WO2022124196A1 - Automatic steering device for vehicle - Google Patents

Automatic steering device for vehicle Download PDF

Info

Publication number
WO2022124196A1
WO2022124196A1 PCT/JP2021/044293 JP2021044293W WO2022124196A1 WO 2022124196 A1 WO2022124196 A1 WO 2022124196A1 JP 2021044293 W JP2021044293 W JP 2021044293W WO 2022124196 A1 WO2022124196 A1 WO 2022124196A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle
clutch mechanism
steering wheel
wheel
Prior art date
Application number
PCT/JP2021/044293
Other languages
French (fr)
Japanese (ja)
Inventor
隆英 齋藤
光司 佐藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022124196A1 publication Critical patent/WO2022124196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/105Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with a helical band or equivalent member co-operating with a cylindrical coupling surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • F16D41/067Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical and the members being distributed by a separate cage encircling the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action

Definitions

  • the present invention relates to an automatic steering device for a vehicle.
  • the automatic steering device of Patent Document 1 includes a steering rack 61 that is movably supported in the left-right direction of the vehicle, a steering pinion 62 that meshes with the steering rack 61, and a steering wheel that is rotated by a driver. It has a rotation transmission path 64 that transmits rotation between the steering wheel 63 and the steering pinion 62, and a steering motor 66 that inputs a driving force to the rotation transmission path 64 to steer a pair of wheels 65.
  • the left and right ends of the steering rack 61 are connected to the pair of left and right wheels 65 via a tie rod 67 so that the orientation of the pair of left and right wheels 65 changes according to the movement of the steering rack 61.
  • the steering motor 66 shown in FIG. 11 is controlled by a control unit (not shown).
  • This control unit has a manual steering mode and an automatic steering mode.
  • the manual steering mode is a mode in which the orientation of the pair of wheels 65 is changed based on the rotation operation of the steering wheel 63 by the driver.
  • the control unit of the steering motor 66 controls to operate the steering motor 66 according to the steering torque detected by the steering torque sensor 68.
  • the steering wheel 63 and the steering pinion 62 are always mechanically connected via the rotation transmission path 64. Therefore, in the manual steering mode, the rotational operation force of the steering wheel 63 by the driver is transmitted to the steering pinion 62 via the rotation transmission path 64, and the rotational operation force by the driver is supplemented by the driving force of the steering motor 66. As a result, comfortable steering is obtained.
  • the automatic steering mode is a mode in which the direction of the pair of wheels 65 is automatically changed without the driver rotating the steering wheel 63.
  • the control unit of the steering motor 66 operates the steering motor 66 according to the external condition of the vehicle detected by an external condition sensor (camera, laser radar, GPS device, etc.) (not shown).
  • Patent Document 2 also shows a similar automatic steering device.
  • the steering motor for steering a pair of wheels is attached to the steering rack instead of being attached in the middle of the rotation transmission path between the steering wheel and the steering pinion as in Patent Document 1.
  • Patent Document 1 differs from Patent Document 1 in that, the configuration other than that is the same as that of Patent Document 1.
  • the steering wheel 63 and the steering pinion 62 are always mechanically connected via the rotation transmission path 64.
  • the steering motor 66 operates according to the external condition of the vehicle detected by the external condition sensor (camera or the like) and the direction of the pair of wheels 65 automatically changes, the wheels 65
  • the steering wheel 63 also rotates in conjunction with the direction of.
  • the steering motor 66 is operated to largely change the direction of the wheels 65 in order to avoid the obstacle.
  • the steering wheel 63 will rotate significantly in conjunction with the direction of the wheel 65.
  • the inventor of the present application has focused on the problem that if the driver unexpectedly touches the steering wheel 63, he / she may be injured.
  • the problem to be solved by this invention is to provide an automatic steering device having excellent driver safety.
  • the present invention provides an automatic steering device having the following configuration.
  • a steering rack that is movably supported in the left-right direction of the vehicle and whose left and right ends are connected to the pair of wheels so that the orientation of the pair of left and right wheels changes according to the movement.
  • a steering pinion that meshes with the steering rack, The steering wheel that the driver rotates and operates, A rotation transmission path for transmitting rotation between the steering wheel and the steering pinion, An external condition sensor that detects the external condition of the vehicle and A steering motor that inputs a driving force to the rotation transmission path or the steering rack to steer the pair of wheels.
  • a manual steering mode in which the direction of the pair of wheels is changed based on the rotation operation of the steering wheel by the driver, and the direction of the pair of wheels is automatically changed without the driver rotating the steering wheel.
  • An automatic steering device for a vehicle having an automatic steering mode and in the automatic steering mode, a control unit for controlling the operation of the steering motor according to the external condition of the vehicle detected by the external condition sensor.
  • a clutch capable of switching between a connected state in which rotation is transmitted between the steering wheel and the steering pinion and a cutoff state in which rotation transmission is cut off between the steering wheel and the steering pinion in the rotation transmission path.
  • the clutch mechanism is arranged at a position that cuts off the transmission of the driving force of the steering motor to the steering wheel when the clutch mechanism is in the disengaged state.
  • the control unit controls to hold the clutch mechanism in the disengaged state in the automatic steering mode.
  • the clutch mechanism provided between the steering wheel and the steering pinion is held in the disconnected state, so that even if the steering motor operates, the driving force of the steering motor is the steering wheel. Do not communicate to. That is, in the automatic steering mode, even if the direction of the wheel automatically changes greatly according to the external condition of the vehicle detected by the external condition sensor, the steering wheel rotates greatly in conjunction with the direction of the wheel. You can prevent it from happening. Therefore, in the automatic steering mode, it is possible to prevent the steering wheel from rotating greatly and injuring the driver, which is excellent in the safety of the driver.
  • a steering torque sensor that detects the steering torque of the steering wheel by the driver is further provided.
  • the control unit can be configured to control the steering motor to be operated according to the steering torque detected by the steering torque sensor in the manual steering mode.
  • control unit controls to hold the clutch mechanism in the disengaged state while the vehicle is running and to hold the clutch mechanism in the connected state while the vehicle is stopped in the manual steering mode. It is preferable to configure it as follows.
  • the clutch mechanism is held in the disconnected state, so that the steering wheel and the steering pinion are mechanically separated from each other, and the direction of the wheels is adjusted only by the driving force of the steering motor. Since it changes, the relationship between the amount of operation of the steering wheel and the amount of change in the direction of the wheel can be adjusted according to the running state of the vehicle and the like, and an excellent steering feel can be realized.
  • the clutch mechanism is held in the connected state, so that the steering wheel and the steering pinion are mechanically connected, and the driver can drive the steering wheel and the steering motor.
  • the clutch mechanism employs a non-excitation actuated clutch that is in the disengaged state when energized and in the connected state when not energized.
  • a spring that urges the engager cage from the disengagement position toward the engagement position Armatures that are supported so that they can move in the axial direction, An electromagnet that attracts the armature in the axial direction by energizing, Adopting an engager type clutch having an motion conversion mechanism that converts the axial movement of the armature due to the energization of the electromagnet into an motion of the engager cage moving from the engagement position to the disengagement position. Then, it is preferable.
  • the engaging element type clutch has an extremely low idling torque in the disengaged state, so that the driving force of the steering motor is transmitted to the steering wheel when the control unit holds the clutch mechanism in the disengaged state. Can be effectively blocked.
  • the steering motor can be attached so as to input a driving force to the rotation transmission path.
  • the clutch mechanism can be arranged between the steering wheel and a position where the driving force of the steering motor in the rotation transmission path is input.
  • the steering motor can be attached so as to input a driving force to the steering rack.
  • the clutch mechanism can be arranged at the end of the rotation transmission path on the side of the steering pinion.
  • the clutch mechanism provided between the steering wheel and the steering pinion is held in the disconnected state in the automatic steering mode, so that even if the steering motor operates, the driving force of the steering motor is maintained. Does not transmit to the steering wheel. That is, in the automatic steering mode, even if the direction of the wheel automatically changes greatly according to the external condition of the vehicle detected by the external condition sensor, the steering wheel rotates greatly in conjunction with the direction of the wheel. You can prevent it from happening. Therefore, in the automatic steering mode, it is possible to prevent the steering wheel from rotating greatly and injuring the driver, which is excellent in the safety of the driver.
  • FIG. 1 which shows typically the automatic steering apparatus which concerns on 1st Embodiment of this invention.
  • Enlarged sectional view of the clutch mechanism shown in FIG. Sectional drawing along line III-III of FIG. An enlarged cross-sectional view of the vicinity of a pair of rollers showing a state in which the roller cage shown in FIG. 3 has moved from the disengagement position to the engagement position.
  • Sectional drawing along VV line of FIG. Sectional drawing along the VI-VI line of FIG. Sectional drawing along the line VII-VII of FIG. Sectional drawing along line VIII-VIII of FIG.
  • FIG. 8A causes the ball to roll in a direction away from the deepest portion of each inclined groove in the circumferential direction, and the first division cage and the second division cage Cross-sectional view showing a state in which the axial spacing of the split cage is expanded.
  • FIG. 8A The block diagram which shows the control system of the automatic steering apparatus shown in FIG.
  • FIG. 1 shows an automatic steering device according to a first embodiment of the present invention.
  • This automatic steering device includes a steering rack 1 that is movably supported in the left-right direction of the vehicle, a steering pinion 2 that meshes with the steering rack 1, a steering wheel 3 that the driver rotates, and a steering wheel 3 and a steering pinion 2. It has a rotation transmission path 4 for transmitting rotation between the wheels, a steering motor 6 for steering a pair of wheels 5 by inputting a driving force to the rotation transmission path 4, and a clutch mechanism 7.
  • the central portion of the steering rack 1 is housed in the rack housing 8 with both left and right ends exposed.
  • the rack housing 8 supports the steering rack 1 so as to be movable in the left-right direction of the vehicle.
  • the left and right ends of the steering rack 1 are connected to the pair of left and right wheels 5 via the tie rods 9 so that the directions of the pair of left and right wheels 5 change according to the movement of the steering rack 1.
  • the steering pinion 2 is rotatably supported by the rack housing 8.
  • the rotation transmission path 4 has a plurality of shafts 11a, 11b, 11c, 11d connected via a shaft joint 10.
  • the shaft joint 10 is, for example, a universal joint or a constant velocity joint.
  • a reaction force motor 12, a clutch mechanism 7, and a steering motor 6 are provided in this order from the side of the steering wheel 3 toward the side of the steering pinion 2.
  • the reaction force motor 12 is an electric motor that applies a steering reaction force to the steering wheel 3 in a direction opposite to the rotation direction of the steering wheel 3 by the driver's steering.
  • the reaction force motor 12 includes a steering torque sensor 13 (see FIG. 9) that detects the steering torque of the steering wheel 3 by the driver, and a steering angle sensor 14 (see FIG. 9) that detects the steering angle of the steering wheel 3. It is assembled.
  • the steering angle detected by the steering angle sensor 14 is used for feedback control of the steering motor 6 in the manual steering mode.
  • the clutch mechanism 7 is a clutch that can switch between the connected state and the disconnected state of rotation by switching between energized and de-energized.
  • the clutch mechanism 7 is in a cutoff state in which the transmission of rotation is cut off between the steering wheel 3 and the steering pinion 2 when energized, and is in a connected state in which rotation is transmitted between the steering wheel 3 and the steering pinion 2 when the power is off. Will be. That is, the clutch mechanism 7 is a non-excitation actuated clutch.
  • the steering motor 6 is an electric motor attached so as to input a driving force to the rotation transmission path 4 via the reduction gear 15.
  • the input position of the driving force by the steering motor 6 to the rotation transmission path 4 is the position between the clutch mechanism 7 and the steering pinion 2.
  • the clutch mechanism 7 is arranged between the steering wheel 3 and the position where the driving force of the steering motor 6 of the rotation transmission path 4 is input. As a result, when the clutch mechanism 7 is in the disengaged state, it is possible to disengage the transmission of the driving force of the steering motor 6 to the steering wheel 3.
  • the clutch mechanism 7 includes a cylindrical case 20 having both ends open, an inner ring 21, an outer ring 22 supported so as to be relatively rotatable with respect to the inner ring 21, and an inner circumference and an inner ring of the outer ring 22. It has a plurality of rollers 23a, 23b incorporated between the outer periphery of the 21 and a roller cage 24 for holding the rollers 23a, 23b.
  • the inner ring 21 is provided with an input shaft 25 integrally connected to the inner ring 21.
  • the input shaft 25 is connected to the steering wheel 3 (see FIG. 1) via the shaft 11a (see FIG. 1), and when the driver rotates the steering wheel 3, the rotation of the steering wheel 3 is the input shaft. It is designed to be input to the inner ring 21 via 25.
  • the outer ring 22 is provided with an output shaft 26 integrally connected to the outer ring 22.
  • the output shaft 26 is connected to the steering pinion 2 via the shaft 11b (see FIG. 1) so as to rotate integrally with the steering pinion 2 (see FIG. 1), and when the clutch mechanism 7 is in the connected state, the inner ring 21 is connected.
  • the rotation transmitted from the outer ring 22 to the outer ring 22 is output to the steering pinion 2 side via the output shaft 26.
  • a plurality of cam surfaces 27 are provided on the outer periphery of the inner ring 21 at equal intervals in the circumferential direction.
  • the cam surface 27 includes a front cam surface 27a and a rear cam surface 27b arranged behind the front cam surface 27a in the normal rotation direction of the inner ring 21.
  • a cylindrical surface 28 facing the cam surface 27 in the radial direction is provided on the inner circumference of the outer ring 22.
  • a pair of rollers 23a and 23b facing each other in the circumferential direction with a spring 29 sandwiched between the cam surface 27 and the cylindrical surface 28 are incorporated.
  • the front roller 23a in the normal rotation direction is incorporated between the front cam surface 27a and the cylindrical surface 28, and the rear roller 23b in the normal rotation direction is the rear cam surface 27b and the cylindrical surface 28. It is built in between.
  • the spring 29 presses the rollers 23a and 23b in a direction that widens the distance between the pair of rollers 23a and 23b.
  • the front cam surface 27a is formed so that the radial distance between the front cam surface 27a and the cylindrical surface 28 gradually decreases from the position of the roller 23a toward the front in the normal rotation direction.
  • the rear cam surface 27b is formed so that the radial distance from the cylindrical surface 28 gradually decreases from the position of the roller 23b toward the rear in the normal rotation direction.
  • the roller cage 24 includes a first split cage 24A that supports one of the pair of rollers 23a and 23b facing each other in the circumferential direction with the spring 29 in between. It comprises a second split cage 24B that supports the other roller 23b.
  • the first split cage 24A and the second split cage 24B are supported so as to be relatively rotatable, and the pair of rollers 23a and 23b are supported so that the distance between the pair of rollers 23a and 23b changes according to the relative rotation. Is individually supported.
  • the first split cage 24A has a plurality of pillar portions 30a arranged at intervals in the circumferential direction, and an annular flange portion 31a connecting the ends of these pillar portions 30a.
  • the second split cage 24B also has a plurality of pillar portions 30b arranged at intervals in the circumferential direction, and an annular flange portion 31b connecting the ends of the pillar portions 30b to each other.
  • the pillar portion 30a of the first split cage 24A and the pillar portion 30b of the second split cage 24B sandwich the pair of rollers 23a and 23b facing each other in the circumferential direction with the spring 29 in between from both sides in the circumferential direction. Is inserted between the inner circumference of the outer ring 22 and the outer circumference of the inner ring 21.
  • the inner circumference of the flange portion 31a of the first split cage 24A and the inner circumference of the flange portion 31b of the second split cage 24B are rotatably supported by a cylindrical surface 32 provided on the outer periphery of the input shaft 25. ing.
  • the rollers 23a and 23b are engaged between the cylindrical surface 28 and the cam surface 27 by widening the distance between the pair of rollers 23a and 23b. Disengagement of the rollers 23a and 23b between the cylindrical surface 28 and the cam surface 27 is released by narrowing the distance between the mating engagement position (see FIG. 4) and the pair of rollers 23a and 23b. It can be moved to and from the position (see FIG. 3).
  • the first split cage 24A and the second split cage 24B are in a state of being urged from the disengagement position to the engagement position by the force of the spring 29. That is, the force of the spring 29 shown in FIG. 3 pressing the pair of rollers 23a and 23b is transmitted to the first split cage 24A and the second split cage 24B via the pair of rollers 23a and 23b.
  • the first split cage 24A and the second split cage 24B are in a state of being urged from the disengagement position toward the engagement position.
  • a spring holder 33 is fixed to the side surface of the inner ring 21.
  • the spring holder 33 has a stopper piece 34 located between the pillar portions 30a and 30b facing each other in the circumferential direction with the pair of rollers 23a and 23b interposed therebetween.
  • the edges on both sides of the stopper piece 34 receive the pillar portions 30a and 30b.
  • the spring holder 33 has a spring holding piece 35 for holding the spring 29.
  • the spring holding piece 35 is integrally formed with the stopper piece 34 so as to extend axially between the inner circumference of the outer ring 22 and the outer circumference of the inner ring 21.
  • an armature 36 movably supported in the axial direction and an electromagnet 37 that attracts the armature 36 axially by energization are provided between the inner circumference of the case 20 and the outer circumference of the input shaft 25 .
  • the rotor 38 arranged between the electromagnet 37 and the armature 36, and the axial movement of the armature 36 due to the energization of the electromagnet 37, the first split cage 24A and the second split cage 24B are engaged with each other. It incorporates an motion conversion mechanism 39 that converts the motion from (see FIG. 4) to the disengagement position (see FIG. 3).
  • the armature 36 has an annular disk portion 40 and a cylindrical portion 41 integrally formed so as to extend axially from the outer periphery of the disk portion 40.
  • a cylindrical portion 42 integrally formed so as to extend in the axial direction from the outer periphery of the flange portion 31b of the second split cage 24B is press-fitted into the cylindrical portion 41 of the armature 36, and the armature 36 is pressed into the armature 36. It is connected to the second split cage 24B so as to move integrally with the split cage 24B of the second in the axial direction.
  • the rotor 38 is fixed to the outer periphery of the input shaft 25.
  • the rotor 38 and the armature 36 are made of a magnetic material (iron, silicon steel, etc.).
  • the electromagnet 37 has a field core 43 made of a magnetic material formed in an annular shape, and a solenoid coil 44 wound around the field core 43.
  • the electromagnet 37 forms a magnetic path through the field core 43, the rotor 38, and the armature 36 by energizing the solenoid coil 44, and attracts the armature 36 to the rotor 38.
  • the motion conversion mechanism 39 is provided with an inclination of the flange portion 31a of the first split cage 24A on the facing surface of the second split cage 24B with respect to the flange portion 31b.
  • It consists of a ball 46.
  • the inclined groove 45a and the inclined groove 45b are formed so as to extend in the circumferential direction, respectively.
  • the inclined groove 45a has a shape having a groove bottom inclined so as to gradually become shallower in one direction in the circumferential direction from the deepest portion 47a having the deepest axial depth, and the inclined groove 45b is also in the axial direction.
  • the shape has a groove bottom inclined so as to gradually become shallower in the other direction in the circumferential direction from the deepest portion 47b having the deepest depth.
  • the armature 36 is urged away from the rotor 38 by the force of the spring 29. That is, the force by which the spring 29 shown in FIG. 3 presses the rollers 23a and 23b in the direction of widening the distance between the pair of rollers 23a and 23b is transmitted to the first split cage 24A and the second split cage 24B. ..
  • the circumferential force received by the first split cage 24A and the second split cage 24B is axially distant from the rotor 38 by the motion conversion mechanism 39 shown in FIGS. 7 and 8A and 8B. It is converted into force and transmitted to the second split cage 24B.
  • the armature 36 is fixed to the second split cage 24B, the armature 36 is eventually rotated by the force transmitted from the spring 29 via the motion conversion mechanism 39. It is in a state of being urged away from 38.
  • the clutch mechanism 7 is in a cutoff state (idling state) in which the transmission of rotation between the input shaft 25 and the output shaft 26 is cut off when the electromagnet 37 is energized. That is, when the electromagnet 37 is energized, the armature 36 is attracted to the rotor 38, and in conjunction with the operation of the armature 36, the flange portion 31b of the second split cage 24B becomes the flange portion 31a of the first split cage 24A. Moves in the axial direction toward. At this time, the ball 46 of the motion conversion mechanism 39 rolls toward the deepest portions 47a and 47b of the inclined grooves 45a and 45b, so that the first split cage 24A and the second split cage 24B rotate relative to each other.
  • the pillar portion 30a of the first split cage 24A and the pillar portion 30b of the second split cage 24B are paired.
  • the rollers 23a and 23b are pressed in the direction in which the distance between the rollers 23a and 23b is narrowed, and as a result, the front roller 23a in the normal rotation direction is in an engagement standby state (the front roller 23a and the cylindrical surface 28 in the normal rotation direction).
  • the roller 23a immediately engages between the cylindrical surface 28 and the front cam surface 27a), and the rear side in the normal rotation direction is released.
  • the roller 23b is in an engagement standby state (there is a small gap between the roller 23b on the rear side in the normal rotation direction and the cylindrical surface 28, but when the input shaft 25 rotates in the normal rotation direction, the roller 23b immediately moves to the cylindrical surface 28 and the rear cam. The state of being engaged between the surfaces 27b) is also released. In this state, even if rotation is input to the input shaft 25, the rotation is not transmitted from the input shaft 25 to the outer ring 22, and the input shaft 25 idles.
  • the clutch mechanism 7 is in a connected state in which rotation is transmitted between the input shaft 25 and the output shaft 26. That is, when the energization of the electromagnet 37 is stopped, the armature 36 moves axially in the direction away from the rotor 38 by the force of the spring 29. At this time, due to the force of the spring 29 that presses the rollers 23a and 23b in the direction in which the distance between the pair of rollers 23a and 23b is widened, the roller 23a on the front side in the normal rotation direction has the cylindrical surface 28 on the inner circumference of the outer ring 22.
  • roller 23b on the rear side in the normal rotation direction which is engaged between the front cam surface 27a on the outer periphery of the inner ring 21, the cylindrical surface 28 on the inner circumference of the outer ring 22 and the rear cam surface 27b on the outer periphery of the inner ring 21. It will be in a state of being engaged with.
  • the input shaft 25 rotates in the normal rotation direction in this state, the rotation is transmitted from the input shaft 25 to the outer ring 22 via the roller 23b on the rear side in the normal rotation direction. Further, when the input shaft 25 rotates in the reverse direction, the rotation is transmitted from the input shaft 25 to the outer ring 22 via the roller 23a on the front side in the forward rotation direction.
  • the reaction force motor 12, the clutch mechanism 7, and the steering motor 6 shown in FIG. 1 are controlled by the control unit 50 shown in FIG.
  • a steering torque sensor 13 that detects the steering torque of the steering wheel 3 (see FIG. 1) by the driver
  • a steering angle sensor 14 that detects the steering angle of the steering wheel 3, and a vehicle.
  • the vehicle speed sensor 51 that detects the traveling speed and the external condition sensor 52 that detects the external condition of the vehicle are electrically connected.
  • the external status sensor 52 is a camera, a laser radar, a GPS device, or the like mounted on the vehicle.
  • a steering motor 6, a clutch mechanism 7, and a reaction force motor 12 are electrically connected to the output side of the control unit 50.
  • the control unit 50 has a manual steering mode and an automatic steering mode as control modes.
  • the manual steering mode is a mode in which the orientation of the pair of wheels 5 is changed based on the rotation operation of the steering wheels 3 by the driver.
  • the automatic steering mode is a mode in which the direction of the pair of wheels 5 is automatically changed without the driver rotating the steering wheel 3. Switching between the manual steering mode and the automatic steering mode is performed by the driver operating a switch provided in the vehicle or the like.
  • control unit 50 operates the steering motor 6 according to the external condition of the vehicle detected by the external condition sensor 52 (camera or the like), and the direction of the pair of wheels 5 is determined by the driving force of the steering motor 6. Is controlled to change. In parallel with this, the control unit 50 controls to keep the clutch mechanism 7 in the disengaged state by energizing the clutch mechanism 7.
  • the clutch mechanism 7 shown in FIG. 1 is held in the disengaged state, so that even if the steering motor 6 operates and the orientation of the pair of wheels 5 automatically changes, the steering motor 6 of the steering motor 6 operates.
  • the rotation due to the driving force is cut off by the clutch mechanism 7 and is not transmitted to the steering wheel 3.
  • the steering wheel 3 may be kept stopped without operating the reaction force motor 12, or the reaction force motor 12 is operated in response to the operation of the steering motor 6, and the steering wheel 3 becomes smaller. It may be rotated.
  • the reaction force motor 12 When the reaction force motor 12 is operated in response to the operation of the steering motor 6, it is assumed that the clutch mechanism 7 is in the engaged state in the same direction as the rotation direction of the steering wheel 3 when the clutch mechanism 7 is in the engaged state.
  • the reaction force motor 12 can be controlled so that the steering wheel 3 rotates at a rotation angle of half (preferably 1/5 or less) of the rotation angle of the steering wheel 3 at that time.
  • the driver In the automatic steering mode, the driver can arbitrarily select either the steering non-rotation mode in which the reaction force motor 12 is not operated or the steering rotation mode in which the reaction force motor 12 is operated by a switch or the like. It may be configured.
  • the control unit 50 determines whether the vehicle is running or stopped based on the running speed of the vehicle detected by the vehicle speed sensor 51.
  • the clutch mechanism 7 is held in the disengaged state, and in that state, the steering motor 6 is controlled to be operated according to the steering torque detected by the steering torque sensor 13.
  • the clutch mechanism 7 is held in the connected state, and in that state, the steering motor 6 is controlled to be operated according to the steering torque detected by the steering torque sensor 13.
  • this manual steering mode if the vehicle is stopped, the clutch mechanism 7 is in the engaged state, and the steering wheel 3 and the steering pinion 2 are held in the mechanically connected state. Then, when the driver rotates the steering wheel 3 in this state, the steering motor 6 operates according to the steering torque detected by the steering torque sensor 13, the driving force of the steering motor 6 and the steering wheel 3 by the driver.
  • the direction of the wheel 5 changes depending on the rotational operation force of the wheel 5 (so-called power steering). This makes it possible to perform stationary steering (changing the direction of the wheels 5 while the vehicle is stopped) with a large torque.
  • the steering wheel 3 and the steering pinion 2 are mechanically connected. As a result, the steering wheel 3 does not rotate any more, and through this, it becomes possible to inform the driver that the direction of the wheel 5 has changed to the mechanical limit.
  • the clutch mechanism 7 provided between the steering wheel 3 and the steering pinion 2 is held in the disconnected state in the automatic steering mode, so that even if the steering motor 6 operates, the steering motor 6 is maintained.
  • the driving force of the steering wheel 3 is not transmitted to the steering wheel 3. That is, even if the direction of the wheel 5 automatically changes significantly according to the external condition of the vehicle detected by the external condition sensor 52 in the automatic steering mode, the steering wheel is linked to the direction of the wheel 5. It is possible to prevent the 3 from rotating greatly. Therefore, in the automatic steering mode, the steering wheel 3 can be prevented from being greatly rotated to prevent the driver from being injured, which is excellent in the safety of the driver.
  • the steering motor 6 when an obstacle is detected in front of the vehicle in the traveling direction by the external condition sensor 52, the steering motor 6 is operated to avoid the obstacle, and the direction of the wheel 5 is changed. It can change significantly. In this case, if the steering wheel 3 rotates significantly in conjunction with the direction of the wheels 5, the driver may touch the steering wheel 3 and be injured.
  • the clutch mechanism 7 is held in the disconnected state, and the steering wheel 3 is stopped without rotating, or even if it rotates, it rotates only small due to the driving force of the reaction force motor 12. Therefore, it is possible to prevent the driver from touching the steering wheel 3 and injuring him / her.
  • this automatic steering device employs a non-excitation actuated clutch as the clutch mechanism 7, which is in the cutoff state when energized and in the connected state when not energized. Therefore, even if the power supply related to steering is lost due to an unexpected situation, the clutch mechanism 7 is in a connected state, the steering wheel 3 and the steering pinion 2 are mechanically connected, and the steering wheel 3 is used as a wheel. It is possible to steer 5.
  • an engaging element type clutch (engagement elements (here, rollers 23a and 23b) incorporated between the inner ring 21 and the outer ring 22) engages between the outer ring 22 and the inner ring 21.
  • a clutch that switches between transmission and disconnection of rotation by moving between the engaging position that matches and the disengaging position that disengages the engagement) is adopted.
  • the engaging element type clutch has an extremely low idling torque in the disconnected state. Therefore, this automatic steering device can effectively block the transmission of the driving force of the steering motor 6 to the steering wheel 3 when the control unit 50 holds the clutch mechanism 7 in the disengaged state. It has become.
  • an engager type clutch that employs rollers 23a and 23b as an engager to be incorporated between the inner circumference of the outer ring 22 and the outer circumference of the inner ring 21 has been described as an example, but a ball or a sprag is used as the engager. It is also possible to adopt the engaged element type clutch that has been adopted.
  • FIG. 10 shows an automatic steering device according to a second embodiment of the present invention.
  • the arrangement of the steering motor 6 and the clutch mechanism 7 is different from that in the first embodiment, but the other configurations are the same as those in the first embodiment. Therefore, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • a reaction force motor 12 and a clutch mechanism 7 are provided in order from the steering wheel 3 side to the steering pinion 2 side in the middle of the rotation transmission path 4.
  • the steering motor 6 is attached to the rack housing 8 so as to input a driving force to the steering rack 1 via the reduction gear 15.
  • the clutch mechanism 7 is arranged at the end of the rotation transmission path 4 on the steering pinion 2 side. As a result, when the clutch mechanism 7 is in the disengaged state, it is possible to disengage the transmission of the driving force of the steering motor 6 to the steering wheel 3.

Abstract

Provided is an automatic steering device comprising a control unit (50) that has a manual steering mode in which the direction of wheels (5) is changed on the basis of a driver's operation of rotating a steering wheel (3), and an automatic steering mode in which the direction of the wheels (5) is automatically changed in a state in which the driver does not perform the operation of rotating the steering wheel (3), the control unit (50) during the automatic steering mode performing control for activating a steering motor (6) in accordance with an external condition of the vehicle detected by an external condition sensor (52). A clutch mechanism (7) is provided on a rotation transmission path (4). The control unit (50) performs control for keeping the clutch mechanism (7) in a disconnected state during the automatic steering mode.

Description

車両の自動操舵装置Vehicle automation
 この発明は、車両の自動操舵装置に関する。 The present invention relates to an automatic steering device for a vehicle.
 車両の外部状況に応じて車両の車輪を自動的に操舵する自動操舵装置として、例えば、特許文献1に記載のものが知られている。特許文献1の自動操舵装置は、図11に示すように、車両の左右方向に移動可能に支持されたステアリングラック61と、ステアリングラック61に噛み合うステアリングピニオン62と、運転者が回転操作するステアリングホイール63と、ステアリングホイール63とステアリングピニオン62との間で回転を伝達する回転伝達経路64と、回転伝達経路64に駆動力を入力して一対の車輪65を操舵する操舵モータ66とを有する。ステアリングラック61の左右両端は、ステアリングラック61の移動に応じて左右一対の車輪65の向きが変化するように、タイロッド67を介して左右一対の車輪65に連結されている。 As an automatic steering device that automatically steers the wheels of the vehicle according to the external condition of the vehicle, for example, the one described in Patent Document 1 is known. As shown in FIG. 11, the automatic steering device of Patent Document 1 includes a steering rack 61 that is movably supported in the left-right direction of the vehicle, a steering pinion 62 that meshes with the steering rack 61, and a steering wheel that is rotated by a driver. It has a rotation transmission path 64 that transmits rotation between the steering wheel 63 and the steering pinion 62, and a steering motor 66 that inputs a driving force to the rotation transmission path 64 to steer a pair of wheels 65. The left and right ends of the steering rack 61 are connected to the pair of left and right wheels 65 via a tie rod 67 so that the orientation of the pair of left and right wheels 65 changes according to the movement of the steering rack 61.
 図11に示す操舵モータ66は、図示しない制御部で制御される。この制御部は、手動操舵モードと自動操舵モードとを有する。手動操舵モードは、運転者によるステアリングホイール63の回転操作に基づいて一対の車輪65の向きを変化させるモードである。この手動操舵モードのとき、操舵モータ66の制御部は、操舵トルクセンサ68で検出した操舵トルクに応じて操舵モータ66を作動させる制御を行なう。 The steering motor 66 shown in FIG. 11 is controlled by a control unit (not shown). This control unit has a manual steering mode and an automatic steering mode. The manual steering mode is a mode in which the orientation of the pair of wheels 65 is changed based on the rotation operation of the steering wheel 63 by the driver. In this manual steering mode, the control unit of the steering motor 66 controls to operate the steering motor 66 according to the steering torque detected by the steering torque sensor 68.
 ここで、ステアリングホイール63とステアリングピニオン62の間は、回転伝達経路64を介して、常に機械的に連結されている。そのため、手動操舵モードのときは、運転者によるステアリングホイール63の回転操作力が、回転伝達経路64を介してステアリングピニオン62に伝わり、その運転者による回転操作力を操舵モータ66の駆動力で補うことで、快適な操舵性が得られるようになっている。 Here, the steering wheel 63 and the steering pinion 62 are always mechanically connected via the rotation transmission path 64. Therefore, in the manual steering mode, the rotational operation force of the steering wheel 63 by the driver is transmitted to the steering pinion 62 via the rotation transmission path 64, and the rotational operation force by the driver is supplemented by the driving force of the steering motor 66. As a result, comfortable steering is obtained.
 一方、自動操舵モードは、運転者がステアリングホイール63を回転操作しない状態で自動的に一対の車輪65の向きを変化させるモードである。この自動操舵モードのとき、操舵モータ66の制御部は、図示しない外部状況センサ(カメラ、レーザレーダ、GPS装置等)で検知される車両の外部状況に応じて操舵モータ66を作動させる。 On the other hand, the automatic steering mode is a mode in which the direction of the pair of wheels 65 is automatically changed without the driver rotating the steering wheel 63. In this automatic steering mode, the control unit of the steering motor 66 operates the steering motor 66 according to the external condition of the vehicle detected by an external condition sensor (camera, laser radar, GPS device, etc.) (not shown).
 特許文献2にも、同様の自動操舵装置が示されている。特許文献2の自動操舵装置では、一対の車輪を操舵する操舵モータを、特許文献1のようにステアリングホイールとステアリングピニオンの間の回転伝達経路の途中に取り付けるのではなく、ステアリングラックに取り付けている点で特許文献1と異なるが、それ以外の構成は、特許文献1と同様である。 Patent Document 2 also shows a similar automatic steering device. In the automatic steering device of Patent Document 2, the steering motor for steering a pair of wheels is attached to the steering rack instead of being attached in the middle of the rotation transmission path between the steering wheel and the steering pinion as in Patent Document 1. Although it differs from Patent Document 1 in that, the configuration other than that is the same as that of Patent Document 1.
特開2018-122680号公報Japanese Unexamined Patent Publication No. 2018-122680 特開2018-177120号公報Japanese Unexamined Patent Publication No. 2018-177120
 ところで、図11に示す従来の自動操舵装置は、ステアリングホイール63とステアリングピニオン62の間が、回転伝達経路64を介して、常に機械的に連結されている。 By the way, in the conventional automatic steering device shown in FIG. 11, the steering wheel 63 and the steering pinion 62 are always mechanically connected via the rotation transmission path 64.
 したがって、自動操舵モードのときに、外部状況センサ(カメラ等)で検知される車両の外部状況に応じて操舵モータ66が作動し、一対の車輪65の向きが自動的に変化すると、その車輪65の向きに連動してステアリングホイール63も回転する。 Therefore, in the automatic steering mode, when the steering motor 66 operates according to the external condition of the vehicle detected by the external condition sensor (camera or the like) and the direction of the pair of wheels 65 automatically changes, the wheels 65 The steering wheel 63 also rotates in conjunction with the direction of.
 そのため、自動操舵モードのときに、例えば、車両の進行方向の前方に障害物が検知されると、その障害物を回避するために、操舵モータ66が作動して車輪65の向きが大きく変化し、その車輪65の向きに連動してステアリングホイール63が大きく回転する可能性がある。このとき、運転者が不意にステアリングホイール63に触れると怪我をするおそれがあるという問題に、本願の発明者は着眼した。 Therefore, in the automatic steering mode, for example, when an obstacle is detected in front of the vehicle in the traveling direction, the steering motor 66 is operated to largely change the direction of the wheels 65 in order to avoid the obstacle. There is a possibility that the steering wheel 63 will rotate significantly in conjunction with the direction of the wheel 65. At this time, the inventor of the present application has focused on the problem that if the driver unexpectedly touches the steering wheel 63, he / she may be injured.
 この発明が解決しようとする課題は、運転者の安全性に優れる自動操舵装置を提供することである。 The problem to be solved by this invention is to provide an automatic steering device having excellent driver safety.
 上記の課題を解決するため、この発明では、以下の構成の自動操舵装置を提供する。
 車両の左右方向に移動可能に支持され、その移動に応じて左右一対の車輪の向きが変化するように前記一対の車輪に左右両端が連結されるステアリングラックと、
 前記ステアリングラックに噛み合うステアリングピニオンと、
 運転者が回転操作するステアリングホイールと、
 前記ステアリングホイールと前記ステアリングピニオンとの間で回転を伝達する回転伝達経路と、
 車両の外部状況を検知する外部状況センサと、
 前記回転伝達経路または前記ステアリングラックに駆動力を入力して前記一対の車輪を操舵する操舵モータと、
 運転者による前記ステアリングホイールの回転操作に基づいて前記一対の車輪の向きを変化させる手動操舵モードと、運転者が前記ステアリングホイールを回転操作しない状態で自動的に前記一対の車輪の向きを変化させる自動操舵モードとを有し、前記自動操舵モードのときは、前記外部状況センサで検知した車両の外部状況に応じて前記操舵モータを作動させる制御を行なう制御部と、を有する車両の自動操舵装置において、
 前記回転伝達経路に、前記ステアリングホイールと前記ステアリングピニオンとの間で回転を伝達する連結状態と、前記ステアリングホイールと前記ステアリングピニオンとの間で回転の伝達を遮断する遮断状態とを切り替え可能なクラッチ機構を設け、
 前記クラッチ機構は、前記クラッチ機構が前記遮断状態のときに、前記操舵モータの駆動力が前記ステアリングホイールに伝達するのを遮断する位置に配置され、
 前記制御部は、前記自動操舵モードのときに、前記クラッチ機構を前記遮断状態に保持する制御を行なう、
 ことを特徴とする車両の自動操舵装置。
In order to solve the above problems, the present invention provides an automatic steering device having the following configuration.
A steering rack that is movably supported in the left-right direction of the vehicle and whose left and right ends are connected to the pair of wheels so that the orientation of the pair of left and right wheels changes according to the movement.
A steering pinion that meshes with the steering rack,
The steering wheel that the driver rotates and operates,
A rotation transmission path for transmitting rotation between the steering wheel and the steering pinion,
An external condition sensor that detects the external condition of the vehicle and
A steering motor that inputs a driving force to the rotation transmission path or the steering rack to steer the pair of wheels.
A manual steering mode in which the direction of the pair of wheels is changed based on the rotation operation of the steering wheel by the driver, and the direction of the pair of wheels is automatically changed without the driver rotating the steering wheel. An automatic steering device for a vehicle having an automatic steering mode, and in the automatic steering mode, a control unit for controlling the operation of the steering motor according to the external condition of the vehicle detected by the external condition sensor. In
A clutch capable of switching between a connected state in which rotation is transmitted between the steering wheel and the steering pinion and a cutoff state in which rotation transmission is cut off between the steering wheel and the steering pinion in the rotation transmission path. With a mechanism,
The clutch mechanism is arranged at a position that cuts off the transmission of the driving force of the steering motor to the steering wheel when the clutch mechanism is in the disengaged state.
The control unit controls to hold the clutch mechanism in the disengaged state in the automatic steering mode.
An automatic steering device for vehicles characterized by this.
 このようにすると、自動操舵モードのときに、ステアリングホイールとステアリングピニオンの間に設けたクラッチ機構が遮断状態に保持されるので、操舵モータが作動しても、その操舵モータの駆動力はステアリングホイールに伝達しない。すなわち、自動操舵モードのときに、外部状況センサで検知される車両の外部状況に応じて、自動的に車輪の向きが大きく変化しても、その車輪の向きに連動してステアリングホイールが大きく回転するのを防ぐことができる。そのため、自動操舵モードのときに、ステアリングホイールが大きく回転して運転者が怪我をするのを防止することができ、運転者の安全性に優れる。 In this way, in the automatic steering mode, the clutch mechanism provided between the steering wheel and the steering pinion is held in the disconnected state, so that even if the steering motor operates, the driving force of the steering motor is the steering wheel. Do not communicate to. That is, in the automatic steering mode, even if the direction of the wheel automatically changes greatly according to the external condition of the vehicle detected by the external condition sensor, the steering wheel rotates greatly in conjunction with the direction of the wheel. You can prevent it from happening. Therefore, in the automatic steering mode, it is possible to prevent the steering wheel from rotating greatly and injuring the driver, which is excellent in the safety of the driver.
 運転者による前記ステアリングホイールの操舵トルクを検知する操舵トルクセンサを更に設け、
 前記制御部は、前記手動操舵モードのときに、前記操舵トルクセンサで検出した前記操舵トルクに応じて前記操舵モータを作動させる制御を行なうように構成することができる。
A steering torque sensor that detects the steering torque of the steering wheel by the driver is further provided.
The control unit can be configured to control the steering motor to be operated according to the steering torque detected by the steering torque sensor in the manual steering mode.
 この場合、前記制御部は、前記手動操舵モードのときに、車両走行中は、前記クラッチ機構を前記遮断状態に保持し、車両停車中は、前記クラッチ機構を前記連結状態に保持する制御を行なうように構成すると好ましい。 In this case, the control unit controls to hold the clutch mechanism in the disengaged state while the vehicle is running and to hold the clutch mechanism in the connected state while the vehicle is stopped in the manual steering mode. It is preferable to configure it as follows.
 このようにすると、車両走行中は、クラッチ機構が遮断状態に保持されることで、ステアリングホイールとステアリングピニオンの間が機械的に切り離された状態となり、操舵モータの駆動力のみによって車輪の向きが変化するので、ステアリングホイールの操作量と車輪の向きの変化量の関係を、車両の走行状態等に応じて調整することができ、優れたステアリングフィールを実現することができる。一方、車両停車中は、クラッチ機構が連結状態に保持されることで、ステアリングホイールとステアリングピニオンの間が機械的に連結された状態となり、運転者によるステアリングホイールの回転操作力と操舵モータの駆動力とによって車輪の向きを変化させるので、大きなトルクで据え切り(車両停車中に車輪の向きを変えること)をすることが可能となる。また、据え切りによって車輪の向きが機械的な限界まで変化したときに、ステアリングホイールとステアリングピニオンの間が機械的に連結されていることで、ステアリングホイールがそれ以上は回転しなくなり、そのことを通じて、車輪の向きが機械的な限界まで変化したことを運転者に知らせることが可能となる。 In this way, while the vehicle is running, the clutch mechanism is held in the disconnected state, so that the steering wheel and the steering pinion are mechanically separated from each other, and the direction of the wheels is adjusted only by the driving force of the steering motor. Since it changes, the relationship between the amount of operation of the steering wheel and the amount of change in the direction of the wheel can be adjusted according to the running state of the vehicle and the like, and an excellent steering feel can be realized. On the other hand, while the vehicle is stopped, the clutch mechanism is held in the connected state, so that the steering wheel and the steering pinion are mechanically connected, and the driver can drive the steering wheel and the steering motor. Since the direction of the wheel is changed by the force, it is possible to perform stationary steering (changing the direction of the wheel while the vehicle is stopped) with a large torque. Also, when the wheel orientation changes to the mechanical limit due to stationary steering, the mechanical connection between the steering wheel and the steering pinion prevents the steering wheel from rotating any further, through which , It is possible to inform the driver that the direction of the wheel has changed to the mechanical limit.
 前記クラッチ機構は、通電時に前記遮断状態となり、非通電時に前記連結状態となる無励磁作動型クラッチを採用すると好ましい。 It is preferable that the clutch mechanism employs a non-excitation actuated clutch that is in the disengaged state when energized and in the connected state when not energized.
 このようにすると、不測の事態により、万一、ステアリング関係の電源が喪失したときにも、クラッチ機構が連結状態となり、ステアリングホイールとステアリングピニオンの間が機械的に連結されるので、ステアリングホイールで車輪を操舵することが可能となる。 In this way, even if the power supply related to steering is lost due to an unexpected situation, the clutch mechanism will be in the connected state and the steering wheel and steering pinion will be mechanically connected. It is possible to steer the wheels.
 前記クラッチ機構としては、
 前記ステアリングホイールの回転が入力される内輪と、
 前記内輪に対して相対回転可能に支持された外輪と、
 前記外輪の内周と前記内輪の外周との間に組み込まれた係合子と、
 前記係合子が前記外輪と前記内輪の間に係合する係合位置と、前記係合子の係合を解除する係合解除位置との間で移動可能に支持された係合子保持器と、
 前記係合子保持器を前記係合解除位置から前記係合位置に向けて付勢するスプリングと、
 軸方向に移動可能に支持されたアーマチュアと、
 通電により前記アーマチュアを軸方向に吸引する電磁石と、
 前記電磁石の通電による前記アーマチュアの軸方向の移動を、前記係合子保持器が前記係合位置から前記係合解除位置に移動する動作に変換する動作変換機構と、を有する係合子型クラッチを採用すると好ましい。
As the clutch mechanism,
The inner ring to which the rotation of the steering wheel is input and
An outer ring that is rotatably supported relative to the inner ring,
An engaging element incorporated between the inner circumference of the outer ring and the outer circumference of the inner ring,
An engager cage movably supported between an engagement position in which the engager engages between the outer ring and the inner ring, and an disengagement position in which the engager is disengaged.
A spring that urges the engager cage from the disengagement position toward the engagement position,
Armatures that are supported so that they can move in the axial direction,
An electromagnet that attracts the armature in the axial direction by energizing,
Adopting an engager type clutch having an motion conversion mechanism that converts the axial movement of the armature due to the energization of the electromagnet into an motion of the engager cage moving from the engagement position to the disengagement position. Then, it is preferable.
 このようにすると、係合子型クラッチは、遮断状態のときの空転トルクがきわめて低いので、制御部がクラッチ機構を遮断状態に保持しているときに、操舵モータの駆動力がステアリングホイールに伝達するのを効果的に遮断することが可能となる。 In this way, the engaging element type clutch has an extremely low idling torque in the disengaged state, so that the driving force of the steering motor is transmitted to the steering wheel when the control unit holds the clutch mechanism in the disengaged state. Can be effectively blocked.
 前記操舵モータは、前記回転伝達経路に駆動力を入力するように取り付けることができる。この場合、前記クラッチ機構は、前記ステアリングホイールと、前記回転伝達経路の前記操舵モータの駆動力が入力される位置との間に配置することができる。 The steering motor can be attached so as to input a driving force to the rotation transmission path. In this case, the clutch mechanism can be arranged between the steering wheel and a position where the driving force of the steering motor in the rotation transmission path is input.
 また、前記操舵モータは、前記ステアリングラックに駆動力を入力するように取り付けることができる。この場合、前記クラッチ機構は、前記回転伝達経路の前記ステアリングピニオンの側の端部に配置することができる。 Further, the steering motor can be attached so as to input a driving force to the steering rack. In this case, the clutch mechanism can be arranged at the end of the rotation transmission path on the side of the steering pinion.
 この発明の自動操舵装置は、自動操舵モードのときに、ステアリングホイールとステアリングピニオンの間に設けたクラッチ機構が遮断状態に保持されるので、操舵モータが作動しても、その操舵モータの駆動力はステアリングホイールに伝達しない。すなわち、自動操舵モードのときに、外部状況センサで検知される車両の外部状況に応じて、自動的に車輪の向きが大きく変化しても、その車輪の向きに連動してステアリングホイールが大きく回転するのを防ぐことができる。そのため、自動操舵モードのときに、ステアリングホイールが大きく回転して運転者が怪我をするのを防止することができ、運転者の安全性に優れる。 In the automatic steering device of the present invention, the clutch mechanism provided between the steering wheel and the steering pinion is held in the disconnected state in the automatic steering mode, so that even if the steering motor operates, the driving force of the steering motor is maintained. Does not transmit to the steering wheel. That is, in the automatic steering mode, even if the direction of the wheel automatically changes greatly according to the external condition of the vehicle detected by the external condition sensor, the steering wheel rotates greatly in conjunction with the direction of the wheel. You can prevent it from happening. Therefore, in the automatic steering mode, it is possible to prevent the steering wheel from rotating greatly and injuring the driver, which is excellent in the safety of the driver.
この発明の第1実施形態にかかる自動操舵装置を模式的に示す図The figure which shows typically the automatic steering apparatus which concerns on 1st Embodiment of this invention. 図1に示すクラッチ機構の拡大断面図Enlarged sectional view of the clutch mechanism shown in FIG. 図2のIII-III線に沿った断面図Sectional drawing along line III-III of FIG. 図3に示すローラ保持器が係合解除位置から係合位置に移動した状態を示す一対のローラの近傍の拡大断面図An enlarged cross-sectional view of the vicinity of a pair of rollers showing a state in which the roller cage shown in FIG. 3 has moved from the disengagement position to the engagement position. 図2のV-V線に沿った断面図Sectional drawing along VV line of FIG. 図5のVI-VI線に沿った断面図Sectional drawing along the VI-VI line of FIG. 図2のVII-VII線に沿った断面図Sectional drawing along the line VII-VII of FIG. 図7のVIII-VIII線に沿った断面図Sectional drawing along line VIII-VIII of FIG. 図8Aに示す第1の分割保持器と第2の分割保持器が相対回転することでボールが各傾斜溝の最深部から周方向に遠ざかる方向に転がり、第1の分割保持器と第2の分割保持器の軸方向間隔が拡大した状態を示す断面図The relative rotation of the first division cage and the second division cage shown in FIG. 8A causes the ball to roll in a direction away from the deepest portion of each inclined groove in the circumferential direction, and the first division cage and the second division cage Cross-sectional view showing a state in which the axial spacing of the split cage is expanded. 図1に示す自動操舵装置の制御系を示すブロック図The block diagram which shows the control system of the automatic steering apparatus shown in FIG. この発明の第2実施形態にかかる自動操舵装置を模式的に示す図The figure which shows typically the automatic steering apparatus which concerns on 2nd Embodiment of this invention. 従来例の自動操舵装置を示す図The figure which shows the automatic steering apparatus of the conventional example.
 図1に、この発明の第1実施形態にかかる自動操舵装置を示す。この自動操舵装置は、車両の左右方向に移動可能に支持されたステアリングラック1と、ステアリングラック1に噛み合うステアリングピニオン2と、運転者が回転操作するステアリングホイール3と、ステアリングホイール3とステアリングピニオン2との間で回転を伝達する回転伝達経路4と、回転伝達経路4に駆動力を入力して一対の車輪5を操舵する操舵モータ6と、クラッチ機構7とを有する。 FIG. 1 shows an automatic steering device according to a first embodiment of the present invention. This automatic steering device includes a steering rack 1 that is movably supported in the left-right direction of the vehicle, a steering pinion 2 that meshes with the steering rack 1, a steering wheel 3 that the driver rotates, and a steering wheel 3 and a steering pinion 2. It has a rotation transmission path 4 for transmitting rotation between the wheels, a steering motor 6 for steering a pair of wheels 5 by inputting a driving force to the rotation transmission path 4, and a clutch mechanism 7.
 ステアリングラック1は、左右両端が露出した状態で中央部がラックハウジング8に収容されている。ラックハウジング8は、ステアリングラック1を車両の左右方向に移動可能に支持している。ステアリングラック1の左右両端は、ステアリングラック1の移動に応じて左右一対の車輪5の向きが変化するように、タイロッド9を介して左右一対の車輪5に連結されている。ステアリングピニオン2は、ラックハウジング8で回転可能に支持されている。 The central portion of the steering rack 1 is housed in the rack housing 8 with both left and right ends exposed. The rack housing 8 supports the steering rack 1 so as to be movable in the left-right direction of the vehicle. The left and right ends of the steering rack 1 are connected to the pair of left and right wheels 5 via the tie rods 9 so that the directions of the pair of left and right wheels 5 change according to the movement of the steering rack 1. The steering pinion 2 is rotatably supported by the rack housing 8.
 回転伝達経路4は、軸継手10を介して接続された複数の軸11a,11b,11c,11dを有する。軸継手10は、例えば、ユニバーサルジョイントや等速ジョイントである。回転伝達経路4の途中には、ステアリングホイール3の側からステアリングピニオン2の側に向かって順に、反力モータ12、クラッチ機構7、操舵モータ6が設けられている。 The rotation transmission path 4 has a plurality of shafts 11a, 11b, 11c, 11d connected via a shaft joint 10. The shaft joint 10 is, for example, a universal joint or a constant velocity joint. In the middle of the rotation transmission path 4, a reaction force motor 12, a clutch mechanism 7, and a steering motor 6 are provided in this order from the side of the steering wheel 3 toward the side of the steering pinion 2.
 反力モータ12は、運転者の操舵によるステアリングホイール3の回転方向とは反対方向の操舵反力をステアリングホイール3に付与する電動モータである。反力モータ12には、運転者によるステアリングホイール3の操舵トルクを検知する操舵トルクセンサ13(図9参照)と、ステアリングホイール3の操舵角を検知する操舵角センサ14(図9参照)とが組み付けられている。操舵角センサ14で検出される操舵角は、手動操舵モードのときの操舵モータ6のフィードバック制御に用いられる。 The reaction force motor 12 is an electric motor that applies a steering reaction force to the steering wheel 3 in a direction opposite to the rotation direction of the steering wheel 3 by the driver's steering. The reaction force motor 12 includes a steering torque sensor 13 (see FIG. 9) that detects the steering torque of the steering wheel 3 by the driver, and a steering angle sensor 14 (see FIG. 9) that detects the steering angle of the steering wheel 3. It is assembled. The steering angle detected by the steering angle sensor 14 is used for feedback control of the steering motor 6 in the manual steering mode.
 クラッチ機構7は、通電と非通電とを切り替えることにより、回転の連結状態と遮断状態とを切り替え可能なクラッチである。クラッチ機構7は、通電時に、ステアリングホイール3とステアリングピニオン2との間で回転の伝達を遮断する遮断状態となり、非通電時に、ステアリングホイール3とステアリングピニオン2との間で回転を伝達する連結状態となる。つまり、クラッチ機構7は、無励磁作動型クラッチである。 The clutch mechanism 7 is a clutch that can switch between the connected state and the disconnected state of rotation by switching between energized and de-energized. The clutch mechanism 7 is in a cutoff state in which the transmission of rotation is cut off between the steering wheel 3 and the steering pinion 2 when energized, and is in a connected state in which rotation is transmitted between the steering wheel 3 and the steering pinion 2 when the power is off. Will be. That is, the clutch mechanism 7 is a non-excitation actuated clutch.
 操舵モータ6は、減速ギヤ15を介して回転伝達経路4に駆動力を入力するように取り付けられた電動モータである。ここで、回転伝達経路4への操舵モータ6による駆動力の入力位置は、クラッチ機構7とステアリングピニオン2との間の位置である。また、クラッチ機構7は、ステアリングホイール3と、回転伝達経路4の操舵モータ6の駆動力が入力される位置との間に配置されている。これにより、クラッチ機構7を遮断状態としたときに、操舵モータ6の駆動力がステアリングホイール3に伝達するのを遮断することが可能となっている。 The steering motor 6 is an electric motor attached so as to input a driving force to the rotation transmission path 4 via the reduction gear 15. Here, the input position of the driving force by the steering motor 6 to the rotation transmission path 4 is the position between the clutch mechanism 7 and the steering pinion 2. Further, the clutch mechanism 7 is arranged between the steering wheel 3 and the position where the driving force of the steering motor 6 of the rotation transmission path 4 is input. As a result, when the clutch mechanism 7 is in the disengaged state, it is possible to disengage the transmission of the driving force of the steering motor 6 to the steering wheel 3.
 図2に示すように、クラッチ機構7は、両端が開放した筒状のケース20と、内輪21と、内輪21に対して相対回転可能に支持された外輪22と、外輪22の内周と内輪21の外周との間に組み込まれた複数のローラ23a,23bと、これらのローラ23a,23bを保持するローラ保持器24とを有する。 As shown in FIG. 2, the clutch mechanism 7 includes a cylindrical case 20 having both ends open, an inner ring 21, an outer ring 22 supported so as to be relatively rotatable with respect to the inner ring 21, and an inner circumference and an inner ring of the outer ring 22. It has a plurality of rollers 23a, 23b incorporated between the outer periphery of the 21 and a roller cage 24 for holding the rollers 23a, 23b.
 内輪21には、入力軸25が一体に接続して設けられている。入力軸25は、軸11a(図1参照)を介してステアリングホイール3(図1参照)に接続され、運転者がステアリングホイール3を回転操作したときに、そのステアリングホイール3の回転が、入力軸25を介して内輪21に入力されるようになっている。 The inner ring 21 is provided with an input shaft 25 integrally connected to the inner ring 21. The input shaft 25 is connected to the steering wheel 3 (see FIG. 1) via the shaft 11a (see FIG. 1), and when the driver rotates the steering wheel 3, the rotation of the steering wheel 3 is the input shaft. It is designed to be input to the inner ring 21 via 25.
 外輪22には、出力軸26が一体に接続して設けられている。出力軸26は、ステアリングピニオン2(図1参照)と一体に回転するように軸11b(図1参照)を介してステアリングピニオン2に接続され、クラッチ機構7が連結状態にあるときに、内輪21から外輪22に伝達する回転が、出力軸26を介してステアリングピニオン2の側に出力されるようになっている。 The outer ring 22 is provided with an output shaft 26 integrally connected to the outer ring 22. The output shaft 26 is connected to the steering pinion 2 via the shaft 11b (see FIG. 1) so as to rotate integrally with the steering pinion 2 (see FIG. 1), and when the clutch mechanism 7 is in the connected state, the inner ring 21 is connected. The rotation transmitted from the outer ring 22 to the outer ring 22 is output to the steering pinion 2 side via the output shaft 26.
 図3、図4に示すように、内輪21の外周には、周方向に等間隔に複数のカム面27が設けられている。カム面27は、前方カム面27aと、前方カム面27aに対して内輪21の正転方向後方に配置された後方カム面27bとからなる。外輪22の内周には、カム面27と半径方向に対向する円筒面28が設けられている。 As shown in FIGS. 3 and 4, a plurality of cam surfaces 27 are provided on the outer periphery of the inner ring 21 at equal intervals in the circumferential direction. The cam surface 27 includes a front cam surface 27a and a rear cam surface 27b arranged behind the front cam surface 27a in the normal rotation direction of the inner ring 21. A cylindrical surface 28 facing the cam surface 27 in the radial direction is provided on the inner circumference of the outer ring 22.
 カム面27と円筒面28の間には、スプリング29を間に挟んで周方向に対向する一対のローラ23a,23bが組み込まれている。この一対のローラ23a,23bのうち正転方向の前側のローラ23aは前方カム面27aと円筒面28の間に組み込まれ、正転方向の後側のローラ23bは後方カム面27bと円筒面28の間に組み込まれている。スプリング29は、一対のローラ23a,23bの間隔を広げる方向に各ローラ23a,23bを押圧している。 A pair of rollers 23a and 23b facing each other in the circumferential direction with a spring 29 sandwiched between the cam surface 27 and the cylindrical surface 28 are incorporated. Of the pair of rollers 23a and 23b, the front roller 23a in the normal rotation direction is incorporated between the front cam surface 27a and the cylindrical surface 28, and the rear roller 23b in the normal rotation direction is the rear cam surface 27b and the cylindrical surface 28. It is built in between. The spring 29 presses the rollers 23a and 23b in a direction that widens the distance between the pair of rollers 23a and 23b.
 前方カム面27aは、円筒面28との間の径方向の距離が、ローラ23aの位置から正転方向前方に向かって次第に小さくなるように形成されている。後方カム面27bは、円筒面28との間の径方向の距離が、ローラ23bの位置から正転方向後方に向かって次第に小さくなるように形成されている。 The front cam surface 27a is formed so that the radial distance between the front cam surface 27a and the cylindrical surface 28 gradually decreases from the position of the roller 23a toward the front in the normal rotation direction. The rear cam surface 27b is formed so that the radial distance from the cylindrical surface 28 gradually decreases from the position of the roller 23b toward the rear in the normal rotation direction.
 図2~図4に示すように、ローラ保持器24は、スプリング29を間にして周方向に対向する一対のローラ23a,23bのうち一方のローラ23aを支持する第1の分割保持器24Aと、他方のローラ23bを支持する第2の分割保持器24Bとからなる。第1の分割保持器24Aと第2の分割保持器24Bは相対回転可能に支持されており、その相対回転に応じて一対のローラ23a,23bの間隔が変化するように一対のローラ23a,23bを個別に支持している。 As shown in FIGS. 2 to 4, the roller cage 24 includes a first split cage 24A that supports one of the pair of rollers 23a and 23b facing each other in the circumferential direction with the spring 29 in between. It comprises a second split cage 24B that supports the other roller 23b. The first split cage 24A and the second split cage 24B are supported so as to be relatively rotatable, and the pair of rollers 23a and 23b are supported so that the distance between the pair of rollers 23a and 23b changes according to the relative rotation. Is individually supported.
 第1の分割保持器24Aは、周方向に間隔をおいて配置された複数の柱部30aと、これらの柱部30aの端部同士を連結する環状のフランジ部31aとを有する。同様に、第2の分割保持器24Bも、周方向に間隔をおいて配置された複数の柱部30bと、これらの柱部30bの端部同士を連結する環状のフランジ部31bとを有する。 The first split cage 24A has a plurality of pillar portions 30a arranged at intervals in the circumferential direction, and an annular flange portion 31a connecting the ends of these pillar portions 30a. Similarly, the second split cage 24B also has a plurality of pillar portions 30b arranged at intervals in the circumferential direction, and an annular flange portion 31b connecting the ends of the pillar portions 30b to each other.
 第1の分割保持器24Aの柱部30aと第2の分割保持器24Bの柱部30bは、スプリング29を間にして周方向に対向する一対のローラ23a,23bを周方向の両側から挟み込むように、外輪22の内周と内輪21の外周の間に挿入されている。 The pillar portion 30a of the first split cage 24A and the pillar portion 30b of the second split cage 24B sandwich the pair of rollers 23a and 23b facing each other in the circumferential direction with the spring 29 in between from both sides in the circumferential direction. Is inserted between the inner circumference of the outer ring 22 and the outer circumference of the inner ring 21.
 第1の分割保持器24Aのフランジ部31aの内周と第2の分割保持器24Bのフランジ部31bの内周は、入力軸25の外周に設けられた円筒面32でそれぞれ回転可能に支持されている。これにより、第1の分割保持器24Aと第2の分割保持器24Bは、一対のローラ23a,23bの間隔が広がることにより円筒面28とカム面27との間に各ローラ23a,23bが係合する係合位置(図4参照)と、一対のローラ23a,23bの間隔が狭まることにより円筒面28とカム面27との間への各ローラ23a,23bの係合が解除する係合解除位置(図3参照)との間で移動可能となっている。 The inner circumference of the flange portion 31a of the first split cage 24A and the inner circumference of the flange portion 31b of the second split cage 24B are rotatably supported by a cylindrical surface 32 provided on the outer periphery of the input shaft 25. ing. As a result, in the first split cage 24A and the second split cage 24B, the rollers 23a and 23b are engaged between the cylindrical surface 28 and the cam surface 27 by widening the distance between the pair of rollers 23a and 23b. Disengagement of the rollers 23a and 23b between the cylindrical surface 28 and the cam surface 27 is released by narrowing the distance between the mating engagement position (see FIG. 4) and the pair of rollers 23a and 23b. It can be moved to and from the position (see FIG. 3).
 ここで、第1の分割保持器24Aと第2の分割保持器24Bは、スプリング29の力によって、係合解除位置から係合位置に向けて付勢された状態となっている。すなわち、図3に示すスプリング29が一対のローラ23a,23bを押圧する力が、その一対のローラ23a,23bを介して第1の分割保持器24Aと第2の分割保持器24Bに伝達することで、第1の分割保持器24Aおよび第2の分割保持器24Bは、係合解除位置から係合位置に向けて付勢された状態となっている。 Here, the first split cage 24A and the second split cage 24B are in a state of being urged from the disengagement position to the engagement position by the force of the spring 29. That is, the force of the spring 29 shown in FIG. 3 pressing the pair of rollers 23a and 23b is transmitted to the first split cage 24A and the second split cage 24B via the pair of rollers 23a and 23b. The first split cage 24A and the second split cage 24B are in a state of being urged from the disengagement position toward the engagement position.
 図5に示すように、内輪21の側面には、ばねホルダ33が固定されている。ばねホルダ33は、一対のローラ23a,23bを間に挟んで周方向に対向する両柱部30a,30bの間に位置するストッパ片34を有する。このストッパ片34は、両柱部30a,30bが一対のローラ23a,23bの間隔を狭める方向に移動したときに、ストッパ片34の両側の縁が各柱部30a,30bを受け止める。これにより、一対のローラ23a,23bの間にあるスプリング29が過度に圧縮して破損するのを防止するとともに、一対のローラ23a,23bの間隔が狭まったときのカム面27に対する各ローラ23a,23bの位置を一定させることが可能となっている。 As shown in FIG. 5, a spring holder 33 is fixed to the side surface of the inner ring 21. The spring holder 33 has a stopper piece 34 located between the pillar portions 30a and 30b facing each other in the circumferential direction with the pair of rollers 23a and 23b interposed therebetween. In the stopper piece 34, when both pillar portions 30a and 30b move in a direction in which the distance between the pair of rollers 23a and 23b is narrowed, the edges on both sides of the stopper piece 34 receive the pillar portions 30a and 30b. As a result, the spring 29 between the pair of rollers 23a and 23b is prevented from being excessively compressed and damaged, and the rollers 23a and 23a with respect to the cam surface 27 when the distance between the pair of rollers 23a and 23b is narrowed are prevented. It is possible to keep the position of 23b constant.
 図6に示すように、ばねホルダ33は、スプリング29を保持するばね保持片35を有する。ばね保持片35は、外輪22の内周と内輪21の外周の間を軸方向に延びるようにストッパ片34と一体に形成されている。 As shown in FIG. 6, the spring holder 33 has a spring holding piece 35 for holding the spring 29. The spring holding piece 35 is integrally formed with the stopper piece 34 so as to extend axially between the inner circumference of the outer ring 22 and the outer circumference of the inner ring 21.
 図2に示すように、ケース20の内周と入力軸25の外周との間には、軸方向に移動可能に支持されたアーマチュア36と、通電によりアーマチュア36を軸方向に吸引する電磁石37と、電磁石37とアーマチュア36の間に配置されたロータ38と、電磁石37の通電によるアーマチュア36の軸方向の移動を、第1の分割保持器24Aと第2の分割保持器24Bが、係合位置(図4参照)から係合解除位置(図3参照)に移動する動作に変換する動作変換機構39とが組み込まれている。 As shown in FIG. 2, between the inner circumference of the case 20 and the outer circumference of the input shaft 25, an armature 36 movably supported in the axial direction and an electromagnet 37 that attracts the armature 36 axially by energization are provided. , The rotor 38 arranged between the electromagnet 37 and the armature 36, and the axial movement of the armature 36 due to the energization of the electromagnet 37, the first split cage 24A and the second split cage 24B are engaged with each other. It incorporates an motion conversion mechanism 39 that converts the motion from (see FIG. 4) to the disengagement position (see FIG. 3).
 アーマチュア36は、環状の円盤部40と、円盤部40の外周から軸方向に延びるように一体に形成された円筒部41とを有する。アーマチュア36の円筒部41には、第2の分割保持器24Bのフランジ部31bの外周から軸方向に延びるように一体に形成された円筒部42が圧入され、この圧入により、アーマチュア36は、第2の分割保持器24Bと軸方向に一体に移動するように第2の分割保持器24Bに連結されている。ロータ38は、入力軸25の外周に固定されている。ロータ38およびアーマチュア36は磁性材料(鉄、珪素鋼など)で形成されている。 The armature 36 has an annular disk portion 40 and a cylindrical portion 41 integrally formed so as to extend axially from the outer periphery of the disk portion 40. A cylindrical portion 42 integrally formed so as to extend in the axial direction from the outer periphery of the flange portion 31b of the second split cage 24B is press-fitted into the cylindrical portion 41 of the armature 36, and the armature 36 is pressed into the armature 36. It is connected to the second split cage 24B so as to move integrally with the split cage 24B of the second in the axial direction. The rotor 38 is fixed to the outer periphery of the input shaft 25. The rotor 38 and the armature 36 are made of a magnetic material (iron, silicon steel, etc.).
 電磁石37は、環状に形成された磁性材料からなるフィールドコア43と、フィールドコア43に巻回されたソレノイドコイル44とを有する。この電磁石37は、ソレノイドコイル44に通電することにより、フィールドコア43とロータ38とアーマチュア36を通る磁路を形成し、アーマチュア36をロータ38に吸着させる。 The electromagnet 37 has a field core 43 made of a magnetic material formed in an annular shape, and a solenoid coil 44 wound around the field core 43. The electromagnet 37 forms a magnetic path through the field core 43, the rotor 38, and the armature 36 by energizing the solenoid coil 44, and attracts the armature 36 to the rotor 38.
 図7および図8A、図8Bに示すように、動作変換機構39は、第1の分割保持器24Aのフランジ部31aの第2の分割保持器24Bのフランジ部31bに対する対向面に設けられた傾斜溝45aと、第2の分割保持器24Bのフランジ部31bの第1の分割保持器24Aのフランジ部31aに対する対向面に設けられた傾斜溝45bと、傾斜溝45aと傾斜溝45bの間に組み込まれたボール46とからなる。傾斜溝45aと傾斜溝45bは、それぞれ周方向に延びるように形成されている。また、傾斜溝45aは、軸方向の深さが最も深い最深部47aから周方向の一方向に向かって次第に浅くなるように傾斜した溝底をもつ形状とされ、傾斜溝45bも、軸方向の深さが最も深い最深部47bから周方向の他方向に向かって次第に浅くなるように傾斜した溝底をもつ形状とされている。 As shown in FIGS. 7A, 8A, and 8B, the motion conversion mechanism 39 is provided with an inclination of the flange portion 31a of the first split cage 24A on the facing surface of the second split cage 24B with respect to the flange portion 31b. Incorporated between the groove 45a and the inclined groove 45b provided on the facing surface of the flange portion 31b of the second split cage 24B with respect to the flange portion 31a of the first split cage 24A, and between the inclined groove 45a and the inclined groove 45b. It consists of a ball 46. The inclined groove 45a and the inclined groove 45b are formed so as to extend in the circumferential direction, respectively. Further, the inclined groove 45a has a shape having a groove bottom inclined so as to gradually become shallower in one direction in the circumferential direction from the deepest portion 47a having the deepest axial depth, and the inclined groove 45b is also in the axial direction. The shape has a groove bottom inclined so as to gradually become shallower in the other direction in the circumferential direction from the deepest portion 47b having the deepest depth.
 この動作変換機構39は、第2の分割保持器24Bのフランジ部31bが、第1の分割保持器24Aのフランジ部31aに向かって軸方向に移動したときに、ボール46が各傾斜溝45a,45bの最深部47a,47bに向けて転がることにより、第1の分割保持器24Aと第2の分割保持器24Bが相対回転し、その結果、第1の分割保持器24Aの柱部30aと第2の分割保持器24Bの柱部30bとが一対のローラ23a,23bの間隔を狭める方向に移動するように動作する。 In this operation conversion mechanism 39, when the flange portion 31b of the second split cage 24B moves axially toward the flange portion 31a of the first split cage 24A, the balls 46 move in the inclined grooves 45a, respectively. By rolling toward the deepest portions 47a and 47b of 45b, the first split cage 24A and the second split cage 24B rotate relative to each other, and as a result, the pillars 30a and the second of the first split cage 24A are rotated. The pillar portion 30b of the split cage 24B of 2 operates so as to move in a direction in which the distance between the pair of rollers 23a and 23b is narrowed.
 アーマチュア36は、スプリング29の力によって、ロータ38から離れる方向に付勢されている。すなわち、図3に示すスプリング29が一対のローラ23a,23bの間隔を広げる方向に各ローラ23a,23bを押圧する力が、第1の分割保持器24Aと第2の分割保持器24Bに伝達する。そして、第1の分割保持器24Aと第2の分割保持器24Bが受ける周方向の力は、図7および図8A、図8Bに示す動作変換機構39によって、ロータ38から遠ざかる方向の軸方向の力に変換されて第2の分割保持器24Bに伝達する。ここで、図2に示すように、アーマチュア36は、第2の分割保持器24Bに固定されているので、結局、アーマチュア36は、スプリング29から動作変換機構39を介して伝達する力によって、ロータ38から離れる方向に付勢された状態となっている。 The armature 36 is urged away from the rotor 38 by the force of the spring 29. That is, the force by which the spring 29 shown in FIG. 3 presses the rollers 23a and 23b in the direction of widening the distance between the pair of rollers 23a and 23b is transmitted to the first split cage 24A and the second split cage 24B. .. The circumferential force received by the first split cage 24A and the second split cage 24B is axially distant from the rotor 38 by the motion conversion mechanism 39 shown in FIGS. 7 and 8A and 8B. It is converted into force and transmitted to the second split cage 24B. Here, as shown in FIG. 2, since the armature 36 is fixed to the second split cage 24B, the armature 36 is eventually rotated by the force transmitted from the spring 29 via the motion conversion mechanism 39. It is in a state of being urged away from 38.
 このクラッチ機構7は、図2に示すように、電磁石37に通電しているとき、入力軸25と出力軸26の間での回転の伝達が遮断される遮断状態(空転状態)となる。すなわち、電磁石37に通電すると、アーマチュア36はロータ38に吸着され、このアーマチュア36の動作に連動して、第2の分割保持器24Bのフランジ部31bが第1の分割保持器24Aのフランジ部31aに向かって軸方向に移動する。このとき、動作変換機構39のボール46が各傾斜溝45a,45bの最深部47a,47bに向けて転がることにより、第1の分割保持器24Aと第2の分割保持器24Bとが相対回転する。そして、この第1の分割保持器24Aと第2の分割保持器24Bの相対回転により、第1の分割保持器24Aの柱部30aと第2の分割保持器24Bの柱部30bとが、一対のローラ23a,23bの間隔が狭まる方向に各ローラ23a,23bを押圧し、その結果、正転方向の前側のローラ23aの係合待機状態(正転方向の前側のローラ23aと円筒面28の間に微小隙間があるが、入力軸25が逆転方向に回転するとローラ23aが直ちに円筒面28と前方カム面27aの間に係合する状態)が解除されるとともに、正転方向の後側のローラ23bの係合待機状態(正転方向の後側のローラ23bと円筒面28の間に微小隙間があるが、入力軸25が正転方向に回転するとローラ23bが直ちに円筒面28と後方カム面27bの間に係合する状態)も解除された状態となる。この状態で、入力軸25に回転が入力されても、その回転は入力軸25から外輪22に伝達せず、入力軸25は空転する。 As shown in FIG. 2, the clutch mechanism 7 is in a cutoff state (idling state) in which the transmission of rotation between the input shaft 25 and the output shaft 26 is cut off when the electromagnet 37 is energized. That is, when the electromagnet 37 is energized, the armature 36 is attracted to the rotor 38, and in conjunction with the operation of the armature 36, the flange portion 31b of the second split cage 24B becomes the flange portion 31a of the first split cage 24A. Moves in the axial direction toward. At this time, the ball 46 of the motion conversion mechanism 39 rolls toward the deepest portions 47a and 47b of the inclined grooves 45a and 45b, so that the first split cage 24A and the second split cage 24B rotate relative to each other. .. Then, due to the relative rotation of the first split cage 24A and the second split cage 24B, the pillar portion 30a of the first split cage 24A and the pillar portion 30b of the second split cage 24B are paired. The rollers 23a and 23b are pressed in the direction in which the distance between the rollers 23a and 23b is narrowed, and as a result, the front roller 23a in the normal rotation direction is in an engagement standby state (the front roller 23a and the cylindrical surface 28 in the normal rotation direction). Although there is a small gap between them, when the input shaft 25 rotates in the reverse direction, the roller 23a immediately engages between the cylindrical surface 28 and the front cam surface 27a), and the rear side in the normal rotation direction is released. The roller 23b is in an engagement standby state (there is a small gap between the roller 23b on the rear side in the normal rotation direction and the cylindrical surface 28, but when the input shaft 25 rotates in the normal rotation direction, the roller 23b immediately moves to the cylindrical surface 28 and the rear cam. The state of being engaged between the surfaces 27b) is also released. In this state, even if rotation is input to the input shaft 25, the rotation is not transmitted from the input shaft 25 to the outer ring 22, and the input shaft 25 idles.
 一方、このクラッチ機構7は、電磁石37への通電を停止しているとき、入力軸25と出力軸26の間で回転が伝達する連結状態となる。すなわち、電磁石37への通電を停止すると、アーマチュア36は、スプリング29の力によってロータ38から離反する方向に軸方向移動する。また、このとき、一対のローラ23a,23bの間隔が広がる方向に各ローラ23a,23bを押圧するスプリング29の力によって、正転方向の前側のローラ23aは、外輪22の内周の円筒面28と内輪21の外周の前方カム面27aとの間に係合し、かつ、正転方向の後側のローラ23bは、外輪22の内周の円筒面28と内輪21の外周の後方カム面27bとの間に係合した状態となる。この状態で、入力軸25が正転方向に回転すると、その回転は、正転方向の後側のローラ23bを介して入力軸25から外輪22に伝達する。また、入力軸25が逆転方向に回転すると、その回転は、正転方向の前側のローラ23aを介して入力軸25から外輪22に伝達する。 On the other hand, when the energization of the electromagnet 37 is stopped, the clutch mechanism 7 is in a connected state in which rotation is transmitted between the input shaft 25 and the output shaft 26. That is, when the energization of the electromagnet 37 is stopped, the armature 36 moves axially in the direction away from the rotor 38 by the force of the spring 29. At this time, due to the force of the spring 29 that presses the rollers 23a and 23b in the direction in which the distance between the pair of rollers 23a and 23b is widened, the roller 23a on the front side in the normal rotation direction has the cylindrical surface 28 on the inner circumference of the outer ring 22. And the roller 23b on the rear side in the normal rotation direction, which is engaged between the front cam surface 27a on the outer periphery of the inner ring 21, the cylindrical surface 28 on the inner circumference of the outer ring 22 and the rear cam surface 27b on the outer periphery of the inner ring 21. It will be in a state of being engaged with. When the input shaft 25 rotates in the normal rotation direction in this state, the rotation is transmitted from the input shaft 25 to the outer ring 22 via the roller 23b on the rear side in the normal rotation direction. Further, when the input shaft 25 rotates in the reverse direction, the rotation is transmitted from the input shaft 25 to the outer ring 22 via the roller 23a on the front side in the forward rotation direction.
 図1に示す反力モータ12、クラッチ機構7、操舵モータ6は、図9に示す制御部50で制御される。この制御部50の入力側には、運転者によるステアリングホイール3(図1参照)の操舵トルクを検知する操舵トルクセンサ13と、ステアリングホイール3の操舵角を検知する操舵角センサ14と、車両の走行速度を検知する車速センサ51と、車両の外部状況を検知する外部状況センサ52とが電気的に接続されている。外部状況センサ52は、車両に搭載されたカメラ、レーザレーダ、GPS装置等である。制御部50の出力側には、操舵モータ6、クラッチ機構7、反力モータ12が電気的に接続されている。 The reaction force motor 12, the clutch mechanism 7, and the steering motor 6 shown in FIG. 1 are controlled by the control unit 50 shown in FIG. On the input side of the control unit 50, a steering torque sensor 13 that detects the steering torque of the steering wheel 3 (see FIG. 1) by the driver, a steering angle sensor 14 that detects the steering angle of the steering wheel 3, and a vehicle. The vehicle speed sensor 51 that detects the traveling speed and the external condition sensor 52 that detects the external condition of the vehicle are electrically connected. The external status sensor 52 is a camera, a laser radar, a GPS device, or the like mounted on the vehicle. A steering motor 6, a clutch mechanism 7, and a reaction force motor 12 are electrically connected to the output side of the control unit 50.
 制御部50は、制御モードとして、手動操舵モードと自動操舵モードとを有する。手動操舵モードは、運転者によるステアリングホイール3の回転操作に基づいて一対の車輪5の向きを変化させるモードである。自動操舵モードは、運転者がステアリングホイール3を回転操作しない状態で自動的に一対の車輪5の向きを変化させるモードである。手動操舵モードと自動操舵モードの切り替えは、運転者が車内に設けられたスイッチを操作すること等によって行なう。 The control unit 50 has a manual steering mode and an automatic steering mode as control modes. The manual steering mode is a mode in which the orientation of the pair of wheels 5 is changed based on the rotation operation of the steering wheels 3 by the driver. The automatic steering mode is a mode in which the direction of the pair of wheels 5 is automatically changed without the driver rotating the steering wheel 3. Switching between the manual steering mode and the automatic steering mode is performed by the driver operating a switch provided in the vehicle or the like.
 自動操舵モードのとき、制御部50は、外部状況センサ52(カメラ等)で検知した車両の外部状況に応じて操舵モータ6を作動させ、その操舵モータ6の駆動力によって一対の車輪5の向きを変化させる制御を行なう。またこれと並行して、制御部50は、クラッチ機構7に通電することで、クラッチ機構7を遮断状態に保持する制御を行なう。 In the automatic steering mode, the control unit 50 operates the steering motor 6 according to the external condition of the vehicle detected by the external condition sensor 52 (camera or the like), and the direction of the pair of wheels 5 is determined by the driving force of the steering motor 6. Is controlled to change. In parallel with this, the control unit 50 controls to keep the clutch mechanism 7 in the disengaged state by energizing the clutch mechanism 7.
 この自動操舵モードのとき、図1に示すクラッチ機構7が遮断状態に保持されるので、操舵モータ6が作動し、一対の車輪5の向きが自動的に変化しても、その操舵モータ6の駆動力による回転はクラッチ機構7で遮断され、ステアリングホイール3に伝達しない。このとき、反力モータ12を作動させずにステアリングホイール3が停止した状態を保つようにしてもよく、また、操舵モータ6の作動に応じて反力モータ12を作動させ、ステアリングホイール3が小さく回転するようにしてもよい。 In this automatic steering mode, the clutch mechanism 7 shown in FIG. 1 is held in the disengaged state, so that even if the steering motor 6 operates and the orientation of the pair of wheels 5 automatically changes, the steering motor 6 of the steering motor 6 operates. The rotation due to the driving force is cut off by the clutch mechanism 7 and is not transmitted to the steering wheel 3. At this time, the steering wheel 3 may be kept stopped without operating the reaction force motor 12, or the reaction force motor 12 is operated in response to the operation of the steering motor 6, and the steering wheel 3 becomes smaller. It may be rotated.
 操舵モータ6の作動に応じて反力モータ12を作動させる場合、クラッチ機構7が連結状態にあるとしたときのステアリングホイール3の回転方向と同方向に、クラッチ機構7が連結状態にあるとしたときのステアリングホイール3の回転角の半分以下(好ましくは1/5以下)の回転角でステアリングホイール3が回転するように反力モータ12を制御することができる。自動操舵モードのときに、反力モータ12を作動させないステアリング非回転モードと、反力モータ12を作動させるステアリング回転モードとのうちのいずれかを、運転者がスイッチ等で任意に選択するように構成してもよい。 When the reaction force motor 12 is operated in response to the operation of the steering motor 6, it is assumed that the clutch mechanism 7 is in the engaged state in the same direction as the rotation direction of the steering wheel 3 when the clutch mechanism 7 is in the engaged state. The reaction force motor 12 can be controlled so that the steering wheel 3 rotates at a rotation angle of half (preferably 1/5 or less) of the rotation angle of the steering wheel 3 at that time. In the automatic steering mode, the driver can arbitrarily select either the steering non-rotation mode in which the reaction force motor 12 is not operated or the steering rotation mode in which the reaction force motor 12 is operated by a switch or the like. It may be configured.
 一方、手動操舵モードのとき、制御部50は、車速センサ51で検出される車両の走行速度に基づいて車両走行中か車両停車中かを判定する。そして、車両走行中と判定されたときは、クラッチ機構7を遮断状態に保持し、その状態で、操舵トルクセンサ13で検出した操舵トルクに応じて操舵モータ6を作動させる制御を行なう。また、車両停車中と判定されたときは、クラッチ機構7を連結状態に保持し、その状態で、操舵トルクセンサ13で検出した操舵トルクに応じて操舵モータ6を作動させる制御を行なう。 On the other hand, in the manual steering mode, the control unit 50 determines whether the vehicle is running or stopped based on the running speed of the vehicle detected by the vehicle speed sensor 51. When it is determined that the vehicle is running, the clutch mechanism 7 is held in the disengaged state, and in that state, the steering motor 6 is controlled to be operated according to the steering torque detected by the steering torque sensor 13. When it is determined that the vehicle is stopped, the clutch mechanism 7 is held in the connected state, and in that state, the steering motor 6 is controlled to be operated according to the steering torque detected by the steering torque sensor 13.
 この手動操舵モードのとき、車両走行中であれば、クラッチ機構7が遮断状態となり、ステアリングホイール3とステアリングピニオン2の間が機械的に切り離された状態に保持される。そして、この状態で運転者がステアリングホイール3を回転操作すると、操舵トルクセンサ13で検出される操舵トルクに応じて操舵モータ6が作動し、その操舵モータ6の駆動力のみによって車輪5の向きが変化する(いわゆるステアバイワイヤ)。これにより、ステアリングホイール3の操作量と車輪5の向きの変化量の関係を、車両の走行状態等に応じて調整することができ、優れたステアリングフィールを実現することができる。 In this manual steering mode, if the vehicle is running, the clutch mechanism 7 is in a disengaged state, and the steering wheel 3 and the steering pinion 2 are held in a mechanically disconnected state. Then, when the driver rotates the steering wheel 3 in this state, the steering motor 6 operates according to the steering torque detected by the steering torque sensor 13, and the direction of the wheel 5 is changed only by the driving force of the steering motor 6. Change (so-called steering by wire). As a result, the relationship between the operation amount of the steering wheel 3 and the change amount of the direction of the wheel 5 can be adjusted according to the traveling state of the vehicle and the like, and an excellent steering feel can be realized.
 一方、この手動操舵モードのとき、車両停車中であれば、クラッチ機構7が連結状態となり、ステアリングホイール3とステアリングピニオン2の間が機械的に連結された状態に保持される。そして、この状態で運転者がステアリングホイール3を回転操作すると、操舵トルクセンサ13で検出される操舵トルクに応じて操舵モータ6が作動し、その操舵モータ6の駆動力と運転者によるステアリングホイール3の回転操作力とによって車輪5の向きが変化する(いわゆるパワーステアリング)。これにより、大きなトルクで据え切り(車両停車中に車輪5の向きを変えること)をすることが可能となる。また、据え切りによって車輪5の向きが機械的な限界まで変化し、それ以上は車輪5の向きが変化しなくなったときに、ステアリングホイール3とステアリングピニオン2の間が機械的に連結されていることで、ステアリングホイール3もそれ以上は回転しなくなり、そのことを通じて、車輪5の向きが機械的な限界まで変化したことを運転者に知らせることが可能となる。 On the other hand, in this manual steering mode, if the vehicle is stopped, the clutch mechanism 7 is in the engaged state, and the steering wheel 3 and the steering pinion 2 are held in the mechanically connected state. Then, when the driver rotates the steering wheel 3 in this state, the steering motor 6 operates according to the steering torque detected by the steering torque sensor 13, the driving force of the steering motor 6 and the steering wheel 3 by the driver. The direction of the wheel 5 changes depending on the rotational operation force of the wheel 5 (so-called power steering). This makes it possible to perform stationary steering (changing the direction of the wheels 5 while the vehicle is stopped) with a large torque. Further, when the orientation of the wheel 5 changes to the mechanical limit due to the stationary steering and the orientation of the wheel 5 does not change any more, the steering wheel 3 and the steering pinion 2 are mechanically connected. As a result, the steering wheel 3 does not rotate any more, and through this, it becomes possible to inform the driver that the direction of the wheel 5 has changed to the mechanical limit.
 この自動操舵装置は、自動操舵モードのときに、ステアリングホイール3とステアリングピニオン2の間に設けたクラッチ機構7が遮断状態に保持されるので、操舵モータ6が作動しても、その操舵モータ6の駆動力はステアリングホイール3に伝達しない。すなわち、自動操舵モードのときに、外部状況センサ52で検知される車両の外部状況に応じて、自動的に車輪5の向きが大きく変化しても、その車輪5の向きに連動してステアリングホイール3が大きく回転するのを防ぐことができる。そのため、自動操舵モードのときに、ステアリングホイール3が大きく回転して運転者が怪我をするのを防止することができ、運転者の安全性に優れる。 In this automatic steering device, the clutch mechanism 7 provided between the steering wheel 3 and the steering pinion 2 is held in the disconnected state in the automatic steering mode, so that even if the steering motor 6 operates, the steering motor 6 is maintained. The driving force of the steering wheel 3 is not transmitted to the steering wheel 3. That is, even if the direction of the wheel 5 automatically changes significantly according to the external condition of the vehicle detected by the external condition sensor 52 in the automatic steering mode, the steering wheel is linked to the direction of the wheel 5. It is possible to prevent the 3 from rotating greatly. Therefore, in the automatic steering mode, the steering wheel 3 can be prevented from being greatly rotated to prevent the driver from being injured, which is excellent in the safety of the driver.
 例えば、自動操舵モードのときに、外部状況センサ52で車両の進行方向の前方に障害物が検知されると、その障害物を回避するために、操舵モータ6が作動し、車輪5の向きが大きく変化することがある。この場合、仮に、車輪5の向きに連動してステアリングホイール3が大きく回転するとすれば、運転者がステアリングホイール3に触れて怪我をするおそれがある。これに対し、この自動操舵装置では、クラッチ機構7が遮断状態に保持され、ステアリングホイール3が回転せずに停止しているか、回転するとしても、反力モータ12の駆動力によって小さくしか回転しないことから、運転者がステアリングホイール3に触れて怪我をするのを防止することができる。 For example, in the automatic steering mode, when an obstacle is detected in front of the vehicle in the traveling direction by the external condition sensor 52, the steering motor 6 is operated to avoid the obstacle, and the direction of the wheel 5 is changed. It can change significantly. In this case, if the steering wheel 3 rotates significantly in conjunction with the direction of the wheels 5, the driver may touch the steering wheel 3 and be injured. On the other hand, in this automatic steering device, the clutch mechanism 7 is held in the disconnected state, and the steering wheel 3 is stopped without rotating, or even if it rotates, it rotates only small due to the driving force of the reaction force motor 12. Therefore, it is possible to prevent the driver from touching the steering wheel 3 and injuring him / her.
 また、この自動操舵装置は、クラッチ機構7として、通電時に前記遮断状態となり、非通電時に前記連結状態となる無励磁作動型クラッチを採用している。そのため、不測の事態により、万一、ステアリング関係の電源が喪失したときにも、クラッチ機構7が連結状態となり、ステアリングホイール3とステアリングピニオン2の間が機械的に連結され、ステアリングホイール3で車輪5を操舵することが可能である。 Further, this automatic steering device employs a non-excitation actuated clutch as the clutch mechanism 7, which is in the cutoff state when energized and in the connected state when not energized. Therefore, even if the power supply related to steering is lost due to an unexpected situation, the clutch mechanism 7 is in a connected state, the steering wheel 3 and the steering pinion 2 are mechanically connected, and the steering wheel 3 is used as a wheel. It is possible to steer 5.
 また、この自動操舵装置は、クラッチ機構7として、係合子型クラッチ(内輪21と外輪22の間に組み込まれた係合子(ここではローラ23a,23b)が、外輪22と内輪21の間に係合する係合位置と、その係合を解除する係合解除位置との間を移動することにより、回転の伝達と遮断を切り替えるクラッチ)を採用している。ここで、係合子型クラッチは、遮断状態のときの空転トルクがきわめて低い。そのため、この自動操舵装置は、制御部50がクラッチ機構7を遮断状態に保持しているときに、操舵モータ6の駆動力がステアリングホイール3に伝達するのを効果的に遮断することが可能となっている。これにより、例えば、自動操舵モードのときに、操舵モータ6が作動してもステアリングホイール3が回転せずに停止した状態を保つステアリング非回転モードを容易に実現することが可能となる。また例えば、手動操舵モードのときに、操舵モータ6の駆動力のみによって車輪5の向きが変化するいわゆるステアバイワイヤの制御を高い精度をもって実現することが可能となる。 Further, in this automatic steering device, as a clutch mechanism 7, an engaging element type clutch (engagement elements (here, rollers 23a and 23b) incorporated between the inner ring 21 and the outer ring 22) engages between the outer ring 22 and the inner ring 21. A clutch that switches between transmission and disconnection of rotation by moving between the engaging position that matches and the disengaging position that disengages the engagement) is adopted. Here, the engaging element type clutch has an extremely low idling torque in the disconnected state. Therefore, this automatic steering device can effectively block the transmission of the driving force of the steering motor 6 to the steering wheel 3 when the control unit 50 holds the clutch mechanism 7 in the disengaged state. It has become. This makes it possible to easily realize, for example, a steering non-rotation mode in which the steering wheel 3 does not rotate and is kept stopped even if the steering motor 6 is operated in the automatic steering mode. Further, for example, in the manual steering mode, it is possible to realize so-called steer-by-wire control in which the direction of the wheels 5 is changed only by the driving force of the steering motor 6 with high accuracy.
 上記実施形態では、外輪22の内周と内輪21の外周との間に組み込む係合子としてローラ23a,23bを採用した係合子型クラッチを例に挙げて説明したが、係合子としてボールやスプラグを採用した係合子型クラッチを採用することも可能である。 In the above embodiment, an engager type clutch that employs rollers 23a and 23b as an engager to be incorporated between the inner circumference of the outer ring 22 and the outer circumference of the inner ring 21 has been described as an example, but a ball or a sprag is used as the engager. It is also possible to adopt the engaged element type clutch that has been adopted.
 図10に、この発明の第2実施形態の自動操舵装置を示す。第2実施形態は、操舵モータ6およびクラッチ機構7の配置が第1実施形態と異なるが、それ以外の構成は第1実施形態と同様である。そのため、第1実施形態に対応する部分は同一の符号を付して説明を省略する。 FIG. 10 shows an automatic steering device according to a second embodiment of the present invention. In the second embodiment, the arrangement of the steering motor 6 and the clutch mechanism 7 is different from that in the first embodiment, but the other configurations are the same as those in the first embodiment. Therefore, the parts corresponding to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 回転伝達経路4の途中には、ステアリングホイール3の側からステアリングピニオン2の側に向かって順に、反力モータ12、クラッチ機構7が設けられている。操舵モータ6は、減速ギヤ15を介してステアリングラック1に駆動力を入力するようにラックハウジング8に取り付けられている。ここで、クラッチ機構7は、回転伝達経路4のステアリングピニオン2の側の端部に配置されている。これにより、クラッチ機構7を遮断状態としたときに、操舵モータ6の駆動力がステアリングホイール3に伝達するのを遮断することが可能となっている。 A reaction force motor 12 and a clutch mechanism 7 are provided in order from the steering wheel 3 side to the steering pinion 2 side in the middle of the rotation transmission path 4. The steering motor 6 is attached to the rack housing 8 so as to input a driving force to the steering rack 1 via the reduction gear 15. Here, the clutch mechanism 7 is arranged at the end of the rotation transmission path 4 on the steering pinion 2 side. As a result, when the clutch mechanism 7 is in the disengaged state, it is possible to disengage the transmission of the driving force of the steering motor 6 to the steering wheel 3.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1    ステアリングラック
2    ステアリングピニオン
3    ステアリングホイール
4    回転伝達経路
5    車輪
6    操舵モータ
7    クラッチ機構
13   操舵トルクセンサ
21   内輪
22   外輪
23a,23b ローラ(係合子)
24   ローラ保持器(係合子保持器)
29   スプリング
36   アーマチュア
37   電磁石
39   動作変換機構
50   制御部
52   外部状況センサ
1 Steering rack 2 Steering pinion 3 Steering wheel 4 Rotation transmission path 5 Wheel 6 Steering motor 7 Clutch mechanism 13 Steering torque sensor 21 Inner ring 22 Outer ring 23a, 23b Roller (engager)
24 Roller cage (engager cage)
29 Spring 36 Armature 37 Electromagnet 39 Motion conversion mechanism 50 Control unit 52 External status sensor

