WO2022124253A1 - Copolymer, binder, molded article, and method for producing copolymer - Google Patents

Copolymer, binder, molded article, and method for producing copolymer Download PDF

Info

Publication number
WO2022124253A1
WO2022124253A1 PCT/JP2021/044666 JP2021044666W WO2022124253A1 WO 2022124253 A1 WO2022124253 A1 WO 2022124253A1 JP 2021044666 W JP2021044666 W JP 2021044666W WO 2022124253 A1 WO2022124253 A1 WO 2022124253A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
monomer
polymerization
group
vdf
Prior art date
Application number
PCT/JP2021/044666
Other languages
French (fr)
Japanese (ja)
Inventor
遼一 矢野
貴視 井口
佳奈子 新井
和哉 浅野
寛太 福島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2022124253A1 publication Critical patent/WO2022124253A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride

Definitions

  • the present disclosure relates to a copolymer, a binder, a molded product, and a method for producing a copolymer.
  • Polyvinylidene fluoride is used in many applications such as polymer porous membranes because it has excellent chemical resistance.
  • Patent Document 1 contains a controlled microstructure copolymer comprising a copolymer having 1 to 99% by weight of 2,3,3,3-tetrafluoropropene monomer unit and 1 to 99% by weight of vinylidene fluoride monomer unit.
  • the copolymer has a ratio of 2,3,3,3-tetrafluoropropene to vinylidene fluoride in the initial preparation of 0.1 to 0.9 times the constant state monomer ratio, or 1.
  • a composition with a controlled microstructure formed by a semi-batch process, which is 1 to 10 times larger, is described.
  • an electrode mixture having both bending resistance and flexibility, excellent heat resistance, and a viscosity that does not easily increase, and an electrode material layer having excellent electrolytic solution swelling resistance. It is an object of the present invention to provide a copolymer capable of being produced.
  • X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F.
  • the copolymer containing the monomer (1) unit, and the content of the monomer (1) unit is 3.0 to 25.0 mass with respect to all the monomer units. %, A copolymer having a melting point of 160 ° C. or higher is provided.
  • the copolymer of the present disclosure preferably has a weight average molecular weight of 2000000 or less.
  • n is preferably 1.
  • X 1 and X 2 are independently H or F.
  • the monomer (1) is 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z-form) and 1,3,3,3-tetrafluoropropene (E-form). ) Is preferably at least one selected from the group consisting of.
  • a binder containing the above-mentioned copolymer is provided.
  • a molded product containing the above-mentioned copolymer wherein the molded product is a film, a sheet, a tube or a melt-spun product.
  • CX 1 X 2 CX 3 (CF 2 ) n Y
  • X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3
  • n is an integer of 1-6
  • Y is H or F.
  • the polymerization temperature is preferably 30 ° C. or higher.
  • the maximum pressure reached during polymerization is preferably 4.38 MPa or more.
  • suspension polymerization is preferably carried out in the presence of a peroxide polymerization initiator.
  • an electrode mixture having both bending resistance and flexibility, excellent heat resistance, and a viscosity that does not easily increase can be obtained, and an electrode material layer having excellent electrolytic solution swelling resistance can be obtained. It is possible to provide a copolymer that can be used.
  • the copolymers of the present disclosure contain vinylidene fluoride (VdF) units and monomer (1) units, and the content of the monomer (1) units is higher than that of all monomer units. It is 3.0 to 25.0% by mass. Further, the copolymer of the present disclosure has such a monomer composition and at the same time has a melting point of 160 ° C. or higher.
  • VdF vinylidene fluoride
  • the monomer (1) unit is a monomer unit based on the monomer (1) represented by the general formula (1).
  • General formula (1): CX 1 X 2 CX 3 (CF 2 ) n Y
  • X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F.
  • X 1 and X 2 it is preferable that they are H or F independently. If X 1 and X 2 are H or F, then X 3 may be H, F, CH 3 , CH 2 F, CHF 2 or CF 3 . Further, as X 1 , X 2 and X 3 , H or F is preferable independently, and in this case, at least one of X 1 , X 2 and X 3 is F, and at least one is H. be. It is more preferable that both X 1 and X 2 are H.
  • N is an integer of 1 to 6, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, still more preferably 1 or 2, and particularly preferably 1.
  • F is preferable as Y.
  • the monomer represented by the general formula (1-1) is preferable.
  • General formula (1-1): CHX 2 CX 3 (CF 2 ) n Y (In the general formula (1-1), one of X 2 and X 3 is H, the other is F, and n and Y are as described above.)
  • Examples of the monomer (1) include 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z-form) and 1,3,3,3-tetrafluoropropene (E). At least one selected from the group consisting of bodies) is preferable, and 2,3,3,3-tetrafluoropropene is more preferable.
  • the content of the monomer (1) unit of the copolymer is 3.0 to 25.0% by mass with respect to all the monomer units constituting the copolymer. By adjusting the content of the monomer (1) unit of the copolymer within this range, a copolymer having both bending resistance and flexibility and excellent heat resistance can be obtained. An electrode mixture whose viscosity does not easily increase can be obtained, and an electrode material layer having excellent electrolytic solution swelling resistance can be obtained.
  • the content of the monomer (1) unit of the copolymer is preferably 4.0% by mass or more, more preferably 5.0% by mass or more, and preferably 24.0% by mass or less. More preferably, it is 23.0% by mass or less.
  • the content of the VdF unit of the copolymer is preferably 75.0 to 97.0% by mass with respect to all the monomer units constituting the copolymer.
  • the content of the copolymer in VdF units is more preferably 76.0% by mass or more, further preferably 77.0% by mass or more, still more preferably 96.0% by mass or less, still more preferably. It is 95.0% by mass or less.
  • the copolymer may further contain a monomer unit copolymerizable with VdF and the monomer (1) other than the VdF unit and the monomer (1) unit.
  • the monomer copolymerizable with VdF and the monomer (1) include a fluorinated monomer (however, excluding VdF and the monomer (1)), a non-fluorinated monomer, and the like. Fluorinated monomers are preferred. Examples of the fluorinated monomer include tetrafluoroethylene, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, (perfluoroalkyl) ethylene and the like.
  • non-fluorinated monomer examples include ethylene and propylene.
  • the content of the monomer unit copolymerizable with VdF and the monomer (1) is preferably 0 to 5.0% by mass, more preferably 0 to 3.0% by mass, and even more preferably. It is 0 to 1.0% by mass. It is also preferable that the copolymer consists of only VdF units and monomer (1) units.
  • the content of the monomer unit of the copolymer can be measured by 19 F-NMR measurement.
  • the melting point of the copolymer is 160 ° C or higher. By adjusting the melting point of the copolymer within this range, a copolymer having both bending resistance and flexibility and excellent heat resistance can be obtained, and an electrode mixture whose viscosity does not easily increase can be obtained. It is possible to obtain an electrode material layer that is obtained and has excellent electrolytic solution swelling resistance.
  • the melting point of the copolymer is preferably 161 ° C. or higher, more preferably 162 ° C. or higher, still more preferably 163 ° C. or higher, and the upper limit is not particularly limited, but may be 175 ° C. or lower, 170 ° C. or higher. It may be as follows.
  • the melting point (secondary melting point) of the copolymer is raised from 30 ° C. to 220 ° C. at a rate of 10 ° C./min and then lowered to 30 ° C. at 10 ° C./min using a differential scanning calorimetry (DSC) device. It can be obtained as the temperature with respect to the maximum value in the heat of fusion curve when the temperature is raised to 220 ° C. again at a rate of 10 ° C./min.
  • DSC differential scanning calorimetry
  • the solution viscosity of the copolymer is preferably 2000 mPa ⁇ s or less. By adjusting the solution viscosity of the copolymer within this range, both bending resistance and flexibility can be achieved at a higher level, and heat resistance is further improved.
  • the solution viscosity of the copolymer is preferably 10 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more, further preferably 100 mPa ⁇ s or more, particularly preferably 150 mPa ⁇ s or more, and more preferably. It is 1800 mPa ⁇ s or less, and more preferably 1500 mPa ⁇ s or less.
  • the solution viscosity of the copolymer is the viscosity of the N-methyl-2-pyrrolidone (NMP) solution containing 5% by mass of the copolymer.
  • NMP N-methyl-2-pyrrolidone
  • the viscosity of the NMP solution can be measured at 25 ° C. using a B-type viscometer.
  • the weight average molecular weight (in terms of polystyrene) of the copolymer is preferably 50,000 to 3,000,000, more preferably 80,000 or more, further preferably 100,000 or more, particularly preferably 200,000 or more, and more preferably 2400000 or less. It is more preferably 2000000 or less, and particularly preferably 1600000 or less.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
  • the number average molecular weight (in terms of polystyrene) of the copolymer is preferably 20000 to 15000000, more preferably 40,000 or more, further preferably 70,000 or more, particularly preferably 140000 or more, and more preferably 140000 or less. It is more preferably 120000 or less, and particularly preferably 110000 or less.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
  • the storage elastic modulus of the copolymer at 25 ° C. is preferably 50 MPa or more, more preferably 100 MPa or more, still more preferably 100 MPa or more, because if the elastic modulus is too low, the resin after molding may be easily deformed. If it is 200 MPa or more and the elastic modulus is too high, the bending resistance of the resin after molding may be inferior. Therefore, it is preferably 2000 MPa or less, more preferably 1500 MPa or less, and further preferably 1200 MPa or less.
  • the copolymer of the present disclosure has a low rate of change between the storage elastic modulus at 25 ° C. and the storage elastic modulus at 120 ° C., and is excellent in heat resistance because it can maintain rigidity even in a high temperature atmosphere.
  • the copolymers of the present disclosure can exhibit a rate of change in storage modulus of 800% or less.
  • the storage elastic modulus of a sample having a length of 30 mm, a width of 5 mm, and a thickness of 50 to 300 ⁇ m was measured by a dynamic viscoelastic device DVA220 manufactured by IT Measurement Control Co., Ltd. in a tensile mode, a grip width of 20 mm, and a measurement temperature of -30. It is a measured value at 25 ° C. or 120 ° C. when measured under the conditions of ° C. to 160 ° C., a heating rate of 2 ° C./min, and a frequency of 10 Hz.
  • the copolymer of the present disclosure is, for example, when polymerizing VdF and the monomer (1) in a reactor, with respect to the total amount of the monomer (1) to be subjected to the polymerization before or at the start of the polymerization. It can be produced by a production method in which 90% by weight or more of the monomer (1) is added to a reactor and polymerized at a polymerization temperature of 0 to 55 ° C.
  • 90% by weight or more of the monomer (1) is added to the reactor with respect to the total amount of the monomer (1) to be subjected to the polymerization before or at the start of the polymerization.
  • a copolymer having a high melting point and excellent heat resistance can be obtained. Since the polymerization reaction is usually started from the time when the polymerization initiator is added, the time when the polymerization initiator is added is usually the time when the polymerization initiator is added, and the time before the start of polymerization is the time when the polymerization initiator is added. It was a time before.
  • the amount of the monomer (1) added before or at the start of the polymerization is preferably 95% by weight or more, more preferably 99% by weight, based on the total amount of the monomer (1) to be subjected to the polymerization. As mentioned above, it may be 100% by weight. That is, the entire amount of the monomer (1) to be subjected to the polymerization may be collectively added to the reactor before or at the start of the polymerization.
  • VdF 90% by weight or more of VdF to the reactor with respect to the total amount of VdF to be subjected to the polymerization before or at the start of the polymerization.
  • the amount of VdF added before or at the start of the polymerization is preferably 95% by weight or more, more preferably 99% by weight or more, and 100% by weight, based on the total amount of VdF to be subjected to the polymerization. May be good. That is, the entire amount of VdF to be subjected to the polymerization may be collectively added to the reactor before or at the start of the polymerization.
  • VdF and the monomer (1) are polymerized at a polymerization temperature of 0 to 55 ° C. If the polymerization temperature is too high, a copolymer having a high melting point and excellent heat resistance cannot be obtained, and if the polymerization temperature is too low, the polymerization does not proceed smoothly and the production efficiency of the copolymer is lowered.
  • the polymerization temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, and preferably 50 ° C. or lower because a copolymer having a high melting point can be more easily produced. Yes, more preferably 45 ° C. or lower.
  • the polymerization temperature may be adjusted within the above range at any time of polymerization. From the viewpoint that a copolymer having a high melting point and excellent heat resistance can be more easily obtained, it is preferable to adjust the polymerization temperature within the above range at least at the start of polymerization, and to polymerize within the above range at the start of polymerization. It is more preferable to adjust the temperature and further adjust the polymerization temperature within the above range in the entire period until the completion of the polymerization.
  • the maximum pressure (maximum ultimate pressure) reached during polymerization is 4.38 MPa or more.
  • the maximum pressure is preferably 4.80 MPa or more, more preferably 5.30 MPa or more, and further preferably 5.80 MPa or more.
  • the upper limit of the maximum pressure is not particularly limited, but if the pressure is too high, a reactor with high pressure resistance is required, and the design and manufacture of the reactor are costly. Therefore, the upper limit of the maximum pressure is preferably 12.00 MPa or less, more preferably 10.00 MPa or less, and further preferably 7.00 MPa or less from the viewpoint of safe and low-cost production.
  • the polymerization pressure during polymerization may fluctuate.
  • the maximum pressure (maximum ultimate pressure) is the highest internal pressure of the reactor (gauge pressure) reached during polymerization.
  • the maximum pressure is determined by the polymerization temperature, VdF in the reactor, the density of the monomer (1), and the like.
  • VdF polymerize VdF and the monomer (1) under the condition that VdF is in a supercritical state.
  • the critical temperature of VdF is 30.1 ° C., and the critical pressure is 4.38 MPa.
  • VdF and the monomer (1) are supplied to the reactor so that the density of the VdF and the monomer (1) in the reactor is sufficiently high. It is also preferable.
  • the density of VdF and the monomer (1) in the reactor at the initial polymerization temperature is preferably 0.20 g / cm 3 or more, more preferably 0.25 g / cm 3 or more, and further preferably 0. It is .30 g / cm 3 or more, and the upper limit is not particularly limited, but if the density is too high, the pressure change in the reactor tends to be too large due to the change in the temperature inside the reactor, so it is produced safely. From the viewpoint, 0.70 g / cm 3 or less is preferable.
  • the density of VdF and the monomer (1) in the reactor is the supply amount (g) of the monomer mixture supplied to the reactor, from the internal volume of the reactor (cm 3 ) to the volume of water (cm 3 ). Can be obtained by dividing by a value obtained by subtracting.
  • VdF and the monomer (1) are supplied to the reactor in a composition ratio such that a copolymer having a desired monomer composition can be obtained.
  • the content of the monomer (1) unit of the copolymer obtained by the production method of the present disclosure is 3.0 to 25.0% by mass with respect to all the monomer units constituting the copolymer. ..
  • the content of the monomer (1) unit of the copolymer is preferably 4.0% by mass or more, more preferably 5.0% by mass or more, and preferably 24.0% by mass or less. More preferably, it is 23.0% by mass or less.
  • the content of the VdF unit of the copolymer is preferably 75.0 to 97.0% by mass with respect to all the monomer units constituting the copolymer.
  • the content of the copolymer in VdF units is more preferably 76.0% by mass or more, further preferably 77.0% by mass or more, still more preferably 96.0% by mass or less, still more preferably. It is 95.0% by mass or less.
  • a monomer copolymerizable with VdF and the monomer (1) other than VdF and the monomer (1) may be further polymerized.
  • the monomer copolymerizable with VdF and the monomer (1) include a fluorinated monomer (however, excluding VdF and the monomer (1)), a non-fluorinated monomer, and the like. Fluorinated monomers are preferred. Examples of the fluorinated monomer include tetrafluoroethylene, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, (perfluoroalkyl) ethylene and the like.
  • non-fluorinated monomer examples include ethylene and propylene.
  • the content of the VdF of the copolymer and the monomer unit copolymerizable with the monomer (1) is preferably 0 to 5.0% by mass, more preferably 0 to 3.0% by mass. , More preferably 0 to 1.0% by mass. It is also preferable that the copolymer consists of only VdF units and monomer (1) units.
  • suspension polymerization As the polymerization method, suspension polymerization, emulsion polymerization, solution polymerization and the like can be adopted, but suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like.
  • a polymerization initiator In the above polymerization, a polymerization initiator, a surfactant, a chain transfer agent and a solvent can be used, and conventionally known ones can be used for each.
  • a polymerization initiator an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, for example, Dialkyl peroxy carbonates such as dinormal propyl peroxy dicarbonate, diisopropyl peroxy dicarbonate, disec-butyl peroxy dicarbonate; t-Butylperoxyisobutyrate, t-butylperoxypivalate, t-hexylperoxy2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, 1,1,3,3- Peroxyesters such as tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxypivalate; Dialkyl peroxides such as dit-butyl peroxide; Di [fluoro (or fluorochloro) acyl] peroxides; Etc. are typical examples.
  • Dialkyl peroxides such as dit-butyl peroxide
  • Di [fluoro (or fluorochloro) acyl] peroxides are represented by [(RfCOO)-] 2 (Rf is a perfluoroalkyl group, ⁇ -hydroperfluoroalkyl group or fluorochloroalkyl group). Peroxide can be mentioned.
  • di [fluoro (or fluorochloro) acyl] peroxides examples include di ( ⁇ -hydro-dodecafluorohexanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, and di ( ⁇ ).
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfate, perboric acid, perchloric acid, perphosphoric acid and percarbonate, potassium salts and sodium salts. , Organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide, t-butyl permalate, t-butyl hydroperoxide and the like. A reducing agent such as sulfates may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times the amount of the peroxide.
  • ammonium salts such as persulfate, perboric acid, perchloric acid, perphosphoric acid and percarbonate, potassium salts and sodium salts.
  • Organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide, t-butyl permalate, t-butyl hydroperoxide and the like.
  • the polymerization can be smoothly started at the above-mentioned polymerization temperature, and a copolymer having a high melting point and excellent heat resistance can be easily produced. Therefore, it is suspended in the presence of a peroxide polymerization initiator.
  • a method of turbid polymerization and a method of emulsifying polymerization in the presence of a redox polymerization initiator are preferable.
  • the peroxide polymerization initiator include the above-mentioned oil-soluble peroxides.
  • the redox polymerization initiator include the above-mentioned combination of the peroxide and the reducing agent.
  • a known surfactant can be used, and for example, a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used.
  • a fluorine-containing anionic surfactant is preferable, and an ether bond may be contained (that is, an oxygen atom may be inserted between carbon atoms), and a linear or branched fluorine-containing detergent having 4 to 20 carbon atoms is preferable.
  • Anionic surfactants are more preferred.
  • the amount of the surfactant added (against the solvent) is preferably 50 to 5000 ppm.
  • the solution viscosity, weight average molecular weight, etc. of the obtained copolymer can be appropriately adjusted, and a copolymer having a high melting point and excellent heat resistance can be easily obtained.
  • the chain transfer agent include hydrocarbons such as ethane, isopentan, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; methanol. , Alcohols such as ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, methyl chloride and the like.
  • the amount of the chain transfer agent added may vary depending on the magnitude of the chain transfer constant of the chain transfer agent, but is usually 0.01 to 20% by mass with respect to the solvent.
  • Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
  • Fluorine-based solvent In polymerization such as suspension polymerization, a fluorine-based solvent may be used in addition to water.
  • Fluorine-based solvents include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CF HCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3 , etc.
  • Chlorofluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 ; CF 2 HCF 2 CF 2 CF 2 H, CF 3 CFHCF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 H, CF 3 CF 2 CFHCF 2 CF 3 , CF 3 CFHC FHCF 2 CF 3 , CF 2 HCF 2 CF 2 CF 2 CF 2 H, CF 2 HCFHCF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CH (CF 3 ) CF 3 CF 2 CF 3 , CF 3 CF (CF) 3 ) CFHCF 2 CF 3 , CF 3 CF (CF) 3 ) CFHCF
  • suspending agents such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide and gelatin can be used.
  • the amount of the suspending agent added (against the solvent) is preferably 0.005 to 1.0% by mass, more preferably 0.01 to 0.4% by mass.
  • the polymerization initiator used for suspension polymerization diisopropyl peroxydicarbonate, dinormal propyl peroxy dicarbonate, dinormal heptafluoropropyl peroxy dicarbonate, di (secondary butyl) peroxy carbonate, isobutyryl peroxide, di Examples thereof include (chlorofluoroacyl) peroxide, di (perfluoroacyl) peroxide, t-butylperoxypivalate, and t-amylperoxypivalate.
  • the amount used is preferably 0.1 to 5% by mass with respect to the total amount of the monomers.
  • the degree of polymerization of the obtained polymer is obtained by adding a chain transfer agent such as ethyl acetate, methyl acetate, acetone, methanol, ethanol, n-propanol, acetaldehyde, propylaldehyde, ethyl propionate, and carbon tetrachloride. May be adjusted.
  • the amount used is usually 0.1 to 5% by mass, preferably 0.5 to 3% by mass, based on the total amount of the monomers.
  • the total amount of the monomers charged is 1: 1 to 1:10, preferably 1: 2 to 1: 5 in terms of the total amount of monomers: mass ratio of water.
  • the copolymer When an aqueous dispersion containing the copolymer is obtained by the polymerization reaction after the completion of the polymerization, the copolymer can be recovered by coagulating, washing and drying the copolymer contained in the aqueous dispersion. ..
  • the copolymer When the copolymer is obtained as a slurry by the polymerization reaction, the copolymer can be recovered by taking out the slurry from the reactor, washing the slurry, and drying the slurry. By drying, the copolymer can be recovered in the form of powder.
  • copolymer of the present disclosure and the copolymer obtained by the above-mentioned production method have both bending resistance and flexibility, and are excellent in heat resistance. Therefore, films, sheets, tubes, melt spinning, and knots are used. It can be suitably used as a coating agent or the like.
  • the copolymer of the present disclosure (hereinafter, may be referred to as a copolymer (1)) has both bending resistance and flexibility, is excellent in heat resistance, and is an electrode mixture whose viscosity does not easily increase. It can be suitably used as a binder because an electrode material layer having excellent swelling resistance to the electrolytic solution can be obtained.
  • the binder containing the copolymer of the present disclosure as a binder for forming electrodes of secondary batteries, capacitors, etc.
  • an electrode mixture whose viscosity does not easily increase can be obtained, and an electrolytic solution resistant solution can be obtained.
  • An electrode material layer having excellent swellability can be obtained. Therefore, the binder of the present disclosure is suitable as a binder for batteries.
  • the binder of the present disclosure may contain a polymer other than the above-mentioned copolymer (1).
  • Other polymers include fluoropolymers (excluding copolymer (1)), polymethacrylate, polymethylmethacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, styrene rubber, butadiene rubber, and styrene butadiene rubber. , Polyacrylic acid and the like.
  • a fluoropolymer (however, excluding the copolymer (1)) is preferable, and a polyvinylidene fluoride (however, excluding the copolymer (1)) and a vinylidene fluoride polymer (excluding the copolymer (1)) are preferable.
  • at least one selected from the group consisting of the copolymer (1) is more preferable, and polyvinylidene fluoride (however, the copolymer (1) is excluded) is further preferable.
  • the binder of the present disclosure further contains polyvinylidenefluoride (however, excluding the copolymer (1)).
  • Polyvinylidene fluoride (PVdF) is a polymer containing VdF units, and is a polymer different from the above-mentioned copolymer (1).
  • PVdF may be a VdF homopolymer consisting only of VdF units, or may be a polymer containing VdF units and a monomer unit copolymerizable with VdF.
  • examples of the monomer copolymerizable with VdF include a fluorinated monomer and a non-fluorinated monomer, and a fluorinated monomer is preferable.
  • the fluorinated monomer is preferably a monomer other than the monomer (1), for example, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene (CTFE), fluoroalkyl vinyl ether, hexafluoro. Examples thereof include propylene (HFP) and (perfluoroalkyl) ethylene.
  • examples of the non-fluorinated monomer include ethylene and propylene.
  • At least one fluorinated monomer selected from the group consisting of CTFE, fluoroalkyl vinyl ether and HFP is preferable, and from CTFE, HFP and fluoroalkyl vinyl ether. At least one fluorinated monomer selected from the above group is more preferable.
  • the content of the monomer unit copolymerizable with VdF is preferably 0 to 5.0 mol%, more preferably 0 to 3.0 mol% with respect to all the monomer units.
  • the content of the fluorinated monomer unit (excluding the VdF unit) is preferably less than 5.0 mol%, more preferably 3.0, with respect to all the monomer units. It is less than mol%, more preferably less than 1.0 mol%.
  • composition of PVdF can be measured, for example, by 19 F-NMR measurement.
  • the PVdF may have a polar group.
  • the polar group is not particularly limited as long as it is a functional group having polarity, but from a carbonyl group-containing group, an epoxy group, a hydroxy group, a sulfonic acid group, a sulfate group, a phosphoric acid group, an amino group, an amide group and an alkoxy group. At least one selected from the group consisting of a carbonyl group-containing group, an epoxy group and a hydroxy group is more preferable, and a carbonyl group-containing group is even more preferable.
  • the hydroxy group does not include a hydroxy group constituting a part of the carbonyl group-containing group.
  • the amino group is a monovalent functional group obtained by removing hydrogen from ammonia, a primary or a secondary amine.
  • the carbonyl group-containing group is preferably a group represented by the general formula: -COOR (R represents a hydrogen atom, an alkyl group or a hydroxyalkyl group) or a carboxylic acid anhydride group, and is represented by the general formula: -COOR.
  • R represents a hydrogen atom, an alkyl group or a hydroxyalkyl group
  • a carboxylic acid anhydride group and is represented by the general formula: -COOR.
  • the groups to be treated are more preferred.
  • the number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3.
  • the carbonyl group-containing group has a general formula: -X-COOR (X is mainly composed of 2 to 15 atoms, and the molecular weight of the atomic group represented by X is preferably 350 or less.
  • R is a hydrogen atom.
  • the number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3.
  • the amide group includes a group represented by the general formula: -CO-NRR'(R and R'independently represent a hydrogen atom or a substituted or unsubstituted alkyl group), or a general formula:-.
  • CO-NR "-(R” represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group) is preferable.
  • the polar group can be introduced into PVdF by polymerizing VdF and a monomer having the polar group (hereinafter referred to as a polar group-containing monomer), or PVdF and a compound having the polar group. Although it can be introduced into PVdF by reacting with, it is preferable to polymerize VdF and the above-mentioned polar group-containing monomer from the viewpoint of productivity.
  • PVdF containing a VdF unit and a unit based on the polar group-containing monomer (hereinafter referred to as a polar group-containing monomer unit) can be obtained. That is, PVdF preferably contains the above-mentioned polar group-containing monomer unit.
  • the content of the polar group-containing monomer unit is preferably 0.001 to 5.0 mol%, more preferably 0.01 to 3.0 mol%, based on all the monomer units. , More preferably 0.10 to 1.5 mol%.
  • the content of the polar group-containing monomer unit in PVdF can be measured, for example, by acid-base titration of the acid group when the polar group is an acid group such as a carboxylic acid.
  • polar group-containing monomer examples include hydroxyalkyl (meth) acrylates such as hydroxyethyl acrylate and 2-hydroxypropyl acrylate; (meth) acrylic acid, crotonic acid, vinyl acetic acid (3-butenoic acid), and 3-pentenoic acid.
  • 4-Pentenoic acid 3-hexenoic acid, 4-heptenoic acid and other unsaturated monobasic acids
  • Alkylidene malonic acid ester vinylcarboxyalkyl ether such as vinylcarboxymethyl ether and vinylcarboxyethyl ether
  • carboxyalkyl (meth) acrylate such as 2-carboxyethyl acrylate and 2-carboxyethyl methacrylate
  • acryloyloxyethyl succinic acid and methacryloyloxy 4-Pentenoic acid, 3-hexenoic acid, 4-heptenoic acid and other unsaturated monobasic acids
  • maleic acid, maleic anhydride citraconic acid, unsaturated dibasic acid such as citraconic acid and the like
  • Alkylidene malonic acid ester vinylcarboxyalkyl ether such
  • (Meta) acryloyloxyalkyldicarboxylic acid esters such as ethylsuccinic acid, acryloyloxyethylphthalic acid, acryloyloxypropylsuccinic acid, methacryloyloxyethylphthalic acid; maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citracon Monoesters of unsaturated dibasic acids such as acid monoethyl esters; and the like.
  • the polar group-containing monomer or the group reactive with PVdF is used as the compound having the polar group.
  • a silane-based coupling agent or a titanate-based coupling agent having a hydrolyzable group can be used.
  • the hydrolyzable group is preferably an alkoxy group.
  • PVdF it is also possible to use a PVdF obtained by partially defluorinating the PVdF with a base and then further reacting the partially defluorinated hydrogenated PVdF with an oxidizing agent.
  • the oxidizing agent include hydrogen peroxide, hypochlorite, palladium halide, chromium halide, alkali metal permanganate, peracid compound, alkyl peroxide, alkyl persulfate and the like.
  • the content of PVdF in VdF units is preferably more than 95.0 mol% with respect to all monomer units because it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to metal foil. It is more preferably more than 97.0 mol%, still more preferably more than 99.0 mol%.
  • VdF unit of PVdF is preferably 95.0 to 95.0 to all monomer units because it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil. It is 99.999 mol%, more preferably more than 95.0 mol%, further preferably 97.0 mol% or more, particularly preferably 98.5 mol% or more, and more preferably 99.99. It is mol% or less, more preferably 99.90 mol% or less.
  • the weight average molecular weight (in terms of polystyrene) of PVdF is preferably 50,000 to 3,000,000, more preferably 80,000 or more, further preferably 100,000 or more, particularly preferably 200,000 or more, and more preferably 2400000 or less. It is more preferably 220000 or less, and particularly preferably 20000 or less.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using N, N-dimethylformamide as a solvent. Further, since it is possible to form an electrode material layer having excellent flexibility and adhesion to a metal foil, the weight average molecular weight of PVdF (A) may be 1,000,000 or more, and may be 1500,000 or more. May be good.
  • the number average molecular weight (in terms of polystyrene) of PVdF is preferably 20000 to 15000000, more preferably 40,000 or more, further preferably 70,000 or more, particularly preferably 140000 or more, and more preferably 140000 or less. It is more preferably 120000 or less, and particularly preferably 110000 or less.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
  • the melting point (secondary melting point) of PVdF is preferably 100 to 240 ° C.
  • the melting point is raised from 30 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device, then lowered to 30 ° C. at 10 ° C./min, and then again at 10 ° C./min. It is obtained as the temperature with respect to the maximum value in the heat of fusion curve when the temperature is raised to 220 ° C. at a rate.
  • PVdF can be produced by a conventionally known method such as solution polymerization or suspension polymerization by appropriately mixing VdF, the above-mentioned polar group-containing monomer, and an additive such as a polymerization initiator.
  • the storage elastic modulus of PVdF at 30 ° C. is preferably 2000 MPa or less, more preferably 1800 MPa or less.
  • the storage elastic modulus of PVdF at 60 ° C. is preferably 1500 MPa or less, more preferably 1300 MPa or less.
  • the storage elastic modulus of PVdF at 30 ° C. is preferably 1000 MPa or more, more preferably 1100 MPa or more.
  • the storage elastic modulus of PVdF at 60 ° C. is preferably 600 MPa or more, more preferably 700 MPa or more.
  • the storage elastic modulus of PVdF can be measured by the same method as the storage elastic modulus of the copolymer (1).
  • the mass ratio of the copolymer (1) to polyvinylidene fluoride is preferably 99/1 to 1/99. , More preferably 97/3 or less, still more preferably 95/5 or less, still more preferably 3/97 or more, still more preferably 5/90 or more.
  • the binder of the present disclosure may contain a vinylidene fluoride polymer (excluding the copolymer (1)).
  • a vinylidene fluoride polymer excluding the copolymer (1)
  • examples of the vinylidene fluoride (VdF) polymer include polymers containing VdF units and fluorinated monomer units (excluding VdF units).
  • the fluorinated monomer is preferably a monomer other than the monomer (1), for example, tetrafluoroethylene (TFE), vinyl fluoride, trifluoroethylene, chloro.
  • TFE tetrafluoroethylene
  • vinyl fluoride vinyl fluoride
  • trifluoroethylene chloro.
  • CTFE trifluoroethylene
  • HFP hexafluoropropylene
  • perfluoroalkyl ethylene perfluoroalkyl ethylene and the like.
  • at least one selected from the group consisting of TFE, CTFE and HFP is preferable, and it is composed of TFE and HFP, because it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil.
  • At least one selected from the group is more preferred, and TFE is particularly preferred.
  • the fluorinated monomer unit may or may not have a polar group.
  • the content of the VdF unit of the VdF polymer is preferably more than 50 mol% and 99 mol% or less with respect to all the monomer units. When the content of the VdF unit is in the above range, it is possible to form an electrode material layer having further excellent flexibility and adhesion to the metal foil.
  • the content of the VdF unit of the VdF polymer since it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil, it is preferably 57.0 with respect to all the monomer units. More than mol%, more preferably 60.0 mol% or more, still more preferably 63.0 mol% or more, preferably 99.0 mol% or less, still more preferably 97.0 mol% or less. It is more preferably 95.0 mol% or less, particularly preferably 90.0 mol% or less, and most preferably 85.0 mol% or less.
  • the content of the fluorinated monomer unit (excluding the VdF unit) of the VdF polymer is not particularly limited, but it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil. Therefore, it is preferably 1.0 mol% or more, more preferably 3.0 mol% or more, still more preferably 5.0 mol% or more, and particularly preferably 10 with respect to all the monomer units. It is 0.0 mol% or more, most preferably 15.0 mol% or more, preferably less than 50 mol%, more preferably 43.0 mol% or less, still more preferably 40.0 mol% or less. Yes, particularly preferably 37.0 mol% or less.
  • composition of the VdF polymer can be measured, for example, by 19 F-NMR measurement.
  • the VdF polymer may further contain a non-fluorinated monomer unit.
  • the non-fluorinated monomer may be a non-fluorinated monomer having no polar group such as ethylene or propylene, or a non-fluorinated monomer having a polar group (hereinafter referred to as a polar group-containing monomer). ) Etc. can be mentioned.
  • a polar group is introduced into the VdF polymer, whereby even better adhesion between the positive electrode material layer and the current collector can be obtained.
  • the polar group that the VdF polymer can have is at least selected from the group consisting of a carbonyl group-containing group, an epoxy group, a hydroxy group, a sulfonic acid group, a sulfate group, a phosphoric acid group, an amino group, an amide group and an alkoxy group.
  • One is preferable, at least one selected from the group consisting of a carbonyl group-containing group, an epoxy group and a hydroxy group is more preferable, and a carbonyl group-containing group is further preferable.
  • the hydroxy group does not include a hydroxy group constituting a part of the carbonyl group-containing group.
  • the amino group is a monovalent functional group obtained by removing hydrogen from ammonia, a primary or a secondary amine.
  • a group represented by the general formula: -COOR R represents a hydrogen atom, an alkyl group or a hydroxyalkyl group
  • a carboxylic acid anhydride group is preferable.
  • the number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3.
  • the carbonyl group-containing group has a general formula: -X-COOR (X is mainly composed of 2 to 15 atoms, and the molecular weight of the atomic group represented by X is preferably 350 or less.
  • R is a hydrogen atom.
  • the number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3.
  • the amide group includes a group represented by the general formula: -CO-NRR'(R and R'independently represent a hydrogen atom or a substituted or unsubstituted alkyl group), or a general formula:-.
  • CO-NR "-(R” represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group) is preferable.
  • polar group-containing monomer examples include hydroxyalkyl (meth) acrylates such as hydroxyethyl acrylate and 2-hydroxypropyl acrylate; alkylidene malonate esters such as dimethyl metylidene malonate; vinyl carboxymethyl ether, vinyl carboxyethyl ether and the like.
  • Vinyl carboxyalkyl ethers such as 2-carboxyethyl acrylate and 2-carboxyethyl methacrylate; acryloyloxyethyl succinic acid, acryloyloxypropyl succinic acid, methacryloyloxyethyl succinic acid, acryloyloxyethyl phthalic acid, (Meta) acryloyloxyalkyl dicarboxylic acid esters such as methacryloyloxyethyl phthalic acid; monoesters of unsaturated dibasic acids such as maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester; general Equation (2): (In the formula, R 1 to R 3 independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. R 4 represents a single bond or a hydrocarbon group having 1 to 8
  • polar group-containing monomer unit that can be contained in the VdF polymer
  • a unit based on the monomer (2) represented by the general formula (2) is preferable.
  • Y 1 represents an inorganic cation and / or an organic cation.
  • the inorganic cation include cations such as H, Li, Na, K, Mg, Ca, Al and Fe.
  • the organic cation include cations such as NH 4 , NH 3 R 5 , NH 2 R 52, NHR 5 3 , and NR 5 4 (R 5 independently represents an alkyl group having 1 to 4 carbon atoms).
  • R 5 independently represents an alkyl group having 1 to 4 carbon atoms.
  • Y 1 H, Li, Na, K, Mg, Ca, Al, NH 4 are preferable, H, Li, Na, K, Mg, Al, NH 4 are more preferable, and H, Li, Al, NH 4 are preferable. Is more preferable, and H is particularly preferable.
  • Specific examples of the inorganic cation and the organic cation are described by omitting the reference numerals and valences for convenience.
  • R 1 to R 3 independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • the hydrocarbon group is a monovalent hydrocarbon group.
  • the hydrocarbon group preferably has 4 or less carbon atoms.
  • Examples of the hydrocarbon group include an alkyl group having the number of carbon atoms, an alkenyl group, an alkynyl group and the like, and a methyl group or an ethyl group is preferable.
  • R 1 and R 2 are independently hydrogen atoms, methyl groups or ethyl groups
  • R 3 is preferably hydrogen atoms or methyl groups.
  • R 4 represents a single bond or a hydrocarbon group having 1 to 8 carbon atoms.
  • the above hydrocarbon group is a divalent hydrocarbon group.
  • the hydrocarbon group preferably has 4 or less carbon atoms.
  • Examples of the hydrocarbon group include the above-mentioned alkylene group having a carbon number of carbon atoms, an alkenylene group and the like, and among them, at least one selected from the group consisting of a methylene group, an ethylene group, an ethylidene group, a propyridene group and an isopropyridene group is selected. Preferred, a methylene group is more preferred.
  • Examples of the monomer (2) include (meth) acrylic acid and its salt, vinylacetic acid (3-butenoic acid) and its salt, 3-pentenoic acid and its salt, 4-pentenoic acid and its salt, and 3-hexenoic acid. And salts thereof, 4-heptenoic acid and salts thereof, and at least one selected from the group consisting of 5-hexenoic acid and salts thereof, preferably 3-butenoic acid and salts thereof, and 4-pentenoic acid and salts thereof. At least one selected from the group consisting of salts is more preferred.
  • the content of the polar group-containing monomer unit of the VdF polymer is preferably 0.05 to 2.0 mol%, more preferably 0.10 mol% or more, based on all the monomer units. It is more preferably 0.25 mol% or more, particularly preferably 0.40 mol% or more, and more preferably 1.5 mol% or less.
  • the content of the polar group-containing monomer unit in the VdF polymer can be measured, for example, by acid-base titration of the acid group when the polar group is an acid group such as a carboxylic acid.
  • VdF polymer examples include VdF / TFE copolymer, VdF / HFP copolymer, VdF / TFE / HFP copolymer, VdF / TFE / (meth) acrylic acid copolymer, and VdF / HFP / (meth).
  • Acrylic acid copolymer VdF / CTFE copolymer, VdF / TFE / 4-pentenoic acid copolymer, VdF / TFE / 3-butenoic acid copolymer, VdF / TFE / HFP / (meth) acrylic acid Polymer, VdF / TFE / HFP / 4-pentenoic acid copolymer, VdF / TFE / HFP / 3-butenoic acid copolymer, VdF / TFE / 2-carboxyethyl acrylate copolymer, VdF / TFE / HFP / Examples thereof include 2-carboxyethyl acrylate copolymers, VdF / TFE / acryloyloxyethyl succinic acid copolymers, VdF / TFE / HFP / acryloyloxyethyl succinic acid copolymers and the like.
  • VdF polymer As the VdF polymer, the VdF unit, the TFE unit, and any non-fluorinated monomer unit can be formed because the electrode material layer can be formed more excellently due to its flexibility and adhesion to the metal foil.
  • a VdF polymer consisting only of a single substance is preferable.
  • VdF units / TFE units the molar ratio of VdF units to TFE units is preferably more than 50/50 and 99/1 or less, more preferably 57. It is / 43 to 97/3, more preferably 60/40 to 95/5, particularly preferably 63/37 to 90/10, and most preferably 63/37 to 85/15.
  • the weight average molecular weight (in terms of polystyrene) of the VdF polymer is preferably 50,000 to 3,000,000, more preferably 80,000 or more, further preferably 100,000 or more, particularly preferably 200,000 or more, and more preferably 2400000 or less. It is more preferably 220000 or less, and particularly preferably 20000 or less.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
  • the number average molecular weight (in terms of polystyrene) of the VdF polymer is preferably 20000 to 15000000, more preferably 40,000 or more, further preferably 70,000 or more, particularly preferably 140000 or more, and more preferably 140000 or less. It is more preferably 120000 or less, and particularly preferably 110000 or less.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
  • the melting point (secondary melting point) of the VdF polymer is preferably 100 to 170 ° C, more preferably 110 to 165 ° C, and even more preferably 120 to 163 ° C.
  • the melting point is raised from 30 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device, then lowered to 30 ° C. at 10 ° C./min, and then again at 10 ° C./min. It is obtained as the temperature with respect to the maximum value in the heat of fusion curve when the temperature is raised to 220 ° C. at a rate.
  • the VdF polymer preferably has a breaking point elongation of 100% or more.
  • the elongation at break point is more preferably 200% or more, further preferably 300% or more.
  • the break point elongation can be measured by the following method. That is, the VdF polymer solution obtained by dissolving the VdF polymer in N-methyl-2-pyrrolidone (NMP) so as to have a concentration of 10 to 20% by mass was cast on a glass plate and at 100 ° C. for 12 hours. It is dried and further dried under vacuum at 100 ° C. for 12 hours to obtain a film having a thickness of 50 to 100 ⁇ m. The film is punched into a dumbbell shape and the elongation at break at 25 ° C. is measured by an autograph.
  • NMP N-methyl-2-pyrrolidone
  • the VdF polymer preferably has a storage elastic modulus of 1100 MPa or less at 30 ° C. and a storage elastic modulus of 500 MPa or less at 60 ° C.
  • the storage elastic modulus of the VdF polymer at 30 ° C. is more preferably 800 MPa or less, still more preferably 600 MPa or less.
  • the storage elastic modulus of the VdF polymer at 60 ° C. is more preferably 350 MPa or less.
  • the storage elastic modulus of the VdF polymer at 30 ° C. is preferably 100 MPa or more, more preferably 150 MPa or more, still more preferably 200 MPa or more.
  • the storage elastic modulus of the VdF polymer at 60 ° C. is preferably 50 MPa or more, more preferably 80 MPa or more, and further preferably 130 MPa or more.
  • the storage elastic modulus of the VdF polymer can be measured by the same method as the storage elastic modulus of the copolymer (1).
  • the mass ratio of the copolymer (1) to the polymer other than the copolymer (1) is preferably 99. It is 1/1 to 1/99, more preferably 97/3 or less, further preferably 95/5 or less, still more preferably 3/97 or more, still more preferably 5/95 or more.
  • the mass ratio of the copolymer (1) to the VdF polymer is preferably 99/1 to 1/99, and more. It is preferably 97/3 or less, more preferably 95/5 or less, more preferably 3/97 or more, still more preferably 5/95 or more.
  • the binder of the present disclosure can be suitably used as a material for forming a battery such as a secondary battery and a capacitor.
  • the battery may be a primary battery, a storage battery (secondary battery), or a power storage element.
  • the battery may be a non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery includes all batteries including an electrolyte and a power generation element. Examples of the non-aqueous electrolyte battery include a lithium ion primary battery, a lithium ion secondary battery, a nickel hydrogen battery, a lithium ion capacitor, an electric double layer capacitor and the like.
  • the binder of the present disclosure can obtain an electrode mixture whose viscosity does not easily increase and can form an electrode material layer exhibiting sufficient electrolytic solution swelling resistance, it is used as a binder for batteries of batteries such as secondary batteries and capacitors. Suitable as a dressing agent.
  • the binder of the present disclosure can also be used as a binder for the separator coating of a secondary battery.
  • the binder of the present disclosure is preferably a binder for non-aqueous electrolyte batteries. Further, the binder of the present disclosure may be a secondary binder.
  • the secondary binder includes a binder used for a positive electrode, a negative electrode, and a separator of a secondary battery.
  • the secondary battery is preferably a lithium ion secondary battery.
  • the binder of the present disclosure can also form an electrode mixture together with a powder electrode material, water or a non-aqueous solvent.
  • the secondary battery to which the binder of the present disclosure is applied includes a positive electrode in which the positive electrode mixture is held in the positive electrode current collector, and a negative electrode and an electrolytic solution in which the negative electrode mixture is held in the negative electrode current collector. I have.
  • the electrode mixture of the present disclosure contains the above-mentioned binder, powder electrode material, and water or non-aqueous solvent.
  • the electrode mixture of the present disclosure is preferably an electrode mixture for a non-aqueous electrolyte battery.
  • the electrode mixture of the present disclosure may be an electrode mixture for a secondary battery, or may be an electrode mixture for a lithium ion secondary battery. Since the electrode mixture of the present disclosure contains the above-mentioned binder, the viscosity can be easily adjusted to be suitable for coating on a current collector even when the binder is contained in a high concentration. In addition, the viscosity does not easily increase even when stored for a long period of time, and an electrode material layer having excellent electrolytic solution swelling resistance can be formed. Further, since the electrode mixture of the present disclosure contains the above-mentioned binder, it is easy to adjust the viscosity to an appropriate level and improve the coatability, and the appropriate viscosity is maintained for a long period of time. Can be maintained.
  • the electrode mixture may be a positive electrode mixture used for producing a positive electrode, or may be a negative electrode mixture used for producing a negative electrode.
  • the electrode material layer formed from the electrode mixture of the present disclosure may be a positive electrode material layer or a negative electrode material layer as long as it contains the above-mentioned binder and powder electrode material. ..
  • the powder electrode material is a powder electrode material used for a battery, and preferably contains an electrode active material.
  • the electrode active material is divided into a positive electrode active material and a negative electrode active material.
  • the positive electrode active material is not particularly limited as long as it can electrochemically store and release lithium ions, but a lithium composite oxide is preferable, and a lithium transition metal composite oxide is preferable. More preferred.
  • a lithium-containing transition metal phosphoric acid compound is also preferable. It is also preferable that the positive electrode active material is a substance containing lithium and at least one transition metal, such as a lithium transition metal composite oxide and a lithium-containing transition metal phosphoric acid compound.
  • V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable as the transition metal of the lithium transition metal composite oxide, and a lithium-cobalt composite such as LiCoO 2 is a specific example of the lithium transition metal composite oxide.
  • substitutions include lithium-nickel-manganese composite oxide, lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-cobalt-manganese composite oxide, lithium-manganese-aluminum composite oxide, and lithium-titanium.
  • examples thereof include composite oxides, and more specifically, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0 .
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2
  • Examples thereof include LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 , Li 4 Ti 5 O 12 , LiNi 0.82 Co 0.15 Al 0.03 O 2 .
  • the transition metal of the lithium-containing transition metal phosphoric acid compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples of the lithium-containing transition metal phosphoric acid compound include, for example, LiFePO 4 .
  • Iron phosphates such as Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , cobalt phosphates such as LiCo PO 4 , and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are Al.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.33 . Mn 0.33 Co 0.33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiFePO 4 are preferable.
  • the lithium transition metal composite oxide a lithium-nickel-based composite oxide is preferable, and the general formula (3): General formula (3): Li y Ni 1-x M x O 2 (In the formula, x is 0.01 ⁇ x ⁇ 0.5, y is 0.9 ⁇ y ⁇ 1.2, and M represents a metal atom (excluding Ni).)
  • the lithium-nickel composite oxide represented by is more preferable.
  • the lithium transition metal composite oxide having such a high nickel content is beneficial for increasing the capacity of the secondary battery.
  • x is a coefficient satisfying 0.01 ⁇ x ⁇ 0.5, and a secondary battery having a higher capacity can be obtained. Therefore, 0.05 ⁇ x ⁇ 0. 4, more preferably 0.10 ⁇ x ⁇ 0.3.
  • examples of the metal atom of M include V, Ti, Cr, Mn, Fe, Co, Cu, Al, Zn, Mg, Ga, Zr, Si and the like.
  • examples of the metal atom of M include transition metals such as V, Ti, Cr, Mn, Fe, Co, and Cu, or the above transition metals and Al, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, and the like. Combinations with other metals such as Mg, Ga, Zr and Si are preferred.
  • Lithium transition metal composite oxides with a high nickel content include LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , and LiNi 0.33 Mn 0 . .33 Co 0.33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0. At least one selected from the group consisting of 1 O 2 and LiNi 0.90 Mn 0.05 Co 0.05 O 2 is preferable, and LiNi 0.82 Co 0.15 Al 0.03 O 2 and LiNi 0 are preferable. .6 At least one selected from the group consisting of Mn 0.2 Co 0.2 O 2 and LiNi 0.8 Mn 0.1 Co 0.1 O 2 is more preferable.
  • a substance having a composition different from the substance constituting the main positive electrode active material attached to the surface of these positive electrode active materials include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide and other oxides, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate and calcium sulfate. , Sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, magnesium carbonate and the like.
  • These surface-adhering substances are, for example, dissolved or suspended in a solvent to be impregnated with the positive electrode active material and dried, and the surface-adhering substance precursor is dissolved or suspended in the solvent to be impregnated with the positive electrode active material and then heated. It can be attached to the surface of the positive electrode active material by a method of reacting with the above, a method of adding to the positive electrode active material precursor and firing at the same time, or the like.
  • the amount of the surface adhering substance is preferably 0.1 ppm or more, more preferably 1 ppm or more, further preferably 10 ppm or more, and the upper limit is preferably 20% or less, more preferably 10 in terms of mass with respect to the positive electrode active material. % Or less, more preferably 5% or less.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolytic solution on the surface of the positive electrode active material and improve the battery life, but if the adhering amount is too small, the effect is not sufficiently exhibited. If it is too much, the resistance may increase because it inhibits the ingress and egress of lithium ions.
  • the particles of the positive electrode active material lumpy, polyhedron, spherical, elliptical spherical, plate-like, needle-like, columnar, etc. are used as conventionally used, but among them, the primary particles are aggregated to form secondary particles. It is preferably formed and the secondary particles have a spherical or elliptical spherical shape.
  • the active material in the electrode expands and contracts with the charge and discharge of the electrochemical element, so that the stress tends to cause deterioration such as destruction of the active material and breakage of the conductive path.
  • the primary particles aggregate to form the secondary particles rather than the single particle active material containing only the primary particles because the stress of expansion and contraction is alleviated and deterioration is prevented.
  • the expansion and contraction of the electrode during charging and discharging is also smaller, and the electrode is manufactured. It is also preferable to mix it with the conductive agent because it is easy to mix uniformly.
  • the tap density of the positive electrode active material is usually 1.3 g / cm 3 or more, preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, and most preferably 1.7 g / cm 3 or more. ..
  • the tap density of the positive electrode active material is lower than the above lower limit, the amount of the dispersion medium required for forming the positive electrode material layer increases, and the required amount of the conductive agent and the binder increases, so that the positive electrode active material is applied to the positive electrode material layer.
  • the filling rate may be constrained and the battery capacity may be constrained.
  • the diffusion of lithium ions through the non-aqueous electrolytic solution as a medium in the positive electrode material layer becomes rate-determining, and the load characteristics may be easily deteriorated. It is usually 2.5 g / cm 3 or less, preferably 2.4 g / cm 3 or less.
  • the tap density of the positive electrode active material is determined by passing a sieve having an opening of 300 ⁇ m and dropping a sample into a tapping cell of 20 cm 3 to fill the cell volume, and then a powder density measuring instrument (for example, a tap density manufactured by Seishin Corporation). ) Is used to perform tapping with a stroke length of 10 mm 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
  • a powder density measuring instrument for example, a tap density manufactured by Seishin Corporation.
  • the median diameter d50 (secondary particle diameter when the primary particles are aggregated to form secondary particles) of the particles of the positive electrode active material is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m. As described above, it is most preferably 3 ⁇ m or more, usually 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 16 ⁇ m or less, and most preferably 15 ⁇ m or less. If it is below the above lower limit, a high bulk density product may not be obtained, and if it exceeds the upper limit, it takes time to diffuse lithium in the particles, resulting in deterioration of battery performance or positive electrode production of the battery, that is, as an active material.
  • the median diameter d50 in the present disclosure is measured by a known laser diffraction / scattering type particle size distribution measuring device.
  • LA-920 manufactured by HORIBA is used as the particle size distribution meter
  • a 0.1 mass% sodium hexametaphosphate aqueous solution is used as the dispersion medium used for the measurement, and the measured refractive index is set to 1.24 after ultrasonic dispersion for 5 minutes. Is measured.
  • the average primary particle diameter of the positive electrode active material is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and more preferably 0.08 ⁇ m or more. It is most preferably 0.1 ⁇ m or more, usually 3 ⁇ m or less, preferably 2 ⁇ m or less, still more preferably 1 ⁇ m or less, and most preferably 0.6 ⁇ m or less. If it exceeds the above upper limit, it is difficult to form spherical secondary particles, which adversely affects the powder filling property and greatly reduces the specific surface area, so that there is a high possibility that the battery performance such as output characteristics will deteriorate. be.
  • the primary particle size is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10,000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is obtained. Be done.
  • the BET specific surface area of the positive electrode active material is 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, and 4.0 m 2 / g or less, preferably 2 It is .5 m 2 / g or less, more preferably 1.5 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to deteriorate, and if it is large, the tap density does not easily increase, and a problem may easily occur in the coatability at the time of forming the positive electrode material layer.
  • the BET specific surface area is determined by using a surface meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken) to pre-dry the sample at 150 ° C. for 30 minutes under nitrogen flow, and then the relative pressure of nitrogen with respect to atmospheric pressure. It is defined by the value measured by the nitrogen adsorption BET 1-point method by the gas flow method using a nitrogen helium mixed gas accurately adjusted so that the value is 0.3.
  • a surface meter for example, a fully automatic surface area measuring device manufactured by Okura Riken
  • a general method is used as a method for producing an inorganic compound.
  • various methods can be considered for producing spherical or elliptical spherical active materials.
  • transition metal raw materials such as transition metal nitrates and sulfates and, if necessary, raw materials of other elements such as water can be used. It is dissolved or pulverized and dispersed in a solvent, the pH is adjusted while stirring to prepare and recover a spherical precursor, which is dried as necessary, and then Li such as LiOH, Li 2 CO 3 , Li NO 3 and the like.
  • Li sources such as LiOH, Li 2 CO 3 , and LiNO 3
  • a method for obtaining an active material a transition metal raw material such as a transition metal nitrate, a sulfate, a hydroxide, an oxide, a Li source such as LiOH, Li 2 CO 3 , LiNO 3 , and other substances as necessary.
  • one type of positive electrode active material powder may be used alone, or two or more types having different compositions or different powder physical characteristics may be used in combination in any combination and ratio.
  • the negative electrode active material is not particularly limited as long as it can electrochemically store and release lithium ions, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, or a single lithium substance.
  • a carbonaceous material such as tin oxide or silicon oxide, a metal composite oxide, or a single lithium substance.
  • lithium alloys such as lithium-aluminum alloys and metals capable of forming alloys with lithium such as Sn and Si. These may be used alone or in combination of two or more in any combination and ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it is preferable that titanium and / or lithium is contained as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • Natural graphite As a carbonaceous material, (1) Natural graphite, (2) Artificial carbonaceous material and artificial graphite material; carbonaceous material ⁇ for example, natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or an oxidation-treated product of these pitches, needle coke, pitch.
  • Thermal decomposition products of coke and organic materials such as carbon materials partially graphitized, furnace black, acetylene black, pitch-based carbon fibers, carbonizable organic materials (for example, coal tar pitch from soft pitch to hard pitch, or dry distillation).
  • Coal-based heavy oil such as liquefied oil, normal pressure residual oil, direct-retaining heavy oil of reduced pressure residual oil, crude oil, decomposition-based petroleum heavy oil such as ethylene tar produced by-product during thermal decomposition of naphtha, and acenaphtylene, Aromatic hydrocarbons such as decacyclene, anthracene and phenanthrene, N-ring compounds such as phenazine and acrydin, S-ring compounds such as thiophene and bithiophene, polyphenylene such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, among these.
  • organic polymers such as nitrogen-containing polyacrylonitrile and polypyrroleum, organic polymers such as sulfur-containing polythiophene and polystyrene, typified by cellulose, lignin, mannan, polygalactouronic acid, chitosan and saccharose.
  • Natural polymers such as polysaccharides, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, thermosetting resins such as furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin) and carbonized products thereof, or carbonizable organic substances are benzene.
  • the one selected from the above is preferable because it has a good balance between initial irreversible capacity and high current density charge / discharge characteristics.
  • the content of the electrode active material (positive electrode active material or negative electrode active material) is preferably 40% by mass or more in the electrode mixture in order to increase the capacity of the obtained electrode.
  • the powder electrode material may further contain a conductive agent.
  • a conductive agent include carbon blacks such as acetylene black and ketjen black, carbon materials such as graphite, carbon fibers, carbon nanotubes, carbon nanohorns, graphene and the like.
  • the ratio of the powder electrode material (active material and conductive agent) in the electrode mixture to the above-mentioned binder is usually about 80:20 to 99.5: 0.5 in terms of mass ratio, and is a powder component. It is determined in consideration of holding, adhesion to the current collector, and conductivity of the electrode.
  • the above-mentioned binder cannot completely fill the voids between the powder components, but the binder is used as a solvent. It is preferable to use water or a non-aqueous solvent that dissolves or disperses well because the binder is uniformly dispersed and knitted in the electrode material layer after drying, and the powder component is well retained.
  • the electrode mixture of the present disclosure contains water or a non-aqueous solvent.
  • the non-aqueous solvent include nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide and dimethylformamide; ketone solvents such as acetone, methylethylketone, cyclohexanone and methylisobutylketone; ethyl acetate. , Ester solvent such as butyl acetate; Ether solvent such as tetrahydrofuran and dioxane; Further, general-purpose organic solvent having a low boiling point such as a mixed solvent thereof can be mentioned.
  • the electrode mixture of the present disclosure preferably contains a non-aqueous solvent from the viewpoint of excellent stability and coatability of the electrode mixture, and N-methyl-2-pyrrolidone and N, N- It preferably contains at least one selected from the group consisting of dimethylacetamide, and more preferably contains N-methyl-2-pyrrolidone.
  • the amount of water or non-aqueous solvent in the electrode mixture is determined in consideration of the coatability to the current collector, the thin film forming property after drying, and the like.
  • the ratio of the binder to water or a non-aqueous solvent is preferably 0.5: 99.5 to 20:80 in terms of mass ratio.
  • the electrode mixture is used, for example, acrylic resin such as polyacrylic acid, polymethacrylate, polymethylmethacrylate, polyimide, polyamide and polyamideimide resin, styrene rubber, etc. It may further contain butadiene rubber, styrene butadiene rubber and the like.
  • a dispersant such as a resin-based surfactant having a surfactant action, a cationic surfactant, or a nonionic surfactant may be added to the electrode mixture.
  • the content of the binder in the electrode mixture is preferably 0.1 to 20% by mass, more preferably 0.2 to 10% by mass, still more preferably 0.2 to 10% by mass, based on the mass of the electrode mixture. It is 0.5 to 3% by mass.
  • Examples of the method for preparing the electrode mixture include a method in which the powder electrode material is dispersed and mixed in a solution or dispersion in which a binder is dissolved or dispersed in water or a non-aqueous solvent. Then, the obtained electrode mixture is uniformly applied to a current collector such as a metal foil or a metal net, dried, and pressed as necessary to form a thin electrode material layer on the current collector to form a thin-film electrode. do.
  • a current collector such as a metal foil or a metal net
  • the binder and the powder of the electrode material may be mixed first, and then water or a non-aqueous solvent may be added to prepare an electrode mixture.
  • the binder and the powder of the electrode material are heated and melted and extruded with an extruder to prepare a thin-film electrode mixture, which is then bonded onto a current collector coated with a conductive adhesive or a general-purpose organic solvent. It is also possible to manufacture an electrode sheet. Further, a solution or dispersion of the binder and the powder of the electrode material may be applied to the preformed electrode material.
  • the method of application as a binder is not particularly limited.
  • the electrodes of the present disclosure contain the above-mentioned binder.
  • the electrodes of the present disclosure are preferably electrodes for non-aqueous electrolyte batteries. Since the electrodes of the present disclosure contain the above-mentioned binder, the electrode does not crack even when the powder electrode material is thickly coated, wound, and pressed for high density, and the powder electrode material is dropped or collected. There is no peeling from the electric body. Further, the electrodes of the present disclosure are also excellent in electrolytic solution swelling resistance.
  • the electrode preferably includes a current collector and an electrode material layer containing the powder electrode material and the binder formed on the current collector.
  • the electrode may be a positive electrode or a negative electrode, but is preferably a positive electrode.
  • Examples of the current collector include metal foils such as iron, stainless steel, copper, aluminum, nickel, and titanium, or metal nets. Among them, aluminum foil or the like is preferable as the positive electrode current collector, and copper foil or the like is preferable as the negative electrode current collector.
  • the electrodes of the present disclosure can be manufactured, for example, by the method described above. Since the above-mentioned electrode mixture is excellent in coatability, an electrode having a smooth, uniform and thick electrode material layer is prepared by producing the electrode material layer provided with the electrode of the present disclosure by using the above-mentioned electrode mixture. Can be easily produced.
  • the secondary battery of the present disclosure includes the above-mentioned electrodes.
  • the secondary battery of the present disclosure is preferably a non-aqueous electrolyte secondary battery.
  • at least one of the positive electrode and the negative electrode may be the above-mentioned electrode, and the positive electrode is preferably the above-mentioned electrode.
  • the secondary battery is preferably a lithium ion secondary battery.
  • the secondary battery of the present disclosure preferably further comprises a non-aqueous electrolytic solution.
  • the non-aqueous electrolyte solution is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate, etc.
  • Known hydrocarbon-based solvents such as ethylmethyl carbonate; one or more of fluorine-based solvents such as fluoroethylene carbonate, fluoroether, and fluorinated carbonate can be used.
  • any conventionally known electrolyte can be used, and LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, cesium carbonate and the like can be used.
  • a separator may be interposed between the positive electrode and the negative electrode.
  • a conventionally known separator may be used, or a separator using the above-mentioned binder for coating may be used.
  • the above-mentioned binder for at least one of the positive electrode, the negative electrode and the separator of the secondary battery (preferably a lithium ion secondary battery).
  • the film for a secondary battery made of the above-mentioned binder is also one of the preferred forms of the present disclosure.
  • a laminate for a secondary battery having a base material and a layer made of the above-mentioned binder formed on the base material is also one of the preferred forms of the present disclosure.
  • the base material include those exemplified as the above-mentioned current collector, known base materials (porous film and the like) used for separators of secondary batteries, and the like.
  • the electrodes of the present disclosure are excellent in flexibility and can form a secondary battery having excellent battery characteristics, they can be suitably used as electrodes for a wound type secondary battery. .. Further, the secondary battery of the present disclosure may be a winding type secondary battery.
  • the electrodes of the present disclosure are useful not only for lithium ion secondary batteries using the liquid electrolyte described above, but also for polymer electrolyte lithium secondary batteries for non-aqueous electrolyte secondary batteries. It is also useful for electric double layer capacitors.
  • the copolymer of the present disclosure may be in any form, and may be an aqueous dispersion, powder, pellets or the like.
  • the copolymer of the present disclosure and the copolymer obtained by the above-mentioned production method can be molded into various molded products. Further, the copolymer of the present disclosure can be easily molded into a molded product having a desired size and shape.
  • the molding method of the copolymer is not particularly limited, and examples thereof include compression molding, extrusion molding, blow molding, transfer molding, injection molding, roto molding, rotoline molding, and electrostatic coating.
  • the copolymers of the present disclosure include fillers, plasticizers, processing aids, mold release agents, pigments, flame retardants, lubricants, light stabilizers, weatherproof stabilizers, conductive agents, antistatic agents, UV absorbers, and antioxidants. It may be molded after mixing an agent, a foaming agent, a fragrance, an oil, a softening agent, a defluorinated hydrogen agent and the like.
  • the filler include polytetrafluoroethylene, mica, silica, talc, serite, clay, titanium oxide, barium sulfate and the like.
  • the conductive agent include carbon black and the like.
  • the plasticizer include dioctylphthalic acid and pentaerythritol.
  • the processing aid include carnauba wax, a sulfone compound, low molecular weight polyethylene, a fluorine-based auxiliary agent, and the like.
  • the defluorinated hydrogenating agent include organic onium and amidines.
  • the copolymer of the present disclosure Since the copolymer of the present disclosure has both excellent bending resistance and high mechanical strength and exhibits excellent mechanical strength even at high temperatures, it is suitably used as a molded product used for various purposes. Can be done.
  • the copolymer of the present disclosure can also be used as a powder coating material or a water-based coating material. Further, the copolymer of the present disclosure can also be used for building material steel plates, petroleum mining materials and the like.
  • Molded products include films, sheets, tubes, pipes, threads, fittings, valves, pumps, round bars, planks, bolts, nuts, insulating materials, wire coating materials, piezoelectric materials, pyroelectric materials, water treatment membranes, etc. It may be there.
  • the yarn may be melt spinning (thread obtained by melt spinning), single fiber (monofilament), or the like.
  • Fluid transfer materials for food manufacturing equipment such as food packaging films, lining materials for fluid transfer lines used in the food manufacturing process, packings, sealing materials, sheets, etc.
  • Chemical transfer members such as chemical plugs, packaging films, lining materials for fluid transfer lines used in the chemical manufacturing process, packings, sealing materials, and sheets
  • Internal lining members for chemical tanks and pipes in chemical plants and semiconductor factories O (corner) ring, tube, packing, valve core material, hose, sealant, etc. used for automobile fuel system and peripheral devices, hose, sealant, etc. fuel transfer member used for automobile AT equipment;
  • Other automobile parts such as flange gaskets, shaft seals, valve stem seals, sealing materials, hoses, automobile brake hoses, air conditioner hoses, radiator hoses, electric wire covering materials, etc.
  • ⁇ Melting point> Using a differential scanning calorimetry (DSC) device, the temperature is raised from 30 ° C to 220 ° C at a rate of 10 ° C / min, then lowered to 30 ° C at 10 ° C / min, and again at 220 ° C at a rate of 10 ° C / min. The temperature with respect to the maximum value in the heat of fusion curve when the temperature was raised to the maximum was obtained as the melting point.
  • DSC differential scanning calorimetry
  • ⁇ MIT value> The copolymer was press-molded under the conditions of 230 ° C. and 5.0 MPa to prepare a film having a thickness of 0.20 to 0.23 mm. A sample was obtained from the obtained film by cutting it into strips having a width of 1.3 cm and a length of 90 mm. This is mounted on a MIT type bending fatigue tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), and repeated bending tests are performed under conditions compliant with ASTM D-2176 (load 1.25 kg, bending angle 135 degrees, 175 times / minute). And the number of bends required to break was measured.
  • ASTM D-2176 load 1.25 kg, bending angle 135 degrees, 175 times / minute
  • the storage elastic modulus is a value measured at 25 ° C. and 120 ° C. by dynamic viscoelasticity measurement, and is a test piece having a length of 30 mm, a width of 5 mm, and a thickness of 50 to 300 ⁇ m by a dynamic viscoelastic device DVA220 manufactured by IT Measurement Control Co., Ltd. Was measured under the conditions of a tensile mode, a grip width of 20 mm, a measurement temperature of ⁇ 30 ° C. to 160 ° C., a heating rate of 2 ° C./min, and a frequency of 10 Hz.
  • the test piece used for the measurement was formed by pressing a copolymer under the conditions of 230 ° C. and 5.0 MPa to prepare a film having a thickness of 50 to 300 ⁇ m, and the obtained film having a thickness of 50 to 300 ⁇ m was obtained. It was produced by cutting into a length of 30 mm and a width of 5 mm.
  • Rate of change (%) [(storage elastic modulus at 25 ° C)-(storage elastic modulus at 120 ° C)] / (storage elastic modulus at 120 ° C) ⁇ 100
  • a 2 cm ⁇ 10 cm test piece is prepared by cutting a positive electrode having a positive electrode material layer on both sides, and wound around a round bar having a diameter of 1.0 mm, a round bar having a diameter of 2.0 mm, and a round bar having a diameter of 3.0 mm.
  • the positive electrode was visually observed to confirm the presence or absence of cracks in the positive electrode material layer, and evaluated according to the following criteria.
  • ⁇ 1 No pinhole was confirmed in the positive electrode material layer even when wound around a round bar having a diameter of 1.0 mm.
  • ⁇ 2 Pinholes were not confirmed in the positive electrode material layer even when wound around a round bar having a diameter of 2.0 mm, but pinholes were observed in the positive electrode material layer when wrapped around a round bar having a diameter of 1.0 mm.
  • ⁇ 3 Pinholes were not confirmed in the positive electrode material layer even when wound around a round bar having a diameter of 3.0 mm, but pinholes were observed in the positive electrode material layer when wrapped around a round bar having a diameter of 2.0 mm.
  • ⁇ Slurry stability> Using a B-type viscometer (TV-10M manufactured by Toki Sangyo Co., Ltd.), the rotor No. The viscosity of the positive electrode mixture was measured 10 minutes after the start of the measurement under the conditions of M4 and a rotation speed of 6 rpm.
  • the viscosity change rate was evaluated according to the following criteria. ⁇ : The viscosity change rate (Xn) is less than 200%. X: The viscosity change rate (Xn) is 200% or more.
  • Example 1 In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 30 g of 2,3,3,3-tetrafluoropropene, 495 g of VdF, 4.0 g of ethyl acetate, and dinormal propylper. After charging 1 g of oxydicarbonate and raising the temperature to 45 ° C. over 1.5 hours, the temperature was maintained at 45 ° C. for 18 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
  • a positive electrode mixture (slurry) was prepared using the obtained copolymer powder.
  • the obtained copolymer (binding agent) was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare a copolymer solution having a concentration of 8% by mass.
  • NMP N-methyl-2-pyrrolidone
  • a mixed solution having a mass ratio of each component (positive electrode active material / conductive auxiliary agent / binder) of 97.0 / 1.5 / 1.5 was obtained.
  • NMP was further added to the obtained mixed solution and mixed to prepare a positive electrode mixture having a solid content concentration of 70% by mass.
  • Example 2 In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 40 g of 2,3,3,3-tetrafluoropropene, 495 g of VdF, 3.0 g of ethyl acetate, and dinormal propylper. After charging 1 g of oxydicarbonate and raising the temperature to 45 ° C. over 1.5 hours, the temperature was maintained at 45 ° C. for 19 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Example 3 In an autoclave with an internal volume of 2.0 liters, 1,010 g of pure water, 0.505 g of methyl cellulose, 49 g of 2,3,3,3-tetrafluoropropene, 360 g of VdF, 1.0 g of ethyl acetate, and dinormal propylper. After charging 0.8 g of oxydicarbonate and raising the temperature to 43 ° C. over 1.5 hours, the temperature was maintained at 43 ° C. for 14 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Example 4 In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 110 g of 2,3,3,3-tetrafluoropropene, 440 g of VdF, and 1.5 g of dinormal propyl peroxydicarbonate. Was charged, the temperature was raised to 45 ° C. over 1.5 hours, and then 45 ° C. was maintained for 18 hours and 30 minutes. The maximum ultimate pressure during this period was 6.0 MPaG.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Comparative Example 1 In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 14 g of 2,3,3,3-tetrafluoropropene, 495 g of VdF, 9.0 g of acetone, and dinormal propylperoxy. After charging 1 g of dicarbonate and raising the temperature to 42 ° C. over 1.5 hours, the temperature was maintained at 42 ° C. for 12 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Comparative Example 2 In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 170 g of 2,3,3,3-tetrafluoropropene, 360 g of VdF, 1.5 g of ethyl acetate, and dinormal propylper. After charging 3.0 g of oxydicarbonate and raising the temperature to 45 ° C. over 1.5 hours, the temperature was maintained at 45 ° C. for 33 hours. The maximum ultimate pressure during this period was 5.2 MPaG.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Comparative Example 3 1750 ml of pure water was placed in a 3 L stainless steel autoclave, replaced with nitrogen, slightly pressurized with vinylidene fluoride (VdF), adjusted to 80 ° C. with stirring at 600 rpm, and VdF was press-fitted to 1.80 MPa. A mixed solution monomer having a molar ratio of VdF and 2,3,3,3-tetrafluoropropene of 96.3 / 3.7 was press-fitted to 2.00 MPa. Polymerization was started by dissolving 0.417 g of ammonium persulfate in 10 ml of pure water and press-fitting it with nitrogen.
  • VdF vinylidene fluoride
  • the continuous monomer was supplied so that the pressure was maintained at 2.0 MPa, and after 3.2 hours, when 100 g of the continuous monomer was charged, the gas in the autoclave was released and cooled to recover 1869 g of the dispersion liquid.
  • the solid content of the dispersion was 5.30% by mass.
  • Aluminum sulfate was added to this dispersion, coagulated, and dried to obtain 99 g of a polymer.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Comparative Example 4 1750 ml of pure water was placed in a 3 L stainless steel autoclave, replaced with nitrogen, slightly pressurized with vinylidene fluoride (VdF), adjusted to 80 ° C. with stirring at 600 rpm, and VdF was press-fitted to 1.53 MPa. A mixed solution monomer having a molar ratio of VdF and 2,3,3,3-tetrafluoropropene of 91.2 / 8.8 was press-fitted to 2.00 MPa. Polymerization was started by dissolving 0.417 g of ammonium persulfate in 10 ml of pure water and press-fitting it with nitrogen.
  • VdF vinylidene fluoride
  • the continuous monomer was supplied so that the pressure was maintained at 2.0 MPa, and after 3.5 hours, when 100 g of the continuous monomer was charged, the gas in the autoclave was released and cooled to recover 1862 g of the dispersion liquid.
  • the solid content of the dispersion was 5.32% by mass.
  • Aluminum sulfate was added to this dispersion, coagulated, and dried to obtain 97 g of a polymer.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
  • Comparative Example 6 In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 27 g of hexafluoropropylene, 495 g of VdF, 2.5 g of ethyl acetate, and 1.0 g of dinormal propyl peroxydicarbonate are charged. After raising the temperature to 44 ° C. over 1.5 hours, the temperature was maintained at 44 ° C. for 5 hours and 45 minutes. The maximum ultimate pressure during this period was 6.0 MPaG.
  • a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode.
  • the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.

Abstract

Provided is a copolymer comprising vinylidene fluoride units and units of a monomer (1) represented by the general formula CX1X2=CX3(CF2)nY (1) (wherein X1, X2, and X3 are each independently H, F, CH3, CH2F, CHF2, or CF3, at least one of X1, X2, and X3 being F, CH2F, CHF2, or CF3, and at least one of the remainder being H or CH3, n is an integer of 1-6, and Y is H or F), wherein the content of the monomer (1) units is 3.0-25.0 mass% with respect to all the monomer units. The copolymer has a melting point of 160°C or higher.

Description

共重合体、結着剤、成形品および共重合体の製造方法Copolymers, Binders, Molds and Methods for Producing Copolymers
 本開示は、共重合体、結着剤、成形品および共重合体の製造方法に関する。 The present disclosure relates to a copolymer, a binder, a molded product, and a method for producing a copolymer.
 ポリビニリデンフルオライドは、耐薬品性に優れていることから、高分子多孔質膜などの多くの用途で用いられている。 Polyvinylidene fluoride is used in many applications such as polymer porous membranes because it has excellent chemical resistance.
 また、ビニリデンフルオライドとコモノマーとの共重合体も知られている。特許文献1には、1~99重量パーセントの2,3,3,3-テトラフルオロプロペンモノマー単位と1~99重量パーセントのフッ化ビニリデンモノマー単位とを有するコポリマーを含む制御された微細構造のコポリマー組成物であって、前記コポリマーが、初期仕込みにおける2,3,3,3-テトラフルオロプロペン対フッ化ビニリデンの比率が、定常状態のモノマー比率の0.1~0.9倍、または1.1~10倍である、セミバッチ式のプロセスによって形成される、制御された微細構造の組成物が記載されている。 Also, a copolymer of vinylidene fluoride and a comonomer is known. Patent Document 1 contains a controlled microstructure copolymer comprising a copolymer having 1 to 99% by weight of 2,3,3,3-tetrafluoropropene monomer unit and 1 to 99% by weight of vinylidene fluoride monomer unit. In the composition, the copolymer has a ratio of 2,3,3,3-tetrafluoropropene to vinylidene fluoride in the initial preparation of 0.1 to 0.9 times the constant state monomer ratio, or 1. A composition with a controlled microstructure formed by a semi-batch process, which is 1 to 10 times larger, is described.
特表2014-508209号公報Japanese Patent Publication No. 2014-508209
 本開示では、耐屈曲性と柔軟性とを兼ね備えており、耐熱性に優れているともに、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層を得ることができる共重合体を提供することを目的とする。 In the present disclosure, it is possible to obtain an electrode mixture having both bending resistance and flexibility, excellent heat resistance, and a viscosity that does not easily increase, and an electrode material layer having excellent electrolytic solution swelling resistance. It is an object of the present invention to provide a copolymer capable of being produced.
 本開示によれば、ビニリデンフルオライド単位、および、
 一般式(1):CX=CX(CF
(一般式(1)中、X、XおよびXは、独立に、H、F、CH、CHF、CHFまたはCFであり、ただし、X、XおよびXのうち、少なくとも1つはF、CHF、CHFまたはCFであり、少なくとも1つはHまたはCHであり、nは1~6の整数であり、YはHまたはFである。)で示される単量体(1)単位を含有する共重合体であって、単量体(1)単位の含有量が、全単量体単位に対して、3.0~25.0質量%であり、融点が160℃以上である共重合体が提供される。
According to the present disclosure, vinylidene fluoride units, and
General formula (1): CX 1 X 2 = CX 3 (CF 2 ) n Y
(In the general formula (1), X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F. ), The copolymer containing the monomer (1) unit, and the content of the monomer (1) unit is 3.0 to 25.0 mass with respect to all the monomer units. %, A copolymer having a melting point of 160 ° C. or higher is provided.
 本開示の共重合体は、重量平均分子量が、2000000以下であることが好ましい。
 一般式(1)中、nが1であることが好ましい。
 一般式(1)中、XおよびXが、独立に、HまたはFであることが好ましい。
 単量体(1)が、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン(Z体)および1,3,3,3-テトラフルオロプロペン(E体)からなる群より選択される少なくとも1種であることが好ましい。
The copolymer of the present disclosure preferably has a weight average molecular weight of 2000000 or less.
In the general formula (1), n is preferably 1.
In the general formula (1), it is preferable that X 1 and X 2 are independently H or F.
The monomer (1) is 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z-form) and 1,3,3,3-tetrafluoropropene (E-form). ) Is preferably at least one selected from the group consisting of.
 また、本開示によれば、上記の共重合体を含有する結着剤が提供される。 Further, according to the present disclosure, a binder containing the above-mentioned copolymer is provided.
 また、本開示によれば、上記の共重合体を含有する成形品であって、前記成形品が、フィルム、シート、チューブまたは溶融紡糸である成形品が提供される。 Further, according to the present disclosure, there is provided a molded product containing the above-mentioned copolymer, wherein the molded product is a film, a sheet, a tube or a melt-spun product.
 また、本開示によれば、ビニリデンフルオライド、および、
 一般式(1):CX=CX(CF
(一般式(1)中、X、XおよびXは、独立に、H、F、CH、CHF、CHFまたはCFであり、ただし、X、XおよびXのうち、少なくとも1つはF、CHF、CHFまたはCFであり、少なくとも1つはHまたはCHであり、nは1~6の整数であり、YはHまたはFである。)で示される単量体(1)を反応器中で重合することにより、ビニリデンフルオライド単位および単量体(1)単位を含有する共重合体を製造する製造方法であって、前記共重合体の単量体(1)単位の含有量が、全単量体単位に対して、3.0~25.0質量%であり、重合の開始前または開始時に、重合に供する単量体(1)の全量に対して、90重量%以上の単量体(1)を反応器に添加し、0~55℃の重合温度で重合する製造方法が提供される。
Also, according to the present disclosure, vinylidene fluoride, and
General formula (1): CX 1 X 2 = CX 3 (CF 2 ) n Y
(In the general formula (1), X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F. ) Is polymerized in a reactor to produce a copolymer containing a vinylidene fluoride unit and a monomer (1) unit, wherein the copolymer is produced. The content of the unit of the compounded monomer (1) is 3.0 to 25.0% by mass with respect to the total number of monomer units, and the monomer to be subjected to the polymerization before or at the start of the polymerization ( Provided is a production method in which 90% by weight or more of the monomer (1) is added to a reactor with respect to the total amount of 1) and polymerized at a polymerization temperature of 0 to 55 ° C.
 本開示の製造方法において、重合温度が30℃以上であることが好ましい。
 本開示の製造方法において、重合中に到達する最高圧力が4.38MPa以上であることが好ましい。
 本開示の製造方法において、パーオキサイド重合開始剤の存在下に懸濁重合することが好ましい。
 本開示の製造方法において、連鎖移動剤の存在下に重合することが好ましい。
 本開示の製造方法において、重合の開始前または開始時に、重合に供するビニリデンフルオライドの全量に対して、90重量%以上のビニリデンフルオライドを反応器に添加することが好ましい。
In the production method of the present disclosure, the polymerization temperature is preferably 30 ° C. or higher.
In the production method of the present disclosure, the maximum pressure reached during polymerization is preferably 4.38 MPa or more.
In the production method of the present disclosure, suspension polymerization is preferably carried out in the presence of a peroxide polymerization initiator.
In the production method of the present disclosure, it is preferable to polymerize in the presence of a chain transfer agent.
In the production method of the present disclosure, it is preferable to add 90% by weight or more of vinylidene fluoride to the reactor with respect to the total amount of vinylidene fluoride to be subjected to the polymerization before or at the start of the polymerization.
 本開示によれば、耐屈曲性と柔軟性とを兼ね備えており、耐熱性に優れているとともに、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層を得ることができる共重合体を提供することができる。 According to the present disclosure, an electrode mixture having both bending resistance and flexibility, excellent heat resistance, and a viscosity that does not easily increase can be obtained, and an electrode material layer having excellent electrolytic solution swelling resistance can be obtained. It is possible to provide a copolymer that can be used.
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。 Hereinafter, specific embodiments of the present disclosure will be described in detail, but the present disclosure is not limited to the following embodiments.
 本開示の共重合体は、ビニリデンフルオライド(VdF)単位および単量体(1)単位を含有しており、単量体(1)単位の含有量が、全単量体単位に対して、3.0~25.0質量%である。さらに、本開示の共重合体は、このような単量体組成を有していると同時に、160℃以上の融点を有している。 The copolymers of the present disclosure contain vinylidene fluoride (VdF) units and monomer (1) units, and the content of the monomer (1) units is higher than that of all monomer units. It is 3.0 to 25.0% by mass. Further, the copolymer of the present disclosure has such a monomer composition and at the same time has a melting point of 160 ° C. or higher.
 単量体(1)単位は、一般式(1)で示される単量体(1)に基づく単量体単位である。
 一般式(1):CX=CX(CF
(一般式(1)中、X、XおよびXは、独立に、H、F、CH、CHF、CHFまたはCFであり、ただし、X、XおよびXのうち、少なくとも1つはF、CHF、CHFまたはCFであり、少なくとも1つはHまたはCHであり、nは1~6の整数であり、YはHまたはFである。)
The monomer (1) unit is a monomer unit based on the monomer (1) represented by the general formula (1).
General formula (1): CX 1 X 2 = CX 3 (CF 2 ) n Y
(In general formula (1), X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F. )
 XおよびXとしては、独立に、HまたはFであることが好ましい。XおよびXがHまたはFである場合、XはH、F、CH、CHF、CHFまたはCFであってよい。また、X、XおよびXとしては、独立に、HまたはFが好ましく、この場合、X、XおよびXのうち、少なくとも1つはFであり、少なくとも1つはHである。XおよびXとしては、いずれもHであることがより好ましい。 As X 1 and X 2 , it is preferable that they are H or F independently. If X 1 and X 2 are H or F, then X 3 may be H, F, CH 3 , CH 2 F, CHF 2 or CF 3 . Further, as X 1 , X 2 and X 3 , H or F is preferable independently, and in this case, at least one of X 1 , X 2 and X 3 is F, and at least one is H. be. It is more preferable that both X 1 and X 2 are H.
 nは、1~6の整数であり、好ましくは1~4の整数であり、より好ましくは1~3の整数であり、さらに好ましくは1または2であり、特に好ましくは1である。 N is an integer of 1 to 6, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, still more preferably 1 or 2, and particularly preferably 1.
 Yとしては、Fが好ましい。 F is preferable as Y.
 単量体(1)としては、一般式(1-1)で示される単量体が好ましい。
 一般式(1-1):CHX=CX(CF
(一般式(1-1)中、XおよびXは、一方がHであり、他方がFであり、nおよびYは上記したとおりである。)
As the monomer (1), the monomer represented by the general formula (1-1) is preferable.
General formula (1-1): CHX 2 = CX 3 (CF 2 ) n Y
(In the general formula (1-1), one of X 2 and X 3 is H, the other is F, and n and Y are as described above.)
 単量体(1)としては、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン(Z体)および1,3,3,3-テトラフルオロプロペン(E体)からなる群より選択される少なくとも1種が好ましく、2,3,3,3-テトラフルオロプロペンがより好ましい。 Examples of the monomer (1) include 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z-form) and 1,3,3,3-tetrafluoropropene (E). At least one selected from the group consisting of bodies) is preferable, and 2,3,3,3-tetrafluoropropene is more preferable.
 共重合体の単量体(1)単位の含有量は、共重合体を構成する全単量体単位に対して、3.0~25.0質量%である。共重合体の単量体(1)単位の含有量をこの範囲内に調整することによって、耐屈曲性と柔軟性とを兼ね備えており、耐熱性に優れている共重合体が得られるとともに、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層を得ることができる。共重合体の単量体(1)単位の含有量は、好ましくは4.0質量%以上であり、より好ましくは5.0質量%以上であり、好ましくは24.0質量%以下であり、より好ましくは23.0質量%以下である。 The content of the monomer (1) unit of the copolymer is 3.0 to 25.0% by mass with respect to all the monomer units constituting the copolymer. By adjusting the content of the monomer (1) unit of the copolymer within this range, a copolymer having both bending resistance and flexibility and excellent heat resistance can be obtained. An electrode mixture whose viscosity does not easily increase can be obtained, and an electrode material layer having excellent electrolytic solution swelling resistance can be obtained. The content of the monomer (1) unit of the copolymer is preferably 4.0% by mass or more, more preferably 5.0% by mass or more, and preferably 24.0% by mass or less. More preferably, it is 23.0% by mass or less.
 共重合体のVdF単位の含有量は、共重合体を構成する全単量体単位に対して、好ましく75.0~97.0質量%である。共重合体のVdF単位の含有量は、より好ましくは76.0質量%以上であり、さらに好ましくは77.0質量%以上であり、より好ましくは96.0質量%以下であり、さらに好ましくは95.0質量%以下である。 The content of the VdF unit of the copolymer is preferably 75.0 to 97.0% by mass with respect to all the monomer units constituting the copolymer. The content of the copolymer in VdF units is more preferably 76.0% by mass or more, further preferably 77.0% by mass or more, still more preferably 96.0% by mass or less, still more preferably. It is 95.0% by mass or less.
 共重合体は、VdF単位および単量体(1)単位以外の、VdFおよび単量体(1)と共重合可能な単量体単位をさらに含有してもよい。VdFおよび単量体(1)と共重合可能な単量体としては、フッ素化単量体(ただし、VdFおよび単量体(1)を除く)、非フッ素化単量体等が挙げられ、フッ素化単量体が好ましい。フッ素化単量体としては、たとえば、テトラフルオロエチレン、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、(パーフルオロアルキル)エチレン等が挙げられる。非フッ素化単量体としては、エチレン、プロピレン等が挙げられる。VdFおよび単量体(1)と共重合可能な単量体単位の含有量は、好ましくは0~5.0質量%であり、より好ましくは0~3.0質量%であり、さらに好ましくは0~1.0質量%である。共重合体は、VdF単位および単量体(1)単位のみからなることも好ましい。 The copolymer may further contain a monomer unit copolymerizable with VdF and the monomer (1) other than the VdF unit and the monomer (1) unit. Examples of the monomer copolymerizable with VdF and the monomer (1) include a fluorinated monomer (however, excluding VdF and the monomer (1)), a non-fluorinated monomer, and the like. Fluorinated monomers are preferred. Examples of the fluorinated monomer include tetrafluoroethylene, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, (perfluoroalkyl) ethylene and the like. Examples of the non-fluorinated monomer include ethylene and propylene. The content of the monomer unit copolymerizable with VdF and the monomer (1) is preferably 0 to 5.0% by mass, more preferably 0 to 3.0% by mass, and even more preferably. It is 0 to 1.0% by mass. It is also preferable that the copolymer consists of only VdF units and monomer (1) units.
 共重合体の単量体単位の含有量は、19F-NMR測定により測定できる。 The content of the monomer unit of the copolymer can be measured by 19 F-NMR measurement.
 共重合体の融点は、160℃以上である。共重合体の融点をこの範囲内に調整することによって、耐屈曲性と柔軟性とを兼ね備えており、耐熱性に優れている共重合体が得られるとともに、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層を得ることができる。共重合体の融点は、好ましくは161℃以上であり、より好ましくは162℃以上であり、さらに好ましくは163℃以上であり、上限は特に限定されないが、175℃以下であってよく、170℃以下であってよい。 The melting point of the copolymer is 160 ° C or higher. By adjusting the melting point of the copolymer within this range, a copolymer having both bending resistance and flexibility and excellent heat resistance can be obtained, and an electrode mixture whose viscosity does not easily increase can be obtained. It is possible to obtain an electrode material layer that is obtained and has excellent electrolytic solution swelling resistance. The melting point of the copolymer is preferably 161 ° C. or higher, more preferably 162 ° C. or higher, still more preferably 163 ° C. or higher, and the upper limit is not particularly limited, but may be 175 ° C. or lower, 170 ° C. or higher. It may be as follows.
 共重合体の融点(2次融点)は、示差走査熱量測定(DSC)装置を用い、30℃から220℃まで10℃/分の速度で昇温し、その後10℃/分で30℃まで降下させ、再度10℃/分の速度で220℃まで昇温したときの融解熱曲線における極大値に対する温度として求めることができる。 The melting point (secondary melting point) of the copolymer is raised from 30 ° C. to 220 ° C. at a rate of 10 ° C./min and then lowered to 30 ° C. at 10 ° C./min using a differential scanning calorimetry (DSC) device. It can be obtained as the temperature with respect to the maximum value in the heat of fusion curve when the temperature is raised to 220 ° C. again at a rate of 10 ° C./min.
 共重合体の溶液粘度は、2000mPa・s以下であることが好ましい。共重合体の溶液粘度をこの範囲内に調整することによって、耐屈曲性と柔軟性とを一層高いレベルで両立することができ、耐熱性も一層向上する。共重合体の溶液粘度は、好ましくは10mPa・s以上であり、より好ましくは50mPa・s以上であり、さらに好ましくは100mPa・s以上であり、特に好ましくは150mPa・s以上であり、より好ましくは1800mPa・s以下であり、さらに好ましくは1500mPa・s以下である。 The solution viscosity of the copolymer is preferably 2000 mPa · s or less. By adjusting the solution viscosity of the copolymer within this range, both bending resistance and flexibility can be achieved at a higher level, and heat resistance is further improved. The solution viscosity of the copolymer is preferably 10 mPa · s or more, more preferably 50 mPa · s or more, further preferably 100 mPa · s or more, particularly preferably 150 mPa · s or more, and more preferably. It is 1800 mPa · s or less, and more preferably 1500 mPa · s or less.
 共重合体の溶液粘度は、5質量%の共重合体を含有するN-メチル-2-ピロリドン(NMP)溶液の粘度である。NMP溶液の粘度は、B型粘度計を用いて25℃で測定することができる。 The solution viscosity of the copolymer is the viscosity of the N-methyl-2-pyrrolidone (NMP) solution containing 5% by mass of the copolymer. The viscosity of the NMP solution can be measured at 25 ° C. using a B-type viscometer.
 共重合体の重量平均分子量(ポリスチレン換算)は、好ましくは50000~3000000であり、より好ましくは80000以上であり、さらに好ましくは100000以上であり、特に好ましくは200000以上であり、より好ましくは2400000以下であり、さらに好ましくは2000000以下であり、特に好ましくは1600000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。共重合体の重量平均分子量をこの範囲内に調整することによって、耐屈曲性と柔軟性とを一層高いレベルで両立することができ、耐熱性も一層向上する。 The weight average molecular weight (in terms of polystyrene) of the copolymer is preferably 50,000 to 3,000,000, more preferably 80,000 or more, further preferably 100,000 or more, particularly preferably 200,000 or more, and more preferably 2400000 or less. It is more preferably 2000000 or less, and particularly preferably 1600000 or less. The weight average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent. By adjusting the weight average molecular weight of the copolymer within this range, both bending resistance and flexibility can be achieved at a higher level, and heat resistance is further improved.
 共重合体の数平均分子量(ポリスチレン換算)は、好ましくは20000~1500000であり、より好ましくは40000以上であり、さらに好ましくは70000以上であり、特に好ましくは140000以上であり、より好ましくは1400000以下であり、さらに好ましくは1200000以下であり、特に好ましくは1100000以下である。数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。 The number average molecular weight (in terms of polystyrene) of the copolymer is preferably 20000 to 15000000, more preferably 40,000 or more, further preferably 70,000 or more, particularly preferably 140000 or more, and more preferably 140000 or less. It is more preferably 120000 or less, and particularly preferably 110000 or less. The number average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
 共重合体の25℃における貯蔵弾性率は、弾性率が低すぎると成形後の樹脂が変形しやすくなるおそれがあるため、好ましくは50MPa以上であり、より好ましくは100MPa以上であり、さらに好ましくは200MPa以上であり、弾性率が高すぎると成形後の樹脂の耐屈曲性が劣るおそれがあるため、好ましくは2000MPa以下であり、より好ましくは1500MPa以下であり、さらに好ましくは1200MPa以下である。 The storage elastic modulus of the copolymer at 25 ° C. is preferably 50 MPa or more, more preferably 100 MPa or more, still more preferably 100 MPa or more, because if the elastic modulus is too low, the resin after molding may be easily deformed. If it is 200 MPa or more and the elastic modulus is too high, the bending resistance of the resin after molding may be inferior. Therefore, it is preferably 2000 MPa or less, more preferably 1500 MPa or less, and further preferably 1200 MPa or less.
 本開示の共重合体は、25℃における貯蔵弾性率と120℃における貯蔵弾性率との変化率が低く、高温雰囲気下でも剛性を維持できることから耐熱性に優れている。本開示の共重合体は、800%以下の貯蔵弾性率の変化率を示すことができる。 The copolymer of the present disclosure has a low rate of change between the storage elastic modulus at 25 ° C. and the storage elastic modulus at 120 ° C., and is excellent in heat resistance because it can maintain rigidity even in a high temperature atmosphere. The copolymers of the present disclosure can exhibit a rate of change in storage modulus of 800% or less.
 貯蔵弾性率は、長さ30mm、巾5mm、厚み50~300μmのサンプルについて、アイティー計測制御社製動的粘弾性装置DVA220で動的粘弾性測定により引張モード、つかみ巾20mm、測定温度-30℃から160℃、昇温速度2℃/min、周波数10Hzの条件で測定した際の25℃または120℃での測定値である。 The storage elastic modulus of a sample having a length of 30 mm, a width of 5 mm, and a thickness of 50 to 300 μm was measured by a dynamic viscoelastic device DVA220 manufactured by IT Measurement Control Co., Ltd. in a tensile mode, a grip width of 20 mm, and a measurement temperature of -30. It is a measured value at 25 ° C. or 120 ° C. when measured under the conditions of ° C. to 160 ° C., a heating rate of 2 ° C./min, and a frequency of 10 Hz.
 本開示の共重合体は、たとえば、VdFおよび単量体(1)を反応器中で重合するに際して、重合の開始前または開始時に、重合に供する単量体(1)の全量に対して、90重量%以上の単量体(1)を反応器に添加し、0~55℃の重合温度で重合する製造方法により製造することができる。 The copolymer of the present disclosure is, for example, when polymerizing VdF and the monomer (1) in a reactor, with respect to the total amount of the monomer (1) to be subjected to the polymerization before or at the start of the polymerization. It can be produced by a production method in which 90% by weight or more of the monomer (1) is added to a reactor and polymerized at a polymerization temperature of 0 to 55 ° C.
 上記の製造方法においては、重合の開始前または開始時に、重合に供する単量体(1)の全量に対して、90重量%以上の単量体(1)を、反応器に添加する。重合の開始前または重合開始時に、重合に供する単量体(1)の多くを反応器に添加することにより、融点が高く、耐熱性に優れる共重合体を得ることができる。重合反応は、通常、重合開始剤を添加した時点から開始されるので、重合開始時とは、通常、重合開始剤を添加した時点であり、重合の開始前とは、重合開始剤を添加するよりも前の時期である。 In the above production method, 90% by weight or more of the monomer (1) is added to the reactor with respect to the total amount of the monomer (1) to be subjected to the polymerization before or at the start of the polymerization. By adding most of the monomers (1) to be subjected to the polymerization to the reactor before the start of the polymerization or at the start of the polymerization, a copolymer having a high melting point and excellent heat resistance can be obtained. Since the polymerization reaction is usually started from the time when the polymerization initiator is added, the time when the polymerization initiator is added is usually the time when the polymerization initiator is added, and the time before the start of polymerization is the time when the polymerization initiator is added. It was a time before.
 重合の開始前または開始時に添加する単量体(1)の添加量は、重合に供する単量体(1)の全量に対して、好ましくは95重量%以上であり、より好ましくは99重量%以上であり、100重量%であってもよい。すなわち、重合の開始前または開始時に、重合に供する単量体(1)の全量を反応器に一括して添加してよい。 The amount of the monomer (1) added before or at the start of the polymerization is preferably 95% by weight or more, more preferably 99% by weight, based on the total amount of the monomer (1) to be subjected to the polymerization. As mentioned above, it may be 100% by weight. That is, the entire amount of the monomer (1) to be subjected to the polymerization may be collectively added to the reactor before or at the start of the polymerization.
 上記の製造方法においては、重合の開始前または開始時に、重合に供するVdFの全量に対して、90重量%以上のVdFを反応器に添加することが好ましい。重合の開始前または重合開始時に、重合に供するVdFの多くを反応器に添加することにより、融点が高く、耐熱性に優れる共重合体を一層容易に得ることができる。 In the above production method, it is preferable to add 90% by weight or more of VdF to the reactor with respect to the total amount of VdF to be subjected to the polymerization before or at the start of the polymerization. By adding most of the VdF to be subjected to the polymerization to the reactor before the start of the polymerization or at the start of the polymerization, a copolymer having a high melting point and excellent heat resistance can be obtained more easily.
 重合の開始前または開始時に添加するVdFの添加量は、重合に供するVdFの全量に対して、好ましくは95重量%以上であり、より好ましくは99重量%以上であり、100重量%であってもよい。すなわち、重合の開始前または開始時に、重合に供するVdFの全量を反応器に一括して添加してよい。 The amount of VdF added before or at the start of the polymerization is preferably 95% by weight or more, more preferably 99% by weight or more, and 100% by weight, based on the total amount of VdF to be subjected to the polymerization. May be good. That is, the entire amount of VdF to be subjected to the polymerization may be collectively added to the reactor before or at the start of the polymerization.
 上記の製造方法においては、0~55℃の重合温度でVdFおよび単量体(1)を重合する。重合温度が高すぎると、融点が高く、耐熱性に優れる共重合体を得ることができず、重合温度が低すぎると、重合が円滑に進行せず、共重合体の生産効率が低下する。重合温度としては、融点が高い共重合体を一層容易に製造できることから、好ましくは30℃以上あり、より好ましくは35℃以上であり、さらに好ましくは40℃以上であり、好ましくは50℃以下であり、より好ましくは45℃以下である。 In the above production method, VdF and the monomer (1) are polymerized at a polymerization temperature of 0 to 55 ° C. If the polymerization temperature is too high, a copolymer having a high melting point and excellent heat resistance cannot be obtained, and if the polymerization temperature is too low, the polymerization does not proceed smoothly and the production efficiency of the copolymer is lowered. The polymerization temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, and preferably 50 ° C. or lower because a copolymer having a high melting point can be more easily produced. Yes, more preferably 45 ° C. or lower.
 上記の製造方法においては、重合の任意の時点において、重合温度が上記の範囲内に調整されていればよい。融点が高く、耐熱性に優れる共重合体を一層容易に得ることができる観点からは、少なくとも重合開始時に上記範囲内に重合温度を調整しておくことが好ましく、重合開始時に上記範囲内に重合温度を調整し、さらに重合終了までの全ての期間において上記範囲内に重合温度を調整することがより好ましい。 In the above production method, the polymerization temperature may be adjusted within the above range at any time of polymerization. From the viewpoint that a copolymer having a high melting point and excellent heat resistance can be more easily obtained, it is preferable to adjust the polymerization temperature within the above range at least at the start of polymerization, and to polymerize within the above range at the start of polymerization. It is more preferable to adjust the temperature and further adjust the polymerization temperature within the above range in the entire period until the completion of the polymerization.
 上記の製造方法においては、重合中に到達する最高圧力(最高到達圧力)が4.38MPa以上であることが好ましい。最高圧力としては、好ましくは4.80MPa以上であり、より好ましくは5.30MPa以上であり、さらに好ましくは5.80MPa以上である。最高圧力の上限は、特に制限はないが、圧力が高すぎると、耐圧性の高い反応器が必要となり、反応器の設計および製作にコストを要する。したがって、最高圧力の上限としては、安全かつ低コストで生産する観点から、好ましくは12.00MPa以下であり、より好ましくは10.00MPa以下であり、さらに好ましくは7.00MPa以下である。 In the above production method, it is preferable that the maximum pressure (maximum ultimate pressure) reached during polymerization is 4.38 MPa or more. The maximum pressure is preferably 4.80 MPa or more, more preferably 5.30 MPa or more, and further preferably 5.80 MPa or more. The upper limit of the maximum pressure is not particularly limited, but if the pressure is too high, a reactor with high pressure resistance is required, and the design and manufacture of the reactor are costly. Therefore, the upper limit of the maximum pressure is preferably 12.00 MPa or less, more preferably 10.00 MPa or less, and further preferably 7.00 MPa or less from the viewpoint of safe and low-cost production.
 上記の製造方法においては、重合中の重合圧力は変動してよい。最高圧力(最高到達圧力)は、重合中に到達する最も高い反応器の内圧(ゲージ圧)である。最高圧力は、重合温度、反応器中のVdFおよび単量体(1)の密度などによって決まる。 In the above production method, the polymerization pressure during polymerization may fluctuate. The maximum pressure (maximum ultimate pressure) is the highest internal pressure of the reactor (gauge pressure) reached during polymerization. The maximum pressure is determined by the polymerization temperature, VdF in the reactor, the density of the monomer (1), and the like.
 融点が高い共重合体を効率的に製造できることから、VdFが超臨界状態となる条件で、VdFおよび単量体(1)を重合することも好ましい。VdFの臨界温度は30.1℃、臨界圧力は4.38MPaである。 Since a copolymer having a high melting point can be efficiently produced, it is also preferable to polymerize VdF and the monomer (1) under the condition that VdF is in a supercritical state. The critical temperature of VdF is 30.1 ° C., and the critical pressure is 4.38 MPa.
 融点が高い共重合体を効率的に製造できることから、反応器中のVdFおよび単量体(1)の密度が十分に高くなるように、VdFおよび単量体(1)を反応器に供給することも好ましい。反応器中のVdFおよび単量体(1)の重合初期温度における密度としては、好ましくは0.20g/cm以上であり、より好ましくは0.25g/cm以上であり、さらに好ましくは0.30g/cm以上であり、上限は特に制限はないが、密度が高すぎると、反応器内の温度の変化による反応器内の圧力変化が大きくなりすぎる傾向があるので、安全に生産する観点から0.70g/cm以下が好ましい。反応器中のVdFおよび単量体(1)の密度は、反応器に供給した単量体混合物の供給量(g)を、反応器の内容積(cm)から水の体積(cm)を減じた値で除することにより、求めることができる。 Since a copolymer having a high melting point can be efficiently produced, VdF and the monomer (1) are supplied to the reactor so that the density of the VdF and the monomer (1) in the reactor is sufficiently high. It is also preferable. The density of VdF and the monomer (1) in the reactor at the initial polymerization temperature is preferably 0.20 g / cm 3 or more, more preferably 0.25 g / cm 3 or more, and further preferably 0. It is .30 g / cm 3 or more, and the upper limit is not particularly limited, but if the density is too high, the pressure change in the reactor tends to be too large due to the change in the temperature inside the reactor, so it is produced safely. From the viewpoint, 0.70 g / cm 3 or less is preferable. The density of VdF and the monomer (1) in the reactor is the supply amount (g) of the monomer mixture supplied to the reactor, from the internal volume of the reactor (cm 3 ) to the volume of water (cm 3 ). Can be obtained by dividing by a value obtained by subtracting.
 VdFおよび単量体(1)は、所望の単量体組成を有する共重合体が得られるような組成比で、反応器に供給される。本開示の製造方法により得られる共重合体の単量体(1)単位の含有量は、共重合体を構成する全単量体単位に対して、3.0~25.0質量%である。共重合体の単量体(1)単位の含有量をこの範囲内に調整することによって、融点が高く、耐熱性に優れる共重合体を得ることができる。さらに、得られる共重合体は、耐屈曲性と柔軟性とを兼ね備えている。しかも、得られる共重合体を用いることにより、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層を得ることができる。共重合体の単量体(1)単位の含有量は、好ましくは4.0質量%以上であり、より好ましくは5.0質量%以上であり、好ましくは24.0質量%以下であり、より好ましくは23.0質量%以下である。 VdF and the monomer (1) are supplied to the reactor in a composition ratio such that a copolymer having a desired monomer composition can be obtained. The content of the monomer (1) unit of the copolymer obtained by the production method of the present disclosure is 3.0 to 25.0% by mass with respect to all the monomer units constituting the copolymer. .. By adjusting the content of the monomer (1) unit of the copolymer within this range, a copolymer having a high melting point and excellent heat resistance can be obtained. Further, the obtained copolymer has both bending resistance and flexibility. Moreover, by using the obtained copolymer, an electrode mixture whose viscosity does not easily increase can be obtained, and an electrode material layer having excellent electrolytic solution swelling resistance can be obtained. The content of the monomer (1) unit of the copolymer is preferably 4.0% by mass or more, more preferably 5.0% by mass or more, and preferably 24.0% by mass or less. More preferably, it is 23.0% by mass or less.
 共重合体のVdF単位の含有量は、共重合体を構成する全単量体単位に対して、好ましく75.0~97.0質量%である。共重合体のVdF単位の含有量は、より好ましくは76.0質量%以上であり、さらに好ましくは77.0質量%以上であり、より好ましくは96.0質量%以下であり、さらに好ましくは95.0質量%以下である。 The content of the VdF unit of the copolymer is preferably 75.0 to 97.0% by mass with respect to all the monomer units constituting the copolymer. The content of the copolymer in VdF units is more preferably 76.0% by mass or more, further preferably 77.0% by mass or more, still more preferably 96.0% by mass or less, still more preferably. It is 95.0% by mass or less.
 上記の製造方法において、VdFおよび単量体(1)以外の、VdFおよび単量体(1)と共重合可能な単量体をさらに重合してもよい。VdFおよび単量体(1)と共重合可能な単量体としては、フッ素化単量体(ただし、VdFおよび単量体(1)を除く)、非フッ素化単量体等が挙げられ、フッ素化単量体が好ましい。フッ素化単量体としては、たとえば、テトラフルオロエチレン、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、(パーフルオロアルキル)エチレン等が挙げられる。非フッ素化単量体としては、エチレン、プロピレン等が挙げられる。共重合体のVdFおよび単量体(1)と共重合可能な単量体単位の含有量は、好ましくは0~5.0質量%であり、より好ましくは0~3.0質量%であり、さらに好ましくは0~1.0質量%である。共重合体は、VdF単位および単量体(1)単位のみからなることも好ましい。 In the above production method, a monomer copolymerizable with VdF and the monomer (1) other than VdF and the monomer (1) may be further polymerized. Examples of the monomer copolymerizable with VdF and the monomer (1) include a fluorinated monomer (however, excluding VdF and the monomer (1)), a non-fluorinated monomer, and the like. Fluorinated monomers are preferred. Examples of the fluorinated monomer include tetrafluoroethylene, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, fluoroalkyl vinyl ether, hexafluoropropylene, (perfluoroalkyl) ethylene and the like. Examples of the non-fluorinated monomer include ethylene and propylene. The content of the VdF of the copolymer and the monomer unit copolymerizable with the monomer (1) is preferably 0 to 5.0% by mass, more preferably 0 to 3.0% by mass. , More preferably 0 to 1.0% by mass. It is also preferable that the copolymer consists of only VdF units and monomer (1) units.
 重合方法としては、懸濁重合、乳化重合、溶液重合などの方法が採用できるが、後処理の容易さ等の点から、懸濁重合、乳化重合が好ましい。 As the polymerization method, suspension polymerization, emulsion polymerization, solution polymerization and the like can be adopted, but suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like.
 上記の重合においては、重合開始剤、界面活性剤、連鎖移動剤および溶媒を使用することができ、それぞれ従来公知のものを使用することができる。上記重合開始剤としては、油溶性ラジカル重合開始剤または水溶性ラジカル重合開始剤を使用できる。 In the above polymerization, a polymerization initiator, a surfactant, a chain transfer agent and a solvent can be used, and conventionally known ones can be used for each. As the polymerization initiator, an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used.
 油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえば、
 ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類;
 t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシピバレートなどのパーオキシエステル類;
 ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類;
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類;
などが代表的なものとしてあげられる。
The oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, for example,
Dialkyl peroxy carbonates such as dinormal propyl peroxy dicarbonate, diisopropyl peroxy dicarbonate, disec-butyl peroxy dicarbonate;
t-Butylperoxyisobutyrate, t-butylperoxypivalate, t-hexylperoxy2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, 1,1,3,3- Peroxyesters such as tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxypivalate;
Dialkyl peroxides such as dit-butyl peroxide;
Di [fluoro (or fluorochloro) acyl] peroxides;
Etc. are typical examples.
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、[(RfCOO)-](Rfは、パーフルオロアルキル基、ω-ハイドロパーフルオロアルキル基またはフルオロクロロアルキル基)で表されるジアシルパーオキサイドが挙げられる。 Di [fluoro (or fluorochloro) acyl] peroxides are represented by [(RfCOO)-] 2 (Rf is a perfluoroalkyl group, ω-hydroperfluoroalkyl group or fluorochloroalkyl group). Peroxide can be mentioned.
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、たとえば、ジ(ω-ハイドロ-ドデカフルオロヘキサノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロトリアコンタフルオロドコサノイル)パーオキサイドなどが挙げられる。 Examples of di [fluoro (or fluorochloro) acyl] peroxides include di (ω-hydro-dodecafluorohexanoyl) peroxide, di (ω-hydro-tetradecafluoroheptanoyl) peroxide, and di (ω). -Hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide, di (perfluoropaleryl) peroxide, di (perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) par Oxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di (ω-chloro-hexafluorobutyryl) peroxide, di (ω-chloro-decafluorohexanoyl) peroxide, Di (ω-chloro-tetradecafluorooctanoyl) peroxide, ω-hydro-dodecafluoroheptanoyl-ω-hydrohexadecafluorononanoyl-peroxide, ω-chloro-hexafluorobutyryl-ω-chloro-deca Fluorohexanoyl-peroxide, ω-hydrododecafluoroheptanoyl-perfluorobutyryl-peroxide, di (dichloropentafluorobutanoyl) peroxide, di (trichlorooctafluorohexanoyl) peroxide, di (tetrachloroun) Examples thereof include decafluorooctanoyl) peroxide, di (pentachlorotetradecafluorodecanoyl) peroxide, and di (undecachlorotriacontafluorodocosanoyl) peroxide.
 水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸等のアンモニウム塩、カリウム塩、ナトリウム塩、ジコハク酸パーオキシド、ジグルタル酸パーオキシド等の有機過酸化物、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイド等が挙げられる。サルファイト類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。 The water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfate, perboric acid, perchloric acid, perphosphoric acid and percarbonate, potassium salts and sodium salts. , Organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide, t-butyl permalate, t-butyl hydroperoxide and the like. A reducing agent such as sulfates may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times the amount of the peroxide.
 重合方法としては、上記の重合温度で円滑に重合を開始させることができ、融点が高く、耐熱性に優れる共重合体を容易に製造することできることから、パーオキサイド重合開始剤の存在下に懸濁重合する方法、レドックス重合開始剤の存在下に乳化重合する方法が好ましい。パーオキサイド重合開始剤としては、上記した油溶性の過酸化物が挙げられる。レドックス重合開始剤としては、上記した過酸化物と還元剤との組み合わせが挙げられる。 As a polymerization method, the polymerization can be smoothly started at the above-mentioned polymerization temperature, and a copolymer having a high melting point and excellent heat resistance can be easily produced. Therefore, it is suspended in the presence of a peroxide polymerization initiator. A method of turbid polymerization and a method of emulsifying polymerization in the presence of a redox polymerization initiator are preferable. Examples of the peroxide polymerization initiator include the above-mentioned oil-soluble peroxides. Examples of the redox polymerization initiator include the above-mentioned combination of the peroxide and the reducing agent.
 界面活性剤としては、公知の界面活性剤が使用でき、たとえば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が使用できる。なかでも、含フッ素アニオン性界面活性剤が好ましく、エーテル結合を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)、炭素数4~20の直鎖または分岐した含フッ素アニオン性界面活性剤がより好ましい。界面活性剤の添加量(対溶媒)は、好ましくは50~5000ppmである。 As the surfactant, a known surfactant can be used, and for example, a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used. Among them, a fluorine-containing anionic surfactant is preferable, and an ether bond may be contained (that is, an oxygen atom may be inserted between carbon atoms), and a linear or branched fluorine-containing detergent having 4 to 20 carbon atoms is preferable. Anionic surfactants are more preferred. The amount of the surfactant added (against the solvent) is preferably 50 to 5000 ppm.
 連鎖移動剤の存在下に重合することにより、得られる共重合体の溶液粘度、重量平均分子量などを適切に調整することができ、融点が高く、耐熱性に優れる共重合体を容易に得ることができる。連鎖移動剤としては、たとえば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等が挙げられる。 By polymerizing in the presence of a chain transfer agent, the solution viscosity, weight average molecular weight, etc. of the obtained copolymer can be appropriately adjusted, and a copolymer having a high melting point and excellent heat resistance can be easily obtained. Can be done. Examples of the chain transfer agent include hydrocarbons such as ethane, isopentan, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; methanol. , Alcohols such as ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, methyl chloride and the like.
 連鎖移動剤の添加量は、連鎖移動剤の連鎖移動定数の大きさにより変わりうるが、通常、溶媒に対して0.01~20質量%である。 The amount of the chain transfer agent added may vary depending on the magnitude of the chain transfer constant of the chain transfer agent, but is usually 0.01 to 20% by mass with respect to the solvent.
 溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。 Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
 懸濁重合などの重合において、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類;CFHCFCFCFH、CFCFHCFCFCF、CFCFCFCFCFH、CFCFCFHCFCF、CFCFHCFHCFCF、CFHCFCFCFCFH、CFHCFHCFCFCF、CFCFCFCFCFCFH、CFCH(CF)CFCFCF、CFCF(CF)CFHCFCF、CFCF(CF)CFHCFHCF、CFCH(CF)CFHCFCF、CFHCFCFCFCFCFH、CFCFCFCFCHCH、CFCHCFCH等のハイドロフルオロカーボン類;F(CFOCH、F(CFOC、(CFCFOCH、F(CFOCH等の(ペルフルオロアルキル)アルキルエーテル類;CFCHOCFCHF、CHFCFCHOCFCHF、CFCFCHOCFCHF等のヒドロフルオロアルキルエーテル類等が挙げられ、なかでも、パーフルオロアルカン類が好ましい。フッ素系溶媒の使用量は、懸濁性および経済性の面から、溶媒に対して10~100質量%が好ましい。 In polymerization such as suspension polymerization, a fluorine-based solvent may be used in addition to water. Fluorine-based solvents include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CF HCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3 , etc. Chlorofluoroalkanes; perfluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 3 ; CF 2 HCF 2 CF 2 CF 2 H, CF 3 CFHCF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CFHCF 2 CF 3 , CF 3 CFHC FHCF 2 CF 3 , CF 2 HCF 2 CF 2 CF 2 CF 2 H, CF 2 HCFHCF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CH (CF 3 ) CF 3 CF 2 CF 3 , CF 3 CF (CF) 3 ) CFHCF 2 CF 3 , CF 3 CF (CF 3 ) CFHC HCF 3 , CF 3 CH (CF 3 ) CFHCF 2 CF 3 , CF 2 HCF 2 CF 2 CF 2 CF 2 CF 2 H, CF 3 CF 2 CF 2 CF Hydrofluorocarbons such as 2 CH 2 CH 3 , CF 3 CH 2 CF 2 CH 3 ; F (CF 2 ) 4 OCH 3 , F (CF 2 ) 4 OC 2 H 5 , (CF 3 ) 2 CFOCH 3 , F ( CF 2 ) 3 OCH 3 and other (perfluoroalkyl) alkyl ethers; CF 3 CH 2 OCF 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , CF 3 CF 2 CH 2 OCF 2 CHF 2 and other hydrofluorocarbons Examples thereof include alkyl ethers, and among them, perfluoroalkanes are preferable. The amount of the fluorinated solvent used is preferably 10 to 100% by mass with respect to the solvent from the viewpoint of suspension and economy.
 懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を用いることができる。懸濁剤の添加量(対溶媒)は、好ましくは0.005~1.0質量%、より好ましくは0.01~0.4質量%である。 In suspension polymerization, suspending agents such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide and gelatin can be used. The amount of the suspending agent added (against the solvent) is preferably 0.005 to 1.0% by mass, more preferably 0.01 to 0.4% by mass.
 懸濁重合に用いる重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、ジ(セカンダリーブチル)パーオキシカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド、t-ブチルパーオキシピバレート、t-アミルパーオキシピバレートなどが挙げられる。その使用量は、単量体合計量に対して0.1~5質量%であることが好ましい。重合開始剤の添加量を調整することにより、得られる共重合体の溶液粘度、重量平均分子量などを適切に調整することができる。 As the polymerization initiator used for suspension polymerization, diisopropyl peroxydicarbonate, dinormal propyl peroxy dicarbonate, dinormal heptafluoropropyl peroxy dicarbonate, di (secondary butyl) peroxy carbonate, isobutyryl peroxide, di Examples thereof include (chlorofluoroacyl) peroxide, di (perfluoroacyl) peroxide, t-butylperoxypivalate, and t-amylperoxypivalate. The amount used is preferably 0.1 to 5% by mass with respect to the total amount of the monomers. By adjusting the amount of the polymerization initiator added, the solution viscosity, weight average molecular weight, etc. of the obtained copolymer can be appropriately adjusted.
 懸濁重合において、酢酸エチル、酢酸メチル、アセトン、メタノール、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる重合体の重合度を調節してもよい。その使用量は、通常は、単量体合計量に対して0.1~5質量%、好ましくは0.5~3質量%である。連鎖移動剤の添加量を調整することにより、得られる共重合体の溶液粘度、重量平均分子量などを適切に調整することができる。 In suspension polymerization, the degree of polymerization of the obtained polymer is obtained by adding a chain transfer agent such as ethyl acetate, methyl acetate, acetone, methanol, ethanol, n-propanol, acetaldehyde, propylaldehyde, ethyl propionate, and carbon tetrachloride. May be adjusted. The amount used is usually 0.1 to 5% by mass, preferably 0.5 to 3% by mass, based on the total amount of the monomers. By adjusting the amount of the chain transfer agent added, the solution viscosity, weight average molecular weight, etc. of the obtained copolymer can be appropriately adjusted.
 単量体の合計仕込量は、単量体合計量:水の質量比で1:1~1:10、好ましくは1:2~1:5である。 The total amount of the monomers charged is 1: 1 to 1:10, preferably 1: 2 to 1: 5 in terms of the total amount of monomers: mass ratio of water.
 重合終了後、重合反応により共重合体を含む水性分散液が得られる場合は、水性分散液中に含まれる共重合体を凝析させ、洗浄し、乾燥することにより、共重合体を回収できる。また、重合反応により共重合体がスラリーとして得られる場合は、反応器からスラリーを取り出し、洗浄し、乾燥することにより、共重合体を回収できる。乾燥することによりパウダーの形状で共重合体を回収できる。 When an aqueous dispersion containing the copolymer is obtained by the polymerization reaction after the completion of the polymerization, the copolymer can be recovered by coagulating, washing and drying the copolymer contained in the aqueous dispersion. .. When the copolymer is obtained as a slurry by the polymerization reaction, the copolymer can be recovered by taking out the slurry from the reactor, washing the slurry, and drying the slurry. By drying, the copolymer can be recovered in the form of powder.
 本開示の共重合体および上記した製造方法により得られる共重合体は、耐屈曲性と柔軟性とを兼ね備えており、耐熱性に優れていることから、フィルム、シート、チューブ、溶融紡糸、結着剤などとして好適に利用することができる。 The copolymer of the present disclosure and the copolymer obtained by the above-mentioned production method have both bending resistance and flexibility, and are excellent in heat resistance. Therefore, films, sheets, tubes, melt spinning, and knots are used. It can be suitably used as a coating agent or the like.
(結着剤)
 本開示の共重合体(以下、共重合体(1)ということがある)は、耐屈曲性と柔軟性とを兼ね備えており、耐熱性に優れているとともに、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層を得ることができることから、結着剤として好適に利用することができる。本開示の共重合体を含有する結着剤を、二次電池、キャパシタなどの電極を形成するための結着剤として用いることにより、粘度が上昇しにくい電極合剤が得られ、耐電解液膨潤性に優れる電極材料層が得られる。したがって、本開示の結着剤は、電池用結着剤として好適である。
(Binder)
The copolymer of the present disclosure (hereinafter, may be referred to as a copolymer (1)) has both bending resistance and flexibility, is excellent in heat resistance, and is an electrode mixture whose viscosity does not easily increase. It can be suitably used as a binder because an electrode material layer having excellent swelling resistance to the electrolytic solution can be obtained. By using the binder containing the copolymer of the present disclosure as a binder for forming electrodes of secondary batteries, capacitors, etc., an electrode mixture whose viscosity does not easily increase can be obtained, and an electrolytic solution resistant solution can be obtained. An electrode material layer having excellent swellability can be obtained. Therefore, the binder of the present disclosure is suitable as a binder for batteries.
 本開示の結着剤は、上述した共重合体(1)以外の他の重合体を含有してもよい。他の重合体としては、フルオロポリマー(ただし、共重合体(1)を除く)、ポリメタクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリカーボネート、スチレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ポリアクリル酸などが挙げられる。 The binder of the present disclosure may contain a polymer other than the above-mentioned copolymer (1). Other polymers include fluoropolymers (excluding copolymer (1)), polymethacrylate, polymethylmethacrylate, polyacrylonitrile, polyimide, polyamide, polyamideimide, polycarbonate, styrene rubber, butadiene rubber, and styrene butadiene rubber. , Polyacrylic acid and the like.
 他の重合体としては、なかでも、フルオロポリマー(ただし、共重合体(1)を除く)が好ましく、ポリビニリデンフルオライド(ただし、共重合体(1)を除く)およびビニリデンフルオライド重合体(ただし、共重合体(1)を除く)からなる群より選択される少なくとも1種がより好ましく、ポリビニリデンフルオライド(ただし、共重合体(1)を除く)がさらに好ましい。 Among the other polymers, a fluoropolymer (however, excluding the copolymer (1)) is preferable, and a polyvinylidene fluoride (however, excluding the copolymer (1)) and a vinylidene fluoride polymer (excluding the copolymer (1)) are preferable. However, at least one selected from the group consisting of the copolymer (1) is more preferable, and polyvinylidene fluoride (however, the copolymer (1) is excluded) is further preferable.
 本開示の結着剤は、ポリビニリデンフルオライド(ただし、共重合体(1)を除く)をさらに含有することも好ましい。ポリビニリデンフルオライド(PVdF)は、VdF単位を含有する重合体であり、上述した共重合体(1)とは異なる重合体である。PVdFは、VdF単位のみからなるVdFホモポリマーであってよいし、VdF単位およびVdFと共重合可能な単量体単位を含有する重合体であってもよい。 It is also preferable that the binder of the present disclosure further contains polyvinylidenefluoride (however, excluding the copolymer (1)). Polyvinylidene fluoride (PVdF) is a polymer containing VdF units, and is a polymer different from the above-mentioned copolymer (1). PVdF may be a VdF homopolymer consisting only of VdF units, or may be a polymer containing VdF units and a monomer unit copolymerizable with VdF.
 上記PVdFにおいて、VdFと共重合可能な単量体としては、フッ素化単量体、非フッ素化単量体等が挙げられ、フッ素化単量体が好ましい。上記フッ素化単量体としては、単量体(1)以外の単量体であることが好ましく、たとえば、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン(HFP)、(パーフルオロアルキル)エチレン等が挙げられる。上記非フッ素化単量体としては、エチレン、プロピレン等が挙げられる。 In the above PVdF, examples of the monomer copolymerizable with VdF include a fluorinated monomer and a non-fluorinated monomer, and a fluorinated monomer is preferable. The fluorinated monomer is preferably a monomer other than the monomer (1), for example, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene (CTFE), fluoroalkyl vinyl ether, hexafluoro. Examples thereof include propylene (HFP) and (perfluoroalkyl) ethylene. Examples of the non-fluorinated monomer include ethylene and propylene.
 上記PVdFにおいて、VdFと共重合可能な単量体としては、CTFE、フルオロアルキルビニルエーテルおよびHFPからなる群より選択される少なくとも1種のフッ素化単量体が好ましく、CTFE、HFPおよびフルオロアルキルビニルエーテルからなる群より選択される少なくとも1種のフッ素化単量体がより好ましい。 In the above PVdF, as the monomer copolymerizable with VdF, at least one fluorinated monomer selected from the group consisting of CTFE, fluoroalkyl vinyl ether and HFP is preferable, and from CTFE, HFP and fluoroalkyl vinyl ether. At least one fluorinated monomer selected from the above group is more preferable.
 上記PVdFにおいて、VdFと共重合可能な単量体単位の含有量は、全単量体単位に対して、好ましくは0~5.0モル%であり、より好ましくは0~3.0モル%である。上記PVdFにおいて、フッ素化単量体単位(ただし、VdF単位を除く。)の含有量は、全単量体単位に対して、好ましくは5.0モル%未満であり、より好ましくは3.0モル%未満であり、さらに好ましくは1.0モル%未満である。 In the above PVdF, the content of the monomer unit copolymerizable with VdF is preferably 0 to 5.0 mol%, more preferably 0 to 3.0 mol% with respect to all the monomer units. Is. In the above PVdF, the content of the fluorinated monomer unit (excluding the VdF unit) is preferably less than 5.0 mol%, more preferably 3.0, with respect to all the monomer units. It is less than mol%, more preferably less than 1.0 mol%.
 本開示において、PVdFの組成は、たとえば、19F-NMR測定により測定できる。 In the present disclosure, the composition of PVdF can be measured, for example, by 19 F-NMR measurement.
 上記PVdFは、極性基を有していてもよい。結着剤として、共重合体(1)および極性基を有するPVdFを用いることにより、金属箔への密着性により一層優れた電極材料層を形成することができる。 The PVdF may have a polar group. By using the copolymer (1) and PVdF having a polar group as the binder, it is possible to form a more excellent electrode material layer due to the adhesion to the metal foil.
 上記極性基としては、極性を有する官能基であれば特に限定されないが、カルボニル基含有基、エポキシ基、ヒドロキシ基、スルホン酸基、硫酸基、リン酸基、アミノ基、アミド基およびアルコキシ基からなる群より選択される少なくとも1種が好ましく、カルボニル基含有基、エポキシ基およびヒドロキシ基からなる群より選択される少なくとも1種がより好ましく、カルボニル基含有基がさらに好ましい。上記ヒドロキシ基には、上記カルボニル基含有基の一部を構成するヒドロキシ基は含まれない。また、上記アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。 The polar group is not particularly limited as long as it is a functional group having polarity, but from a carbonyl group-containing group, an epoxy group, a hydroxy group, a sulfonic acid group, a sulfate group, a phosphoric acid group, an amino group, an amide group and an alkoxy group. At least one selected from the group consisting of a carbonyl group-containing group, an epoxy group and a hydroxy group is more preferable, and a carbonyl group-containing group is even more preferable. The hydroxy group does not include a hydroxy group constituting a part of the carbonyl group-containing group. The amino group is a monovalent functional group obtained by removing hydrogen from ammonia, a primary or a secondary amine.
 上記カルボニル基含有基とは、カルボニル基(-C(=O)-)を有する官能基である。上記カルボニル基含有基としては、一般式:-COOR(Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基またはカルボン酸無水物基が好ましく、一般式:-COORで表される基がより好ましい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。一般式:-COORで表される基として、具体的には、-COOCHCHOH、-COOCHCH(CH)OH、-COOCH(CH)CHOH、-COOH、-COOCH、-COOC等が挙げられる。一般式:-COORで表される基が、-COOHであるか、-COOHを含む場合、-COOHは、カルボン酸金属塩、カルボン酸アンモニウム塩等のカルボン酸塩であってもよい。 The carbonyl group-containing group is a functional group having a carbonyl group (-C (= O)-). The carbonyl group-containing group is preferably a group represented by the general formula: -COOR (R represents a hydrogen atom, an alkyl group or a hydroxyalkyl group) or a carboxylic acid anhydride group, and is represented by the general formula: -COOR. The groups to be treated are more preferred. The number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3. General formula: As a group represented by -COOR, specifically, -COOCH 2 CH 2 OH, -COOCH 2 CH (CH 3 ) OH, -COOCH (CH 3 ) CH 2 OH, -COOH, -COOCH 3 , -COOC 2 H 5 and the like. General formula: When the group represented by -COOR is -COOH or contains -COOH, -COOH may be a carboxylate such as a carboxylic acid metal salt or a carboxylic acid ammonium salt.
 また、上記カルボニル基含有基としては、一般式:-X-COOR(Xは主査が原子数2~15で構成され、Xで示される原子団の分子量は350以下が好ましい。Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基であってもよい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。 The carbonyl group-containing group has a general formula: -X-COOR (X is mainly composed of 2 to 15 atoms, and the molecular weight of the atomic group represented by X is preferably 350 or less. R is a hydrogen atom. , An alkyl group or a hydroxyalkyl group). The number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3.
 上記アミド基としては、一般式:-CO-NRR’(RおよびR’は、独立に、水素原子または置換もしくは非置換のアルキル基を表す。)で表される基、または、一般式:-CO-NR”-(R”は、水素原子、置換もしくは非置換のアルキル基または置換もしくは非置換のフェニル基を表す。)で表される結合が好ましい。 The amide group includes a group represented by the general formula: -CO-NRR'(R and R'independently represent a hydrogen atom or a substituted or unsubstituted alkyl group), or a general formula:-. CO-NR "-(R" represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group) is preferable.
 上記極性基は、VdFと上記極性基を有する単量体(以下、極性基含有単量体という)とを重合させることにより、PVdFに導入することもできるし、PVdFと上記極性基を有する化合物とを反応させることにより、PVdFに導入することもできるが、生産性の観点からは、VdFと上記極性基含有単量体とを重合させることが好ましい。 The polar group can be introduced into PVdF by polymerizing VdF and a monomer having the polar group (hereinafter referred to as a polar group-containing monomer), or PVdF and a compound having the polar group. Although it can be introduced into PVdF by reacting with, it is preferable to polymerize VdF and the above-mentioned polar group-containing monomer from the viewpoint of productivity.
 VdFと上記極性基含有単量体とを重合させると、VdF単位および極性基含有単量体に基づく単位(以下、極性基含有単量体単位という)を含有するPVdFが得られる。すなわち、PVdFは、上記極性基含有単量体単位を含有することが好ましい。上記極性基含有単量体単位の含有量は、全単量体単位に対して、好ましくは0.001~5.0モル%であり、より好ましくは0.01~3.0モル%であり、さらに好ましくは0.10~1.5モル%である。 By polymerizing VdF and the above-mentioned polar group-containing monomer, PVdF containing a VdF unit and a unit based on the polar group-containing monomer (hereinafter referred to as a polar group-containing monomer unit) can be obtained. That is, PVdF preferably contains the above-mentioned polar group-containing monomer unit. The content of the polar group-containing monomer unit is preferably 0.001 to 5.0 mol%, more preferably 0.01 to 3.0 mol%, based on all the monomer units. , More preferably 0.10 to 1.5 mol%.
 本開示において、PVdFにおける極性基含有単量体単位の含有量は、たとえば、極性基がカルボン酸等の酸基である場合、酸基の酸-塩基滴定によって測定できる。 In the present disclosure, the content of the polar group-containing monomer unit in PVdF can be measured, for example, by acid-base titration of the acid group when the polar group is an acid group such as a carboxylic acid.
 上記極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;(メタ)アクリル酸、クロトン酸、ビニル酢酸(3-ブテン酸)、3-ペンテン酸、4-ペンテン酸、3-ヘキセン酸、4-ヘプテン酸等の不飽和一塩基酸;マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸等の不飽和二塩基酸;メチリデンマロン酸ジメチル等のアルキリデンマロン酸エステル;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテル等のビニルカルボキシアルキルエーテル;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等のカルボキシアルキル(メタ)アクリレート;アクリロイルオキシエチルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、アクリロイルオキシプロピルコハク酸、メタクリロイルオキシエチルフタル酸等の(メタ)アクリロイルオキシアルキルジカルボン酸エステル;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等の不飽和二塩基酸のモノエステル;等が挙げられる。 Examples of the polar group-containing monomer include hydroxyalkyl (meth) acrylates such as hydroxyethyl acrylate and 2-hydroxypropyl acrylate; (meth) acrylic acid, crotonic acid, vinyl acetic acid (3-butenoic acid), and 3-pentenoic acid. , 4-Pentenoic acid, 3-hexenoic acid, 4-heptenoic acid and other unsaturated monobasic acids; maleic acid, maleic anhydride, citraconic acid, unsaturated dibasic acid such as citraconic acid and the like; Alkylidene malonic acid ester; vinylcarboxyalkyl ether such as vinylcarboxymethyl ether and vinylcarboxyethyl ether; carboxyalkyl (meth) acrylate such as 2-carboxyethyl acrylate and 2-carboxyethyl methacrylate; acryloyloxyethyl succinic acid and methacryloyloxy. (Meta) acryloyloxyalkyldicarboxylic acid esters such as ethylsuccinic acid, acryloyloxyethylphthalic acid, acryloyloxypropylsuccinic acid, methacryloyloxyethylphthalic acid; maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citracon Monoesters of unsaturated dibasic acids such as acid monoethyl esters; and the like.
 PVdFと上記極性基を有する化合物とを反応させて、上記極性基をPVdFに導入する場合には、上記極性基を有する化合物として、上記極性基含有単量体、または、PVdFと反応性の基と加水分解性基とを有するシラン系カップリング剤もしくはチタネート系カップリング剤を用いることができる。上記加水分解性基としては、好ましくはアルコキシ基である。カップリング剤を用いる場合には、溶媒に溶解または膨潤させたPVdFと反応させることによって、PVdFに付加させることができる。 When PVdF is reacted with the compound having the polar group to introduce the polar group into PVdF, the polar group-containing monomer or the group reactive with PVdF is used as the compound having the polar group. A silane-based coupling agent or a titanate-based coupling agent having a hydrolyzable group can be used. The hydrolyzable group is preferably an alkoxy group. When a coupling agent is used, it can be added to PVdF by reacting with PVdF dissolved or swollen in a solvent.
 PVdFとしては、また、PVdFを塩基で部分的に脱フッ化水素処理した後、部分的に脱フッ化水素処理されたPVdFを酸化剤とさらに反応させて得られたものを用いることもできる。上記酸化剤としては、過酸化水素、次亜塩素酸塩、ハロゲン化パラジウム、ハロゲン化クロム、過マンガン酸アルカリ金属、過酸化合物、過酸化アルキル、過硫酸アルキル等が挙げられる。 As the PVdF, it is also possible to use a PVdF obtained by partially defluorinating the PVdF with a base and then further reacting the partially defluorinated hydrogenated PVdF with an oxidizing agent. Examples of the oxidizing agent include hydrogen peroxide, hypochlorite, palladium halide, chromium halide, alkali metal permanganate, peracid compound, alkyl peroxide, alkyl persulfate and the like.
 PVdFのVdF単位の含有量は、柔軟性および金属箔への密着性により一層優れた電極材料層を形成することができることから、全単量体単位に対して、好ましくは95.0モル%超であり、より好ましくは97.0モル%超であり、さらに好ましくは99.0モル%超である。 The content of PVdF in VdF units is preferably more than 95.0 mol% with respect to all monomer units because it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to metal foil. It is more preferably more than 97.0 mol%, still more preferably more than 99.0 mol%.
 また、PVdFのVdF単位の含有量は、柔軟性および金属箔への密着性により一層優れた電極材料層を形成することができることから、全単量体単位に対して、好ましくは95.0~99.999モル%であり、より好ましくは95.0モル%超であり、さらに好ましくは97.0モル%以上であり、特に好ましくは98.5モル%以上であり、より好ましくは99.99モル%以下であり、さらに好ましくは99.90モル%以下である。 Further, the content of VdF unit of PVdF is preferably 95.0 to 95.0 to all monomer units because it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil. It is 99.999 mol%, more preferably more than 95.0 mol%, further preferably 97.0 mol% or more, particularly preferably 98.5 mol% or more, and more preferably 99.99. It is mol% or less, more preferably 99.90 mol% or less.
 PVdFの重量平均分子量(ポリスチレン換算)は、好ましくは50000~3000000であり、より好ましくは80000以上であり、さらに好ましくは100000以上であり、特に好ましくは200000以上であり、より好ましくは2400000以下であり、さらに好ましくは2200000以下であり、特に好ましくは2000000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてN,N-ジメチルホルムアミドを用いて測定することができる。また、柔軟性および金属箔への密着性に非常に優れた電極材料層を形成することができることから、PVdF(A)の重量平均分子量は、1000000以上であってもよく、1500000以上であってもよい。 The weight average molecular weight (in terms of polystyrene) of PVdF is preferably 50,000 to 3,000,000, more preferably 80,000 or more, further preferably 100,000 or more, particularly preferably 200,000 or more, and more preferably 2400000 or less. It is more preferably 220000 or less, and particularly preferably 20000 or less. The weight average molecular weight can be measured by gel permeation chromatography (GPC) using N, N-dimethylformamide as a solvent. Further, since it is possible to form an electrode material layer having excellent flexibility and adhesion to a metal foil, the weight average molecular weight of PVdF (A) may be 1,000,000 or more, and may be 1500,000 or more. May be good.
 PVdFの数平均分子量(ポリスチレン換算)は、好ましくは20000~1500000であり、より好ましくは40000以上であり、さらに好ましくは70000以上であり、特に好ましくは140000以上であり、より好ましくは1400000以下であり、さらに好ましくは1200000以下であり、特に好ましくは1100000以下である。数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。 The number average molecular weight (in terms of polystyrene) of PVdF is preferably 20000 to 15000000, more preferably 40,000 or more, further preferably 70,000 or more, particularly preferably 140000 or more, and more preferably 140000 or less. It is more preferably 120000 or less, and particularly preferably 110000 or less. The number average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
 PVdFの融点(2次融点)は、好ましくは100~240℃である。上記融点は、示差走査熱量測定(DSC)装置を用い、30℃から220℃まで10℃/分の速度で昇温し、その後10℃/分で30℃まで降下させ、再度10℃/分の速度で220℃まで昇温したときの融解熱曲線における極大値に対する温度として求める。 The melting point (secondary melting point) of PVdF is preferably 100 to 240 ° C. The melting point is raised from 30 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device, then lowered to 30 ° C. at 10 ° C./min, and then again at 10 ° C./min. It is obtained as the temperature with respect to the maximum value in the heat of fusion curve when the temperature is raised to 220 ° C. at a rate.
 PVdFは、例えば、VdFおよび上記極性基含有単量体や、重合開始剤等の添加剤を適宜混合して、溶液重合や懸濁重合を行う等の従来公知の方法により製造することができる。 PVdF can be produced by a conventionally known method such as solution polymerization or suspension polymerization by appropriately mixing VdF, the above-mentioned polar group-containing monomer, and an additive such as a polymerization initiator.
 PVdFの30℃における貯蔵弾性率は、好ましくは2000MPa以下であり、より好ましくは1800MPa以下である。
 PVdFの60℃における貯蔵弾性率は、好ましくは1500MPa以下であり、より好ましくは1300MPa以下である。
 PVdFの30℃における貯蔵弾性率は、好ましくは1000MPa以上であり、より好ましくは1100MPa以上である。
 PVdFの60℃における貯蔵弾性率は、好ましくは600MPa以上であり、より好ましくは700MPa以上である。
 PVdFの貯蔵弾性率は、共重合体(1)の貯蔵弾性率と同様の方法により測定できる。
The storage elastic modulus of PVdF at 30 ° C. is preferably 2000 MPa or less, more preferably 1800 MPa or less.
The storage elastic modulus of PVdF at 60 ° C. is preferably 1500 MPa or less, more preferably 1300 MPa or less.
The storage elastic modulus of PVdF at 30 ° C. is preferably 1000 MPa or more, more preferably 1100 MPa or more.
The storage elastic modulus of PVdF at 60 ° C. is preferably 600 MPa or more, more preferably 700 MPa or more.
The storage elastic modulus of PVdF can be measured by the same method as the storage elastic modulus of the copolymer (1).
 本開示の結着剤において、共重合体(1)とポリビニリデンフルオライドとの質量比(共重合体(1)/ポリビニリデンフルオライド)としては、好ましくは99/1~1/99であり、より好ましくは97/3以下であり、さらに好ましくは95/5以下であり、より好ましくは3/97以上であり、さらに好ましくは5/90以上である。 In the binder of the present disclosure, the mass ratio of the copolymer (1) to polyvinylidene fluoride (copolymer (1) / polyvinylidene fluoride) is preferably 99/1 to 1/99. , More preferably 97/3 or less, still more preferably 95/5 or less, still more preferably 3/97 or more, still more preferably 5/90 or more.
 本開示の結着剤は、ビニリデンフルオライド重合体(ただし、共重合体(1)を除く)を含有してもよい。ビニリデンフルオライド(VdF)重合体(ただし、共重合体(1)を除く)としては、VdF単位およびフッ素化単量体単位(ただし、VdF単位を除く。)を含有する重合体が挙げられる。 The binder of the present disclosure may contain a vinylidene fluoride polymer (excluding the copolymer (1)). Examples of the vinylidene fluoride (VdF) polymer (excluding the copolymer (1)) include polymers containing VdF units and fluorinated monomer units (excluding VdF units).
 フッ素化単量体(ただし、VdFを除く)としては、単量体(1)以外の単量体であることが好ましく、たとえば、テトラフルオロエチレン(TFE)、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン(CTFE)、フルオロアルキルビニルエーテル、ヘキサフルオロプロピレン(HFP)、(パーフルオロアルキル)エチレン等が挙げられる。なかでも、柔軟性および金属箔への密着性により一層優れた電極材料層を形成することができることから、TFE、CTFEおよびHFPからなる群より選択される少なくとも1種が好ましく、TFEおよびHFPからなる群より選択される少なくとも1種がより好ましく、TFEが特に好ましい。 The fluorinated monomer (however, excluding VdF) is preferably a monomer other than the monomer (1), for example, tetrafluoroethylene (TFE), vinyl fluoride, trifluoroethylene, chloro. Examples thereof include trifluoroethylene (CTFE), fluoroalkyl vinyl ether, hexafluoropropylene (HFP), (perfluoroalkyl) ethylene and the like. Among them, at least one selected from the group consisting of TFE, CTFE and HFP is preferable, and it is composed of TFE and HFP, because it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil. At least one selected from the group is more preferred, and TFE is particularly preferred.
 フッ素化単量体単位は、極性基を有していても有していなくてもよい。 The fluorinated monomer unit may or may not have a polar group.
 VdF重合体のVdF単位の含有量は、全単量体単位に対して、50モル%超99モル%以下であることが好ましい。VdF単位の含有量が上記範囲にあることにより、柔軟性および金属箔への密着性に一層優れた電極材料層を形成することができる。 The content of the VdF unit of the VdF polymer is preferably more than 50 mol% and 99 mol% or less with respect to all the monomer units. When the content of the VdF unit is in the above range, it is possible to form an electrode material layer having further excellent flexibility and adhesion to the metal foil.
 VdF重合体のVdF単位の含有量としては、柔軟性および金属箔への密着性により一層優れた電極材料層を形成することができることから、全単量体単位に対して、好ましくは57.0モル%以上であり、より好ましくは60.0モル%以上であり、さらに好ましくは63.0モル%以上であり、好ましくは99.0モル%以下であり、より好ましくは97.0モル%以下であり、さらに好ましくは95.0モル%以下であり、特に好ましくは90.0モル%以下であり、最も好ましくは85.0モル%以下である。 As for the content of the VdF unit of the VdF polymer, since it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil, it is preferably 57.0 with respect to all the monomer units. More than mol%, more preferably 60.0 mol% or more, still more preferably 63.0 mol% or more, preferably 99.0 mol% or less, still more preferably 97.0 mol% or less. It is more preferably 95.0 mol% or less, particularly preferably 90.0 mol% or less, and most preferably 85.0 mol% or less.
 VdF重合体のフッ素化単量体単位(ただし、VdF単位を除く)の含有量は、特に限定されないが、柔軟性および金属箔への密着性により一層優れた電極材料層を形成することができることから、全単量体単位に対して、好ましくは1.0モル%以上であり、より好ましくは3.0モル%以上であり、さらに好ましくは5.0モル%以上であり、特に好ましくは10.0モル%以上であり、最も好ましくは15.0モル%以上であり、好ましくは50モル%未満であり、より好ましくは43.0モル%以下であり、さらに好ましく40.0モル%以下であり、特に好ましくは37.0モル%以下である。 The content of the fluorinated monomer unit (excluding the VdF unit) of the VdF polymer is not particularly limited, but it is possible to form a more excellent electrode material layer due to its flexibility and adhesion to the metal foil. Therefore, it is preferably 1.0 mol% or more, more preferably 3.0 mol% or more, still more preferably 5.0 mol% or more, and particularly preferably 10 with respect to all the monomer units. It is 0.0 mol% or more, most preferably 15.0 mol% or more, preferably less than 50 mol%, more preferably 43.0 mol% or less, still more preferably 40.0 mol% or less. Yes, particularly preferably 37.0 mol% or less.
 本開示において、VdF重合体の組成は、たとえば、19F-NMR測定により測定できる。 In the present disclosure, the composition of the VdF polymer can be measured, for example, by 19 F-NMR measurement.
 VdF重合体は、非フッ素化単量体単位をさらに含有してもよい。上記非フッ素化単量体としては、エチレン、プロピレン等の極性基を有しない非フッ素化単量体、極性基を有する非フッ素化単量体(以下、極性基含有単量体ということがある)等が挙げられる。 The VdF polymer may further contain a non-fluorinated monomer unit. The non-fluorinated monomer may be a non-fluorinated monomer having no polar group such as ethylene or propylene, or a non-fluorinated monomer having a polar group (hereinafter referred to as a polar group-containing monomer). ) Etc. can be mentioned.
 非フッ素化単量体として、極性基を有するものを用いると、VdF重合体に極性基が導入され、これによって、正極材料層と集電体とのより一層優れた密着性が得られる。VdF重合体が有し得る極性基としては、カルボニル基含有基、エポキシ基、ヒドロキシ基、スルホン酸基、硫酸基、リン酸基、アミノ基、アミド基およびアルコキシ基からなる群より選択される少なくとも1種が好ましく、カルボニル基含有基、エポキシ基およびヒドロキシ基からなる群より選択される少なくとも1種がより好ましく、カルボニル基含有基がさらに好ましい。上記ヒドロキシ基には、上記カルボニル基含有基の一部を構成するヒドロキシ基は含まれない。また、上記アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。 When a non-fluorinated monomer having a polar group is used, a polar group is introduced into the VdF polymer, whereby even better adhesion between the positive electrode material layer and the current collector can be obtained. The polar group that the VdF polymer can have is at least selected from the group consisting of a carbonyl group-containing group, an epoxy group, a hydroxy group, a sulfonic acid group, a sulfate group, a phosphoric acid group, an amino group, an amide group and an alkoxy group. One is preferable, at least one selected from the group consisting of a carbonyl group-containing group, an epoxy group and a hydroxy group is more preferable, and a carbonyl group-containing group is further preferable. The hydroxy group does not include a hydroxy group constituting a part of the carbonyl group-containing group. The amino group is a monovalent functional group obtained by removing hydrogen from ammonia, a primary or a secondary amine.
 上記カルボニル基含有基とは、カルボニル基(-C(=O)-)を有する官能基である。上記カルボニル基含有基としては、一般式:-COOR(Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基またはカルボン酸無水物基が好ましい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。一般式:-COORで表される基として、具体的には、-COOCHCHOH、-COOCHCH(CH)OH、-COOCH(CH)CHOH、-COOH、-COOCH、-COOC等が挙げられる。一般式:-COORで表される基が、-COOHであるか、-COOHを含む場合、-COOHは、カルボン酸金属塩、カルボン酸アンモニウム塩等のカルボン酸塩であってもよい。 The carbonyl group-containing group is a functional group having a carbonyl group (-C (= O)-). As the carbonyl group-containing group, a group represented by the general formula: -COOR (R represents a hydrogen atom, an alkyl group or a hydroxyalkyl group) or a carboxylic acid anhydride group is preferable. The number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3. General formula: As a group represented by -COOR, specifically, -COOCH 2 CH 2 OH, -COOCH 2 CH (CH 3 ) OH, -COOCH (CH 3 ) CH 2 OH, -COOH, -COOCH 3 , -COOC 2 H 5 and the like. General formula: When the group represented by -COOR is -COOH or contains -COOH, -COOH may be a carboxylate such as a carboxylic acid metal salt or a carboxylic acid ammonium salt.
 また、上記カルボニル基含有基としては、一般式:-X-COOR(Xは主査が原子数2~15で構成され、Xで示される原子団の分子量は350以下が好ましい。Rは、水素原子、アルキル基またはヒドロキシアルキル基を表す)で表される基であってもよい。アルキル基およびヒドロキシアルキル基の炭素数としては、好ましくは1~16であり、より好ましくは1~6であり、さらに好ましくは1~3である。 The carbonyl group-containing group has a general formula: -X-COOR (X is mainly composed of 2 to 15 atoms, and the molecular weight of the atomic group represented by X is preferably 350 or less. R is a hydrogen atom. , An alkyl group or a hydroxyalkyl group). The number of carbon atoms of the alkyl group and the hydroxyalkyl group is preferably 1 to 16, more preferably 1 to 6, and further preferably 1 to 3.
 上記アミド基としては、一般式:-CO-NRR’(RおよびR’は、独立に、水素原子または置換もしくは非置換のアルキル基を表す。)で表される基、または、一般式:-CO-NR”-(R”は、水素原子、置換もしくは非置換のアルキル基または置換もしくは非置換のフェニル基を表す。)で表される結合が好ましい。 The amide group includes a group represented by the general formula: -CO-NRR'(R and R'independently represent a hydrogen atom or a substituted or unsubstituted alkyl group), or a general formula:-. CO-NR "-(R" represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group) is preferable.
 上記極性基含有単量体としては、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;メチリデンマロン酸ジメチル等のアルキリデンマロン酸エステル;ビニルカルボキシメチルエーテル、ビニルカルボキシエチルエーテル等のビニルカルボキシアルキルエーテル;2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等のカルボキシアルキル(メタ)アクリレート;アクリロイルオキシエチルコハク酸、アクリロイルオキシプロピルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、メタクリロイルオキシエチルフタル酸等の(メタ)アクリロイルオキシアルキルジカルボン酸エステル;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等の不飽和二塩基酸のモノエステル;一般式(2):
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rは、独立に、水素原子または炭素数1~8の炭化水素基を表す。Rは、単結合または炭素数1~8の炭化水素基を表す。Yは、無機カチオンおよび/または有機カチオンを表す。)で表される単量体(2);等が挙げられる。
Examples of the polar group-containing monomer include hydroxyalkyl (meth) acrylates such as hydroxyethyl acrylate and 2-hydroxypropyl acrylate; alkylidene malonate esters such as dimethyl metylidene malonate; vinyl carboxymethyl ether, vinyl carboxyethyl ether and the like. Vinyl carboxyalkyl ethers; carboxyalkyl (meth) acrylates such as 2-carboxyethyl acrylate and 2-carboxyethyl methacrylate; acryloyloxyethyl succinic acid, acryloyloxypropyl succinic acid, methacryloyloxyethyl succinic acid, acryloyloxyethyl phthalic acid, (Meta) acryloyloxyalkyl dicarboxylic acid esters such as methacryloyloxyethyl phthalic acid; monoesters of unsaturated dibasic acids such as maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester; general Equation (2):
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 to R 3 independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. R 4 represents a single bond or a hydrocarbon group having 1 to 8 carbon atoms. Y 1 (2); and the like represented by (representing an inorganic cation and / or an organic cation).
 VdF重合体が含有し得る上記極性基含有単量体単位としては、一般式(2)で表される単量体(2)に基づく単位が好ましい。 As the polar group-containing monomer unit that can be contained in the VdF polymer, a unit based on the monomer (2) represented by the general formula (2) is preferable.
 一般式(2)において、Yは、無機カチオンおよび/または有機カチオンを表す。無機カチオンとしては、H、Li、Na、K、Mg、Ca、Al、Fe等のカチオンが挙げられる。有機カチオンとしては、NH、NH、NH 、NHR 、NR (Rは、独立に、炭素数1~4のアルキル基を表す。)等のカチオンが挙げられる。Yとしては、H、Li、Na、K、Mg、Ca、Al、NHが好ましく、H、Li、Na、K、Mg、Al、NHがより好ましく、H、Li、Al、NHがさらに好ましく、Hが特に好ましい。なお、無機カチオンおよび有機カチオンの具体例は、便宜上、符号および価数を省略して記載している。 In the general formula (2), Y 1 represents an inorganic cation and / or an organic cation. Examples of the inorganic cation include cations such as H, Li, Na, K, Mg, Ca, Al and Fe. Examples of the organic cation include cations such as NH 4 , NH 3 R 5 , NH 2 R 52, NHR 5 3 , and NR 5 4 (R 5 independently represents an alkyl group having 1 to 4 carbon atoms). Can be mentioned. As Y 1 , H, Li, Na, K, Mg, Ca, Al, NH 4 are preferable, H, Li, Na, K, Mg, Al, NH 4 are more preferable, and H, Li, Al, NH 4 are preferable. Is more preferable, and H is particularly preferable. Specific examples of the inorganic cation and the organic cation are described by omitting the reference numerals and valences for convenience.
 一般式(2)において、R~Rは、独立に、水素原子または炭素数1~8の炭化水素基を表す。上記炭化水素基は、1価の炭化水素基である。上記炭化水素基の炭素数は4以下が好ましい。上記炭化水素基としては、上記炭素数のアルキル基、アルケニル基、アルキニル基等が挙げられ、メチル基またはエチル基が好ましい。RおよびRは、独立に、水素原子、メチル基またはエチル基であることが好ましく、Rは、水素原子またはメチル基であることが好ましい。 In the general formula (2), R 1 to R 3 independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms. The hydrocarbon group is a monovalent hydrocarbon group. The hydrocarbon group preferably has 4 or less carbon atoms. Examples of the hydrocarbon group include an alkyl group having the number of carbon atoms, an alkenyl group, an alkynyl group and the like, and a methyl group or an ethyl group is preferable. It is preferable that R 1 and R 2 are independently hydrogen atoms, methyl groups or ethyl groups, and R 3 is preferably hydrogen atoms or methyl groups.
 一般式(2)において、Rは、単結合または炭素数1~8の炭化水素基を表す。上記炭化水素基は、2価の炭化水素基である。上記炭化水素基の炭素数は4以下が好ましい。上記炭化水素基としては、上記炭素数のアルキレン基、アルケニレン基等が挙げられ、なかでも、メチレン基、エチレン基、エチリデン基、プロピリデン基およびイソプロピリデン基からなる群より選択される少なくとも1種が好ましく、メチレン基がより好ましい。 In the general formula (2), R 4 represents a single bond or a hydrocarbon group having 1 to 8 carbon atoms. The above hydrocarbon group is a divalent hydrocarbon group. The hydrocarbon group preferably has 4 or less carbon atoms. Examples of the hydrocarbon group include the above-mentioned alkylene group having a carbon number of carbon atoms, an alkenylene group and the like, and among them, at least one selected from the group consisting of a methylene group, an ethylene group, an ethylidene group, a propyridene group and an isopropyridene group is selected. Preferred, a methylene group is more preferred.
 単量体(2)としては、(メタ)アクリル酸およびその塩、ビニル酢酸(3-ブテン酸)およびその塩、3-ペンテン酸およびその塩、4-ペンテン酸およびその塩、3-ヘキセン酸およびその塩、4-ヘプテン酸およびその塩、ならびに、5-ヘキセン酸およびその塩からなる群より選択される少なくとも1種が好ましく、3-ブテン酸およびその塩、ならびに、4-ペンテン酸およびその塩からなる群より選択される少なくとも1種がより好ましい。 Examples of the monomer (2) include (meth) acrylic acid and its salt, vinylacetic acid (3-butenoic acid) and its salt, 3-pentenoic acid and its salt, 4-pentenoic acid and its salt, and 3-hexenoic acid. And salts thereof, 4-heptenoic acid and salts thereof, and at least one selected from the group consisting of 5-hexenoic acid and salts thereof, preferably 3-butenoic acid and salts thereof, and 4-pentenoic acid and salts thereof. At least one selected from the group consisting of salts is more preferred.
 VdF重合体の上記極性基含有単量体単位の含有量は、全単量体単位に対して、好ましくは0.05~2.0モル%であり、より好ましくは0.10モル%以上であり、さらに好ましくは0.25モル%以上であり、特に好ましくは0.40モル%以上であり、より好ましくは1.5モル%以下である。 The content of the polar group-containing monomer unit of the VdF polymer is preferably 0.05 to 2.0 mol%, more preferably 0.10 mol% or more, based on all the monomer units. It is more preferably 0.25 mol% or more, particularly preferably 0.40 mol% or more, and more preferably 1.5 mol% or less.
 本開示において、VdF重合体における極性基含有単量体単位の含有量は、たとえば、極性基がカルボン酸等の酸基である場合、酸基の酸-塩基滴定によって測定できる。 In the present disclosure, the content of the polar group-containing monomer unit in the VdF polymer can be measured, for example, by acid-base titration of the acid group when the polar group is an acid group such as a carboxylic acid.
 VdF重合体としては、たとえば、VdF/TFE共重合体、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/TFE/(メタ)アクリル酸共重合体、VdF/HFP/(メタ)アクリル酸共重合体、VdF/CTFE共重合体、VdF/TFE/4-ペンテン酸共重合体、VdF/TFE/3-ブテン酸共重合体、VdF/TFE/HFP/(メタ)アクリル酸共重合体、VdF/TFE/HFP/4-ペンテン酸共重合体、VdF/TFE/HFP/3-ブテン酸共重合体、VdF/TFE/2-カルボキシエチルアクリレート共重合体、VdF/TFE/HFP/2-カルボキシエチルアクリレート共重合体、VdF/TFE/アクリロイルオキシエチルコハク酸共重合体、VdF/TFE/HFP/アクリロイルオキシエチルコハク酸共重合体等が挙げられる。 Examples of the VdF polymer include VdF / TFE copolymer, VdF / HFP copolymer, VdF / TFE / HFP copolymer, VdF / TFE / (meth) acrylic acid copolymer, and VdF / HFP / (meth). ) Acrylic acid copolymer, VdF / CTFE copolymer, VdF / TFE / 4-pentenoic acid copolymer, VdF / TFE / 3-butenoic acid copolymer, VdF / TFE / HFP / (meth) acrylic acid Polymer, VdF / TFE / HFP / 4-pentenoic acid copolymer, VdF / TFE / HFP / 3-butenoic acid copolymer, VdF / TFE / 2-carboxyethyl acrylate copolymer, VdF / TFE / HFP / Examples thereof include 2-carboxyethyl acrylate copolymers, VdF / TFE / acryloyloxyethyl succinic acid copolymers, VdF / TFE / HFP / acryloyloxyethyl succinic acid copolymers and the like.
 VdF重合体としては、なかでも、柔軟性および金属箔への密着性により一層優れた電極材料層を形成することができることから、VdF単位、TFE単位、および、任意の非フッ素化単量体単位のみからなるVdF重合体が好ましい。 As the VdF polymer, the VdF unit, the TFE unit, and any non-fluorinated monomer unit can be formed because the electrode material layer can be formed more excellently due to its flexibility and adhesion to the metal foil. A VdF polymer consisting only of a single substance is preferable.
 VdF重合体がVdF単位およびTFE単位を含有する場合の、VdF単位とTFE単位とのモル比(VdF単位/TFE単位)は、好ましくは50/50超99/1以下であり、より好ましくは57/43~97/3であり、さらに好ましくは60/40~95/5であり、特に好ましくは63/37~90/10であり、最も好ましくは63/37~85/15である。 When the VdF polymer contains VdF units and TFE units, the molar ratio of VdF units to TFE units (VdF units / TFE units) is preferably more than 50/50 and 99/1 or less, more preferably 57. It is / 43 to 97/3, more preferably 60/40 to 95/5, particularly preferably 63/37 to 90/10, and most preferably 63/37 to 85/15.
 VdF重合体の重量平均分子量(ポリスチレン換算)は、好ましくは50000~3000000であり、より好ましくは80000以上であり、さらに好ましくは100000以上であり、特に好ましくは200000以上であり、より好ましくは2400000以下であり、さらに好ましくは2200000以下であり、特に好ましくは2000000以下である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。 The weight average molecular weight (in terms of polystyrene) of the VdF polymer is preferably 50,000 to 3,000,000, more preferably 80,000 or more, further preferably 100,000 or more, particularly preferably 200,000 or more, and more preferably 2400000 or less. It is more preferably 220000 or less, and particularly preferably 20000 or less. The weight average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
 VdF重合体の数平均分子量(ポリスチレン換算)は、好ましくは20000~1500000であり、より好ましくは40000以上であり、さらに好ましくは70000以上であり、特に好ましくは140000以上であり、より好ましくは1400000以下であり、さらに好ましくは1200000以下であり、特に好ましくは1100000以下である。上記数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により溶媒としてジメチルホルムアミドを用いて測定することができる。 The number average molecular weight (in terms of polystyrene) of the VdF polymer is preferably 20000 to 15000000, more preferably 40,000 or more, further preferably 70,000 or more, particularly preferably 140000 or more, and more preferably 140000 or less. It is more preferably 120000 or less, and particularly preferably 110000 or less. The number average molecular weight can be measured by gel permeation chromatography (GPC) using dimethylformamide as a solvent.
 VdF重合体の融点(2次融点)は、好ましくは100~170℃であり、より好ましくは110~165℃であり、さらに好ましくは120~163℃である。上記融点は、示差走査熱量測定(DSC)装置を用い、30℃から220℃まで10℃/分の速度で昇温し、その後10℃/分で30℃まで降下させ、再度10℃/分の速度で220℃まで昇温したときの融解熱曲線における極大値に対する温度として求める。 The melting point (secondary melting point) of the VdF polymer is preferably 100 to 170 ° C, more preferably 110 to 165 ° C, and even more preferably 120 to 163 ° C. The melting point is raised from 30 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) device, then lowered to 30 ° C. at 10 ° C./min, and then again at 10 ° C./min. It is obtained as the temperature with respect to the maximum value in the heat of fusion curve when the temperature is raised to 220 ° C. at a rate.
 VdF重合体は、破断点伸度が100%以上であることが好ましい。上記破断点伸度は、200%以上がより好ましく、300%以上が更に好ましい。 The VdF polymer preferably has a breaking point elongation of 100% or more. The elongation at break point is more preferably 200% or more, further preferably 300% or more.
 上記破断点伸度は、以下の方法により測定できる。すなわち、VdF重合体を濃度が10~20質量%になるようにN-メチル-2-ピロリドン(NMP)に溶解させて得たVdF重合体溶液を、ガラス板上にキャストし100℃で12時間乾燥し、更に真空下で100℃で12時間乾燥し、厚さ50~100μmのフィルムを得る。当該フィルムを、ダンベル型に打ち抜きオートグラフにて25℃における破断点伸度を測定する。 The break point elongation can be measured by the following method. That is, the VdF polymer solution obtained by dissolving the VdF polymer in N-methyl-2-pyrrolidone (NMP) so as to have a concentration of 10 to 20% by mass was cast on a glass plate and at 100 ° C. for 12 hours. It is dried and further dried under vacuum at 100 ° C. for 12 hours to obtain a film having a thickness of 50 to 100 μm. The film is punched into a dumbbell shape and the elongation at break at 25 ° C. is measured by an autograph.
 VdF重合体は、30℃における貯蔵弾性率が1100MPa以下であり、かつ、60℃における貯蔵弾性率が500MPa以下であることが好ましい。
 VdF重合体の30℃における貯蔵弾性率は、より好ましくは800MPa以下であり、さらに好ましくは600MPa以下である。
 VdF重合体の60℃における貯蔵弾性率は、より好ましくは350MPa以下である。
 VdF重合体の30℃における貯蔵弾性率は、好ましくは100MPa以上であり、より好ましくは150MPa以上であり、さらに好ましくは200MPa以上である。
 VdF重合体の60℃における貯蔵弾性率は、好ましくは50MPa以上であり、より好ましくは80MPa以上であり、さらに好ましくは130MPa以上である。
 VdF重合体の貯蔵弾性率は、共重合体(1)の貯蔵弾性率と同様の方法により測定できる。
The VdF polymer preferably has a storage elastic modulus of 1100 MPa or less at 30 ° C. and a storage elastic modulus of 500 MPa or less at 60 ° C.
The storage elastic modulus of the VdF polymer at 30 ° C. is more preferably 800 MPa or less, still more preferably 600 MPa or less.
The storage elastic modulus of the VdF polymer at 60 ° C. is more preferably 350 MPa or less.
The storage elastic modulus of the VdF polymer at 30 ° C. is preferably 100 MPa or more, more preferably 150 MPa or more, still more preferably 200 MPa or more.
The storage elastic modulus of the VdF polymer at 60 ° C. is preferably 50 MPa or more, more preferably 80 MPa or more, and further preferably 130 MPa or more.
The storage elastic modulus of the VdF polymer can be measured by the same method as the storage elastic modulus of the copolymer (1).
 本開示の結着剤において、共重合体(1)と共重合体(1)以外の他の重合体との質量比(共重合体(1)/他の重合体)としては、好ましくは99/1~1/99であり、より好ましくは97/3以下であり、さらに好ましくは95/5以下であり、より好ましくは3/97以上であり、さらに好ましくは5/95以上である。 In the binder of the present disclosure, the mass ratio of the copolymer (1) to the polymer other than the copolymer (1) (copolymer (1) / other polymer) is preferably 99. It is 1/1 to 1/99, more preferably 97/3 or less, further preferably 95/5 or less, still more preferably 3/97 or more, still more preferably 5/95 or more.
 本開示の結着剤において、共重合体(1)とVdF重合体との質量比(共重合体(1)/VdF重合体)としては、好ましくは99/1~1/99であり、より好ましくは97/3以下であり、さらに好ましくは95/5以下であり、より好ましくは3/97以上であり、さらに好ましくは5/95以上である。 In the binder of the present disclosure, the mass ratio of the copolymer (1) to the VdF polymer (copolymer (1) / VdF polymer) is preferably 99/1 to 1/99, and more. It is preferably 97/3 or less, more preferably 95/5 or less, more preferably 3/97 or more, still more preferably 5/95 or more.
 本開示の結着剤は、二次電池、キャパシタなどの電池を形成する材料として好適に用いることができる。電池は、一次電池であってもよく、蓄電池(二次電池)または蓄電素子であってもよい。電池は非水電解液電池であってもよい。非水電解液電池には、電解液および発電素子を備える電池が全て含まれる。非水電解液電池としては、たとえば、リチウムイオン一次電池、リチウムイオン二次電池、ニッケル水素電池、リチウムイオンキャパシタ、電気二重層キャパシタなどが挙げられる。 The binder of the present disclosure can be suitably used as a material for forming a battery such as a secondary battery and a capacitor. The battery may be a primary battery, a storage battery (secondary battery), or a power storage element. The battery may be a non-aqueous electrolyte battery. The non-aqueous electrolyte battery includes all batteries including an electrolyte and a power generation element. Examples of the non-aqueous electrolyte battery include a lithium ion primary battery, a lithium ion secondary battery, a nickel hydrogen battery, a lithium ion capacitor, an electric double layer capacitor and the like.
 本開示の結着剤は、粘度が上昇しにくい電極合剤が得られ、十分な耐電解液膨潤性を示す電極材料層を形成できることから、二次電池、キャパシタなどの電池の電極に用いる結着剤として好適である。本開示の結着剤は、また、二次電池のセパレータコーティングの結着剤として用いることもできる。 Since the binder of the present disclosure can obtain an electrode mixture whose viscosity does not easily increase and can form an electrode material layer exhibiting sufficient electrolytic solution swelling resistance, it is used as a binder for batteries of batteries such as secondary batteries and capacitors. Suitable as a dressing agent. The binder of the present disclosure can also be used as a binder for the separator coating of a secondary battery.
 本開示の結着剤は、非水電解液電池用結着剤であることが好ましい。また、本開示の結着剤は、二次結着剤であってよい。本開示において、二次結着剤には、二次電池の正極、負極、セパレータに用いる結着剤が含まれる。二次電池はリチウムイオン二次電池であることが好ましい。 The binder of the present disclosure is preferably a binder for non-aqueous electrolyte batteries. Further, the binder of the present disclosure may be a secondary binder. In the present disclosure, the secondary binder includes a binder used for a positive electrode, a negative electrode, and a separator of a secondary battery. The secondary battery is preferably a lithium ion secondary battery.
 本開示の結着剤は、粉末電極材料、水または非水溶剤とともに電極合剤を構成することもできる。本開示の結着剤を適用する対象となる二次電池は、正極合剤が正極集電体に保持されてなる正極、負極合剤が負極集電体に保持されてなる負極および電解液を備えている。 The binder of the present disclosure can also form an electrode mixture together with a powder electrode material, water or a non-aqueous solvent. The secondary battery to which the binder of the present disclosure is applied includes a positive electrode in which the positive electrode mixture is held in the positive electrode current collector, and a negative electrode and an electrolytic solution in which the negative electrode mixture is held in the negative electrode current collector. I have.
 本開示の電極合剤は、上述した結着剤、粉末電極材料、および、水または非水溶剤を含有する。本開示の電極合剤は、非水電解液電池用電極合剤であることが好ましい。本開示の電極合剤は、二次電池用電極合剤であってよく、リチウムイオン二次電池用電極合剤であってよい。本開示の電極合剤は、上述した結着剤を含有することから、結着剤を高濃度で含有させた場合であっても、集電体への塗工に適した粘度に容易に調整することができるとともに、長期間保管した場合であっても粘度が上昇しにくく、耐電解液膨潤性に優れる電極材料層を形成することができる。また、本開示の電極合剤は、上述した結着剤を含有することから、適度な粘度に調整し、塗工性を向上させることが容易であることに加えて、適度な粘度を長期間維持することができる。 The electrode mixture of the present disclosure contains the above-mentioned binder, powder electrode material, and water or non-aqueous solvent. The electrode mixture of the present disclosure is preferably an electrode mixture for a non-aqueous electrolyte battery. The electrode mixture of the present disclosure may be an electrode mixture for a secondary battery, or may be an electrode mixture for a lithium ion secondary battery. Since the electrode mixture of the present disclosure contains the above-mentioned binder, the viscosity can be easily adjusted to be suitable for coating on a current collector even when the binder is contained in a high concentration. In addition, the viscosity does not easily increase even when stored for a long period of time, and an electrode material layer having excellent electrolytic solution swelling resistance can be formed. Further, since the electrode mixture of the present disclosure contains the above-mentioned binder, it is easy to adjust the viscosity to an appropriate level and improve the coatability, and the appropriate viscosity is maintained for a long period of time. Can be maintained.
 電極合剤は、正極の作製に用いる正極合剤であってもよく、負極の作製に用いる負極合剤であってもよい。本開示の電極合剤から形成される電極材料層は、上述した結着剤および粉末電極材料を含有するものであれば、正極材料層であってもよいし、負極材料層であってもよい。 The electrode mixture may be a positive electrode mixture used for producing a positive electrode, or may be a negative electrode mixture used for producing a negative electrode. The electrode material layer formed from the electrode mixture of the present disclosure may be a positive electrode material layer or a negative electrode material layer as long as it contains the above-mentioned binder and powder electrode material. ..
 粉末電極材料は、電池に用いられる粉末電極材料であり、電極活物質を含むことが好ましい。電極活物質は、正極活物質および負極活物質に分けられる。リチウムイオン二次電池の場合、正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、リチウム複合酸化物が好ましく、リチウム遷移金属複合酸化物がより好ましい。上記正極活物質としては、リチウム含有遷移金属リン酸化合物も好ましい。上記正極活物質が、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物等の、リチウムと少なくとも1種の遷移金属を含有する物質であることも好ましい。 The powder electrode material is a powder electrode material used for a battery, and preferably contains an electrode active material. The electrode active material is divided into a positive electrode active material and a negative electrode active material. In the case of a lithium ion secondary battery, the positive electrode active material is not particularly limited as long as it can electrochemically store and release lithium ions, but a lithium composite oxide is preferable, and a lithium transition metal composite oxide is preferable. More preferred. As the positive electrode active material, a lithium-containing transition metal phosphoric acid compound is also preferable. It is also preferable that the positive electrode active material is a substance containing lithium and at least one transition metal, such as a lithium transition metal composite oxide and a lithium-containing transition metal phosphoric acid compound.
 リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。上記置換したものとしては、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・アルミニウム複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物、リチウム・マンガン・アルミニウム複合酸化物、リチウム・チタン複合酸化物等が挙げられ、より具体的には、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiTi12、LiNi0.82Co0.15Al0.03等が挙げられる。 V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable as the transition metal of the lithium transition metal composite oxide, and a lithium-cobalt composite such as LiCoO 2 is a specific example of the lithium transition metal composite oxide. Oxides, lithium-nickel composite oxides such as LiNiO 2 , lithium-manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 , and transition metal atoms that are the main constituents of these lithium transition metal composite oxides. Examples thereof include those obtained by substituting a part of the above with other metals such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr and Si. The above-mentioned substitutions include lithium-nickel-manganese composite oxide, lithium-nickel-cobalt-aluminum composite oxide, lithium-nickel-cobalt-manganese composite oxide, lithium-manganese-aluminum composite oxide, and lithium-titanium. Examples thereof include composite oxides, and more specifically, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0 . .33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , Examples thereof include LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 , Li 4 Ti 5 O 12 , LiNi 0.82 Co 0.15 Al 0.03 O 2 .
 リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、リチウム含有遷移金属リン酸化合物の具体例としては、たとえば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。 The transition metal of the lithium-containing transition metal phosphoric acid compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples of the lithium-containing transition metal phosphoric acid compound include, for example, LiFePO 4 . Iron phosphates such as Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , cobalt phosphates such as LiCo PO 4 , and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are Al. , Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.
 特に、高電圧、高エネルギー密度、あるいは、充放電サイクル特性等の観点から、LiCoO、LiNiO、LiMn、LiNi0.82Co0.15Al0.03、LiNi0.33Mn0.33Co0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiFePOが好ましい。 In particular, from the viewpoint of high voltage, high energy density, charge / discharge cycle characteristics, etc., LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.33 . Mn 0.33 Co 0.33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiFePO 4 are preferable.
 また、リチウム遷移金属複合酸化物としては、リチウム・ニッケル系複合酸化物が好ましく、一般式(3):
 一般式(3):LiNi1-x
(式中、xは、0.01≦x≦0.5、yは、0.9≦y≦1.2であり、Mは金属原子(但しNiを除く)を表す。)
で表されるリチウム・ニッケル系複合酸化物がより好ましい。このようにニッケル含有率が高いリチウム遷移金属複合酸化物は、二次電池の高容量化に有益である。
Further, as the lithium transition metal composite oxide, a lithium-nickel-based composite oxide is preferable, and the general formula (3):
General formula (3): Li y Ni 1-x M x O 2
(In the formula, x is 0.01 ≦ x ≦ 0.5, y is 0.9 ≦ y ≦ 1.2, and M represents a metal atom (excluding Ni).)
The lithium-nickel composite oxide represented by is more preferable. The lithium transition metal composite oxide having such a high nickel content is beneficial for increasing the capacity of the secondary battery.
 一般式(3)において、xは、0.01≦x≦0.5を充足する係数であり、さらに高容量の二次電池を得ることができることから、好ましくは0.05≦x≦0.4であり、さらに好ましくは0.10≦x≦0.3である。 In the general formula (3), x is a coefficient satisfying 0.01 ≦ x ≦ 0.5, and a secondary battery having a higher capacity can be obtained. Therefore, 0.05 ≦ x ≦ 0. 4, more preferably 0.10 ≦ x ≦ 0.3.
 一般式(3)において、Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu、Al、Zn、Mg、Ga、Zr、Si等が挙げられる。Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu等の遷移金属、または、上記遷移金属と、Al、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Mg、Ga、Zr、Si等の他の金属との組み合わせが好ましい。 In the general formula (3), examples of the metal atom of M include V, Ti, Cr, Mn, Fe, Co, Cu, Al, Zn, Mg, Ga, Zr, Si and the like. Examples of the metal atom of M include transition metals such as V, Ti, Cr, Mn, Fe, Co, and Cu, or the above transition metals and Al, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, and the like. Combinations with other metals such as Mg, Ga, Zr and Si are preferred.
 ニッケル含有率が高いリチウム遷移金属複合酸化物としては、LiNi0.80Co0.15Al0.05、LiNi0.82Co0.15Al0.03、LiNi0.33Mn0.33Co0.33、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、および、LiNi0.90Mn0.05Co0.05からなる群より選択される少なくとも1種が好ましく、LiNi0.82Co0.15Al0.03、LiNi0.6Mn0.2Co0.2、および、LiNi0.8Mn0.1Co0.1からなる群より選択される少なくとも1種がより好ましい。 Lithium transition metal composite oxides with a high nickel content include LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , and LiNi 0.33 Mn 0 . .33 Co 0.33 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0. At least one selected from the group consisting of 1 O 2 and LiNi 0.90 Mn 0.05 Co 0.05 O 2 is preferable, and LiNi 0.82 Co 0.15 Al 0.03 O 2 and LiNi 0 are preferable. .6 At least one selected from the group consisting of Mn 0.2 Co 0.2 O 2 and LiNi 0.8 Mn 0.1 Co 0.1 O 2 is more preferable.
 また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。 Further, it is also possible to use a substance having a composition different from the substance constituting the main positive electrode active material attached to the surface of these positive electrode active materials. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide and other oxides, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate and calcium sulfate. , Sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, magnesium carbonate and the like.
 これら表面付着物質は、たとえば、溶媒に溶解または懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解または懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。 These surface-adhering substances are, for example, dissolved or suspended in a solvent to be impregnated with the positive electrode active material and dried, and the surface-adhering substance precursor is dissolved or suspended in the solvent to be impregnated with the positive electrode active material and then heated. It can be attached to the surface of the positive electrode active material by a method of reacting with the above, a method of adding to the positive electrode active material precursor and firing at the same time, or the like.
 表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での非水電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。 The amount of the surface adhering substance is preferably 0.1 ppm or more, more preferably 1 ppm or more, further preferably 10 ppm or more, and the upper limit is preferably 20% or less, more preferably 10 in terms of mass with respect to the positive electrode active material. % Or less, more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolytic solution on the surface of the positive electrode active material and improve the battery life, but if the adhering amount is too small, the effect is not sufficiently exhibited. If it is too much, the resistance may increase because it inhibits the ingress and egress of lithium ions.
 正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電剤との混合においても、均一に混合されやすいため好ましい。 As the shape of the particles of the positive electrode active material, lumpy, polyhedron, spherical, elliptical spherical, plate-like, needle-like, columnar, etc. are used as conventionally used, but among them, the primary particles are aggregated to form secondary particles. It is preferably formed and the secondary particles have a spherical or elliptical spherical shape. Normally, the active material in the electrode expands and contracts with the charge and discharge of the electrochemical element, so that the stress tends to cause deterioration such as destruction of the active material and breakage of the conductive path. Therefore, it is preferable that the primary particles aggregate to form the secondary particles rather than the single particle active material containing only the primary particles because the stress of expansion and contraction is alleviated and deterioration is prevented. In addition, since spherical or elliptical spherical particles have less orientation during molding than plate-shaped equiaxed particles, the expansion and contraction of the electrode during charging and discharging is also smaller, and the electrode is manufactured. It is also preferable to mix it with the conductive agent because it is easy to mix uniformly.
 正極活物質のタップ密度は、通常1.3g/cm以上、好ましくは1.5g/cm以上、さらに好ましくは1.6g/cm以上、最も好ましくは1.7g/cm以上である。正極活物質のタップ密度が上記下限を下回ると正極材料層形成時に、必要な分散媒量が増加すると共に、導電剤や結着剤の必要量が増加し、正極材料層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極材料層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極材料層内における非水電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm以下、好ましくは2.4g/cm以下である。 The tap density of the positive electrode active material is usually 1.3 g / cm 3 or more, preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, and most preferably 1.7 g / cm 3 or more. .. When the tap density of the positive electrode active material is lower than the above lower limit, the amount of the dispersion medium required for forming the positive electrode material layer increases, and the required amount of the conductive agent and the binder increases, so that the positive electrode active material is applied to the positive electrode material layer. The filling rate may be constrained and the battery capacity may be constrained. By using the metal composite oxide powder having a high tap density, a high density positive electrode material layer can be formed. Generally, the larger the tap density is, the more preferable it is, and there is no particular upper limit. However, if it is too large, the diffusion of lithium ions through the non-aqueous electrolytic solution as a medium in the positive electrode material layer becomes rate-determining, and the load characteristics may be easily deteriorated. It is usually 2.5 g / cm 3 or less, preferably 2.4 g / cm 3 or less.
 正極活物質のタップ密度は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(たとえば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。 The tap density of the positive electrode active material is determined by passing a sieve having an opening of 300 μm and dropping a sample into a tapping cell of 20 cm 3 to fill the cell volume, and then a powder density measuring instrument (for example, a tap density manufactured by Seishin Corporation). ) Is used to perform tapping with a stroke length of 10 mm 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.
 正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高嵩密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作製すなわち活物質と導電剤や結着剤等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引いたりする等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作製時の充填性をさらに向上させることもできる。 The median diameter d50 (secondary particle diameter when the primary particles are aggregated to form secondary particles) of the particles of the positive electrode active material is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm. As described above, it is most preferably 3 μm or more, usually 20 μm or less, preferably 18 μm or less, more preferably 16 μm or less, and most preferably 15 μm or less. If it is below the above lower limit, a high bulk density product may not be obtained, and if it exceeds the upper limit, it takes time to diffuse lithium in the particles, resulting in deterioration of battery performance or positive electrode production of the battery, that is, as an active material. When a conductive agent, a binder, or the like is made into a slurry with a solvent and applied in a thin film form, problems such as drawing streaks may occur. Here, by mixing two or more kinds of positive electrode active materials having different median diameters d50, it is possible to further improve the filling property at the time of producing the positive electrode.
 なお、本開示におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。 The median diameter d50 in the present disclosure is measured by a known laser diffraction / scattering type particle size distribution measuring device. When LA-920 manufactured by HORIBA is used as the particle size distribution meter, a 0.1 mass% sodium hexametaphosphate aqueous solution is used as the dispersion medium used for the measurement, and the measured refractive index is set to 1.24 after ultrasonic dispersion for 5 minutes. Is measured.
 一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、さらに好ましくは0.08μm以上、最も好ましくは0.1μm以上で、通常3μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。 When the primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is usually 0.01 μm or more, preferably 0.05 μm or more, and more preferably 0.08 μm or more. It is most preferably 0.1 μm or more, usually 3 μm or less, preferably 2 μm or less, still more preferably 1 μm or less, and most preferably 0.6 μm or less. If it exceeds the above upper limit, it is difficult to form spherical secondary particles, which adversely affects the powder filling property and greatly reduces the specific surface area, so that there is a high possibility that the battery performance such as output characteristics will deteriorate. be. On the contrary, if it is less than the above lower limit, problems such as inferior reversibility of charge / discharge may occur because the crystal is usually underdeveloped. The primary particle size is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10,000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is obtained. Be done.
 正極活物質のBET比表面積は、0.2m/g以上、好ましくは0.3m/g以上、さらに好ましくは0.4m/g以上で、4.0m/g以下、好ましくは2.5m/g以下、さらに好ましくは1.5m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極材料層形成時の塗布性に問題が発生しやすい場合がある。 The BET specific surface area of the positive electrode active material is 0.2 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, and 4.0 m 2 / g or less, preferably 2 It is .5 m 2 / g or less, more preferably 1.5 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to deteriorate, and if it is large, the tap density does not easily increase, and a problem may easily occur in the coatability at the time of forming the positive electrode material layer.
 BET比表面積は、表面積計(たとえば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。 The BET specific surface area is determined by using a surface meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken) to pre-dry the sample at 150 ° C. for 30 minutes under nitrogen flow, and then the relative pressure of nitrogen with respect to atmospheric pressure. It is defined by the value measured by the nitrogen adsorption BET 1-point method by the gas flow method using a nitrogen helium mixed gas accurately adjusted so that the value is 0.3.
 正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、たとえば、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。 As a method for producing a positive electrode active material, a general method is used as a method for producing an inorganic compound. In particular, various methods can be considered for producing spherical or elliptical spherical active materials. For example, transition metal raw materials such as transition metal nitrates and sulfates and, if necessary, raw materials of other elements such as water can be used. It is dissolved or pulverized and dispersed in a solvent, the pH is adjusted while stirring to prepare and recover a spherical precursor, which is dried as necessary, and then Li such as LiOH, Li 2 CO 3 , Li NO 3 and the like. A method of adding a source and firing at a high temperature to obtain an active material, a transition metal raw material such as transition metal nitrate, sulfuric acid, hydroxide, oxide, and if necessary, a solvent such as water for the raw material of other elements. It is dissolved or pulverized and dispersed in it, and dried and molded with a spray dryer or the like to form a spherical or elliptical spherical precursor, to which Li sources such as LiOH, Li 2 CO 3 , and LiNO 3 are added and fired at a high temperature. A method for obtaining an active material, a transition metal raw material such as a transition metal nitrate, a sulfate, a hydroxide, an oxide, a Li source such as LiOH, Li 2 CO 3 , LiNO 3 , and other substances as necessary. A method in which a raw material of an element is dissolved or pulverized and dispersed in a solvent such as water, dried and molded with a spray dryer or the like to form a spherical or elliptical spherical precursor, which is then fired at a high temperature to obtain an active material. And so on.
 なお、本開示において、正極活物質粉体は1種を単独で用いても良く、異なる組成または異なる粉体物性の2種以上を任意の組み合わせおよび比率で併用しても良い。 In the present disclosure, one type of positive electrode active material powder may be used alone, or two or more types having different compositions or different powder physical characteristics may be used in combination in any combination and ratio.
 負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせおよび比率で併用しても良い。なかでも炭素質材料またはリチウム複合酸化物が安全性の点から好ましく用いられる。 The negative electrode active material is not particularly limited as long as it can electrochemically store and release lithium ions, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, or a single lithium substance. Examples thereof include lithium alloys such as lithium-aluminum alloys and metals capable of forming alloys with lithium such as Sn and Si. These may be used alone or in combination of two or more in any combination and ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
 金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。 The metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it is preferable that titanium and / or lithium is contained as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質;炭素質物質{たとえば天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ、或いはこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークスおよびこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物(たとえば、軟ピッチから硬ピッチまでのコールタールピッチ、或いは乾留液化油等の石炭系重質油、常圧残油、減圧残油の直留系重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等分解系石油重質油、さらにアセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素、フェナジンやアクリジン等のN環化合物、チオフェン、ビチオフェン等のS環化合物、ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、含窒素性のポリアクリロニトリル、ポリピロール等の有機高分子、含硫黄性のポリチオフェン、ポリスチレン等の有機高分子、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロースに代表される多糖類等の天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフリルアルコール樹脂、フェノール-ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂)およびこれらの炭化物、または炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶媒に溶解させた溶液およびこれらの炭化物}を400から3200℃の範囲で一回以上熱処理された炭素質材料、
(3)負極材料層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極材料層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。
As a carbonaceous material,
(1) Natural graphite,
(2) Artificial carbonaceous material and artificial graphite material; carbonaceous material {for example, natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, or an oxidation-treated product of these pitches, needle coke, pitch. Thermal decomposition products of coke and organic materials such as carbon materials partially graphitized, furnace black, acetylene black, pitch-based carbon fibers, carbonizable organic materials (for example, coal tar pitch from soft pitch to hard pitch, or dry distillation). Coal-based heavy oil such as liquefied oil, normal pressure residual oil, direct-retaining heavy oil of reduced pressure residual oil, crude oil, decomposition-based petroleum heavy oil such as ethylene tar produced by-product during thermal decomposition of naphtha, and acenaphtylene, Aromatic hydrocarbons such as decacyclene, anthracene and phenanthrene, N-ring compounds such as phenazine and acrydin, S-ring compounds such as thiophene and bithiophene, polyphenylene such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, among these. Insolubilized products, organic polymers such as nitrogen-containing polyacrylonitrile and polypyrroleum, organic polymers such as sulfur-containing polythiophene and polystyrene, typified by cellulose, lignin, mannan, polygalactouronic acid, chitosan and saccharose. Natural polymers such as polysaccharides, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, thermosetting resins such as furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin) and carbonized products thereof, or carbonizable organic substances are benzene. , A solution dissolved in a low molecular weight organic solvent such as toluene, xylene, quinoline, n-hexane, and carbonaceous materials thereof}, which has been heat-treated at least once in the range of 400 to 3200 ° C.
(3) A carbonaceous material in which the negative electrode material layer is composed of at least two or more kinds of carbonaceous substances having different crystalline properties and / or has an interface in which the different crystalline carbonaceous substances are in contact with each other.
(4) A carbonaceous material in which the negative electrode material layer is composed of at least two kinds of carbonaceous materials having different orientations and / or has an interface in which the carbonaceous materials having different orientations are in contact with each other.
The one selected from the above is preferable because it has a good balance between initial irreversible capacity and high current density charge / discharge characteristics.
 電極活物質(正極活物質または負極活物質)の含有量は、得られる電極の容量を増やすために、電極合剤中40質量%以上が好ましい。 The content of the electrode active material (positive electrode active material or negative electrode active material) is preferably 40% by mass or more in the electrode mixture in order to increase the capacity of the obtained electrode.
 上記粉末電極材料は、さらに導電剤を含んでもよい。導電剤としては、たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック類やグラファイト等の炭素材料、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、グラフェン等が挙げられる。 The powder electrode material may further contain a conductive agent. Examples of the conductive agent include carbon blacks such as acetylene black and ketjen black, carbon materials such as graphite, carbon fibers, carbon nanotubes, carbon nanohorns, graphene and the like.
 電極合剤中の粉末電極材料(活物質および導電剤)と上述した結着剤との割合は、通常、質量比で80:20~99.5:0.5程度であり、粉体成分の保持、集電体への密着性、電極の導電性を考慮して決められる。 The ratio of the powder electrode material (active material and conductive agent) in the electrode mixture to the above-mentioned binder is usually about 80:20 to 99.5: 0.5 in terms of mass ratio, and is a powder component. It is determined in consideration of holding, adhesion to the current collector, and conductivity of the electrode.
 上述のような配合割合では、集電体上に形成される電極材料層では、上述した結着剤は、粉体成分間の空隙を完全に充填することはできないが、溶媒として結着剤を良く溶解または分散する水または非水溶剤を用いると、乾燥後の電極材料層において、結着剤が均一に分散、編み目状になり、粉体成分をよく保持するので好ましい。 In the electrode material layer formed on the current collector with the above-mentioned compounding ratio, the above-mentioned binder cannot completely fill the voids between the powder components, but the binder is used as a solvent. It is preferable to use water or a non-aqueous solvent that dissolves or disperses well because the binder is uniformly dispersed and knitted in the electrode material layer after drying, and the powder component is well retained.
 本開示の電極合剤は、水または非水溶剤を含有する。非水溶剤としては、たとえば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;さらに、それらの混合溶剤等の低沸点の汎用有機溶剤を挙げることができる。 The electrode mixture of the present disclosure contains water or a non-aqueous solvent. Examples of the non-aqueous solvent include nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide and dimethylformamide; ketone solvents such as acetone, methylethylketone, cyclohexanone and methylisobutylketone; ethyl acetate. , Ester solvent such as butyl acetate; Ether solvent such as tetrahydrofuran and dioxane; Further, general-purpose organic solvent having a low boiling point such as a mixed solvent thereof can be mentioned.
 本開示の電極合剤は、なかでも、電極合剤の安定性、塗工性に優れている点から、非水溶剤を含有することが好ましく、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドからなる群より選択される少なくとも1種を含有することが好ましく、N-メチル-2-ピロリドンを含有することがより好ましい。 The electrode mixture of the present disclosure preferably contains a non-aqueous solvent from the viewpoint of excellent stability and coatability of the electrode mixture, and N-methyl-2-pyrrolidone and N, N- It preferably contains at least one selected from the group consisting of dimethylacetamide, and more preferably contains N-methyl-2-pyrrolidone.
 上記電極合剤中の水または非水溶剤の量は、集電体への塗布性、乾燥後の薄膜形成性等を考慮して決定される。通常、結着剤と水または非水溶剤との割合は、質量比で0.5:99.5~20:80が好ましい。 The amount of water or non-aqueous solvent in the electrode mixture is determined in consideration of the coatability to the current collector, the thin film forming property after drying, and the like. Generally, the ratio of the binder to water or a non-aqueous solvent is preferably 0.5: 99.5 to 20:80 in terms of mass ratio.
 上記電極合剤は、集電体との密着性をさらに向上させるため、たとえば、ポリアクリル酸、ポリメタクリレート、ポリメチルメタアクリレート等のアクリル系樹脂、ポリイミド、ポリアミドおよびポリアミドイミド系樹脂、スチレンゴム、ブタジエンゴム、スチレンブタジエンゴム等をさらに含んでいてもよい。 In order to further improve the adhesion to the current collector, the electrode mixture is used, for example, acrylic resin such as polyacrylic acid, polymethacrylate, polymethylmethacrylate, polyimide, polyamide and polyamideimide resin, styrene rubber, etc. It may further contain butadiene rubber, styrene butadiene rubber and the like.
 上記電極合剤は、電極スラリーの分散安定性を向上させるために、界面活性作用等を有する樹脂系やカチオン性界面活性剤、ノニオン性界面活性剤等の分散剤を添加してもよい。 In order to improve the dispersion stability of the electrode slurry, a dispersant such as a resin-based surfactant having a surfactant action, a cationic surfactant, or a nonionic surfactant may be added to the electrode mixture.
 電極合剤における結着剤の含有量としては、電極合剤の質量に対して、好ましくは0.1~20質量%であり、より好ましくは0.2~10質量%であり、さらに好ましくは0.5~3質量%である。 The content of the binder in the electrode mixture is preferably 0.1 to 20% by mass, more preferably 0.2 to 10% by mass, still more preferably 0.2 to 10% by mass, based on the mass of the electrode mixture. It is 0.5 to 3% by mass.
 電極合剤を調製する方法としては、結着剤を水または非水溶剤に溶解または分散させた溶液または分散液に上記粉末電極材料を分散、混合させるといった方法が挙げられる。そして、得られた電極合剤を、金属箔、金属網等の集電体に均一に塗布、乾燥、必要に応じてプレスして集電体上へ薄い電極材料層を形成し薄膜状電極とする。 Examples of the method for preparing the electrode mixture include a method in which the powder electrode material is dispersed and mixed in a solution or dispersion in which a binder is dissolved or dispersed in water or a non-aqueous solvent. Then, the obtained electrode mixture is uniformly applied to a current collector such as a metal foil or a metal net, dried, and pressed as necessary to form a thin electrode material layer on the current collector to form a thin-film electrode. do.
 そのほか、結着剤と電極材料の粉末とを先に混合した後、水または非水溶剤を添加し電極合剤を作製してもよい。また、結着剤と電極材料の粉末とを加熱溶融し、押出機で押し出して薄膜の電極合剤を作製しておき、導電性接着剤や汎用有機溶剤を塗布した集電体上に貼り合わせて電極シートを作製することもできる。さらに、予め予備成形した電極材料に結着剤と電極材料の粉末との溶液または分散液を塗布してもよい。このように、結着剤としての適用方法は特に限定されない。 In addition, the binder and the powder of the electrode material may be mixed first, and then water or a non-aqueous solvent may be added to prepare an electrode mixture. In addition, the binder and the powder of the electrode material are heated and melted and extruded with an extruder to prepare a thin-film electrode mixture, which is then bonded onto a current collector coated with a conductive adhesive or a general-purpose organic solvent. It is also possible to manufacture an electrode sheet. Further, a solution or dispersion of the binder and the powder of the electrode material may be applied to the preformed electrode material. As described above, the method of application as a binder is not particularly limited.
 本開示の電極は、上述した結着剤を含有する。本開示の電極は、非水電解液電池用電極であることが好ましい。本開示の電極は、上述した結着剤を含有することから、高密度化のため粉末電極材料を厚塗りし捲回、プレスしても電極が割れることがなく、粉末電極材料の脱落や集電体からの剥離もない。さらに、本開示の電極は、耐電解液膨潤性にも優れている。 The electrodes of the present disclosure contain the above-mentioned binder. The electrodes of the present disclosure are preferably electrodes for non-aqueous electrolyte batteries. Since the electrodes of the present disclosure contain the above-mentioned binder, the electrode does not crack even when the powder electrode material is thickly coated, wound, and pressed for high density, and the powder electrode material is dropped or collected. There is no peeling from the electric body. Further, the electrodes of the present disclosure are also excellent in electrolytic solution swelling resistance.
 上記電極は、集電体と、当該集電体上に形成された、上記粉末電極材料および上述した結着剤を含有する電極材料層とを備えることが好ましい。上記電極は、正極であっても負極であってもよいが、正極であることが好ましい。 The electrode preferably includes a current collector and an electrode material layer containing the powder electrode material and the binder formed on the current collector. The electrode may be a positive electrode or a negative electrode, but is preferably a positive electrode.
 集電体(正極集電体および負極集電体)としては、たとえば、鉄、ステンレス鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等が挙げられる。中でも、正極集電体としては、アルミ箔等が好ましく、負極集電体としては銅箔等が好ましい。 Examples of the current collector (positive electrode current collector and negative electrode current collector) include metal foils such as iron, stainless steel, copper, aluminum, nickel, and titanium, or metal nets. Among them, aluminum foil or the like is preferable as the positive electrode current collector, and copper foil or the like is preferable as the negative electrode current collector.
 本開示の電極は、たとえば上述した方法によって製造することができる。上記の電極合剤は塗工性に優れるものであるため、本開示の電極が備える電極材料層を上記の電極合剤を用いて作製することにより、平滑で均一な厚い電極材料層を備える電極を容易に作製することができる。 The electrodes of the present disclosure can be manufactured, for example, by the method described above. Since the above-mentioned electrode mixture is excellent in coatability, an electrode having a smooth, uniform and thick electrode material layer is prepared by producing the electrode material layer provided with the electrode of the present disclosure by using the above-mentioned electrode mixture. Can be easily produced.
 本開示の二次電池は、上述した電極を備える。本開示の二次電池は、非水電解液二次電池であることが好ましい。本開示の二次電池においては、正極および負極の少なくとも一方が、上述した電極であればよく、正極が上述した電極であることが好ましい。二次電池はリチウムイオン二次電池であることが好ましい。 The secondary battery of the present disclosure includes the above-mentioned electrodes. The secondary battery of the present disclosure is preferably a non-aqueous electrolyte secondary battery. In the secondary battery of the present disclosure, at least one of the positive electrode and the negative electrode may be the above-mentioned electrode, and the positive electrode is preferably the above-mentioned electrode. The secondary battery is preferably a lithium ion secondary battery.
 本開示の二次電池は、さらに非水電解液を備えることが好ましい。上記非水電解液は特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネート等のフッ素系溶媒の1種または2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。 The secondary battery of the present disclosure preferably further comprises a non-aqueous electrolytic solution. The non-aqueous electrolyte solution is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate, etc. Known hydrocarbon-based solvents such as ethylmethyl carbonate; one or more of fluorine-based solvents such as fluoroethylene carbonate, fluoroether, and fluorinated carbonate can be used. As the electrolyte, any conventionally known electrolyte can be used, and LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, cesium carbonate and the like can be used.
 また、正極と負極との間にセパレータを介在させてもよい。セパレータとしては、従来公知のものを使用してもよいし、上述した結着剤をコーティングに使用したセパレータを使用してもよい。 Further, a separator may be interposed between the positive electrode and the negative electrode. As the separator, a conventionally known separator may be used, or a separator using the above-mentioned binder for coating may be used.
 二次電池(好ましくはリチウムイオン二次電池)の正極、負極およびセパレータの少なくとも1つに上述した結着剤を用いることも好ましい。 It is also preferable to use the above-mentioned binder for at least one of the positive electrode, the negative electrode and the separator of the secondary battery (preferably a lithium ion secondary battery).
 上述した結着剤からなる二次電池用フィルムも、本開示の好適な形態の1つである。 The film for a secondary battery made of the above-mentioned binder is also one of the preferred forms of the present disclosure.
 基材と、当該基材上に形成された、上述した結着剤からなる層とを有する二次電池用積層体も、本開示の好適な形態の1つである。上記基材としては、上記集電体として例示したものや、二次電池のセパレータに用いられる公知の基材(多孔質膜等)等が挙げられる。 A laminate for a secondary battery having a base material and a layer made of the above-mentioned binder formed on the base material is also one of the preferred forms of the present disclosure. Examples of the base material include those exemplified as the above-mentioned current collector, known base materials (porous film and the like) used for separators of secondary batteries, and the like.
 本開示の電極は、柔軟性に優れるものであり、かつ、電池特性に優れた二次電池を形成することができるものであることから、捲回型二次電池用電極として、好適に利用できる。また、本開示の二次電池は、捲回型二次電池であってよい。 Since the electrodes of the present disclosure are excellent in flexibility and can form a secondary battery having excellent battery characteristics, they can be suitably used as electrodes for a wound type secondary battery. .. Further, the secondary battery of the present disclosure may be a winding type secondary battery.
 本開示の電極は、非水電解液二次電池用として、以上に説明した液状電解質を用いたリチウムイオン二次電池だけでなく、ポリマー電解質リチウム二次電池にも有用である。また、電気二重層キャパシタ用としても有用である。 The electrodes of the present disclosure are useful not only for lithium ion secondary batteries using the liquid electrolyte described above, but also for polymer electrolyte lithium secondary batteries for non-aqueous electrolyte secondary batteries. It is also useful for electric double layer capacitors.
 本開示の共重合体は、いかなる形態であってもよく、水性分散液、粉末、ペレット等であってよい。 The copolymer of the present disclosure may be in any form, and may be an aqueous dispersion, powder, pellets or the like.
 本開示の共重合体および上記した製造方法により得られる共重合体は、様々な成形品に成形することができる。また、本開示の共重合体は、所望の寸法および形状を有する成形品に容易に成形できる。 The copolymer of the present disclosure and the copolymer obtained by the above-mentioned production method can be molded into various molded products. Further, the copolymer of the present disclosure can be easily molded into a molded product having a desired size and shape.
 共重合体の成形方法は、特に限定されず、たとえば、圧縮成形、押出成形、ブロー成形、トランスファー成形、射出成形、ロト成形、ロトライニング成形、静電塗装等が挙げられる。 The molding method of the copolymer is not particularly limited, and examples thereof include compression molding, extrusion molding, blow molding, transfer molding, injection molding, roto molding, rotoline molding, and electrostatic coating.
 本開示の共重合体に、充填剤、可塑剤、加工助剤、離型剤、顔料、難燃剤、滑剤、光安定剤、耐候安定剤、導電剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、香料、オイル、柔軟化剤、脱フッ化水素剤などを混合した後、成形してもよい。充填剤としては、ポリテトラフルオロエチレン、マイカ、シリカ、タルク、セライト、クレー、酸化チタン、硫酸バリウム等が挙げられる。導電剤としてはカーボンブラック等があげられる。可塑剤としては、ジオクチルフタル酸、ペンタエリスリトール等が挙げられる。加工助剤としては、カルナバワックス、スルホン化合物、低分子量ポリエチレン、フッ素系助剤等が挙げられる。脱フッ化水素剤としては有機オニウム、アミジン類等が挙げられる。 The copolymers of the present disclosure include fillers, plasticizers, processing aids, mold release agents, pigments, flame retardants, lubricants, light stabilizers, weatherproof stabilizers, conductive agents, antistatic agents, UV absorbers, and antioxidants. It may be molded after mixing an agent, a foaming agent, a fragrance, an oil, a softening agent, a defluorinated hydrogen agent and the like. Examples of the filler include polytetrafluoroethylene, mica, silica, talc, serite, clay, titanium oxide, barium sulfate and the like. Examples of the conductive agent include carbon black and the like. Examples of the plasticizer include dioctylphthalic acid and pentaerythritol. Examples of the processing aid include carnauba wax, a sulfone compound, low molecular weight polyethylene, a fluorine-based auxiliary agent, and the like. Examples of the defluorinated hydrogenating agent include organic onium and amidines.
 本開示の共重合体は、優れた耐屈曲性と高い機械的強度とを兼ね備えており、高温でも優れた機械的強度を示すことから、種々の用途に用いる成形品として、好適に利用することができる。また、本開示の共重合体は、粉体塗料、水性塗料としても用いることができる。また、本開示の共重合体は、建材鋼板、石油採掘材などにも利用することができる。 Since the copolymer of the present disclosure has both excellent bending resistance and high mechanical strength and exhibits excellent mechanical strength even at high temperatures, it is suitably used as a molded product used for various purposes. Can be done. The copolymer of the present disclosure can also be used as a powder coating material or a water-based coating material. Further, the copolymer of the present disclosure can also be used for building material steel plates, petroleum mining materials and the like.
 成形品としては、フィルム、シート、チューブ、パイプ、糸、継手、バルブ、ポンプ、丸棒、厚板、ボルト、ナット、絶縁材、電線被覆材、圧電体、焦電体、水処理膜などであってよい。糸は、溶融紡糸(溶融紡糸により得られる糸)、単繊維(モノフィラメント)などであってよい。 Molded products include films, sheets, tubes, pipes, threads, fittings, valves, pumps, round bars, planks, bolts, nuts, insulating materials, wire coating materials, piezoelectric materials, pyroelectric materials, water treatment membranes, etc. It may be there. The yarn may be melt spinning (thread obtained by melt spinning), single fiber (monofilament), or the like.
 更に、以下の成形品の成形材料としても好適に利用できる。 Further, it can be suitably used as a molding material for the following molded products.
食品包装用フィルム、食品製造工程で使用する流体移送ラインのライニング材、パッキン、シール材、シート等の食品製造装置用流体移送部材;
薬品用の薬栓、包装フィルム、薬品製造工程で使用される流体移送ラインのライニング材、パッキン、シール材、シート等の薬液移送部材;
化学プラントや半導体工場の薬液タンクや配管の内面ライニング部材;
自動車の燃料系統並びに周辺装置に用いられるO(角)リング・チューブ・パッキン、バルブ芯材、ホース、シール材等、自動車のAT装置に用いられるホース、シール材等の燃料移送部材;
自動車のエンジン並びに周辺装置に用いられるキャブレターのフランジガスケット、シャフトシール、バルブステムシール、シール材、ホース等、自動車のブレーキホース、エアコンホース、ラジエーターホース、電線被覆材等のその他の自動車部材;
半導体製造装置のO(角)リング、チューブ、パッキン、バルブ芯材、ホース、シール材、ロール、ガスケット、ダイヤフラム、継手等の半導体装置用薬液移送部材;
塗装設備用の塗装ロール、ホース、チューブ、インク用容器等の塗装・インク用部材;
飲食物用のチューブ又は飲食物用ホース等のチューブ、ホース、ベルト、パッキン、継手等の飲食物移送部材、食品包装材、ガラス調理機器;
廃液輸送用のチューブ、ホース等の廃液輸送用部材;
高温液体輸送用のチューブ、ホース等の高温液体輸送用部材;
スチーム配管用のチューブ、ホース等のスチーム配管用部材;
船舶のデッキ等の配管に巻き付けるテープ等の配管用防食テープ;
電線被覆材、光ファイバー被覆材、太陽電池の光起電素子の光入射側表面に設ける透明な表面被覆材および裏面剤等の各種被覆材;
ダイヤフラムポンプのダイヤフラムや各種パッキン類等の摺動部材;
農業用フィルム、各種屋根材・側壁等の耐侯性カバー;
建築分野で使用される内装材、不燃性防火安全ガラス等のガラス類の被覆材;
家電分野等で使用されるラミネート鋼板等のライニング材;
Fluid transfer materials for food manufacturing equipment such as food packaging films, lining materials for fluid transfer lines used in the food manufacturing process, packings, sealing materials, sheets, etc.;
Chemical transfer members such as chemical plugs, packaging films, lining materials for fluid transfer lines used in the chemical manufacturing process, packings, sealing materials, and sheets;
Internal lining members for chemical tanks and pipes in chemical plants and semiconductor factories;
O (corner) ring, tube, packing, valve core material, hose, sealant, etc. used for automobile fuel system and peripheral devices, hose, sealant, etc. fuel transfer member used for automobile AT equipment;
Other automobile parts such as flange gaskets, shaft seals, valve stem seals, sealing materials, hoses, automobile brake hoses, air conditioner hoses, radiator hoses, electric wire covering materials, etc. of carburetors used in automobile engines and peripheral devices;
Chemical transfer members for semiconductor devices such as O (corner) rings, tubes, packings, valve cores, hoses, sealing materials, rolls, gaskets, diaphragms, fittings, etc. of semiconductor manufacturing equipment;
Painting / ink materials such as painting rolls, hoses, tubes, and ink containers for painting equipment;
Food and beverage tubes or food and beverage hoses and other tubes, hoses, belts, packings, fittings and other food and beverage transfer members, food packaging materials, glass cooking equipment;
Waste liquid transportation materials such as tubes and hoses for waste liquid transportation;
High temperature liquid transportation members such as tubes and hoses for high temperature liquid transportation;
Steam piping members such as tubes and hoses for steam piping;
Anti-corrosion tape for piping such as tape wrapped around piping such as ship decks;
Various coating materials such as electric wire coating materials, optical fiber coating materials, transparent surface coating materials and backing agents provided on the light incident side surface of photovoltaic elements of solar cells;
Sliding members such as diaphragms of diaphragm pumps and various packings;
Agricultural film, various roofing materials, side walls, etc.
Interior materials used in the construction field, glass coverings such as nonflammable fire safety glass;
Lining materials such as laminated steel sheets used in the field of home appliances;
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various changes in the forms and details are possible without deviating from the purpose and scope of the claims.
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。 Next, the embodiments of the present disclosure will be described with reference to examples, but the present disclosure is not limited to such examples.
 実施例の各数値は以下の方法により測定した。 Each numerical value of the example was measured by the following method.
<共重合体の単量体組成>
 NMR分析装置(アジレント・テクノロジー社製、VNS400MHz)を用いて、共重合体のDMF-d溶液の19F-NMR測定により求めた。
<Polymer composition of copolymer>
It was determined by 19 F-NMR measurement of the DMF-d7 solution of the copolymer using an NMR analyzer ( VNS400 MHz manufactured by Agilent Technologies).
<溶液粘度>
 共重合体のNMP溶液(5質量%)を調製した。B型粘度計(東機産業社製、TV-10M)を用いて、25℃、ロータNo.M4、回転速度6rpmの条件にて、測定開始から10分経過後のNMP溶液の粘度を測定した。
<Solution viscosity>
An NMP solution (5% by weight) of the copolymer was prepared. Using a B-type viscometer (TV-10M manufactured by Toki Sangyo Co., Ltd.), the rotor No. The viscosity of the NMP solution 10 minutes after the start of the measurement was measured under the conditions of M4 and a rotation speed of 6 rpm.
<重量平均分子量>
 ゲルパーミエーションクロマトグラフィ(GPC)により測定した。東ソー社製のAS-8010、CO-8020、カラム(GMHHR-Hを3本直列に接続)および島津製作所社製RID-10Aを用い、溶媒としてジメチルホルムアミド(DMF)を流速1.0ml/分で流して測定したデータ(リファレンス:ポリスチレン)より算出した。
<Weight average molecular weight>
It was measured by gel permeation chromatography (GPC). Using Tosoh's AS-8010, CO-8020, column (three GMHHR-H connected in series) and Shimadzu's RID-10A, dimethylformamide (DMF) was used as a solvent at a flow rate of 1.0 ml / min. It was calculated from the data (reference: polystyrene) measured by flowing.
<融点>
 示差走査熱量測定(DSC)装置を用い、30℃から220℃まで10℃/分の速度で昇温し、その後10℃/分で30℃まで降下させ、再度10℃/分の速度で220℃まで昇温したときの融解熱曲線における極大値に対する温度を、融点として求めた。
<Melting point>
Using a differential scanning calorimetry (DSC) device, the temperature is raised from 30 ° C to 220 ° C at a rate of 10 ° C / min, then lowered to 30 ° C at 10 ° C / min, and again at 220 ° C at a rate of 10 ° C / min. The temperature with respect to the maximum value in the heat of fusion curve when the temperature was raised to the maximum was obtained as the melting point.
<MIT値>
 230℃、5.0MPaの条件で、共重合体をプレス成形して、厚さ0.20~0.23mmのフィルムを作製した。得られたフィルムから、幅1.3cm、長さ90mmの短冊状に切り出して、サンプルを得た。これをMIT式耐屈曲疲労試験機(安田精機製作所社製)に装着し、ASTM D-2176に準拠した条件(荷重1.25kg、折り曲げ角度135度、175回/分)にて繰り返し折り曲げ試験を行い、破断するまでに要した折り曲げ回数を測定した。
<MIT value>
The copolymer was press-molded under the conditions of 230 ° C. and 5.0 MPa to prepare a film having a thickness of 0.20 to 0.23 mm. A sample was obtained from the obtained film by cutting it into strips having a width of 1.3 cm and a length of 90 mm. This is mounted on a MIT type bending fatigue tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), and repeated bending tests are performed under conditions compliant with ASTM D-2176 (load 1.25 kg, bending angle 135 degrees, 175 times / minute). And the number of bends required to break was measured.
<貯蔵弾性率>
 貯蔵弾性率は、動的粘弾性測定により25℃および120℃で測定する値であり、アイティー計測制御社製動的粘弾性装置DVA220で長さ30mm、巾5mm、厚み50~300μmの試験片を引張モード、つかみ幅20mm、測定温度-30℃から160℃、昇温速度2℃/min、周波数10Hzの条件で測定した。
<Storage modulus>
The storage elastic modulus is a value measured at 25 ° C. and 120 ° C. by dynamic viscoelasticity measurement, and is a test piece having a length of 30 mm, a width of 5 mm, and a thickness of 50 to 300 μm by a dynamic viscoelastic device DVA220 manufactured by IT Measurement Control Co., Ltd. Was measured under the conditions of a tensile mode, a grip width of 20 mm, a measurement temperature of −30 ° C. to 160 ° C., a heating rate of 2 ° C./min, and a frequency of 10 Hz.
 測定に用いる試験片は、230℃、5.0MPaの条件で、共重合をプレスして成形して、厚さ50~300μmのフィルムを作製し、得られた厚さ50~300μmのフィルムを、長さ30mm、巾5mmにカットすることで作製した。 The test piece used for the measurement was formed by pressing a copolymer under the conditions of 230 ° C. and 5.0 MPa to prepare a film having a thickness of 50 to 300 μm, and the obtained film having a thickness of 50 to 300 μm was obtained. It was produced by cutting into a length of 30 mm and a width of 5 mm.
 25℃での貯蔵弾性率と120℃での貯蔵弾性率の変化率を、以下の式により算出した。
   変化率(%)=[(25℃での貯蔵弾性率)-(120℃での貯蔵弾性率)]/(120℃での貯蔵弾性率)×100
The rate of change in the storage elastic modulus at 25 ° C. and the storage elastic modulus at 120 ° C. was calculated by the following formula.
Rate of change (%) = [(storage elastic modulus at 25 ° C)-(storage elastic modulus at 120 ° C)] / (storage elastic modulus at 120 ° C) × 100
<マンドレル試験>
 両面に正極材料層を備える正極を切り取ることにより、2cm×10cmの試験片を作製し、直径1.0mmの丸棒、直径2.0mmの丸棒、直径3.0mmの丸棒に巻き付けて、正極を目視で観察し、正極材料層のひび割れの有無を確認し、以下の基準で評価した。
   Φ1:直径1.0mmの丸棒に巻き付けても、正極材料層にピンホールが確認されなかった。
   Φ2:直径2.0mmの丸棒に巻き付けても、正極材料層にピンホールが確認されなかったが、直径1.0mmの丸棒に巻き付けると、正極材料層にピンホールが観察された。
   Φ3:直径3.0mmの丸棒に巻き付けても、正極材料層にピンホールが確認されなかったが、直径2.0mmの丸棒に巻き付けると、正極材料層にピンホールが観察された。
<Mandrel test>
A 2 cm × 10 cm test piece is prepared by cutting a positive electrode having a positive electrode material layer on both sides, and wound around a round bar having a diameter of 1.0 mm, a round bar having a diameter of 2.0 mm, and a round bar having a diameter of 3.0 mm. The positive electrode was visually observed to confirm the presence or absence of cracks in the positive electrode material layer, and evaluated according to the following criteria.
Φ1: No pinhole was confirmed in the positive electrode material layer even when wound around a round bar having a diameter of 1.0 mm.
Φ2: Pinholes were not confirmed in the positive electrode material layer even when wound around a round bar having a diameter of 2.0 mm, but pinholes were observed in the positive electrode material layer when wrapped around a round bar having a diameter of 1.0 mm.
Φ3: Pinholes were not confirmed in the positive electrode material layer even when wound around a round bar having a diameter of 3.0 mm, but pinholes were observed in the positive electrode material layer when wrapped around a round bar having a diameter of 2.0 mm.
<耐電解液膨潤性>
 共重合体のNMP溶液(8質量%)を、ガラス製シャーレ上にキャストし、100℃で6時間真空乾燥を行って、厚み200μmフィルムを作製した。得られたフィルムを10mmΦの大きさに切り取り、電解液(エチレンカーボネートとエチルメチルカーボネートの3/7(体積比)の溶媒にLiPFを1M濃度で溶解した溶液)が入ったサンプル瓶に入れ、60℃で1週間静置した後、次式より重量増加率を求めることで、耐電解液膨潤性を評価した。
   重量増加率(%)=(電解液浸漬後のフィルム重量/電解液浸漬前のフィルム重量)×100
<Electrolytic solution swelling resistance>
An NMP solution (8% by mass) of the copolymer was cast on a glass petri dish and vacuum dried at 100 ° C. for 6 hours to prepare a film having a thickness of 200 μm. The obtained film was cut into a size of 10 mmΦ and placed in a sample bottle containing an electrolytic solution (a solution in which LiPF 6 was dissolved in a solvent of 3/7 (volume ratio) of ethylene carbonate and ethyl methyl carbonate at a concentration of 1 M). After allowing to stand at 60 ° C. for 1 week, the electrolytic solution swelling resistance was evaluated by determining the weight increase rate from the following formula.
Weight increase rate (%) = (film weight after immersion in electrolyte solution / film weight before immersion in electrolyte solution) x 100
<スラリー安定性>
 B型粘度計(東機産業社製、TV-10M)を用いて、25℃、ロータNo.M4、回転速度6rpmの条件にて、測定開始から10分経過後の正極合剤の粘度を測定した。正極合剤を調製した後、速やかに測定した正極合剤の粘度(η0)と、合剤調製から96時間が経過した後の粘度(ηn)とから、粘度変化率(Xn)を下記の式により求めた。
   Xn=ηn/η0×100[%]
<Slurry stability>
Using a B-type viscometer (TV-10M manufactured by Toki Sangyo Co., Ltd.), the rotor No. The viscosity of the positive electrode mixture was measured 10 minutes after the start of the measurement under the conditions of M4 and a rotation speed of 6 rpm. The viscosity change rate (Xn) is calculated by the following formula from the viscosity (η0) of the positive electrode mixture measured immediately after preparing the positive electrode mixture and the viscosity (ηn) 96 hours after the preparation of the mixture. Asked by.
Xn = ηn / η0 × 100 [%]
 粘度変化率を以下の基準により評価した。
   〇:粘度変化率(Xn)が200%未満である。
   ×:粘度変化率(Xn)が200%以上である。
The viscosity change rate was evaluated according to the following criteria.
◯: The viscosity change rate (Xn) is less than 200%.
X: The viscosity change rate (Xn) is 200% or more.
実施例1
 内容積2.5リットルのオートクレーブに、純水1,400g、メチルセルロース0.7g、2,3,3,3-テトラフルオロプロペンを30g、VdFを495g、酢酸エチル4.0g、およびジノルマルプロピルパーオキシジカーボネート1gを仕込み、1.5時間かけて45℃まで昇温した後、45℃を18時間維持した。この間の最高到達圧力は6.0MPaGであった。
Example 1
In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 30 g of 2,3,3,3-tetrafluoropropene, 495 g of VdF, 4.0 g of ethyl acetate, and dinormal propylper. After charging 1 g of oxydicarbonate and raising the temperature to 45 ° C. over 1.5 hours, the temperature was maintained at 45 ° C. for 18 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
 45℃への昇温完了時から18時間後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 18 hours after the temperature rise to 45 ° C was completed. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
(正極合剤の調製)
 得られた共重合体の粉末を用いて、正極合剤(スラリー)を調製した。得られた共重合体(結着剤)を、N-メチル-2-ピロリドン(NMP)に溶解させ、濃度が8質量%の共重合体溶液を調製した。NMC811(LiNi0.8Mn0.1Co0.1)(正極活物質)、アセチレンブラック(導電助剤)および共重合体(結着剤)溶液を、撹拌機を用いて混合し、各成分の質量比(正極活物質/導電助剤/結着剤)が、97.0/1.5/1.5である混合液を得た。得られた混合液に、NMPをさらに加えて混合して、固形分濃度が70質量%の正極合剤を調製した。
(Preparation of positive electrode mixture)
A positive electrode mixture (slurry) was prepared using the obtained copolymer powder. The obtained copolymer (binding agent) was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare a copolymer solution having a concentration of 8% by mass. NMC811 (LiNi 0.8 Mn 0.1 Co 0.1 O 2 ) (positive electrode active material), acetylene black (conductive aid) and copolymer (binder) solution were mixed using a stirrer. A mixed solution having a mass ratio of each component (positive electrode active material / conductive auxiliary agent / binder) of 97.0 / 1.5 / 1.5 was obtained. NMP was further added to the obtained mixed solution and mixed to prepare a positive electrode mixture having a solid content concentration of 70% by mass.
(正極の作製)
 得られた正極合剤を、正極集電体(厚さ20μmのアルミ箔)の両面に、塗布量が22.5mg/cmとなるように均一に塗布し、NMPを完全に揮発させた後、ロールプレス機を用いてプレスすることにより、正極材料層および正極集電体を備える正極を作製した。
(Preparation of positive electrode)
After the obtained positive electrode mixture was uniformly applied to both sides of the positive electrode current collector (aluminum foil having a thickness of 20 μm) so that the coating amount was 22.5 mg / cm 2 , the NMP was completely volatilized. , A positive electrode having a positive electrode material layer and a positive electrode current collector was produced by pressing with a roll press machine.
 上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 The characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated by the above method. The results are shown in Table 1.
実施例2
 内容積2.5リットルのオートクレーブに、純水1,400g、メチルセルロース0.7g、2,3,3,3-テトラフルオロプロペンを40g、VdFを495g、酢酸エチル3.0g、およびジノルマルプロピルパーオキシジカーボネート1gを仕込み、1.5時間かけて45℃まで昇温した後、45℃を19時間維持した。この間の最高到達圧力は6.0MPaGであった。
Example 2
In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 40 g of 2,3,3,3-tetrafluoropropene, 495 g of VdF, 3.0 g of ethyl acetate, and dinormal propylper. After charging 1 g of oxydicarbonate and raising the temperature to 45 ° C. over 1.5 hours, the temperature was maintained at 45 ° C. for 19 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
 45℃への昇温完了時から19時間後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 19 hours after the temperature rise to 45 ° C was completed. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
実施例3
 内容積2.0リットルのオートクレーブに、純水1,010g、メチルセルロース0.505g、2,3,3,3-テトラフルオロプロペンを49g、VdFを360g、酢酸エチル1.0g、およびジノルマルプロピルパーオキシジカーボネート0.8gを仕込み、1.5時間かけて43℃まで昇温した後、43℃を14時間維持した。この間の最高到達圧力は6.0MPaGであった。
Example 3
In an autoclave with an internal volume of 2.0 liters, 1,010 g of pure water, 0.505 g of methyl cellulose, 49 g of 2,3,3,3-tetrafluoropropene, 360 g of VdF, 1.0 g of ethyl acetate, and dinormal propylper. After charging 0.8 g of oxydicarbonate and raising the temperature to 43 ° C. over 1.5 hours, the temperature was maintained at 43 ° C. for 14 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
 43℃への昇温完了時から14時間後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 14 hours after the temperature rise to 43 ° C was completed. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
実施例4
 内容積2.5リットルのオートクレーブに、純水1,400g、メチルセルロース0.7g、2,3,3,3-テトラフルオロプロペンを110g、VdFを440g、およびジノルマルプロピルパーオキシジカーボネート1.5gを仕込み、1.5時間かけて45℃まで昇温した後、45℃を18時間30分維持した。この間の最高到達圧力は6.0MPaGであった。
Example 4
In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 110 g of 2,3,3,3-tetrafluoropropene, 440 g of VdF, and 1.5 g of dinormal propyl peroxydicarbonate. Was charged, the temperature was raised to 45 ° C. over 1.5 hours, and then 45 ° C. was maintained for 18 hours and 30 minutes. The maximum ultimate pressure during this period was 6.0 MPaG.
 45℃への昇温完了時から18時間30分後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 18 hours and 30 minutes after the temperature was raised to 45 ° C. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
比較例1
 内容積2.5リットルのオートクレーブに、純水1,400g、メチルセルロース0.7g、2,3,3,3-テトラフルオロプロペンを14g、VdFを495g、アセトン9.0g、およびジノルマルプロピルパーオキシジカーボネート1gを仕込み、1.5時間かけて42℃まで昇温した後、42℃を12時間維持した。この間の最高到達圧力は6.0MPaGであった。
Comparative Example 1
In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 14 g of 2,3,3,3-tetrafluoropropene, 495 g of VdF, 9.0 g of acetone, and dinormal propylperoxy. After charging 1 g of dicarbonate and raising the temperature to 42 ° C. over 1.5 hours, the temperature was maintained at 42 ° C. for 12 hours. The maximum ultimate pressure during this period was 6.0 MPaG.
 42℃への昇温完了時から18時間後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 18 hours after the temperature rise to 42 ° C was completed. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
比較例2
 内容積2.5リットルのオートクレーブに、純水1,400g、メチルセルロース0.7g、2,3,3,3-テトラフルオロプロペンを170g、VdFを360g、酢酸エチル1.5g、およびジノルマルプロピルパーオキシジカーボネート3.0gを仕込み、1.5時間かけて45℃まで昇温した後、45℃を33時間維持した。この間の最高到達圧力は5.2MPaGであった。
Comparative Example 2
In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 170 g of 2,3,3,3-tetrafluoropropene, 360 g of VdF, 1.5 g of ethyl acetate, and dinormal propylper. After charging 3.0 g of oxydicarbonate and raising the temperature to 45 ° C. over 1.5 hours, the temperature was maintained at 45 ° C. for 33 hours. The maximum ultimate pressure during this period was 5.2 MPaG.
 45℃への昇温完了時から33時間後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 33 hours after the temperature rise to 45 ° C was completed. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
比較例3
 3Lのステンレス製オートクレーブに純水1750mlを入れ窒素置換し、ビニリデンフルオライド(VdF)で微加圧とし、600rpmで攪拌しながら80℃に温調して、VdFを1.80MPaまで圧入し、さらにVdFと2,3,3,3-テトラフルオロプロペンのモル比が96.3/3.7の混合液モノマーを2.00MPaまで圧入した。過硫酸アンモニウム0.417gを純水10mlに溶解したものを窒素で圧入して重合スタートした。圧力が2.0MPaを維持するよう連続モノマーを供給し、3.2時間の後連続モノマーを100g仕込んだところでオートクレーブ内のガスを放出し、冷却して1869gの分散液を回収した。分散液の固形分含有量は5.30質量%であった。この分散液に硫酸アルミニウムを加えて凝析し、乾燥することで99gのポリマーを得た。
Comparative Example 3
1750 ml of pure water was placed in a 3 L stainless steel autoclave, replaced with nitrogen, slightly pressurized with vinylidene fluoride (VdF), adjusted to 80 ° C. with stirring at 600 rpm, and VdF was press-fitted to 1.80 MPa. A mixed solution monomer having a molar ratio of VdF and 2,3,3,3-tetrafluoropropene of 96.3 / 3.7 was press-fitted to 2.00 MPa. Polymerization was started by dissolving 0.417 g of ammonium persulfate in 10 ml of pure water and press-fitting it with nitrogen. The continuous monomer was supplied so that the pressure was maintained at 2.0 MPa, and after 3.2 hours, when 100 g of the continuous monomer was charged, the gas in the autoclave was released and cooled to recover 1869 g of the dispersion liquid. The solid content of the dispersion was 5.30% by mass. Aluminum sulfate was added to this dispersion, coagulated, and dried to obtain 99 g of a polymer.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
比較例4
 3Lのステンレス製オートクレーブに純水1750mlを入れ窒素置換し、ビニリデンフルオライド(VdF)で微加圧とし、600rpmで攪拌しながら80℃に温調して、VdFを1.53MPaまで圧入し、さらにVdFと2,3,3,3-テトラフルオロプロペンのモル比が91.2/8.8の混合液モノマーを2.00MPaまで圧入した。過硫酸アンモニウム0.417gを純水10mlに溶解したものを窒素で圧入して重合スタートした。圧力が2.0MPaを維持するよう連続モノマーを供給し、3.5時間の後連続モノマーを100g仕込んだところでオートクレーブ内のガスを放出し、冷却して1862gの分散液を回収した。分散液の固形分含有量は5.32質量%であった。この分散液に硫酸アルミニウムを加えて凝析し、乾燥することで97gのポリマーを得た。
Comparative Example 4
1750 ml of pure water was placed in a 3 L stainless steel autoclave, replaced with nitrogen, slightly pressurized with vinylidene fluoride (VdF), adjusted to 80 ° C. with stirring at 600 rpm, and VdF was press-fitted to 1.53 MPa. A mixed solution monomer having a molar ratio of VdF and 2,3,3,3-tetrafluoropropene of 91.2 / 8.8 was press-fitted to 2.00 MPa. Polymerization was started by dissolving 0.417 g of ammonium persulfate in 10 ml of pure water and press-fitting it with nitrogen. The continuous monomer was supplied so that the pressure was maintained at 2.0 MPa, and after 3.5 hours, when 100 g of the continuous monomer was charged, the gas in the autoclave was released and cooled to recover 1862 g of the dispersion liquid. The solid content of the dispersion was 5.32% by mass. Aluminum sulfate was added to this dispersion, coagulated, and dried to obtain 97 g of a polymer.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
比較例5
 PVdF(VdFホモポリマー、商品名「KF7200」、クレハ社製)を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、PVdFの物性を測定した。また、上記した方法により、正極合剤および正極の特性を評価した。結果を表1に示す。
Comparative Example 5
Using PVdF (VdF homopolymer, trade name “KF7200”, manufactured by Kureha Corporation), a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. The physical characteristics of PVdF were measured by the above method. In addition, the characteristics of the positive electrode mixture and the positive electrode were evaluated by the above method. The results are shown in Table 1.
比較例6
 内容積2.5リットルのオートクレーブに、純水1,400g、メチルセルロース0.7g、ヘキサフルオロプロピレンを27g、VdFを495g、酢酸エチル2.5g、およびジノルマルプロピルパーオキシジカーボネート1.0gを仕込み、1.5時間かけて44℃まで昇温した後、44℃を5時間45分間維持した。この間の最高到達圧力は6.0MPaGであった。
Comparative Example 6
In an autoclave with an internal volume of 2.5 liters, 1,400 g of pure water, 0.7 g of methyl cellulose, 27 g of hexafluoropropylene, 495 g of VdF, 2.5 g of ethyl acetate, and 1.0 g of dinormal propyl peroxydicarbonate are charged. After raising the temperature to 44 ° C. over 1.5 hours, the temperature was maintained at 44 ° C. for 5 hours and 45 minutes. The maximum ultimate pressure during this period was 6.0 MPaG.
 44℃への昇温完了時から5時間45分後に重合を終了した。重合終了後、得られた共重合体スラリーを回収し、脱水および水洗し、さらに118℃で12時間乾燥して、共重合体の粉末を得た。 Polymerization was completed 5 hours and 45 minutes after the temperature rise to 44 ° C was completed. After completion of the polymerization, the obtained copolymer slurry was recovered, dehydrated and washed with water, and further dried at 118 ° C. for 12 hours to obtain a copolymer powder.
 得られた粉末を用いて、実施例1と同様にして、正極合剤を調製し、正極を作製した。上記した方法により、共重合体、正極合剤および正極の特性を評価した。結果を表1に示す。 Using the obtained powder, a positive electrode mixture was prepared in the same manner as in Example 1 to prepare a positive electrode. By the above method, the characteristics of the copolymer, the positive electrode mixture and the positive electrode were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1.  ビニリデンフルオライド単位、および、
     一般式(1):CX=CX(CF
    (一般式(1)中、X、XおよびXは、独立に、H、F、CH、CHF、CHFまたはCFであり、ただし、X、XおよびXのうち、少なくとも1つはF、CHF、CHFまたはCFであり、少なくとも1つはHまたはCHであり、nは1~6の整数であり、YはHまたはFである。)で示される単量体(1)単位を含有する共重合体であって、
     単量体(1)単位の含有量が、全単量体単位に対して、3.0~25.0質量%であり、
     融点が160℃以上である
    共重合体。
    Vinylidene Fluoride units, and
    General formula (1): CX 1 X 2 = CX 3 (CF 2 ) n Y
    (In the general formula (1), X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F. ), Which is a copolymer containing the unit (1) of the monomer.
    The content of the monomer (1) unit is 3.0 to 25.0% by mass with respect to all the monomer units.
    A copolymer having a melting point of 160 ° C. or higher.
  2.  重量平均分子量が、2000000以下である請求項1に記載の共重合体。 The copolymer according to claim 1, which has a weight average molecular weight of 2000000 or less.
  3.  一般式(1)中、nが1である請求項1または2に記載の共重合体。 The copolymer according to claim 1 or 2, wherein n is 1 in the general formula (1).
  4.  一般式(1)中、XおよびXが、独立に、HまたはFである請求項1~3のいずれかに記載の共重合体。 The copolymer according to any one of claims 1 to 3, wherein X 1 and X 2 are independently H or F in the general formula (1).
  5.  単量体(1)が、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン(Z体)および1,3,3,3-テトラフルオロプロペン(E体)からなる群より選択される少なくとも1種である請求項1~4のいずれかに記載の共重合体。 The monomer (1) is 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z-form) and 1,3,3,3-tetrafluoropropene (E-form). The copolymer according to any one of claims 1 to 4, which is at least one selected from the group consisting of).
  6.  請求項1~5のいずれかに記載の共重合体を含有する結着剤。 A binder containing the copolymer according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載の共重合体を含有する成形品であって、前記成形品が、フィルム、シート、チューブまたは溶融紡糸である成形品。 A molded product containing the copolymer according to any one of claims 1 to 5, wherein the molded product is a film, a sheet, a tube, or a melt-spun product.
  8.  ビニリデンフルオライド、および、
     一般式(1):CX=CX(CF
    (一般式(1)中、X、XおよびXは、独立に、H、F、CH、CHF、CHFまたはCFであり、ただし、X、XおよびXのうち、少なくとも1つはF、CHF、CHFまたはCFであり、少なくとも1つはHまたはCHであり、nは1~6の整数であり、YはHまたはFである。)で示される単量体(1)を反応器中で重合することにより、ビニリデンフルオライド単位および単量体(1)単位を含有する共重合体を製造する製造方法であって、
     前記共重合体の単量体(1)単位の含有量が、全単量体単位に対して、3.0~25.0質量%であり、
     重合の開始前または開始時に、重合に供する単量体(1)の全量に対して、90重量%以上の単量体(1)を反応器に添加し、0~55℃の重合温度で重合する製造方法。
    Vinylidene Fluoride, and
    General formula (1): CX 1 X 2 = CX 3 (CF 2 ) n Y
    (In general formula (1), X 1 , X 2 and X 3 are independently H, F, CH 3 , CH 2 F, CHF 2 or CF 3 , but X 1 , X 2 and X 3 Of these, at least one is F, CH 2 F, CHF 2 or CF 3 , at least one is H or CH 3 , n is an integer of 1-6, and Y is H or F. ) Is polymerized in a reactor to produce a copolymer containing a vinylidene fluoride unit and a monomer (1) unit.
    The content of the monomer (1) unit of the copolymer is 3.0 to 25.0% by mass with respect to all the monomer units.
    Before or at the start of the polymerization, 90% by weight or more of the monomer (1) is added to the reactor with respect to the total amount of the monomer (1) to be subjected to the polymerization, and the polymerization is carried out at a polymerization temperature of 0 to 55 ° C. Manufacturing method.
  9.  重合温度が、30℃以上である請求項8に記載の製造方法。 The production method according to claim 8, wherein the polymerization temperature is 30 ° C. or higher.
  10.  重合中に到達する最高圧力が、4.38MPa以上である請求項8または9に記載の製造方法。 The production method according to claim 8 or 9, wherein the maximum pressure reached during polymerization is 4.38 MPa or more.
  11.  パーオキサイド重合開始剤の存在下に懸濁重合する請求項8~10のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 10, wherein suspension polymerization is carried out in the presence of a peroxide polymerization initiator.
  12.  連鎖移動剤の存在下に重合する請求項8~11のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 11, which polymerizes in the presence of a chain transfer agent.
  13.  重合の開始前または開始時に、重合に供するビニリデンフルオライドの全量に対して、90重量%以上のビニリデンフルオライドを反応器に添加する請求項8~12のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 12, wherein 90% by weight or more of vinylidene fluoride is added to the reactor with respect to the total amount of vinylidene fluoride to be subjected to the polymerization before or at the start of the polymerization.
PCT/JP2021/044666 2020-12-07 2021-12-06 Copolymer, binder, molded article, and method for producing copolymer WO2022124253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202785 2020-12-07
JP2020-202785 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022124253A1 true WO2022124253A1 (en) 2022-06-16

Family

ID=81973220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044666 WO2022124253A1 (en) 2020-12-07 2021-12-06 Copolymer, binder, molded article, and method for producing copolymer

Country Status (2)

Country Link
TW (1) TW202235462A (en)
WO (1) WO2022124253A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133034A (en) * 2022-08-30 2022-09-30 宁德时代新能源科技股份有限公司 Binder, preparation method, positive pole piece, secondary battery and electricity utilization device
WO2024045644A1 (en) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 Fluorine-containing polymer, preparation method therefor and use thereof, binder composition, secondary battery, and electric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970988A (en) * 1955-10-14 1961-02-07 Minnesota Mining & Mfg New fluorine-containing polymers and preparation thereof
JP2010514856A (en) * 2006-12-20 2010-05-06 ハネウェル・インターナショナル・インコーポレーテッド Copolymer for barrier
JP2011527375A (en) * 2008-07-07 2011-10-27 アーケマ・インコーポレイテッド Vinylidene fluoride / 2,3,3,3-tetrafluoropropene copolymer
JP2011527373A (en) * 2008-07-07 2011-10-27 アーケマ・インコーポレイテッド Novel vinylidene fluoride copolymer
JP2012512264A (en) * 2009-03-05 2012-05-31 ダイキン工業株式会社 Fluorine-containing elastomer, crosslinkable composition, and crosslinked rubber molded product
JP2014508209A (en) * 2011-03-16 2014-04-03 アーケマ・インコーポレイテッド High melting point fluoropolymer
JP2017537208A (en) * 2014-12-09 2017-12-14 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Copolymer of 1,3,3,3-tetrafluoropropene

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970988A (en) * 1955-10-14 1961-02-07 Minnesota Mining & Mfg New fluorine-containing polymers and preparation thereof
JP2010514856A (en) * 2006-12-20 2010-05-06 ハネウェル・インターナショナル・インコーポレーテッド Copolymer for barrier
JP2011527375A (en) * 2008-07-07 2011-10-27 アーケマ・インコーポレイテッド Vinylidene fluoride / 2,3,3,3-tetrafluoropropene copolymer
JP2011527373A (en) * 2008-07-07 2011-10-27 アーケマ・インコーポレイテッド Novel vinylidene fluoride copolymer
JP2012512264A (en) * 2009-03-05 2012-05-31 ダイキン工業株式会社 Fluorine-containing elastomer, crosslinkable composition, and crosslinked rubber molded product
JP2014508209A (en) * 2011-03-16 2014-04-03 アーケマ・インコーポレイテッド High melting point fluoropolymer
JP2017537208A (en) * 2014-12-09 2017-12-14 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Copolymer of 1,3,3,3-tetrafluoropropene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133034A (en) * 2022-08-30 2022-09-30 宁德时代新能源科技股份有限公司 Binder, preparation method, positive pole piece, secondary battery and electricity utilization device
WO2024045644A1 (en) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 Fluorine-containing polymer, preparation method therefor and use thereof, binder composition, secondary battery, and electric device

Also Published As

Publication number Publication date
TW202235462A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
JP6863470B2 (en) Batteries for secondary batteries, electrode mixture for secondary batteries, electrodes for secondary batteries and secondary batteries
KR101947979B1 (en) Binder for secondary battery and electrode compound for secondary battery
KR101599658B1 (en) Binder, cathode mixture and anode mixture
JP5949914B2 (en) Electrode mixture
JP5949915B2 (en) Electrode mixture
WO2022124253A1 (en) Copolymer, binder, molded article, and method for producing copolymer
JP2024026579A (en) Polyvinylidene fluoride, binders, electrode mixtures, electrodes and secondary batteries
WO2022124254A1 (en) Composition, binder, adhesive, and layered product
JP2018063932A (en) Binder for secondary battery and electrode mixture for secondary battery
JP2018060745A (en) Binder for secondary battery and electrode mixture for secondary battery
WO2022050148A1 (en) Electrode mixture, secondary battery, and composition
JP2022090402A (en) Copolymer, binder, molding, and method for producing copolymer
JP7420978B2 (en) Compositions for electrochemical devices, electrodes and secondary batteries
JP7212291B2 (en) Binders for batteries, electrode mixtures, electrodes and secondary batteries
JP7332970B2 (en) Electrochemical device composition, electrode and secondary battery
WO2021172586A1 (en) Composition, binding agent, electrode mixture, electrode and secondary battery
WO2023223608A1 (en) Electrode and secondary battery
TW202338864A (en) Composition, electrode, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP