WO2022123890A1 - Hypochlorite concentration measurement method, hypochlorite concentration measurement device, and food sterilizing device - Google Patents

Hypochlorite concentration measurement method, hypochlorite concentration measurement device, and food sterilizing device Download PDF

Info

Publication number
WO2022123890A1
WO2022123890A1 PCT/JP2021/037279 JP2021037279W WO2022123890A1 WO 2022123890 A1 WO2022123890 A1 WO 2022123890A1 JP 2021037279 W JP2021037279 W JP 2021037279W WO 2022123890 A1 WO2022123890 A1 WO 2022123890A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion concentration
hypochlorite ion
light intensity
transmitted light
hypochlorite
Prior art date
Application number
PCT/JP2021/037279
Other languages
French (fr)
Japanese (ja)
Inventor
輝美 平野
満 前嶋
一彦 佐藤
克己 桑原
彰 小山
裕通 杉谷
Original Assignee
株式会社サイエンス・イノベーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイエンス・イノベーション filed Critical 株式会社サイエンス・イノベーション
Publication of WO2022123890A1 publication Critical patent/WO2022123890A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/153Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of liquids or solids
    • A23B7/157Inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to a method for measuring hypochlorite ion concentration in a solution to be measured by an absorptiometry and a device for measuring hypochlorite ion concentration. Further, the present invention relates to a food sterilizer using such a hypochlorite ion concentration measuring device, and is not limited to, but relates to a food sterilizer suitable for sterilizing cut vegetables.
  • Hypochlorite water has high sterilizing power and can be handled relatively safely, so it is used for sterilization in clean water, sewage, sterilization and disinfection of wastewater, etc.
  • electrolytic hypochlorite water produced by electrolysis can be used for sterilizing foods because sodium, chlorine, etc. do not remain, and is highly safe.
  • the number of cases used for washing cut vegetables and the like is increasing.
  • hypochlorous acid water when using hypochlorous acid water, it is necessary to properly measure the concentration of hypochlorous acid.
  • concentration of hypochlorous acid There are various ways to measure the concentration of hypochlorous acid.
  • a colorimetric method such as an o-trizine colorimetric method, a diethyl-p-phenylenediamine colorimetric method, or the like, in which a reagent is drip into hypochlorite water and the concentration is measured by the color is well known.
  • a polarographic method is also well known in which a voltage is applied between a pair of electrodes immersed in hypochlorous acid water to obtain a hypochlorous acid concentration from a measured current.
  • the colorimetric method using a reagent has a problem that the measurement is complicated and continuous measurement cannot be performed.
  • the polarographic method is easily affected by electrical conductivity, so if other electrolytes or ions are dissolved in hypochlorite water, the concentration cannot be measured correctly, and it is easily affected by dirt on the electrodes, so the electrodes are regularly used. There is a problem that polishing is required.
  • the absorptiometric method is a measurement method that utilizes the fact that the wavelength of absorption differs depending on the type of substance dissolved when irradiating an aqueous solution with light, and that the degree of absorption is proportional to the concentration. Specifically, light of a predetermined wavelength is incident on an aqueous solution and transmitted, and the transmitted light is detected as a voltage by a photodiode. The concentration is measured based on the logarithmic ratio of the intensity of the light at the time of incident and the intensity of the transmitted light, that is, the absorbance.
  • the absorbance is measured by irradiating light containing a wavelength of 297 nm for ionic hypochlorous acid (ClO-) and light containing a wavelength of 236 nm for non-ionic hypochlorous acid (HClO). To do so.
  • the absorptiometry does not require reagents and does not have any dirt-affected members such as electrodes. It is also possible to continuously measure the hypochlorous acid concentration.
  • the absorptiometry method is excellent because it can measure the hypochlorous acid concentration continuously with high accuracy, and can be used when, for example, the hypochlorous acid is controlled to a desired concentration by feedback control or the like.
  • the concentration of hypochlorous acid cannot be measured when the solution to be measured contains stains.
  • ultraviolet rays having a wavelength near 297 nm are irradiated and the concentration is obtained from the degree of absorption.
  • hypochlorite ion concentration cannot be measured.
  • concentration of hypochlorous acid in a solution containing other substances cannot be measured.
  • a sterilizer has been widely used for sterilizing foods such as cut vegetables.
  • sterilizing water for immersing the cut vegetables is prepared from a predetermined concentration of hypochlorous acid.
  • the sterilized water is drained after use and is not circulated and reused.
  • the cost of water and sewage is high, and the energy for adjusting the temperature of sterilizing water is wasted.
  • the present invention uses two or more first, second, ... Semiconductor light sources having different wavelengths and a light intensity detecting means for detecting the intensity of light. Then, the light from the semiconductor light sources of the first, second, ... Is individually incident on the solution to be measured, and each transmitted light is detected by the light intensity detecting means to obtain the transmitted light intensity of the first, second, .... obtain. It is configured to obtain the hypochlorite ion concentration from the obtained transmitted light intensities of the first, second, ....
  • the semiconductor light source of the first, second, ... can be composed of an LED element, and the light intensity detecting means can be composed of a photodiode.
  • Another invention is a method for obtaining the hypochlorite ion concentration when the solution to be measured contains a specific substance group consisting of one or more kinds of substances other than hypochlorous acid.
  • the transmitted light intensity-concentration relationship which is the relationship between the transmitted light intensity of the first, second, ... And the hypochlorite ion concentration, is obtained by the preparatory treatment carried out in advance. .. That is, in the preparatory treatment, a plurality of test solutions containing a specific substance group and hypochlorous acid at various concentrations and whose hypochlorite ion concentration is known are prepared. Light from the semiconductor light sources of the first, second, ...
  • the transmitted light intensity-concentration relationship is obtained by the transmitted light intensities of the first, second, ... For the plurality of test solutions and the known hypochlorite ion concentration.
  • the hypochlorite ion concentration is obtained based on this transmitted light intensity-concentration relationship.
  • the sterilizing device for food includes a sterilizing tank in which sterilizing water is stored and the food is immersed, a filtering device for filtering the sterilizing water, the above-mentioned hypochlorite ion concentration measuring device, and a hypochlorite supply means.
  • the hypochlorite is injected into the sterilizing water by the hypochlorite supply means based on the hypochlorite ion concentration of the sterilizing water measured by the hypochlorite ion concentration measuring device. do.
  • the hypochlorite ion concentration is obtained, even if the solution to be measured contains other substances, the influence thereof can be eliminated and the hypochlorite ion concentration can be obtained. That is, even if the solution is dirty, the hypochlorite ion concentration can be obtained with high accuracy. Since the present invention is a method to which the absorptiometry is applied, the hypochlorite ion concentration of the solution to be measured can be continuously measured.
  • the semiconductor light sources of the first, second, ... are made of an LED element and the light intensity detecting means is made of a photodiode, the invention can be carried out at low cost.
  • the solution to be measured contains a specific substance group, the relationship between the transmitted light intensity of the first, second, ... And the hypochlorite ion concentration with respect to this specific substance group. By preparing the transmitted light intensity-concentration relationship, the influence of the specific substance group can be eliminated and the hypochlorite ion concentration can be measured accurately.
  • the specific substance group contained in the measurement target solution for example, if the measurement target solution is sterilized water for cut vegetables, the substance group eluted from the cut green onion, the substance group eluted from the cut cabbage, and the cut substance group are cut. There is a group of substances that elute from vegetables and so on. In other words, if the transmitted light intensity-concentration relationship is prepared for various substance groups, the hypochlorite ion concentration can be measured accurately for each sterilized water.
  • Yet another invention is configured as a food sterilizer provided with a hypochlorite ion concentration measuring device for carrying out such a hypochlorite ion concentration measuring method.
  • the sterilized water can be filtered by a filtration device for circulation and reuse, and the hypochlorite ion concentration can be controlled to be constant. Therefore, it is not necessary to waste the sterilizing water, and the energy required for adjusting the temperature of the sterilizing water can be saved.
  • the food sterilizer according to the present invention can stably sterilize food and can significantly reduce the cost required for sterilizing food.
  • the hypochlorite ion concentration measuring device 1 is roughly composed of a main body portion 2 and a controller 3 connected to the main body portion 2.
  • the main body 2 is composed of a housing 5 containing the sensors described below and a transparent pipeline 6 inserted through the housing 5.
  • the housing 5 is made of a material that blocks light from the outside, and the inside of the housing 5 is maintained in a dark room.
  • the pipeline 6 is designed to flow a solution to be measured, which is a solution to be measured for measuring the hypochlorite ion concentration.
  • the solution to be measured may be continuously flowed through the conduit 6 or may be retained while being guided to the conduit 6.
  • the conduit 6 is made of a material that transmits ultraviolet rays and visible light, for example, light having a wavelength of 250 nm or more, and is adapted to transmit light from a semiconductor light source described below.
  • the housing 5 is provided with the first to fourth semiconductor light sources 11, 12, 13, and 14 in the vicinity of the conduit 6, and the first to fourth semiconductor light sources 11, 12, 13 are provided with the conduit 6 interposed therebetween.
  • the first to fourth light intensity detecting means 16, 17, 18, and 19 are provided on the opposite sides of the 14th and 14th, respectively.
  • the first to fourth semiconductor light sources 11, 12, 13, and 14 are designed to emit light under the control of the controller 3, and the light emitted from each of the first to fourth semiconductor light sources is incident on the solution to be measured in the conduit 6.
  • the transmitted light is detected by the first to fourth light intensity detecting means 16, 17, 18, and 19, respectively. In the first to fourth light intensity detecting means 16, 17, 18, and 19, the intensity of the transmitted light is detected as a voltage and sent to the controller 3.
  • the light emitted by the first to fourth semiconductor light sources 11, 12, ... Has two characteristics.
  • the first feature is that the wavelength of the emitted light is different for each light source.
  • the second feature is that the emission wavelength of the first semiconductor light source 11 includes a part of the wavelength of 280 to 320 nm.
  • hypochlorite ions are strongly absorbed by ultraviolet rays in the vicinity of 292 nm. That is, the hypochlorite ion in the solution to be measured is absorbed by the light beam of the first semiconductor light source 11.
  • the peak wavelengths are 282 nm, 380 nm, 450 nm, and 620 nm, respectively.
  • the first to fourth semiconductor light sources 11, 12, 13, and 14 employ LED elements that can be purchased at a relatively low cost. However, it can also be configured from a semiconductor laser. Further, the first to fourth light intensity detecting means 16, 17, 18, and 19 are composed of a photodiode in the present embodiment. The first to fourth light intensity detecting means 16, 17, 18, and 19 may be composed of one. For example, even if the first to fourth semiconductor light sources 11, 12, 13, and 14 are made to emit light in order and the transmitted light transmitted through the solution to be measured is detected by one common light intensity detecting means, the transmitted light intensity of each is detected. This is because it can detect.
  • the controller 3 controls the first to fourth semiconductor light sources 11, 12, 13, and 14 so as not to emit light at the same time. This prevents transmitted light from the plurality of semiconductor light sources 11, 12, ... From being scattered and detected by unintended light intensity detecting means 16, 17, .... However, if a light-shielding plate is provided between the semiconductor light sources 11, 12, ... In the housing 5, interference can be prevented even if the light is emitted at the same time, and the intensity of each transmitted light can be measured at the same time.
  • the controller 3 can arbitrarily select the semiconductor light sources 11, 12, ... To be used. For example, it is possible to set to use only two of the first and second semiconductor light sources 11 and 12, or to use three of the first, second and fourth semiconductor light sources 11, 12, and 14. You can also do it. That is, the required semiconductor light sources 11, 12, ... Can be selected according to the solution to be measured. Of course, four semiconductor light sources 11, 12, ... May be always used regardless of the type of the solution to be measured.
  • the hypochlorite ion concentration measuring device 1 is described below even if the solution to be measured contains a specific substance group consisting of one or more kinds of substances, as will be described later.
  • the chlorite ion concentration can be detected accurately.
  • the following three points will be described first. (1) Absorption of hypochlorous acid, transmittance of an aqueous solution containing a predetermined substance such as cabbage, onion, etc. (2) Hypochlorite ion concentration can be measured even if a specific substance group is contained in the solution to be measured. Reason (3) Consideration of an aqueous solution whose relationship between wavelength and transmittance changes in response to hypochlorite
  • hypochlorite ion ( ClO- ) that absorbs ultraviolet rays with a wavelength of 292 nm, that is, ultraviolet rays in the wavelength range of 280 to 320 nm, and it is a nonionic state that absorbs ultraviolet rays with a wavelength of 236 nm.
  • Hypochlorous acid (HClO).
  • the ratio of non-ionic hypochlorous acid to hypochlorite ion in the solution changes depending on the pH, even if the total concentration of hypochlorous acid is constant, the hypochlorite ion concentration changes depending on the pH.
  • the graph looks like this.
  • the first semiconductor light source 11 is absorbed by hypochlorite ions.
  • the second to fourth semiconductor light sources 12, 13, ... Are hardly absorbed by hypochlorite ions. Therefore, it can be seen that the transmitted light intensity of the first semiconductor light source 11 is important in the measurement of the hypochlorite ion concentration.
  • hypochlorous acid there are many substances that absorb ultraviolet rays with the wavelength of the first semiconductor light source 11. Then, when the solution to be measured contains a substance other than hypochlorous acid, the transmitted light intensity of the first semiconductor light source 11 is not only the concentration of hypochlorite ion but also the concentration of the other substance. Should affect.
  • an aqueous solution containing other substances the transmittance of each of an aqueous solution containing a cabbage component, an aqueous solution containing a green onion component, and an aqueous solution containing a spinach component will be described.
  • ⁇ Transmittance of an aqueous solution containing cabbage components and hypochlorous acid> Prepare an aqueous solution in which the cut cabbage is immersed in water to elute the cabbage components, add the same amount of 89 ppm hypochlorous acid to this aqueous solution, mix, and investigate the relationship between wavelength and transmittance for this mixed solution.
  • the transmittance of the mixed solution in which the cabbage component is eluted decreases as the wavelength becomes shorter. That is, light having a short wavelength is absorbed.
  • the wavelengths of the first to fourth semiconductor light sources 11, 12, ... are shown by dotted lines in this graph. It can be seen that the components contained in the cabbage absorb not only the light of the second, third, and fourth semiconductor light sources 12, 13, and 14, but also the light of the first semiconductor light source 11. Therefore, when the solution to be measured contains a cabbage component, the hypochlorite ion concentration cannot be measured only by measuring the transmitted light intensity of the light from the first semiconductor light source 11.
  • the transmittance of the cabbage component slightly changes depending on the reaction time with hypochlorous acid.
  • the graph 102 is such that the graph 101 is enlarged as a whole at the same ratio in the vertical direction. As will be discussed later, since graphs 101 and 102 are only enlarged and reduced in the vertical direction, it should be considered that the cabbage component is a substance whose relationship between wavelength and transmittance does not change due to hypochlorous acid. Can be done.
  • the transmittance of the green onion component also changes slightly depending on the reaction time with hypochlorous acid.
  • the graph 104 is a graph obtained by enlarging the graph 103 in the vertical direction by the same ratio. Therefore, as will be discussed later, the component of green onion can also be regarded as a substance whose relationship between wavelength and transmittance does not change due to the reaction with hypochlorous acid.
  • the hypochlorite ion concentration measuring device 1 has two or more semiconductor light sources 11, 12, ... With different wavelengths even if the solution to be measured contains a substance other than hypochlorous acid. Since it is used, the hypochlorite ion concentration can be measured. The reason for this will be explained.
  • the liquid to be measured contains only hypochlorous acid.
  • the solution to be measured contains no other substances other than hypochlorous acid.
  • the detected voltage is a function of the hypochlorite ion concentration as shown in the equation. Should be given.
  • the hypochlorite ion concentration h should be able to be calculated from the detection voltage detected by the first light intensity detecting means 16.
  • the substance group X1 is composed of one kind or a plurality of kinds of substances, and these substances are mixed in a unique ratio.
  • the cabbage component can be considered as the substance group X1.
  • the aqueous solution of the cabbage component contains a plurality of chemical substances, that is, a plurality of types of substances.
  • inorganic substances such as potassium and calcium are contained. It can be said that the ratio of these substances is almost constant in cabbage.
  • the relationship between the wavelength and the transmittance of the substance group X1 should be a synthesis of the relationship between the wavelength and the transmittance of each substance contained in the substance group X1. Assuming that the component of the cabbage is the substance group X1, the relationship between the wavelength and the transmittance is as shown in Graph 101 of FIG. In this case, even if the concentration of the substance group X1 increases, for example, the graph 101 in FIG. 3 only expands at the same ratio in the vertical direction as a whole, and even if the concentration decreases, the graph 101 in FIG. 3 overall expands at the same ratio in the vertical direction. It just shrinks to.
  • Equation 2-1 means that the detection voltage by the first light intensity detecting means 16 is given by a function of the hypochlorite ion concentration h and the concentration X1 of the substance group X1. This is because the peak wavelength of the first semiconductor light source 11 is 282 nm, and it is absorbed by hypochlorite ion and any substance contained in the substance group X1.
  • the formula 2-2 means that the voltage detected by the second light intensity detecting means 17 is a function of the concentration X 1 of the substance group X 1 and is not related to the hypochlorite ion concentration h. There is. This is because the peak wavelength of the first semiconductor light source 11 is 380 nm and is not absorbed by hypochlorite ions, and is absorbed only by the substance group X1.
  • the hypochlorite ion concentration h can be obtained. This is because the number of equations is two, the number of unknowns is X 1 and h, and the number of equations and the number of unknowns are the same. That is, even if the substance group X1 is included, if the transmitted light intensity for at least two lights having different wavelengths is obtained as the detection voltage, the hypochlorite ion concentration h should be obtained.
  • the solution to be measured containing hypochlorous acid contains not only the substance group X1 but also another substance group X2.
  • the cabbage component and the green onion component have different wavelength and transmittance relationships from each other, as shown in FIGS. 3 and 4. Then, these can be said to be different groups of substances.
  • the solution to be measured contains both two different substance groups X1 and X2.
  • the concentrations X1 and X2 of the substance group X1 and the substance group X2, respectively are unknown.
  • the hypochlorite ion concentration h should be obtained even if the respective concentrations X1 and X2 of the substance groups X1 and X2 are unknown. Is. This is because the number of formulas is three, the number of unknowns is X 1 , X 2 , and h, and the number of formulas and the number of unknowns are the same. Then, even if the substance group X1 and the substance group X2 are included, if the transmitted light intensity for at least three different wavelengths of light is obtained as the detection voltage, the hypochlorite ion concentration h should be obtained. ..
  • the wavelengths are different from each other, and one of them has a wavelength of 280 to. It would be good if the transmitted light intensity could be obtained by n + 1 semiconductor light sources containing a part of the wavelength of 320 nm. If the conditions are made more lenient, it should be sufficient to obtain the transmitted light intensity of n + 1 or more semiconductor light sources.
  • FIGS. 101 and 102 of FIG. 3 are graphs of the transmittances of the aqueous solution containing the cabbage component and hypochlorous acid mixed 1 minute and 120 minutes after mixing, respectively. Since the individual substances that make up the components of cabbage should change in response to hypochlorous acid, the substance group X1 should change to the other substance group X2. That is, the graph 101 shows the relationship between the wavelength and the transmittance of the aqueous solution containing the substance group X1 and the graph 102 shows the aqueous solution containing the substance group X2.
  • the graph 102 has a shape as if the graph 101 is uniformly enlarged in the vertical direction.
  • the graph of the relationship between wavelength and transmittance can be enlarged or reduced as a whole at the same ratio in the vertical direction. be. Since the graph 102 has a shape in which the graph 101 is enlarged / reduced as a whole at the same ratio in the vertical direction, the substance group X2 can be regarded as substantially equivalent to the substance group X1. That is, the substance group X1 composed of the cabbage components can be regarded as being substantially maintained as the substance group X1 even if the constituent substances are changed by reacting with hypochlorous acid.
  • the hypochlorite ion concentration should be obtained by using at least two or more semiconductor light sources 11, 12, .... According to the same discussion, the hypochlorite ion concentration should be obtained by using at least two or more semiconductor light sources 11, 12, ... For the solution to be measured containing the green onion component.
  • the component of spinach that has not reacted with hypochlorous acid can be regarded as the substance group X1
  • the component of spinach 120 minutes after mixing with hypochlorous acid can be regarded as the substance group X2.
  • the graph 106 and the graph 107 have a shape synthesized by performing a predetermined operation from the graph 110 and the graph 108, respectively. Specifically, Graph 106 and Graph 107 multiply the transmittance of all wavelength regions of Graph 110 by a predetermined ratio, and multiply the transmittance of all wavelength regions of Graph 108 by another predetermined ratio. It is shaped like the sum of these multiplied by.
  • the graph 106 is a graph obtained by multiplying the graph 110 by 0.5, multiplying the graph 108 by 0.5, and summing them up
  • the graph 107 is a graph obtained by multiplying the graph 110 by 0.25.
  • the graph is as if 108 was multiplied by 0.75 and these were totaled.
  • the substance group X1 and the substance group X2 are related to the wavelength and the transmittance of the aqueous solution contained in a predetermined ratio, respectively. That is, when the solution to be measured contains a component of spinach, it can be treated as containing two substance groups, that is, a substance group X1 and a substance group X2. Then, if the solution to be measured contains spinach components, at least three or more semiconductor light sources 11, 12, ... Are required, and the hypochlorite ion concentration should be obtained from these transmitted light intensities. ..
  • the hypochlorite ion concentration measuring method is a method capable of measuring the hypochlorite ion concentration even if the specific substance groups X1, X2, ... Are contained in the solution to be measured. ..
  • the transmitted light intensity-concentration relationship shown in FIG. 1 is required.
  • the transmitted light intensity-concentration relationship is the relationship between the transmitted light intensity with respect to the light of the semiconductor light sources 11, 12, ... Of the first, second, ... Of the solution to be measured, and the hypochlorite ion concentration, and is composed of a mathematical formula.
  • the transmitted light intensity of each light obtained by incident light on the solution to be measured is given to the transmitted light intensity-concentration relationship, the hypochlorite ion concentration is obtained.
  • This transmitted light intensity-concentration relationship is inevitably given as a different relationship if the substance group is different.
  • a mathematical formula when the solution to be measured contains a substance group X1 composed of cabbage components and a mathematical formula when the substance group X2 composed of green onions components are included. Is different.
  • the hypochlorite ion concentration measuring method comprises a preparatory treatment and an execution treatment to be carried out in advance.
  • the preparatory treatment is a treatment for obtaining a transmitted light intensity-concentration relationship, and it is necessary to carry out as many as the number of target substance groups X1, X2, ....
  • the preparatory process includes a process performed by the engineer and a process performed by the controller 3.
  • the target substance group X1 is determined.
  • the substance group X1 of the cabbage component is targeted.
  • the engineer prepares a plurality of test solutions (step S1).
  • the plurality of test solutions are prepared so that the concentration of the target substance group X1 and the concentration of hypochlorite ion are contained in various combinations. The larger the number of test solutions, the better, and the larger the number, the more accurate the transmitted light intensity-concentration relationship can be obtained.
  • the controller 3 is operated to execute the transmitted light intensity detection unit, which is a program provided inside. That is, the semiconductor light sources 11, 12, ... Of the first, second, ... Are sequentially made to emit light, incident on the test solution, and the intensity of the transmitted light thereof is determined by the light intensity detecting means 16, 17, of the first, second, .... Obtained by ... (step S2). These are obtained as detection voltages and are input to the controller 3 as transmitted light intensities of the first, second, .... Repeat for all test solutions prepared with similar treatments.
  • the transmitted light intensity detection unit which is a program provided inside. That is, the semiconductor light sources 11, 12, ... Of the first, second, ... Are sequentially made to emit light, incident on the test solution, and the intensity of the transmitted light thereof is determined by the light intensity detecting means 16, 17, of the first, second, .... Obtained by ... (step S2).
  • step S3 the hypochlorite ion concentration is measured for these plurality of test solutions.
  • the measuring device and measuring method used do not matter, but it is necessary to obtain a highly accurate hypochlorite ion concentration for each test solution.
  • this step S3 may be carried out in parallel with step S2, or may be carried out in step S1.
  • the time difference between the timing of obtaining the transmitted light intensities of the first, second, ... Of the test solution in step S2 and the timing of measuring the hypochlorite ion concentration of the same test solution is made as short as possible. Is preferable. This is because if the time difference is large, hypochlorous acid reacts with the substance group X1 and the concentration changes.
  • step S4 the transmitted light intensity-concentration relationship is obtained. That is, from the transmitted light intensities of the first, second, ... Obtained in step S2 and the hypochlorite ion concentration measured in step S3 for the plurality of test solutions, the transmitted light intensities of the first, second, ...
  • the transmitted light intensity-concentration relationship which is the relationship of chlorite ion concentration, is obtained.
  • This process may be performed on the controller 3 or may be performed on a personal computer.
  • the transmitted light intensities of the first, second, ... Obtained in step S2 are read out from the controller 3, input to the personal computer together with the hypochlorite ion concentration measured in step S3, and transmitted. Try to obtain a light intensity-density relationship.
  • the transmitted light intensity-concentration relationship can be given as a mathematical formula as described above. In the case of a mathematical formula, it may be a regression equation by regression analysis.
  • the hypochlorite ion concentration measured in step S3 can be used as the dependent variable, and the transmitted light intensities of the first, second, ...
  • data processed for the transmitted light intensities of the first, second, ... For example, squared data, cubed data, etc. may be created and added as explanatory variables.
  • the transmitted light intensity-concentration relationship may be given by a mathematical formula other than the regression equation.
  • the hypochlorite ion concentration measured in step S3 is used as a teacher signal, the transmitted light intensities of the first, second, ... Are used as input data, and the neural network is trained. It may be related to the concentration.
  • the transmitted light intensity-concentration relationship for the substance group X1 is obtained, it is set in the controller 3. Complete the preparatory process. For the other substance groups X2, X3, ..., The preparatory process is repeated in the same manner if necessary, and the transmitted light intensity-concentration relationship for each substance group X2, X3, ... is obtained and set in the controller 3. do.
  • hypochlorite ion concentration measuring method it is necessary to know in advance which substance group is contained in the solution to be measured. That is, it is a condition that the hypochlorite ion concentration can be obtained that the type of the substance group contained in the solution to be measured is known. However, the concentration of the substance group may be unknown. The execution process will be explained.
  • step S11 is carried out. That is, the engineer supplies the solution to be measured to the conduit 6 of the hypochlorite ion concentration measuring device 1 according to the present embodiment.
  • the transmitted light intensity detection unit which is a program of the controller 3, is executed. Then, the semiconductor light sources 11, 12, ... Of the first, second, ... Sequentially emit light, each light is incident on the solution to be measured, and the intensity of the transmitted light thereof is the light intensity detection of the first, second, .... It is obtained as the transmitted light intensity of the first, second, ... By means 16, 17, ....
  • Step S12 is executed in the controller 3, and the concentration calculation unit stored as a program is executed.
  • the concentration effecting unit determines the hypochlorite ion concentration from the transmitted light intensities of the first, second, ... Obtained in step S11 based on the transmitted light intensity-concentration relationship for the substance X1 stored in the controller 3. obtain. If the transmitted light intensity-concentration relationship is a mathematical formula such as a regression equation, the transmitted light intensities of the first, second, ... Obtained in step S11 are input. Then, the hypochlorite ion concentration is obtained as a calculation result. If the neural network has learned the transmitted light intensity-density relationship, each of the first, second, ..., And ... obtained in step S11 is given as input data.
  • the hypochlorite ion concentration is obtained as output data.
  • the transmitted light intensity-concentration relationship is given as a database
  • the data matching the transmitted light intensity of the first, second, ... Obtained in step S11 is searched for, and the hypochlorite ion concentration is determined. obtain.
  • search for similar data search for similar data and obtain the hypochlorite ion concentration by a method such as linear interpolation. Complete the execution process.
  • FIG. 8 shows a food sterilizer 30 according to the present embodiment for sterilizing foods such as vegetables, cut vegetables, and fish and shellfish.
  • the food sterilizer 30 is designed to sterilize food with sterilizing water containing hypochlorous acid, and is configured as follows. That is, the sterilizing device 30 filters the sterilizing tank 31 for storing the sterilizing water, the basket 32 for putting food in the sterilizing tank 31, the pump 34 for circulating the sterilizing water in the sterilizing tank 31, and the circulating sterilizing water.
  • the controller 45 obtains the hypochlorite ion concentration of the sterilized water from the hypochlorite ion concentration measuring device 1 according to the present embodiment, and the pH meter 44.
  • the pH of the sterilized water is obtained from the sterilized water, and hypochlorous acid and the acid are injected based on these to control the hypochlorite concentration and the pH in the circulating sterilized water within a desired range. Then, the food is sterilized by the sterilizing water that is circulated, filtered and reused in this way.
  • the first condition is that the hypochlorite ion concentration can be correctly measured by the hypochlorite ion concentration measuring device 1 according to the present embodiment.
  • the food to be sterilized is operated so as to be one type. For example, only the cut green onions are sterilized, or only the cut cabbage is sterilized. When the food to be sterilized changes, all the sterilized water is replaced. Therefore, the substance group X1 contained in the circulating sterilizing water is known in advance. That is, the conditions for obtaining the hypochlorite ion concentration according to the present embodiment are satisfied.
  • the corresponding transmitted light intensity-concentration relationship is selected in advance according to the food to be sterilized. Then, the hypochlorite ion concentration can be measured. That is, the first condition is satisfied.
  • the second condition is that the hypochlorous acid concentration can be obtained. That is, it is necessary to obtain not only the measured hypochlorous acid ion concentration but also the nonionic hypochlorous acid concentration.
  • hypochlorite ion and non-ionic hypochlorous acid are in a chemical equilibrium state in which the ratio thereof changes depending on pH.
  • the controller 45 calculates the hypochlorite concentration from the pH measured by the pH meter 44 and the hypochlorite ion concentration measured by the hypochlorite ion concentration measuring device 1 according to the present embodiment. It has become like. That is, the second condition is also satisfied.
  • the food sterilizer 30 according to the present embodiment can be variously modified, and an electrolyzer is provided instead of the hypochlorous acid tank 38 to electrolyze the saline solution to obtain hypochlorous acid. May be good.
  • Citric acid, carbonic acid, hydrochloric acid and the like can be used in the acid tank 41.
  • hypochlorite ion concentration measuring device 1 In order to confirm that the hypochlorite ion concentration measuring device 1 according to the present embodiment can accurately measure the hypochlorite ion concentration of the solution to be measured containing various substance groups X1, a plurality of substances are used. An experiment was conducted. Hereinafter, each experiment will be described.
  • kaolin was selected as the substance group X1 and an experiment was conducted. Since kaolin is not chemically changed by hypochlorous acid, the substance group X1 is not changed. In this case, the hypochlorite ion concentration should be able to be measured only by the two semiconductor light sources 11 and 12. I decided to confirm this.
  • Experiment content Kaolin was mixed with water prepared to pH 7.9 to 8.1 with a small amount of sodium hydroxide to prepare the following six kinds of kaolin aqueous solutions K1, K2, ....
  • ppm indicates the weight ratio of water and kaolin respectively.
  • K1 1000ppm
  • K2 200ppm
  • K3 150ppm
  • K4 100ppm
  • K5 50ppm
  • K6 0ppm
  • Seven kaolin aqueous solutions K1, K2, ... Were divided into beakers, and hypochlorous acid was added to adjust the hypochlorous acid concentration to the following seven types. 0ppm, 21ppm, 40ppm, 60ppm, 80ppm, 102ppm, 121ppm That is, 42 test solutions having different concentrations of kaolin and hypochlorous acid were prepared.
  • the concentration of each hypochlorous acid was measured using a handy water quality meter "AQUAB AQ-202" (hereinafter referred to as “measuring instrument S") manufactured by Shibata Scientific Technology Co., Ltd.
  • This measuring instrument S is designed to measure the concentration of residual chlorine, but since there is virtually no bound residual chlorine in these test solutions, free residual chlorine will be measured. Further, since the pH of the test solution is around 8, about 90% of hypochlorous acid is hypochlorite ion. Therefore, the hypochlorous acid concentration measured by this measuring instrument S is considered to be approximately the hypochlorite ion concentration.
  • the light of the first and second semiconductor light sources 11 and 12 is incident on the 42 test solutions using the hypochlorite ion concentration measuring device 1 according to the present embodiment, and the light of the first and second semiconductor light sources 11 and 12 is transmitted.
  • Light intensity was obtained.
  • the first and second transmitted light intensities of the 42 obtained pieces and the hypochlorite ion concentration measured by the measuring instrument S were subjected to regression analysis to obtain a regression equation, that is, a transmitted light intensity-concentration relationship.
  • the first transmitted light intensity is x
  • the second transmitted light intensity is y
  • the square of x that is, x ⁇ 2
  • the square of y that is, y ⁇ 2
  • the product of x and y that is, x * y.
  • Y divided by x, that is, y / x, y cubed, that is, y ⁇ 3 data is also created, and these are also used as explanatory variables together with x and y, and hypochlorite ion concentration is used as the explained variable. I created an expression.
  • 10 solutions to be measured with different concentrations of kaolin and hypochlorous acid were prepared.
  • the light of the first and second semiconductor light sources 11 and 12 is incident on these to obtain the transmitted light intensities of the first and second, respectively. rice field.
  • the obtained first and second transmitted light intensities were input into a transmitted light intensity-concentration relationship, that is, a regression equation to obtain a hypochlorite ion concentration.
  • a transmitted light intensity-concentration relationship that is, a regression equation to obtain a hypochlorite ion concentration.
  • the average error was 2.3 ppm. Discussion: When the solution to be measured contains kaolin as the substance group X1, it was confirmed that the hypochlorite ion concentration can be obtained accurately even if the concentration of the substance group X1 is unknown. Further, it was confirmed that the number of required semiconductor light sources 11, 12, ... Is two. If two or more semiconductor light sources 11, 12, ... Are used, the hypochlorite ion concentration should be obtained with higher accuracy.
  • hypochlorous acid concentration would be the following five types. 31ppm, 56ppm, 76ppm, 107ppm, 130ppm That is, 25 test solutions having different concentrations of cabbage components and hypochlorous acid were prepared. The hypochlorous acid concentration of these test solutions was measured by the measuring instrument S, but since the pH of each of the test solutions is around 8, it is considered to be the hypochlorite ion concentration.
  • the hypochlorite ion concentration measuring device 1 is used to inject the light of the semiconductor light sources 11, 12, ... Of the first to fourth semiconductor light sources 11, 12, ...
  • the transmitted light intensity of 4 was obtained. That is, the semiconductor light sources 11, 12, ... Are all used to obtain the transmitted light intensity.
  • Regression analysis was performed on the transmitted light intensities 1 to 4 of the obtained 25 pieces and the hypochlorite ion concentration measured by the measuring instrument S to obtain a regression equation, that is, a transmitted light intensity-concentration relationship.
  • the transmitted light intensities of the first to fourth are x, y, z, and t, respectively.
  • the squares of these that is, the data of x ⁇ 2, y ⁇ 2, z ⁇ 2, and t ⁇ 2 are also created.
  • a regression equation was created with x and y as explanatory variables and the hypochlorite ion concentration as the dependent variable.
  • five measurement target solutions having different concentrations of cabbage components and hypochlorous acid were prepared. Using the hypochlorite ion concentration measuring device 1 according to the present embodiment, the light of the semiconductor light sources 11, 12, ... Of the first to fourth semiconductor light sources 11, 12, ... Is incident on these, and the transmitted light intensity of each of the first to fourth is incident.
  • the obtained first to fourth transmitted light intensities were input into a transmitted light intensity-concentration relationship, that is, a regression equation to obtain a hypochlorite ion concentration.
  • a transmitted light intensity-concentration relationship that is, a regression equation to obtain a hypochlorite ion concentration.
  • the average error was 2.05 ppm. Discussion: When the solution to be measured contains the cabbage component as the substance group X1, it was confirmed that the hypochlorite ion concentration can be obtained accurately even if the concentration of the substance group X1 is unknown.
  • Regression analysis was performed based on the acid ion concentration to obtain a regression equation, that is, a transmitted light intensity-concentration relationship.
  • a regression equation that is, a transmitted light intensity-concentration relationship.
  • the hypochlorite ion concentration was obtained and compared with the hypochlorite ion concentration measured by the measuring instrument S. The average error in concentration was 2.28 ppm.
  • the substance group X1 which is a component of spinach reacts with hypochlorous acid and changes to another substance group X2. It is presumed that the substance group X1 and the substance group X2 are mixed in the aqueous solution during the reaction with hypochlorous acid.
  • at least three semiconductor light sources 11, 12, ... As described above are required. Become. Therefore, using four semiconductor light sources 11, 12, ..., An experiment was conducted to confirm that the hypochlorite ion concentration could be obtained from the solution to be measured containing the components of spinach.
  • Experiment content 150 g of spinach was cut into strips, immersed in 2 L of water and left for 10 minutes, and filtered to remove solids to obtain an aqueous solution H containing the substance X1 which is a component of spinach.
  • the aqueous solution H is divided into four containers H1, H2, ... And diluted to a dilution ratio of 1/2, 1/5, 1/10, 1/20, respectively, to obtain a pH of 7.9 to 8.1.
  • hypochlorous acid was added so that the hypochlorous acid concentration became the following four types.
  • 56ppm, 76ppm, 107ppm, 130ppm That is, 20 test solutions having different concentrations of spinach components and hypochlorous acid were prepared.
  • the hypochlorous acid concentration of these test solutions was measured by the measuring instrument S, but since the pH of each of the test solutions is around 8, it is considered to be the hypochlorite ion concentration.
  • the hypochlorite ion concentration measuring device 1 the light of the semiconductor light sources 11, 12, ... Of the first to fourth semiconductor light sources 11, 12, ... Is incident on these 20 test solutions, and the first of each is incident.
  • the transmitted light intensity of ⁇ 4 was obtained.
  • the semiconductor light sources 11, 12, ... are all used to obtain the transmitted light intensity.
  • This measurement was carried out within 2 minutes by adding hypochlorous acid to the components of spinach. That is, the components of spinach change by reacting with hypochlorous acid, but the first to fourth transmitted light intensities are obtained when the reaction time with hypochlorous acid is within 2 minutes.
  • These 20 test solutions were left for 40 minutes to allow the reaction of spinach components with hypochlorous acid to proceed.
  • the light of the first to fourth semiconductor light sources 11, 12, ... was incident on each of the 20 test solutions using the hypochlorite ion concentration measuring device 1 according to the present embodiment.
  • hypochlorite ion concentration was measured for these 20 test solutions by the measuring instrument S. From all the data obtained for the test solution, that is, 40 sets of transmitted light intensities 1 to 4, and the hypochlorite ion concentration, a regression equation, that is, a transmitted light intensity-concentration relationship was obtained by regression analysis. Next, three measurement target solutions having different concentrations of spinach components and hypochlorous acid were prepared. Within 2 minutes of mixing with hypochlorous acid, the hypochlorite ion concentration measuring device 1 according to the present embodiment is used to inject the light of the first to fourth semiconductor light sources 11, 12, ... , The first to fourth transmitted light intensities of each were obtained. At this time, the hypochlorite ion concentration was measured by the measuring instrument S.
  • the three solutions to be measured were left for 40 minutes, and the hypochlorite ion concentration measuring device 1 according to the present embodiment was used again to obtain the first to fourth semiconductor light sources 11, 12, ... Light was incident to obtain the first to fourth transmitted light intensities of each.
  • the hypochlorite ion concentration was also measured by the measuring instrument S.
  • the transmitted light intensities of the first to fourth transmitted light obtained for the solution to be measured are input to the transmitted light intensity-concentration relationship, that is, the regression equation to obtain the hypochlorite ion concentration, and the hypochlorite measured by the measuring instrument S is obtained.
  • the average error was 2.97 ppm.
  • the hypochlorite ion concentration measuring device 1 can be modified in various ways.
  • the peak wavelengths of the first to fourth semiconductor light sources 11, 12, ... are 282 nm, 380 nm, 450 nm, and 620 nm, respectively.
  • the wavelength may be different from these.
  • the number of semiconductor light sources 11, 12, ... Can be modified.
  • the number of the semiconductor light sources 11, 12, ... May be 2 or more, and may be 5, 6, or the like.
  • the characteristics of the semiconductor light sources 11, 12, ... And the characteristics of the light intensity detecting means 16, 17, ... Change depending on the temperature.
  • the semiconductor light sources 11, 12, ... Are made of LEDs
  • the amount of light emitted decreases as the temperature rises.
  • Such a change in characteristics due to temperature affects the transmitted light intensity. That is, it affects the measurement of hypochlorite ion concentration.
  • FIG. 9 shows the hypochlorite ion concentration measuring device 1A according to the second embodiment, which can reduce the influence on the measurement of the hypochlorite ion concentration even if the characteristics change due to the temperature. It is shown. This will be explained.
  • the same reference number will be given to the members equivalent to the hypochlorite ion concentration measuring device 1 according to the present embodiment, and the description thereof will be omitted.
  • the hypochlorite ion concentration measuring device 1A is provided with a dummy measuring section 50 in the housing 5 of the main body section 2A.
  • the dummy measuring unit 50 includes first to fourth dummy semiconductor light sources 11'to 14'and first to fourth dummy light intensity detecting means 16' to 19'to receive these lights.
  • the first to fourth dummy semiconductor light sources 11 ′ to 14 ′ consist of LEDs having the same wavelength constituting the first to fourth semiconductor light sources 11 to 14, respectively.
  • the dummy light intensity detecting means 16'to 19'of the first to fourth are also made of the same photodiode constituting the light intensity detecting means 16 to 19 of the first to fourth, respectively.
  • the intensity of the transmitted light from the first to fourth semiconductor light sources 11 to 14 is about the measurement target solution contained in the conduit 6.
  • the dummy measuring unit 50 also has the intensity of the transmitted light from the dummy semiconductor light sources 11'to 14' of the first to fourth units 1 to 4 in parallel. Try to measure the dummy transmitted light intensity.
  • the first to fourth dummy transmitted light intensities should be constant values, but when the temperature changes, the characteristics of the LED and the like change, and the values change slightly.
  • the controller 3 corrects the transmitted light intensities of the first to fourth based on the dummy transmitted light intensities of the first to fourth. Then, even if the first to fourth transmitted light intensities are affected by the change in temperature, the influence can be offset.
  • Various methods can be adopted for the correction performed by the controller 3. For example, the first to fourth transmitted light intensities divided by the first to fourth dummy transmitted light intensities can be treated as the corrected first to fourth transmitted light intensities.
  • the influence can be reduced by other methods.
  • a temperature sensor is provided in the vicinity of the first to fourth semiconductor light sources to measure the ambient temperature.
  • the controller 3 corrects the transmitted light intensities of the first to fourth according to the ambient temperature.
  • the effect of temperature on the first to fourth transmitted light intensities may be measured in advance by experiments or the like.
  • hypochlorite ion concentration measuring device 1 there is also a method of obtaining not only the hypochlorite ion concentration but also the total hypochlorous acid concentration including the nonionic hypochlorous acid. ..
  • the rate of ionization of hypochlorous acid changes depending on the pH. That is, the ratio of hypochlorite ions is determined by pH. Therefore, the hypochlorite ion concentration measuring device 1 according to the present embodiment is provided with a pH meter to measure the pH of the solution to be measured.
  • the ratio of ionization of hypochlorous acid by pH is set in advance in the controller 3, the measured hypochlorous acid ion concentration and pH will be used to determine the total amount of hypochlorous acid including nonionic hypochlorous acid.
  • the hypochlorous acid concentration can be calculated.
  • the hypochlorite ion concentration measuring device 1 is designed to measure the concentration of hypochlorite ions.
  • hypochlorous acid is in a chemical equilibrium state between non-ionic hypochlorous acid and hypochlorite ion, and when it is alkaline, the ratio of hypochlorous acid ion is large. Therefore, when you want to measure the concentration of non-ionic hypochlorous acid and the entire hypochlorite ion of the solution to be measured, make the solution to be measured alkaline and measure the hypochlorite ion concentration, so that it can be obtained. can do.
  • Primary chlorite ion concentration measuring device 2 Main body 3 Controller 5 Housing 6 Pipeline 11-14 1st to 4th semiconductor light sources 16 to 19 1st to 4th light intensity detecting means 30 Food sterilizer 31 Sterilizer tank 32 Basket 34 Pump 35 Filtering device 38 Hypochlorite tank 41 Acid tank 44 pH meter 45 Controller

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

[Problem] To provide a hypochlorite concentration measurement method with which it is possible to continuously measure the hypochlorite concentration in a measurement subject solution even if other substances are contained therein. [Solution] At least two, that is, first, second, etc. semiconductor light sources (11, 12, etc.) having different wavelengths and light-intensity detecting means (16, 17, etc.) for detecting light intensity are used. By using said components, light beams having different wavelengths are made to enter a measurement subject solution and the transmitted light intensities of the respective light beams are obtained as first, second, etc. transmitted light intensities. The hypochlorite concentration is obtained from the obtained first, second, etc. transmitted light intensities. The first, second, etc. semiconductor light sources (11, 12, etc.) can be configured from LED elements, and the light-intensity detecting means (16, 17, etc.) can be configured from photodiodes.

Description

次亜塩素酸イオン濃度の測定方法、次亜塩素酸イオン濃度測定装置、および食品殺菌装置Hypochlorite ion concentration measuring method, hypochlorite ion concentration measuring device, and food sterilizing device
 本発明は、吸光光度法により測定対象の溶液中の次亜塩素酸イオン濃度を測定する次亜塩素酸イオン濃度の測定方法および次亜塩素酸イオン濃度測定装置に関するものである。さらには、このような次亜塩素酸イオン濃度測定装置を使用した食品の殺菌装置に関するものであり、限定するものではないがカット野菜の殺菌に好適な食品の殺菌装置に関するものである。 The present invention relates to a method for measuring hypochlorite ion concentration in a solution to be measured by an absorptiometry and a device for measuring hypochlorite ion concentration. Further, the present invention relates to a food sterilizer using such a hypochlorite ion concentration measuring device, and is not limited to, but relates to a food sterilizer suitable for sterilizing cut vegetables.
 次亜塩素酸水は、殺菌力が高く比較的安全に取り扱えるので、上水における殺菌、下水、排水の殺菌・消毒等に利用されている。特に電気分解によって生成される電解次亜塩素酸水は、ナトリウム、塩素等が残留しないので食品の殺菌に利用でき安全性が高い。近年、カット野菜等の洗浄において使用されるケースが増えている。 Hypochlorite water has high sterilizing power and can be handled relatively safely, so it is used for sterilization in clean water, sewage, sterilization and disinfection of wastewater, etc. In particular, electrolytic hypochlorite water produced by electrolysis can be used for sterilizing foods because sodium, chlorine, etc. do not remain, and is highly safe. In recent years, the number of cases used for washing cut vegetables and the like is increasing.
 ところで次亜塩素酸水の利用に際しては、次亜塩素酸の濃度を適切に測定する必要がある。次亜塩素酸の濃度を測定する方法は色々ある。例えば、o-トリジン比色法、ジエチル-p-フェニレンジアミン比色法等のように、次亜塩素酸水に試薬を点滴してその色によって濃度を測定する比色法が周知である。また、次亜塩素酸水に浸漬した一対の電極間に電圧を印加し、測定される電流から次亜塩素酸濃度を得るポーラログラフ法も周知である。しかしながら試薬を使用する比色法は測定が煩雑で連続的が測定できない問題がある。またポーラログラフ法は、電気伝導率の影響を受けやすいので次亜塩素酸水に他の電解質やイオンが溶けていると正しく濃度を測定できないし、電極の汚れによる影響を受けやすいので定期的に電極の研磨が必要になるという問題がある。 By the way, when using hypochlorous acid water, it is necessary to properly measure the concentration of hypochlorous acid. There are various ways to measure the concentration of hypochlorous acid. For example, a colorimetric method such as an o-trizine colorimetric method, a diethyl-p-phenylenediamine colorimetric method, or the like, in which a reagent is drip into hypochlorite water and the concentration is measured by the color is well known. Further, a polarographic method is also well known in which a voltage is applied between a pair of electrodes immersed in hypochlorous acid water to obtain a hypochlorous acid concentration from a measured current. However, the colorimetric method using a reagent has a problem that the measurement is complicated and continuous measurement cannot be performed. In addition, the polarographic method is easily affected by electrical conductivity, so if other electrolytes or ions are dissolved in hypochlorite water, the concentration cannot be measured correctly, and it is easily affected by dirt on the electrodes, so the electrodes are regularly used. There is a problem that polishing is required.
 特許文献1、2等に記載されているように、吸光光度法も周知である。吸光光度法は、水溶液に光を照射するとき溶解している物質の種類によって吸収される波長が異なること、そして吸収の度合いが濃度に比例することを利用した測定方法である。具体的には、所定の波長の光を水溶液に入射して透過させ、透過した光をフォトダイオードによって電圧として検出する。入射時の光の強度と透過した光の強度の比を対数にとったもの、すなわち吸光度に基づいて濃度を測定するようにする。イオン状態の次亜塩素酸(ClO-)であれば波長297nmを含む光を、そして非イオン状態の次亜塩素酸(HClO)であれば波長236nmを含む光をそれぞれ照射して吸光度を測定するようにする。吸光光度法は試薬が不要であるし、電極のような汚れの影響を受ける部材がない。また、次亜塩素酸濃度を連続的に測定することも可能である。 As described in Patent Documents 1, 2, etc., the absorptiometry is also well known. The absorptiometric method is a measurement method that utilizes the fact that the wavelength of absorption differs depending on the type of substance dissolved when irradiating an aqueous solution with light, and that the degree of absorption is proportional to the concentration. Specifically, light of a predetermined wavelength is incident on an aqueous solution and transmitted, and the transmitted light is detected as a voltage by a photodiode. The concentration is measured based on the logarithmic ratio of the intensity of the light at the time of incident and the intensity of the transmitted light, that is, the absorbance. The absorbance is measured by irradiating light containing a wavelength of 297 nm for ionic hypochlorous acid (ClO-) and light containing a wavelength of 236 nm for non-ionic hypochlorous acid (HClO). To do so. The absorptiometry does not require reagents and does not have any dirt-affected members such as electrodes. It is also possible to continuously measure the hypochlorous acid concentration.
特開2017-32503号公報Japanese Unexamined Patent Publication No. 2017-32503 特開2017-120246号公報Japanese Unexamined Patent Publication No. 2017-120246
 吸光光度法は、高い精度でかつ連続的に次亜塩素酸濃度を測定できるので優れており、例えばフィードバック制御等により次亜塩素酸を所望の濃度に制御する場合に利用することができる。しかしながら吸光光度法による次亜塩素酸濃度の測定方法には解決すべき課題も見受けられる。具体的には、測定対象の溶液中に汚れが含まれる場合に次亜塩素酸の濃度を測定できないという問題がある。例えば次亜塩素酸イオン濃度を測定する場合、吸光光度法では297nm近傍の波長の紫外線を照射して、その吸収の度合いから濃度を得るようにしている。ところが、この波長を吸収する他の物質も溶液中に存在している場合には、次亜塩素酸イオンによって吸光されたのか、他の物質によって吸光されたのか判別することができない。つまり次亜塩素酸イオン濃度が測定できない。吸光光度法によっては、他の物質を含む溶液の次亜塩素酸の濃度を測定できないという問題がある。 The absorptiometry method is excellent because it can measure the hypochlorous acid concentration continuously with high accuracy, and can be used when, for example, the hypochlorous acid is controlled to a desired concentration by feedback control or the like. However, there are some problems to be solved in the method of measuring the hypochlorous acid concentration by the absorptiometry. Specifically, there is a problem that the concentration of hypochlorous acid cannot be measured when the solution to be measured contains stains. For example, when measuring the hypochlorite ion concentration, in the absorptiometry method, ultraviolet rays having a wavelength near 297 nm are irradiated and the concentration is obtained from the degree of absorption. However, when other substances that absorb this wavelength are also present in the solution, it cannot be determined whether they are absorbed by hypochlorite ions or by other substances. That is, the hypochlorite ion concentration cannot be measured. Depending on the absorptiometry, there is a problem that the concentration of hypochlorous acid in a solution containing other substances cannot be measured.
ところで近年、食品、例えばカット野菜を殺菌するため、殺菌装置が広く利用されてきている。カット野菜の殺菌装置では、カット野菜を浸漬する殺菌水を所定濃度の次亜塩素酸から調製している。このようなカット野菜の殺菌装置では、殺菌水は使用後排水され、循環して再利用されていない。つまり上下水のコストがかかるし、殺菌水の温度を調整するためのエネルギーも無駄になる。もし殺菌水を循環・再利用しようとすると、カット野菜の殺菌後の殺菌水について連続的に次亜塩素酸の濃度を精度良く測定する必要がある。消費された次亜塩素酸を追加で添加して次亜塩素酸濃度を所望の範囲に維持するためである。しかしながら従来、次亜塩素酸の濃度を連続的にかつ精度良く測定する手段はない。連続的に濃度を測定する方法として、ポーラログラフ法、吸光光度法はある。しかしながらカット野菜の殺菌後の殺菌水はカット野菜の成分が溶解しているので、電気伝導率や吸光度に影響を与えて正しく次亜塩素酸濃度を測定できない。つまり従来、次亜塩素酸の濃度を連続的にかつ精度良く測定する手段はない。 By the way, in recent years, a sterilizer has been widely used for sterilizing foods such as cut vegetables. In the sterilizing device for cut vegetables, sterilizing water for immersing the cut vegetables is prepared from a predetermined concentration of hypochlorous acid. In such a cut vegetable sterilizer, the sterilized water is drained after use and is not circulated and reused. In other words, the cost of water and sewage is high, and the energy for adjusting the temperature of sterilizing water is wasted. If sterilized water is to be circulated and reused, it is necessary to continuously and accurately measure the concentration of hypochlorite in the sterilized water after sterilization of cut vegetables. This is because the consumed hypochlorous acid is additionally added to maintain the hypochlorous acid concentration in a desired range. However, conventionally, there is no means for continuously and accurately measuring the concentration of hypochlorous acid. As a method for continuously measuring the concentration, there are a polarographic method and an absorptiometry method. However, since the components of the cut vegetables are dissolved in the sterilized water after the sterilized cut vegetables, the electric conductivity and the absorbance are affected, and the hypochlorite concentration cannot be measured correctly. That is, conventionally, there is no means for continuously and accurately measuring the concentration of hypochlorous acid.
 本発明は、上記したような問題点を解決した、次亜塩素酸イオン濃度の測定方法および次亜塩素酸イオン濃度測定装置を提供することを目的としている。具体的には、測定対象の溶液に他の物質が含まれていても、連続的に高い精度で次亜塩素酸イオン濃度を測定することができる次亜塩素酸イオン濃度の測定方法、およびそのような測定方法を実施する次亜塩素酸イオン濃度測定装置を提供することを目的としている。さらに、次亜塩素酸を含んだ殺菌水によって食品を殺菌する殺菌装置において、殺菌水を循環・再利用することができる食品の殺菌装置を提供することも目的としている。 An object of the present invention is to provide a method for measuring hypochlorite ion concentration and a device for measuring hypochlorite ion concentration, which solves the above-mentioned problems. Specifically, a method for measuring hypochlorite ion concentration, which can continuously measure hypochlorite ion concentration with high accuracy even if the solution to be measured contains other substances, and a method for measuring the hypochlorite ion concentration thereof. It is an object of the present invention to provide a hypochlorite ion concentration measuring device for carrying out such a measuring method. Another object of the present invention is to provide a food sterilizer capable of circulating and reusing sterilized water in a sterilizer that sterilizes food with sterilized water containing hypochlorous acid.
 本発明は、波長の異なる2個以上の第1、2、…の半導体光源と、光の強度を検出する光強度検出手段とを使用する。そして、第1、2、…の半導体光源からの光を個別に測定対象溶液に対して入射し、それぞれの透過光を光強度検出手段により検出して第1、2、…の透過光強度として得る。得られた第1、2、…の透過光強度から次亜塩素酸イオン濃度を得るように構成する。第1、2、…の半導体光源はLED素子から、そして光強度検出手段はフォトダイオードから構成することができる。 The present invention uses two or more first, second, ... Semiconductor light sources having different wavelengths and a light intensity detecting means for detecting the intensity of light. Then, the light from the semiconductor light sources of the first, second, ... Is individually incident on the solution to be measured, and each transmitted light is detected by the light intensity detecting means to obtain the transmitted light intensity of the first, second, .... obtain. It is configured to obtain the hypochlorite ion concentration from the obtained transmitted light intensities of the first, second, .... The semiconductor light source of the first, second, ... Can be composed of an LED element, and the light intensity detecting means can be composed of a photodiode.
そして他の発明は、測定対象溶液に、次亜塩素酸以外に1種または複数種の物質からなる特定の物質群が含まれている場合について、次亜塩素酸イオン濃度を得る方法とする。この次亜塩素酸イオン濃度測定方法は、予め実施する準備処理によって、第1、2、…の透過光強度と次亜塩素酸イオン濃度の関係である透過光強度-濃度関係を得るようにする。つまり、準備処理では、特定の物質群と次亜塩素酸とが色々な濃度で含まれていると共に次亜塩素酸イオン濃度が判明している複数の試験溶液を用意する。これら複数の試験溶液のそれぞれに第1、2、…の半導体光源からの光を入射して透過させて光強度検出手段により検出して第1、2、…の透過光強度を得る。そして複数の試験溶液分の第1、2、…の透過光強度と、判明している次亜塩素酸イオン濃度とによって、透過光強度-濃度関係を得る。測定対象溶液について第1、2、…の透過光強度を得たら、この透過光強度-濃度関係に基づいて次亜塩素酸イオン濃度を得るように構成する。 Another invention is a method for obtaining the hypochlorite ion concentration when the solution to be measured contains a specific substance group consisting of one or more kinds of substances other than hypochlorous acid. In this hypochlorite ion concentration measuring method, the transmitted light intensity-concentration relationship, which is the relationship between the transmitted light intensity of the first, second, ... And the hypochlorite ion concentration, is obtained by the preparatory treatment carried out in advance. .. That is, in the preparatory treatment, a plurality of test solutions containing a specific substance group and hypochlorous acid at various concentrations and whose hypochlorite ion concentration is known are prepared. Light from the semiconductor light sources of the first, second, ... Is incident on each of the plurality of test solutions and transmitted, and the light is detected by the light intensity detecting means to obtain the transmitted light intensity of the first, second, .... Then, the transmitted light intensity-concentration relationship is obtained by the transmitted light intensities of the first, second, ... For the plurality of test solutions and the known hypochlorite ion concentration. Once the transmitted light intensities of the first, second, ... For the solution to be measured are obtained, the hypochlorite ion concentration is obtained based on this transmitted light intensity-concentration relationship.
さらに他の発明は、このような次亜塩素酸イオン濃度測定方法を実施する次亜塩素酸イオン濃度測定装置を備えた、食品の殺菌装置として構成する。つまり食品の殺菌装置は、殺菌水が貯められて食品が浸漬される殺菌槽と、殺菌水をろ過するろ過装置と、前記した次亜塩素酸イオン濃度測定装置と、次亜塩素酸供給手段とを備えるようにし、次亜塩素酸イオン濃度測定装置によって測定される殺菌水の次亜塩素酸イオン濃度に基づいて次亜塩素酸供給手段によって殺菌水に次亜塩素酸が注入されるように構成する。 Yet another invention is configured as a food sterilizer provided with a hypochlorite ion concentration measuring device for carrying out such a hypochlorite ion concentration measuring method. That is, the sterilizing device for food includes a sterilizing tank in which sterilizing water is stored and the food is immersed, a filtering device for filtering the sterilizing water, the above-mentioned hypochlorite ion concentration measuring device, and a hypochlorite supply means. The hypochlorite is injected into the sterilizing water by the hypochlorite supply means based on the hypochlorite ion concentration of the sterilizing water measured by the hypochlorite ion concentration measuring device. do.
 本発明によると、2個以上の第1、2、…の半導体光源と、光の強度を検出する光強度検出手段とを使用して、第1、2、…の半導体光源からの光を個別に測定対象溶液に対して入射し、それぞれの透過光を光強度検出手段により検出して第1、2、…の透過光強度として得、この第1、2、…の透過光強度に基づいて次亜塩素酸イオン濃度を得るので、測定対象溶液に他の物質が含まれていても、その影響を排除して次亜塩素酸イオン濃度を得ることができる。つまり汚れがある測定対象溶液であっても、精度よく次亜塩素酸イオン濃度を得ることができる。そして本発明は、吸光光度法を応用した方法であるので、測定対象溶液の次亜塩素酸イオン濃度を連続的に測定することもできる。他の発明によると、第1、2、…の半導体光源はLED素子から、そして光強度検出手段はフォトダイオードからなるので、安価に発明を実施することができる。さらに他の発明によると、測定対象溶液に特定の物質群が含まれていても、この特定の物質群に対して、第1、2、…の透過光強度と次亜塩素酸イオン濃度の関係である透過光強度-濃度関係を用意しておくことによって、その特定の物質群の影響を排除して精度良く次亜塩素酸イオン濃度を測定できる。測定対象溶液に含まれる特定の物質群としては、例えば測定対象溶液がカット野菜の殺菌水であるとすると、カットされたネギから溶出する物質群、カットされたキャベツから溶出する物質群、カットされたホウレン草から溶出する物質群、等がある。つまり、色々な物質群に対応して透過光強度-濃度関係を用意しておけば、それぞれの殺菌水について精度良く次亜塩素酸イオン濃度を測定できることになる。 According to the present invention, light from the first, second, ... It is incident on the solution to be measured, and each transmitted light is detected by the light intensity detecting means to obtain the transmitted light intensity of the first, second, ..., Based on the transmitted light intensity of the first, second, ... Since the hypochlorite ion concentration is obtained, even if the solution to be measured contains other substances, the influence thereof can be eliminated and the hypochlorite ion concentration can be obtained. That is, even if the solution is dirty, the hypochlorite ion concentration can be obtained with high accuracy. Since the present invention is a method to which the absorptiometry is applied, the hypochlorite ion concentration of the solution to be measured can be continuously measured. According to another invention, since the semiconductor light sources of the first, second, ... Are made of an LED element and the light intensity detecting means is made of a photodiode, the invention can be carried out at low cost. According to still another invention, even if the solution to be measured contains a specific substance group, the relationship between the transmitted light intensity of the first, second, ... And the hypochlorite ion concentration with respect to this specific substance group. By preparing the transmitted light intensity-concentration relationship, the influence of the specific substance group can be eliminated and the hypochlorite ion concentration can be measured accurately. As the specific substance group contained in the measurement target solution, for example, if the measurement target solution is sterilized water for cut vegetables, the substance group eluted from the cut green onion, the substance group eluted from the cut cabbage, and the cut substance group are cut. There is a group of substances that elute from vegetables and so on. In other words, if the transmitted light intensity-concentration relationship is prepared for various substance groups, the hypochlorite ion concentration can be measured accurately for each sterilized water.
さらに他の発明は、このような次亜塩素酸イオン濃度測定方法を実施する次亜塩素酸イオン濃度測定装置を備えた、食品の殺菌装置として構成されている。殺菌水をろ過装置によってろ過して循環・再利用でき、次亜塩素酸イオン濃度を一定に制御できる。したがって、殺菌水を無駄に排水する必要がなく、殺菌水の温度調整に要するエネルギーを節約できる。本発明に係る食品の殺菌装置によって、食品を安定して殺菌することができ食品の殺菌に要するコストを大幅に抑制することができる。 Yet another invention is configured as a food sterilizer provided with a hypochlorite ion concentration measuring device for carrying out such a hypochlorite ion concentration measuring method. The sterilized water can be filtered by a filtration device for circulation and reuse, and the hypochlorite ion concentration can be controlled to be constant. Therefore, it is not necessary to waste the sterilizing water, and the energy required for adjusting the temperature of the sterilizing water can be saved. The food sterilizer according to the present invention can stably sterilize food and can significantly reduce the cost required for sterilizing food.
本実施の形態に係る次亜塩素酸イオン濃度測定装置を示す正面図である。It is a front view which shows the hypochlorite ion concentration measuring apparatus which concerns on this embodiment. pHが異なる次亜塩素酸の水溶液について、波長と吸光度の関係を示すグラフである。It is a graph which shows the relationship between the wavelength and the absorbance of the aqueous solution of hypochlorous acid having a different pH. キャベツの成分を含む水溶液に次亜塩素酸を添加して、色々な時間経過後に測定した、波長と透過率の関係を示すグラフである。It is a graph which shows the relationship between the wavelength and the transmittance measured after the lapse of various time by adding hypochlorous acid to the aqueous solution containing the cabbage component. ネギの成分を含む溶液に次亜塩素酸を添加して、色々な時間経過後に測定した、波長と透過率の関係を示すグラフである。It is a graph which shows the relationship between the wavelength and the transmittance measured after the lapse of various time by adding hypochlorous acid to the solution containing the component of green onion. ホウレン草の成分を含む溶液に次亜塩素酸を添加して、色々な時間経過後に測定した、波長と透過率の関係を示すグラフである。It is a graph which shows the relationship between the wavelength and the transmittance measured after the lapse of various time by adding hypochlorous acid to the solution containing the component of spinach. 本実施の形態に係る次亜塩素酸イオン濃度測定方法における準備処理を示すフローチャートである。It is a flowchart which shows the preparation process in the hypochlorite ion concentration measuring method which concerns on this embodiment. 本実施の形態に係る次亜塩素酸イオン濃度測定方法の実行処理を示すフローチャートであるIt is a flowchart which shows the execution process of the hypochlorite ion concentration measurement method which concerns on this embodiment. 本実施の形態に係る食品の殺菌装置を示す正面図である。It is a front view which shows the food sterilization apparatus which concerns on this embodiment. 第2の実施の形態に係る次亜塩素酸イオン濃度測定装置を示す正面図である。It is a front view which shows the hypochlorite ion concentration measuring apparatus which concerns on 2nd Embodiment.
<次亜塩素酸イオン濃度測定装置>
 以下、本実施の形態を説明する。本実施の形態に係る次亜塩素酸イオン濃度測定装置1は、本体部2と、この本体部2と接続されているコントローラ3とから概略構成されている。本体部2は次に説明するセンサ類を収納している筐体5と、この筐体5に挿通されている透明な管路6とから構成されている。筐体5は外部からの光を遮光する素材からなり、筐体5内部を暗室に維持するようになっている。管路6は次亜塩素酸イオン濃度を測定する対象の溶液である測定対象溶液を流すようになっている。測定対象溶液は連続的に管路6を流してもよいし、管路6に導いた状態で滞留させてもよい。つまり次亜塩素酸イオン濃度を連続的に測定することも、バッチ的に測定することもできる。管路6は紫外線および可視光線、例えば波長250nm以上の光を透過する素材からなり、次に説明する半導体光源の光を透過するようになっている。
<Hypochlorite ion concentration measuring device>
Hereinafter, the present embodiment will be described. The hypochlorite ion concentration measuring device 1 according to the present embodiment is roughly composed of a main body portion 2 and a controller 3 connected to the main body portion 2. The main body 2 is composed of a housing 5 containing the sensors described below and a transparent pipeline 6 inserted through the housing 5. The housing 5 is made of a material that blocks light from the outside, and the inside of the housing 5 is maintained in a dark room. The pipeline 6 is designed to flow a solution to be measured, which is a solution to be measured for measuring the hypochlorite ion concentration. The solution to be measured may be continuously flowed through the conduit 6 or may be retained while being guided to the conduit 6. That is, the hypochlorite ion concentration can be continuously measured or batch-measured. The conduit 6 is made of a material that transmits ultraviolet rays and visible light, for example, light having a wavelength of 250 nm or more, and is adapted to transmit light from a semiconductor light source described below.
 筐体5には、管路6に近接して第1~4の半導体光源11、12、13、14が設けられ、管路6を挟んでこれら第1~4の半導体光源11、12、13、14の反対側にそれぞれ第1~4の光強度検出手段16、17、18、19が設けられている。第1~4の半導体光源11、12、13、14は、コントローラ3の制御によって発光するようになっており、それぞれから発光される光は、管路6内の測定対象溶液に入射してこれを透過し、透過光がそれぞれ第1~4の光強度検出手段16、17、18、19によって検出される。第1~4の光強度検出手段16、17、18、19では透過光の強度が電圧として検出されてコントローラ3に送られるようになっている。 The housing 5 is provided with the first to fourth semiconductor light sources 11, 12, 13, and 14 in the vicinity of the conduit 6, and the first to fourth semiconductor light sources 11, 12, 13 are provided with the conduit 6 interposed therebetween. The first to fourth light intensity detecting means 16, 17, 18, and 19 are provided on the opposite sides of the 14th and 14th, respectively. The first to fourth semiconductor light sources 11, 12, 13, and 14 are designed to emit light under the control of the controller 3, and the light emitted from each of the first to fourth semiconductor light sources is incident on the solution to be measured in the conduit 6. The transmitted light is detected by the first to fourth light intensity detecting means 16, 17, 18, and 19, respectively. In the first to fourth light intensity detecting means 16, 17, 18, and 19, the intensity of the transmitted light is detected as a voltage and sent to the controller 3.
本実施の形態において、第1~4の半導体光源11、12、…が発光する光には2点の特徴がある。第1の特徴は、光源ごとにそれぞれの発光する光の波長が異なっている点である。そして第2の特徴は、第1の半導体光源11の発光波長が、280~320nmの波長の一部を含んでいる点である。後で説明するように次亜塩素酸イオンは292nm近傍の紫外線に強く吸光される。つまり測定対象溶液中の次亜塩素酸イオンは第1の半導体光源11の光線によって吸光されることになる。本実施の形態において、第1~4の半導体光源11、12、…の具体的な波長を説明すると、それぞれピーク波長が282nm、380nm、450nm、620nmになっている。 In the present embodiment, the light emitted by the first to fourth semiconductor light sources 11, 12, ... Has two characteristics. The first feature is that the wavelength of the emitted light is different for each light source. The second feature is that the emission wavelength of the first semiconductor light source 11 includes a part of the wavelength of 280 to 320 nm. As will be described later, hypochlorite ions are strongly absorbed by ultraviolet rays in the vicinity of 292 nm. That is, the hypochlorite ion in the solution to be measured is absorbed by the light beam of the first semiconductor light source 11. Explaining the specific wavelengths of the first to fourth semiconductor light sources 11, 12, ... In the present embodiment, the peak wavelengths are 282 nm, 380 nm, 450 nm, and 620 nm, respectively.
本実施の形態において第1~4の半導体光源11、12、13、14は比較的安価に購入できるLED素子が採用されている。しかしながら半導体レーザから構成することも可能である。また第1~4の光強度検出手段16、17、18、19は、本実施の形態においてはフォトダイオードから構成されている。なお、第1~4の光強度検出手段16、17、18、19は1個から構成してもよい。例えば、第1~4の半導体光源11、12、13、14を順に発光させて測定対象溶液を透過した透過光を共通の1個の光強度検出手段によって検出しても、それぞれの透過光強度を検出できるからである。 In the present embodiment, the first to fourth semiconductor light sources 11, 12, 13, and 14 employ LED elements that can be purchased at a relatively low cost. However, it can also be configured from a semiconductor laser. Further, the first to fourth light intensity detecting means 16, 17, 18, and 19 are composed of a photodiode in the present embodiment. The first to fourth light intensity detecting means 16, 17, 18, and 19 may be composed of one. For example, even if the first to fourth semiconductor light sources 11, 12, 13, and 14 are made to emit light in order and the transmitted light transmitted through the solution to be measured is detected by one common light intensity detecting means, the transmitted light intensity of each is detected. This is because it can detect.
本実施の形態においてコントローラ3は、第1~4の半導体光源11、12、13、14を同時に発光しないように制御している。これによって複数の半導体光源11、12、…からの透過光が散乱して目的としない光強度検出手段16、17、…によって検出されることを防止している。しかしながら、筐体5内において半導体光源11、12、…間に遮光板が設けるようにすれば、同時に発光させても干渉を防止でき、それぞれの透過光の強度を同時に測定することができる。 In the present embodiment, the controller 3 controls the first to fourth semiconductor light sources 11, 12, 13, and 14 so as not to emit light at the same time. This prevents transmitted light from the plurality of semiconductor light sources 11, 12, ... From being scattered and detected by unintended light intensity detecting means 16, 17, .... However, if a light-shielding plate is provided between the semiconductor light sources 11, 12, ... In the housing 5, interference can be prevented even if the light is emitted at the same time, and the intensity of each transmitted light can be measured at the same time.
また、本実施の形態においてコントローラ3は、使用する半導体光源11、12、…を任意に選択することができる。例えば、第1、2の半導体光源11、12の2個のみを使用するように設定することもできるし、第1、2、4の半導体光源11、12、14の3個を使用するようにすることもできる。つまり測定対象溶液に応じて、必要な半導体光源11、12、…を選択できる。もちろん、測定対象溶液の種類にかかわらず常に4個の半導体光源11、12、…を使用してもよい。 Further, in the present embodiment, the controller 3 can arbitrarily select the semiconductor light sources 11, 12, ... To be used. For example, it is possible to set to use only two of the first and second semiconductor light sources 11 and 12, or to use three of the first, second and fourth semiconductor light sources 11, 12, and 14. You can also do it. That is, the required semiconductor light sources 11, 12, ... Can be selected according to the solution to be measured. Of course, four semiconductor light sources 11, 12, ... May be always used regardless of the type of the solution to be measured.
本実施の形態に係る次亜塩素酸イオン濃度測定装置1は、後で説明するように測定対象溶液中に、1種類または複数種類の物質からなる特定の物質群が含まれていても、次亜塩素酸イオン濃度を精度良く検出できる。本実施の形態に係る次亜塩素酸イオン濃度測定方法について説明する前に、次の3点から先に説明する。
(1)次亜塩素酸の吸光度、キャベツ、ネギ等の所定の物質を含む水溶液の透過率
(2)測定対象溶液に特定の物質群を含まれていても次亜塩素酸イオン濃度を測定できる理由
(3)次亜塩素酸に反応して波長と透過率の関係が変化する水溶液についての考察
The hypochlorite ion concentration measuring device 1 according to the present embodiment is described below even if the solution to be measured contains a specific substance group consisting of one or more kinds of substances, as will be described later. The chlorite ion concentration can be detected accurately. Before explaining the hypochlorite ion concentration measuring method according to the present embodiment, the following three points will be described first.
(1) Absorption of hypochlorous acid, transmittance of an aqueous solution containing a predetermined substance such as cabbage, onion, etc. (2) Hypochlorite ion concentration can be measured even if a specific substance group is contained in the solution to be measured. Reason (3) Consideration of an aqueous solution whose relationship between wavelength and transmittance changes in response to hypochlorite
<(1)次亜塩素酸の吸光度、キャベツ、ネギ等の所定の物質を含む水溶液の透過率>
<次亜塩素酸の吸光度>
次亜塩素酸における吸光度はpHにより、そして波長により図2のグラフのように変化することが知られている。波長292nm近傍の紫外線、つまり波長280~320nmの範囲の紫外線を吸収しているのは次亜塩素酸イオン(ClO)であり、波長236nm近傍の紫外線を吸収しているのは非イオン状態の次亜塩素酸(HClO)である。溶液中における非イオン状態の次亜塩素酸と次亜塩素酸イオンの比率はpHにより変化するので、次亜塩素酸全体の濃度が一定でも、次亜塩素酸イオン濃度はpHによって変化して、このようなグラフになっている。このグラフからわかるように、第1の半導体光源11は、次亜塩素酸イオンによって吸光される。一方、第2~4の半導体光源12、13、…は次亜塩素酸イオンによってはほとんど吸光されない。したがって、次亜塩素酸イオン濃度の測定において、第1の半導体光源11の透過光強度が重要であることがわかる。
<(1) Absorbance of hypochlorous acid, transmittance of aqueous solution containing predetermined substances such as cabbage and green onion>
<Asorbance of hypochlorous acid>
It is known that the absorbance in hypochlorous acid changes depending on pH and wavelength as shown in the graph of FIG. It is hypochlorite ion ( ClO- ) that absorbs ultraviolet rays with a wavelength of 292 nm, that is, ultraviolet rays in the wavelength range of 280 to 320 nm, and it is a nonionic state that absorbs ultraviolet rays with a wavelength of 236 nm. Hypochlorous acid (HClO). Since the ratio of non-ionic hypochlorous acid to hypochlorite ion in the solution changes depending on the pH, even if the total concentration of hypochlorous acid is constant, the hypochlorite ion concentration changes depending on the pH. The graph looks like this. As can be seen from this graph, the first semiconductor light source 11 is absorbed by hypochlorite ions. On the other hand, the second to fourth semiconductor light sources 12, 13, ... Are hardly absorbed by hypochlorite ions. Therefore, it can be seen that the transmitted light intensity of the first semiconductor light source 11 is important in the measurement of the hypochlorite ion concentration.
 次亜塩素酸以外にも、第1の半導体光源11の波長の紫外線を吸収する物質は多い。そうすると測定対象溶液に次亜塩素酸以外の他の物質が含まれている場合、第1の半導体光源11の透過光強度は、次亜塩素酸イオンの濃度だけでなく、他の物質の濃度も影響するはずである。他の物質が含まれている水溶液の例として、キャベツの成分を含む水溶液、ネギの成分を含む水溶液、そしてホウレン草の成分を含む水溶液のそれぞれについて透過率を説明する。 Besides hypochlorous acid, there are many substances that absorb ultraviolet rays with the wavelength of the first semiconductor light source 11. Then, when the solution to be measured contains a substance other than hypochlorous acid, the transmitted light intensity of the first semiconductor light source 11 is not only the concentration of hypochlorite ion but also the concentration of the other substance. Should affect. As an example of an aqueous solution containing other substances, the transmittance of each of an aqueous solution containing a cabbage component, an aqueous solution containing a green onion component, and an aqueous solution containing a spinach component will be described.
<キャベツの成分と次亜塩素酸とを含む水溶液の透過率>
 カットしたキャベツを水に浸漬してキャベツの成分を溶出させた水溶液を用意し、この水溶液に89ppmの次亜塩素酸を同量加えて混合し、この混合溶液について波長と透過率の関係を調べた。図3のグラフに示す。なおグラフ101、102は、それぞれ次亜塩素酸と混合1分後と120分後の透過率である。グラフ101、102からわかるように、キャベツの成分が溶出している混合溶液は、波長が短くなるにつれて透過率が低下している。つまり短い波長の光が吸光される。このグラフには参考として、第1~4の半導体光源11、12、…の波長が点線で示されている。キャベツに含まれている成分は、第2、3、4の半導体光源12、13、14の光だけでなく、第1の半導体光源11の光も吸光することがわかる。したがって、測定対象溶液にキャベツの成分を含む場合、第1の半導体光源11からの光の透過光強度を測定するだけでは、次亜塩素酸イオン濃度を測定できない。ところで、グラフ101、102を比較すると、キャベツの成分の透過率は、次亜塩素酸との反応時間によって若干変化している。しかしながらグラフ102は、グラフ101を縦方向に同じ比率で全体的に拡大したようになっている。後で考察するように、グラフ101、102は縦方向に拡大・縮小しているだけなので、キャベツの成分については次亜塩素酸によって波長と透過率の関係が変化しない物質である、と見なすことができる。
<Transmittance of an aqueous solution containing cabbage components and hypochlorous acid>
Prepare an aqueous solution in which the cut cabbage is immersed in water to elute the cabbage components, add the same amount of 89 ppm hypochlorous acid to this aqueous solution, mix, and investigate the relationship between wavelength and transmittance for this mixed solution. rice field. It is shown in the graph of FIG. Graphs 101 and 102 show the transmittances 1 minute and 120 minutes after mixing with hypochlorous acid, respectively. As can be seen from Graphs 101 and 102, the transmittance of the mixed solution in which the cabbage component is eluted decreases as the wavelength becomes shorter. That is, light having a short wavelength is absorbed. For reference, the wavelengths of the first to fourth semiconductor light sources 11, 12, ... Are shown by dotted lines in this graph. It can be seen that the components contained in the cabbage absorb not only the light of the second, third, and fourth semiconductor light sources 12, 13, and 14, but also the light of the first semiconductor light source 11. Therefore, when the solution to be measured contains a cabbage component, the hypochlorite ion concentration cannot be measured only by measuring the transmitted light intensity of the light from the first semiconductor light source 11. By the way, comparing graphs 101 and 102, the transmittance of the cabbage component slightly changes depending on the reaction time with hypochlorous acid. However, the graph 102 is such that the graph 101 is enlarged as a whole at the same ratio in the vertical direction. As will be discussed later, since graphs 101 and 102 are only enlarged and reduced in the vertical direction, it should be considered that the cabbage component is a substance whose relationship between wavelength and transmittance does not change due to hypochlorous acid. Can be done.
<ネギの成分と次亜塩素酸とを含む水溶液の透過率>
カットしたネギを水に浸漬してネギの成分を溶出させた水溶液を用意し、この水溶液に89ppmの次亜塩素酸を同量加えて混合し、この混合溶液について波長と透過率の関係を調べた。図4に示す。グラフ103、104は、それぞれ混合後1分後と120分後の透過率である。ネギの成分が溶出している混合溶液も、キャベツの成分が溶出している混合溶液と同様に、波長が短くなるにつれて透過率が低下している。また、グラフ103、104から、ネギの成分の透過率も、次亜塩素酸との反応時間によって若干変化していることがわかる。しかしながら、グラフ104はグラフ103を同じ比率によって縦方向に拡大したグラフになっている。したがって後で考察するようにネギの成分についても、次亜塩素酸との反応によって波長と透過率の関係が変化しない物質であるとみなすことができる。
<Transmittance of an aqueous solution containing green onion components and hypochlorous acid>
An aqueous solution is prepared by immersing the cut green onions in water to elute the components of the green onions, and the same amount of 89 ppm of hypochlorous acid is added to this aqueous solution and mixed, and the relationship between the wavelength and the transmittance of this mixed solution is investigated. rice field. It is shown in FIG. Graphs 103 and 104 show the transmittances 1 minute and 120 minutes after mixing, respectively. Similar to the mixed solution in which the cabbage component is eluted, the transmittance of the mixed solution in which the green onion component is eluted decreases as the wavelength becomes shorter. Further, from graphs 103 and 104, it can be seen that the transmittance of the green onion component also changes slightly depending on the reaction time with hypochlorous acid. However, the graph 104 is a graph obtained by enlarging the graph 103 in the vertical direction by the same ratio. Therefore, as will be discussed later, the component of green onion can also be regarded as a substance whose relationship between wavelength and transmittance does not change due to the reaction with hypochlorous acid.
<ホウレン草の成分と次亜塩素酸とを含む水溶液の透過率>
カットしたホウレン草を水に浸漬してホウレン草の成分を溶出させた水溶液を用意し、この水溶液に89ppmの次亜塩素酸を同量加えて混合し、この混合溶液について波長と透過率の関係を調べた。グラフを図5に示す。グラフ106、107、108は、それぞれ混合後1分後、5分後、そして120分後の透過率である。また、ホウレン草の成分を溶出させた水溶液のみについて、つまり次亜塩素酸を混合していない水溶液について、波長と透過率の関係を調べた。これをグラフ110に示す。ホウレン草の成分が溶出している混合溶液も、キャベツの成分が溶出している混合溶液と同様に、波長が短くなるにつれて透過率が低下している。つまり次亜塩素酸イオンが吸収する波長の範囲が、ホウレン草の成分によって吸収されることがわかる。ところで、ホウレン草の成分については、キャベツ、ネギとは大きく異なる特徴がある。すなわち、グラフ106、107、108の形状を比較すると、ホウレン草の成分の波長と透過率の関係は、次亜塩素酸との反応時間によって大きく変化していることがわかる。
<Transmittance of an aqueous solution containing spinach components and hypochlorous acid>
An aqueous solution was prepared by immersing the cut spinach in water to elute the components of the spinach, and the same amount of 89 ppm of hypochlorous acid was added to this aqueous solution and mixed, and the relationship between wavelength and transmittance was investigated for this mixed solution. rice field. The graph is shown in FIG. Graphs 106, 107 and 108 show the transmittances 1 minute, 5 minutes and 120 minutes after mixing, respectively. In addition, the relationship between wavelength and transmittance was investigated only for the aqueous solution in which the components of spinach were eluted, that is, the aqueous solution in which hypochlorous acid was not mixed. This is shown in Graph 110. Similar to the mixed solution in which the cabbage component is eluted, the transmittance of the mixed solution in which the spinach component is eluted decreases as the wavelength becomes shorter. In other words, it can be seen that the range of wavelengths absorbed by hypochlorite ions is absorbed by the components of spinach. By the way, the components of spinach have characteristics that are significantly different from those of cabbage and leeks. That is, when the shapes of graphs 106, 107, and 108 are compared, it can be seen that the relationship between the wavelength and the transmittance of the components of spinach changes greatly depending on the reaction time with hypochlorous acid.
<(2)測定対象溶液に特定の物質群を含まれていても次亜塩素酸イオン濃度を測定できる理由>
本実施の形態に係る次亜塩素酸イオン濃度測定装置1は、測定対象溶液に次亜塩素酸以外の物質が含まれていても、波長が異なる2個以上の半導体光源11、12、…を使うので、次亜塩素酸イオン濃度を測定できる。この理由を説明する。
<(2) Reason why the hypochlorite ion concentration can be measured even if the solution to be measured contains a specific substance group>
The hypochlorite ion concentration measuring device 1 according to the present embodiment has two or more semiconductor light sources 11, 12, ... With different wavelengths even if the solution to be measured contains a substance other than hypochlorous acid. Since it is used, the hypochlorite ion concentration can be measured. The reason for this will be explained.
<測定対象液に次亜塩素酸のみが含まれている場合>
まず、測定対象溶液に次亜塩素酸以外には、他の物質が何も含まれていない場合を考える。このような測定対象溶液では、第1の半導体光源11の光を吸光するのは、実質的に次亜塩素酸イオンのみと考えることができる。そうすると、第1の半導体光源11の光を入射して透過光の強度を第1の光強度検出手段16によって検出すると、その検出電圧は、1式のように次亜塩素酸イオン濃度の関数として与えられるはずである。
Figure JPOXMLDOC01-appb-I000001
そうすると、第1の光強度検出手段16によって検出される検出電圧から次亜塩素酸イオン濃度hを計算することができるはずである。
<When the liquid to be measured contains only hypochlorous acid>
First, consider the case where the solution to be measured contains no other substances other than hypochlorous acid. In such a solution to be measured, it can be considered that substantially only hypochlorite ion absorbs the light of the first semiconductor light source 11. Then, when the light of the first semiconductor light source 11 is incident and the intensity of the transmitted light is detected by the first light intensity detecting means 16, the detected voltage is a function of the hypochlorite ion concentration as shown in the equation. Should be given.
Figure JPOXMLDOC01-appb-I000001
Then, the hypochlorite ion concentration h should be able to be calculated from the detection voltage detected by the first light intensity detecting means 16.
<測定対象液に他の物質からなる物質群X1が含まれている場合>
次に測定対象溶液に、他の物質群X1が含まれる場合について考える。本明細書において物質群X1とは、1種類または複数種類の物質からなり、これら物質同志が固有の比率で配合されているもの、とする。例えば、物質群X1としてキャベツの成分を考えることができる。キャベツの成分の水溶液には、それぞれ複数の化学物質つまり複数種類の物質が含まれている。例えば、タンパク質、炭水化物等の他に、カリウム、カルシウム等の無機質の物質が含まれている。これら物質同志の比率はキャベツにおいて概ね一定であるということができる。物質群X1の波長と透過率の関係は、物質群X1に含まれる物質個々のそれぞれの波長と透過率の関係の合成になるはずである。キャベツの成分を物質群X1とすると、その波長と透過率の関係は、図3のグラフ101のようになる。この場合、物質群X1の濃度が大きくなっても、例えば図3のグラフ101が縦方向に同じ比率で全体的に拡大するだけであり、濃度が小さくなっても縦方向に同じ比率で全体的に縮小するだけである。
<When the liquid to be measured contains a substance group X1 consisting of other substances>
Next, consider the case where the solution to be measured contains another substance group X1. In the present specification, the substance group X1 is composed of one kind or a plurality of kinds of substances, and these substances are mixed in a unique ratio. For example, the cabbage component can be considered as the substance group X1. The aqueous solution of the cabbage component contains a plurality of chemical substances, that is, a plurality of types of substances. For example, in addition to proteins, carbohydrates and the like, inorganic substances such as potassium and calcium are contained. It can be said that the ratio of these substances is almost constant in cabbage. The relationship between the wavelength and the transmittance of the substance group X1 should be a synthesis of the relationship between the wavelength and the transmittance of each substance contained in the substance group X1. Assuming that the component of the cabbage is the substance group X1, the relationship between the wavelength and the transmittance is as shown in Graph 101 of FIG. In this case, even if the concentration of the substance group X1 increases, for example, the graph 101 in FIG. 3 only expands at the same ratio in the vertical direction as a whole, and even if the concentration decreases, the graph 101 in FIG. 3 overall expands at the same ratio in the vertical direction. It just shrinks to.
さて、このような物質群X1が含まれる測定対象溶液に対して、それぞれ第1、2の半導体光源11、12の光について透過させ、第1、2の光強度検出手段16、17によって検出電圧V、Vを得るとする。この場合、次の2-1式、2-2式が成り立つはずである。
Figure JPOXMLDOC01-appb-I000002
2-1式は、第1の光強度検出手段16による検出電圧が、次亜塩素酸イオン濃度hと、物質群X1の濃度Xの関数で与えられることを意味している。第1の半導体光源11のピーク波長は282nmで、次亜塩素酸イオンと、物質群X1に含まれるいずれかの物質に吸光されるからである。一方、2-2式は、第2の光強度検出手段17による検出電圧が、物質群X1の濃度Xの関数になり、次亜塩素酸イオン濃度hに関係していないことを意味している。第1の半導体光源11のピーク波長は380nmであり、次亜塩素酸イオンによって吸光されないからであり、物質群X1によってのみ吸光されるからである。
Now, the light of the first and second semiconductor light sources 11 and 12 is transmitted through the solution to be measured containing such a substance group X1, and the detection voltage is detected by the first and second light intensity detecting means 16 and 17, respectively. It is assumed that V 1 and V 2 are obtained. In this case, the following equations 2-1 and 2-2 should hold.
Figure JPOXMLDOC01-appb-I000002
Equation 2-1 means that the detection voltage by the first light intensity detecting means 16 is given by a function of the hypochlorite ion concentration h and the concentration X1 of the substance group X1. This is because the peak wavelength of the first semiconductor light source 11 is 282 nm, and it is absorbed by hypochlorite ion and any substance contained in the substance group X1. On the other hand, the formula 2-2 means that the voltage detected by the second light intensity detecting means 17 is a function of the concentration X 1 of the substance group X 1 and is not related to the hypochlorite ion concentration h. There is. This is because the peak wavelength of the first semiconductor light source 11 is 380 nm and is not absorbed by hypochlorite ions, and is absorbed only by the substance group X1.
 2-1式、2-2式のように表せるはずであるので、物質群X1が含まれる測定対象溶液については、物質群X1の濃度Xが未知であっても次亜塩素酸イオン濃度hを得ることができる。なぜならば、式の個数は2個であり、未知数はXとhの2個で、式の個数と未知数の個数が同数であるからである。つまり物質群X1が含まれていても、少なくとも2個の異なる波長の光についての透過光強度を検出電圧として得れば、次亜塩素酸イオン濃度hを得られるはずである。 Since it should be expressed as equations 2-1 and 2-2, for the solution to be measured containing the substance group X1, even if the concentration X1 of the substance group X1 is unknown, the hypochlorite ion concentration h Can be obtained. This is because the number of equations is two, the number of unknowns is X 1 and h, and the number of equations and the number of unknowns are the same. That is, even if the substance group X1 is included, if the transmitted light intensity for at least two lights having different wavelengths is obtained as the detection voltage, the hypochlorite ion concentration h should be obtained.
 次に次亜塩素酸を含む測定対象溶液に、物質群X1だけでなく他の物質群X2も含まれる場合について考える。例えば、キャベツの成分と、ネギの成分は、図3、図4に示されているように、互いに波長と透過率の関係が異なっている。そうすると、これらは異なる物質群ということができる。測定対象溶液に異なる2個の物質群X1、X2が両方含まれている場合を考える。ただし、この測定対象溶液において、物質群X1と物質群X2のそれぞれの濃度X、Xは不明であるとする。測定対象溶液に第1~3の半導体光源11、12、13の光について透過させ、第1~3の光強度検出手段16、17、18によって検出電圧V、V、Vを得るとする。この場合、次の3-1式、3-2式、3-3式が成り立つはずである。
Figure JPOXMLDOC01-appb-I000003
Next, consider the case where the solution to be measured containing hypochlorous acid contains not only the substance group X1 but also another substance group X2. For example, the cabbage component and the green onion component have different wavelength and transmittance relationships from each other, as shown in FIGS. 3 and 4. Then, these can be said to be different groups of substances. Consider the case where the solution to be measured contains both two different substance groups X1 and X2. However, in this solution to be measured, it is assumed that the concentrations X1 and X2 of the substance group X1 and the substance group X2, respectively , are unknown. When the light of the first to third semiconductor light sources 11, 12, and 13 is transmitted through the solution to be measured and the detection voltages V 1 , V 2 , and V 3 are obtained by the first to third light intensity detecting means 16, 17, and 18. do. In this case, the following equations 3-1 and 3-2 and 3-3 should hold.
Figure JPOXMLDOC01-appb-I000003
そうすると物質群X1、物質群X2が含まれる測定対象溶液については、物質群X1、X2のそれぞれの濃度X、Xが未知であっても次亜塩素酸イオン濃度hを得ることができるはずである。なぜならば、式の個数は3個であり、未知数はXとXとhの3個で、式の個数と未知数の個数が同数であるからである。そうすると、物質群X1、物質群X2が含まれていても、少なくとも3個の異なる波長の光についての透過光強度を検出電圧として得れば、次亜塩素酸イオン濃度hを得られるはずである。 Then, for the solution to be measured containing the substance group X1 and the substance group X2, the hypochlorite ion concentration h should be obtained even if the respective concentrations X1 and X2 of the substance groups X1 and X2 are unknown. Is. This is because the number of formulas is three, the number of unknowns is X 1 , X 2 , and h, and the number of formulas and the number of unknowns are the same. Then, even if the substance group X1 and the substance group X2 are included, if the transmitted light intensity for at least three different wavelengths of light is obtained as the detection voltage, the hypochlorite ion concentration h should be obtained. ..
同様の考察をすると、n群の物質群X1、X2、…、Xnを含む測定対象溶液から次亜塩素酸イオン濃度hを得るには、互いに波長が異なり、そのうちの1個の波長が280~320nmの波長の一部を含んでいる、n+1個の半導体光源によって透過光強度が得られればよいはずである。より条件を緩やかにすれば、n+1個以上の半導体光源の透過光強度が得られればよいはずである。 Considering the same consideration, in order to obtain the hypochlorite ion concentration h from the solution to be measured containing the substance groups X1, X2, ..., Xn of the n group, the wavelengths are different from each other, and one of them has a wavelength of 280 to. It would be good if the transmitted light intensity could be obtained by n + 1 semiconductor light sources containing a part of the wavelength of 320 nm. If the conditions are made more lenient, it should be sufficient to obtain the transmitted light intensity of n + 1 or more semiconductor light sources.
<(3)次亜塩素酸に反応して波長と透過率の関係が変化する水溶液についての考察>
物質群X1を構成している物質は、次亜塩素酸と反応して別の物質に変化するものもあれば、変化しないものもある。物質が一部でも変化する場合、原則として元の物質群X1が別の物質群X2になったとして扱うべきである。
<(3) Consideration of an aqueous solution whose relationship between wavelength and transmittance changes in response to hypochlorous acid>
Some of the substances constituting the substance group X1 react with hypochlorous acid to change to another substance, and some do not. If a substance changes even in part, it should be treated as if the original substance group X1 became another substance group X2 in principle.
<キャベツの成分の物質群について、次亜塩素酸による変化の有無の考察>
ここで、キャベツの成分からなる物質群X1を検討する。図3のグラフ101、102は、キャベツの成分を含んだ水溶液と次亜塩素酸とを混合して、それぞれ混合1分後と120分後の透過率のグラフである。キャベツの成分を構成している個々の物質は次亜塩素酸と反応して変化するはずであるので、物質群X1は他の物質群X2に変化するはずである。つまりグラフ101は物質群X1を含む水溶液の、グラフ102は物質群X2を含む水溶液の、それぞれの波長と透過率の関係を示していることになる。ところで、前記したようにグラフ102は、概ねグラフ101を縦方向に一様に拡大したような形状になっている。すでに波長と透過率の関係の議論において説明したように、物質群X1の濃度が変化する場合、波長と透過率の関係のグラフは、縦方向に同じ比率で全体的に拡大・縮小するだけである。グラフ102はグラフ101を縦方向に同じ比率で全体的に拡大・縮小した形状になっているので、物質群X2は物質群X1と実質的に同等であると見なすことができる。つまり、キャベツの成分からなる物質群X1は、構成している物質が次亜塩素酸によって反応して変化したとしても、実質的に物質群X1として維持されるとみなせる。そうすると、測定対象溶液にキャベツの成分を含んでいる場合、少なくとも2個以上の半導体光源11、12、…を使用すれば、次亜塩素酸イオン濃度を得られるはずである。なお、同等の議論により、ネギの成分を含んでいる測定対象溶液についても、少なくとも2個以上の半導体光源11、12、…を使用すれば、次亜塩素酸イオン濃度を得られるはずである。
<Consideration of whether or not there is a change in the substance group of cabbage components due to hypochlorous acid>
Here, the substance group X1 composed of the components of cabbage will be examined. FIGS. 101 and 102 of FIG. 3 are graphs of the transmittances of the aqueous solution containing the cabbage component and hypochlorous acid mixed 1 minute and 120 minutes after mixing, respectively. Since the individual substances that make up the components of cabbage should change in response to hypochlorous acid, the substance group X1 should change to the other substance group X2. That is, the graph 101 shows the relationship between the wavelength and the transmittance of the aqueous solution containing the substance group X1 and the graph 102 shows the aqueous solution containing the substance group X2. By the way, as described above, the graph 102 has a shape as if the graph 101 is uniformly enlarged in the vertical direction. As already explained in the discussion of the relationship between wavelength and transmittance, when the concentration of the substance group X1 changes, the graph of the relationship between wavelength and transmittance can be enlarged or reduced as a whole at the same ratio in the vertical direction. be. Since the graph 102 has a shape in which the graph 101 is enlarged / reduced as a whole at the same ratio in the vertical direction, the substance group X2 can be regarded as substantially equivalent to the substance group X1. That is, the substance group X1 composed of the cabbage components can be regarded as being substantially maintained as the substance group X1 even if the constituent substances are changed by reacting with hypochlorous acid. Then, when the solution to be measured contains the cabbage component, the hypochlorite ion concentration should be obtained by using at least two or more semiconductor light sources 11, 12, .... According to the same discussion, the hypochlorite ion concentration should be obtained by using at least two or more semiconductor light sources 11, 12, ... For the solution to be measured containing the green onion component.
<ホウレン草の成分の物質群について、次亜塩素酸による変化の有無の考察>
次にホウレン草の成分からなる物質群について考える。次亜塩素酸を含まず、ホウレン草の成分のみからなる水溶液の波長と透過率の関係は、図5のグラフ110に示されている。そしてホウレン草の成分の水溶液と、次亜塩素酸とを混合して、それぞれ混合1分後、5分後、そして120分後の波長と透過率の関係が、グラフ106、107、108に示されている。これらのグラフの形状は互いに異なっている。つまり、波長と透過率の関係がそれぞれ異なっている。そうすると例えば、次亜塩素酸と反応していないホウレン草の成分は物質群X1と見なすことができ、次亜塩素酸と混合120分後のホウレン草の成分は物質群X2と見なすことができる。ところで、グラフ106と、グラフ107は、それぞれグラフ110とグラフ108とから所定の操作をして合成された形状になっている。具体的には、グラフ106やグラフ107は、グラフ110のすべての波長領域の透過率に対して所定の比率を乗じ、グラフ108のすべての波長領域の透過率に対して他の所定の比率を乗じ、これらを合計したような形状になっている。例えばグラフ106については、グラフ110に0.5を乗じ、グラフ108に0.5を乗じ、これらを合計したようなグラフになっており、グラフ107は、グラフ110に0.25を乗じ、グラフ108に0.75を乗じ、これらを合計したようなグラフになっている。そうすると、グラフ106、グラフ107は、それぞれ物質群X1と物質群X2とが、所定の比率で含まれる水溶液についての、波長と透過率の関係であると言える。つまり、測定対象溶液がホウレン草の成分を含んでいる場合、2つの物質群すなわち物質群X1と物質群X2を含んでいる、として扱えそうである。そうすると、測定対象溶液にほうれん草の成分を含んでいる場合、少なくとも3個以上の半導体光源11、12、…が必要であり、これらの透過光強度により次亜塩素酸イオン濃度を得られるはずである。
<Consideration of whether or not there is a change in the substance group of spinach components due to hypochlorous acid>
Next, let us consider a group of substances consisting of the components of spinach. The relationship between the wavelength and the transmittance of the aqueous solution containing only the components of spinach without containing hypochlorous acid is shown in Graph 110 of FIG. Then, the relationship between the wavelength and the transmittance after 1 minute, 5 minutes, and 120 minutes after mixing the aqueous solution of the spinach component and hypochlorous acid, respectively, is shown in Graphs 106, 107, and 108. ing. The shapes of these graphs are different from each other. That is, the relationship between the wavelength and the transmittance is different. Then, for example, the component of spinach that has not reacted with hypochlorous acid can be regarded as the substance group X1, and the component of spinach 120 minutes after mixing with hypochlorous acid can be regarded as the substance group X2. By the way, the graph 106 and the graph 107 have a shape synthesized by performing a predetermined operation from the graph 110 and the graph 108, respectively. Specifically, Graph 106 and Graph 107 multiply the transmittance of all wavelength regions of Graph 110 by a predetermined ratio, and multiply the transmittance of all wavelength regions of Graph 108 by another predetermined ratio. It is shaped like the sum of these multiplied by. For example, the graph 106 is a graph obtained by multiplying the graph 110 by 0.5, multiplying the graph 108 by 0.5, and summing them up, and the graph 107 is a graph obtained by multiplying the graph 110 by 0.25. The graph is as if 108 was multiplied by 0.75 and these were totaled. Then, in Graph 106 and Graph 107, it can be said that the substance group X1 and the substance group X2 are related to the wavelength and the transmittance of the aqueous solution contained in a predetermined ratio, respectively. That is, when the solution to be measured contains a component of spinach, it can be treated as containing two substance groups, that is, a substance group X1 and a substance group X2. Then, if the solution to be measured contains spinach components, at least three or more semiconductor light sources 11, 12, ... Are required, and the hypochlorite ion concentration should be obtained from these transmitted light intensities. ..
<本実施の形態に係る次亜塩素酸イオン濃度測定方法>
本実施の形態に係る次亜塩素酸イオン濃度測定方法は、測定対象溶液において特定の物質群X1、X2、…が含まれていても、次亜塩素酸イオン濃度を測定できる方法になっている。この次亜塩素酸イオン濃度測定方法においては、図1に示されている、透過光強度-濃度関係が必要になる。透過光強度-濃度関係は、測定対象溶液の第1、2、…の半導体光源11、12、…の光に対する透過光強度と、次亜塩素酸イオン濃度の関係であり、数式から構成してもよいし、多数のデータが格納されたデータベースから構成してもよい。いずれにしても、測定対象溶液に光を入射して得たそれぞれの光の透過光強度を、透過光強度-濃度関係に与えると、次亜塩素酸イオン濃度が得られるような関係とする。この透過光強度-濃度関係は、物質群が異なっていれば必然的に異なる関係として与えられる。例えば透過光強度-濃度関係を数式で構成する場合には、測定対象溶液にキャベツの成分からなる物質群X1が含まれる場合の数式と、ネギの成分からなる物質群X2が含まれる場合の数式とは異なっている。
<Method for measuring hypochlorite ion concentration according to this embodiment>
The hypochlorite ion concentration measuring method according to the present embodiment is a method capable of measuring the hypochlorite ion concentration even if the specific substance groups X1, X2, ... Are contained in the solution to be measured. .. In this hypochlorite ion concentration measuring method, the transmitted light intensity-concentration relationship shown in FIG. 1 is required. The transmitted light intensity-concentration relationship is the relationship between the transmitted light intensity with respect to the light of the semiconductor light sources 11, 12, ... Of the first, second, ... Of the solution to be measured, and the hypochlorite ion concentration, and is composed of a mathematical formula. It may be composed of a database in which a large amount of data is stored. In any case, when the transmitted light intensity of each light obtained by incident light on the solution to be measured is given to the transmitted light intensity-concentration relationship, the hypochlorite ion concentration is obtained. This transmitted light intensity-concentration relationship is inevitably given as a different relationship if the substance group is different. For example, when the transmitted light intensity-concentration relationship is constructed by a mathematical formula, a mathematical formula when the solution to be measured contains a substance group X1 composed of cabbage components and a mathematical formula when the substance group X2 composed of green onions components are included. Is different.
 本実施の形態に係る次亜塩素酸イオン濃度測定方法は、予め実施する準備処理と、実行処理とから構成されている。準備処理は、透過光強度-濃度関係を得る処理であり、対象とする物質群X1、X2、…の個数だけ実施する必要がある。 The hypochlorite ion concentration measuring method according to the present embodiment comprises a preparatory treatment and an execution treatment to be carried out in advance. The preparatory treatment is a treatment for obtaining a transmitted light intensity-concentration relationship, and it is necessary to carry out as many as the number of target substance groups X1, X2, ....
<準備処理>
準備処理は、エンジニアによって実施する処理と、コントローラ3によって実施する処理とからなる。最初に対象とする物質群X1を決める。例えば、キャベツの成分の物質群X1を対象とする。図6に示されているように、エンジニアが複数の試験溶液の調製(ステップS1)を行う。複数の試験溶液は、それぞれ対象の物質群X1の濃度と次亜塩素酸イオンの濃度が色々な組合せで含まれるように調製する。試験溶液の個数は多ければ多いほどよく、個数が多いほど精度の高い透過光強度-濃度関係が得られる。
<Preparation process>
The preparatory process includes a process performed by the engineer and a process performed by the controller 3. First, the target substance group X1 is determined. For example, the substance group X1 of the cabbage component is targeted. As shown in FIG. 6, the engineer prepares a plurality of test solutions (step S1). The plurality of test solutions are prepared so that the concentration of the target substance group X1 and the concentration of hypochlorite ion are contained in various combinations. The larger the number of test solutions, the better, and the larger the number, the more accurate the transmitted light intensity-concentration relationship can be obtained.
次にエンジニアは、これら試験溶液のそれぞれについて順次、次亜塩素酸イオン濃度測定装置1の管路6に供給する。コントローラ3を操作して、内部に設けられているプログラムである透過光強度検出部を実行する。すなわち、順次第1、2、…の半導体光源11、12、…を発光させて、試験溶液に入射し、それらの透過光の強度を第1、2、…の光強度検出手段16、17、…によって得る(ステップS2)。これらは検出電圧として得られ、第1、2、…の透過光強度としてコントローラ3に入力される。同様の処理を用意したすべての試験溶液について繰り返し実施する。 Next, the engineer sequentially supplies each of these test solutions to the line 6 of the hypochlorite ion concentration measuring device 1. The controller 3 is operated to execute the transmitted light intensity detection unit, which is a program provided inside. That is, the semiconductor light sources 11, 12, ... Of the first, second, ... Are sequentially made to emit light, incident on the test solution, and the intensity of the transmitted light thereof is determined by the light intensity detecting means 16, 17, of the first, second, .... Obtained by ... (step S2). These are obtained as detection voltages and are input to the controller 3 as transmitted light intensities of the first, second, .... Repeat for all test solutions prepared with similar treatments.
次にこれら複数の試験溶液について次亜塩素酸イオン濃度を測定する(ステップS3)。使用する測定機器、測定方法は問わないが、それぞれの試験溶液について精度の高い次亜塩素酸イオン濃度を得ておく必要がある。なお、このステップS3は、ステップS2と並行して実施してもよいし、ステップS1において実施してもよい。なお、ステップS2によって試験溶液の第1、2、…の透過光強度を得るタイミングと、同じ試験溶液の次亜塩素酸イオン濃度を測定するタイミングとは、それらの時間差を可及的に短くすることが好ましい。時間差が大きいと、次亜塩素酸が物質群X1と反応して濃度が変化してしまうからである。 Next, the hypochlorite ion concentration is measured for these plurality of test solutions (step S3). The measuring device and measuring method used do not matter, but it is necessary to obtain a highly accurate hypochlorite ion concentration for each test solution. In addition, this step S3 may be carried out in parallel with step S2, or may be carried out in step S1. The time difference between the timing of obtaining the transmitted light intensities of the first, second, ... Of the test solution in step S2 and the timing of measuring the hypochlorite ion concentration of the same test solution is made as short as possible. Is preferable. This is because if the time difference is large, hypochlorous acid reacts with the substance group X1 and the concentration changes.
最後にステップS4として、透過光強度-濃度関係を得る。すなわち、複数の試験溶液分についてステップS2によって得た第1、2、…の透過光強度とステップS3で測定した次亜塩素酸イオン濃度とから、第1、2、…の透過光強度と次亜塩素酸イオン濃度の関係である透過光強度-濃度関係を得る。この処理は、コントローラ3上で実施してもよいし、パーソナルコンピュータにおいて実施してもよい。パーソナルコンピュータにおいて実施する場合には、ステップS2によって得た第1、2、…の透過光強度をコントローラ3から読み出し、ステップS3で測定した次亜塩素酸イオン濃度とともにパーソナルコンピュータに入力して、透過光強度-濃度関係を得るようにする。 Finally, as step S4, the transmitted light intensity-concentration relationship is obtained. That is, from the transmitted light intensities of the first, second, ... Obtained in step S2 and the hypochlorite ion concentration measured in step S3 for the plurality of test solutions, the transmitted light intensities of the first, second, ... The transmitted light intensity-concentration relationship, which is the relationship of chlorite ion concentration, is obtained. This process may be performed on the controller 3 or may be performed on a personal computer. In the case of carrying out in a personal computer, the transmitted light intensities of the first, second, ... Obtained in step S2 are read out from the controller 3, input to the personal computer together with the hypochlorite ion concentration measured in step S3, and transmitted. Try to obtain a light intensity-density relationship.
透過光強度-濃度関係は、前記したように数式として与えることができる。数式の場合、回帰分析による回帰式としても良い。例えば、ステップS3で測定した次亜塩素酸イオン濃度を被説明変数とし、第1、2、…の透過光強度を説明変数として回帰分析して回帰式を得ることができる。あるいは、第1、2、…の透過光強度について加工したデータ、例えば2乗したデータ、3乗したデータ等を作成して、説明変数として追加してもよい。もちろん透過光強度-濃度関係は、回帰式以外の他の数式で与えても良い。さらには、ステップS3で測定した次亜塩素酸イオン濃度を教師信号とし、第1、2、…の透過光強度を入力データとして、ニューラルネットワークに学習させ、学習済みのニューラルネットワークを透過光強度-濃度関係としてもよい。 The transmitted light intensity-concentration relationship can be given as a mathematical formula as described above. In the case of a mathematical formula, it may be a regression equation by regression analysis. For example, the hypochlorite ion concentration measured in step S3 can be used as the dependent variable, and the transmitted light intensities of the first, second, ... Alternatively, data processed for the transmitted light intensities of the first, second, ..., For example, squared data, cubed data, etc. may be created and added as explanatory variables. Of course, the transmitted light intensity-concentration relationship may be given by a mathematical formula other than the regression equation. Further, the hypochlorite ion concentration measured in step S3 is used as a teacher signal, the transmitted light intensities of the first, second, ... Are used as input data, and the neural network is trained. It may be related to the concentration.
物質群X1に関する透過光強度-濃度関係を得たら、コントローラ3に設定する。準備処理を完了する。他の物質群X2、X3、…についても、必要があれば同様に準備処理を繰り返し実施して、それぞれの物質群X2、X3、…に関する透過光強度-濃度関係を得て、コントローラ3に設定する。 Once the transmitted light intensity-concentration relationship for the substance group X1 is obtained, it is set in the controller 3. Complete the preparatory process. For the other substance groups X2, X3, ..., The preparatory process is repeated in the same manner if necessary, and the transmitted light intensity-concentration relationship for each substance group X2, X3, ... is obtained and set in the controller 3. do.
<実行処理>
本実施の形態に係る次亜塩素酸イオン濃度測定方法では、予め測定対象溶液にどの物質群が含まれているのか、判明していることが必要になる。つまり測定対象溶液に含まれる物質群の種類が判明していることが、次亜塩素酸イオン濃度が得られる条件になっている。ただしその物質群の濃度については不明であってよい。実行処理を説明する。
<Execution processing>
In the hypochlorite ion concentration measuring method according to the present embodiment, it is necessary to know in advance which substance group is contained in the solution to be measured. That is, it is a condition that the hypochlorite ion concentration can be obtained that the type of the substance group contained in the solution to be measured is known. However, the concentration of the substance group may be unknown. The execution process will be explained.
次亜塩素酸イオン濃度を測定しようとしている測定対象溶液について、これに含まれる物質群が物質群X1であることが判明しているとする。図7に示されているように、ステップS11を実施する。すなわち、エンジニアは測定対象溶液を本実施の形態に係る次亜塩素酸イオン濃度測定装置1の管路6に供給する。コントローラ3のプログラムである透過光強度検出部を実行する。そうすると、第1、2、…の半導体光源11、12、…が順次発光して、それぞれの光を測定対象溶液に入射し、それらの透過光の強度が第1、2、…の光強度検出手段16、17、…によって、第1、2、…の透過光強度として得られる。 It is assumed that the substance group contained in the solution to be measured for which the hypochlorite ion concentration is to be measured is known to be the substance group X1. As shown in FIG. 7, step S11 is carried out. That is, the engineer supplies the solution to be measured to the conduit 6 of the hypochlorite ion concentration measuring device 1 according to the present embodiment. The transmitted light intensity detection unit, which is a program of the controller 3, is executed. Then, the semiconductor light sources 11, 12, ... Of the first, second, ... Sequentially emit light, each light is incident on the solution to be measured, and the intensity of the transmitted light thereof is the light intensity detection of the first, second, .... It is obtained as the transmitted light intensity of the first, second, ... By means 16, 17, ....
コントローラ3においてステップS12が実行され、プログラムとして格納されている濃度演算部が実行される。濃度演出部は、コントローラ3に格納されている物質X1についての透過光強度-濃度関係に基づいて、ステップS11で得た第1、2、…の透過光強度から、次亜塩素酸イオン濃度を得る。透過光強度-濃度関係が回帰式等の数式であれば、ステップS11で得た第1、2、…の透過光強度を入力する。そうすると、次亜塩素酸イオン濃度が演算結果として得られる。透過光強度-濃度関係が学習済みのニューラルネットワークであれば、ステップS11で得た第1、2、…の透過光強度のそれぞれを入力データとして与える。そうすると次亜塩素酸イオン濃度が出力データとして得られる。透過光強度-濃度関係がデータベースとして与えられている場合には、ステップS11で得た第1、2、…の透過光強度に一致しているデータを検索して、次亜塩素酸イオン濃度を得る。あるいは一致するデータがなければ近いデータを探して線形補間等の手法により次亜塩素酸イオン濃度を得る。実行処理を完了する。 Step S12 is executed in the controller 3, and the concentration calculation unit stored as a program is executed. The concentration effecting unit determines the hypochlorite ion concentration from the transmitted light intensities of the first, second, ... Obtained in step S11 based on the transmitted light intensity-concentration relationship for the substance X1 stored in the controller 3. obtain. If the transmitted light intensity-concentration relationship is a mathematical formula such as a regression equation, the transmitted light intensities of the first, second, ... Obtained in step S11 are input. Then, the hypochlorite ion concentration is obtained as a calculation result. If the neural network has learned the transmitted light intensity-density relationship, each of the first, second, ..., And ... obtained in step S11 is given as input data. Then, the hypochlorite ion concentration is obtained as output data. When the transmitted light intensity-concentration relationship is given as a database, the data matching the transmitted light intensity of the first, second, ... Obtained in step S11 is searched for, and the hypochlorite ion concentration is determined. obtain. Alternatively, if there is no matching data, search for similar data and obtain the hypochlorite ion concentration by a method such as linear interpolation. Complete the execution process.
<本実施の形態に係る次亜塩素酸イオン濃度測定装置を備えた、食品の殺菌装置>
本実施の形態に係る次亜塩素酸イオン濃度測定装置1は、色々な分野で利用することができる。その代表的な分野として食品の殺菌がある。図8には、野菜、カット野菜、魚介類等の食品を殺菌する本実施の形態に係る食品の殺菌装置30が示されている。食品の殺菌装置30は、次亜塩素酸が含まれる殺菌水によって食品を殺菌するようになっており、次のように構成されている。すなわち、殺菌装置30は、殺菌水を貯める殺菌槽31と、食品を入れて殺菌槽31に浸漬するカゴ32と、殺菌槽31の殺菌水を循環させるポンプ34と、循環する殺菌水をろ過するろ過装置35と、循環する殺菌水に次亜塩素酸を供給する次亜塩素酸タンク38とそのポンプ39と、同様に循環する殺菌水に酸を供給する酸タンク41とそのポンプ42と、殺菌槽31の殺菌水の次亜塩素酸イオン濃度を測定する本実施の形態に係る次亜塩素酸イオン濃度測定装置1と、殺菌水のpHを測定するpH計44と、コントローラ45とから構成されている。
<Food sterilizer provided with the hypochlorite ion concentration measuring device according to this embodiment>
The hypochlorite ion concentration measuring device 1 according to the present embodiment can be used in various fields. A typical field is food sterilization. FIG. 8 shows a food sterilizer 30 according to the present embodiment for sterilizing foods such as vegetables, cut vegetables, and fish and shellfish. The food sterilizer 30 is designed to sterilize food with sterilizing water containing hypochlorous acid, and is configured as follows. That is, the sterilizing device 30 filters the sterilizing tank 31 for storing the sterilizing water, the basket 32 for putting food in the sterilizing tank 31, the pump 34 for circulating the sterilizing water in the sterilizing tank 31, and the circulating sterilizing water. The filtration device 35, the hypochlorite tank 38 and its pump 39 that supply hypochlorite to the circulating sterilizing water, the acid tank 41 and its pump 42 that supply acid to the circulating sterilizing water, and sterilization. It is composed of a hypochlorite ion concentration measuring device 1 according to the present embodiment for measuring the hypochlorite ion concentration of the sterilized water in the tank 31, a pH meter 44 for measuring the pH of the sterilized water, and a controller 45. ing.
 本実施の形態に係る食品の殺菌装置30においては、コントローラ45が本実施の形態に係る次亜塩素酸イオン濃度測定装置1から、殺菌水の次亜塩素酸イオン濃度を得、そしてpH計44から殺菌水のpHを得、これらに基づいて次亜塩素酸と酸とを注入して、循環する殺菌水における次亜塩素酸濃度とpHとを所望の範囲に制御するようになっている。そして、このように循環・ろ過して再利用される殺菌水によって食品を殺菌するようになっている。 In the food sterilizing device 30 according to the present embodiment, the controller 45 obtains the hypochlorite ion concentration of the sterilized water from the hypochlorite ion concentration measuring device 1 according to the present embodiment, and the pH meter 44. The pH of the sterilized water is obtained from the sterilized water, and hypochlorous acid and the acid are injected based on these to control the hypochlorite concentration and the pH in the circulating sterilized water within a desired range. Then, the food is sterilized by the sterilizing water that is circulated, filtered and reused in this way.
ところで、このように制御するためには、2点の条件を満たす必要がある。第1の条件は、本実施の形態に係る次亜塩素酸イオン濃度測定装置1によって正しく次亜塩素酸イオン濃度を測定できることである。食品の殺菌装置30においては、殺菌の対象となる食品は1種類になるように運転されている。例えば、カットしたネギのみを殺菌する、あるいはカットしたキャベツのみを殺菌する、等である。殺菌の対象の食品が変わると、殺菌水は全て交換されるようにしている。したがって、循環する殺菌水に含まれる物質群X1は、予め判明している。つまり、本実施の形態に係る次亜塩素酸イオン濃度を得るための条件が成立している。そこで、本実施の形態に係る次亜塩素酸イオン濃度測定装置1において、殺菌する対象の食品に合わせて予め該当する透過光強度-濃度関係を選択しておく。そうすると、次亜塩素酸イオン濃度を測定できる。つまり第1の条件が満たされている。 By the way, in order to control in this way, it is necessary to satisfy the two conditions. The first condition is that the hypochlorite ion concentration can be correctly measured by the hypochlorite ion concentration measuring device 1 according to the present embodiment. In the food sterilizer 30, the food to be sterilized is operated so as to be one type. For example, only the cut green onions are sterilized, or only the cut cabbage is sterilized. When the food to be sterilized changes, all the sterilized water is replaced. Therefore, the substance group X1 contained in the circulating sterilizing water is known in advance. That is, the conditions for obtaining the hypochlorite ion concentration according to the present embodiment are satisfied. Therefore, in the hypochlorite ion concentration measuring device 1 according to the present embodiment, the corresponding transmitted light intensity-concentration relationship is selected in advance according to the food to be sterilized. Then, the hypochlorite ion concentration can be measured. That is, the first condition is satisfied.
第2の条件は、次亜塩素酸濃度を得ることができることである。すなわち、測定される次亜塩素酸イオン濃度だけでなく、非イオン状態の次亜塩素酸の濃度を得る必要がある。ところで周知のように、次亜塩素酸イオンと非イオン状態の次亜塩素酸は、pHによってその割合が変化する化学平衡状態になっている。コントローラ45は、pH計44によって測定されるpHと、本実施の形態に係る次亜塩素酸イオン濃度測定装置1によって測定される次亜塩素酸イオン濃度とから、次亜塩素酸濃度を計算するようになっている。すなわち第2の条件も満たされている。 The second condition is that the hypochlorous acid concentration can be obtained. That is, it is necessary to obtain not only the measured hypochlorous acid ion concentration but also the nonionic hypochlorous acid concentration. By the way, as is well known, hypochlorite ion and non-ionic hypochlorous acid are in a chemical equilibrium state in which the ratio thereof changes depending on pH. The controller 45 calculates the hypochlorite concentration from the pH measured by the pH meter 44 and the hypochlorite ion concentration measured by the hypochlorite ion concentration measuring device 1 according to the present embodiment. It has become like. That is, the second condition is also satisfied.
本実施の形態に係る食品の殺菌装置30は、色々変形することができ、次亜塩素酸タンク38の代わりに電解装置を設けて、食塩水を電解して次亜塩素酸を得るようにしてもよい。酸タンク41にはクエン酸、炭酸、塩酸等が利用できる。 The food sterilizer 30 according to the present embodiment can be variously modified, and an electrolyzer is provided instead of the hypochlorous acid tank 38 to electrolyze the saline solution to obtain hypochlorous acid. May be good. Citric acid, carbonic acid, hydrochloric acid and the like can be used in the acid tank 41.
本実施の形態に係る次亜塩素酸イオン濃度測定装置1によって、色々な物質群X1が含まれている測定対象溶液について、次亜塩素酸イオン濃度を精度良く測定できることを確認するため、複数の実験を行った。以下、それぞれの実験について説明する。 In order to confirm that the hypochlorite ion concentration measuring device 1 according to the present embodiment can accurately measure the hypochlorite ion concentration of the solution to be measured containing various substance groups X1, a plurality of substances are used. An experiment was conducted. Hereinafter, each experiment will be described.
<カオリン>
 測定対象溶液に砂等の濁質が含まれている場合でも次亜塩素酸イオン濃度が測定できることを確認するため、物質群X1としてカオリンを選定して実験を行った。カオリンは次亜塩素酸によって化学変化しないので、物質群X1は変化しない。この場合、2個の半導体光源11、12だけで次亜塩素酸イオン濃度が測定できるはずである。これを確認することにした。
実験内容:
微量な水酸化ナトリウムによりpH7.9~8.1に調製した水にカオリンを混ぜて次の6種類の濃度のカオリン水溶液K1、K2、…を調製した。なお、ppmは水とカオリンのそれぞれの重量比を示している。
 K1:1000ppm、K2:200ppm、K3:150ppm、K4:100ppm、K5:50ppm、K6:0ppm
 カオリン水溶液K1、K2、…をそれぞれ7個ずつビーカーに取り分け、次亜塩素酸を添加して次亜塩素酸濃度が次の7種類になるようにした。
 0ppm、21ppm、40ppm、60ppm、80ppm、102ppm、121ppm
つまり、カオリンと次亜塩素酸の濃度が異なる試験溶液を42個用意した。なお、それぞれの次亜塩素酸濃度は、柴田科学株式会社製ハンディ水質計「アクアブAQ-202型」(以下、測定器S)を使用して測定した。この測定器Sは、残留塩素の濃度を測定するようになっているが、これらの試験溶液中に結合残留塩素は実質的にないので、遊離残留塩素が測定されることになる。さらに、試験溶液のpHは8近傍であるので、次亜塩素酸は約90%が次亜塩素酸イオンになっている。そこで、この測定器Sで測定した次亜塩素酸濃度は、ほぼ次亜塩素酸イオン濃度であるとみなすことにする。
 42個の試験溶液について、本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、第1、2の半導体光源11、12の光を入射し、それぞれの第1、2の透過光強度を得た。
 得られた42個分の、第1、2の透過光強度と測定器Sで測定した次亜塩素酸イオン濃度とを回帰分析して、回帰式つまり透過光強度-濃度関係を得た。なお、第1の透過光強度をx、第2の透過光強度をyとするとき、xの2乗つまりx^2、yの2乗つまりy^2、xとyの積つまりx*y、yをxで除したものつまりy /x、yの3乗つまりy^3のデータも作成し、x、yと共にこれらも説明変数とし、そして次亜塩素酸イオン濃度を被説明変数として回帰式を作成した。
 次に、カオリンの濃度も次亜塩素酸の濃度も異なる10個の測定対象溶液を調製した。本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、これらについて、第1、2の半導体光源11、12の光を入射し、それぞれの第1、2の透過光強度を得た。得られた第1、2の透過光強度を、透過光強度-濃度関係つまり回帰式に入力して次亜塩素酸イオン濃度を得た。得られた次亜塩素酸イオン濃度と、前記した測定器Sによって測定した次亜塩素酸イオン濃度とを比較したところ、平均誤差は2.3ppmであった。
考察:測定対象溶液に物質群X1としてカオリンが含まれている場合には、物質群X1の濃度が不明であっても、次亜塩素酸イオン濃度を精度良く得られることが確認できた。また、必要な半導体光源11、12、…の個数は2個であることが確認できた。なお、2個以上の半導体光源11、12、…を使用すると、さらに高い精度で次亜塩素酸イオン濃度を得られるはずである。
<Kaolin>
In order to confirm that the hypochlorite ion concentration can be measured even when the solution to be measured contains turbidity such as sand, kaolin was selected as the substance group X1 and an experiment was conducted. Since kaolin is not chemically changed by hypochlorous acid, the substance group X1 is not changed. In this case, the hypochlorite ion concentration should be able to be measured only by the two semiconductor light sources 11 and 12. I decided to confirm this.
Experiment content:
Kaolin was mixed with water prepared to pH 7.9 to 8.1 with a small amount of sodium hydroxide to prepare the following six kinds of kaolin aqueous solutions K1, K2, .... In addition, ppm indicates the weight ratio of water and kaolin respectively.
K1: 1000ppm, K2: 200ppm, K3: 150ppm, K4: 100ppm, K5: 50ppm, K6: 0ppm
Seven kaolin aqueous solutions K1, K2, ... Were divided into beakers, and hypochlorous acid was added to adjust the hypochlorous acid concentration to the following seven types.
0ppm, 21ppm, 40ppm, 60ppm, 80ppm, 102ppm, 121ppm
That is, 42 test solutions having different concentrations of kaolin and hypochlorous acid were prepared. The concentration of each hypochlorous acid was measured using a handy water quality meter "AQUAB AQ-202" (hereinafter referred to as "measuring instrument S") manufactured by Shibata Scientific Technology Co., Ltd. This measuring instrument S is designed to measure the concentration of residual chlorine, but since there is virtually no bound residual chlorine in these test solutions, free residual chlorine will be measured. Further, since the pH of the test solution is around 8, about 90% of hypochlorous acid is hypochlorite ion. Therefore, the hypochlorous acid concentration measured by this measuring instrument S is considered to be approximately the hypochlorite ion concentration.
The light of the first and second semiconductor light sources 11 and 12 is incident on the 42 test solutions using the hypochlorite ion concentration measuring device 1 according to the present embodiment, and the light of the first and second semiconductor light sources 11 and 12 is transmitted. Light intensity was obtained.
The first and second transmitted light intensities of the 42 obtained pieces and the hypochlorite ion concentration measured by the measuring instrument S were subjected to regression analysis to obtain a regression equation, that is, a transmitted light intensity-concentration relationship. When the first transmitted light intensity is x and the second transmitted light intensity is y, the square of x, that is, x ^ 2, the square of y, that is, y ^ 2, and the product of x and y, that is, x * y. , Y divided by x, that is, y / x, y cubed, that is, y ^ 3 data is also created, and these are also used as explanatory variables together with x and y, and hypochlorite ion concentration is used as the explained variable. I created an expression.
Next, 10 solutions to be measured with different concentrations of kaolin and hypochlorous acid were prepared. Using the hypochlorite ion concentration measuring device 1 according to the present embodiment, the light of the first and second semiconductor light sources 11 and 12 is incident on these to obtain the transmitted light intensities of the first and second, respectively. rice field. The obtained first and second transmitted light intensities were input into a transmitted light intensity-concentration relationship, that is, a regression equation to obtain a hypochlorite ion concentration. When the obtained hypochlorite ion concentration was compared with the hypochlorite ion concentration measured by the above-mentioned measuring instrument S, the average error was 2.3 ppm.
Discussion: When the solution to be measured contains kaolin as the substance group X1, it was confirmed that the hypochlorite ion concentration can be obtained accurately even if the concentration of the substance group X1 is unknown. Further, it was confirmed that the number of required semiconductor light sources 11, 12, ... Is two. If two or more semiconductor light sources 11, 12, ... Are used, the hypochlorite ion concentration should be obtained with higher accuracy.
<キャベツ>
測定対象溶液にキャベツの成分である物質X1が含まれている場合に、次亜塩素酸イオン濃度が測定できることを確認する実験を行った。
実験内容:
キャベツ150gを千切りにして、2Lの水に浸漬し10分間放置し、これをろ過して固形分を除去し、キャベツの成分である物質X1が含まれる水溶液Cを得た。水溶液Cを4個の容器C1、C2、…に所定量取り分けて、それぞれ1/2、1/5、1/10、1/20の希釈率になるように希釈し、pH7.9~8.1になるように調製した。また、水だけを容器C5に入れて同様にpH7.9~8.1になるように調製した。
これらの5個の容器C1、C2、…の水溶液をそれぞれ5個ずつのビーカーに取り分け、次亜塩素酸を添加してそれぞれ次亜塩素酸濃度が次の5種類になるようにした。
 31ppm、56ppm、76ppm、107ppm、130ppm
つまり、キャベツの成分と次亜塩素酸の濃度が異なる試験溶液を25個用意した。これらの試験溶液の次亜塩素酸濃度は測定器Sによって測定したが、試験溶液はいずれもpHが8近傍であるので、次亜塩素酸イオン濃度であると見なすことにする。
 これら25個の試験溶液について、本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、第1~4の半導体光源11、12、…の光を入射し、それぞれの第1~4の透過光強度を得た。つまり半導体光源11、12、…は全て使用して透過光強度を得た。
 得られた25個分の、第1~4の透過光強度と測定器Sで測定した次亜塩素酸イオン濃度とを回帰分析して、回帰式つまり透過光強度-濃度関係を得た。なお、第1~4の透過光強度をそれぞれx、y、z、tとするとき、これらの2乗つまりx^2、y^2、z^2、t^2のデータも作成して、x、yと共にこれらも説明変数とし、そして次亜塩素酸イオン濃度を被説明変数として回帰式を作成した。
 次に、キャベツの成分の濃度も次亜塩素酸の濃度も異なる5個の測定対象溶液を調製した。本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、これらについて、第1~4の半導体光源11、12、…の光を入射し、それぞれの第1~4の透過光強度を得た。得られた第1~4の透過光強度を、透過光強度-濃度関係つまり回帰式に入力して次亜塩素酸イオン濃度を得た。得られた次亜塩素酸イオン濃度と、測定器Sによって測定した次亜塩素酸イオン濃度とを比較したところ、平均誤差は2.05ppmであった。
考察:測定対象溶液に物質群X1としてキャベツの成分が含まれている場合、物質群X1の濃度が不明であっても、次亜塩素酸イオン濃度を精度良く得られることが確認できた。
<Cabbage>
An experiment was conducted to confirm that the hypochlorite ion concentration could be measured when the substance X1 which is a component of cabbage is contained in the solution to be measured.
Experiment content:
150 g of cabbage was cut into strips, immersed in 2 L of water and left to stand for 10 minutes, and filtered to remove solids to obtain an aqueous solution C containing the substance X1 which is a component of cabbage. Aqueous solution C is divided into four containers C1, C2, ... In a predetermined amount, diluted to a dilution ratio of 1/2, 1/5, 1/10, 1/20, respectively, and the pH is 7.9 to 8. It was prepared to be 1. Further, only water was placed in the container C5, and the pH was similarly adjusted to 7.9 to 8.1.
Aqueous solutions of these five containers C1, C2, ... Were divided into five beakers each, and hypochlorous acid was added so that the hypochlorous acid concentration would be the following five types.
31ppm, 56ppm, 76ppm, 107ppm, 130ppm
That is, 25 test solutions having different concentrations of cabbage components and hypochlorous acid were prepared. The hypochlorous acid concentration of these test solutions was measured by the measuring instrument S, but since the pH of each of the test solutions is around 8, it is considered to be the hypochlorite ion concentration.
The hypochlorite ion concentration measuring device 1 according to the present embodiment is used to inject the light of the semiconductor light sources 11, 12, ... Of the first to fourth semiconductor light sources 11, 12, ... The transmitted light intensity of 4 was obtained. That is, the semiconductor light sources 11, 12, ... Are all used to obtain the transmitted light intensity.
Regression analysis was performed on the transmitted light intensities 1 to 4 of the obtained 25 pieces and the hypochlorite ion concentration measured by the measuring instrument S to obtain a regression equation, that is, a transmitted light intensity-concentration relationship. When the transmitted light intensities of the first to fourth are x, y, z, and t, respectively, the squares of these, that is, the data of x ^ 2, y ^ 2, z ^ 2, and t ^ 2 are also created. A regression equation was created with x and y as explanatory variables and the hypochlorite ion concentration as the dependent variable.
Next, five measurement target solutions having different concentrations of cabbage components and hypochlorous acid were prepared. Using the hypochlorite ion concentration measuring device 1 according to the present embodiment, the light of the semiconductor light sources 11, 12, ... Of the first to fourth semiconductor light sources 11, 12, ... Is incident on these, and the transmitted light intensity of each of the first to fourth is incident. Got The obtained first to fourth transmitted light intensities were input into a transmitted light intensity-concentration relationship, that is, a regression equation to obtain a hypochlorite ion concentration. When the obtained hypochlorite ion concentration was compared with the hypochlorite ion concentration measured by the measuring instrument S, the average error was 2.05 ppm.
Discussion: When the solution to be measured contains the cabbage component as the substance group X1, it was confirmed that the hypochlorite ion concentration can be obtained accurately even if the concentration of the substance group X1 is unknown.
<キャベツ>
上の実験では、測定対象溶液にキャベツの成分である物質X1が含まれている場合に、4個の半導体光源11、12、…を使って、次亜塩素酸イオン濃度が測定できることを確認した。3個の半導体光源、例えば第1、2、4の半導体光源11、12、14のみを使っても次亜塩素酸イオン濃度が測定できるか否か、確認する実験を行った。
実験内容:
 上の実験で得た25個の試験溶液の、それぞれの第1~4の透過光強度のうち、第1、2、4の透過光強度を使い、これらと測定器Sで測定した次亜塩素酸イオン濃度とによって、回帰分析を行って、回帰式つまり透過光強度-濃度関係を得た。
 上の実験で得た5個の測定対象溶液について得た第1~4の透過光強度のうち、第1、2、4の透過光強度を透過光強度-濃度関係の回帰式に入力して次亜塩素酸イオン濃度を得、測定器Sで測定される次亜塩素酸イオン濃度と比較した。濃度の平均誤差は2.28ppmであった。
考察:測定対象溶液に物質群X1としてキャベツの成分が含まれている場合、物質群X1の濃度が不明であっても、3個の半導体光源11、12、14を使って次亜塩素酸イオン濃度を精度良く得られることが確認できた。
<Cabbage>
In the above experiment, it was confirmed that the hypochlorite ion concentration can be measured using four semiconductor light sources 11, 12, ... When the substance X1 which is a component of cabbage is contained in the solution to be measured. .. An experiment was conducted to confirm whether or not the hypochlorite ion concentration could be measured by using only three semiconductor light sources, for example, the first, second, and fourth semiconductor light sources 11, 12, and 14.
Experiment content:
Of the 25 test solutions obtained in the above experiment, of the 1st to 4th transmitted light intensities, the 1st, 2nd and 4th transmitted light intensities were used, and these and hypochlorite measured by the measuring instrument S were used. Regression analysis was performed based on the acid ion concentration to obtain a regression equation, that is, a transmitted light intensity-concentration relationship.
Of the 1st to 4th transmitted light intensities obtained for the 5 measurement target solutions obtained in the above experiment, the 1st, 2nd and 4th transmitted light intensities are input to the regression equation of the transmitted light intensity-concentration relationship. The hypochlorite ion concentration was obtained and compared with the hypochlorite ion concentration measured by the measuring instrument S. The average error in concentration was 2.28 ppm.
Consideration: When the solution to be measured contains a cabbage component as the substance group X1, even if the concentration of the substance group X1 is unknown, hypochlorite ions are used using three semiconductor light sources 11, 12, and 14. It was confirmed that the concentration can be obtained accurately.
<ホウレン草>
すでに説明したように、ホウレン草の成分である物質群X1は次亜塩素酸によって反応して別の物質群X2に変化する。次亜塩素酸による反応途中の水溶液には物質群X1と物質群X2とが混在していると推定される。このような物質群X1と物質群X2とが含まれている測定対象溶液から次亜塩素酸イオン濃度を得るには、すでに説明したように少なくとも3個の半導体光源11、12、…が必要になる。そこで4個の半導体光源11、12、…を使って、ホウレン草の成分が含まれている測定対象溶液から次亜塩素酸イオン濃度を得られることを確認する実験を行った。
実験内容:
ホウレン草150gを千切りにして、2Lの水に浸漬し10分間放置し、これをろ過して固形分を除去し、ホウレン草の成分である物質X1が含まれる水溶液Hを得た。水溶液Hを4個の容器H1、H2、…に取り分けてそれぞれ1/2、1/5、1/10、1/20の希釈率になるように希釈し、pH7.9~8.1になるように調製した。また、ホウレン草の成分を含まない水だけを容器H5に入れて同様にpH7.9~8.1になるように調製した。
これらの5個の容器H1、H2、…の水溶液をそれぞれ4個ずつのビーカーに取り分け、次亜塩素酸を添加して次亜塩素酸濃度がそれぞれ次の4種類になるようにした。
 56ppm、76ppm、107ppm、130ppm
つまり、ホウレン草の成分と次亜塩素酸の濃度が異なる試験溶液を20個用意したことになる。これらの試験溶液の次亜塩素酸濃度は測定器Sによって測定したが、試験溶液はいずれもpHが8近傍であるので、次亜塩素酸イオン濃度であると見なすことにする。
 これらの20個の試験溶液について、本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、第1~4の半導体光源11、12、…の光を入射し、それぞれの第1~4の透過光強度を得た。つまり半導体光源11、12、…は全て使用して透過光強度を得た。なおこの測定は、ホウレン草の成分に次亜塩素酸を添加して2分以内に実施した。つまりホウレン草の成分は次亜塩素酸と反応して変化するが、次亜塩素酸との反応時間が2分以内の状態で、第1~4の透過光強度を得たことになる。
これらの20個の試験溶液を40分間放置し、ホウレン草の成分と次亜塩素酸の反応を進行させた。40分後における20個の試験溶液のそれぞれについて、本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、第1~4の半導体光源11、12、…の光を入射し、それぞれの第1~4の透過光強度を得た。また、測定器Sによってこれら20個の試験溶液について次亜塩素酸イオン濃度を測定した。
 試験溶液に関して得られた全てのデータ、つまり40組の第1~4の透過光強度と、次亜塩素酸イオン濃度とから、回帰分析により回帰式つまり透過光強度-濃度関係を得た。
次に、ホウレン草の成分の濃度も次亜塩素酸の濃度も異なる3個の測定対象溶液を調製した。次亜塩素酸と混合2分以内に、本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使って、これらについて、第1~4の半導体光源11、12、…の光を入射し、それぞれの第1~4の透過光強度を得た。このとき測定器Sによって次亜塩素酸イオン濃度を測定しておいた。3個の測定対象溶液を40分放置して、再び本実施の形態に係る次亜塩素酸イオン濃度測定装置1を使用して、これらについて、第1~4の半導体光源11、12、…の光を入射し、それぞれの第1~4の透過光強度を得た。このとき測定器Sによって次亜塩素酸イオン濃度も測定した。
測定対象溶液に関して得られたそれぞれの第1~4の透過光強度を、透過光強度-濃度関係つまり回帰式に入力して次亜塩素酸イオン濃度を得、測定器Sによって測定した次亜塩素酸イオン濃度と比較したところ、平均誤差は2.97ppmであった。
考察:測定対象溶液に物質群X1、物質群X2の成分が含まれていても、そして物質群X1、物質群X2の濃度が不明であっても、次亜塩素酸イオン濃度を精度良く得られることが確認できた。
<Spinach>
As described above, the substance group X1 which is a component of spinach reacts with hypochlorous acid and changes to another substance group X2. It is presumed that the substance group X1 and the substance group X2 are mixed in the aqueous solution during the reaction with hypochlorous acid. In order to obtain the hypochlorite ion concentration from the solution to be measured containing such substance group X1 and substance group X2, at least three semiconductor light sources 11, 12, ... As described above are required. Become. Therefore, using four semiconductor light sources 11, 12, ..., An experiment was conducted to confirm that the hypochlorite ion concentration could be obtained from the solution to be measured containing the components of spinach.
Experiment content:
150 g of spinach was cut into strips, immersed in 2 L of water and left for 10 minutes, and filtered to remove solids to obtain an aqueous solution H containing the substance X1 which is a component of spinach. The aqueous solution H is divided into four containers H1, H2, ... And diluted to a dilution ratio of 1/2, 1/5, 1/10, 1/20, respectively, to obtain a pH of 7.9 to 8.1. Prepared as follows. Further, only water containing no spinach component was placed in a container H5 and similarly adjusted to a pH of 7.9 to 8.1.
Aqueous solutions of these five containers H1, H2, ... Were divided into four beakers each, and hypochlorous acid was added so that the hypochlorous acid concentration became the following four types.
56ppm, 76ppm, 107ppm, 130ppm
That is, 20 test solutions having different concentrations of spinach components and hypochlorous acid were prepared. The hypochlorous acid concentration of these test solutions was measured by the measuring instrument S, but since the pH of each of the test solutions is around 8, it is considered to be the hypochlorite ion concentration.
Using the hypochlorite ion concentration measuring device 1 according to the present embodiment, the light of the semiconductor light sources 11, 12, ... Of the first to fourth semiconductor light sources 11, 12, ... Is incident on these 20 test solutions, and the first of each is incident. The transmitted light intensity of ~ 4 was obtained. That is, the semiconductor light sources 11, 12, ... Are all used to obtain the transmitted light intensity. This measurement was carried out within 2 minutes by adding hypochlorous acid to the components of spinach. That is, the components of spinach change by reacting with hypochlorous acid, but the first to fourth transmitted light intensities are obtained when the reaction time with hypochlorous acid is within 2 minutes.
These 20 test solutions were left for 40 minutes to allow the reaction of spinach components with hypochlorous acid to proceed. After 40 minutes, the light of the first to fourth semiconductor light sources 11, 12, ... Was incident on each of the 20 test solutions using the hypochlorite ion concentration measuring device 1 according to the present embodiment. The transmitted light intensities of the first to fourth, respectively, were obtained. In addition, the hypochlorite ion concentration was measured for these 20 test solutions by the measuring instrument S.
From all the data obtained for the test solution, that is, 40 sets of transmitted light intensities 1 to 4, and the hypochlorite ion concentration, a regression equation, that is, a transmitted light intensity-concentration relationship was obtained by regression analysis.
Next, three measurement target solutions having different concentrations of spinach components and hypochlorous acid were prepared. Within 2 minutes of mixing with hypochlorous acid, the hypochlorite ion concentration measuring device 1 according to the present embodiment is used to inject the light of the first to fourth semiconductor light sources 11, 12, ... , The first to fourth transmitted light intensities of each were obtained. At this time, the hypochlorite ion concentration was measured by the measuring instrument S. The three solutions to be measured were left for 40 minutes, and the hypochlorite ion concentration measuring device 1 according to the present embodiment was used again to obtain the first to fourth semiconductor light sources 11, 12, ... Light was incident to obtain the first to fourth transmitted light intensities of each. At this time, the hypochlorite ion concentration was also measured by the measuring instrument S.
The transmitted light intensities of the first to fourth transmitted light obtained for the solution to be measured are input to the transmitted light intensity-concentration relationship, that is, the regression equation to obtain the hypochlorite ion concentration, and the hypochlorite measured by the measuring instrument S is obtained. When compared with the acid ion concentration, the average error was 2.97 ppm.
Consideration: Even if the solution to be measured contains the components of substance group X1 and substance group X2, and the concentrations of substance group X1 and substance group X2 are unknown, the hypochlorite ion concentration can be obtained accurately. I was able to confirm that.
本実施の形態に係る次亜塩素酸イオン濃度測定装置1は色々な変形が可能である。本実施の形態に係る次亜塩素酸イオン濃度測定装置1は、第1~4の半導体光源11、12、…のピーク波長がそれぞれ282nm、380nm、450nm、620nmになっている。しかしながら、これらとは異なる波長にしてもよい。さらには、半導体光源11、12、…の個数を変形することができる。半導体光源11、12、…の個数は2個以上であればよく、5個、6個等であってもよい。ただし、それぞれの半導体光源11、12の波長は異なっていること、そして1個は280~320nmの波長の一部を含んでいることが条件になる。もちろん、280~320nmの波長を含んでいる半導体光源11、12、…が2個、もしくはそれ以上あってもよい。 The hypochlorite ion concentration measuring device 1 according to the present embodiment can be modified in various ways. In the hypochlorite ion concentration measuring device 1 according to the present embodiment, the peak wavelengths of the first to fourth semiconductor light sources 11, 12, ... Are 282 nm, 380 nm, 450 nm, and 620 nm, respectively. However, the wavelength may be different from these. Furthermore, the number of semiconductor light sources 11, 12, ... Can be modified. The number of the semiconductor light sources 11, 12, ... May be 2 or more, and may be 5, 6, or the like. However, it is a condition that the wavelengths of the respective semiconductor light sources 11 and 12 are different, and that one contains a part of the wavelength of 280 to 320 nm. Of course, there may be two or more semiconductor light sources 11, 12, ... Containing a wavelength of 280 to 320 nm.
 ところで、半導体光源11、12、…の特性や、光強度検出手段16、17、…の特性は温度により変化する。例えば半導体光源11、12、…がLEDからなるとき、温度が高くなると発光量が減少する。このような温度による特性の変化があると透過光強度に影響が出る。つまり次亜塩素酸イオン濃度の測定に影響を及ぼす。図9には、温度による特性の変化があっても、次亜塩素酸イオン濃度の測定への影響を小さくすることができる、第2の実施の形態に係る次亜塩素酸イオン濃度測定装置1Aが示されている。これを説明する。なお、本実施の形態に係る次亜塩素酸イオン濃度測定装置1と同等の部材については同じ参照番号を付して説明を省略する。 By the way, the characteristics of the semiconductor light sources 11, 12, ... And the characteristics of the light intensity detecting means 16, 17, ... Change depending on the temperature. For example, when the semiconductor light sources 11, 12, ... Are made of LEDs, the amount of light emitted decreases as the temperature rises. Such a change in characteristics due to temperature affects the transmitted light intensity. That is, it affects the measurement of hypochlorite ion concentration. FIG. 9 shows the hypochlorite ion concentration measuring device 1A according to the second embodiment, which can reduce the influence on the measurement of the hypochlorite ion concentration even if the characteristics change due to the temperature. It is shown. This will be explained. The same reference number will be given to the members equivalent to the hypochlorite ion concentration measuring device 1 according to the present embodiment, and the description thereof will be omitted.
 第2の実施の形態に係る次亜塩素酸イオン濃度測定装置1Aは、本体部2Aの筐体5の中に、ダミー測定部50が設けられている。ダミー測定部50は、第1~4のダミー半導体光源11‘~14’と、これらの光を受光する第1~4のダミー光強度検出手段16‘~19’とから構成されている。第1~4のダミー半導体光源11‘~14’は、それぞれ第1~4の半導体光源11~14を構成している同じ波長のLEDからなる。そして、第1~4のダミー光強度検出手段16‘~19’も、それぞれ第1~4の光強度検出手段16~19を構成している同じフォトダイオードからなる。第1~4のダミー半導体光源11‘~14’と第1~4のダミー光強度検出手段16‘~19’の間には何も設けなくてもよい。あるいは、蒸留水等の光の透過率が一定の物質を入れた容器51を設けてもよい。第2の実施の形態に係る次亜塩素酸イオン濃度測定装置1Aでは、管路6に入れられている測定対象溶液について、第1~4の半導体光源11~14からのそれぞれの透過光の強度である第1~4の透過光強度を測定するとき、並行してダミー測定部50においても第1~4のダミー半導体光源11‘~14’からの透過光の強度である第1~4のダミー透過光強度を測定するようにする。本来は、第1~4のダミー透過光強度は、それぞれ一定の値になるはずであるが、温度が変化するとLED等の特性が変化して、若干変化する。コントローラ3は、第1~4のダミー透過光強度に基づいて、第1~4の透過光強度を補正するようにする。そうすると、温度の変化によって第1~4の透過光強度に影響が生じたとしても、その影響を相殺することができる。コントローラ3で実施する補正は、色々な方法を採用することができる。例えば、第1~4の透過光強度を、それぞれ第1~4のダミー透過光強度で除したものを、補正後の第1~4の透過光強度として扱うこともできる。 The hypochlorite ion concentration measuring device 1A according to the second embodiment is provided with a dummy measuring section 50 in the housing 5 of the main body section 2A. The dummy measuring unit 50 includes first to fourth dummy semiconductor light sources 11'to 14'and first to fourth dummy light intensity detecting means 16' to 19'to receive these lights. The first to fourth dummy semiconductor light sources 11 ′ to 14 ′ consist of LEDs having the same wavelength constituting the first to fourth semiconductor light sources 11 to 14, respectively. The dummy light intensity detecting means 16'to 19'of the first to fourth are also made of the same photodiode constituting the light intensity detecting means 16 to 19 of the first to fourth, respectively. Nothing may be provided between the first to fourth dummy semiconductor light sources 11'to 14'and the first to fourth dummy light intensity detecting means 16' to 19'. Alternatively, a container 51 containing a substance such as distilled water having a constant light transmittance may be provided. In the hypochlorite ion concentration measuring device 1A according to the second embodiment, the intensity of the transmitted light from the first to fourth semiconductor light sources 11 to 14 is about the measurement target solution contained in the conduit 6. When measuring the transmitted light intensity of the first to fourth, the dummy measuring unit 50 also has the intensity of the transmitted light from the dummy semiconductor light sources 11'to 14' of the first to fourth units 1 to 4 in parallel. Try to measure the dummy transmitted light intensity. Originally, the first to fourth dummy transmitted light intensities should be constant values, but when the temperature changes, the characteristics of the LED and the like change, and the values change slightly. The controller 3 corrects the transmitted light intensities of the first to fourth based on the dummy transmitted light intensities of the first to fourth. Then, even if the first to fourth transmitted light intensities are affected by the change in temperature, the influence can be offset. Various methods can be adopted for the correction performed by the controller 3. For example, the first to fourth transmitted light intensities divided by the first to fourth dummy transmitted light intensities can be treated as the corrected first to fourth transmitted light intensities.
 第1~4の半導体光源11~14等の温度による特性の変化については、他の方法でその影響を小さくすることもできる。具体的には、図1に示されている、本実施の形態に係る次亜塩素酸イオン濃度測定装置において、第1~4の半導体光源の近傍に温度センサを設けて周囲温度を測定するようにする。コントローラ3は周囲温度に応じて、第1~4の透過光強度を補正するようにする。なお、第1~4の透過光強度に対して温度が及ぼす影響については予め実験等により測定しておけばよい。 Regarding the change in characteristics due to the temperature of the first to fourth semiconductor light sources 11 to 14, etc., the influence can be reduced by other methods. Specifically, in the hypochlorite ion concentration measuring device according to the present embodiment shown in FIG. 1, a temperature sensor is provided in the vicinity of the first to fourth semiconductor light sources to measure the ambient temperature. To. The controller 3 corrects the transmitted light intensities of the first to fourth according to the ambient temperature. The effect of temperature on the first to fourth transmitted light intensities may be measured in advance by experiments or the like.
 本実施の形態に係る次亜塩素酸イオン濃度測定装置1において、次亜塩素酸イオン濃度だけでなく、非イオン状態の次亜塩素酸も含めた全体の次亜塩素酸濃度を得る方法もある。周知のように次亜塩素酸はpHによって電離の割合が変化している。つまり次亜塩素酸イオンになる割合はpHによって決定されている。そこで、本実施の形態に係る次亜塩素酸イオン濃度測定装置1に、pH計を設けるようにし、測定対象溶液のpHを測定するようにする。コントローラ3には、予めpHによる次亜塩素酸の電離の割合を設定しておけば、測定される次亜塩素酸イオン濃度とpHとから、非イオン状態の次亜塩素酸も含めた全体の次亜塩素酸濃度を計算することができる。 In the hypochlorite ion concentration measuring device 1 according to the present embodiment, there is also a method of obtaining not only the hypochlorite ion concentration but also the total hypochlorous acid concentration including the nonionic hypochlorous acid. .. As is well known, the rate of ionization of hypochlorous acid changes depending on the pH. That is, the ratio of hypochlorite ions is determined by pH. Therefore, the hypochlorite ion concentration measuring device 1 according to the present embodiment is provided with a pH meter to measure the pH of the solution to be measured. If the ratio of ionization of hypochlorous acid by pH is set in advance in the controller 3, the measured hypochlorous acid ion concentration and pH will be used to determine the total amount of hypochlorous acid including nonionic hypochlorous acid. The hypochlorous acid concentration can be calculated.
なお、本実施の形態に係る次亜塩素酸イオン濃度測定装置1は、次亜塩素酸イオンの濃度を測定するようになっている。次亜塩素酸は周知のように非イオン状態の次亜塩素酸と次亜塩素酸イオンとで化学平衡状態になっており、アルカリ性のときに次亜塩素酸イオンになる割合が大きい。したがって、測定対象溶液について非イオン状態の次亜塩素酸と次亜塩素酸イオン全体の濃度を測定したいときには、測定対象溶液をアルカリ性にして次亜塩素酸イオン濃度を測定し、これによって得るようにすることができる。 The hypochlorite ion concentration measuring device 1 according to the present embodiment is designed to measure the concentration of hypochlorite ions. As is well known, hypochlorous acid is in a chemical equilibrium state between non-ionic hypochlorous acid and hypochlorite ion, and when it is alkaline, the ratio of hypochlorous acid ion is large. Therefore, when you want to measure the concentration of non-ionic hypochlorous acid and the entire hypochlorite ion of the solution to be measured, make the solution to be measured alkaline and measure the hypochlorite ion concentration, so that it can be obtained. can do.
  1   次亜塩素酸イオン濃度測定装置
2   本体部
  3   コントローラ
  5   筐体
  6   管路
 11~14  第1~4の半導体光源
 16~19  第1~4の光強度検出手段
 30   食品の殺菌装置
 31   殺菌槽
 32   カゴ
 34   ポンプ
 35   ろ過装置
 38   次亜塩素酸タンク
 41   酸タンク
 44   pH計
 45   コントローラ

 
Primary chlorite ion concentration measuring device 2 Main body 3 Controller 5 Housing 6 Pipeline 11-14 1st to 4th semiconductor light sources 16 to 19 1st to 4th light intensity detecting means 30 Food sterilizer 31 Sterilizer tank 32 Basket 34 Pump 35 Filtering device 38 Hypochlorite tank 41 Acid tank 44 pH meter 45 Controller

Claims (7)

  1.  測定対象溶液から次亜塩素酸イオン濃度を得る、次亜塩素酸イオン濃度測定方法であって、
    前記次亜塩素酸イオン濃度測定方法は、
    互いに波長が異なっていると共にそのうちの1個は280~320nmの波長の一部を含んでいる、複数個の第1、2、…の半導体光源と、光の強度を検出する光強度検出手段とを使用し、
     前記第1、2、…の半導体光源からの光を個別に前記測定対象溶液に対して入射し、それぞれの透過光を前記光強度検出手段により検出して第1、2、…の透過光強度として得る第1のステップと、
     前記第1、2、…の透過光強度から次亜塩素酸イオン濃度を得る第2のステップと、からなる次亜塩素酸イオン濃度測定方法。
    A method for measuring hypochlorite ion concentration, which obtains the hypochlorite ion concentration from the solution to be measured.
    The method for measuring the hypochlorite ion concentration is
    A plurality of first, second, ... Semiconductor light sources having different wavelengths from each other and one of which contains a part of a wavelength of 280 to 320 nm, and a light intensity detecting means for detecting the intensity of light. Using,
    Light from the semiconductor light sources of the first, second, ... Is individually incident on the solution to be measured, and each transmitted light is detected by the light intensity detecting means, and the transmitted light intensity of the first, second, ... As the first step to get, and
    A method for measuring hypochlorite ion concentration, comprising the second step of obtaining the hypochlorite ion concentration from the transmitted light intensities of the first, second, ....
  2.  前記第1、2、…の半導体光源はLED素子からなり、前記光強度検出手段はフォトダイオードからなる、請求項1に記載の次亜塩素酸イオン濃度測定方法。 The hypochlorite ion concentration measuring method according to claim 1, wherein the semiconductor light sources of the first, second, ... Are made of an LED element, and the light intensity detecting means is made of a photodiode.
  3. 前記次亜塩素酸イオン濃度測定方法は、次亜塩素酸以外に1種類または複数種類の物質からなる特定の物質群が含まれている前記測定対象溶液について次亜塩素酸イオン濃度を得る方法であって、
    前記次亜塩素酸イオン濃度測定方法は、予め実施する準備処理を備え、
    前記準備処理は、前記特定の物質群と次亜塩素酸とが色々な濃度で含まれていると共に次亜塩素酸イオン濃度が判明している複数の試験溶液に対し、それぞれ前記第1、2、…の半導体光源からの光を入射して透過させて前記光強度検出手段により検出して前記第1、2、…の透過光強度を得、前記複数の試験溶液分の前記第1、2、…の透過光強度と前記判明している次亜塩素酸イオン濃度とから前記第1、2、…の透過光強度と次亜塩素酸イオン濃度の関係である透過光強度-濃度関係を得るようにし、
    前記第2のステップは、前記透過光強度-濃度関係に基づいて次亜塩素酸イオン濃度を得る、請求項1または2に記載の次亜塩素酸イオン濃度測定方法。
    The method for measuring the hypochlorite ion concentration is a method for obtaining the hypochlorite ion concentration for the solution to be measured, which contains a specific substance group consisting of one or more kinds of substances other than hypochlorous acid. There,
    The hypochlorite ion concentration measuring method includes a preparatory treatment to be carried out in advance.
    In the preparatory treatment, the first and second test solutions containing the specific substance group and hypochlorite in various concentrations and having known hypochlorite ion concentrations, respectively. , ... Light from a semiconductor light source is incident and transmitted, and is detected by the light intensity detecting means to obtain the transmitted light intensity of the first, second, ... From the transmitted light intensity of, ... and the known hypochlorite ion concentration, the transmitted light intensity-concentration relationship, which is the relationship between the transmitted light intensity of the first, second, ... And the hypochlorite ion concentration, is obtained. So
    The method for measuring hypochlorite ion concentration according to claim 1 or 2, wherein the second step is to obtain the hypochlorite ion concentration based on the transmitted light intensity-concentration relationship.
  4.  測定対象溶液から次亜塩素酸イオン濃度を得る、次亜塩素酸イオン濃度測定装置であって、
     前記次亜塩素酸イオン濃度測定装置は、
    互いに波長が異なっていると共にそのうちの1個は280~320nmの波長の一部を含んでいる、複数個の第1、2、…の半導体光源と、 
     光の強度を検出する光強度検出手段と、
    次亜塩素酸イオン濃度を求める濃度取得手段と、を備え、
     前記第1、2、…の半導体光源の光が個別に前記測定対象溶液に対して入射され、それぞれの透過光が前記光強度検出手段により第1、2、…の透過光強度として検出され、
    前記濃度取得手段により前記第1、2、…の透過光強度から次亜塩素酸イオン濃度が求められる、次亜塩素酸イオン濃度測定装置。
    A hypochlorite ion concentration measuring device that obtains the hypochlorite ion concentration from the solution to be measured.
    The hypochlorite ion concentration measuring device is
    A plurality of first, second, ..., Semiconductor light sources having different wavelengths and one of which contains a part of a wavelength of 280 to 320 nm.
    Light intensity detecting means for detecting light intensity and
    Equipped with a concentration acquisition means for obtaining the hypochlorite ion concentration,
    The light of the semiconductor light sources of the first, second, ... Is individually incident on the solution to be measured, and each transmitted light is detected as the transmitted light intensity of the first, second, ... By the light intensity detecting means.
    A hypochlorite ion concentration measuring device for which the hypochlorite ion concentration is obtained from the transmitted light intensity of the first, second, ... By the concentration acquisition means.
  5.  前記第1、2、…の半導体光源はLED素子からなり、前記光強度検出手段はフォトダイオードからなる、請求項4に記載の次亜塩素酸イオン濃度測定装置。 The hypochlorite ion concentration measuring device according to claim 4, wherein the semiconductor light sources of the first, second, ... Are made of an LED element, and the light intensity detecting means is made of a photodiode.
  6. 前記次亜塩素酸イオン濃度測定装置は、次亜塩素酸以外に1種類または複数種類の物質からなる特定の物質群が含まれている前記測定対象溶液について次亜塩素酸イオン濃度を得る装置であって、
    前記次亜塩素酸イオン濃度測定装置は、前記第1、2、…の透過光強度と次亜塩素酸イオン濃度の関係である透過光強度-濃度関係を備え、前記濃度取得手段は前記透過光強度-濃度関係に基づいて実施されるようになっており、
    前記透過光強度-濃度関係は、前記特定の物質群と次亜塩素酸とが色々な濃度で含まれていると共に次亜塩素酸イオン濃度が判明している複数の試験溶液に対して、前記第1、2、…の半導体光源からの光を入射して透過させて前記光強度検出手段により検出して前記第1、2、…の透過光強度を得、前記複数の試験溶液分の前記第1、2、…の透過光強度と前記判明している次亜塩素酸イオン濃度とから得られたものである、請求項4または5に記載の次亜塩素酸イオン濃度測定装置。
    The hypochlorite ion concentration measuring device is a device for obtaining the hypochlorite ion concentration of the solution to be measured, which contains a specific substance group consisting of one or more kinds of substances other than hypochlorous acid. There,
    The hypochlorite ion concentration measuring device has a transmitted light intensity-concentration relationship, which is a relationship between the transmitted light intensity of the first, second, ... And the hypochlorite ion concentration, and the concentration acquisition means is the transmitted light. It is designed to be carried out based on the intensity-concentration relationship.
    The transmitted light intensity-concentration relationship is described above for a plurality of test solutions in which the specific substance group and hypochlorite are contained at various concentrations and the hypochlorite ion concentration is known. Light from the semiconductor light sources of the first, second, ... Is incident and transmitted, and is detected by the light intensity detecting means to obtain the transmitted light intensity of the first, second, .... The hypochlorite ion concentration measuring apparatus according to claim 4 or 5, which is obtained from the transmitted light intensity of the first, second, ... And the known hypochlorite ion concentration.
  7. 殺菌水によって食品を殺菌する食品の殺菌装置であって、
    前記殺菌装置は、殺菌水が貯められて食品が浸漬される殺菌槽と、前記殺菌水をろ過するろ過装置と、次亜塩素酸イオン濃度測定装置と、次亜塩素酸供給手段とを備え、前記次亜塩素酸イオン濃度測定装置によって測定される前記殺菌水の次亜塩素酸イオン濃度に基づいて前記次亜塩素酸供給手段によって前記殺菌水に次亜塩素酸が注入されるようになっており、
    前記次亜塩素酸イオン濃度測定装置は、
    互いに波長が異なっていると共にそのうちの1個は280~320nmの波長の一部を含んでいる、LED素子からなる複数個の第1、2、…の半導体光源と、
    光の強度を検出するフォトダイオードと、
    次亜塩素酸イオン濃度を求める濃度取得手段と、を備え、
    前記第1、2、…の半導体光源の光が個別に前記殺菌水に対して入射され、それぞれの透過光が前記フォトダイオードにより第1、2、…の透過光強度として検出され、前記濃度取得手段により前記第1、2、…の透過光強度から次亜塩素酸イオン濃度が求められるようになっている、食品の殺菌装置。

     
    A food sterilizer that sterilizes food with sterilized water.
    The sterilizing device includes a sterilizing tank in which sterilizing water is stored and food is immersed, a filtering device for filtering the sterilizing water, a hypochlorite ion concentration measuring device, and a hypochlorite supply means. Hypochlorite is injected into the sterilizing water by the hypochlorite supply means based on the hypochlorite ion concentration of the sterilizing water measured by the hypochlorite ion concentration measuring device. Ori,
    The hypochlorite ion concentration measuring device is
    A plurality of first, second, ... Semiconductor light sources composed of LED elements, each having a different wavelength and one of which contains a part of a wavelength of 280 to 320 nm.
    A photodiode that detects the intensity of light, and
    Equipped with a concentration acquisition means for obtaining the hypochlorite ion concentration,
    The light of the semiconductor light sources of the first, second, ... Is individually incident on the sterilizing water, and each transmitted light is detected as the transmitted light intensity of the first, second, ... By the photodiode, and the concentration is acquired. A food sterilizer in which the hypochlorite ion concentration can be determined from the transmitted light intensity of the first, second, ... By means.

PCT/JP2021/037279 2020-12-08 2021-10-08 Hypochlorite concentration measurement method, hypochlorite concentration measurement device, and food sterilizing device WO2022123890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-203456 2020-12-08
JP2020203456A JP2024016298A (en) 2020-12-08 2020-12-08 Method and device for measuring hypochlorous acid ion concentration, and food sterilization device

Publications (1)

Publication Number Publication Date
WO2022123890A1 true WO2022123890A1 (en) 2022-06-16

Family

ID=81973564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037279 WO2022123890A1 (en) 2020-12-08 2021-10-08 Hypochlorite concentration measurement method, hypochlorite concentration measurement device, and food sterilizing device

Country Status (2)

Country Link
JP (1) JP2024016298A (en)
WO (1) WO2022123890A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155358A (en) * 1995-10-06 1997-06-17 Kinousui Kenkyusho:Kk Sterilized water, method and apparatus for preparing the same, and apparatus for measuring concentration of hypochlorous acid of sterilized water
JPH11319834A (en) * 1997-06-17 1999-11-24 Shimadzu Corp Producing device of electrolytic water
JP2009106184A (en) * 2007-10-30 2009-05-21 Yuki Chemical:Kk Cleaning system
US20180266131A1 (en) * 2015-09-20 2018-09-20 Maytronics Ltd. Multi parameter swimming pool fluid analysis and regulating method and device
JP2019109054A (en) * 2017-12-15 2019-07-04 国立大学法人豊橋技術科学大学 Method and apparatus for detecting concentration of nitrate ion and nitrite ion, and plant growth and prolongation agent manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155358A (en) * 1995-10-06 1997-06-17 Kinousui Kenkyusho:Kk Sterilized water, method and apparatus for preparing the same, and apparatus for measuring concentration of hypochlorous acid of sterilized water
JPH11319834A (en) * 1997-06-17 1999-11-24 Shimadzu Corp Producing device of electrolytic water
JP2009106184A (en) * 2007-10-30 2009-05-21 Yuki Chemical:Kk Cleaning system
US20180266131A1 (en) * 2015-09-20 2018-09-20 Maytronics Ltd. Multi parameter swimming pool fluid analysis and regulating method and device
JP2019109054A (en) * 2017-12-15 2019-07-04 国立大学法人豊橋技術科学大学 Method and apparatus for detecting concentration of nitrate ion and nitrite ion, and plant growth and prolongation agent manufacturing apparatus

Also Published As

Publication number Publication date
JP2024016298A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US7372039B2 (en) Near UV absorption spectrometer and method for using the same
KR100900561B1 (en) A control apparatus and control method of ultraviolet-rays disinfector
DE102009028165A1 (en) Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample
SG194789A1 (en) Organic contaminant destruction using chlorine or mixed oxidant solution and ultraviolet light
Ozturk et al. Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: One-step/two-response optimization
US9423340B2 (en) Aqueous ozone monitor utilizing gas stripping
Spiliotopoulou et al. Use of fluorescence spectroscopy to control ozone dosage in recirculating aquaculture systems
US20170350824A1 (en) A ballast water analysis system
KR102297617B1 (en) Multi-wavelength real-time concentration analyser capable of on-site calibration and measurement using optical system-specific visible light transmission characteristics
Munther et al. A mathematical model for pathogen cross-contamination dynamics during produce wash
EP4038381B1 (en) Detection of total chlorine in seawater
DE3739966A1 (en) Appliance for disinfecting water by UV irradiation
KR20150116313A (en) Method for measuring TRO of ballast water
WO2022123890A1 (en) Hypochlorite concentration measurement method, hypochlorite concentration measurement device, and food sterilizing device
Jung et al. Evaluation of disinfection efficacy and chemical formation using MPUV ballast water treatment system (GloEn-PatrolTM)
US8847163B2 (en) Method and apparatus for absorption spectra analysis
US20210372924A1 (en) Zinc measurement
KR20150014714A (en) Ballast water management system in land
US6451612B1 (en) Method for determining a level of treatment with ozone of a liquid to be treated
Łaskawiec et al. Assessment of the possibility of recycling backwashing water from the swimming pool water treatment system
JPWO2020152896A1 (en) Water quality analyzer and water quality analysis method
US7943389B2 (en) Method for determining chlorine demand in water
JP2021013908A (en) Water quality measurement system
CN113242839B (en) Water treatment system and water treatment method
KR102642088B1 (en) Real-time sodium hypochlorite concentration measuring device using optical density of UV-A wavelength band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP