後、72℃、6min処理後、94℃、3min処理した。得られた液体に、TAKARA Ex-Taq用10×酵素2.5μlと2.5mM dNTP溶液 2μl、10pmol/μlのM13Fプライマー0.25μlと10pmol/μlのM13Rプライマー0.25μl、滅菌水17μl、Ex-TaqHS 0.5μlを添加して、94℃、5minインキュベーション後、98℃、20sec、55℃、30sec、72℃、1minを30サイクル行うことでDNAを増幅し、このPCR産物の塩基配列を調べることで、望ましい配列と完全に一致するかどうか調べた。最終的に全てのクローンから正しい配列が得られた。
 望ましい配列を有するDNA断片をクローンするプラスミドを持つ大腸菌形質転換体をそれぞれ2mlの100μg/mlのカルベニシリン入りLB培地で37℃、120spm、一晩終夜培養し、得られた菌体を、QIAfilter Plasmid mini Kit(キアゲン社)を用い、マニュアルに従って精製した。得られたプラスミドをSfiIで切断し、電気泳動によるサイズ分画により過剰発現DNAカセット及び非過剰発現DNAカセットを回収した。望ましい配列を有するDNA断片をクローンするプラスミドを持つ大腸菌形質転換体をそれぞれ2mlの100μg/mlのカルベニシリン入りLB培地で37℃、120spm、一晩終夜培養し、得られた菌体を、QIAfilter Plasmid miniKit(キアゲン社)を用い、マニュアルに従って精製した。得られたプラスミド10ulを分取して、滅菌水30μl、10×NEB buffer#2 5μl、SfiI制限酵素(New ingland biolabs)5μlを添加し、50℃、2h反応させることにより17の単位DNAカセットをプラスミドベクターから切り離した。それを0.7%の低融点アガロースゲルで、1×TAE(バッファー存在下で、汎用アガロースゲル電気泳動装置で、50V(約4V/cm)の電圧を印加し、1h泳動することにより、プラスミドベクターと単位DNAカセットを分離した。この泳動ゲルを、1μg/mlの臭化エチジウム(シグマ社)を含む1×TAEバッファー100mlで30min染色し、長波長の紫外線(366nm)で照らすことにより可視化して、目的の長さのバンドをカミソリで切り出し、1.5mlチューブに回収した。回収した低融点アガロースゲル(約300mg程度)は、上述の通り精製し、20μlのTEに溶解した。このようにして調製した単位DNAカセットは、市販されているLambdaphage genome DNA(TOYOBO)の希釈系列に基づいて作成した検量線を用いて、核酸蛍光染料のSYBR GreenII蛍光プレートリーダーにより定量した。
7.種プラスミド構築のための遺伝子集積
 本研究では、17遺伝子の過剰発現DNAカセットが連なった種プラスミド1と、17遺伝子の非過剰発現DNAカセットが連なった種プラスミド2の、2つのプラスミドをOGAB法により構築した。
 種プラスミド1の集積には配列番号112-128の、種プラスミド2の集積には配列番号129-145の各単位DNAカセットと、遺伝子集積用ベクターのpGETS118(配列番号146)の1f mol/μLの溶液を1μLずつ混合した、合計18μlのDNA混合溶液に2×ライゲーションバッファーを20μl添加し、2μlのT4DNAリガーゼ(Takara)を添加して、37℃で4h恒温した。10μlを取って電気泳動することによりライゲーションされていることを確認後、ライゲーション反応液10μlを新しいチューブに採取し、枯草菌コンピテントセルを100μl添加し、37℃で30min、ダックローターで回転培養した。その後、300μlのLB培地を添加して、30℃で2h、ダックローターで回転培養し、その後、培養液を10μg/mlのテトラサイクリン入りLBプレートに広げ、30℃で一晩培養した。過剰発現DNAカセット集積体(種プラスミド1)と非過剰発現DNAカセット集積体(種プラスミド2)のどちらからも100個以上の枯草菌コロニーが得られた。DNAカセットのつなぎ目を挟み込むように設計した17のプライマーセット(配列番号27と28、配列番号29と30、配列番号31と32、配列番号33と34、配列番号35と36、配列番号37と38、配列番号39と40、配列番号41と42、配列番号43と44、表X配列番号45と46、配列番号47と48、配列番号49と50、配列番号51と52、配列番号53と54、配列番号55と56、配列番号57と58、配列番号59と60)を用いてコロニー懸濁液をテンプレートにPCRを行い、pGETS118に17のDNA断片が正しく集積された形質転換体を選択した。
8.種プラスミドの高純度精製
 塩化セシウム/エチジウムブロマイド密度勾配超遠心法により高純度のプラスミドDNAを調達した。具体的には、LB培地に抗生物質(テトラサイクリン)を加えたものを200ml用意し、500mlの三角フラスコに100mlずつ入れて、30℃で終夜培養した。充分に増殖後、プラスミドのコピー数を増加させるために1MのIPTGを各フラスコに100μlずつ添加し、さらに3時間~12時間程度培養した。培養終了後、50mlチューブ4本に50mlずつ培養液を分注し、5,000rpm、10min遠心した。上清を捨てて、菌ペレットをボルテックスにより完全にほぐした。10mg/mlのリゾチーム入りSol.I溶液(組成50mM グルコース、25mM Tris-Cl(pH8.0)、10mM EDTA)を用意し、菌入りチューブ4本にそれぞれ2.5mlずつ添加し、よく混合した。これを37℃、30minインキュベーションした。5,000rpm、10min遠心して、上清をデカントで取り除き、新たにリゾチームの入っていないSol.Iを4本のチューブにそれぞれ2.5ml添加し、ペレットを均一に懸濁した。新鮮なSol.II(組成 0.2N NaOH、1%(w/v)ドデシル硫酸ナトリウム)を調製し、4本のチューブにそれぞれ5mlずつ添加し、ゆっくりと混合して透明にした。Sol.III(組成 60mlの5M酢酸カリウム、11.5mlの氷酢酸、28.5mlの水)を各チューブに3.75mlずつ添加し、白濁物質が均等に分散できるようにある程度強い力で混合した。5,000rpm、10min遠心して、上清をピペットで吸い、新しい4本の50mlチューブに移した。それぞれのチューブに5mlのフェノール・クロロフォルムを添加し、激しく混合した。5,000rpm、10min遠心して、上清をピペットで吸い、新しい4本のネジ蓋の50mlチューブ(ファルコン2070)に移した。100%エタノールをそれぞれ25ml添加し混合して、5,000rpm、10min遠心し、上清を取り除いた。10mlのTEに10mg/mlのRNaseA溶液を10μl添加した溶液(終濃度10μg/ml)を各チューブに2.5mlずつ添加し、沈殿を溶解した。4本のチューブの液体を1本にまとめ、37℃の気相のインキュベーターで30minインキュベーションした。インキュベーション終了後に5mlのフェノール・クロロフォルムを添加し、よく混合後、5,000rpm、10min遠心した。上清を新しい50mlチューブに移し取り、Sol.IIIを1ml添加後、100%エタノールを25ml添加し、混合した。その後、5,000rpm、10min遠心し上清を取り除いた。沈殿に5.4mlのTEを添加し、完全に溶解した。次に、正確に秤量した6.50gの塩化セシウムを投入し、完全に溶解した。更に、1.1g/mlの塩化セシウム溶液(1.1gの塩化セシウムと1mlのTE bufferを混ぜて作製した溶液(体積調製していない))を2.6ml添加した。最後に、10mg/mlのエチジウムブロマイド溶液を600μl添加し、よく混合して遠心し、上清を回収した。超遠心チューブ(ベックマン362181)を1本用意し、超遠心チューブに上清を移した。バランスとの重さの違いが20mg以内になるように、1.1g/ml塩化セシウム溶液(比重約1.5g/ml程度)を添加して重さを微調整した。超遠心装置(ベックマンコールター)で以下の条件で15時間以上遠心を行った。温度18℃、速度50,000rpm、加速度Max、減速度Max。遠心終了後、紫外線(365nm)観察下で、1mlのシリンジに、針(21G×5/8”)をセットしたものを用意して、ccc型のプラスミドのバンドに挿し、プラスミド溶液を回収し、15mlチューブに移した。ここにSol.IIIを200μl添加し、次に、全体が3mlになるように水を添加した。さらに、9mlの100%エタノールを添加した。10,000rpm、10min遠心し、上清を取り除いた。得られた沈殿に700μlのTEを15mlチューブに添加し、DNAを溶解した。これを1.5mlのチューブに移し、600μlの1-ブタノールを添加して混合し、15,000rpmで10s程度遠心して、2層に分離し、上層のブタノール層を捨てた。新たに、600μlの1-ブタノールを添加して混合し、15,000rpmで10s程度遠心して、2層に分離し、上層のブタノール層を捨てた。この操作を、水層が450μl以下になるまで続けた。50μlのSol.IIIを添加し、さらに100%エタノールを900μl添加した。15,000rpmで10min遠心した。上清を捨てて、沈殿を70%エタノールでリンスした。沈殿を22μlのTEに溶解した。
9.種プラスミドからの単位DNAの生成
 種プラスミドからの単位DNAカセットの調製は、以下のように行った。超遠心法により高純度に精製した種プラスミド約30μgを分取し、滅菌水で40μlにメスアップ後、10×NEBbuffer#2を5μlと、制限酵素SfiI(NEB社)を5μl添加し、50℃で終夜反応させた。反応液1μlを電気泳動して切断されていることを確認した。その後、2つの種プラスミドの反応液を統合し、450μlフェノール・クロロフォルム・イソアミルアルコール(25:24:1)(ナカライテスク社)を添加し、混合後、遠心分離(20,000×g、10min)によりフェノール相と水相に分離し、水相(約900μl)を新しい1.5mlチューブに回収した。ここに1-ブタノール(和光純薬工業社)を500μl添加し、よく混合後、遠心分離(20,000×g、1min)により分離し、水分を飽和した1-ブタノールを取り除くという操作を水相の体積が450μl以下になるまで繰り返すことで、水相の体積を減少させた。これに、3M酢酸カリウム-酢酸緩衝液(pH5.2)を50μlと、エタノール900μlを添加し、遠心分離(20,000×g、10min)することにより、DNAを沈殿し、これを70%エタノールでリンスして、20μlのTEに溶解した。
10.Combi-OGAB法によるコンビナトリアルライブラリーの構築
 OGAB法を応用したコンビナトリアルライブラリーの構築(Combi-OGAB法)は、次のように行った。即ち、上記項目9で得られた2種類の種プラスミドに由来する単位DNAカセットの混合溶液は、上記項目7で示した遺伝子集積法により集積し、1プレートあたり1,000コロニー程度の形質転換体を得た。得られた形質転換体からランダムに24株のコロニーを選択して、DNAカセットのつなぎ目を挟み込むように設計した17のプライマーセット(配列番号27と28、配列番号29と30、配列番号31と32、配列番号33と34、配列番号35と36、配列番号37と38、配列番号39と40、配列番号41と42、配列番号43と44、配列番号45と46、配列番号47と48、配列番号49と50、配列番号51と52、配列番号53と54、配列番号55と56、配列番号57と58、配列番号59と60)を用いてコロニー懸濁液をテンプレートにPCRを行なった。その結果、24クローン全てにおいて17の遺伝子カセットがランダムに集積されていることが確認できた。
11.Combi-OGABプラスミドライブラリーの大腸菌への導入
 上記項目10で得られたCombi-OGABプラスミドライブラリーはエレクトロポレーション法(条件)により大腸菌AKGシャーシ株に形質転換した。エレクトロポレーションは、GenePulser XcellTM(BIO-RAD社)を用いて行った(1500V、25μF、200Ω)。エレクトロポレーション後の菌体を1mLのSOC medium(Toyobo)に懸濁して、30℃、150rpmで1時間の回復培養を行った。培養液を12.5μg/mlのクロラムフェニコール入りLBプレートに広げ、30℃で一晩培養した。1プレートあたり、100コロニー程度の形質転換体が得られた。
12.Combi-OGABプラスミドライブラリー導入株の評価
 上記項目11で得られた、Combi-OGABプラスミドライブラリーの形質転換プレートからランダムに選択した88コロニーと、種プラスミド1と2をそれぞれ形質転換した大腸菌AKGシャーシ株のプレートからそれぞれ4コロニーを、爪楊枝で掻き取り、クロラムフェニコール及びアンピシリンを加えた1mLのLB培地を分注した96ウェル深底プレート(Corning社,製品番号3960)に植菌した。96ウェルプレートを37℃、1000rpmで攪拌して(M・BR-022,タイテック)で培養した。24時間培養。新しい96ウェルプレートにクロラムフェニコール及びアンピシリンを加えた1mL M9YE培地を(90 mM リン酸水素二ナトリウム七水和物、 22 mM リン酸二水素カリウム、8.5 mM 塩化ナトリウム、2 mM 硫酸マグネシウム、0.1 mM 塩化カルシウム、0.1% 塩化アンモニウム、0.01% チアミン、1.0 g/L BactoTM Yeast Extract (Becton, Dickinson and Company社)、20 g/Lグルコース)入れて、37℃、1,000rpmで攪拌して培養を行った。18時間培養後、新しい96ウェルプレート上で90μlの蒸留水と培養液10μlを混合して、Envision2104 Multilabel Reader(PerkinElmer社)でOD(600nm)を測定した。18時間培養後の培養上清に含まれるグルタミン酸及びグルコースの量を測定するために、培養後の96ウェルプレートを1000g、10minで遠心して、新しい96ウェルプレート上で300μlの蒸留水と培養上清100μlを混合した。各ウェルのサンプル中のグルタミン酸及びグルコースの量は、バイオセンサ(BF-9、王子計測機器株式会社)により測定した。
13.プラスミド上の遺伝子カセットの決定
 96ウェルプレートで培養した大腸菌株に導入されたCombi-OGABプラスミドにおいて、17遺伝子について、過剰発現又は非過剰発現DNAカセットのどちらが集積されたかを判定するために、リアルタイムPCRによる融解曲線解析を行った。
 即ち、集積カセットの判定のために、17の各遺伝子について、集積された17カセットの繋ぎ目を挟み込むようなプライマー及び、過剰発現DNAカセットのプロモーターに特異的にアニーリングするようなプライマーを設計した(配列番号61―63、配列番号64―66、配列番号67―69、配列番号70―72、配列番号73―75、配列番号76―78、配列番号79―81、配列番号82―84、配列番号85―87、配列番号88―90、配列番号91―93、配列番号94―96、配列番号97―99、配列番号100―102、配列番号103―105、配列番号106―108、配列番号109―111)。PCRにはKOD SYBR(登録商標)qPCR Mix(TOYOBO社)を用いて、添付のマニュアルに従いPCR反応液の調製を行った。PCRのテンプレートとして、96ウェルプレートで培養後の菌体懸濁液1μLを直接PCR反応液に加えて、3種類のプライマーはそれぞれ0.3pmolの終濃度で加えた。PCR反応及び融解曲線解析は、LightCycler(登録商標)96 System(ロッシュ)を用いて行った。種プラスミド1と2をテンプレートに同様の方法でPCR反応を行うことで17遺伝子について過剰発現DNAカセットと非過剰発現DNAカセットが集積された場合で、融解曲線パターンに違いが生じることを確認した。培養サンプルに含まれる大腸菌株に導入されたCombi-OGAB プラスミドの集積カセットの判定は、PCRにより得られた17遺伝子の融解曲線プロファイルを、種プラスミドの融解曲線プロファイルと照合することで行った。
14.統計解析によるAKG生産量向上に寄与する遺伝子カセットの同定
 96ウェルプレートで得られたグルタミン酸生産量のデータと培養に用いた大腸菌に導入されたプラスミドの配列解析データを用いて、AKGの生産量向上に向上する遺伝子を同定するために、統計解析をおこなった。
 ある単位DNAカセットが過剰発現型か非過剰発現型かをそれぞれP、Aと記述する。また、ある株が持つ17個の単位DNAカセットをv=(P,A,P,A,A,A,A,P,A,P,P,A,A,P,P,A,P)のように17次元のベクトルとして記述する。ここで、vをカセットベクトルと呼び、そのi番目の要素は第i単位DNAカセットが過剰発現型か非過剰発現型かを示す。
 まず、培養試験を行った株の中で同じカセットベクトルをもつ株のデータを1つにまとめた。具体的には、複数の株が同じカセットベクトルv’を持つ場合には、それらの株をデータから削除し、その代わりにカセットベクトルv’を持つ仮想的な株を1つデータに追加した。追加した株のグルタミン酸生産量は、削除した株のグルタミン酸生産量の平均値とした。
 次に、カセットベクトルのi番目の要素がPである株と、Aである株のグルタミン酸生産量に統計的に有意な差があるかどうかをMann-Whitney U testにより検定した。この検定を、カセットベクトルの各要素i(=1,2,3,…,17)に対して行うことで、それぞれのiに対するP valueを求めた。次に、Benjamini-Hochberg法によりそれぞれのP valueに対するFalse Discovery Rate (FDR)を計算し、FDR<0.05となるiを同定した。この条件を満たすiは、11と14であった。第11及び14単位DNAカセットに集積された遺伝子はppcとaceFであり、これら2つの遺伝子をAKG生産量向上に寄与する遺伝子として同定した。
15.第二世代Combi-OGABプラスミドライブラリーの設計及び評価
 第二世代Combi-OGABプラスミドライブラリーの構築には、ppcとaceFの2遺伝子については過剰発現DNAカセットのみを用いて、残りの15遺伝子については過剰発現及び非過剰発現DNAカセットの両方を用いた。ppcとaceFについては過剰発現カセットが、残りの15遺伝子については非過剰発現カセットが集積された種プラスミド3を、上記項目7に示した方法で作成した。続いて、種プラスミド1と種プラスミド3から、それぞれ上記項目9に示す方法で単位DNAカセットを精製して、上記項目10に示す方法でCombi-OGABによるコンビナトリアルライブラリーを作成した。得られたプラスミド溶液は、上記項目11と同じ方法で大腸菌株に形質転換して、上記項目12、13と同様の方法で培養試験を行ない、グルタミン生産量を測定し、評価を行った各大腸菌株に導入されたCombi-OGAB プラスミドの集積カセットの決定を行った。得られたデータは、上記項目14に示す方法で統計解析を行った。
16.グルタミン最高生産量株(Cy1-A8株)からのOGAB plasmidの抽出
 上記項目12で評価したCombi-OGABプラスミドライブラリーの形質転換大腸菌の中で最もグルタミン酸生産量の多かった大腸菌株(Cy1-A8株)が保持しているCombi-OGABプラスミド(pCy1-A8)の抽出を行なった。プラスミド抽出のためにCy1-A8株12.5μg/ml(LB培地中)を5mL、37℃、120spm、一晩終夜培養し、得られた菌体から、QIAfilter Plasmid mini Kit(キアゲン社)を用い、マニュアルに従ってプラスミド(pCy1-A8)を精製した。
17.BW25113WTおよびBWΔptsHIΔackA-ptaΔzwfからの、gabT遺伝子の破壊
 λ-red recombination法により、大腸菌BW25113株およびAKG-ベース株からgabT遺伝子の破壊を行った。簡単には、まず、リコンビナーゼをコードする遺伝子を含むpKD46プラスミドをBW25113株およびBWΔptsHIΔackA-ptaΔzwf株にエレクトロポレーション法により形質転換し、BW25113/pKD46株とBWΔptsHIΔackA-ptaΔzwf/pKD46株を作成した。
 gabT遺伝子をカナマイシン耐性遺伝子で置換して破壊するためのDNA断片を、カナマイシン耐性遺伝子を含むpKD13をテンプレートにプライマーd-gabTF及びdgabTR(配列番号147と148)を用いて、PCRにより作成した。作成したDNA断片を、BW25113/pKD46株とBWΔptsHIΔackA-ptaΔzwf/pKD46株にエレクトロポレーションにより形質転換して、カナマイシン耐性を示す形質転換体(gabTがカナマイシン耐性遺伝子で置換された形質転換体)を獲得した。続いて、カナマイシン耐性マーカーの脱落のために、フリッパーゼ(FLP)発現プラスミドをエレクトロポレーションにより導入し、カナマイシン感受性を示す形質転換体(BWΔgabT/pKD46とBWΔptsHIΔackA-ptaΔzwf株ΔgabT/pKD46)を獲得した。
 BWΔgabT/pKD46とBWΔptsHIΔackA-ptaΔzwf株ΔgabT/pKD46株を、抗生物質を含まない5mLのLB液体培地で1晩培養後、抗生物質を含まないLB寒天培地に播種して、得られたコロニーの中から、pKD46が脱落したアンピシリンに感受性を示す形質転換体(BWΔgabTとBWΔptsHIΔackA-ptaΔzwfΔgabT株)を獲得した。
18.BWΔptsHIΔackA-ptaΔzwfΔgabTへのgalP-glk過剰発現用プラスミドおよびpCy1-A8プラスミドの導入
 項目3で作成したgalP-glk過剰発現用をBWΔptsHIΔackA-ptaΔzwfΔgabT株にエレクトロポレーションにより導入して得られた形質転換体に、更にpCy1-A8をエレクトロポレーションにより導入して得られた形質転換体をCy1-A8ΔgabT株として以降の実験に用いた。
19.ホモクエン酸、GABA、テアニン生産プラスミドの作成
 nifV過剰発現プラスミド(pTrc-nifV)は下記に示す手順により作成した。pTrc-nifVは人工合成(Thermo Fisher Scientific社)により得たAzotobacter vinelandii由来のnifV遺伝子(配列番号149)をpTrc99aプラスミド(ファルマシア社)のMCSにクローニングしたものである。クローニング用のDNA断片を、KOD one PCR Master Mixを用いて、人工合成したnifV遺伝子をテンプレートにpTrc NifV FとpTrc NifV R(配列番号154と155)を用いてPCRにより増幅した。プラスミドpTrc99aを、制限酵素NcoIとBamHI(New England Biolabs社)で切断した。得られたPCR断片および制限酵素処理したプラスミドは、FastGene Gel/PCR Extraction kitを用いて精製し、精製した断片をGeneArt Seamless Cloning and Assembly Enzyme Mixによってアセンブルし、大腸菌DH5α株にクローニングした。プラスミド抽出の後、配列確認を行い、正しい配列であることを確認したものをpTrc-nifVと称して続く実験に用いた。
