WO2022123940A1 - Control device for unmanned aircraft, unmanned air craft, control method for unmanned aircraft, and program - Google Patents

Control device for unmanned aircraft, unmanned air craft, control method for unmanned aircraft, and program Download PDF

Info

Publication number
WO2022123940A1
WO2022123940A1 PCT/JP2021/039513 JP2021039513W WO2022123940A1 WO 2022123940 A1 WO2022123940 A1 WO 2022123940A1 JP 2021039513 W JP2021039513 W JP 2021039513W WO 2022123940 A1 WO2022123940 A1 WO 2022123940A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery
unmanned aerial
aerial vehicle
flight
Prior art date
Application number
PCT/JP2021/039513
Other languages
French (fr)
Japanese (ja)
Inventor
翼 嶋尾
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022568098A priority Critical patent/JPWO2022123940A1/ja
Publication of WO2022123940A1 publication Critical patent/WO2022123940A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • B64D33/10Radiator arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a control device for an unmanned aerial vehicle, an unmanned aerial vehicle, a control method and a program for the unmanned aerial vehicle.
  • Patent Document 1 describes a cooling device for attaching a Pelche element to a battery for an unmanned aerial vehicle.
  • a Pelche element is used to cool the unmanned aerial vehicle battery in a high temperature environment and heat the unmanned aerial vehicle battery in a low temperature environment.
  • the control device for an unmanned aerial vehicle includes a temperature acquisition unit that acquires the battery temperature of the battery of the unmanned aerial vehicle and a temperature control unit that controls a Pelche element that adjusts the temperature of the battery.
  • the control unit controls the Pelche element so that the battery temperature acquired by the temperature acquisition unit becomes a temperature set according to a plurality of control modes of the unmanned aerial vehicle.
  • the unmanned aerial vehicle includes an unmanned aerial vehicle main body, a battery mounted on the unmanned aerial vehicle main body, a Pelche element for adjusting the temperature of the battery, and a control device for the unmanned aerial vehicle for controlling the Pelche element. , Equipped with.
  • the method for controlling an unmanned aerial vehicle includes a step of determining which control mode the unmanned aerial vehicle is controlled in, a step of acquiring the battery temperature of the battery of the unmanned aerial vehicle, and a step of acquiring the battery temperature of the unmanned aerial vehicle.
  • the step comprises controlling the Pelche element that adjusts the temperature of the battery so that the battery temperature becomes a temperature set according to the plurality of control modes of the unmanned aerial vehicle.
  • a step of determining which control mode the unmanned aerial vehicle is controlled in among a plurality of control modes, a step of acquiring the battery temperature of the battery of the unmanned aerial vehicle, and the battery temperature are set.
  • a computer is made to perform a step of controlling a Pelche element that adjusts the temperature of the battery so that the temperature is set according to the plurality of control modes of the unmanned aerial vehicle.
  • FIG. 1 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the first embodiment.
  • FIG. 3 is an explanatory diagram schematically showing each control mode of the unmanned aerial vehicle.
  • FIG. 4 is a flowchart showing an example of processing when the unmanned aerial vehicle is controlled in each control mode.
  • FIG. 5 is a flowchart showing an example of the temperature control control process.
  • FIG. 6 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to a modified example of the first embodiment.
  • FIG. 7 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • FIG. 1 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle
  • FIG. 8 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • FIG. 9 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • FIG. 10 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • FIG. 11 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the second embodiment.
  • FIG. 12 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the second embodiment.
  • FIG. 13 is a flowchart showing an example of processing when the power source is a spare battery in the unmanned aerial vehicle according to the second embodiment.
  • FIG. 14 is a flowchart showing an example of temperature control of the spare battery.
  • the appropriate temperature of the battery mounted on the unmanned aerial vehicle changes depending on the operating conditions of the unmanned aerial vehicle, such as before flight, during flight, before charging, and during charging.
  • the apparatus described in Patent Document 1 cools and heats according to the temperature of the ambient environment of the unmanned aerial vehicle, it does not disclose any temperature adjustment according to the operation of the unmanned aerial vehicle, and the temperature adjustment according to the operation is not disclosed. Specific means are needed. Therefore, it was made in view of the above, and the purpose is to adjust the battery mounted on the unmanned aerial vehicle to an appropriate temperature according to the operation of the unmanned aerial vehicle, and to achieve the efficient operation of the unmanned aerial vehicle. ..
  • the unmanned aerial vehicle control device, unmanned aerial vehicle, unmanned aerial vehicle control method and program according to the present invention adjust the battery mounted on the unmanned aerial vehicle to an appropriate temperature according to the operation of the unmanned aerial vehicle, and thus the efficiency of the unmanned aerial vehicle. It has the effect of being able to carry out various operations.
  • control device for the unmanned aerial vehicle the unmanned aerial vehicle
  • control method for the unmanned aerial vehicle the control method for the unmanned aerial vehicle
  • embodiment of the program according to the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the first embodiment.
  • the unmanned aerial vehicle 1A is, for example, a drone, and performs operations such as forward movement, reverse movement, turning, and hovering in the air.
  • the unmanned aerial vehicle 1A may be a helicopter or the like as long as it is a small aircraft that flies unmanned.
  • the unmanned aerial vehicle 1A automatically flies along a flight path preset by the user.
  • the unmanned aerial vehicle 1A may fly according to manual control by the user via a control device (not shown).
  • the unmanned aerial vehicle 1A includes an unmanned aerial vehicle main body 2 (hereinafter, simply referred to as “main body 2”), a flight device 3, a battery 4, a temperature control device 5, and a GPS (Global Positioning System). It includes a receiver 6 and a control device 100A. A part of the flight device 3, the battery 4, the temperature control device 5, the GPS receiver 6, and the control device 100A are built in the main body 2 as the main body part of the unmanned aerial vehicle 1A.
  • the flight device 3 includes a plurality of rotor blades 3a (see FIG. 1), a motor (not shown) as a power source for the rotor blades 3a, a transmission mechanism (not shown) for transmitting power from the motor to the rotor blades 3a, and the like. ..
  • a motor, a transmission mechanism, etc. (not shown) of the flight device 3 are built in the main body 2, and a plurality of rotary blades 3a are attached to the outer surface of the main body 2.
  • the flight device 3 is driven and controlled by the control device 100A, and the plurality of rotary wings 3a generate lift and propulsion force for flying the unmanned aerial vehicle 1A.
  • the battery 4 is connected to various devices of the unmanned aerial vehicle 1A such as the motor of the flight device 3, the temperature control device 5, the GPS receiver 6, and the control device 100A, and is used to supply the electric power required for the various devices. It is a power source.
  • the battery 4 is a rechargeable and dischargeable secondary battery, and is built in the main body 2.
  • the unmanned aerial vehicle 1A can be connected to an external power source via the connector 9 (see FIG. 3), and charges the battery 4 with electric power from the external power source via a charging circuit (not shown).
  • the temperature control device 5 is a device for cooling or heating the battery 4 to control the temperature, and includes a Pelche element 5a.
  • the perche element 5a is a semiconductor element capable of generating a perche effect by supplying a direct current and performing both cooling and heating.
  • the temperature control device 5 includes at least one Pelche element 5a arranged in contact with the battery 4, and by appropriately supplying a direct current to the Pelche element 5a, the battery 4 is cooled or heated to adjust the temperature.
  • the Pelche element 5a is fixed to the surface of the battery 4, for example, via an adhesive member having high thermal conductivity. Further, for example, when the battery 4 is inserted into the housing, the Pelche element 5a may be fixed to the surface of the housing via an adhesive member having high thermal conductivity.
  • the temperature control device 5 adjusts the degree of cooling and heating of the battery 4 by the Pelche element 5a by adjusting the amount of current supplied to the Pelche element 5a, for example, and adjusts the temperature of the battery 4.
  • the electric power supplied to the Pelche element 5a may be supplied from the battery 4 or may be supplied from a power supply device different from the battery 4.
  • Another power supply device may be mounted on the unmanned aerial vehicle 1A, or may be an external power source, for example, when the unmanned aerial vehicle 1A is located on the ground during charging or before flight. Since the Pelche element 5a can switch between heating and cooling by reversing the polarity of the electric current, the unmanned aerial vehicle can be made thinner and lighter than the case where other heating means and cooling means are used.
  • Cooling and heating by the Pelche element may be performed by reversing the polarity of the current, and the Pelche element whose endothermic surface is in contact with the battery 4 for cooling and the heat dissipation surface of the battery 4 for heating are Pelche.
  • An element may be used.
  • the GPS receiver 6 receives a radio signal in a predetermined frequency band from a GPS satellite.
  • the GPS receiver 6 performs demodulation processing of the received radio wave signal and outputs the processed signal to the control device 100A.
  • the control device 100A has a storage unit 10 and a control unit 20.
  • the storage unit 10 is a memory that stores various information such as calculation contents and programs of the control unit 20, and is, for example, a RAM (Random Access Memory), a main storage device such as a ROM (Read Only Memory), and an HDD (Attachment 10). Includes at least one of external storage devices such as Hard Disk Drive).
  • the storage unit 10 stores map information and information on the flight path of the unmanned aerial vehicle 1A on the map.
  • the flight path includes information on the starting point and the target point of the unmanned aerial vehicle 1A on the map, is created in advance by the user, and is input to the control device 100A via an interface (not shown).
  • the control unit 20 is an arithmetic unit, that is, a CPU (Central Processing Unit). As shown in FIG. 2, the control unit 20 includes a flight path acquisition unit 21, a current position acquisition unit 22, an overall control unit 23, a temperature acquisition unit 24, and a temperature control unit 25. The control unit 20 realizes a flight path acquisition unit 21, a current position acquisition unit 22, an overall control unit 23, a temperature acquisition unit 24, and a temperature control unit 25 by reading a program (software) from the storage unit 10 and executing the program (software). And execute various processes.
  • a program software
  • the flight route acquisition unit 21 acquires the map information stored in the storage unit 10 and the flight route information of the unmanned aerial vehicle 1A on the map, and outputs the information to the overall control unit 23.
  • the flight path may not be stored in advance in the storage unit 10, and may be acquired by the flight path acquisition unit 21 by communication with an external device.
  • the current position acquisition unit 22 detects the current position of the unmanned aerial vehicle 1A based on the signal from the GPS receiver 6 and outputs it to the overall control unit 23.
  • the overall control unit 23 controls the unmanned aerial vehicle 1A in a plurality of control modes.
  • the plurality of control modes of the unmanned aerial vehicle 1A include a flight movement standby mode M1, a flight movement mode M2, a charge standby mode M3, and a charge mode M4 (see FIG. 3). The details of each control mode will be described later.
  • the control mode is the flight movement mode M2
  • the overall control unit 23 causes the unmanned aerial vehicle 1A to follow the flight path based on the map information, the flight path, and the current position.
  • the flight device 3 is driven and controlled so as to fly and move from the starting point to the target point.
  • the temperature acquisition unit 24 acquires the battery temperature T of the battery 4.
  • the temperature acquisition unit 24 acquires the internal resistance value of the battery 4 detected by a sensor (not shown), and calculates the battery temperature T of the battery 4 based on the acquired internal resistance value.
  • the temperature acquisition unit 24 outputs the calculated battery temperature T to the temperature control unit 25.
  • the temperature control unit 25 controls the temperature control device 5 so as to adjust the temperature of the battery 4.
  • the temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24. Further, the temperature control unit 25 acquires information on which mode the current control mode of the unmanned aerial vehicle 1A is from the overall control unit 23.
  • the temperature control unit 25 is a temperature control device 5 so that the battery temperature T becomes a target temperature Tt set according to the control mode based on the acquired battery temperature T and the current control mode of the unmanned aerial vehicle 1A. To control.
  • FIG. 3 is an explanatory diagram schematically showing each control mode of the unmanned aerial vehicle.
  • FIG. 4 is a flowchart showing an example of processing when the unmanned aerial vehicle is controlled in each control mode. The process shown in FIG. 4 is executed by the overall control unit 23 when the user is instructed to fly along the flight path.
  • the overall control unit 23 controls the unmanned aerial vehicle 1A in the flight movement standby mode as step S1.
  • the flight movement standby mode M1 is a control mode in which the unmanned aerial vehicle 1A is made to stand by before the flight movement of the unmanned aerial vehicle 1A along the flight path is started.
  • the flight movement standby mode M1 is continued until the permission condition for shifting to the flight movement mode M2 is satisfied.
  • the flight movement standby mode M1 may be performed by the user at a place different from the departure point, and then the unmanned aerial vehicle 1A may be moved to the departure point.
  • the flight movement standby mode M1 also includes a state in which the unmanned aerial vehicle 1A is temporarily hovered in the air.
  • control mode may include a takeoff mode for taking off from the starting point of the unmanned aerial vehicle 1A between the flight movement standby mode M1 and the flight movement mode M2.
  • the state of hovering the unmanned aerial vehicle 1A may be a part of the takeoff mode.
  • step S2 the overall control unit 23 determines whether or not the transition condition from the flight movement standby mode M1 to the flight movement mode M2 is satisfied.
  • the condition for shifting from the flight movement standby mode M1 to the flight movement mode M2 includes that the battery temperature T of the battery 4 is equal to or higher than the flight permission temperature T1 described later.
  • the overall control unit 23 controls the unmanned aerial vehicle 1A in the flight movement mode M2 as step S3.
  • the flight movement mode M2 is a control mode for flying and moving the unmanned aerial vehicle 1A along the flight path. That is, the overall control unit 23 drives and controls the flight device 3 so as to fly and move the unmanned aerial vehicle 1A from the starting point to just above the target point along the flight path. Further, when the unmanned aerial vehicle 1A reaches directly above the target point, the overall control unit 23 lands the unmanned aerial vehicle 1A at the target point.
  • the control mode may include a landing mode in which the unmanned aerial vehicle 1A is landed at the target point from directly above the target point.
  • the overall control unit 23 executes the charge standby mode M3 as step S4.
  • the charge standby mode M3 is a control mode after the unmanned aerial vehicle 1A has landed at the target point and the flight movement is completed, but before the battery 4 is charged.
  • the overall control unit 23 prevents the unmanned aerial vehicle 1A from flying in the charge standby mode M3.
  • the processing after the charging standby mode M3 does not have to be performed at the target point, and the user may move the unmanned aerial vehicle 1A to a place where the charging device is located.
  • step S5 the overall control unit 23 determines whether or not the transition condition from the charge standby mode M3 to the charge mode M4 is satisfied.
  • the condition for shifting from the charge standby mode M3 to the charge mode M4 includes that the battery temperature T of the battery 4 is equal to or less than the charge permission temperature T3 described later.
  • step S5 the charge standby mode M3 is continued, and when it is determined that the transition condition is satisfied (Yes in step S5), step S6 Proceed to, and the charging mode M4 is executed.
  • the overall control unit 23 charges the battery 4 with electric power from an external power source via the connector 9 and a charging circuit (not shown). When the charging of the battery 4 is completed, the overall control unit 23 ends this routine.
  • transition conditions between the control modes include, for example, whether the flight distance or flight time of the unmanned aerial vehicle 1A has reached a preset value, and whether the unmanned aerial vehicle 1A can fly according to the usage status of the battery 4. Whether or not, the determination condition such as what position on the flight path the current position of the unmanned aerial vehicle 1A detected based on the signal from the GPS receiver 6 is included is included.
  • FIG. 5 is a flowchart showing an example of the temperature control control process. The process shown in FIG. 5 is repeatedly executed by the temperature control unit 25 at predetermined time intervals while the unmanned aerial vehicle 1A is running.
  • the temperature control unit 25 determines in step S10 which of the plurality of control modes the unmanned aerial vehicle 1A is controlled. When the temperature control unit 25 determines in step S10 that the control mode is the flight movement standby mode M1, the temperature control unit 25 proceeds to the processing after step S11.
  • the temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24 as step S11. Next, the temperature control unit 25 sets the target temperature Tt to the preset flight permission temperature T1 in step S12.
  • the flight permission temperature T1 is preset by the user as a temperature capable of suppressing a decrease in the life of the battery 4 or a decrease in power efficiency due to the battery temperature T being too low during flight movement of the unmanned aerial vehicle 1A. Will be done.
  • the flight permit temperature T1 is, for example, 5 ° C. or higher and 15 ° C. or lower.
  • the temperature control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T becomes the target temperature Tt, that is, the flight permission temperature T1. Since the flight movement standby mode M1 is before the start of flight movement of the unmanned aerial vehicle 1A, it is highly possible that the battery 4 is basically not sufficiently warmed up. Therefore, the temperature control unit 25 adjusts the temperature of the battery 4 by the Pelche element 5a so that the flight permission temperature T1 is reached.
  • the temperature control unit 25 determines in step S14 whether or not the battery temperature T has reached the flight permission temperature T1 or higher. When the temperature control unit 25 determines that the battery temperature T is not equal to or higher than the flight permission temperature T1 (No in step S14), the temperature control unit 25 repeats this routine from the beginning and continues the temperature adjustment of the battery 4. On the other hand, when the temperature control unit 25 determines that the battery temperature T is equal to or higher than the flight permission temperature T1 (Yes in step S14), the temperature control unit 25 proceeds to step S15, and among the transition conditions to the flight movement mode M2, the battery temperature T Allow migration conditions for. As a result, if other transition conditions are satisfied, the overall control unit 23 shifts the control mode to the flight movement mode M2.
  • the temperature control unit 25 determines in step S10 that the control mode is the flight movement mode M2, the temperature control unit 25 proceeds to the processing after step S21.
  • the temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24 as step S21.
  • the temperature control unit 25 sets the target temperature Tt to the preset flight temperature T2 in step S22.
  • the temperature during flight movement T2 is preset as a temperature at which it is possible to suppress a decrease in the life of the battery 4 or a decrease in power efficiency during flight movement.
  • the flight moving temperature T2 is a temperature higher than the flight permit temperature T1, and is, for example, 15 ° C. or higher and 40 ° C. or lower.
  • the temperature control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T is maintained at the target temperature Tt, that is, the temperature during flight movement T2.
  • the temperature control unit 25 repeatedly executes this process while the flight movement mode M2 is being executed, that is, while the unmanned aerial vehicle 1A is flying and moving to the target point.
  • "so that the battery temperature T is maintained at the temperature T2 during flight movement” means that the battery temperature T is not only maintained at a completely constant value but also maintained within a range having a certain temperature range. include. For example, when the flight moving temperature T2 is set to 20 ° C., the battery temperature T is maintained in the range of 18 ° C. or higher and 22 ° C. or lower.
  • the flight moving temperature T2 may be set as a predetermined temperature range.
  • "so that the battery temperature T is maintained at the flight moving temperature T2” means that, for example, when the difference between the battery temperature T and the flight moving temperature T2 is a predetermined value (for example, 10 ° C.) or more, the difference is It includes keeping the temperature within a predetermined range (for example, 5 ° C.).
  • step S10 determines in step S10 that the control mode is the charge standby mode M3
  • the temperature control unit 25 proceeds to the process after step S31.
  • the temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24 as step S31.
  • the temperature control unit 25 sets the target temperature Tt to the preset charge permission temperature T3 in step S32.
  • the charge permission temperature T3 is set in advance as a temperature at which it is possible to suppress a decrease in the life of the battery 4 or a decrease in power efficiency due to the battery temperature T being too high during charging.
  • the charge permission temperature T3 is a value lower than the flight movement temperature T2. Further, the charge permission temperature T3 is a higher value than the flight permission temperature T1.
  • the charge permission temperature T3 is, for example, 5 ° C. or higher and 40 ° C. or lower.
  • each temperature T1 to T3 is set to 5 ° C. for the flight permission temperature T1, 15 ° C. for the flight movement temperature T2, and 10 ° C. for the charge permission temperature T3.
  • the flight permission temperature T1 is set to 15 ° C.
  • the flight movement temperature T2 is set to 40 ° C.
  • the charge permission temperature T3 is set to 30 ° C.
  • the temperature control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T becomes the charge permission temperature T3. Since the charge standby mode M3 is after the flight movement of the unmanned aerial vehicle 1A is completed, it is highly possible that the battery 4 is basically not sufficiently cooled. Therefore, the temperature control unit 25 adjusts the temperature of the battery 4 by the Pelche element 5a so that the charge permission temperature T3 is reached.
  • the temperature control unit 25 determines in step S34 whether or not the battery temperature T is equal to or less than the charge permission temperature T3. When the temperature control unit 25 determines that the battery temperature T is not equal to or lower than the charge permission temperature T3 (No in step S34), the temperature control unit 25 repeats this routine from the beginning and continues the temperature adjustment of the battery 4. On the other hand, when the temperature control unit 25 determines that the battery temperature T is equal to or lower than the charge permission temperature T3 (Yes in step S34), the temperature control unit 25 proceeds to step S35, and is related to the battery temperature T among the transition conditions to the charge mode M4. Allow migration conditions. As a result, if other transition conditions are satisfied, the overall control unit 23 shifts the control mode to the charge mode M4.
  • the control device 100A of the unmanned aircraft 1A is a temperature acquisition unit 24 that acquires the battery temperature T of the battery 4 of the unmanned aircraft 1A, and a temperature control device that adjusts the temperature of the battery 4.
  • a temperature control unit 25 for controlling the Pelche element 5a of the 5 is provided, and the temperature control unit 25 has a battery temperature T acquired by the temperature acquisition unit 24 set according to a plurality of control modes of the unmanned aircraft 1A.
  • the Pelche element 5a is controlled so as to have a target temperature Tt.
  • the battery temperature T can be adjusted to the target temperature Tt according to a plurality of control modes of the unmanned aerial vehicle 1A.
  • the temperature of the battery can be raised before the start of flight movement, the battery temperature can be maintained during flight movement, and the temperature of the battery can be lowered before the start of charging.
  • the battery 4 mounted on the unmanned aerial vehicle 1A can be adjusted to an appropriate temperature according to the operation of the unmanned aerial vehicle 1A, and the unmanned aerial vehicle 1A can be operated efficiently.
  • the plurality of control modes include a flight movement standby mode M1 before starting the flight movement of the unmanned aircraft 1A and a flight movement mode M2 for flying and moving the unmanned aircraft 1, and the flight movement mode from the flight movement standby mode M1.
  • the transition condition to M2 includes that the battery temperature T is equal to or higher than the preset flight permission temperature T1, and the temperature control unit 25 determines that the battery temperature T flies when the control mode is the flight movement standby mode M1.
  • the Pelche element 5a of the temperature control device 5 is controlled so that the allowable temperature is T1 or higher. With this configuration, the battery temperature T can be adjusted to an appropriate temperature during the flight movement before the start of the flight movement.
  • the battery temperature T is adjusted to the flight permission temperature T1 by the Pelche element 5a of the temperature control device 5 in a state where the unmanned aerial vehicle 1A is on standby on the ground. I made it.
  • the temperature of the battery 4 here does not have to be adjusted on the ground. That is, in the flight movement standby mode M1, the battery temperature T may be adjusted to the flight permission temperature T1 by the Pelche element 5a of the temperature control device 5 while hovering the unmanned aerial vehicle 1A.
  • the hovering time can be shortened by adjusting the temperature of the battery 4 by using the Pelche element 5a as in the present embodiment, as compared with the case where the battery temperature T is raised only by taking out the electric power by hovering. ..
  • the plurality of control modes include a charge standby mode M3 before charging the battery 4 after the flight movement mode M2 and a charge mode M4 for charging the battery 4, and the transition from the charge standby mode M3 to the charge mode M4.
  • the condition includes that the battery temperature T is equal to or less than the preset charge permission temperature T3, and the temperature control control unit 25 sets the battery temperature T to be less than or equal to the charge permission temperature T3 when the control mode is the charge standby mode M3.
  • the Pelche element 5a of the temperature control device 5 is controlled so as to be. With this configuration, the battery temperature T can be adjusted to an appropriate temperature during charging before the start of charging.
  • the battery temperature T is adjusted to the charge permitted temperature T3 by the Pelche element 5a of the temperature control device 5 while the unmanned aerial vehicle 1A is on the ground.
  • the temperature of the battery 4 here does not have to be adjusted on the ground.
  • the control mode may include a landing mode in which the unmanned aerial vehicle 1A is landed at the target point from directly above the target point. Then, when the control mode is the landing mode, the temperature control unit 25 may control the battery temperature T to the charge permission temperature T3 by the Pelche element 5a of the temperature control device 5. That is, in the landing mode, the processes of steps S31 to S35 of FIG. 5 may be executed.
  • the temperature can be adjusted so that the battery temperature T becomes the charge permission temperature T3, or at least approaches the charge permission temperature T3.
  • the unmanned aerial vehicle 1 lands, it becomes possible to shift to the charging mode M4 more quickly.
  • the temperature control control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T is maintained at the flight movement temperature T2.
  • the battery temperature T during flight movement can be maintained at an appropriate temperature.
  • the temperature control of the battery 4 in the flight movement standby mode M1, the flight movement standby mode M2, and the charge standby mode M3 has been described.
  • the temperature control of the battery 4 may also be executed in the charge mode M4.
  • the temperature control unit 25 may adjust the temperature so that the battery temperature T is maintained at a preset charge temperature by the Pelche element 5a of the temperature control device 5.
  • the charging temperature is preset as a temperature at which it is possible to suppress a decrease in the life of the battery 4 or a decrease in power efficiency due to the battery temperature T being too low or too high during charging.
  • the charging temperature may be, for example, the same temperature as the charging permitted temperature T3.
  • the charging temperature is, for example, 5 ° C. or higher and 40 ° C. or lower.
  • the term “to be maintained” here has the same meaning as "to be maintained” at the above-mentioned battery temperature T during flight movement.
  • the above-mentioned flight permission temperature T1, flight movement temperature T2, charging permission temperature T3, and charging temperature do not have to be fixed values.
  • the flight permit temperature T1, the flight transfer temperature T2, the charge permit temperature T3, and the charge temperature may be appropriately changed based on the information of the ambient environment.
  • Information on the surrounding environment is, for example, meteorological information, outside air temperature, and the like.
  • the weather information may be input in advance before the flight of the unmanned aerial vehicle 1A starts, or the unmanned aerial vehicle 1A may acquire the weather information by communication from the outside.
  • the outside air temperature may be acquired by, for example, a temperature sensor attached to the unmanned aerial vehicle 1A.
  • the relationship between the flight permission temperature T1, the flight transfer temperature T2, the charge permission temperature T3, and the charging temperature and the information of the ambient environment is based on experiments, analyzes, or the actual value of the battery temperature T in the actual machine, etc. It should be specified in. Further, for example, the flight permit temperature T1, the flight transfer temperature T2, the charge permit temperature T3, and the charge temperature may be appropriately changed according to the type of the battery 4, the usage state in consideration of the aging deterioration of the battery 4, and the like. ..
  • the temperature acquisition unit 24 acquires the internal resistance value of the battery 4 and calculates the battery temperature T based on the internal resistance value.
  • the battery temperature T can be calculated accurately for each unmanned aerial vehicle 1A because it is not affected by the external environment and the information from the target battery 4, that is, the internal resistance value is used. .. Further, the battery temperature T can be calculated in both the high temperature and low temperature cases. Further, it is not necessary to separately provide a temperature sensor for detecting the battery temperature T, and it is possible to prevent an increase in the number of parts.
  • FIG. 6 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to a modified example of the first embodiment.
  • the unmanned aerial vehicle 1B shown in FIG. 6 includes a built-in thermistor 7 as a temperature sensor built in the temperature control device 5 and a control device 100B.
  • the built-in thermistor 7 detects the temperature of the Pelche element 5a and outputs it to the temperature acquisition unit 24 of the control device 100B.
  • the temperature acquisition unit 24 of the control device 100B calculates the battery temperature T based on the temperature of the Pelche element 5a input from the built-in thermistor 7. That is, since the heat from the battery 4 is transferred to the Pelche element 5a provided in contact with the battery 4, the estimated value of the battery temperature T can be calculated based on the temperature of the Pelche element 5a.
  • the calculation of the battery temperature T can be performed by prescribing the relationship between the temperature of the Pelche element 5a and the battery temperature T by a function or the like based on an experiment, analysis, or an actual value of the temperature of the Pelche element 5a in an actual machine. good.
  • the estimated value of the battery temperature T can be calculated based on the temperature of the Pelche element 5a regardless of the variation in the internal resistance value for each battery 4, and it is appropriate for each unmanned aerial vehicle 1B. It is possible to adjust the battery temperature T. Further, by detecting the temperature of the Pelche element 5a itself by the built-in thermistor 7, the cooling and heating by the Pelche element 5a can be controlled more finely. As a result, it is possible to reduce the risk of damage to the battery due to excessive heating.
  • FIG. 7 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • the unmanned aerial vehicle 1C according to another modification includes an external thermistor 8 as a temperature sensor for detecting the outside air temperature and a control device 100C.
  • the external thermistor 8 detects the outside air temperature around the unmanned aerial vehicle 1 and outputs it to the temperature acquisition unit 24 of the control device 100C.
  • the temperature acquisition unit 24 of the control device 100C acquires the outside air temperature input from the external thermistor 8 and calculates an estimated value of the battery temperature T based on the acquired outside air temperature. At this time, the temperature acquisition unit 24 acquires the current altitude information from the information on the current position of the unmanned aerial vehicle 1 calculated by the current position acquisition unit 22 based on the signal from the GPS receiver 6. Then, it is preferable that the temperature acquisition unit 24 corrects the estimated value of the battery temperature T based on the altitude. For the calculation and correction of the battery temperature T, the relationship between the outside air temperature, the altitude, and the battery temperature T may be defined in advance by a function or the like based on an experiment, an analysis, or an actual value of the battery temperature T in an actual machine. ..
  • the battery temperature T can be calculated with a simple configuration without incorporating a temperature sensor in the temperature control device 5. Further, by correcting the battery temperature T using the altitude information among the GPS information, the calculation accuracy can be improved as compared with the case where the battery temperature T is calculated only by the outside air temperature while utilizing the GPS information. Can be done.
  • FIG. 8 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • the unmanned aerial vehicle 1D according to another modification includes a control device 100D.
  • the control device 100D includes a weather information acquisition unit 26.
  • the weather information acquisition unit 26 acquires weather information in the flight path of the unmanned aerial vehicle 1D from the outside by communication and outputs it to the temperature acquisition unit 24.
  • the weather information may be acquired so as to be updated at any time when the unmanned aerial vehicle 1D is in operation.
  • the temperature acquisition unit 24 of the control device 100D calculates the battery temperature T based on the outside air temperature and the like in the flight path of the unmanned aerial vehicle 1 included in the acquired weather information.
  • the weather information includes information such as outside air temperature, weather, and wind speed.
  • the calculation of the battery temperature T is performed by experimenting, analyzing, or based on the actual value of the battery temperature T in the actual machine, etc. It should be specified in.
  • the battery temperature T can be calculated with the same program simply by acquiring and updating the weather information. Further, it is not necessary to separately provide a temperature sensor, and it is possible to prevent an increase in the number of parts.
  • the configurations of the unmanned aerial vehicles 1A, 1B, 1C, and 1D may be combined. That is, when the temperature acquisition unit 24 acquires the battery temperature T, it is calculated based on the internal resistance value of the battery 4, calculated based on the temperature of the Pelche element 5a detected by the built-in thermistor 7, and the outside air temperature detected by the external thermistor 8. And some of the calculations based on altitude and the calculations based on weather information may be used in combination, or all of them may be used in combination.
  • FIG. 9 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • the battery 4 and the Pelche element 5a are attached to the outer surface of the main body 2.
  • the battery 4 is fixed to the top plate of the main body 2, and the Pelche element 5a is fixed on the battery 4 by the surface (the other main surface) 51a. That is, the battery 4 is located between the main body 2 and the Pelche element 5a.
  • the rotary blade 3a is located on the side opposite to the surface 51a fixed to the battery 4.
  • the air flow generated by the rotary blade 3a flows around the perche element 5a, so that heat exchange of the perche element 5a can be promoted. It is also possible to cool the battery 4 by the air flow generated by the rotary blade 3a. Further, since the battery 4 and the Pelche element 5a are located outside the main body 2, the battery 4 and the Pelche element 5a can be cooled by the air flow around the unmanned aerial vehicle 1E. Therefore, it is possible to promote the cooling of the battery 4 and the Pelche element 5a itself, particularly in modes such as the flight movement mode M2, the charge standby mode M3, and the charge mode M4, in which the battery 4 is expected to be cooled.
  • the battery 4 and the Pelche element 5a may be fixed to the bottom plate of the main body 2 or may be fixed to the side surface.
  • the unmanned aerial vehicle 1E is provided with heat radiation fins 30 fixed to the surface (one main surface) 52a of the Pelche element 5a.
  • the heat radiation fin 30 is a member for improving heat dissipation by increasing the surface area.
  • the heat radiation fin 30 has a plurality of rod-shaped or plate-shaped protrusions, for example.
  • the heat radiating fin 30 may be a member having a relatively high heat radiating property such as iron, aluminum or silver.
  • the heat radiation fin 30 can be reduced in weight by containing, for example, aluminum.
  • the heat radiating fin 30 may be fixed to the surface of the Pelche element, for example, via an adhesive member having high thermal conductivity.
  • the temperature of the battery 4 can be adjusted in a wider temperature range. Also in this case, it is possible to promote the cooling of the battery 4 and the Pelche element 5a itself, particularly in the modes in which the battery 4 is expected to be cooled, such as the flight movement mode M2, the charge standby mode M3, and the charge mode M4. ..
  • the heat radiation fin 30 may be applied even when the Pelche element 5a is built in the main body 2.
  • FIG. 10 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment.
  • the control device 100A is in contact with the surface 52a of the Pelche element 5a opposite to the surface 51a fixed to the battery 4.
  • the surface 52a is endothermic, so that the heat generated from the control device 100A can be absorbed to cool the control device 100A. ..
  • the flight movement standby mode M1 which is supposed to mainly heat the battery 4, the cooling of the control device 100 can be promoted.
  • FIG. 11 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the second embodiment.
  • FIG. 12 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the second embodiment.
  • the unmanned aerial vehicle 1G according to the second embodiment includes a spare battery 40 in addition to the battery 4.
  • the unmanned aerial vehicle 1G is equipped with a temperature control device 5G.
  • the unmanned aerial vehicle 1G includes a control device 100G according to the second embodiment. Since the other configurations of the unmanned aerial vehicle 1G are the same as those of the unmanned aerial vehicle 1A, the description thereof is omitted, and the same configurations are designated by the same reference numerals.
  • the configuration described in the unmanned aerial vehicle 1B, 1C, 1D, 1E, and 1F may be applied to the unmanned aerial vehicle 1G according to the second embodiment.
  • the spare battery 40 is a rechargeable and dischargeable secondary battery mounted on the unmanned aerial vehicle 1G separately from the battery 4.
  • the spare battery 40 is connected to various devices of the unmanned aerial vehicle 1G and is a spare power source for supplying the power required for the various devices.
  • the spare battery 40 may be the same type of battery as the battery 4, or may be a different type of battery.
  • the spare battery 40 can be connected to an external power source via a connector 9 (see FIG. 3), and charges power from the external power source via a charging circuit for a spare battery (not shown). can do.
  • the temperature control device 5G has at least one Pelche element 5b in addition to the Pelche element 5a. As shown in FIG. 11, the Pelche element 5b is arranged in contact with the spare battery 40, and cools or heats the spare battery 40 to adjust the temperature. Since the function and arrangement configuration of the Pelche element 5b are the same as those of the Pelche element 5a, the description thereof will be omitted.
  • the control device 100G includes an overall control unit 23G instead of the overall control unit 23, and a temperature control unit 25G instead of the temperature control unit 25.
  • the overall control unit 23G switches the power source to the use of the spare battery 40, and each device of the unmanned aerial vehicle 1A.
  • the temperature control unit 25G acquires prior information that the battery 4 is in a state unsuitable for use, the temperature control unit 25G controls the Pelche element 5a for the spare battery 40 before switching to the use of the spare battery 40 to control the spare battery 40. Adjust the temperature in advance.
  • FIG. 13 is a flowchart showing an example of processing when the power source is a spare battery in the unmanned aerial vehicle according to the second embodiment.
  • the process shown in FIG. 13 is repeatedly executed by the overall control unit 23G in parallel with the process shown in FIG. 4 while the flight movement mode M2 is being executed.
  • the overall control unit 23G determines whether or not the battery 4 is in a state unsuitable for use.
  • a state in which the battery 4 is not suitable for use means that the charge rate of the battery 4 has dropped to a predetermined charge rate or less, the battery 4 has generated heat to a specified temperature or higher, and the expansion rate of the battery 4 has been increased. Includes the fact that the expansion rate is equal to or higher than the specified expansion rate.
  • the expansion coefficient of the battery 4 can be calculated based on, for example, a value detected by a strain gauge sensor (not shown).
  • step S42 the power source to be used is switched to the spare battery 40, and the process of this routine is repeated.
  • the overall control unit 23G determines that the battery 4 is not in a state unsuitable for use (No in step S41)
  • the overall control unit 23G sets the battery 4 to be used as a power source in step S43, and processes this routine. repeat.
  • the spare battery 40 may be continuously used until the movement along the flight path of the unmanned aerial vehicle 1A is completed.
  • FIG. 14 is a flowchart showing an example of temperature control of the spare battery.
  • the process shown in FIG. 14 is repeatedly executed by the temperature control unit 25G while the flight movement mode M2 is being executed and the battery 4 is being used as the power source.
  • the process shown in FIG. 14 is executed in parallel with the process shown in FIG.
  • the temperature control unit 25 executes the process shown in FIG. 5 by using the Pelche element 5b for controlling the temperature of the spare battery 40.
  • the temperature control unit 25G acquires advance information from the overall control unit 23G that makes the battery 4 unsuitable for use.
  • "preliminary information that the battery 4 becomes unsuitable for use” means that the above-mentioned battery 4 becomes unsuitable for use and it is necessary to switch to the use of the spare battery 40 in advance. Information to be transmitted. Therefore, the prior information is obtained from the overall control unit 23G to the temperature control unit when each monitoring target for the battery 4 becomes a threshold value looser than each threshold value when the battery 4 is in a state unsuitable for use. It is output to 25G.
  • the overall control unit 23G sets the battery temperature T of the battery 4 to a predetermined value lower than the above-mentioned specified temperature.
  • the prior information is output to the temperature control unit 25G.
  • the temperature control unit 25G temporarily terminates this routine and executes it from the beginning again.
  • the temperature control unit 25G acquires the temperature of the spare battery 40 in step S52.
  • the temperature of the spare battery 40 is acquired by the temperature acquisition unit 24 by the same method as the battery temperature T of the battery 4, and is output to the temperature control unit 25G.
  • the temperature control unit 25G controls the Pelche element 5b so that the temperature of the spare battery 40 becomes the flight permission temperature T1.
  • the temperature control unit 25G repeatedly executes the processes of steps S51 to S53 while the battery 4 is in use.
  • the temperature control unit 25G acquires the prior information that the battery 4 is in a state unsuitable for use
  • the Pelche element 5b for the spare battery 40 is controlled to adjust the temperature of the spare battery 40 in advance.
  • the Pelche element 5b may be controlled so that the temperature of the spare battery 40 becomes a predetermined temperature other than the flight permission temperature T1. That is, the temperature may be such that when switching to the spare battery 40 occurs during the execution of the flight movement mode M2, it is possible to suppress a decrease in the life of the spare battery 40 or a decrease in power efficiency. ..
  • the "battery 4 is not suitable for use"
  • the temperature control unit 25G acquires the prior information and the time when the battery 4 becomes "unsuitable for use”
  • the fact that the temperature of the battery 40 reaches the flight permission temperature T1 may be a condition for switching from the battery 4 to the spare battery 40.
  • the Pelche element 5a may be electrically connected to either the battery 4 or various devices mounted on the main body 2.
  • the Pelche element 5a can generate power by the Seebeck effect as an effect opposite to the Pelche effect. Therefore, the Pelche element 5a can generate electricity by utilizing the difference between the battery temperature T and the temperature of the ambient environment of the Pelche element 5a.
  • the electric power generated by the Pelche element 5a can be charged to the battery 4 or supplied to various devices such as the flight device 3, so that the unmanned aerial vehicle 1A can be flown for a longer period of time.
  • the power generation by the Pelche element 5a is performed when the temperature of the battery 4 is not controlled by the Pelche element 5a.
  • the mode switching between the power generation by the Pelche element 5a and the temperature control of the battery 4 may be performed according to conditions such as the battery temperature T, the temperature of the Pelche element 5a, the outside air temperature, the flight time, and the flight distance.
  • the mode switching between the power generation by the Pelche element 5a and the temperature control of the battery 4 is finely executed. be able to. The same may apply to the Pelche element 5b and the spare battery 40 described in the second embodiment.

Abstract

The purpose of the present invention is to make adjustment of a battery installed in an unmanned aircraft to a temperature appropriate to operation of the unmanned aircraft and to further achieve efficient operation of the unmanned aircraft. This control device for an unmanned aircraft is provided with a temperature acquisition unit that acquires a battery temperature of a battery of the unmanned aircraft and a temperature control unit that controls a Peltier element (temperature adjustment device) that performs temperature adjustment of the battery, the temperature control unit controlling the Peltier element such that a battery temperature T acquired by the temperature acquisition unit becomes a target temperature set according to a plurality of control modes of the unmanned aircraft.

Description

無人航空機の制御装置、無人航空機、無人航空機の制御方法およびプログラムUnmanned aerial vehicle controls, unmanned aerial vehicles, unmanned aerial vehicle control methods and programs
 本発明は、無人航空機の制御装置、無人航空機、無人航空機の制御方法およびプログラムに関する。 The present invention relates to a control device for an unmanned aerial vehicle, an unmanned aerial vehicle, a control method and a program for the unmanned aerial vehicle.
 従来、無人航空機に搭載されたバッテリの温度を調整するための技術が知られている。例えば、特許文献1には、無人機用バッテリにペルチェ素子を取り付ける冷却装置が記載されている。この冷却装置では、ペルチェ素子を用いて、高温環境時には無人機用バッテリを冷却し、低温環境時には無人機用バッテリを加熱する。 Conventionally, a technique for adjusting the temperature of a battery mounted on an unmanned aerial vehicle is known. For example, Patent Document 1 describes a cooling device for attaching a Pelche element to a battery for an unmanned aerial vehicle. In this cooling device, a Pelche element is used to cool the unmanned aerial vehicle battery in a high temperature environment and heat the unmanned aerial vehicle battery in a low temperature environment.
中国実用新案第207265189号明細書China Utility Model No. 20725189
 本発明にかかる無人航空機の制御装置は、無人航空機のバッテリのバッテリ温度を取得する温度取得部と、前記バッテリの温度調整を行うペルチェ素子を制御する温調制御部と、を備え、前記温調制御部は、前記温度取得部により取得された前記バッテリ温度が前記無人航空機の複数の制御モードに応じて設定される温度となるように前記ペルチェ素子を制御する。 The control device for an unmanned aerial vehicle according to the present invention includes a temperature acquisition unit that acquires the battery temperature of the battery of the unmanned aerial vehicle and a temperature control unit that controls a Pelche element that adjusts the temperature of the battery. The control unit controls the Pelche element so that the battery temperature acquired by the temperature acquisition unit becomes a temperature set according to a plurality of control modes of the unmanned aerial vehicle.
 また、本発明にかかる無人航空機は、無人航空機本体と、前記無人航空機本体に搭載されたバッテリと、前記バッテリの温度調整を行うペルチェ素子と、前記ペルチェ素子を制御する上記無人航空機の制御装置と、を備える。 Further, the unmanned aerial vehicle according to the present invention includes an unmanned aerial vehicle main body, a battery mounted on the unmanned aerial vehicle main body, a Pelche element for adjusting the temperature of the battery, and a control device for the unmanned aerial vehicle for controlling the Pelche element. , Equipped with.
 また、本発明にかかる無人航空機の制御方法は、無人航空機が複数の制御モードのうち、いずれの制御モードで制御されているか判定するステップと、無人航空機のバッテリのバッテリ温度を取得するステップと、前記バッテリ温度が前記無人航空機の複数の前記制御モードに応じて設定される温度となるように、前記バッテリの温度調整を行うペルチェ素子を制御するステップと、を備える。 Further, the method for controlling an unmanned aerial vehicle according to the present invention includes a step of determining which control mode the unmanned aerial vehicle is controlled in, a step of acquiring the battery temperature of the battery of the unmanned aerial vehicle, and a step of acquiring the battery temperature of the unmanned aerial vehicle. The step comprises controlling the Pelche element that adjusts the temperature of the battery so that the battery temperature becomes a temperature set according to the plurality of control modes of the unmanned aerial vehicle.
 また、本発明にかかるプログラムは、無人航空機が複数の制御モードのうち、いずれの制御モードで制御されているか判定するステップと、無人航空機のバッテリのバッテリ温度を取得するステップと、前記バッテリ温度が前記無人航空機の複数の前記制御モードに応じて設定される温度となるように、前記バッテリの温度調整を行うペルチェ素子を制御するステップと、をコンピュータに実行させる。 Further, in the program according to the present invention, a step of determining which control mode the unmanned aerial vehicle is controlled in among a plurality of control modes, a step of acquiring the battery temperature of the battery of the unmanned aerial vehicle, and the battery temperature are set. A computer is made to perform a step of controlling a Pelche element that adjusts the temperature of the battery so that the temperature is set according to the plurality of control modes of the unmanned aerial vehicle.
図1は、第一実施形態にかかる無人航空機の一例を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the first embodiment. 図2は、第一実施形態にかかる無人航空機および無人航空機の制御装置の一例を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the first embodiment. 図3は、無人航空機の各制御モードを模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing each control mode of the unmanned aerial vehicle. 図4は、無人航空機が各制御モードで制御されるときの処理の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of processing when the unmanned aerial vehicle is controlled in each control mode. 図5は、温調制御の処理の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the temperature control control process. 図6は、第一実施形態の変形例にかかる無人航空機の一例を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to a modified example of the first embodiment. 図7は、第一実施形態の他の変形例にかかる無人航空機の一例を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. 図8は、第一実施形態の他の変形例にかかる無人航空機の一例を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. 図9は、第一実施形態の他の変形例にかかる無人航空機の一例を模式的に示す説明図である。FIG. 9 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. 図10は、第一実施形態の他の変形例にかかる無人航空機の一例を模式的に示す説明図である。FIG. 10 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. 図11は、第二実施形態にかかる無人航空機の一例を模式的に示す説明図である。FIG. 11 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the second embodiment. 図12は、第二実施形態にかかる無人航空機および無人航空機の制御装置の一例を示す概略構成図である。FIG. 12 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the second embodiment. 図13は、第二実施形態にかかる無人航空機において、電力源を予備バッテリとする際の処理の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of processing when the power source is a spare battery in the unmanned aerial vehicle according to the second embodiment. 図14は、予備バッテリの温調制御の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of temperature control of the spare battery.
 無人航空機に搭載されるバッテリは、例えば飛行前、飛行中、充電前、充電中といった無人航空機の運用状態によって適切な温度が変わる。しかしながら、特許文献1に記載の装置では、無人航空機の周囲環境の温度によって冷却、加熱を行うものの、無人航空機の運用に応じた温度調整については何ら開示されておらず、運用に応じた温度調整の具体的な手段が必要である。そのため、上記に鑑みてなされたものであって、無人航空機に搭載されるバッテリを無人航空機の運用に応じた適切な温度に調整し、ひいては無人航空機の効率的な運用を図ることを目的とする。 The appropriate temperature of the battery mounted on the unmanned aerial vehicle changes depending on the operating conditions of the unmanned aerial vehicle, such as before flight, during flight, before charging, and during charging. However, although the apparatus described in Patent Document 1 cools and heats according to the temperature of the ambient environment of the unmanned aerial vehicle, it does not disclose any temperature adjustment according to the operation of the unmanned aerial vehicle, and the temperature adjustment according to the operation is not disclosed. Specific means are needed. Therefore, it was made in view of the above, and the purpose is to adjust the battery mounted on the unmanned aerial vehicle to an appropriate temperature according to the operation of the unmanned aerial vehicle, and to achieve the efficient operation of the unmanned aerial vehicle. ..
 本発明にかかる無人航空機の制御装置、無人航空機、無人航空機の制御方法およびプログラムは、無人航空機に搭載されるバッテリを無人航空機の運用に応じた適切な温度に調整し、ひいては無人航空機の効率的な運用を図ることができる、という効果を奏する。 The unmanned aerial vehicle control device, unmanned aerial vehicle, unmanned aerial vehicle control method and program according to the present invention adjust the battery mounted on the unmanned aerial vehicle to an appropriate temperature according to the operation of the unmanned aerial vehicle, and thus the efficiency of the unmanned aerial vehicle. It has the effect of being able to carry out various operations.
 以下に、本発明にかかる無人航空機の制御装置、無人航空機、無人航空機の制御方法およびプログラムの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。 Hereinafter, the control device for the unmanned aerial vehicle, the unmanned aerial vehicle, the control method for the unmanned aerial vehicle, and the embodiment of the program according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
[第一実施形態]
 図1は、第一実施形態にかかる無人航空機の一例を模式的に示す説明図である。図2は、第一実施形態にかかる無人航空機および無人航空機の制御装置の一例を示す概略構成図である。無人航空機1Aは、例えばドローンであり、空中において前進、後進、旋回、ホバリングといった動作を行う。無人航空機1Aは、無人により飛行する小型の機体でさえあればよく、ヘリコプター等であってもよい。本実施形態では、無人航空機1Aは、ユーザーにより予め設定された飛行経路に沿って自動飛行を行う。なお、無人航空機1Aは、図示しない操縦装置を介して、ユーザーによる手動操縦に従って飛行を行ってもよい。
[First Embodiment]
FIG. 1 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the first embodiment. FIG. 2 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the first embodiment. The unmanned aerial vehicle 1A is, for example, a drone, and performs operations such as forward movement, reverse movement, turning, and hovering in the air. The unmanned aerial vehicle 1A may be a helicopter or the like as long as it is a small aircraft that flies unmanned. In the present embodiment, the unmanned aerial vehicle 1A automatically flies along a flight path preset by the user. The unmanned aerial vehicle 1A may fly according to manual control by the user via a control device (not shown).
 無人航空機1Aは、図2に示すように、無人航空機本体2(以下、単に「本体2」と称する)と、飛行装置3と、バッテリ4と、温調装置5と、GPS(Global Positioning System)受信機6と、制御装置100Aとを備える。飛行装置3の一部、バッテリ4、温調装置5、GPS受信機6および制御装置100Aは、無人航空機1Aの本体部としての本体2に内蔵される。 As shown in FIG. 2, the unmanned aerial vehicle 1A includes an unmanned aerial vehicle main body 2 (hereinafter, simply referred to as “main body 2”), a flight device 3, a battery 4, a temperature control device 5, and a GPS (Global Positioning System). It includes a receiver 6 and a control device 100A. A part of the flight device 3, the battery 4, the temperature control device 5, the GPS receiver 6, and the control device 100A are built in the main body 2 as the main body part of the unmanned aerial vehicle 1A.
 飛行装置3は、複数の回転翼3a(図1参照)と、回転翼3aの動力源としての図示しないモータと、モータからの動力を回転翼3aに伝達する図示しない伝達機構等を含んでいる。飛行装置3の図示しないモータ、伝達機構等は本体2に内蔵されており、複数の回転翼3aが本体2の外面に取り付けられる。飛行装置3は、制御装置100Aにより駆動制御され、複数の回転翼3aにより無人航空機1Aを飛行させるための揚力および推進力を発生させる。 The flight device 3 includes a plurality of rotor blades 3a (see FIG. 1), a motor (not shown) as a power source for the rotor blades 3a, a transmission mechanism (not shown) for transmitting power from the motor to the rotor blades 3a, and the like. .. A motor, a transmission mechanism, etc. (not shown) of the flight device 3 are built in the main body 2, and a plurality of rotary blades 3a are attached to the outer surface of the main body 2. The flight device 3 is driven and controlled by the control device 100A, and the plurality of rotary wings 3a generate lift and propulsion force for flying the unmanned aerial vehicle 1A.
 バッテリ4は、例えば飛行装置3のモータや温調装置5、GPS受信機6、制御装置100Aといった無人航空機1Aの各種装置に接続されており、各種装置に必要とされる電力を供給するための電力源である。バッテリ4は、充放電可能な二次電池であり、本体2に内蔵される。無人航空機1Aは、コネクタ9(図3参照)を介して外部電源に接続可能とされており、図示しない充電用回路を介して外部電源からの電力をバッテリ4に充電する。 The battery 4 is connected to various devices of the unmanned aerial vehicle 1A such as the motor of the flight device 3, the temperature control device 5, the GPS receiver 6, and the control device 100A, and is used to supply the electric power required for the various devices. It is a power source. The battery 4 is a rechargeable and dischargeable secondary battery, and is built in the main body 2. The unmanned aerial vehicle 1A can be connected to an external power source via the connector 9 (see FIG. 3), and charges the battery 4 with electric power from the external power source via a charging circuit (not shown).
 温調装置5は、バッテリ4を冷却または加熱して温度調節を行うための装置であり、ペルチェ素子5aを含む。ペルチェ素子5aは、直流電流の供給によりペルチェ効果を発生させて冷却および加熱の双方を行うことができる半導体素子である。温調装置5は、バッテリ4に当接して配置される少なくとも一つのペルチェ素子5aを含み、ペルチェ素子5aに直流電流を適宜供給することで、バッテリ4を冷却または加熱して温度調整を行う。ペルチェ素子5aは、例えばバッテリ4の表面に熱伝導性が高い接着部材を介して固定される。また、例えばバッテリ4が筐体内に挿入される場合には、ペルチェ素子5aは、当該筐体の表面に熱伝導性が高い接着部材を介して固定されてもよい。 The temperature control device 5 is a device for cooling or heating the battery 4 to control the temperature, and includes a Pelche element 5a. The perche element 5a is a semiconductor element capable of generating a perche effect by supplying a direct current and performing both cooling and heating. The temperature control device 5 includes at least one Pelche element 5a arranged in contact with the battery 4, and by appropriately supplying a direct current to the Pelche element 5a, the battery 4 is cooled or heated to adjust the temperature. The Pelche element 5a is fixed to the surface of the battery 4, for example, via an adhesive member having high thermal conductivity. Further, for example, when the battery 4 is inserted into the housing, the Pelche element 5a may be fixed to the surface of the housing via an adhesive member having high thermal conductivity.
 温調装置5は、例えばペルチェ素子5aに供給する電流量を調整することで、ペルチェ素子5aによるバッテリ4の冷却、加熱の程度を調整し、バッテリ4の温度調整を行う。ペルチェ素子5aに供給される電力は、バッテリ4から供給されるものであってもよいし、バッテリ4とは別の電力供給機器から供給されるものであってもよい。別の電力供給機器は、無人航空機1Aに搭載されてもよいし、例えば無人航空機1Aが充電時や飛行前の状態で地上に位置するときには、外部電源であってもよい。ペルチェ素子5aは電流の極性を逆転させることで加熱および冷却を切り替えることができるので、他の加熱手段および冷却手段を用いる場合と比較して、無人航空機を薄型化および軽量化することができる。なお、ペルチェ素子による冷却および加熱は、電流の極性を逆転させることで行ってもよいし、冷却用として吸熱面がバッテリ4に当接したペルチェ素子と、加熱用として放熱面がバッテリ4にペルチェ素子とを用いてもよい。 The temperature control device 5 adjusts the degree of cooling and heating of the battery 4 by the Pelche element 5a by adjusting the amount of current supplied to the Pelche element 5a, for example, and adjusts the temperature of the battery 4. The electric power supplied to the Pelche element 5a may be supplied from the battery 4 or may be supplied from a power supply device different from the battery 4. Another power supply device may be mounted on the unmanned aerial vehicle 1A, or may be an external power source, for example, when the unmanned aerial vehicle 1A is located on the ground during charging or before flight. Since the Pelche element 5a can switch between heating and cooling by reversing the polarity of the electric current, the unmanned aerial vehicle can be made thinner and lighter than the case where other heating means and cooling means are used. Cooling and heating by the Pelche element may be performed by reversing the polarity of the current, and the Pelche element whose endothermic surface is in contact with the battery 4 for cooling and the heat dissipation surface of the battery 4 for heating are Pelche. An element may be used.
 GPS受信機6は、GPS衛星からの所定の周波数帯の電波信号を受信する。GPS受信機6は、受信した電波信号の復調処理を行って、処理後の信号を制御装置100Aに出力する。 The GPS receiver 6 receives a radio signal in a predetermined frequency band from a GPS satellite. The GPS receiver 6 performs demodulation processing of the received radio wave signal and outputs the processed signal to the control device 100A.
 制御装置100Aは、記憶部10と、制御部20とを有する。記憶部10は、制御部20の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read Only Memory)のような主記憶装置と、HDD(Hard Disk Drive)などの外部記憶装置とのうち、少なくとも1つ含む。記憶部10は、各種プログラムに加えて、地図情報と、地図上での無人航空機1Aの飛行経路の情報とを記憶している。飛行経路は、地図上での無人航空機1Aの出発地点および目標地点の情報を含み、ユーザーにより予め作成され、図示しないインターフェースを介して制御装置100Aに入力される。 The control device 100A has a storage unit 10 and a control unit 20. The storage unit 10 is a memory that stores various information such as calculation contents and programs of the control unit 20, and is, for example, a RAM (Random Access Memory), a main storage device such as a ROM (Read Only Memory), and an HDD (Attachment 10). Includes at least one of external storage devices such as Hard Disk Drive). In addition to various programs, the storage unit 10 stores map information and information on the flight path of the unmanned aerial vehicle 1A on the map. The flight path includes information on the starting point and the target point of the unmanned aerial vehicle 1A on the map, is created in advance by the user, and is input to the control device 100A via an interface (not shown).
 制御部20は、演算装置、すなわちCPU(Central Processing Unit)である。制御部20は、図2に示すように、飛行経路取得部21と、現在位置取得部22と、全体制御部23と、温度取得部24と、温調制御部25とを有する。制御部20は、記憶部10からプログラム(ソフトウェア)を読み出して実行することで、飛行経路取得部21、現在位置取得部22、全体制御部23、温度取得部24および温調制御部25を実現し、各種処理を実行する。 The control unit 20 is an arithmetic unit, that is, a CPU (Central Processing Unit). As shown in FIG. 2, the control unit 20 includes a flight path acquisition unit 21, a current position acquisition unit 22, an overall control unit 23, a temperature acquisition unit 24, and a temperature control unit 25. The control unit 20 realizes a flight path acquisition unit 21, a current position acquisition unit 22, an overall control unit 23, a temperature acquisition unit 24, and a temperature control unit 25 by reading a program (software) from the storage unit 10 and executing the program (software). And execute various processes.
 飛行経路取得部21は、記憶部10に記憶された地図情報と、地図上での無人航空機1Aの飛行経路の情報とを取得し、全体制御部23へと出力する。なお、飛行経路は、記憶部10に予め記憶されていなくともよく、外部装置との通信により飛行経路取得部21が取得するものとしてもよい。現在位置取得部22は、GPS受信機6からの信号に基づいて無人航空機1Aの現在位置を検出し、全体制御部23へと出力する。 The flight route acquisition unit 21 acquires the map information stored in the storage unit 10 and the flight route information of the unmanned aerial vehicle 1A on the map, and outputs the information to the overall control unit 23. The flight path may not be stored in advance in the storage unit 10, and may be acquired by the flight path acquisition unit 21 by communication with an external device. The current position acquisition unit 22 detects the current position of the unmanned aerial vehicle 1A based on the signal from the GPS receiver 6 and outputs it to the overall control unit 23.
 全体制御部23は、無人航空機1Aを複数の制御モードで制御する。無人航空機1Aの複数の制御モードは、飛行移動待機モードM1、飛行移動モードM2、充電待機モードM3、充電モードM4を含む(図3参照)。各制御モードの詳細については後述するが、例えば制御モードが飛行移動モードM2である場合、全体制御部23は、地図情報、飛行経路および現在位置に基づいて、無人航空機1Aが飛行経路に沿って出発地点から目標地点へと飛行移動するように、飛行装置3を駆動制御する。 The overall control unit 23 controls the unmanned aerial vehicle 1A in a plurality of control modes. The plurality of control modes of the unmanned aerial vehicle 1A include a flight movement standby mode M1, a flight movement mode M2, a charge standby mode M3, and a charge mode M4 (see FIG. 3). The details of each control mode will be described later. For example, when the control mode is the flight movement mode M2, the overall control unit 23 causes the unmanned aerial vehicle 1A to follow the flight path based on the map information, the flight path, and the current position. The flight device 3 is driven and controlled so as to fly and move from the starting point to the target point.
 温度取得部24は、バッテリ4のバッテリ温度Tを取得する。本実施形態では、温度取得部24は、図示しないセンサで検出されるバッテリ4の内部抵抗値を取得し、取得した内部抵抗値に基づいてバッテリ4のバッテリ温度Tを算出することにより取得する。温度取得部24は、算出したバッテリ温度Tを温調制御部25へと出力する。 The temperature acquisition unit 24 acquires the battery temperature T of the battery 4. In the present embodiment, the temperature acquisition unit 24 acquires the internal resistance value of the battery 4 detected by a sensor (not shown), and calculates the battery temperature T of the battery 4 based on the acquired internal resistance value. The temperature acquisition unit 24 outputs the calculated battery temperature T to the temperature control unit 25.
 温調制御部25は、バッテリ4の温度調整を行うように温調装置5を制御する。温調制御部25は、温度取得部24から現時点のバッテリ温度Tを取得する。また、温調制御部25は、全体制御部23から無人航空機1Aの現在の制御モードがいずれのモードであるかの情報を取得する。温調制御部25は、取得したバッテリ温度Tと、無人航空機1Aの現在の制御モードとに基づいて、バッテリ温度Tが制御モードに応じて設定される目標温度Ttとなるように温調装置5を制御する。 The temperature control unit 25 controls the temperature control device 5 so as to adjust the temperature of the battery 4. The temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24. Further, the temperature control unit 25 acquires information on which mode the current control mode of the unmanned aerial vehicle 1A is from the overall control unit 23. The temperature control unit 25 is a temperature control device 5 so that the battery temperature T becomes a target temperature Tt set according to the control mode based on the acquired battery temperature T and the current control mode of the unmanned aerial vehicle 1A. To control.
 次に、第一実施形態の要部について説明する。まず、図3および図4を参照しながら、無人航空機1Aの制御モードについて説明する。図3は、無人航空機の各制御モードを模式的に示す説明図である。図4は、無人航空機が各制御モードで制御されるときの処理の一例を示すフローチャートである。図4に示す処理は、ユーザーにより飛行経路に沿った飛行が指示されると、全体制御部23において実行される。 Next, the main parts of the first embodiment will be described. First, the control mode of the unmanned aerial vehicle 1A will be described with reference to FIGS. 3 and 4. FIG. 3 is an explanatory diagram schematically showing each control mode of the unmanned aerial vehicle. FIG. 4 is a flowchart showing an example of processing when the unmanned aerial vehicle is controlled in each control mode. The process shown in FIG. 4 is executed by the overall control unit 23 when the user is instructed to fly along the flight path.
 全体制御部23は、ステップS1として、飛行移動待機モードで無人航空機1Aを制御する。飛行移動待機モードM1は、図3に示すように、飛行経路に沿った無人航空機1Aの飛行移動を開始する前に、無人航空機1Aを待機させる制御モードである。飛行移動待機モードM1は、飛行移動モードM2への移行への許可条件が成立するまで継続される。なお、飛行移動待機モードM1は、出発地点とは異なる場所で行われた後、ユーザーにより無人航空機1Aを出発地点に移動させてもよい。本実施形態において、飛行移動待機モードM1は、無人航空機1Aを空中で一時的にホバリングさせる状態も含むものとする。また、制御モードは、飛行移動待機モードM1と飛行移動モードM2との間に、無人航空機1Aの出発地点からの離陸を行うための離陸モードを含んでもよい。この場合、無人航空機1Aをホバリングさせる状態は、離陸モードの一部とされてもよい。 The overall control unit 23 controls the unmanned aerial vehicle 1A in the flight movement standby mode as step S1. As shown in FIG. 3, the flight movement standby mode M1 is a control mode in which the unmanned aerial vehicle 1A is made to stand by before the flight movement of the unmanned aerial vehicle 1A along the flight path is started. The flight movement standby mode M1 is continued until the permission condition for shifting to the flight movement mode M2 is satisfied. The flight movement standby mode M1 may be performed by the user at a place different from the departure point, and then the unmanned aerial vehicle 1A may be moved to the departure point. In the present embodiment, the flight movement standby mode M1 also includes a state in which the unmanned aerial vehicle 1A is temporarily hovered in the air. Further, the control mode may include a takeoff mode for taking off from the starting point of the unmanned aerial vehicle 1A between the flight movement standby mode M1 and the flight movement mode M2. In this case, the state of hovering the unmanned aerial vehicle 1A may be a part of the takeoff mode.
 全体制御部23は、ステップS2として、飛行移動待機モードM1から飛行移動モードM2への移行条件が成立したか否かを判定する。飛行移動待機モードM1から飛行移動モードM2への移行条件は、バッテリ4のバッテリ温度Tが後述する飛行許可温度T1以上であることを含む。全体制御部23は、移行条件が成立していないと判定した場合(ステップS2でNo)、飛行移動待機モードM1を継続し、移行条件が成立したと判定した場合(ステップS2でYes)、ステップS3に進む。 As step S2, the overall control unit 23 determines whether or not the transition condition from the flight movement standby mode M1 to the flight movement mode M2 is satisfied. The condition for shifting from the flight movement standby mode M1 to the flight movement mode M2 includes that the battery temperature T of the battery 4 is equal to or higher than the flight permission temperature T1 described later. When the overall control unit 23 determines that the transition condition is not satisfied (No in step S2), the flight movement standby mode M1 is continued, and when it is determined that the transition condition is satisfied (Yes in step S2), the step Proceed to S3.
 全体制御部23は、ステップS3として、飛行移動モードM2で無人航空機1Aを制御する。飛行移動モードM2は、飛行経路に沿った無人航空機1Aの飛行移動を行う制御モードである。すなわち、全体制御部23は、飛行経路に沿って無人航空機1Aを出発地点から目標地点の直上へと飛行移動させるように、飛行装置3を駆動制御する。また、全体制御部23は、無人航空機1Aが目標地点の直上に到達すると、目標地点へと無人航空機1Aを着陸させる。なお、制御モードは、無人航空機1Aを目標地点の直上から目標地点に着陸させる着陸モードを含んでもよい。 The overall control unit 23 controls the unmanned aerial vehicle 1A in the flight movement mode M2 as step S3. The flight movement mode M2 is a control mode for flying and moving the unmanned aerial vehicle 1A along the flight path. That is, the overall control unit 23 drives and controls the flight device 3 so as to fly and move the unmanned aerial vehicle 1A from the starting point to just above the target point along the flight path. Further, when the unmanned aerial vehicle 1A reaches directly above the target point, the overall control unit 23 lands the unmanned aerial vehicle 1A at the target point. The control mode may include a landing mode in which the unmanned aerial vehicle 1A is landed at the target point from directly above the target point.
 全体制御部23は、ステップS4として、充電待機モードM3を実行する。充電待機モードM3は、無人航空機1Aが目標地点に着陸し、飛行移動が終了した後、バッテリ4を充電する前の制御モードである。全体制御部23は、充電待機モードM3において、無人航空機1Aを飛行させないようにする。なお、充電待機モードM3以降の処理は、目標地点で行われる必要はなく、ユーザーにより無人航空機1Aを充電装置のある場所に移動させて行われてもよい。 The overall control unit 23 executes the charge standby mode M3 as step S4. The charge standby mode M3 is a control mode after the unmanned aerial vehicle 1A has landed at the target point and the flight movement is completed, but before the battery 4 is charged. The overall control unit 23 prevents the unmanned aerial vehicle 1A from flying in the charge standby mode M3. The processing after the charging standby mode M3 does not have to be performed at the target point, and the user may move the unmanned aerial vehicle 1A to a place where the charging device is located.
 全体制御部23は、ステップS5として、充電待機モードM3から充電モードM4への移行条件が成立したか否かを判定する。充電待機モードM3から充電モードM4への移行条件は、バッテリ4のバッテリ温度Tが後述する充電許可温度T3以下であることを含む。全体制御部23は、移行条件が成立していないと判定した場合(ステップS5でNo)、充電待機モードM3を継続し、移行条件が成立したと判定した場合(ステップS5でYes)、ステップS6に進み、充電モードM4を実行する。全体制御部23は、充電モードM4において、コネクタ9および図示しない充電回路を介して、外部電源からの電力をバッテリ4へと充電させる。全体制御部23は、バッテリ4の充電が完了すると、本ルーチンを終了させる。 As step S5, the overall control unit 23 determines whether or not the transition condition from the charge standby mode M3 to the charge mode M4 is satisfied. The condition for shifting from the charge standby mode M3 to the charge mode M4 includes that the battery temperature T of the battery 4 is equal to or less than the charge permission temperature T3 described later. When the overall control unit 23 determines that the transition condition is not satisfied (No in step S5), the charge standby mode M3 is continued, and when it is determined that the transition condition is satisfied (Yes in step S5), step S6 Proceed to, and the charging mode M4 is executed. In the charging mode M4, the overall control unit 23 charges the battery 4 with electric power from an external power source via the connector 9 and a charging circuit (not shown). When the charging of the battery 4 is completed, the overall control unit 23 ends this routine.
 ここでは、各制御モード間の移行条件として、バッテリ温度Tに関する条件について説明した。その他の移行条件としては、例えば、無人航空機1Aの飛行距離または飛行時間が予め設定された値に達したか否か、バッテリ4の使用状況に応じて無人航空機1Aが飛行可能な状態であるか否か、GPS受信機6からの信号に基づいて検出される無人航空機1Aの現在位置が飛行経路上のいかなる位置にあるか、といった判定条件が含まれる。 Here, the conditions related to the battery temperature T have been described as the transition conditions between the control modes. Other transition conditions include, for example, whether the flight distance or flight time of the unmanned aerial vehicle 1A has reached a preset value, and whether the unmanned aerial vehicle 1A can fly according to the usage status of the battery 4. Whether or not, the determination condition such as what position on the flight path the current position of the unmanned aerial vehicle 1A detected based on the signal from the GPS receiver 6 is included is included.
 次に、図5を参照しながら、バッテリ4のバッテリ温度を各制御モードに応じて設定される目標温度Ttに調整する温調制御について説明する。図5は、温調制御の処理の一例を示すフローチャートである。図5に示す処理は、無人航空機1Aが起動している間、温調制御部25により所定時間ごとに繰り返し実行される。 Next, with reference to FIG. 5, the temperature control that adjusts the battery temperature of the battery 4 to the target temperature Tt set according to each control mode will be described. FIG. 5 is a flowchart showing an example of the temperature control control process. The process shown in FIG. 5 is repeatedly executed by the temperature control unit 25 at predetermined time intervals while the unmanned aerial vehicle 1A is running.
 温調制御部25は、ステップS10として、無人航空機1Aが複数の制御モードのうち、いずれの制御モードで制御されているかを判定する。温調制御部25は、ステップS10で制御モードが飛行移動待機モードM1であると判定した場合、ステップS11以降の処理に進む。 The temperature control unit 25 determines in step S10 which of the plurality of control modes the unmanned aerial vehicle 1A is controlled. When the temperature control unit 25 determines in step S10 that the control mode is the flight movement standby mode M1, the temperature control unit 25 proceeds to the processing after step S11.
 温調制御部25は、ステップS11として、温度取得部24から現時点のバッテリ温度Tを取得する。次に、温調制御部25は、ステップS12として、目標温度Ttを予め設定される飛行許可温度T1に設定する。飛行許可温度T1は、無人航空機1Aの飛行移動に際して、バッテリ温度Tが低すぎることで、バッテリ4の寿命が減少したり電力効率が低下したりすることを抑制可能な温度として、ユーザーにより予め設定される。飛行許可温度T1は、例えば、5℃以上15℃以下である。 The temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24 as step S11. Next, the temperature control unit 25 sets the target temperature Tt to the preset flight permission temperature T1 in step S12. The flight permission temperature T1 is preset by the user as a temperature capable of suppressing a decrease in the life of the battery 4 or a decrease in power efficiency due to the battery temperature T being too low during flight movement of the unmanned aerial vehicle 1A. Will be done. The flight permit temperature T1 is, for example, 5 ° C. or higher and 15 ° C. or lower.
 温調制御部25は、ステップS13として、バッテリ温度Tが目標温度Tt、すなわち飛行許可温度T1となるように、温調装置5のペルチェ素子5aを制御する。飛行移動待機モードM1は、無人航空機1Aの飛行移動開始前であるため、基本的にはバッテリ4が十分に暖まっていない可能性が高い。そのため、温調制御部25は、ペルチェ素子5aによりバッテリ4を調温して、飛行許可温度T1となるようにする。 As step S13, the temperature control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T becomes the target temperature Tt, that is, the flight permission temperature T1. Since the flight movement standby mode M1 is before the start of flight movement of the unmanned aerial vehicle 1A, it is highly possible that the battery 4 is basically not sufficiently warmed up. Therefore, the temperature control unit 25 adjusts the temperature of the battery 4 by the Pelche element 5a so that the flight permission temperature T1 is reached.
 温調制御部25は、ステップS14として、バッテリ温度Tが飛行許可温度T1以上となったか否かを判定する。温調制御部25は、バッテリ温度Tが飛行許可温度T1以上となっていないと判定した場合(ステップS14でNo)、本ルーチンを最初から繰り返し、バッテリ4の温度調整を継続する。一方、温調制御部25は、バッテリ温度Tが飛行許可温度T1以上となったと判定した場合(ステップS14でYes)、ステップS15に進み、飛行移動モードM2への移行条件のうち、バッテリ温度Tに関する移行条件を許可とする。その結果、他の移行条件が成立していれば、全体制御部23により、制御モードが飛行移動モードM2へと移行される。 The temperature control unit 25 determines in step S14 whether or not the battery temperature T has reached the flight permission temperature T1 or higher. When the temperature control unit 25 determines that the battery temperature T is not equal to or higher than the flight permission temperature T1 (No in step S14), the temperature control unit 25 repeats this routine from the beginning and continues the temperature adjustment of the battery 4. On the other hand, when the temperature control unit 25 determines that the battery temperature T is equal to or higher than the flight permission temperature T1 (Yes in step S14), the temperature control unit 25 proceeds to step S15, and among the transition conditions to the flight movement mode M2, the battery temperature T Allow migration conditions for. As a result, if other transition conditions are satisfied, the overall control unit 23 shifts the control mode to the flight movement mode M2.
 温調制御部25は、ステップS10で制御モードが飛行移動モードM2であると判定した場合、ステップS21以降の処理に進む。温調制御部25は、ステップS21として、温度取得部24から現時点のバッテリ温度Tを取得する。次に、温調制御部25は、ステップS22として、目標温度Ttを予め設定される飛行移動時温度T2に設定する。飛行移動時温度T2は、飛行移動時において、バッテリ4の寿命が減少したり電力効率が低下したりすることを抑制可能な温度として、予め設定される。飛行移動時温度T2は、飛行許可温度T1よりも高い温度であり、例えば、15℃以上40℃以下である。 When the temperature control control unit 25 determines in step S10 that the control mode is the flight movement mode M2, the temperature control unit 25 proceeds to the processing after step S21. The temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24 as step S21. Next, the temperature control unit 25 sets the target temperature Tt to the preset flight temperature T2 in step S22. The temperature during flight movement T2 is preset as a temperature at which it is possible to suppress a decrease in the life of the battery 4 or a decrease in power efficiency during flight movement. The flight moving temperature T2 is a temperature higher than the flight permit temperature T1, and is, for example, 15 ° C. or higher and 40 ° C. or lower.
 温調制御部25は、ステップS23として、バッテリ温度Tが目標温度Tt、すなわち飛行移動時温度T2に維持されるように、温調装置5のペルチェ素子5aを制御する。温調制御部25は、飛行移動モードM2が実行されている間、すなわち無人航空機1Aが目標地点まで飛行移動している間は、この処理を繰り返し実行する。なお、「バッテリ温度Tが飛行移動時温度T2に維持されるように」とは、バッテリ温度Tを完全に一定値に維持するのみでなく、ある程度の温度幅を持った範囲に維持することを含む。例えば、飛行移動時温度T2が20℃に設定される場合、バッテリ温度Tを18℃以上22℃以下の範囲に維持する。言い換えると、飛行移動時温度T2は、所定の温度範囲として設定されてもよい。また、「バッテリ温度Tが飛行移動時温度T2に維持されるように」とは、例えばバッテリ温度Tと飛行移動時温度T2との差が所定値(例えば10℃)以上であるとき、差が予め定められた範囲(例えば5℃)以内となるようにすることを含む。 As step S23, the temperature control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T is maintained at the target temperature Tt, that is, the temperature during flight movement T2. The temperature control unit 25 repeatedly executes this process while the flight movement mode M2 is being executed, that is, while the unmanned aerial vehicle 1A is flying and moving to the target point. In addition, "so that the battery temperature T is maintained at the temperature T2 during flight movement" means that the battery temperature T is not only maintained at a completely constant value but also maintained within a range having a certain temperature range. include. For example, when the flight moving temperature T2 is set to 20 ° C., the battery temperature T is maintained in the range of 18 ° C. or higher and 22 ° C. or lower. In other words, the flight moving temperature T2 may be set as a predetermined temperature range. Further, "so that the battery temperature T is maintained at the flight moving temperature T2" means that, for example, when the difference between the battery temperature T and the flight moving temperature T2 is a predetermined value (for example, 10 ° C.) or more, the difference is It includes keeping the temperature within a predetermined range (for example, 5 ° C.).
 温調制御部25は、ステップS10で制御モードが充電待機モードM3であると判定した場合、ステップS31以降の処理に進む。温調制御部25は、ステップS31として、温度取得部24から現時点のバッテリ温度Tを取得する。次に、温調制御部25は、ステップS32として、目標温度Ttを予め設定される充電許可温度T3に設定する。充電許可温度T3は、充電時にバッテリ温度Tが高すぎることで、バッテリ4の寿命が減少したり電力効率が低下したりすることを抑制可能な温度として、予め設定される。充電許可温度T3は、飛行移動時温度T2よりも低い値である。また、充電許可温度T3は、飛行許可温度T1よりも高い値である。充電許可温度T3は、例えば、5℃以上40℃以下である。各温度T1~T3は、一例として、飛行許可温度T1が5℃、飛行移動時温度T2が15℃、充電許可温度T3が10℃に設定される。また、一例として、飛行許可温度T1が15℃、飛行移動時温度T2が40℃、充電許可温度T3が30℃に設定される。 If the temperature control control unit 25 determines in step S10 that the control mode is the charge standby mode M3, the temperature control unit 25 proceeds to the process after step S31. The temperature control unit 25 acquires the current battery temperature T from the temperature acquisition unit 24 as step S31. Next, the temperature control unit 25 sets the target temperature Tt to the preset charge permission temperature T3 in step S32. The charge permission temperature T3 is set in advance as a temperature at which it is possible to suppress a decrease in the life of the battery 4 or a decrease in power efficiency due to the battery temperature T being too high during charging. The charge permission temperature T3 is a value lower than the flight movement temperature T2. Further, the charge permission temperature T3 is a higher value than the flight permission temperature T1. The charge permission temperature T3 is, for example, 5 ° C. or higher and 40 ° C. or lower. As an example, each temperature T1 to T3 is set to 5 ° C. for the flight permission temperature T1, 15 ° C. for the flight movement temperature T2, and 10 ° C. for the charge permission temperature T3. Further, as an example, the flight permission temperature T1 is set to 15 ° C., the flight movement temperature T2 is set to 40 ° C., and the charge permission temperature T3 is set to 30 ° C.
 温調制御部25は、ステップS33として、バッテリ温度Tが充電許可温度T3となるように、温調装置5のペルチェ素子5aを制御する。充電待機モードM3は、無人航空機1Aの飛行移動の終了後であるため、基本的にはバッテリ4が十分に冷却されていない可能性が高い。そのため、温調制御部25は、ペルチェ素子5aによりバッテリ4を調温して、充電許可温度T3となるようにする。 As step S33, the temperature control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T becomes the charge permission temperature T3. Since the charge standby mode M3 is after the flight movement of the unmanned aerial vehicle 1A is completed, it is highly possible that the battery 4 is basically not sufficiently cooled. Therefore, the temperature control unit 25 adjusts the temperature of the battery 4 by the Pelche element 5a so that the charge permission temperature T3 is reached.
 温調制御部25は、ステップS34として、バッテリ温度Tが充電許可温度T3以下となったか否かを判定する。温調制御部25は、バッテリ温度Tが充電許可温度T3以下となっていないと判定した場合(ステップS34でNo)、本ルーチンを最初から繰り返し、バッテリ4の温度調整を継続する。一方、温調制御部25は、バッテリ温度Tが充電許可温度T3以下となったと判定した場合(ステップS34でYes)、ステップS35に進み、充電モードM4への移行条件のうち、バッテリ温度Tに関する移行条件を許可とする。その結果、他の移行条件が成立していれば、全体制御部23により、制御モードが充電モードM4へと移行される。 The temperature control unit 25 determines in step S34 whether or not the battery temperature T is equal to or less than the charge permission temperature T3. When the temperature control unit 25 determines that the battery temperature T is not equal to or lower than the charge permission temperature T3 (No in step S34), the temperature control unit 25 repeats this routine from the beginning and continues the temperature adjustment of the battery 4. On the other hand, when the temperature control unit 25 determines that the battery temperature T is equal to or lower than the charge permission temperature T3 (Yes in step S34), the temperature control unit 25 proceeds to step S35, and is related to the battery temperature T among the transition conditions to the charge mode M4. Allow migration conditions. As a result, if other transition conditions are satisfied, the overall control unit 23 shifts the control mode to the charge mode M4.
 以上説明したように、第一実施形態にかかる無人航空機1Aの制御装置100Aは、無人航空機1Aのバッテリ4のバッテリ温度Tを取得する温度取得部24と、バッテリ4の温度調整を行う温調装置5のペルチェ素子5aを制御する温調制御部25と、を備え、温調制御部25は、温度取得部24により取得されたバッテリ温度Tが無人航空機1Aの複数の制御モードに応じて設定される目標温度Ttとなるようにペルチェ素子5aを制御する。 As described above, the control device 100A of the unmanned aircraft 1A according to the first embodiment is a temperature acquisition unit 24 that acquires the battery temperature T of the battery 4 of the unmanned aircraft 1A, and a temperature control device that adjusts the temperature of the battery 4. A temperature control unit 25 for controlling the Pelche element 5a of the 5 is provided, and the temperature control unit 25 has a battery temperature T acquired by the temperature acquisition unit 24 set according to a plurality of control modes of the unmanned aircraft 1A. The Pelche element 5a is controlled so as to have a target temperature Tt.
 この構成により、バッテリ温度Tを無人航空機1Aの複数の制御モードに応じた目標温度Ttに調整することができる。例えば飛行移動の開始前にバッテリを昇温させたり、飛行移動時にバッテリ温度を維持させたり、充電開始前にバッテリを降温させることができる。その結果、バッテリ寿命をより延長させ、また、電力効率を向上させることが可能となる。したがって、第一実施形態によれば、無人航空機1Aに搭載されるバッテリ4を無人航空機1Aの運用に応じた適切な温度に調整し、ひいては無人航空機1Aの効率的な運用を図ることができる。 With this configuration, the battery temperature T can be adjusted to the target temperature Tt according to a plurality of control modes of the unmanned aerial vehicle 1A. For example, the temperature of the battery can be raised before the start of flight movement, the battery temperature can be maintained during flight movement, and the temperature of the battery can be lowered before the start of charging. As a result, battery life can be further extended and power efficiency can be improved. Therefore, according to the first embodiment, the battery 4 mounted on the unmanned aerial vehicle 1A can be adjusted to an appropriate temperature according to the operation of the unmanned aerial vehicle 1A, and the unmanned aerial vehicle 1A can be operated efficiently.