Claims (7)

  1.  車両の左右方向に移動可能に支持され、その移動に応じて左右一対の車輪(5)の向きが変化するように前記一対の車輪(5)に左右両端が連結されるステアリングラック(1)と、
     前記ステアリングラック(1)に噛み合うステアリングピニオン(2)と、
     運転者が回転操作するステアリングホイール(3)と、
     前記ステアリングホイール(3)と前記ステアリングピニオン(2)との間で回転を伝達する回転伝達経路(4)と、
     車両の外部状況を検知する外部状況センサ(52)と、
     前記回転伝達経路(4)または前記ステアリングラック(1)に駆動力を入力して前記一対の車輪(5)を操舵する操舵モータ(6)と、
     運転者による前記ステアリングホイール(3)の回転操作に基づいて前記一対の車輪(5)の向きを変化させる手動操舵モードと、運転者が前記ステアリングホイール(3)を回転操作しない状態で自動的に前記一対の車輪(5)の向きを変化させる自動操舵モードとを有し、前記自動操舵モードのときは、前記外部状況センサ(52)で検知した車両の外部状況に応じて前記操舵モータ(6)を作動させる制御を行なう制御部(50)と、を有する車両の自動操舵装置において、
     前記回転伝達経路(4)に、前記ステアリングホイール(3)と前記ステアリングピニオン(2)との間で回転を伝達する連結状態と、前記ステアリングホイール(3)と前記ステアリングピニオン(2)との間で回転の伝達を遮断する遮断状態とを切り替え可能なクラッチ機構(7)を設け、
     前記クラッチ機構(7)は、前記クラッチ機構(7)が前記遮断状態のときに、前記操舵モータ(6)の駆動力が前記ステアリングホイール(3)に伝達するのを遮断する位置に配置され、
     前記制御部(50)は、前記自動操舵モードのときに、前記クラッチ機構(7)を前記遮断状態に保持する制御を行なう、
     ことを特徴とする車両の自動操舵装置。
    With a steering rack (1) that is movably supported in the left-right direction of the vehicle and whose left and right ends are connected to the pair of wheels (5) so that the direction of the pair of left and right wheels (5) changes according to the movement. ,
    A steering pinion (2) that meshes with the steering rack (1) and
    The steering wheel (3) that the driver rotates and operates,
    A rotation transmission path (4) for transmitting rotation between the steering wheel (3) and the steering pinion (2),
    An external condition sensor (52) that detects the external condition of the vehicle, and
    A steering motor (6) that inputs a driving force to the rotation transmission path (4) or the steering rack (1) to steer the pair of wheels (5).
    A manual steering mode that changes the direction of the pair of wheels (5) based on the rotation operation of the steering wheel (3) by the driver, and automatically in a state where the driver does not rotate the steering wheel (3). It has an automatic steering mode that changes the direction of the pair of wheels (5), and in the automatic steering mode, the steering motor (6) is according to the external condition of the vehicle detected by the external condition sensor (52). In the automatic steering device of the vehicle having a control unit (50) that controls to operate).
    A connected state in which rotation is transmitted between the steering wheel (3) and the steering pinion (2) to the rotation transmission path (4), and between the steering wheel (3) and the steering pinion (2). A clutch mechanism (7) that can switch between the cutoff state and the cutoff state that cuts off the transmission of rotation is provided.
    The clutch mechanism (7) is arranged at a position that cuts off the transmission of the driving force of the steering motor (6) to the steering wheel (3) when the clutch mechanism (7) is in the disengaged state.
    The control unit (50) controls to hold the clutch mechanism (7) in the disengaged state in the automatic steering mode.
    An automatic steering device for vehicles characterized by this.
  2.  運転者による前記ステアリングホイール(3)の操舵トルクを検知する操舵トルクセンサ(13)を更に有し、
     前記制御部(50)は、前記手動操舵モードのときに、前記操舵トルクセンサ(13)で検出した前記操舵トルクに応じて前記操舵モータ(6)を作動させる制御を行なう、請求項1に記載の車両の自動操舵装置。
    Further, it has a steering torque sensor (13) for detecting the steering torque of the steering wheel (3) by the driver.
    The first aspect of the present invention, wherein the control unit (50) controls to operate the steering motor (6) according to the steering torque detected by the steering torque sensor (13) in the manual steering mode. Vehicle automatic steering system.
  3.  前記制御部(50)は、前記手動操舵モードのときに、車両走行中は、前記クラッチ機構(7)を前記遮断状態に保持し、車両停車中は、前記クラッチ機構(7)を前記連結状態に保持する制御を行なう、請求項2に記載の車両の自動操舵装置。 In the manual steering mode, the control unit (50) holds the clutch mechanism (7) in the disengaged state while the vehicle is running, and the clutch mechanism (7) is in the connected state while the vehicle is stopped. The automatic steering device for a vehicle according to claim 2, wherein the vehicle is controlled to be held in the vehicle.
  4.  前記クラッチ機構(7)は、通電時に前記遮断状態となり、非通電時に前記連結状態となる無励磁作動型クラッチである請求項1から3のいずれかに記載の車両の自動操舵装置。 The automatic steering device for a vehicle according to any one of claims 1 to 3, wherein the clutch mechanism (7) is a non-excitation actuated clutch that is in the disengaged state when energized and in the connected state when not energized.
  5.  前記クラッチ機構(7)は、
     前記ステアリングホイール(3)の回転が入力される内輪(21)と、
     前記内輪(21)に対して相対回転可能に支持された外輪(22)と、
     前記外輪(22)の内周と前記内輪(21)の外周との間に組み込まれた係合子(23a,23b)と、
     前記係合子(23a,23b)が前記外輪(22)と前記内輪(21)の間に係合する係合位置と、前記係合子(23a,23b)の係合を解除する係合解除位置との間で移動可能に支持された係合子保持器(24)と、
     前記係合子保持器(24)を前記係合解除位置から前記係合位置に向けて付勢するスプリング(29)と、
     軸方向に移動可能に支持されたアーマチュア(36)と、
     通電により前記アーマチュア(36)を軸方向に吸引する電磁石(37)と、
     前記電磁石(37)の通電による前記アーマチュア(36)の軸方向の移動を、前記係合子保持器(24)が前記係合位置から前記係合解除位置に移動する動作に変換する動作変換機構(39)と、を有する請求項1から4のいずれかに記載の車両の自動操舵装置。
    The clutch mechanism (7) is
    The inner ring (21) to which the rotation of the steering wheel (3) is input, and
    An outer ring (22) supported so as to be relatively rotatable with respect to the inner ring (21),
    Engagement elements (23a, 23b) incorporated between the inner circumference of the outer ring (22) and the outer circumference of the inner ring (21), and
    An engaging position in which the engaging element (23a, 23b) engages between the outer ring (22) and the inner ring (21), and an engaging disengagement position in which the engaging element (23a, 23b) is disengaged. With an engager cage (24) movably supported between,
    A spring (29) that urges the engager cage (24) from the disengagement position toward the engagement position,
    An armature (36) that is movably supported in the axial direction and
    An electromagnet (37) that attracts the armature (36) in the axial direction by energization, and
    An motion conversion mechanism that converts the axial movement of the armature (36) due to the energization of the electromagnet (37) into an motion of the engager cage (24) moving from the engagement position to the disengagement position. 39), and the automatic steering device for a vehicle according to any one of claims 1 to 4.
  6.  前記操舵モータ(6)は、前記回転伝達経路(4)に駆動力を入力するように取り付けられ、
     前記クラッチ機構(7)は、前記ステアリングホイール(3)と、前記回転伝達経路(4)の前記操舵モータ(6)の駆動力が入力される位置との間に配置されている、請求項1から5のいずれかに記載の車両の自動操舵装置。
    The steering motor (6) is attached so as to input a driving force to the rotation transmission path (4).
    The clutch mechanism (7) is arranged between the steering wheel (3) and a position where the driving force of the steering motor (6) of the rotation transmission path (4) is input. The vehicle automatic steering device according to any one of 5 to 5.
  7.  前記操舵モータ(6)は、前記ステアリングラック(1)に駆動力を入力するように取り付けられ、
     前記クラッチ機構(7)は、前記回転伝達経路(4)の前記ステアリングピニオン(2)の側の端部に配置されている、請求項1から5のいずれかに記載の車両の自動操舵装置。
    The steering motor (6) is attached to the steering rack (1) so as to input a driving force.
    The vehicle automatic steering device according to any one of claims 1 to 5, wherein the clutch mechanism (7) is arranged at an end of the rotation transmission path (4) on the side of the steering pinion (2).
PCT/JP2021/044293 2020-12-07 2021-12-02 Automatic steering device for vehicle WO2022124196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-202507 2020-12-07
JP2020202507A JP2022090245A (en) 2020-12-07 2020-12-07 Automatic steering system of vehicle

Publications (1)

Publication Number Publication Date
WO2022124196A1 true WO2022124196A1 (en) 2022-06-16

Family

ID=81974432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044293 WO2022124196A1 (en) 2020-12-07 2021-12-02 Automatic steering device for vehicle

Country Status (2)

Country Link
JP (1) JP2022090245A (en)
WO (1) WO2022124196A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188930A (en) * 2009-02-19 2010-09-02 Hitachi Automotive Systems Ltd Steering input device and steering control device
JP2010221918A (en) * 2009-03-24 2010-10-07 Nissan Motor Co Ltd Steering device for vehicle
JP2015136967A (en) * 2014-01-21 2015-07-30 本田技研工業株式会社 vehicle steering system
JP2017166684A (en) * 2016-03-18 2017-09-21 Ntn株式会社 Rotation transmission device
JP2017180615A (en) * 2016-03-29 2017-10-05 株式会社ショーワ Clutch, steering device and method for disassembling clutch
JP2018111425A (en) * 2017-01-12 2018-07-19 株式会社ジェイテクト Steering device
JP2018122683A (en) * 2017-01-31 2018-08-09 いすゞ自動車株式会社 Steering device
JP2019069666A (en) * 2017-10-06 2019-05-09 株式会社ジェイテクト Control system for vehicles
WO2019207711A1 (en) * 2018-04-26 2019-10-31 株式会社ショーワ Vehicle steering control device and vehicle steering device
JP2020001582A (en) * 2018-06-29 2020-01-09 いすゞ自動車株式会社 Steering control device, steering control method and steering device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188930A (en) * 2009-02-19 2010-09-02 Hitachi Automotive Systems Ltd Steering input device and steering control device
JP2010221918A (en) * 2009-03-24 2010-10-07 Nissan Motor Co Ltd Steering device for vehicle
JP2015136967A (en) * 2014-01-21 2015-07-30 本田技研工業株式会社 vehicle steering system
JP2017166684A (en) * 2016-03-18 2017-09-21 Ntn株式会社 Rotation transmission device
JP2017180615A (en) * 2016-03-29 2017-10-05 株式会社ショーワ Clutch, steering device and method for disassembling clutch
JP2018111425A (en) * 2017-01-12 2018-07-19 株式会社ジェイテクト Steering device
JP2018122683A (en) * 2017-01-31 2018-08-09 いすゞ自動車株式会社 Steering device
JP2019069666A (en) * 2017-10-06 2019-05-09 株式会社ジェイテクト Control system for vehicles
WO2019207711A1 (en) * 2018-04-26 2019-10-31 株式会社ショーワ Vehicle steering control device and vehicle steering device
JP2020001582A (en) * 2018-06-29 2020-01-09 いすゞ自動車株式会社 Steering control device, steering control method and steering device

Also Published As

Publication number Publication date
JP2022090245A (en) 2022-06-17

Similar Documents

Publication Publication Date Title
JP4347100B2 (en) Steer-by-wire system
CN107061545B (en) Driving force transmission device
JP5092403B2 (en) Clutch and vehicle steering apparatus using the clutch
EP3244082B1 (en) Driving force transmission device
JP2007153003A (en) Steering device for vehicle
JP2017136919A (en) Steering device
EP3124817B1 (en) Rotation transmitting device
JP4571550B2 (en) Vehicle steering system
JPH08270684A (en) Coupling device
JP2011185398A (en) Transmission driving device
WO2018047846A1 (en) Rotation transmission device
WO2022124196A1 (en) Automatic steering device for vehicle
EP1350657B1 (en) Power switching apparatus for switching between two-wheel and four-wheel drive states
JP2006123857A (en) Vehicular steering device
JP5169402B2 (en) Vehicle steering system
JP2005059772A (en) Vehicular steering device
US20030178277A1 (en) Power switching apparatus
WO2020053957A1 (en) Clutch
JP3856638B2 (en) Vehicle steering system
JP5045280B2 (en) Driving force transmission device
JPH06183356A (en) Motor-driven power steering
JP6732488B2 (en) Rotation transmission device
JP3856636B2 (en) Vehicle steering system
WO2023136132A1 (en) Steer-by-wire vehicle steering system
JP2005082098A (en) Steering device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903300

Country of ref document: EP

Kind code of ref document: A1