 gdhAおよびgadB過剰発現プラスミド(pTrc-gdhA-gadBm)は下記に示す手順により作成した。pTrc-gdhA-gadBmは、PCRにより得た大腸菌由来のgdhA遺伝子(配列番号150)および大腸菌由来のgadBにE89QとΔ452-466の変異を導入した遺伝子(配列番号151)を、pTrc99aプラスミドのMCSにクローニングしたものである。gdhA遺伝子は大腸菌BW25113株のゲノムをテンプレートにプライマーpTrc gdhA FとpTrc gdhA R(配列番号156と157)を用いて得た。プラスミドpTrc99aを、制限酵素NcoIとBamHI(New England Biolabs社)で切断した。得られたPCR断片および制限酵素処理したプラスミドは、FastGene Gel/PCR Extraction kitを用いて精製し、精製した断片をGeneArt Seamless Cloning and Assembly Enzyme Mixによってアセンブルし、大腸菌DH5α株にクローニングした。プラスミド抽出の後、配列確認を行い、正しい配列であることを確認したものをpTrc-gdhAと称して続く実験に用いた。gadB(E89Q、Δ452-466)遺伝子は大腸菌BW25113株のゲノムをテンプレートに2種類のプライマーセットgdhA-gadBm FとgadB_E89Q R(配列番号158と159)、gadB_E89Q FとgdhA-gadBm R(配列番号160と161)を用いて得た。プラスミドpTrc-gdhAを、制限酵素BamHI(New England Biolabs社)で切断した。得られた2種類のPCR断片および制限酵素処理したプラスミドは、FastGene Gel/PCR Extraction kitを用いて精製し、 精製した断片をGeneArt Seamless Cloning and Assembly Enzyme Mixによってアセンブルし、大腸菌DH5α株にクローニングした。プラスミド抽出の後、配列確認を行い、正しい配列であることを確認したものをpTrc-gdhA-gadBmと称して続く実験に用いた。
 γ-glutamylmethylamide synthetase (GMAS)過剰発現プラスミド(pTrc-gmas)は下記に示す手順により作成した。pTrc-gmasは、人工合成(Thermo Fisher Scientific社)により得た大腸菌のコドンに最適化したPseudomonas syringae由来のGMAS遺伝子(配列番号152)をpTrc99aプラスミドのMCSにクローニングしたものである。クローニング用のDNA断片を、KOD one PCR Master Mixを用いて、人工合成したGMAS遺伝子をテンプレートにpTrc gmas FとpTrc gmas R(配列番号162と163)を用いてPCRにより増幅した。プラスミドpTrc99aを、制限酵素NcoIとBamHI(New England Biolabs社)で切断した。得られたPCR断片および制限酵素処理したプラスミドは、FastGene Gel/PCR Extraction kitを用いて精製し、精製した断片をGeneArt Seamless Cloning and Assembly Enzyme Mixによってアセンブルし、大腸菌DH5α株にクローニングした。プラスミド抽出の後、配列確認を行い、正しい配列であることを確認したものをpTrc-gmasと称して続く実験に用いた。
20.ホモクエン酸、GABA、テアニン生産株の作成
 大腸菌BW25113株およびCy1-A8株にpTrc-nifVをエレクトロポレーションにより導入することに、BW25113/nifVおよびCy1-A8/nifV株を取得し、ホモクエン酸生産試験に用いた。
 大腸菌BW25113ΔgabT株およびCy1-A8ΔgabT株にpTrc-gdhA-gadBmをエレクトロポレーションにより導入することに、BW25113ΔgabT/gdhA-gadBmおよびCy1-A8ΔgabT/gdhA-gadBm株を取得し、γ-アミノ酪酸(GABA)生産試験に用いた。
 大腸菌BW25113株およびCy1-A8株にpTrc-gmasをエレクトロポレーションにより導入することに、BW25113/gmasおよびCy1-A8/gmas株を取得し、テアニン生産試験に用いた。
21.ホモクエン酸、GABA、テアニン生産試験
 前培養として、BW25113/nifV株を100μg/mlのアンピシリン入り5mLのLB培地、Cy1-A8/nifV株を100μg/mlのアンピシリンおよび12.5μg/mlのクロラムフェニコール入り5mLのLB培地で、それぞれ37℃、200rpm、16h培養した。続いてホモクエン酸生産のために、BW25113/nifVの前培養液を100μg/mlのアンピシリンおよび0.1mMのIPTG入り5mLのTB培地(12g/L tryptone、24g/L yeast extract、20g/L Glycerol、2.3g/L KHHPO、12.5g/L KHPO)に50μL植菌、Cy1-A8/nifV株の前培養液を12.5μg/mlのクロラムフェニコールと100μg/mlのアンピシリンおよび0.1mMのIPTG入り5mLのTB培地に50μL植菌して30℃、200rpmで24h培養した。培養上清はGC-MSを用いて測定した。
 前培養として、BW25113/gdhA-gadBm株を100μg/mlのアンピシリン入り5mLのLB培地、Cy1-A8ΔgabT/gdhA-gadBm株を100μg/mlのアンピシリンおよび12.5μg/mlのクロラムフェニコール入り5mLのLB培地で、それぞれ37℃、200rpm、16h培養した。続いてGABA生産のために、BW25113/gdhA-gadBmの前培養液を100μg/mlのアンピシリン入りの10mLのM9YE培地に100μL植菌、Cy1-A8ΔgabT/gdhA-gadBmの前培養液を12.5μg/mlのクロラムフェニコールおよび100μg/mlのアンピシリン入りの10mLのM9YE培地に100μL植菌して37℃、150rpmで96h培養した。培養上清はGC-MSを用いて測定した。
 前培養として、BW25113/gmas株を100μg/mlのアンピシリン入り5mLのLB培地、Cy1-A8/gmas株を100μg/mlのアンピシリンおよび12.5μg/mlのクロラムフェニコール入り5mLのLB培地で、それぞれ37℃、200rpm、16h培養した。続いてテアニン生産のために、BW25113/gmasの前培養液を5mLのTB培地(100μg/mlのアンピシリン、0.1mMのIPTG、2g/lエチルアミン入り)に50μL植菌、Cy1-A8/nifV株の前培養液を5mLのTB培地(12.5μg/mlのクロラムフェニコール、100μg/mlのアンピシリン、0.1mMのIPTG、2g/lエチルアミン(東京化成工業株式会社)入り)に50μL植菌して30℃、200rpmで72h培養した。培養上清はGC-MSを用いて測定した。
22.培地中のGABA、ホモクエン酸、テアニンの分析
 GABA、ホモクエン酸、テアニンの濃度は、ガスクロマトグラフィー/質量分析計(GC-MS)(Shimadzu)により分析した。5μLの培養上清に、2μLの10g/Lリビトールを内部標準物質として加えて、CentriVap Benchtop Vacuum Concentrators(Labconco,Kansas City,MO,USA)を用いて乾燥させた。GC-MS分析のためのトリメチルシリル化は以下の手順で行った;乾燥させたサンプルに、ピリジンに溶解させた100μLの20mg/mL O-メチルヒドロキシルアミン塩酸塩溶液を加え90分間反応させた(1200rpm,30℃;M-BR-022UP;Taitec,Saitama,Japan)。そして、50μLのN-メチル-N-トリメチルシリルトリフルオロアセトアミド(MSTFA)を加えて、30分間反応させた(1200rpm at 37℃;M-BR-022UP;Taitec)。サンプルは室温で遠心分離(3000g,5分)して上清を分析に用いた。
 GC-MS(GCMS-QP2010 Ultra;Shimadzu)には、DB-5msカラム(15m length×0.25mm i.d.,film thickness of0.25μm;Agilent)を装着して用いた。GC-MSの各パラメーターの設定は以下の通りである;試料気化室の温度は230°Cに設定した。サンプル注入量は1μLでスプリット比は1:25に設定した。ヘリウムをキャリアーガスに用いて、流量は1.12mL/minに設定した。カラム温度は、80℃で2分間保温したのちに、15℃/minで330℃まで昇温して、330℃で6分間保温した。インターフェース温度及びイオン源の温度はそれぞれ、250℃と200℃に設定した。イオン化(Electron impact ionization;EI)は70eVで行った。分析はFast Automated Scan/SIM(FASTT)モードにより、Scanモード(85-500m/z)及びSelected ion monitoring(SIM)モード(m/z 103 for ribitol)を並行して行った。
<実験結果>
1.FBAに基づくAKG生産量向上株の作出
 フラックスバランス解析(FBA)により、グルコースを基質とした時のAKG生産量向上のために、欠損及び強化すべき代謝反応酵素の探索を行った。AKG高生産のために欠損及び強化すべき代謝反応を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明では大腸菌BW25113株を宿主に、表1に示した欠損及び強化すべき代謝反応のうち、酢酸の生合成を担うacetate kinase遺伝子(ackA)とphosphate acetyltransferase遺伝子(pta)、解糖系からペントースリン酸経路への反応を担うglucose-6-phosphate 1-dehydrogenase遺伝子(zwf)、ホスホエノールピルビン酸:糖ホスホトランスフェラーゼシステム(PTS)によるグルコース取り込みに関与するタンパク質をコードする遺伝子(ptsHI)を欠損したBWΔptsHIΔackA-ptaΔzwf株を作成した。続いて、BWΔptsHIΔackA-ptaΔzwf株にgalP遺伝子及びglk遺伝子を過剰発現するためのプラスミド(pET-PR-galP-glk)を導入し、作成した大腸菌株をAKGベース株と命名した。
 BW25113株及びAKGベース株を用いてAKG生産のための発酵試験を行った。発酵試験に用いる菌体は、まず、5mLのLB培地で一晩培養した。続いて、20 mLのM9YE培地にOD600=0.1となるように植菌して、37度、100 rpmで培養し、サンプリングを行った。培養終了後に、培養上清をバイオセンサーとHPLCを用いて分析した。図1に、培養上清に含まれるAKG及び、AKGから1段階の反応で生産されるコハク酸及びグルタミン酸の生産量を示した。AKGベース株では、BW25113株に比べてAKG及びAKGから生産される代謝物の生産量が増加していることが確認された。
2.コンビナトリアルプラスミドライブラリーの作成
 グルコースからAKGまでの代謝反応を担う主要な酵素をコードする17遺伝子を図2に示す。これら17遺伝子の最適な過剰発現の組み合わせを探索するために、Ordered Gene Assembly in Bacillus subtilis method (OGAB)を利用したコンビナトリアルプラスミドライブラリーの構築を行った。枯草菌でのコンビナトリアルプラスミドライブラリーの作成後に、プレートに生えてきたコロニーからランダムに24コロニーを選抜して、DNAカセットのつなぎ目を挟み込むように設計した17のプライマーセットを用いてコロニー懸濁液をテンプレートにPCRを行なった。その結果、24クローン全てにおいて17の遺伝子カセットがランダムに集積されていることが確認できた。
3.コンビナトリアルプラスミドライブラリー導入大腸菌株のグルタミン酸生産量の評価
 17の過剰発現DNAカセットが集積されたプラスミド(過剰発現AKGプラスミド)をAKGベース株にエレクトロポレーション法により形質転換した。得られた株は過剰発現コントロール株と命名した。17の非過剰発現DNAカセットが集積されたプラスミド(非過剰発現AKGプラスミド)をAKGベース株にエレクトロポレーション法により形質転換した。得られた株は非過剰発現コントロール株と命名した。また、コンビナトリアルプラスミドライブラリーについてもAKGベース株にエレクトロポレーション法により形質転換した。
 得られた形質転換体のコロニーからランダムに選抜した88株を用いて、96 wellプレートを用いた発酵試験を行った。同時に過剰発現コントロール株及び非過剰発現コントロール株についても、それぞれ4コロニーずつ培養試験を行った。培養試験の結果を図3に示す。培養試験の結果、非過剰発現コントロール株及び過剰発現コントロール株のグルタミン酸生産量は、100mg/L及び1330mg/Lであった。一方、コンビナトリアルライブラリー導入株のグルタミン酸生産量は97mg/Lから2180mg/Lまで様々で、17遺伝子全てを過剰発現した過剰発現コントロール株より生産性の向上した株を獲得できた。
4.導入されたプラスミドの配列確認
 定量PCR装置を用いた融解曲線解析により、培養に用いた大腸菌株に導入されたコンビナトリアルプラスミドに集積された遺伝子カセットの判定を行い、コンビナトリアルプラスミドが導入された88株において、17遺伝子の内いずれの遺伝子が過剰発現されて、いずれの遺伝子が過剰発現されていなかを調べた。コンビナトリアルプラスミドが導入された88株の内、84株においては17の遺伝子カセットが正しく集積されたコンビナトリアルプラスミドが導入されていた。4株においは、一部のカセットが欠損したコンビナトリアルプラスミドが導入されていた。正しく集積された84のコンビナトリアルプラスミドのうち、異なる配列は79種類で、5種類の配列については重複が見られた。
5.統計解析によるAKG生産量の増加に寄与する遺伝子の同定
 17遺伝子の中でAKG生産量の増加に寄与する遺伝子を同定するために、96株のグルタミン酸生産量のデータとコンビナトリアルプラスミドの配列解析のデータを用いて統計解析を行った。統計解析の結果を図4に示す。17遺伝子のうちppcとaceFの過剰発現がグルタミン酸の生産量向上に有意に影響することが明らかとなった。
 そこで、ppcとaceFの単独過剰発現プラスミド(pCP-ppcとpCP-aceF)及び、両遺伝子を同時に過剰発現するためのプラスミド(pCP-ppc-aceF)を作成した。作成したプラスミドをBW25113株に導入した。BW25113株、ppc過剰発現株、aceF過剰発現株、ppc-aceF過剰発現株を用いて培養試験を行った。培養試験の結果を図5に示す。aceF及び、ppcを過剰発現した株ではグルタミン酸の生産量が向上した。
6.第二世代コンビナトリアルプラスミドライブラリーの作成及び評価
 第二世代コンビナトリアルプラスミドライブラリーでは、ppcとaceFの2遺伝子は過剰発現DNAカセットのみを用いて、残りの15遺伝子については過剰発現及び非過剰発現DNAカセットの両方を用いることで、ppcとaceFの2遺伝子の過剰発現に加えて、グルタミン酸生産量の向上に寄与する遺伝子の探索を行った。
 第一世代コンビナトリアルプラスミドライブラリーと同様に、作成した第二世代コンビナトリアルプラスミドライブラリーをベース株に導入した。形質転換後、ランダムにピックアップした88コロニーを用いて、96wellプレートで培養試験を行った。培養試験の結果を図6に示す。第二世代コンビナトリアルプラスミドライブラリー導入株では、第一世代コンビナトリアルプラスミドライブラリー導入株よりグルタミンの生産量が向上した株が多かった。続いて、第一世代コンビナトリアルプラスミドライブラリーを導入した時と同様に、培養に用いた各大腸菌株に導入されたコンビナトリアルプラスミドに集積された遺伝子カセットの判定を行った。コンビナトリアルプラスミドが導入された88株の内、65株においては17の遺伝子カセットが正しく集積されたコンビナトリアルプラスミドが導入されていた。23株においは、一部のカセットが欠損したコンビナトリアルプラスミドが導入されていた。正しく集積された65のコンビナトリアルプラスミドのうち、異なる配列は64種類で、1種類の配列については重複が見られた。
 AKG生産量の増加に寄与する遺伝子を同定するために、96株のグルタミン酸生産量のデータとコンビナトリアルプラスミドの配列解析のデータを用いて統計解析を行った。統計解析の結果を図7に示す。glkの過剰発現が、aceFとppcの過剰発現に加えて、グルタミン酸の生産量向上に有意に寄与することが示された。
7.Combi-OGABプラスミド導入によるAKG生産強化株のホモクエン酸、GABA、テアニン生産試験結果
 大腸菌BW25113および、項目12で評価したCombi-OGABプラスミドライブラリーの形質転換大腸菌の中で最もグルタミン酸生産量の多かった大腸菌株(Cy1-A8株)を宿主に、AKGから生産できる有用化合物(ホモクエン酸、GABA、テアニン)の生産試験を行った。Cy1-A8株に導入されているCombi-OGABプラスミドの配列情報は図8に示す通りで、ターゲットにした17遺伝子の内12遺伝子(glk、pgi、pfkA、tpiA、pgk、gpmA、eno、pykF、ppc、aceF、gltA、icd)がCy1-A8株で過剰発現されている。
 大腸菌の野生株はホモクエン酸を生産しないが、ホモクエン酸合成酵素遺伝子を導入することでAKGとアセチルCoAの縮合によりホモクエン酸を生産できるようになる。本研究では、Azotobacter vinelandii由来のnifV遺伝子(配列番号149)(Zheng L, White RH, Dean DR: Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J. Bacteriol. 1997, 179(18):5963-5966.)をBW25113およびCy1-A8株に導入し、ホモクエン酸の生産量を評価した。BW25113/nifV株およびCy1-A8/nifV株のホモクエン酸生産量はそれぞれ、422mg/Lおよび775mg/Lで、Cy1-A8/nifV株はBW25113/nifV株にくらべて1.8倍のホモクエン酸生産量を示した(図9-a)。
 大腸菌においてGABAは、グルタミン酸デヒドロゲナーゼ(gdhA)とグルタミン酸デカルボキシラーゼ(gadB)の働きによりAKGから生産され、GABAトランスアミナーゼ(GabT)により分解される。よって本研究ではまず、BW25113株およびCy1-A8株からGabT遺伝子を破壊した。また、大腸菌のグルタミン酸デカルボキシラーゼ(gadB)は、pH6以上で活性が非常に低くなることが知られているために(Thu Ho NA, Hou CY, Kim WH, Kang TJ: Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. J. Biosci. Bioeng. 2013, 115(2):154-158.)、pH6以上でも活性を示すE89QおよびΔ452-466の二つの変異を導入したgadB(配列番号151)を本研究では過剰発現した。BW25113ΔgabT/gdhA-gadBm株およびCy1-A8ΔgabT/gdhA-gadBm株のGABA生産量はそれぞれ、0.72g/Lおよび1.53g/Lで、Cy1-A8ΔgabT/gdhA-gadBm株はBWBW25113ΔgabT/gdhA-gadBm株にくらべて2.1倍のGABA生産量を示した(図9-b)。
 大腸菌の野生株はテアニンを生産しないが、γ-グルタミルメチルアミド合成酵素遺伝子を導入することでグルタミン酸とエチルアミンの縮合によりテアニンを生産できるようになる。本研究では、Pseudomonas syringae由来のgmas遺伝子(配列番号152)(WO2018190398A1)をBW25113およびCy1-A8株に導入し、テアニンの生産量を評価した。BW25113/gmas株およびCy1-A8/gmas株のテアニン生産量はそれぞれ、0.93g/Lおよび1.87g/Lで、Cy1-A8/gmas株はBW25113/gmas株にくらべて2.0倍のテアニン生産量を示した(図9-c)。
 以上のとおり、Combi-OGABプラスミド導入によって得られたAKG生産強化株を宿主とすることで、AKGから生産できる各種有用化合物(ホモクエン酸、GABA、テアニン等)を高生産できる株を容易に調製できることが確認された。この結果から、本発明の方法によって構築された代謝改変微生物株は、AKG等の微生物発酵におけるハブ化合物を高生産できるため、これらを出発原料としたさまざまな物質の生産に活用することができることが明らかとなった。
 本発明の代謝改変微生物株の構築方法によると、微生物発酵におけるハブ化合物等の有用化合物を高生産する株を効率よく構築することが可能である。親株に対し、代謝フラックス解析(Flux balance analysis;FBA)に基づく代謝改変を施してベース株を構築し、さらに内生の代謝調節を受けない人工的なDNAパーツを用いたCombi-OGAB長鎖DNAライブラリーをベース株に導入することで、親株と比較して有用化合物の生産量が顕著に増加した代謝改変微生物株を構築することができる。実施例で示したとおり、本発明の方法により、ハブ化合物(有用化合物)としてα-ケトグルタール酸をターゲットとし、これを高生産できる株を構築することに成功した。本発明の方法によると、上記の化合物以外の有用化合物についても、高生産株を構築することが可能である。また、本発明の方法によって構築された代謝改変微生物株は、微生物発酵におけるハブ化合物を高生産できるため、これらを出発原料としたさまざまな物質の生産に活用することができる。

Claims (7)

  1.  有用化合物を高生産する代謝改変微生物株の構築方法であって、
    (A)親株に代謝改変を施し、ベース株を構築する工程、
    (B)上記有用化合物の生合成経路を細胞内で機能可能に構成する酵素群の、各酵素をそれぞれコードするDNAに、強発現用プロモーター及びターミネーター配列を連結させた単位DNAカセット、並びに各酵素をそれぞれコードするDNAに、低発現用プロモーター(又はプロモーター無し)及びターミネーター配列を連結させた単位DNAカセットを準備し、OGAB法を用いて遺伝子集積を行い、プラスミドライブラリーを構築する工程、
    (C)上記構築したプラスミドライブラリーを上記ベース株に導入し、各株の上記有用化合物生産量を測定する工程、
    (D)(C)工程において得られた各株に導入されたプラスミドの配列情報を解析する工程、
    (E)(C)工程において得られた各株の上記有用化合物生産量と、(D)工程において得られたプラスミドの配列情報を関連づけた統計解析又は機械学習を行い、上記有用化合物の生産に寄与する有用遺伝子を同定する工程、及び
    (F)(E)工程において同定された有用化合物の生産に寄与する有用遺伝子について組換えを行った株を作成する工程
    を含む、代謝改変微生物株の構築方法。
  2.  (B)工程~(E)工程の一連の工程を複数回繰り返す、請求項1に記載の代謝改変微生物株の構築方法。
  3. (A)工程における代謝改変が、上記有用化合物生産のための代謝フラックス解析(Flux balance analysis;FBA)に基づく代謝改変である、請求項1又は2に記載の代謝改変微生物株の構築方法。
  4.  上記有用化合物が、α-ケトグルタ
    ール酸、チロシン、L-グルタミン酸、ピルビン酸、UDP-グルコース、コハク酸、酢酸、ファルネシルピロリン酸、グルタチオン、ギ酸、ホルムアルデヒド、L-メチオニン、グリシン、グリオキシル酸、ゲラニルゲラニル二リン酸、アセチル-CoAのいずれかである、請求項1から3のいずれか1項に記載の代謝改変微生物株の構築方法。
  5.  上記代謝改変微生物株が、大腸菌、酵母、微細藻類、シアノバクテリア(ラン藻)、放線菌、コリネ型細菌のいずれかである、請求項1から4のいずれか1項に記載の代謝改変微生物株の構築方法。
  6.  上記有用化合物が、α-ケトグルタール酸であり、(B)工程における上記酵素群が、glk,pgi,pfkA,fbaA,tpiA,gapA,pgk,gpmA,eno,pykF,lpdA,aceE,aceF,gltA,acnB,icd及びppcを含む、請求項1から5のいずれか1項に記載の代謝改変微生物株の構築方法。
  7.  請求項6に記載の方法により構築された、aceF、ppc、glkの発現が亢進している代謝改変大腸菌株。
PCT/JP2021/044910 2020-12-08 2021-12-07 有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株 WO2022124302A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568290A JPWO2022124302A1 (ja) 2020-12-08 2021-12-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-203335 2020-12-08
JP2020203335 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022124302A1 true WO2022124302A1 (ja) 2022-06-16

Family

ID=81974582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044910 WO2022124302A1 (ja) 2020-12-08 2021-12-07 有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株

Country Status (2)

Country Link
JP (1) JPWO2022124302A1 (ja)
WO (1) WO2022124302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024186259A1 (en) 2023-03-07 2024-09-12 Karyolaimos Alexandros A method for enhancing recombinant production in a production host, an expression system, a library, a platform system, a production strain, an e. coli strain, a kit of parts, a method of using the platform system and a computer program, related to the method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527992A (ja) * 2005-09-15 2008-07-31 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ 強化目的のフラックスに基づいたフラックス・スキャニングを用いた生物の改良方法
US20130122553A1 (en) * 2010-07-12 2013-05-16 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
JP2020524490A (ja) * 2017-06-06 2020-08-20 ザイマージェン インコーポレイテッド Escherichia Coliを改良するためのHTPゲノム操作プラットフォーム
WO2020203496A1 (ja) * 2019-04-01 2020-10-08 国立大学法人神戸大学 キメラプラスミドライブラリーの構築方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527992A (ja) * 2005-09-15 2008-07-31 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ 強化目的のフラックスに基づいたフラックス・スキャニングを用いた生物の改良方法
US20130122553A1 (en) * 2010-07-12 2013-05-16 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
JP2020524490A (ja) * 2017-06-06 2020-08-20 ザイマージェン インコーポレイテッド Escherichia Coliを改良するためのHTPゲノム操作プラットフォーム
WO2020203496A1 (ja) * 2019-04-01 2020-10-08 国立大学法人神戸大学 キメラプラスミドライブラリーの構築方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
VAVRICKA CHRISTOPHER J.; HASUNUMA TOMOHISA; KONDO AKIHIKO: "Dynamic Metabolomics for Engineering Biology: Accelerating Learning Cycles for Bioproduction", TRENDS IN BIOTECHNOLOGY, vol. 38, no. 1, 28 August 2019 (2019-08-28), GB , pages 68 - 82, XP085965948, ISSN: 0167-7799, DOI: 10.1016/j.tibtech.2019.07.009 *
XIULAI CHEN; XIAOXIANG DONG; JIA LIU; QIULING LUO; LIMING LIU: "Pathway engineering of Escherichia coli for α‐ketoglutaric acid production", BIOTECHNOLOGY AND BIOENGINEERING, vol. 117, no. 9, 27 June 2020 (2020-06-27), Hoboken, USA, pages 2791 - 2801, XP071114016, ISSN: 0006-3592, DOI: 10.1002/bit.27456 *
XU PENG, RIZZONI ELIZABETH ANNE, SUL SE-YEONG, STEPHANOPOULOS GREGORY: "Improving Metabolic Pathway Efficiency by Statistical Model-Based Multivariate Regulatory Metabolic Engineering", ACS SYNTHETIC BIOLOGY, vol. 6, no. 1, 20 January 2017 (2017-01-20), Washington DC ,USA , pages 148 - 158, XP055941999, ISSN: 2161-5063, DOI: 10.1021/acssynbio.6b00187 *
YOUNG ERIC M.; ZHAO ZHENG; GIELESEN BIANCA E.M.; WU LIANG; BENJAMIN GORDON D.; ROUBOS JOHANNES A.; VOIGT CHRISTOPHER A.: "Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast", METABOLIC ENGINEERING, vol. 48, 9 May 2018 (2018-05-09), AMSTERDAM, NL, pages 33 - 43, XP085977760, ISSN: 1096-7176, DOI: 10.1016/j.ymben.2018.05.002 *
ZHOU YIKANG; LI GANG; DONG JUNKAI; XING XIN-HUI; DAI JUNBIAO; ZHANG CHONG: "MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways inSaccharomyces cerevisiae", METABOLIC ENGINEERING, ACADEMIC PRESS, vol. 47, 5 April 2018 (2018-04-05), AMSTERDAM, NL, pages 294 - 302, XP085402397, ISSN: 1096-7176, DOI: 10.1016/j.ymben.2018.03.020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024186259A1 (en) 2023-03-07 2024-09-12 Karyolaimos Alexandros A method for enhancing recombinant production in a production host, an expression system, a library, a platform system, a production strain, an e. coli strain, a kit of parts, a method of using the platform system and a computer program, related to the method

Also Published As

Publication number Publication date
JPWO2022124302A1 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
JP4894134B2 (ja) 物質生産に影響する代謝フラックスの決定方法
KR102116734B1 (ko) 대사 공학을 통한 에르고티오네인 생성
US9890405B2 (en) Recombinant bacterial cells producing (S)-2-amino-6-hydroxypimelate
US9932598B2 (en) Metabolic engineering of microbial organisms
KR20060123490A (ko) 1,2-프로판디올을 생산하기 위하여 진화된 미생물
CN110914425A (zh) 用于改良刺糖多孢菌的高通量(htp)基因组工程改造平台
KR102023618B1 (ko) 1,4-bdo 생성능이 개선된 변이 미생물 및 이를 이용한 1,4-bdo의 제조방법
JP2024519087A (ja) アミノ酸エクスポーターの不活性化によりグアニジノ酢酸(gaa)を産生するための改善された生物工学的な方法
JP2008527991A (ja) インシリコ分析に基づく菌株の改良方法
Wang et al. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli
Bañares et al. Discovering a novel D-xylonate-responsive promoter: the P yjhI-driven genetic switch towards better 1, 2, 4-butanetriol production
Godara et al. Adaptive laboratory evolution for growth coupled microbial production
WO2022124302A1 (ja) 有用化合物を高生産する代謝改変微生物株の構築方法及び代謝改変大腸菌株
Lee et al. Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways
US11920129B2 (en) Ligation and/or assembly of nucleic acid molecules
Zhan et al. Improved polyketide production in C. glutamicum by preventing propionate-induced growth inhibition
Wang et al. Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli
US9080178B2 (en) Escherichia coli metabolic engineering oxygen independent platform strains and methods of use thereof
Huang et al. Engineering of a Substrate Affinity Reduced S-Adenosyl-methionine Synthetase as a Novel Biosensor for Growth-Coupling Selection of L-Methionine Overproducers
Sanford et al. Development of a recombineering system for the acetogen Eubacterium limosum with Cas9 counterselection for markerless genome engineering
Meynial-Salles et al. Creation of new metabolic pathways or improvement of existing metabolic enzymes by in vivo evolution in Escherichia coli
Skagestad Effect of hydrogen peroxide in the production of L-lysine-derived amino acids in Bacillus methanolicus
Zhang et al. Extended toolboxes enable efficient biosynthesis of valuable chemicals directly from CO2 in fast-growing Synechococcus sp. PCC 11901
Ding et al. Rapidly engineering an osmotic-pressure-tolerant gut bacterium for efficient non-sterile production of bulk chemicals
Crang Investigating the links between N2 fixation and metabolism in rhizobia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903401

Country of ref document: EP

Kind code of ref document: A1