 また、複数の制御モードは、無人航空機1Aの飛行移動を開始させる前の飛行移動待機モードM1と、無人航空機1を飛行移動させる飛行移動モードM2とを含み、飛行移動待機モードM1から飛行移動モードM2への移行条件は、バッテリ温度Tが予め設定された飛行許可温度T1以上であることを含み、温調制御部25は、制御モードが飛行移動待機モードM1である場合、バッテリ温度Tが飛行許可温度T1以上となるように温調装置5のペルチェ素子5aを制御する。この構成により、飛行移動の開始前に、バッテリ温度Tを飛行移動に際して適温に調整することができる。 Further, the plurality of control modes include a flight movement standby mode M1 before starting the flight movement of the unmanned aircraft 1A and a flight movement mode M2 for flying and moving the unmanned aircraft 1, and the flight movement mode from the flight movement standby mode M1. The transition condition to M2 includes that the battery temperature T is equal to or higher than the preset flight permission temperature T1, and the temperature control unit 25 determines that the battery temperature T flies when the control mode is the flight movement standby mode M1. The Pelche element 5a of the temperature control device 5 is controlled so that the allowable temperature is T1 or higher. With this configuration, the battery temperature T can be adjusted to an appropriate temperature during the flight movement before the start of the flight movement.
 なお、本実施形態では、飛行移動待機モードM1において、無人航空機1Aを地上に待機させた状態で、温調装置5のペルチェ素子5aによりバッテリ温度Tを飛行許可温度T1になるように調温するものとした。ただし、ここでのバッテリ4の調温は、地上で行わなくてもよい。すなわち、飛行移動待機モードM1において、無人航空機1Aをホバリングさせながら、温調装置5のペルチェ素子5aによりバッテリ温度Tを飛行許可温度T1になるように調温してもよい。それにより、無人航空機1Aをホバリングさせるためにバッテリ4から電力を持ち出すことになるため、バッテリ温度Tをより速やかに昇温させることができる。また、バッテリ温度Tをホバリングによる電力の持ち出しのみで昇温させる場合に比べて、本実施形態のようにペルチェ素子5aを用いてバッテリ4を調温することにより、ホバリング時間を短くすることができる。 In the present embodiment, in the flight movement standby mode M1, the battery temperature T is adjusted to the flight permission temperature T1 by the Pelche element 5a of the temperature control device 5 in a state where the unmanned aerial vehicle 1A is on standby on the ground. I made it. However, the temperature of the battery 4 here does not have to be adjusted on the ground. That is, in the flight movement standby mode M1, the battery temperature T may be adjusted to the flight permission temperature T1 by the Pelche element 5a of the temperature control device 5 while hovering the unmanned aerial vehicle 1A. As a result, electric power is taken out from the battery 4 in order to hover the unmanned aerial vehicle 1A, so that the battery temperature T can be raised more quickly. Further, the hovering time can be shortened by adjusting the temperature of the battery 4 by using the Pelche element 5a as in the present embodiment, as compared with the case where the battery temperature T is raised only by taking out the electric power by hovering. ..
 また、複数の制御モードは、飛行移動モードM2の後にバッテリ4を充電させる前の充電待機モードM3と、バッテリ4を充電させる充電モードM4とを含み、充電待機モードM3から充電モードM4への移行条件は、バッテリ温度Tが予め設定された充電許可温度T3以下であることを含み、温調制御部25は、制御モードが充電待機モードM3である場合、バッテリ温度Tが充電許可温度T3以下となるように温調装置5のペルチェ素子5aを制御する。この構成により、充電の開始前に、バッテリ温度Tを充電に際して適温に調整することができる。 Further, the plurality of control modes include a charge standby mode M3 before charging the battery 4 after the flight movement mode M2 and a charge mode M4 for charging the battery 4, and the transition from the charge standby mode M3 to the charge mode M4. The condition includes that the battery temperature T is equal to or less than the preset charge permission temperature T3, and the temperature control control unit 25 sets the battery temperature T to be less than or equal to the charge permission temperature T3 when the control mode is the charge standby mode M3. The Pelche element 5a of the temperature control device 5 is controlled so as to be. With this configuration, the battery temperature T can be adjusted to an appropriate temperature during charging before the start of charging.
 なお、本実施形態では、充電待機モードM3において、無人航空機1Aが地上ある状態で、温調装置5のペルチェ素子5aによりバッテリ温度Tを充電許可温度T3になるように調温するものとした。ただし、ここでのバッテリ4の調温は、地上で行わなくてもよい。上述したように、制御モードは、無人航空機1Aを目標地点の直上から目標地点に着陸させる着陸モードを含んでもよい。そして、温調制御部25は、制御モードが着陸モードである場合、温調装置5のペルチェ素子5aによりバッテリ温度Tを充電許可温度T3になるように調温してもよい。すなわち、着陸モードにおいて、図5のステップS31からステップS35の処理を実行してもよい。それにより、無人航空機1Aが空中にいる間に、バッテリ温度Tが充電許可温度T3となるように、または、少なくとも充電許可温度T3に近づくように調温することができる。その結果、無人航空機1の着陸後に、より速やかに充電モードM4への移行が可能となる。 In the present embodiment, in the charge standby mode M3, the battery temperature T is adjusted to the charge permitted temperature T3 by the Pelche element 5a of the temperature control device 5 while the unmanned aerial vehicle 1A is on the ground. However, the temperature of the battery 4 here does not have to be adjusted on the ground. As described above, the control mode may include a landing mode in which the unmanned aerial vehicle 1A is landed at the target point from directly above the target point. Then, when the control mode is the landing mode, the temperature control unit 25 may control the battery temperature T to the charge permission temperature T3 by the Pelche element 5a of the temperature control device 5. That is, in the landing mode, the processes of steps S31 to S35 of FIG. 5 may be executed. Thereby, while the unmanned aerial vehicle 1A is in the air, the temperature can be adjusted so that the battery temperature T becomes the charge permission temperature T3, or at least approaches the charge permission temperature T3. As a result, after the unmanned aerial vehicle 1 lands, it becomes possible to shift to the charging mode M4 more quickly.
 また、温調制御部25は、制御モードが飛行移動モードM2である場合、バッテリ温度Tが飛行移動時温度T2に維持されるように温調装置5のペルチェ素子5aを制御する。この構成により、飛行移動時のバッテリ温度Tを適温に維持することができる。 Further, when the control mode is the flight movement mode M2, the temperature control control unit 25 controls the Pelche element 5a of the temperature control device 5 so that the battery temperature T is maintained at the flight movement temperature T2. With this configuration, the battery temperature T during flight movement can be maintained at an appropriate temperature.
 また、本実施形態では、図5に示すように、飛行移動待機モードM1、飛行移動モードM2および充電待機モードM3でのバッテリ4の温調制御について説明した。ただし、バッテリ4の温調制御は、充電モードM4においても実行されてもよい。温調制御部25は、制御モードが充電モードM4である場合、温調装置5のペルチェ素子5aにより、バッテリ温度Tが予め設定される充電温度に維持されるように調温すればよい。充電温度は、充電時にバッテリ温度Tが低すぎる、または、高すぎることで、バッテリ4の寿命が減少したり電力効率が低下したりすることを抑制可能な温度として、予め設定される。充電温度は、例えば、充電許可温度T3と同じ温度であってもよい。充電温度は、例えば、5℃以上40℃以下である。なお、ここでの「維持されるように」とは、上述したバッテリ温度Tが飛行移動時温度T2に「維持されるように」と同様の意味である。 Further, in the present embodiment, as shown in FIG. 5, the temperature control of the battery 4 in the flight movement standby mode M1, the flight movement standby mode M2, and the charge standby mode M3 has been described. However, the temperature control of the battery 4 may also be executed in the charge mode M4. When the control mode is the charge mode M4, the temperature control unit 25 may adjust the temperature so that the battery temperature T is maintained at a preset charge temperature by the Pelche element 5a of the temperature control device 5. The charging temperature is preset as a temperature at which it is possible to suppress a decrease in the life of the battery 4 or a decrease in power efficiency due to the battery temperature T being too low or too high during charging. The charging temperature may be, for example, the same temperature as the charging permitted temperature T3. The charging temperature is, for example, 5 ° C. or higher and 40 ° C. or lower. The term "to be maintained" here has the same meaning as "to be maintained" at the above-mentioned battery temperature T during flight movement.
 また、上述した飛行許可温度T1、飛行移動時温度T2、充電許可温度T3および充電温度は、一定に定められた値でなくともよい。例えば、飛行許可温度T1、飛行移動時温度T2、充電許可温度T3および充電温度は、周囲環境の情報に基づいて適宜変更されてもよい。周囲環境の情報は、例えば気象情報、外気温等である。気象情報は、無人航空機1Aの飛行開始前に予め入力されてもよいし、無人航空機1Aが気象情報を外部からの通信で取得してもよい。外気温は、例えば無人航空機1Aに取り付けた温度センサで取得してもよい。飛行許可温度T1、飛行移動時温度T2、充電許可温度T3および充電温度と周囲環境の情報との関係は、実験、解析、または実機でのバッテリ温度Tの実績値等に基づいて、予め関数等で規定しておけばよい。さらに、例えば、飛行許可温度T1、飛行移動時温度T2、充電許可温度T3および充電温度は、バッテリ4の種類や、バッテリ4の経年劣化等を考慮した使用状態に応じて適宜変更されてもよい。 Further, the above-mentioned flight permission temperature T1, flight movement temperature T2, charging permission temperature T3, and charging temperature do not have to be fixed values. For example, the flight permit temperature T1, the flight transfer temperature T2, the charge permit temperature T3, and the charge temperature may be appropriately changed based on the information of the ambient environment. Information on the surrounding environment is, for example, meteorological information, outside air temperature, and the like. The weather information may be input in advance before the flight of the unmanned aerial vehicle 1A starts, or the unmanned aerial vehicle 1A may acquire the weather information by communication from the outside. The outside air temperature may be acquired by, for example, a temperature sensor attached to the unmanned aerial vehicle 1A. The relationship between the flight permission temperature T1, the flight transfer temperature T2, the charge permission temperature T3, and the charging temperature and the information of the ambient environment is based on experiments, analyzes, or the actual value of the battery temperature T in the actual machine, etc. It should be specified in. Further, for example, the flight permit temperature T1, the flight transfer temperature T2, the charge permit temperature T3, and the charge temperature may be appropriately changed according to the type of the battery 4, the usage state in consideration of the aging deterioration of the battery 4, and the like. ..
 また、温度取得部24は、バッテリ4の内部抵抗値を取得し、内部抵抗値に基づいてバッテリ温度Tを算出する。 Further, the temperature acquisition unit 24 acquires the internal resistance value of the battery 4 and calculates the battery temperature T based on the internal resistance value.
 この構成により、無人航空機1Aの機体ごとに、外部環境に影響を受けることなく、また、対象となるバッテリ4からの情報すなわち内部抵抗値を用いるため、精度良くバッテリ温度Tを算出することができる。また、高温時、低温時の双方の場合でバッテリ温度Tを算出することができる。さらに、バッテリ温度Tを検出するための温度センサを別途設ける必要がなく、部品点数の増加を防ぐことができる。 With this configuration, the battery temperature T can be calculated accurately for each unmanned aerial vehicle 1A because it is not affected by the external environment and the information from the target battery 4, that is, the internal resistance value is used. .. Further, the battery temperature T can be calculated in both the high temperature and low temperature cases. Further, it is not necessary to separately provide a temperature sensor for detecting the battery temperature T, and it is possible to prevent an increase in the number of parts.
 ここで、温度取得部24によるバッテリ温度Tの取得は、上述した構成、手法に限られない。図6は、第一実施形態の変形例にかかる無人航空機の一例を示す概略構成図である。図示するように、図6に示す無人航空機1Bは、温調装置5に内蔵された温度センサとしての内蔵サーミスタ7と、制御装置100Bとを備える。内蔵サーミスタ7は、ペルチェ素子5aの温度を検出し、制御装置100Bの温度取得部24に出力する。 Here, the acquisition of the battery temperature T by the temperature acquisition unit 24 is not limited to the above-mentioned configuration and method. FIG. 6 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to a modified example of the first embodiment. As shown in the figure, the unmanned aerial vehicle 1B shown in FIG. 6 includes a built-in thermistor 7 as a temperature sensor built in the temperature control device 5 and a control device 100B. The built-in thermistor 7 detects the temperature of the Pelche element 5a and outputs it to the temperature acquisition unit 24 of the control device 100B.
 制御装置100Bの温度取得部24は、内蔵サーミスタ7から入力されたペルチェ素子5aの温度に基づいて、バッテリ温度Tを算出する。すなわち、バッテリ4に当接して設けられたペルチェ素子5aには、バッテリ4からの熱が伝達するため、ペルチェ素子5aの温度に基づいてバッテリ温度Tの推定値を算出することができる。バッテリ温度Tの算出は、実験、解析、または実機でのペルチェ素子5aの温度の実績値等に基づいて、予めペルチェ素子5aの温度とバッテリ温度Tとの関係を関数等で規定しておけばよい。 The temperature acquisition unit 24 of the control device 100B calculates the battery temperature T based on the temperature of the Pelche element 5a input from the built-in thermistor 7. That is, since the heat from the battery 4 is transferred to the Pelche element 5a provided in contact with the battery 4, the estimated value of the battery temperature T can be calculated based on the temperature of the Pelche element 5a. The calculation of the battery temperature T can be performed by prescribing the relationship between the temperature of the Pelche element 5a and the battery temperature T by a function or the like based on an experiment, analysis, or an actual value of the temperature of the Pelche element 5a in an actual machine. good.
 この構成により、バッテリ4ごとの内部抵抗値のばらつきに関わらず、ペルチェ素子5aの温度に基づいて、バッテリ温度Tの推定値を算出することができ、無人航空機1Bの一つずつに対応した適切なバッテリ温度Tの調整を図ることが可能となる。また、内蔵サーミスタ7によりペルチェ素子5a自体の温度を検出することで、ペルチェ素子5aによる冷却および加熱をよりきめ細かく制御することができる。その結果、過剰な加熱によりバッテリに損傷が生じるリスクを低減させることが可能となる。 With this configuration, the estimated value of the battery temperature T can be calculated based on the temperature of the Pelche element 5a regardless of the variation in the internal resistance value for each battery 4, and it is appropriate for each unmanned aerial vehicle 1B. It is possible to adjust the battery temperature T. Further, by detecting the temperature of the Pelche element 5a itself by the built-in thermistor 7, the cooling and heating by the Pelche element 5a can be controlled more finely. As a result, it is possible to reduce the risk of damage to the battery due to excessive heating.
 図7は、第一実施形態の他の変形例にかかる無人航空機の一例を示す概略構成図である。図示するように、他の変形例にかかる無人航空機1Cは、外気温を検出する温度センサとしての外付けサーミスタ8と、制御装置100Cとを備えている。外付けサーミスタ8は、無人航空機1の周囲の外気温を検出し、制御装置100Cの温度取得部24に出力する。 FIG. 7 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. As shown in the figure, the unmanned aerial vehicle 1C according to another modification includes an external thermistor 8 as a temperature sensor for detecting the outside air temperature and a control device 100C. The external thermistor 8 detects the outside air temperature around the unmanned aerial vehicle 1 and outputs it to the temperature acquisition unit 24 of the control device 100C.
 制御装置100Cの温度取得部24は、外付けサーミスタ8から入力された外気温を取得し、取得した外気温に基づいて、バッテリ温度Tの推定値を算出する。このとき、温度取得部24は、GPS受信機6からの信号に基づいて現在位置取得部22で算出される無人航空機1の現在位置の情報から、現在の高度の情報を取得する。そして、温度取得部24は、高度に基づいてバッテリ温度Tの推定値を補正することが好ましい。バッテリ温度Tの算出および補正は、実験、解析、または実機でのバッテリ温度Tの実績値等に基づいて、予め外気温と高度とバッテリ温度Tとの関係を関数等で規定しておけばよい。 The temperature acquisition unit 24 of the control device 100C acquires the outside air temperature input from the external thermistor 8 and calculates an estimated value of the battery temperature T based on the acquired outside air temperature. At this time, the temperature acquisition unit 24 acquires the current altitude information from the information on the current position of the unmanned aerial vehicle 1 calculated by the current position acquisition unit 22 based on the signal from the GPS receiver 6. Then, it is preferable that the temperature acquisition unit 24 corrects the estimated value of the battery temperature T based on the altitude. For the calculation and correction of the battery temperature T, the relationship between the outside air temperature, the altitude, and the battery temperature T may be defined in advance by a function or the like based on an experiment, an analysis, or an actual value of the battery temperature T in an actual machine. ..
 この構成により、温度センサを温調装置5に内蔵させることなく、シンプルな構成でバッテリ温度Tを算出することができる。また、GPS情報のうち、高度の情報を用いてバッテリ温度Tを補正することで、GPS情報を活用しながら、外気温のみでバッテリ温度Tを算出する場合に比べて、算出精度を向上させることができる。 With this configuration, the battery temperature T can be calculated with a simple configuration without incorporating a temperature sensor in the temperature control device 5. Further, by correcting the battery temperature T using the altitude information among the GPS information, the calculation accuracy can be improved as compared with the case where the battery temperature T is calculated only by the outside air temperature while utilizing the GPS information. Can be done.
 図8は、第一実施形態の他の変形例にかかる無人航空機の一例を示す概略構成図である。図示するように、他の変形例にかかる無人航空機1Dは、制御装置100Dを備える。制御装置100Dは、気象情報取得部26を備えている。気象情報取得部26は、通信により外部から無人航空機1Dの飛行経路における気象情報を取得し、温度取得部24に出力する。気象情報は、無人航空機1Dを運用している際、随時更新するように取得してもよい。 FIG. 8 is a schematic configuration diagram showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. As shown in the figure, the unmanned aerial vehicle 1D according to another modification includes a control device 100D. The control device 100D includes a weather information acquisition unit 26. The weather information acquisition unit 26 acquires weather information in the flight path of the unmanned aerial vehicle 1D from the outside by communication and outputs it to the temperature acquisition unit 24. The weather information may be acquired so as to be updated at any time when the unmanned aerial vehicle 1D is in operation.
 制御装置100Dの温度取得部24は、取得した気象情報に含まれる無人航空機1の飛行経路における外気温等に基づいて、バッテリ温度Tを算出する。気象情報には、例えば外気温、天候、風速といった情報が含まれる。バッテリ温度Tの算出は、実験、解析、または実機でのバッテリ温度Tの実績値等に基づいて、予め上記気象情報すなわち無人航空機1Dの周囲環境の情報と、バッテリ温度Tとの関係を関数等で規定しておけばよい。 The temperature acquisition unit 24 of the control device 100D calculates the battery temperature T based on the outside air temperature and the like in the flight path of the unmanned aerial vehicle 1 included in the acquired weather information. The weather information includes information such as outside air temperature, weather, and wind speed. The calculation of the battery temperature T is performed by experimenting, analyzing, or based on the actual value of the battery temperature T in the actual machine, etc. It should be specified in.
 この構成により、気象情報の取得、更新を行うだけで、同一のプログラムでバッテリ温度Tを算出することができる。また、温度センサを別途設ける必要がなく、部品点数の増加を防ぐことができる。 With this configuration, the battery temperature T can be calculated with the same program simply by acquiring and updating the weather information. Further, it is not necessary to separately provide a temperature sensor, and it is possible to prevent an increase in the number of parts.
 なお、無人航空機1A、1B、1C、1Dの構成は、組み合わせてもよい。すなわち、温度取得部24によるバッテリ温度Tの取得に際して、バッテリ4の内部抵抗値に基づく算出、内蔵サーミスタ7により検出されるペルチェ素子5aの温度に基づく算出、外付けサーミスタ8により検出される外気温および高度に基づく算出、並びに、気象情報に基づく算出の一部を組みあわせて用いてもよいし、すべてを組みあわせて用いてもよい。 The configurations of the unmanned aerial vehicles 1A, 1B, 1C, and 1D may be combined. That is, when the temperature acquisition unit 24 acquires the battery temperature T, it is calculated based on the internal resistance value of the battery 4, calculated based on the temperature of the Pelche element 5a detected by the built-in thermistor 7, and the outside air temperature detected by the external thermistor 8. And some of the calculations based on altitude and the calculations based on weather information may be used in combination, or all of them may be used in combination.
 図9は、第一実施形態の他の変形例にかかる無人航空機の一例を模式的に示す説明図である。図9に示す無人航空機1Eでは、バッテリ4およびペルチェ素子5aが本体2の外面に取り付けられている。図9に示す例では、バッテリ4が本体2の天板に固定されており、ペルチェ素子5aが面(他方主面)51aでバッテリ4上に固定されている。すなわち、バッテリ4は、本体2とペルチェ素子5aとの間に位置する。また、ペルチェ素子5aは、バッテリ4に固定された面51aと反対側に回転翼3aが位置している。この構成により、回転翼3aを駆動したとき、回転翼3aにより発生する空気流がペルチェ素子5aの周囲を流れるため、ペルチェ素子5aの熱交換を促進することができる。また、回転翼3aにより発生する空気流によって、バッテリ4を冷却することも可能である。さらに、バッテリ4およびペルチェ素子5aが本体2の外側に位置することで、無人航空機1Eの周囲の空気流によってバッテリ4およびペルチェ素子5aを冷却することができる。したがって、特に、飛行移動モードM2、充電待機モードM3および充電モードM4といった、主としてバッテリ4の冷却が想定されるモードにおいて、バッテリ4およびペルチェ素子5aそのものの冷却を促進することが可能となる。なお、バッテリ4およびペルチェ素子5aは、本体2の底板に固定されてもよいし、側面に固定されてもよい。 FIG. 9 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. In the unmanned aerial vehicle 1E shown in FIG. 9, the battery 4 and the Pelche element 5a are attached to the outer surface of the main body 2. In the example shown in FIG. 9, the battery 4 is fixed to the top plate of the main body 2, and the Pelche element 5a is fixed on the battery 4 by the surface (the other main surface) 51a. That is, the battery 4 is located between the main body 2 and the Pelche element 5a. Further, in the Pelche element 5a, the rotary blade 3a is located on the side opposite to the surface 51a fixed to the battery 4. With this configuration, when the rotary blade 3a is driven, the air flow generated by the rotary blade 3a flows around the perche element 5a, so that heat exchange of the perche element 5a can be promoted. It is also possible to cool the battery 4 by the air flow generated by the rotary blade 3a. Further, since the battery 4 and the Pelche element 5a are located outside the main body 2, the battery 4 and the Pelche element 5a can be cooled by the air flow around the unmanned aerial vehicle 1E. Therefore, it is possible to promote the cooling of the battery 4 and the Pelche element 5a itself, particularly in modes such as the flight movement mode M2, the charge standby mode M3, and the charge mode M4, in which the battery 4 is expected to be cooled. The battery 4 and the Pelche element 5a may be fixed to the bottom plate of the main body 2 or may be fixed to the side surface.
 また、図示するように、無人航空機1Eは、ペルチェ素子5aの面(一方主面)52aに固定された放熱フィン30を備えている。放熱フィン30は、表面積を増やすことで放熱性を高めるための部材である。放熱フィン30は、例えば棒状または板状の複数の突起を有している。放熱フィン30は、例えば鉄、アルミニウムまたは銀等の比較的放熱性が高い部材であってもよい。放熱フィン30は、例えばアルミニウムを含むことにより、軽量化することができる。放熱フィン30は、例えばペルチェ素子の表面に熱伝導性が高い接着部材を介して固定されていてもよい。これにより、ペルチェ素子5aの熱交換を促進することができ、より広い温度幅でバッテリ4の温度調整を行うことが可能となる。この場合も、特に、飛行移動モードM2、充電待機モードM3および充電モードM4といった、主としてバッテリ4の冷却が想定されるモードにおいて、バッテリ4およびペルチェ素子5aそのものの冷却を促進することが可能となる。なお、放熱フィン30は、ペルチェ素子5aが本体2に内蔵される場合においても、適用してもよい。 Further, as shown in the figure, the unmanned aerial vehicle 1E is provided with heat radiation fins 30 fixed to the surface (one main surface) 52a of the Pelche element 5a. The heat radiation fin 30 is a member for improving heat dissipation by increasing the surface area. The heat radiation fin 30 has a plurality of rod-shaped or plate-shaped protrusions, for example. The heat radiating fin 30 may be a member having a relatively high heat radiating property such as iron, aluminum or silver. The heat radiation fin 30 can be reduced in weight by containing, for example, aluminum. The heat radiating fin 30 may be fixed to the surface of the Pelche element, for example, via an adhesive member having high thermal conductivity. As a result, heat exchange of the Pelche element 5a can be promoted, and the temperature of the battery 4 can be adjusted in a wider temperature range. Also in this case, it is possible to promote the cooling of the battery 4 and the Pelche element 5a itself, particularly in the modes in which the battery 4 is expected to be cooled, such as the flight movement mode M2, the charge standby mode M3, and the charge mode M4. .. The heat radiation fin 30 may be applied even when the Pelche element 5a is built in the main body 2.
 図10は、第一実施形態の他の変形例にかかる無人航空機の一例を模式的に示す説明図である。図10に示す無人航空機1Fでは、制御装置100Aがペルチェ素子5aのうちバッテリ4に固定された面51aと反対側の面52aに当接している。この構成により、バッテリ4をペルチェ素子5aの面51a側で加熱する場合に、面52aは吸熱する側となるため、制御装置100Aから生じた熱を吸熱して制御装置100Aを冷却することができる。特に、主としてバッテリ4を加熱することが想定される飛行移動待機モードM1において、制御装置100の冷却を促進することができる。 FIG. 10 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to another modification of the first embodiment. In the unmanned aerial vehicle 1F shown in FIG. 10, the control device 100A is in contact with the surface 52a of the Pelche element 5a opposite to the surface 51a fixed to the battery 4. With this configuration, when the battery 4 is heated on the surface 51a side of the Pelche element 5a, the surface 52a is endothermic, so that the heat generated from the control device 100A can be absorbed to cool the control device 100A. .. In particular, in the flight movement standby mode M1 which is supposed to mainly heat the battery 4, the cooling of the control device 100 can be promoted.
[第二実施形態]
 図11は、第二実施形態にかかる無人航空機の一例を模式的に示す説明図である。図12は、第二実施形態にかかる無人航空機および無人航空機の制御装置の一例を示す概略構成図である。図示するように、第二実施形態にかかる無人航空機1Gは、バッテリ4に加えて、予備バッテリ40を備える。また、無人航空機1Gは、温調装置5Gを備える。また、無人航空機1Gは、第二実施形態にかかる制御装置100Gを備える。無人航空機1Gの他の構成は、無人航空機1Aと同様であるため、説明を省略し、同一の構成には同一の符号を付す。なお、第二実施形態にかかる無人航空機1Gにおいても、上記無人航空機1B、1C、1D、1E、1Fで説明した構成を適用してもよい。
[Second Embodiment]
FIG. 11 is an explanatory diagram schematically showing an example of an unmanned aerial vehicle according to the second embodiment. FIG. 12 is a schematic configuration diagram showing an example of the unmanned aerial vehicle and the control device for the unmanned aerial vehicle according to the second embodiment. As shown in the figure, the unmanned aerial vehicle 1G according to the second embodiment includes a spare battery 40 in addition to the battery 4. Further, the unmanned aerial vehicle 1G is equipped with a temperature control device 5G. Further, the unmanned aerial vehicle 1G includes a control device 100G according to the second embodiment. Since the other configurations of the unmanned aerial vehicle 1G are the same as those of the unmanned aerial vehicle 1A, the description thereof is omitted, and the same configurations are designated by the same reference numerals. The configuration described in the unmanned aerial vehicle 1B, 1C, 1D, 1E, and 1F may be applied to the unmanned aerial vehicle 1G according to the second embodiment.
 予備バッテリ40は、図11に示すように、バッテリ4とは別に無人航空機1Gに搭載された充放電可能な二次電池である。予備バッテリ40は、無人航空機1Gの各種装置に接続されており、各種装置に必要とされる電力を供給するための予備電力源である。予備バッテリ40は、バッテリ4と同じ種類のバッテリであってもよいし、異なる種類のバッテリであってもよい。予備バッテリ40は、バッテリ4と同様に、コネクタ9(図3参照)を介して外部電源に接続可能とされており、図示しない予備バッテリ用の充電用回路を介して外部電源からの電力を充電することができる。 As shown in FIG. 11, the spare battery 40 is a rechargeable and dischargeable secondary battery mounted on the unmanned aerial vehicle 1G separately from the battery 4. The spare battery 40 is connected to various devices of the unmanned aerial vehicle 1G and is a spare power source for supplying the power required for the various devices. The spare battery 40 may be the same type of battery as the battery 4, or may be a different type of battery. Like the battery 4, the spare battery 40 can be connected to an external power source via a connector 9 (see FIG. 3), and charges power from the external power source via a charging circuit for a spare battery (not shown). can do.
 温調装置5Gは、ペルチェ素子5aに加えて、少なくとも一つのペルチェ素子5bを有する。ペルチェ素子5bは、図11に示すように、予備バッテリ40に当接して配置され、予備バッテリ40を冷却または加熱して温度調整を行う。ペルチェ素子5bの機能および配置構成は、ペルチェ素子5aと同様であるため、説明を省略する。 The temperature control device 5G has at least one Pelche element 5b in addition to the Pelche element 5a. As shown in FIG. 11, the Pelche element 5b is arranged in contact with the spare battery 40, and cools or heats the spare battery 40 to adjust the temperature. Since the function and arrangement configuration of the Pelche element 5b are the same as those of the Pelche element 5a, the description thereof will be omitted.
 制御装置100Gは、全体制御部23に代えて全体制御部23G、温調制御部25に代えて温調制御部25Gを備える。全体制御部23Gは、飛行移動モードM2の実行中において、メインの電力源としてのバッテリ4が使用に適さない状態となると、電力源を予備バッテリ40の使用へと切り替え、無人航空機1Aの各装置に電力を供給させる。温調制御部25Gは、バッテリ4が使用に適さない状態となる事前情報を取得すると、予備バッテリ40の使用に切り替わる前に、予備バッテリ40用のペルチェ素子5aを制御して、予備バッテリ40の温度を事前に温度調整する。 The control device 100G includes an overall control unit 23G instead of the overall control unit 23, and a temperature control unit 25G instead of the temperature control unit 25. When the battery 4 as the main power source becomes unsuitable for use during the execution of the flight movement mode M2, the overall control unit 23G switches the power source to the use of the spare battery 40, and each device of the unmanned aerial vehicle 1A. To supply power to. When the temperature control unit 25G acquires prior information that the battery 4 is in a state unsuitable for use, the temperature control unit 25G controls the Pelche element 5a for the spare battery 40 before switching to the use of the spare battery 40 to control the spare battery 40. Adjust the temperature in advance.
 次に、第二実施形態の要部について説明する。図13は、第二実施形態にかかる無人航空機において、電力源を予備バッテリとする際の処理の一例を示すフローチャートである。図13に示す処理は、全体制御部23Gにより、飛行移動モードM2の実行中に、図4に示す処理と並行して繰り返し実行されている。 Next, the main parts of the second embodiment will be described. FIG. 13 is a flowchart showing an example of processing when the power source is a spare battery in the unmanned aerial vehicle according to the second embodiment. The process shown in FIG. 13 is repeatedly executed by the overall control unit 23G in parallel with the process shown in FIG. 4 while the flight movement mode M2 is being executed.
 全体制御部23Gは、ステップS41として、バッテリ4が使用に適さない状態であるか否かを判定する。ここで、「バッテリ4が使用に適さない状態」とは、バッテリ4の充電率が予め定められる規定充電率以下に低下したこと、バッテリ4が規定温度以上に発熱したこと、バッテリ4の膨張率が規定膨張率以上となっていること等を含む。なお、バッテリ4の膨張率は、例えば図示しないひずみゲージセンサで検出した値に基づいて算出することができる。 As step S41, the overall control unit 23G determines whether or not the battery 4 is in a state unsuitable for use. Here, "a state in which the battery 4 is not suitable for use" means that the charge rate of the battery 4 has dropped to a predetermined charge rate or less, the battery 4 has generated heat to a specified temperature or higher, and the expansion rate of the battery 4 has been increased. Includes the fact that the expansion rate is equal to or higher than the specified expansion rate. The expansion coefficient of the battery 4 can be calculated based on, for example, a value detected by a strain gauge sensor (not shown).
 全体制御部23Gは、バッテリ4が使用に適さない状態であると判定したとき(ステップS41でYes)、ステップS42として、使用する電力源を予備バッテリ40に切り替え、本ルーチンの処理を繰り返す。一方、全体制御部23Gは、バッテリ4が使用に適さない状態ではないと判定したとき(ステップS41でNo)、ステップS43として、電力源としてバッテリ4を使用するように設定し、本ルーチンの処理を繰り返す。これにより、飛行移動モードM2の実行中に、バッテリ4が使用に適した状態でなくなった場合には、予備バッテリ40による電力供給が行われ、また、バッテリ4が使用に適した状態に復旧したときには、バッテリ4による電力供給が行われる。なお、予備バッテリ40の使用への切替が一度行われた後は、無人航空機1Aの飛行経路に沿った移動が終了するまで、予備バッテリ40を継続して使用してもよい。 When the overall control unit 23G determines that the battery 4 is not suitable for use (Yes in step S41), as step S42, the power source to be used is switched to the spare battery 40, and the process of this routine is repeated. On the other hand, when the overall control unit 23G determines that the battery 4 is not in a state unsuitable for use (No in step S41), the overall control unit 23G sets the battery 4 to be used as a power source in step S43, and processes this routine. repeat. As a result, if the battery 4 is no longer suitable for use during the execution of the flight movement mode M2, power is supplied by the spare battery 40, and the battery 4 is restored to a state suitable for use. Occasionally, power is supplied by the battery 4. After the switch to the use of the spare battery 40 is performed once, the spare battery 40 may be continuously used until the movement along the flight path of the unmanned aerial vehicle 1A is completed.
 次に、図14を参照しながら、予備バッテリの温調制御について説明する。図14は、予備バッテリの温調制御の一例を示すフローチャートである。図14に示す処理は、飛行移動モードM2の実行中、かつ、電力源としてバッテリ4を使用している最中に、温調制御部25Gにより繰り返し実行される。図14に示す処理は、図5に示す処理と並行して実行されている。なお、電力源として予備バッテリ40を使用する状態となったときは、温調制御部25は、図5に示す処理を、予備バッテリ40を調温するためのペルチェ素子5bを用いて実行する。 Next, the temperature control of the spare battery will be described with reference to FIG. FIG. 14 is a flowchart showing an example of temperature control of the spare battery. The process shown in FIG. 14 is repeatedly executed by the temperature control unit 25G while the flight movement mode M2 is being executed and the battery 4 is being used as the power source. The process shown in FIG. 14 is executed in parallel with the process shown in FIG. When the spare battery 40 is used as the power source, the temperature control unit 25 executes the process shown in FIG. 5 by using the Pelche element 5b for controlling the temperature of the spare battery 40.
 温調制御部25Gは、ステップS51として、バッテリ4が使用に適さない状態となる事前情報を全体制御部23Gから取得する。ここで、「バッテリ4が使用に適さない状態となる事前情報」とは、上述したバッテリ4が使用に適さない状態になって予備バッテリ40の使用へと切り替えが必要となる前に、事前に伝達される情報である。したがって、事前情報は、バッテリ4についての各監視対象が、上述したバッテリ4が使用に適さない状態となる場合の各閾値よりも緩い閾値となったときに、全体制御部23Gから温調制御部25Gに出力される。例えば、全体制御部23Gは、バッテリ4の充電率が上記規定充電率よりも高い予め定められた値となったとき、バッテリ4のバッテリ温度Tが上記規定温度よりも低い予め定められた値となったとき、バッテリ4の膨張率が上記規定膨張率よりも低い予め定められた値以上となったとき等に、事前情報を温調制御部25Gに出力する。 As step S51, the temperature control unit 25G acquires advance information from the overall control unit 23G that makes the battery 4 unsuitable for use. Here, "preliminary information that the battery 4 becomes unsuitable for use" means that the above-mentioned battery 4 becomes unsuitable for use and it is necessary to switch to the use of the spare battery 40 in advance. Information to be transmitted. Therefore, the prior information is obtained from the overall control unit 23G to the temperature control unit when each monitoring target for the battery 4 becomes a threshold value looser than each threshold value when the battery 4 is in a state unsuitable for use. It is output to 25G. For example, when the charge rate of the battery 4 becomes a predetermined value higher than the above-mentioned specified charge rate, the overall control unit 23G sets the battery temperature T of the battery 4 to a predetermined value lower than the above-mentioned specified temperature. When the expansion rate of the battery 4 becomes lower than the above-mentioned specified expansion rate and becomes a predetermined value or more, the prior information is output to the temperature control unit 25G.
 温調制御部25Gは、バッテリ4が使用に適さない状態となる事前情報を取得していない場合(ステップS51でNo)、本ルーチンを一旦終了して、再び最初から実行する。一方、温調制御部25Gは、バッテリ4が使用に適さない状態となる事前情報を取得した場合(ステップS51でYes)、ステップS52として、予備バッテリ40の温度を取得する。予備バッテリ40の温度は、バッテリ4のバッテリ温度Tと同様の手法により、温度取得部24が取得し、温調制御部25Gに出力する。温調制御部25Gは、予備バッテリ40の温度を取得すると、ステップS53として、予備バッテリ40の温度が飛行許可温度T1となるようにペルチェ素子5bを制御する。温調制御部25Gは、バッテリ4を使用している間は、ステップS51からステップS53の処理を繰り返し実行する。 If the temperature control unit 25G has not acquired prior information that makes the battery 4 unsuitable for use (No in step S51), the temperature control unit 25G temporarily terminates this routine and executes it from the beginning again. On the other hand, when the temperature control unit 25G acquires prior information that makes the battery 4 unsuitable for use (Yes in step S51), the temperature control unit 25G acquires the temperature of the spare battery 40 in step S52. The temperature of the spare battery 40 is acquired by the temperature acquisition unit 24 by the same method as the battery temperature T of the battery 4, and is output to the temperature control unit 25G. When the temperature control unit 25G acquires the temperature of the spare battery 40, in step S53, the temperature control unit 25G controls the Pelche element 5b so that the temperature of the spare battery 40 becomes the flight permission temperature T1. The temperature control unit 25G repeatedly executes the processes of steps S51 to S53 while the battery 4 is in use.
 以上説明したように、第二実施形態において、温調制御部25Gは、バッテリ4が使用に適さない状態となる事前情報を取得すると、バッテリ4とは別に無人航空機1Gに搭載された予備バッテリ40の使用に切り替わる前に、予備バッテリ40用のペルチェ素子5bを制御して、予備バッテリ40の温度を事前に温度調整する。この構成により、電力源をバッテリ4から予備バッテリ40へと切り替えた後、予備バッテリ40の寿命が減少したり電力効率が低下したりすることを、できるだけ抑制することができる。 As described above, in the second embodiment, when the temperature control unit 25G acquires the prior information that the battery 4 is in a state unsuitable for use, the spare battery 40 mounted on the unmanned aerial vehicle 1G separately from the battery 4 Before switching to the use of the spare battery 40, the Pelche element 5b for the spare battery 40 is controlled to adjust the temperature of the spare battery 40 in advance. With this configuration, it is possible to suppress the decrease in the life of the spare battery 40 and the decrease in the power efficiency after switching the power source from the battery 4 to the spare battery 40 as much as possible.
 なお、ステップS53では、予備バッテリ40の温度を飛行許可温度T1以外の予め定めた温度となるように、ペルチェ素子5bを制御してもよい。すなわち、飛行移動モードM2の実行中に、予備バッテリ40への切替が発生したとき、予備バッテリ40の寿命が減少したり電力効率が低下したりすることを抑制することができる温度であればよい。 In step S53, the Pelche element 5b may be controlled so that the temperature of the spare battery 40 becomes a predetermined temperature other than the flight permission temperature T1. That is, the temperature may be such that when switching to the spare battery 40 occurs during the execution of the flight movement mode M2, it is possible to suppress a decrease in the life of the spare battery 40 or a decrease in power efficiency. ..
 また、「バッテリ4が使用に適さない状態」となった場合には、予備バッテリ40の温度が飛行許可温度T1に達していなくとも、電力源を予備バッテリ40へと切り替えることが好ましい。言い換えると、温調制御部25Gが事前情報を取得してから「バッテリ4が使用に適さない状態」となるまでの間に、バッテリ4の使用を継続する時間的余裕がある場合には、予備バッテリ40の温度が飛行許可温度T1に達したことを、バッテリ4から予備バッテリ40への切替条件としてもよい。 Further, when the "battery 4 is not suitable for use", it is preferable to switch the power source to the spare battery 40 even if the temperature of the spare battery 40 does not reach the flight permission temperature T1. In other words, if there is time to continue using the battery 4 between the time when the temperature control unit 25G acquires the prior information and the time when the battery 4 becomes "unsuitable for use", it is reserved. The fact that the temperature of the battery 40 reaches the flight permission temperature T1 may be a condition for switching from the battery 4 to the spare battery 40.
 また、ペルチェ素子5aは、バッテリ4または本体2に搭載された各種装置のいずれかと、電気的に接続されていてもよい。ペルチェ素子5aは、吸熱面と加熱面とに温度勾配を与えることにより、ペルチェ効果とは反対の効果として、ゼーベック効果により発電を行うことができる。したがって、ペルチェ素子5aは、バッテリ温度Tとペルチェ素子5aの周囲環境の温度との差を利用して発電を行うことができる。この構成により、ペルチェ素子5aで発電した電力をバッテリ4に充電したり、飛行装置3といった各種装置に供給したりすることで、無人航空機1Aをより長時間にわたって飛行させることが可能となる。ペルチェ素子5aによる発電は、ペルチェ素子5aによるバッテリ4の温調を行っていない場合に行われる。ペルチェ素子5aによる発電とバッテリ4の温調とのモード切替は、例えばバッテリ温度T、ペルチェ素子5aの温度、外気温、飛行時間、飛行距離等の条件に応じて行われてもよい。特に、ペルチェ素子5aの温度を検出する内蔵サーミスタ7がある場合、ペルチェ素子5aの温度を精度よく検出できることから、ペルチェ素子5aによる発電とバッテリ4の温調とのモード切替を、細やかに実行することができる。なお、第二実施形態で説明したペルチェ素子5b、予備バッテリ40についても、同様であってもよい。 Further, the Pelche element 5a may be electrically connected to either the battery 4 or various devices mounted on the main body 2. By giving a temperature gradient to the endothermic surface and the heating surface, the Pelche element 5a can generate power by the Seebeck effect as an effect opposite to the Pelche effect. Therefore, the Pelche element 5a can generate electricity by utilizing the difference between the battery temperature T and the temperature of the ambient environment of the Pelche element 5a. With this configuration, the electric power generated by the Pelche element 5a can be charged to the battery 4 or supplied to various devices such as the flight device 3, so that the unmanned aerial vehicle 1A can be flown for a longer period of time. The power generation by the Pelche element 5a is performed when the temperature of the battery 4 is not controlled by the Pelche element 5a. The mode switching between the power generation by the Pelche element 5a and the temperature control of the battery 4 may be performed according to conditions such as the battery temperature T, the temperature of the Pelche element 5a, the outside air temperature, the flight time, and the flight distance. In particular, when there is a built-in thermistor 7 that detects the temperature of the Pelche element 5a, since the temperature of the Pelche element 5a can be detected accurately, the mode switching between the power generation by the Pelche element 5a and the temperature control of the battery 4 is finely executed. be able to. The same may apply to the Pelche element 5b and the spare battery 40 described in the second embodiment.
 1A,1B,1C,1D,1E,1F,1G 無人航空機
 2 無人航空機本体(本体)
 3 飛行装置
 3a 回転翼
 4 バッテリ
 5,5G 温調装置
 5a,5b ペルチェ素子
 51a 面(他方主面)
 52a 面(一方主面)
 6 GPS受信機
 7 内蔵サーミスタ
 8 外付けサーミスタ
 9 コネクタ
 10 記憶部
 20 制御部
 21 飛行経路取得部
 22 現在位置取得部
 23,23G 全体制御部
 24 温度取得部
 25,25G 温調制御部
 26 気象情報取得部
 40 予備バッテリ
 100A,100B,100C,100D,100G 制御装置
 M1 飛行移動待機モード
 M2 飛行移動モード
 M3 充電待機モード
 M4 充電モード
 T バッテリ温度
 Tt 目標温度
 T1 飛行許可温度
 T2 飛行移動時温度
 T3 充電許可温度
1A, 1B, 1C, 1D, 1E, 1F, 1G unmanned aerial vehicle 2 unmanned aerial vehicle body (main body)
3 Flight device 3a Rotorcraft 4 Battery 5,5G Temperature control device 5a, 5b Pelche element 51a surface (other main surface)
52a surface (one main surface)
6 GPS receiver 7 Built-in thermistor 8 External thermistor 9 Connector 10 Storage unit 20 Control unit 21 Flight route acquisition unit 22 Current position acquisition unit 23,23G Overall control unit 24 Temperature acquisition unit 25,25G Temperature control unit 26 Meteorological information acquisition Part 40 Spare battery 100A, 100B, 100C, 100D, 100G Control device M1 Flight movement standby mode M2 Flight movement mode M3 Charge standby mode M4 Charging mode T Battery temperature Tt Target temperature T1 Flight permission temperature T2 Flight movement temperature T3 Charge permission temperature

Claims (17)

  1.  無人航空機のバッテリのバッテリ温度を取得する温度取得部と、
     前記バッテリの温度調整を行うペルチェ素子を制御する温調制御部と、
     を備え、
     前記温調制御部は、前記温度取得部により取得された前記バッテリ温度が前記無人航空機の複数の制御モードに応じて設定される温度となるように前記ペルチェ素子を制御する無人航空機の制御装置。
    A temperature acquisition unit that acquires the battery temperature of the battery of an unmanned aerial vehicle,
    A temperature control unit that controls the Pelche element that adjusts the temperature of the battery, and
    Equipped with
    The temperature control unit is a control device for an unmanned aerial vehicle that controls the Pelche element so that the battery temperature acquired by the temperature acquisition unit becomes a temperature set according to a plurality of control modes of the unmanned aerial vehicle.
  2.  複数の前記制御モードは、前記無人航空機の飛行移動を開始させる前の飛行移動待機モードと、前記無人航空機を飛行移動させる飛行移動モードとを含み、
     前記飛行移動待機モードから前記飛行移動モードへの移行条件は、前記バッテリ温度が予め設定される飛行許可温度以上であることを含み、
     前記温調制御部は、前記制御モードが前記飛行移動待機モードである場合、前記バッテリ温度が前記飛行許可温度以上となるように前記ペルチェ素子を制御する請求項1に記載の無人航空機の制御装置。
    The plurality of control modes include a flight movement standby mode before starting the flight movement of the unmanned aerial vehicle and a flight movement mode in which the unmanned aerial vehicle is made to fly and move.
    The transition condition from the flight movement standby mode to the flight movement mode includes that the battery temperature is equal to or higher than the preset flight permission temperature.
    The control device for an unmanned aerial vehicle according to claim 1, wherein the temperature control unit controls the Pelche element so that the battery temperature becomes equal to or higher than the flight permission temperature when the control mode is the flight movement standby mode. ..
  3.  複数の前記制御モードは、前記飛行移動モードの後に前記バッテリを充電させる前の充電待機モードと、前記バッテリを充電させる充電モードとを含み、
     前記充電待機モードから前記充電モードへの移行条件は、前記バッテリ温度が予め設定される充電許可温度以下であることを含み、
     前記温調制御部は、前記制御モードが前記充電待機モードである場合、前記バッテリ温度が前記充電許可温度以下となるように前記ペルチェ素子を制御する請求項2に記載の無人航空機の制御装置。
    The plurality of control modes include a charge standby mode after the flight movement mode and before charging the battery, and a charge mode for charging the battery.
    The transition condition from the charge standby mode to the charge mode includes that the battery temperature is equal to or lower than the preset charge permission temperature.
    The control device for an unmanned aerial vehicle according to claim 2, wherein the temperature control unit controls the Pelche element so that the battery temperature is equal to or lower than the charge permission temperature when the control mode is the charge standby mode.
  4.  前記温調制御部は、前記制御モードが前記飛行移動モードである場合、前記バッテリ温度が予め設定される飛行移動時温度に維持されるように前記ペルチェ素子を制御する請求項2または請求項3に記載の無人航空機の制御装置。 Claim 2 or claim 3 that the temperature control unit controls the Pelche element so that the battery temperature is maintained at a preset flight movement temperature when the control mode is the flight movement mode. The control device for the unmanned aerial vehicle described in.
  5.  前記温調制御部は、前記バッテリが使用に適さない状態となる事前情報を取得すると、前記バッテリとは別に前記無人航空機に搭載された予備バッテリの使用に切り替わる前に、前記予備バッテリ用のペルチェ素子を制御して、前記予備バッテリの温度を事前に温度調整する請求項1から請求項4のいずれか一項に記載の無人航空機の制御装置。 When the temperature control unit acquires prior information that the battery is in a state of being unsuitable for use, the Pelche for the spare battery is used before switching to the use of the spare battery mounted on the unmanned aerial vehicle separately from the battery. The control device for an unmanned aerial vehicle according to any one of claims 1 to 4, wherein the element is controlled to adjust the temperature of the spare battery in advance.
  6.  前記温度取得部は、前記バッテリの内部抵抗値を取得し、前記内部抵抗値に基づいて前記バッテリ温度を算出する請求項1から請求項5のいずれか一項に記載の無人航空機の制御装置。 The control device for an unmanned aerial vehicle according to any one of claims 1 to 5, wherein the temperature acquisition unit acquires the internal resistance value of the battery and calculates the battery temperature based on the internal resistance value.
  7.  前記温度取得部は、前記ペルチェ素子に内蔵された温度センサにより検出される前記ペルチェ素子の温度に基づいて、前記バッテリ温度を算出する請求項1から請求項6のいずれか一項に記載の無人航空機の制御装置。 The unmanned aerial vehicle according to any one of claims 1 to 6, wherein the temperature acquisition unit calculates the battery temperature based on the temperature of the Pelche element detected by the temperature sensor built in the Pelche element. Aircraft control device.
  8.  前記温度取得部は、前記無人航空機の周囲の外気温を検出する温度センサにより検出される外気温と、前記無人航空機の高度とに基づいて、前記バッテリ温度を算出する請求項1から請求項7のいずれか一項に記載の無人航空機の制御装置。 Claims 1 to 7 calculate the battery temperature based on the outside air temperature detected by the temperature sensor that detects the outside air temperature around the unmanned aerial vehicle and the altitude of the unmanned aerial vehicle. The control device for an unmanned aerial vehicle according to any one of the above.
  9.  前記温度取得部は、前記無人航空機が飛行する予定経路の気象に関する情報を取得し、取得した気象に関する情報に基づいて前記バッテリ温度を算出する請求項1から請求項8のいずれか一項に記載の無人航空機の制御装置。 The temperature acquisition unit acquires information on the weather of the planned route on which the unmanned aerial vehicle will fly, and calculates the battery temperature based on the acquired information on the weather. Unmanned aerial vehicle control device.
  10.  無人航空機本体と、
     前記無人航空機本体に搭載されたバッテリと、
     前記バッテリの温度調整を行うペルチェ素子と、
     前記ペルチェ素子を制御する請求項1から請求項9のいずれか一項に記載の無人航空機の制御装置と、
     を備える無人航空機。
    Unmanned aerial vehicle body and
    The battery mounted on the unmanned aerial vehicle body and
    The Pelche element that adjusts the temperature of the battery and
    The control device for an unmanned aerial vehicle according to any one of claims 1 to 9, which controls the Pelche element.
    Unmanned aerial vehicle equipped with.
  11.  前記ペルチェ素子の一方主面に固定された放熱フィンをさらに備え、
     前記ペルチェ素子の他方主面は、前記バッテリに固定されている、
     請求項10に記載の無人航空機。
    Further provided with a heat radiating fin fixed to one main surface of the Pelche element,
    The other main surface of the Pelche element is fixed to the battery.
    The unmanned aerial vehicle according to claim 10.
  12.  前記無人航空機本体は、回転翼を備え、
     前記ペルチェ素子は、前記無人航空機本体と前記バッテリとの間に位置している、
     請求項10または請求項11に記載の無人航空機。
    The unmanned aerial vehicle body is equipped with rotary wings and
    The Pelche element is located between the unmanned aerial vehicle body and the battery.
    The unmanned aerial vehicle according to claim 10 or 11.
  13.  前記無人航空機本体は、回転翼を備え、
     前記バッテリは、前記無人航空機本体と前記ペルチェ素子との間に位置している、
     請求項10から請求項12のいずれか一項に記載の無人航空機。
    The unmanned aerial vehicle body is equipped with rotary wings and
    The battery is located between the unmanned aerial vehicle body and the Pelche element.
    The unmanned aerial vehicle according to any one of claims 10 to 12.
  14.  前記制御装置は、前記ペルチェ素子のうち前記バッテリに固定された面と反対側に当接している請求項10に記載の無人航空機。 The unmanned aerial vehicle according to claim 10, wherein the control device is in contact with the side of the Pelche element opposite to the surface fixed to the battery.
  15.  前記ペルチェ素子は、前記バッテリまたは前記無人航空機本体に搭載された装置のいずれかと電気的に接続されており、前記バッテリまたは前記装置のいずれかに、前記バッテリの温度と周囲環境の温度との差によって発電した電力を供給する請求項10から請求項14のいずれか一項に記載の無人航空機。 The Pelche element is electrically connected to either the battery or a device mounted on the unmanned aerial vehicle body, and the difference between the temperature of the battery and the temperature of the ambient environment is connected to either the battery or the device. The unmanned aerial vehicle according to any one of claims 10 to 14, which supplies the electric power generated by the vehicle.
  16.  無人航空機が複数の制御モードのうち、いずれの制御モードで制御されているか判定するステップと、
     無人航空機のバッテリのバッテリ温度を取得するステップと、
     前記バッテリ温度が前記無人航空機の複数の前記制御モードに応じて設定される温度となるように、前記バッテリの温度調整を行うペルチェ素子を制御するステップと、
     を備える無人航空機の制御方法。
    A step to determine which of the multiple control modes the unmanned aerial vehicle is controlled by,
    Steps to get the battery temperature of the unmanned aerial vehicle battery,
    A step of controlling the Pelche element that adjusts the temperature of the battery so that the battery temperature becomes a temperature set according to the plurality of control modes of the unmanned aerial vehicle.
    How to control an unmanned aerial vehicle.
  17.  無人航空機が複数の制御モードのうち、いずれの制御モードで制御されているか判定するステップと、
     無人航空機のバッテリのバッテリ温度を取得するステップと、
     前記バッテリ温度が前記無人航空機の複数の前記制御モードに応じて設定される温度となるように、前記バッテリの温度調整を行うペルチェ素子を制御するステップと、
     をコンピュータに実行させるプログラム。
    A step to determine which of the multiple control modes the unmanned aerial vehicle is controlled by,
    Steps to get the battery temperature of the unmanned aerial vehicle battery,
    A step of controlling the Pelche element that adjusts the temperature of the battery so that the battery temperature becomes a temperature set according to the plurality of control modes of the unmanned aerial vehicle.
    A program that causes a computer to run.
PCT/JP2021/039513 2020-12-10 2021-10-26 Control device for unmanned aircraft, unmanned air craft, control method for unmanned aircraft, and program WO2022123940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568098A JPWO2022123940A1 (en) 2020-12-10 2021-10-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-205013 2020-12-10
JP2020205013 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022123940A1 true WO2022123940A1 (en) 2022-06-16

Family

ID=81973651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039513 WO2022123940A1 (en) 2020-12-10 2021-10-26 Control device for unmanned aircraft, unmanned air craft, control method for unmanned aircraft, and program

Country Status (2)

Country Link
JP (1) JPWO2022123940A1 (en)
WO (1) WO2022123940A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505254A (en) * 2014-08-08 2017-02-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd UAV battery power backup system and method
US20170203850A1 (en) * 2015-12-31 2017-07-20 SZ DJI Technology Co., Ltd. Uav hybrid power systems and methods
CN207265189U (en) * 2017-07-13 2018-04-20 广东泰一高新技术发展有限公司 Unmanned plane battery heating heat sink
US20190315188A1 (en) * 2017-12-12 2019-10-17 Kitty Hawk Corporation Coupled battery and motor controller thermal management system
WO2020022266A1 (en) * 2018-07-25 2020-01-30 株式会社ナイルワークス Drone, method for controlling drone, and drone control program
US20200313258A1 (en) * 2019-03-29 2020-10-01 Coretronic Intelligent Robotics Corporation Cell device and vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505254A (en) * 2014-08-08 2017-02-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd UAV battery power backup system and method
US20170203850A1 (en) * 2015-12-31 2017-07-20 SZ DJI Technology Co., Ltd. Uav hybrid power systems and methods
CN207265189U (en) * 2017-07-13 2018-04-20 广东泰一高新技术发展有限公司 Unmanned plane battery heating heat sink
US20190315188A1 (en) * 2017-12-12 2019-10-17 Kitty Hawk Corporation Coupled battery and motor controller thermal management system
WO2020022266A1 (en) * 2018-07-25 2020-01-30 株式会社ナイルワークス Drone, method for controlling drone, and drone control program
US20200313258A1 (en) * 2019-03-29 2020-10-01 Coretronic Intelligent Robotics Corporation Cell device and vehicle

Also Published As

Publication number Publication date
JPWO2022123940A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
KR102448525B1 (en) Desired departure temperature of the battery in the vehicle
EP2865598B1 (en) Aircraft electric motor system
US20220011782A1 (en) Method And System For Safely Landing A Battery Powered Electric VTOL Aircraft In A Low Charge Condition
EP3785952B1 (en) Cabin thermal management system
US11225331B2 (en) Method and system for supplying power to an unmanned aerial vehicle
US10476296B1 (en) Supplementing energy storage of an in-flight solar-powered UAV by casting light from a secondary in-flight UAV
EP3785980B1 (en) Ground support equipment unit for use with electric aircraft
US20160023751A1 (en) Energy harvesting mechanism for gyroplanes and gyrocopters
TWI779215B (en) Method for controlling a robotic vehicle following flight controller signal loss and robotic vehicle configured to perform the same
US10355327B1 (en) Dynamic battery pack thermal management
US20230242011A1 (en) Preconditioning batteries of unmanned aerial vehicles
WO2017207968A1 (en) Battery arrangement
WO2022123940A1 (en) Control device for unmanned aircraft, unmanned air craft, control method for unmanned aircraft, and program
KR102230900B1 (en) Drone battery management method and apparatus performing the same
EP4122753B1 (en) Predictive preconditioning of an electric aircraft battery system
EP4137348A1 (en) Estimating available power for an aircraft battery
Anderson et al. Ingenuity, one year of flying on mars
US20230234731A1 (en) Mobile body, method of controlling mobile body, program of controlling mobile body, and electric power supply system
CN206370448U (en) A kind of unmanned plane has the battery cover of heat sinking function
Głębocki et al. Validation of the energy consumption model for a quadrotor using Monte-Carlo simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903044

Country of ref document: EP

Kind code of ref document: A1