WO2022123740A1 - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
WO2022123740A1
WO2022123740A1 PCT/JP2020/046112 JP2020046112W WO2022123740A1 WO 2022123740 A1 WO2022123740 A1 WO 2022123740A1 JP 2020046112 W JP2020046112 W JP 2020046112W WO 2022123740 A1 WO2022123740 A1 WO 2022123740A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
wall portion
cutting tool
shaft portion
outer peripheral
Prior art date
Application number
PCT/JP2020/046112
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 小池
浩充 栗山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2020/046112 priority Critical patent/WO2022123740A1/en
Priority to JP2022537206A priority patent/JP7156581B1/en
Publication of WO2022123740A1 publication Critical patent/WO2022123740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C9/00Details or accessories so far as specially adapted to milling machines or cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Definitions

  • This disclosure relates to cutting tools.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-54611
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-285804
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2009-285804
  • Patent Document 4 International Publication No. 2017/002762
  • Patent Document 5 Patent No. 5988066
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2015-77658
  • Patent Document 8 European Patent Application Publication No. 3292929 (Patent Document 9) and European Patent Application Publication No. 32929930 (Patent Document 10)).
  • a cutting tool includes a shaft portion extending from a first end portion to a second end portion along a rotation axis, a sensor portion arranged so as to surround a part of the shaft portion in the longitudinal direction, and a sensor portion.
  • This cutting tool is a cutting tool that cuts a workpiece by rotating around the rotation axis of the shaft portion.
  • the sensor unit includes a sensor module and a case for accommodating the sensor module.
  • the sensor module transmits to the outside a sensor that detects the physical quantity of the shaft portion, a substrate that is electrically connected to the sensor, and a signal that is electrically connected to the substrate and contains information on the physical quantity detected by the sensor.
  • the case includes a holder that holds the sensor module.
  • FIG. 1 is a schematic perspective view showing the structure of a cutting tool.
  • FIG. 2 is a schematic perspective view showing the structure of the shaft portion.
  • FIG. 3 is a schematic perspective view showing the structure of the shaft portion as viewed from a viewpoint different from that of FIG. 2.
  • FIG. 4 is a schematic plan view showing the structure of the shaft portion as viewed from the first end side in the direction of the rotation axis.
  • FIG. 5 is a schematic plan view showing the structure of the shaft portion as viewed from the second end side in the direction of the rotation axis.
  • FIG. 6 is a schematic plan view showing the structure of the shaft portion as viewed in the direction perpendicular to the axial direction.
  • FIG. 7 is a schematic cross-sectional view showing a cross section along the line segment VII-VII of FIG.
  • FIG. 8 is a schematic cross-sectional view showing a state in which the substrate module is housed in the case.
  • FIG. 9 is a schematic perspective view showing the structure of the strain sensor component.
  • FIG. 10 is a schematic plan view showing the structure of the substrate module.
  • FIG. 11 is a schematic cross-sectional view showing a cross section taken along the line segment XI-XI of FIG.
  • FIG. 12 is a schematic plan view showing a state in which the substrate module is housed in the case.
  • FIG. 13 is a schematic perspective view showing the structure of the case body.
  • FIG. 14 is a schematic perspective view showing the structure of the first fixing member.
  • FIG. 15 is a schematic perspective view showing the structure of the second fixing member.
  • FIG. 16 is a schematic perspective view showing the structure of the lid (upper wall portion).
  • FIG. 17 is a schematic perspective view showing the structure of the holding portion.
  • FIG. 18 is a schematic plan view showing the structure of the substrate module when the substrate of the modified example is adopted.
  • FIG. 19 is a schematic cross-sectional view showing a cross section along the line segment XIX-XIX of FIG.
  • the cutting tool of the present disclosure includes a shaft portion extending from a first end portion to a second end portion along a rotation axis, and a sensor portion arranged so as to surround a part of the shaft portion in the longitudinal direction. ..
  • This cutting tool is a cutting tool that cuts a workpiece by rotating around the rotation axis of the shaft portion.
  • the sensor unit includes a sensor module and a case for accommodating the sensor module.
  • the sensor module transmits to the outside a sensor that detects the physical quantity of the shaft portion, a substrate that is electrically connected to the sensor, and a signal that is electrically connected to the substrate and contains information on the physical quantity detected by the sensor.
  • the case includes a holder that holds the sensor module.
  • the senor detects the physical quantity of the shaft portion, and the signal including the information of the physical quantity is transmitted to the outside by the wireless communication unit.
  • the sensor module including the sensor and the wireless communication unit, is held in an appropriate position by the holding unit included in the case. Therefore, according to the cutting tool of the present disclosure, it is possible to suppress deterioration of the rotational balance due to the adoption of the sensor unit including the sensor module and the case.
  • the first end portion may be the end portion on the side where the blade for cutting the workpiece is arranged.
  • the case has a cylindrical side wall that surrounds the outer peripheral surface of the shaft, a bottom wall that closes the opening of the side wall on the first end side of the shaft, and a side wall on the second end side of the shaft. It may include an upper wall portion that closes the opening of the.
  • a case having such a structure is suitable as a case for accommodating a sensor module.
  • the holding portion may be arranged on the bottom wall portion or the upper wall portion. With such a configuration, it becomes easy to hold the sensor module in an appropriate position by the holding portion.
  • the bottom wall portion may be made of metal. At least a part of the upper wall portion and the side wall portion may be made of resin. Chips of the workpiece are likely to collide with the bottom wall portion located on the first end side, which is the end on the side where the blade for cutting the workpiece is arranged. Since the bottom wall portion is made of metal, it becomes easy to ensure sufficient durability against collision of chips. On the other hand, since at least a part of the upper wall portion and the side wall portion is made of resin, the signal from the wireless communication unit can be easily transmitted to the outside.
  • the sensor module may further include a secondary battery that supplies power to the sensor and a charging port that is connected to the secondary battery and exposed to the outside on the side wall.
  • a secondary battery that supplies power to the sensor
  • a charging port that is connected to the secondary battery and exposed to the outside on the side wall.
  • the holding portion may include at least a pair of wall portions.
  • the holding portion may be held by sandwiching at least a part of the sensor module between the at least a pair of wall portions. This configuration makes it easy to hold the sensor module by the holding portion.
  • the sensor portion may further include an annular fixing member for fixing the case to the shaft portion.
  • the outer peripheral surface of the shaft portion surrounded by the sensor portion may have a first flat portion.
  • the inner peripheral surface of the fixing member may have a second flat portion facing the first flat portion in the radial direction of the shaft portion. It may be restricted that the sensor portion rotates relative to the shaft portion due to the contact between the first flat portion and the second flat portion. With this configuration, it becomes easy to install the sensor portion on the shaft portion while restricting the rotation of the sensor portion relative to the shaft portion.
  • the outer peripheral surface of the shaft portion surrounded by the sensor portion when viewed in the direction along the rotation axis may have a polygonal shape including the first flat portion.
  • the inner peripheral surface of the fixing member may have a portion corresponding to the polygonal shape, and the portion corresponding to the polygonal shape may be the second flat portion.
  • the case has a cylindrical side wall portion that surrounds the outer peripheral surface of the shaft portion, a bottom wall portion that closes the opening of the side wall portion on the first end side of the shaft portion, and a second end of the shaft portion. It may include an upper wall portion that closes the opening of the side wall portion on the portion side.
  • the fixing member may be fixed to the bottom wall portion or the upper wall portion. With this configuration, it becomes easier to install the sensor portion on the shaft portion while restricting the rotation of the sensor portion relative to the shaft portion.
  • the fixing member may be formed with a screw hole penetrating in the direction along the rotation axis.
  • the fixing member may be fixed to the bottom wall portion or the upper wall portion by screws.
  • the screw may penetrate the screw hole and enter the bottom wall portion or the upper wall portion. With this configuration, it becomes easier to install the sensor portion on the shaft portion.
  • a groove extending in the circumferential direction of the shaft portion may be formed on the outer peripheral surface of the shaft portion.
  • a part of the fixing member may be fitted in this groove.
  • the sensor module may be arranged so that the straight line passing through the rotation axis when viewed in the direction along the rotation axis is a perpendicular line to the portion of the surface of the substrate on which the wireless communication unit is mounted. ..
  • the sensor module may further include at least one component selected from the group consisting of AD converters, switches, connectors, variable resistors and battery holders mounted on the substrate.
  • the sensor module may be arranged so that the straight line passing through the axis of rotation when viewed in the direction along the axis of rotation is a perpendicular line to the portion of the surface of the substrate on which the at least one component is mounted.
  • FIG. 1 is a schematic perspective view showing the structure of a cutting tool.
  • the cutting tool 1 in the present embodiment includes a shaft portion 10 and a sensor portion 20.
  • the shaft portion 10 extends from the first end portion 10A to the second end portion 10B along the rotation axis A.
  • the sensor portion 20 is arranged so as to surround a part of the shaft portion 10 in the longitudinal direction.
  • the shaft portion 10 is formed with a plurality of (here, four) recesses 13 that open at the first end portion 10A and the outer peripheral surface at equal intervals in the circumferential direction.
  • a cutting tip 91 is attached to the wall surface defining the recess 13.
  • the work piece can be machined by rotating the cutting tool 1 around the rotation axis A and bringing the cutting tip 91 into contact with the work piece (not shown). That is, the cutting tool 1 is a cutting tool that cuts a workpiece by rotating around the rotation axis A of the shaft portion 10. (Structure of shaft part)
  • FIG. 2 is a schematic perspective view showing the structure of the shaft portion as seen from the second end portion 10B side.
  • FIG. 3 is a schematic perspective view showing the structure of the shaft portion as seen from the side of the first end portion 10A.
  • FIG. 4 is a schematic plan view showing the structure of the shaft portion as viewed from the first end side in the direction of the rotation axis.
  • FIG. 5 is a schematic plan view showing the structure of the shaft portion as viewed from the second end side in the direction of the rotation axis.
  • FIG. 6 is a schematic plan view showing the structure of the shaft portion as viewed in the direction perpendicular to the axial direction.
  • FIG. 7 is a schematic cross-sectional view showing a cross section along the line segment VII-VII of FIG. The structure of the shaft portion 10 will be described with reference to FIGS. 2 to 7.
  • the shaft portion 10 includes a main body portion 11 and a diameter-expanded portion 12 as a first region.
  • the main body 11 has a cylindrical shape.
  • the rotation axis A coincides with the central axis of the main body 11.
  • the enlarged diameter portion 12 is a portion having a larger diameter than the main body portion 11.
  • the position of the enlarged diameter portion 12 in the longitudinal direction of the main body portion 11 is not particularly limited, but in the present embodiment, it is arranged in the central portion in the longitudinal direction of the main body portion 11.
  • the enlarged diameter portion 12 is arranged in a region of the shaft portion 10 surrounded by the sensor portion 20.
  • the cutting tip 91 is attached to the wall surface defining the recess 13 of the shaft portion 10.
  • the cutting tip 91 is fixed to the shaft portion 10 by inserting a screw 92 into a screw hole formed in the cutting tip 91 and tightening the screw 92.
  • the enlarged diameter portion 12 has an octagonal columnar shape.
  • the enlarged diameter portion 12 has an octagonal shape when viewed in a direction along the rotation axis A. More specifically, the enlarged diameter portion 12 has an octagonal shape in which four right-angled isosceles triangles having the same shape are removed from each of the four square portions in the cross section perpendicular to the rotation axis A. ing.
  • the axis of rotation A passes through the center of gravity of this octagon.
  • the shape of this octagon is the same in the direction along the rotation axis A.
  • the central axis of the main body portion 11 and the central axis of the enlarged diameter portion 12 coincide with each other.
  • the central axis of the enlarged diameter portion 12 means a straight line passing through the center of gravity of the octagon.
  • the octagon when viewed in the direction along the axis of rotation A, has an outer peripheral surface 12A corresponding to the alternately arranged long sides and an outer circumference corresponding to a short side shorter than the long side. It is composed of a surface 12B.
  • the angles ⁇ formed by the perpendicular lines LA and LB passing through the rotation axis A on the outer peripheral surfaces 12A and 12B of the enlarged diameter portions 12 corresponding to the sides of the octagons adjacent to each other in the circumferential direction are equal to each other. Specifically, the angle ⁇ is 45 °.
  • the octagonal shape is not limited to the above shape, and the outer peripheral surface 12A and the outer peripheral surface 12B may have the same length when viewed in the direction along the rotation axis A.
  • each outer peripheral surface 12B is formed with a first recess 16 extending in a direction along the rotation axis A.
  • the bottom surface 16A defining the first recess 16 is a flat surface.
  • the first recess 16 is arranged at a position intersecting the perpendicular line LB.
  • the first recess 16 penetrates the outer peripheral surface 12B in the direction along the rotation axis A.
  • Second recesses 15 extending in the circumferential direction of the enlarged diameter portion 12 are formed on the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12.
  • the second recess 15 is formed so as to overlap the first recess 16.
  • the second recess 15 intersects (orthogonally) the first recess 16.
  • the second recess 15 is formed over the entire circumference of the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12. That is, the second recess 15 is formed in an annular shape.
  • the depth d 2 of the second recess 15 is larger than the depth d 1 of the first recess 16.
  • a first small diameter portion 11A having a smaller diameter than the other portions is formed at the boundary portion of the main body portion 11 with the enlarged diameter portion 12 on the first end portion 10A side.
  • a second small diameter portion 11B having a smaller diameter than the other portions is formed at the boundary portion of the main body portion 11 with the enlarged diameter portion 12 on the second end portion 10B side.
  • the shaft portion 10 is formed with a through hole 10C that penetrates the shaft portion 10 in the direction along the rotation axis A.
  • the through hole 10C extends so as to include the rotation axis A.
  • the sensor unit 20 includes a sensor module 80, a case 21 for accommodating the sensor module 80, and a resin filler 93 filled inside the case 21.
  • the case 21 has a cylindrical side wall portion 23 that surrounds the outer peripheral surface of the shaft portion 10, a bottom wall portion 24 that closes the opening of the side wall portion 23 on the first end portion 10A side of the shaft portion 10, and a first shaft portion 10. 2 includes an upper wall portion 22 that closes the opening of the side wall portion 23 on the end portion 10B side.
  • the sensor module 80 includes a plurality of strain sensors 31 as a plurality of first sensors, a substrate 49 electrically connected to the strain sensor 31, and a wireless communication unit 51 electrically connected to the substrate 49 (FIG. 10, FIG. FIG. 11), a secondary battery 98 that supplies power to the strain sensor 31, and a charging port 99 that is connected to the secondary battery 98 and is exposed to the outside on the outer peripheral surface of the case 21.
  • the secondary battery 98 and the substrate 49 (circuit pattern on the substrate 49) are electrically connected by the wiring 98B.
  • the secondary battery 98 and the charging port 99 are electrically connected by wiring 98A.
  • the strain sensor 31 detects the strain of the shaft portion 10 as a first physical quantity.
  • the wireless communication unit 51 transmits a signal including strain information detected by the strain sensor 31 to the outside.
  • the strain sensor 31 constitutes the strain sensor component 30.
  • the strain sensor component 30 includes a strain sensor 31 and a wiring 32 connected to the strain sensor 31 and having a connector 33 at its tip.
  • the wiring 32 has a strip-shaped shape.
  • the strain sensor 31 is arranged near one end of the wiring 32.
  • a connector 33 is arranged at the other end of the wiring 32.
  • the substrate 49 constitutes the substrate module 40.
  • the substrate 49 includes a substrate main body made of an insulator such as resin, and a circuit pattern (not shown) made of a conductor such as copper formed on the surface of the substrate main body.
  • the board module 40 includes a board 49, a wireless communication unit 51, an acceleration sensor 52 as a second sensor, a socket 53, and an AD converter 54.
  • the wireless communication unit 51, the acceleration sensor 52, the socket 53, and the AD converter 54 are arranged on one main surface of the substrate 49 and are electrically connected to the substrate 49 (circuit pattern of the substrate 49).
  • the acceleration sensor 52 detects the acceleration of the shaft portion 10 as a second physical quantity.
  • a plurality of acceleration sensors 52 are arranged on the substrate 49.
  • the wireless communication unit 51 is electrically connected to the acceleration sensor 52 via the substrate 49.
  • the wireless communication unit 51 transmits a signal including information on the acceleration of the shaft unit 10 detected by the acceleration sensor 52 to the outside.
  • the board 49 is a rigid board.
  • the substrate 49 has a strip-shaped shape.
  • the substrate 49 includes a first zone 41, a second zone 42, a third zone 43, a fourth zone 44, a fifth zone 45, a sixth zone 46, a seventh zone 47 and an eighth zone 48.
  • the first area 41 to the eighth area 48 are arranged in this order in the longitudinal direction of the substrate 49.
  • the wireless communication unit 51 and the acceleration sensor 52 are mounted on the first area 41.
  • a socket 53 is mounted in the second area 42.
  • An acceleration sensor 52 is mounted in the third area 43.
  • a socket 53 is mounted in the fourth area 44.
  • An acceleration sensor 52 and an AD converter 54 are mounted in the fifth area 45.
  • a socket 53 is mounted in the sixth area 46.
  • An acceleration sensor 52 is mounted in the seventh area 47.
  • a socket 53 is mounted in the eighth area 48.
  • a bendable region 49A having a thickness smaller than that of other portions is formed between the adjacent first region 41 to eighth region 48.
  • the bendable region 49A is a groove connecting both ends of the substrate 49 in the width direction (direction perpendicular to the longitudinal direction).
  • the first area 41 is a second area in which the wireless communication unit 51 is mounted.
  • the fifth area 45 is a third area in which the AD converter 54 is mounted.
  • the bendable region 49A is a fourth region having a smaller thickness than the second region and the third region.
  • the lengths of the first area 41, the third area 43, the fifth area 45, and the seventh area 47 in the longitudinal direction of the substrate 49 are the long sides of the octagon when the enlarged diameter portion 12 is viewed in the direction along the rotation axis A.
  • the length of the outer peripheral surface 12A is extended by a constant ratio ⁇ .
  • the lengths of the second area 42, the fourth area 44, the sixth area 46, and the eighth area 48 in the longitudinal direction of the substrate 49 are the short sides of the octagon when the enlarged diameter portion 12 is viewed in the direction along the rotation axis A.
  • the length of the outer peripheral surface 12B is extended by the above-mentioned constant ratio ⁇ .
  • the case 21 includes a case body 61, a first fixing member 63, a second fixing member 65, a lid 22, and a holding portion 81.
  • the case body 61 includes a disk-shaped bottom wall portion 24 having a through hole 61A in the center, and a side wall portion 23 rising from the outer periphery of the bottom wall portion 24 and having a cylindrical shape.
  • the bottom wall portion 24 is formed with a plurality of (here, eight) screw holes 62 penetrating the bottom wall portion 24 in the thickness direction at equal intervals in the circumferential direction.
  • the material constituting the case body 61 is, for example, metal. Examples of the metal that can be adopted include aluminum alloys and iron alloys (steel such as stainless steel).
  • the first fixing member 63 and the second fixing member 65 form an annular fixing member 67 that fixes the case 21 to the shaft portion 10.
  • the first fixing member 63 has an annular flat plate shape divided into two.
  • the first fixing member 63 has a plurality of screw holes 64 in the circumferential direction (here, the first fixing member 63 is divided into two) so as to correspond to the screw holes 62 of the bottom wall portion 24 of the case body 61. 8 pieces in total) are formed at equal intervals.
  • the inner peripheral surface 63A of the first fixing member 63 has a shape corresponding to the first small diameter portion 11A of the shaft portion 10. In a state where the two first fixing members 63 are combined to form an annular shape, the diameter of the inner peripheral surface 63A is the same as or slightly larger than the diameter of the first small diameter portion 11A.
  • the material constituting the first fixing member 63 is, for example, metal. Examples of the metal that can be adopted include aluminum alloys and iron alloys (steel such as stainless steel).
  • the second fixing member 65 is a component having a flat plate arc shape.
  • the case 21 includes two second fixing members 65.
  • the inner peripheral surface 65A of each second fixing member 65 has a shape corresponding to a part of the planar shape of the outer peripheral surface of the enlarged diameter portion 12, that is, a shape corresponding to a part of an octagon.
  • the second fixing member 65 has a plurality of screw holes 66 (here, each second fixing) so as to correspond to the screw holes 62 of the bottom wall portion 24 of the case body 61 and the screw holes 64 of the first fixing member 63. (Two for each member 65) are formed.
  • the material constituting the second fixing member 65 is, for example, resin.
  • the lid (upper wall portion) 22 has a disk-shaped shape having a through hole 22A in the center.
  • the material constituting the lid 22 is, for example, resin.
  • the holding portion 81 is formed from a bottom wall portion 82 having a flat plate annular shape, an annular outer peripheral wall 84 rising from the outer periphery of the bottom wall portion 82, and an inner circumference of the bottom wall portion 82. It includes a rising annular inner peripheral wall 83 and a battery holding portion 85 connected to the inner peripheral side of the inner peripheral wall 83.
  • the inner peripheral wall 83 extends along the outer peripheral wall 84. The distance between the inner peripheral wall 83 and the outer peripheral wall 84 is substantially constant over the entire circumference.
  • the gap between the inner peripheral wall 83 and the outer peripheral wall 84 has an octagonal shape in which the enlarged diameter portion 12 is viewed in the direction along the rotation axis A and is enlarged at a constant rate. is doing.
  • the gap between the inner peripheral wall 83 and the outer peripheral wall 84 corresponds to the lengths of the first zone 41, the third zone 43, the fifth zone 45, and the seventh zone 47 in the longitudinal direction of the substrate 49. It has an octagonal shape in which the long sides of the length corresponding to the second area 42, the fourth area 44, the sixth area 46, and the eighth area 48 are alternately arranged. There is.
  • the distance between the inner peripheral wall 83 and the outer peripheral wall 84 is the same as the thickness of the substrate module 40 or slightly larger than the thickness of the substrate module 40.
  • the holding portion 81 has a shape that allows the outer peripheral wall 84 to be arranged inside the case main body 61 so as to be along the inner circumference of the side wall portion 23 of the case main body 61.
  • the strain sensor component 30 is arranged so that the strain sensor 31 straddles the second recess 15 and the strain sensor 31 is housed in the first recess 16 (see FIGS. 2, 4, 8, etc.).
  • the strain sensor component 30 is installed on each of the four outer peripheral surfaces 12B.
  • the strain sensor 31 forms 90 ° with each other in the vertical lines LB passing through the rotation axis A on the outer peripheral surface of the enlarged diameter portion 12 corresponding to each side of the octagon. It is arranged on all of the outer peripheral surfaces 12B (outer peripheral surfaces corresponding to the short sides) of the enlarged diameter portion 12.
  • the case 21 can be installed in a state where the strain sensor component 30 is installed on the shaft portion 10.
  • the holding portion 81 is arranged inside the case main body 61 so that the outer peripheral wall 84 is along the inner circumference of the side wall portion 23 of the case main body 61.
  • the case body 61 is arranged so that the body portion 11 of the shaft portion 10 penetrates the through hole 61A of the bottom wall portion 24 of the case body 61.
  • the first fixing member 63 is fitted into the first small diameter portion 11A so that the inner peripheral surface 63A comes into contact with the bottom wall of the first small diameter portion 11A of the main body portion 11 in a state of being arranged on the bottom wall portion 24. ..
  • the first fixing member 63 constituting the fixing member 67 is fitted into the first small diameter portion 11A which is a groove formed so as to extend in the circumferential direction on the outer peripheral surface of the shaft portion 10.
  • the sensor unit 20 is positioned with respect to the shaft unit 10 in the direction along the rotation axis A.
  • the second fixing member 65 is arranged so that the inner peripheral surface 65A comes into contact with the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12 in a state of being arranged on the first fixing member 63. Then, the case body 61 and the first fixing member 63 are formed by the screw 69 that penetrates the screw hole 66 of the second fixing member 65 and the screw hole 64 of the first fixing member 63 and reaches the screw hole 62 of the bottom wall portion 24. And the second fixing member 65 are fixed to each other. At this time, since the inner diameter of the first fixing member 63 corresponds to the outer diameter of the first small diameter portion 11A, the central axis of the case body 61 and the rotation axis A coincide with each other.
  • the inner peripheral surface 65A of the second fixing member 65 has a shape corresponding to a part of the planar shape of the outer peripheral surface of the enlarged diameter portion 12 (a shape corresponding to a part of the octagon), the case main body.
  • the rotation of the 61 in the circumferential direction relative to the shaft portion 10 is hindered. That is, the inner peripheral surface 65A of the second fixing member 65 constituting the fixing member 67 corresponds to the second flat portion (corresponding to the octagonal side) facing the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12 as the first flat portion.
  • the area to be used is included.
  • the sensor portion 20 rotates relative to the shaft portion 10 due to the contact between the outer peripheral surfaces 12A and 12B which are the first flat portions and the flat regions of the inner peripheral surfaces 65A which are the second flat portions. It is regulated.
  • the main surface on the board 49 on which the wireless communication unit 51, the acceleration sensor 52, the socket 53, the AD converter 54, etc. are mounted is the outer peripheral surface of the enlarged diameter portion 12. It is held by the holding portion 81 by being inserted between the inner peripheral wall 83 and the outer peripheral wall 84 of the holding portion 81 so as to face the 12A and 12B. That is, the holding portion 81 is held by sandwiching the sensor module 80 between the inner peripheral wall 83 and the outer peripheral wall 84, which are a pair of wall portions.
  • the first area 41, the third area 43, the fifth area 45 and the seventh area 47 are arranged so as to face the outer peripheral surface 12A, and the second area 42, the fourth area 44, the sixth area 46 and the eighth area are arranged.
  • the area 48 is arranged so as to face the outer peripheral surface 12B.
  • the substrate 49 bends in the bendable region 49A, which is a groove connecting both ends in the direction along the rotation axis A (a groove connecting both ends in the width direction).
  • the substrate 49 when viewed in the direction along the rotation axis A, the substrate 49 is arranged so as to surround the outer peripheral surfaces 12A and 12B at intervals from the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12.
  • the socket 53 is arranged on the main surface of the substrate 49 facing the outer peripheral surface 12B.
  • the connector 33 located at the end of the wiring 32 connected to the strain sensor 31 is connected to the socket 53.
  • the substrate 49 and the strain sensor 31 are electrically connected.
  • the wiring 32 is in a state of being warped in an arch shape. That is, the wiring 32 connects the strain sensor 31 and the socket 53 with slack.
  • the secondary battery 98 is held by the battery holding portion 85 of the holding portion 81.
  • the straight line passing through the rotation axis A is a perpendicular line LA with respect to the portion of the surface of the substrate 49 on which the wireless communication unit 51 and the AD converter 54 are mounted.
  • the sensor module 80 is arranged. Further, the sensor module 80 is arranged so that the straight line passing through the rotation axis A is a perpendicular line LB with respect to the portion of the surface of the substrate 49 on which the socket 53 (connector) is mounted.
  • the accelerometer 52 is arranged on the first area 41, the third area 43, the fifth area 45, and the seventh area 47 of the substrate 49. Therefore, when the substrate module 40 is held by the holding portion 81 as described above, the acceleration sensor 52 is viewed in the direction along the rotation axis A, and the acceleration sensor 52 is the outer peripheral surface of the enlarged diameter portion 12 corresponding to each side of the octagon. Of these, the vertical lines LA passing through the rotation axis A are arranged at positions facing the outer peripheral surface 12A (outer peripheral surface corresponding to the long side) of the enlarged diameter portion 12 forming 90 ° with each other.
  • the acceleration sensor 52 and the strain sensor 31 are arranged at the same position in the direction along the rotation axis A. By doing so, it is possible to reduce the axial length required for installing the sensor. As a result, the sensor unit 20 can be made smaller.
  • the state in which the acceleration sensor 52 and the strain sensor 31 are arranged at the same position in the direction along the rotation axis A is the state in the direction along the rotation axis A with reference to FIGS. 8 and 10.
  • the measurement range a of the acceleration sensor 52 specifically, the range in which the electric resistance wiring for detecting acceleration is arranged
  • the measurement range b of the strain sensor 31 specifically, the electric resistance wiring for detecting strain.
  • the positional relationship between the acceleration sensor 52 and the strain sensor 31 in the direction along the rotation axis A may be changed in consideration of the ease of detecting acceleration and strain.
  • the strain sensor 31 may be arranged at a position farther from the first end 10A than the acceleration sensor 52 (the side far from the cutting tip 91; the upper side in FIG. 8).
  • the strain of the shaft portion 10 caused by the cutting process increases as the distance from the cutting tip increases.
  • the acceleration of the shaft portion 10 generated by the cutting process increases at a position closer to the cutting tip.
  • the strain sensor 31 may be arranged at a position closer to the first end 10A than the acceleration sensor 52 (the side closer to the cutting tip 91; the lower side in FIG. 8). If the shaft portion 10 is long, the strain of the shaft portion 10 at the position where the strain sensor 31 is arranged may become too large in the above arrangement. In such a case, by arranging the strain sensor 31 at a position closer to the first end 10A than the acceleration sensor 52, the strain sensor 31 detects the magnitude of the strain at the position where the strain sensor 31 is arranged. It can be in a range that is easy to do.
  • the strain sensor 31 includes a temperature sensor. That is, in the present embodiment, as the strain sensor 31, a sensor in which the strain sensor 31 and the temperature sensor are integrated is adopted.
  • the temperature sensor does not necessarily have to be integrated with the strain sensor 31, and may be a separate body.
  • the temperature sensor is arranged at the same position as the strain sensor 31 in the direction along the rotation axis A. More specifically, with reference to FIGS. 8 and 12, the temperature sensor corresponds to the measurement range b of the strain sensor 31 in the direction along the rotation axis A among the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12.
  • the temperature sensor is not essential in the cutting tool of the present disclosure, by adopting the temperature sensor, the measurement range of the strain sensor 31 in the position where the strain sensor 31 is installed or in the outer peripheral surfaces 12A and 12B of the diameter-expanded portion 12 The temperature in the region corresponding to b can be detected. Based on the temperature detected by the temperature sensor, the thermal strain is calculated in the region corresponding to the measurement range b of the strain sensor 31 among the outer peripheral surfaces 12A and 12B of the position where the strain sensor 31 is installed or the enlarged diameter portion 12. be able to. Thermal strain is the product of temperature change and coefficient of linear expansion. By correcting the strain detected by the strain sensor 31 based on the thermal strain, the strain generated by cutting can be grasped more accurately.
  • the resin filler 93 is filled inside the case body 61.
  • the sensor module 80 is fixed to the case body 61.
  • the lid (upper wall portion) 22 is placed on the end surface of the side wall portion 23 and the end surface of the diameter-expanded portion 12, and is fixed to the diameter-expanded portion 12 by, for example, a screw.
  • the case 21 is fixed to the shaft portion 10 in a state where the sensor module 80 is housed inside.
  • the cutting tool 1 rotates around the rotation axis A. Then, when the cutting tip 91 comes into contact with the workpiece, the workpiece is machined. At this time, the strain and acceleration of the shaft portion 10 are detected by the strain sensor 31 and the acceleration sensor 52, respectively. The strain and acceleration information, which is an analog signal, is converted into a digital signal by the AD converter 54 and then transmitted to the outside by the wireless communication unit 51.
  • the wireless communication unit 51 can transmit a signal to the outside through the lid (upper wall portion) 22. By receiving and analyzing this signal externally, the state of the shaft portion 10 in the plane perpendicular to the rotation axis is grasped. (Effect of this embodiment)
  • the strain sensor 31 (including the temperature sensor) and the acceleration sensor 52 detect the strain, temperature and acceleration of the shaft portion 10, and the signal including these information is the wireless communication unit 51. Is sent to the outside by.
  • the sensor module 80 including the sensors (strain sensor 31 and acceleration sensor 52) and the wireless communication unit 51 is held in an appropriate position by the holding unit 81 included in the case 21. Therefore, the cutting tool 1 of the present embodiment is a cutting tool 1 in which deterioration of the rotation balance is suppressed due to the adoption of the sensor unit 20 including the sensor module 80 and the case 21.
  • the case 21 has a bottom wall that closes the opening of the cylindrical side wall portion 23 that surrounds the outer peripheral surface of the shaft portion 10 and the side wall portion 23 on the first end portion 10A side of the shaft portion 10.
  • a portion 24 and an upper wall portion 22 that closes the opening of the side wall portion on the second end portion 10B side of the shaft portion 10 are included.
  • the holding portion 81 is arranged on the bottom wall portion 24. As a result, the holding portion 81 makes it easy to hold the sensor module 80 in an appropriate position.
  • the bottom wall portion 24 is made of metal.
  • the upper wall portion 22 is made of resin. Since the bottom wall portion 24 is made of metal, it is easy to ensure sufficient durability against collision of chips. Since the upper wall portion 22 is made of resin, it is easy to transmit the signal from the wireless communication unit 51 to the outside.
  • the sensor module 80 is connected to the secondary battery 98 that supplies power to the sensors (strain sensor 31 and the acceleration sensor 52) and the secondary battery 98, and is exposed to the outside at the side wall portion 23. Includes a charging port 99 and a charging port 99. As a result, power can be supplied to the sensor from the secondary battery 98 arranged inside the case 21. Further, by arranging the charging port 99 so as to be exposed to the outside on the side wall portion 23, it is suppressed that chips collide with the charging port 99.
  • the holding portion 81 includes a pair of wall portions, an inner peripheral wall 83 and an outer peripheral wall 84.
  • the holding portion 81 holds a part of the sensor module 80 by sandwiching it between the inner peripheral wall 83 and the outer peripheral wall 84. As a result, it is easy to hold the sensor module 80 by the holding portion 81.
  • the fixing member 67 is fixed to the bottom wall portion 24. As a result, it is easier to install the sensor unit 20 on the shaft unit 10 while restricting the rotation of the sensor unit 20 relative to the shaft unit 10.
  • the fixing member 67 is formed with screw holes 64 and 66 penetrating in the direction along the rotation axis A.
  • the fixing member 67 is fixed to the bottom wall portion 24 by a screw 69.
  • the screw 69 penetrates the screw holes 64 and 66 and enters the bottom wall portion 24. As a result, it is easier to install the sensor unit 20 on the shaft unit 10. (Modification example of board)
  • the substrate 49 of the above-described embodiment which is a rigid substrate
  • the substrate 49 of the following modified example may be adopted.
  • the substrate 49 of the present modification is arranged at least in the main body 49B which is a flexible substrate and the first area 41 and the fifth area 45 as the second and third regions. It includes a reinforcing plate 72 having a Young's modulus larger than that of the main body 49B.
  • the reinforcing plate 72 is arranged in the first area 41, the third area 43, the fifth area 45, and the seventh area 47.
  • the strain sensor 31 and the acceleration sensor 52 are adopted as the first sensor and the second sensor, respectively.
  • the acceleration sensor 52 as the second sensor may be omitted.
  • the strain sensor 31 may be omitted and only the acceleration sensor 52 may be adopted.
  • the first sensor may be an acceleration sensor.
  • a sensor that detects physical quantities other than strain and acceleration may be adopted in place of one or both of the strain sensor 31 and the acceleration sensor 52, or may be adopted in addition to these.
  • the end mill has been described as an example of the cutting tool of the present disclosure, but the cutting tool of the present disclosure is not limited to this.
  • the cutting tool of the present disclosure may be, for example, a drill, a milling cutter, a boring, a reamer, a tap, or the like.
  • the planar shape of the enlarged diameter portion may be a 4n square (n is a natural number of 2 or more), and may be, for example, a dodecagon, a hexadecagon, or an icosagon.
  • the strain sensor 31 has an enlarged diameter portion in which the vertical lines passing through the rotation axis A of the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12 corresponding to each side of the octagon form 90 ° with each other.
  • the strain sensors may be arranged on at least two surfaces. More generally, of the outer peripheral surfaces of the first region (expanded portion) corresponding to each side of the 4n square, the rotation axis is related to the first outer peripheral surface and the first outer peripheral surface.
  • a total of three outer peripheral surfaces are set as a set of outer peripheral surfaces, and strain sensors are arranged on each of the set of outer peripheral surfaces.
  • a plurality of the outer peripheral surfaces of the above set may exist.
  • the strain sensor is arranged on each of the outer peripheral surfaces of each set including the two outer peripheral surfaces or the three outer peripheral surfaces. That is, the strain sensors are arranged on a maximum of six outer peripheral surfaces. There is no angle limit between the two sets of perimeter surfaces.
  • first fixing member 63 and the second fixing member 65 are separate bodies.
  • first fixing member 63 and the second fixing member 65 may be integrated.
  • first fixing member 63 and the second fixing member 65 may be an integral metal member.
  • the filler 93 is not an essential configuration and may be omitted if, for example, the sensor module 80 is sufficiently firmly held by the holding portion 81.
  • the holding portion 81 and the fixing member 67 are fixed to the bottom wall 24
  • one or both of the holding portion 81 and the fixing member 67 are fixed to the upper wall portion 22. It may be fixed.
  • the side wall portion 23 is made of metal and the upper wall portion 22 is made of resin has been described.
  • the upper wall portion 22 may be made of metal, and at least a part of the side wall portion 23 may be made of resin.
  • the sensor module 80 may further include at least one component of a switch, a variable resistor and a battery holder mounted on the substrate 49.
  • the sensor module 80 is such that the straight line passing through the rotation axis A when viewed in the direction along the rotation axis A is a perpendicular line LA or a perpendicular line LB with respect to the portion of the surface of the substrate 49 on which the above component is mounted. Is preferably placed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This cutting tool comprises a shaft part extending from a first end section to a second end section along a rotational axis, and a sensor unit disposed so as to surround one long-axis-direction portion of the shaft part. The cutting tool rotates about the rotational axis of the shaft part, thereby cutting a workpiece. The sensor unit includes a sensor module, and a case that accommodates the sensor module. The sensor module includes: a sensor that detects a physical quantity pertaining to the shaft part; a substrate that is electrically connected to the sensor; and a wireless communication unit that is electrically connected to the substrate and that transmits, to the outside, signals including information about the physical quantity detected by the sensor. The case includes a retaining part that retains the sensor module.

Description

切削工具Cutting tools
 本開示は、切削工具に関するものである。 This disclosure relates to cutting tools.
 切削工具による加工中に、センサによって切削工具の物理量を測定することにより、切削工具の状態を把握する技術が知られている(たとえば、米国特許出願公開第2015/0261207号(特許文献1)、特開2018-54611号公報(特許文献2)、特開2009-285804号公報(特許文献3)、国際公開第2017/002762号(特許文献4)、特許第5988066号(特許文献5)、実用新案登録第3170029号(特許文献6)、特開2015-77658号公報(特許文献7)、国際公開第2015/056495号(特許文献8)、欧州特許出願公開第3292929号(特許文献9)および欧州特許出願公開第3292930号(特許文献10)参照)。 A technique for grasping the state of a cutting tool by measuring the physical amount of the cutting tool with a sensor during machining with the cutting tool is known (for example, US Patent Application Publication No. 2015/0261207 (Patent Document 1), Japanese Patent Application Laid-Open No. 2018-54611 (Patent Document 2), Japanese Patent Application Laid-Open No. 2009-285804 (Patent Document 3), International Publication No. 2017/002762 (Patent Document 4), Patent No. 5988066 (Patent Document 5), Practical use. New Document Registration No. 3170029 (Patent Document 6), Japanese Patent Application Laid-Open No. 2015-77658 (Patent Document 7), International Publication No. 2015-056495 (Patent Document 8), European Patent Application Publication No. 3292929 (Patent Document 9) and European Patent Application Publication No. 32929930 (Patent Document 10)).
米国特許出願公開第2015/0261207号U.S. Patent Application Publication No. 2015/0261207 特開2018-54611号公報Japanese Unexamined Patent Publication No. 2018-54611 特開2009-285804号公報Japanese Unexamined Patent Publication No. 2009-285804 国際公開第2017/002762号International Publication No. 2017/002762 特開2016-221665号公報Japanese Unexamined Patent Publication No. 2016-221665 実用新案登録第3170029号Utility model registration No. 3170029 特開2015-77658号公報JP-A-2015-77658 国際公開第2015/056495号International Publication No. 2015-056495 欧州特許出願公開第3292929号European Patent Application Publication No. 3292929 欧州特許出願公開第3292930号European Patent Application Publication No. 32929930
 本開示に従った切削工具は、回転軸に沿って第1の端部から第2の端部まで延びるシャフト部と、シャフト部の長手方向の一部を取り囲むように配置されるセンサ部と、を備える。この切削工具は、シャフト部の回転軸まわりに回転することによって、被加工物を切削する切削工具である。センサ部は、センサモジュールと、センサモジュールを収容するケースと、を含む。センサモジュールは、シャフト部の物理量を検知するセンサと、センサに電気的に接続される基板と、基板に電気的に接続され、センサが検知した上記物理量の情報を含む信号を外部へと送信する無線通信部と、を含む。ケースは、センサモジュールを保持する保持部を含む。 A cutting tool according to the present disclosure includes a shaft portion extending from a first end portion to a second end portion along a rotation axis, a sensor portion arranged so as to surround a part of the shaft portion in the longitudinal direction, and a sensor portion. To prepare for. This cutting tool is a cutting tool that cuts a workpiece by rotating around the rotation axis of the shaft portion. The sensor unit includes a sensor module and a case for accommodating the sensor module. The sensor module transmits to the outside a sensor that detects the physical quantity of the shaft portion, a substrate that is electrically connected to the sensor, and a signal that is electrically connected to the substrate and contains information on the physical quantity detected by the sensor. Including the wireless communication unit. The case includes a holder that holds the sensor module.
図1は、切削工具の構造を示す概略斜視図である。FIG. 1 is a schematic perspective view showing the structure of a cutting tool. 図2は、シャフト部の構造を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the structure of the shaft portion. 図3は、図2とは異なる視点から見たシャフト部の構造を示す概略斜視図である。FIG. 3 is a schematic perspective view showing the structure of the shaft portion as viewed from a viewpoint different from that of FIG. 2. 図4は、第1の端部側から回転軸方向に見たシャフト部の構造を示す概略平面図である。FIG. 4 is a schematic plan view showing the structure of the shaft portion as viewed from the first end side in the direction of the rotation axis. 図5は、第2の端部側から回転軸方向に見たシャフト部の構造を示す概略平面図である。FIG. 5 is a schematic plan view showing the structure of the shaft portion as viewed from the second end side in the direction of the rotation axis. 図6は、軸方向に垂直な方向に見たシャフト部の構造を示す概略平面図である。FIG. 6 is a schematic plan view showing the structure of the shaft portion as viewed in the direction perpendicular to the axial direction. 図7は、図5の線分VII-VIIに沿う断面を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing a cross section along the line segment VII-VII of FIG. 図8は、ケースに基板モジュールが収容された状態を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a state in which the substrate module is housed in the case. 図9は、ひずみセンサ部品の構造を示す概略斜視図である。FIG. 9 is a schematic perspective view showing the structure of the strain sensor component. 図10は、基板モジュールの構造を示す概略平面図である。FIG. 10 is a schematic plan view showing the structure of the substrate module. 図11は、図10の線分XI-XIに沿う断面を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a cross section taken along the line segment XI-XI of FIG. 図12は、ケースに基板モジュールが収容された状態を示す概略平面図である。FIG. 12 is a schematic plan view showing a state in which the substrate module is housed in the case. 図13は、ケース本体の構造を示す概略斜視図である。FIG. 13 is a schematic perspective view showing the structure of the case body. 図14は、第1固定部材の構造を示す概略斜視図である。FIG. 14 is a schematic perspective view showing the structure of the first fixing member. 図15は、第2固定部材の構造を示す概略斜視図である。FIG. 15 is a schematic perspective view showing the structure of the second fixing member. 図16は、蓋(上壁部)の構造を示す概略斜視図である。FIG. 16 is a schematic perspective view showing the structure of the lid (upper wall portion). 図17は、保持部の構造を示す概略斜視図である。FIG. 17 is a schematic perspective view showing the structure of the holding portion. 図18は、変形例の基板を採用した場合の基板モジュールの構造を示す概略平面図である。FIG. 18 is a schematic plan view showing the structure of the substrate module when the substrate of the modified example is adopted. 図19は、図18の線分XIX-XIXに沿う断面を示す概略断面図である。FIG. 19 is a schematic cross-sectional view showing a cross section along the line segment XIX-XIX of FIG.
 [本開示が解決しようとする課題]
 センサ部を採用することにより切削工具の回転のバランスが悪化すると、切削工具の加工精度や耐久性が低下する恐れがある。センサ部の採用による回転のバランスの悪化を抑制することが可能な切削工具を提供することが、本開示の目的の1つである。
 [本開示の効果]
[Problems to be solved by this disclosure]
If the balance of rotation of the cutting tool deteriorates due to the adoption of the sensor unit, the machining accuracy and durability of the cutting tool may decrease. It is one of the objects of the present disclosure to provide a cutting tool capable of suppressing deterioration of the rotation balance due to the adoption of the sensor unit.
[Effect of this disclosure]
 本開示の切削工具によれば、センサ部の採用による回転のバランスの悪化を抑制することができる。
 [本開示の実施形態の説明]
According to the cutting tool of the present disclosure, it is possible to suppress deterioration of the rotational balance due to the adoption of the sensor unit.
[Explanation of Embodiments of the present disclosure]
 最初に本開示の実施態様を列記して説明する。本開示の切削工具は、回転軸に沿って第1の端部から第2の端部まで延びるシャフト部と、シャフト部の長手方向の一部を取り囲むように配置されるセンサ部と、を備える。この切削工具は、シャフト部の回転軸まわりに回転することによって、被加工物を切削する切削工具である。センサ部は、センサモジュールと、センサモジュールを収容するケースと、を含む。センサモジュールは、シャフト部の物理量を検知するセンサと、センサに電気的に接続される基板と、基板に電気的に接続され、センサが検知した上記物理量の情報を含む信号を外部へと送信する無線通信部と、を含む。ケースは、センサモジュールを保持する保持部を含む。 First, the embodiments of the present disclosure will be listed and described. The cutting tool of the present disclosure includes a shaft portion extending from a first end portion to a second end portion along a rotation axis, and a sensor portion arranged so as to surround a part of the shaft portion in the longitudinal direction. .. This cutting tool is a cutting tool that cuts a workpiece by rotating around the rotation axis of the shaft portion. The sensor unit includes a sensor module and a case for accommodating the sensor module. The sensor module transmits to the outside a sensor that detects the physical quantity of the shaft portion, a substrate that is electrically connected to the sensor, and a signal that is electrically connected to the substrate and contains information on the physical quantity detected by the sensor. Including the wireless communication unit. The case includes a holder that holds the sensor module.
 本開示の切削工具においては、センサがシャフト部の物理量を検知し、当該物理量の情報を含む信号が無線通信部によって外部へと送信される。センサおよび無線通信部を含むセンサモジュールは、ケースに含まれる保持部によって適切な位置に保持される。そのため、本開示の切削工具によれば、センサモジュールおよびケースを含むセンサ部の採用による回転のバランスの悪化を抑制することができる。 In the cutting tool of the present disclosure, the sensor detects the physical quantity of the shaft portion, and the signal including the information of the physical quantity is transmitted to the outside by the wireless communication unit. The sensor module, including the sensor and the wireless communication unit, is held in an appropriate position by the holding unit included in the case. Therefore, according to the cutting tool of the present disclosure, it is possible to suppress deterioration of the rotational balance due to the adoption of the sensor unit including the sensor module and the case.
 上記切削工具において、第1の端部は、被加工物を切削する刃が配置される側の端部であってもよい。ケースは、シャフト部の外周面を取り囲む筒状の側壁部と、シャフト部の第1の端部側の側壁部の開口を閉じる底壁部と、シャフト部の第2の端部側の側壁部の開口を閉じる上壁部と、を含んでいてもよい。このような構造のケースは、センサモジュールを収容するケースとして好適である。 In the above-mentioned cutting tool, the first end portion may be the end portion on the side where the blade for cutting the workpiece is arranged. The case has a cylindrical side wall that surrounds the outer peripheral surface of the shaft, a bottom wall that closes the opening of the side wall on the first end side of the shaft, and a side wall on the second end side of the shaft. It may include an upper wall portion that closes the opening of the. A case having such a structure is suitable as a case for accommodating a sensor module.
 上記切削工具において、保持部は、底壁部または上壁部に配置されてもよい。このような構成により、保持部によってセンサモジュールを適切な位置に保持することが容易となる。 In the above cutting tool, the holding portion may be arranged on the bottom wall portion or the upper wall portion. With such a configuration, it becomes easy to hold the sensor module in an appropriate position by the holding portion.
 上記切削工具において、底壁部は金属製であってもよい。上壁部および側壁部の少なくとも一部は樹脂製であってもよい。被加工物を切削する刃が配置される側の端部である第1の端部側に位置する底壁部には、被加工物の切り屑が衝突しやすい。底壁部が金属製であることにより、切り屑の衝突に対する十分な耐久性を確保することが容易となる。一方、上壁部および側壁部の少なくとも一部が樹脂製であることにより、無線通信部からの信号の外部への送信が容易となる。 In the above cutting tool, the bottom wall portion may be made of metal. At least a part of the upper wall portion and the side wall portion may be made of resin. Chips of the workpiece are likely to collide with the bottom wall portion located on the first end side, which is the end on the side where the blade for cutting the workpiece is arranged. Since the bottom wall portion is made of metal, it becomes easy to ensure sufficient durability against collision of chips. On the other hand, since at least a part of the upper wall portion and the side wall portion is made of resin, the signal from the wireless communication unit can be easily transmitted to the outside.
 上記切削工具において、センサモジュールは、センサに電力を供給する二次電池と、二次電池に接続され、側壁部において外部に露出する充電ポートと、をさらに含んでいてもよい。この構成により、センサへの給電をケースの内部に配置される二次電池から行うことができる。また、充電ポートを側壁部において外部に露出するように配置することにより、切り屑が充電ポートに衝突することを抑制することができる。 In the cutting tool, the sensor module may further include a secondary battery that supplies power to the sensor and a charging port that is connected to the secondary battery and exposed to the outside on the side wall. With this configuration, power can be supplied to the sensor from a secondary battery arranged inside the case. Further, by arranging the charging port so as to be exposed to the outside on the side wall portion, it is possible to prevent chips from colliding with the charging port.
 上記切削工具において、保持部は、少なくとも一対の壁部を含んでいてもよい。保持部は、センサモジュールの少なくとも一部をこの少なくとも一対の壁部で挟むことによって保持してもよい。この構成により、センサモジュールを保持部によって保持することが容易となる。 In the above cutting tool, the holding portion may include at least a pair of wall portions. The holding portion may be held by sandwiching at least a part of the sensor module between the at least a pair of wall portions. This configuration makes it easy to hold the sensor module by the holding portion.
 上記切削工具において、センサ部は、ケースをシャフト部に対して固定する環状の固定部材をさらに含んでいてもよい。センサ部により取り囲まれるシャフト部の外周面は、第1平坦部を有していてもよい。固定部材の内周面は、第1平坦部とシャフト部の径方向において対向する第2平坦部を有していてもよい。第1平坦部と第2平坦部とが接触することによりセンサ部がシャフト部に対して相対的に回転することが規制されていてもよい。この構成により、センサ部がシャフト部に対して相対的に回転することを規制しつつ、センサ部をシャフト部に設置することが容易となる。 In the above cutting tool, the sensor portion may further include an annular fixing member for fixing the case to the shaft portion. The outer peripheral surface of the shaft portion surrounded by the sensor portion may have a first flat portion. The inner peripheral surface of the fixing member may have a second flat portion facing the first flat portion in the radial direction of the shaft portion. It may be restricted that the sensor portion rotates relative to the shaft portion due to the contact between the first flat portion and the second flat portion. With this configuration, it becomes easy to install the sensor portion on the shaft portion while restricting the rotation of the sensor portion relative to the shaft portion.
 上記切削工具において、回転軸に沿う方向に見て、センサ部により取り囲まれるシャフト部の外周面は、第1平坦部を含む多角形形状を有していてもよい。固定部材の内周面は、多角形形状に対応する部分を有し、多角形形状に対応する部分が第2平坦部であってもよい。この構成により、センサ部がシャフト部に対して相対的に回転することを規制しつつ、センサ部をシャフト部に設置することが一層容易となる。 In the above cutting tool, the outer peripheral surface of the shaft portion surrounded by the sensor portion when viewed in the direction along the rotation axis may have a polygonal shape including the first flat portion. The inner peripheral surface of the fixing member may have a portion corresponding to the polygonal shape, and the portion corresponding to the polygonal shape may be the second flat portion. With this configuration, it becomes easier to install the sensor portion on the shaft portion while restricting the rotation of the sensor portion relative to the shaft portion.
 上記切削工具において、ケースは、シャフト部の外周面を取り囲む筒状の側壁部と、シャフト部の第1の端部側の側壁部の開口を閉じる底壁部と、シャフト部の第2の端部側の側壁部の開口を閉じる上壁部と、を含んでいてもよい。固定部材は、底壁部または上壁部に対して固定されていてもよい。この構成により、センサ部がシャフト部に対して相対的に回転することを規制しつつ、センサ部をシャフト部に設置することが一層容易となる。 In the above-mentioned cutting tool, the case has a cylindrical side wall portion that surrounds the outer peripheral surface of the shaft portion, a bottom wall portion that closes the opening of the side wall portion on the first end side of the shaft portion, and a second end of the shaft portion. It may include an upper wall portion that closes the opening of the side wall portion on the portion side. The fixing member may be fixed to the bottom wall portion or the upper wall portion. With this configuration, it becomes easier to install the sensor portion on the shaft portion while restricting the rotation of the sensor portion relative to the shaft portion.
 上記切削工具において、固定部材には、回転軸に沿う方向に貫通するねじ孔が形成されていてもよい。固定部材は、ねじによって底壁部または上壁部に対して固定されていてもよい。ねじは、ねじ孔を貫通し、底壁部または上壁部に進入していてもよい。この構成により、センサ部をシャフト部に設置することが一層容易となる。 In the above cutting tool, the fixing member may be formed with a screw hole penetrating in the direction along the rotation axis. The fixing member may be fixed to the bottom wall portion or the upper wall portion by screws. The screw may penetrate the screw hole and enter the bottom wall portion or the upper wall portion. With this configuration, it becomes easier to install the sensor portion on the shaft portion.
 上記切削工具において、シャフト部の外周面には、シャフト部の周方向に延びる溝が形成されていてもよい。固定部材の一部がこの溝にはめ込まれていてもよい。この構成により、回転軸方向におけるセンサ部のシャフト部に対する位置決めが容易となる。 In the above cutting tool, a groove extending in the circumferential direction of the shaft portion may be formed on the outer peripheral surface of the shaft portion. A part of the fixing member may be fitted in this groove. This configuration facilitates positioning of the sensor unit with respect to the shaft unit in the direction of the rotation axis.
 上記切削工具において、回転軸に沿う方向に見て、回転軸を通る直線が、基板の表面のうち無線通信部が搭載される部分に対する垂線となるように、センサモジュールは配置されていてもよい。この構成により、比較的質量の大きい無線通信部に加わる、切削工具の回転による遠心力が、基板の表面に沿う方向に加わることを抑制することができる。その結果、無線通信部の電気的接続等に異常が生じることを抑制することができる。 In the above cutting tool, the sensor module may be arranged so that the straight line passing through the rotation axis when viewed in the direction along the rotation axis is a perpendicular line to the portion of the surface of the substrate on which the wireless communication unit is mounted. .. With this configuration, it is possible to suppress the centrifugal force due to the rotation of the cutting tool, which is applied to the wireless communication unit having a relatively large mass, from being applied in the direction along the surface of the substrate. As a result, it is possible to prevent an abnormality from occurring in the electrical connection or the like of the wireless communication unit.
 上記切削工具において、センサモジュールは、基板上に搭載されるADコンバータ、スイッチ、コネクタ、可変抵抗および電池ホルダからなる群から選択される少なくとも1つの部品をさらに含んでいてもよい。回転軸に沿う方向に見て、回転軸を通る直線が、基板の表面のうち上記少なくとも1つの部品が搭載される部分に対する垂線となるように、センサモジュールは配置されていてもよい。この構成により、比較的質量の大きいこれらの部品に加わる、切削工具の回転による遠心力が、基板の表面に沿う方向に加わることを抑制することができる。その結果、これらの部品の電気的接続等に異常が生じることを抑制することができる。
 [本願発明の実施形態の詳細]
In the cutting tool, the sensor module may further include at least one component selected from the group consisting of AD converters, switches, connectors, variable resistors and battery holders mounted on the substrate. The sensor module may be arranged so that the straight line passing through the axis of rotation when viewed in the direction along the axis of rotation is a perpendicular line to the portion of the surface of the substrate on which the at least one component is mounted. With this configuration, it is possible to suppress the centrifugal force due to the rotation of the cutting tool applied to these parts having a relatively large mass in the direction along the surface of the substrate. As a result, it is possible to prevent an abnormality from occurring in the electrical connection or the like of these parts.
[Details of Embodiments of the present invention]
 次に、本開示にかかる切削工具の実施の形態を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 (切削工具の構造の概要)
Next, an embodiment of the cutting tool according to the present disclosure will be described below with reference to the drawings. In the following drawings, the same or corresponding parts will be given the same reference number and the explanation will not be repeated.
(Overview of cutting tool structure)
 図1は、切削工具の構造を示す概略斜視図である。まず、図1を参照して、切削工具の構造の概略を説明する。本実施の形態における切削工具1は、シャフト部10と、センサ部20とを備える。シャフト部10は、回転軸Aに沿って第1の端部10Aから第2の端部10Bまで延びている。センサ部20は、シャフト部10の長手方向の一部を取り囲むように配置されている。シャフト部10には、第1の端部10Aおよび外周面において開口する凹部13が周方向に等間隔に複数(ここでは4つ)形成されている。凹部13を規定する壁面には、切削チップ91が取り付けられている。回転軸A周りに切削工具1を回転させ、切削チップ91を被加工物(図示しない)に接触させることにより、被加工物を加工することができる。すなわち、切削工具1は、シャフト部10の回転軸Aまわりに回転することによって、被加工物を切削する切削工具である。
 (シャフト部の構造)
FIG. 1 is a schematic perspective view showing the structure of a cutting tool. First, the outline of the structure of the cutting tool will be described with reference to FIG. The cutting tool 1 in the present embodiment includes a shaft portion 10 and a sensor portion 20. The shaft portion 10 extends from the first end portion 10A to the second end portion 10B along the rotation axis A. The sensor portion 20 is arranged so as to surround a part of the shaft portion 10 in the longitudinal direction. The shaft portion 10 is formed with a plurality of (here, four) recesses 13 that open at the first end portion 10A and the outer peripheral surface at equal intervals in the circumferential direction. A cutting tip 91 is attached to the wall surface defining the recess 13. The work piece can be machined by rotating the cutting tool 1 around the rotation axis A and bringing the cutting tip 91 into contact with the work piece (not shown). That is, the cutting tool 1 is a cutting tool that cuts a workpiece by rotating around the rotation axis A of the shaft portion 10.
(Structure of shaft part)
 次に、切削工具の各部分の詳細を説明する。図2は、第2の端部10B側から見たシャフト部の構造を示す概略斜視図である。図3は、第1の端部10A側から見たから見たシャフト部の構造を示す概略斜視図である。図4は、第1の端部側から回転軸方向に見たシャフト部の構造を示す概略平面図である。図5は、第2の端部側から回転軸方向に見たシャフト部の構造を示す概略平面図である。図6は、軸方向に垂直な方向に見たシャフト部の構造を示す概略平面図である。図7は、図5の線分VII-VIIに沿う断面を示す概略断面図である。図2~図7を参照して、シャフト部10の構造について説明する。 Next, the details of each part of the cutting tool will be explained. FIG. 2 is a schematic perspective view showing the structure of the shaft portion as seen from the second end portion 10B side. FIG. 3 is a schematic perspective view showing the structure of the shaft portion as seen from the side of the first end portion 10A. FIG. 4 is a schematic plan view showing the structure of the shaft portion as viewed from the first end side in the direction of the rotation axis. FIG. 5 is a schematic plan view showing the structure of the shaft portion as viewed from the second end side in the direction of the rotation axis. FIG. 6 is a schematic plan view showing the structure of the shaft portion as viewed in the direction perpendicular to the axial direction. FIG. 7 is a schematic cross-sectional view showing a cross section along the line segment VII-VII of FIG. The structure of the shaft portion 10 will be described with reference to FIGS. 2 to 7.
 図2および図3を参照して、シャフト部10は、本体部11と、第1領域としての拡径部12とを含む。本体部11は、円筒状の形状を有する。回転軸Aは、本体部11の中心軸に一致する。拡径部12は、本体部11よりも径が大きい部分である。本体部11の長手方向における拡径部12の位置は特に限定されるものではないが、本実施の形態においては、本体部11の長手方向において中央部分に配置される。拡径部12は、シャフト部10の、センサ部20に取り囲まれる領域に配置される。 With reference to FIGS. 2 and 3, the shaft portion 10 includes a main body portion 11 and a diameter-expanded portion 12 as a first region. The main body 11 has a cylindrical shape. The rotation axis A coincides with the central axis of the main body 11. The enlarged diameter portion 12 is a portion having a larger diameter than the main body portion 11. The position of the enlarged diameter portion 12 in the longitudinal direction of the main body portion 11 is not particularly limited, but in the present embodiment, it is arranged in the central portion in the longitudinal direction of the main body portion 11. The enlarged diameter portion 12 is arranged in a region of the shaft portion 10 surrounded by the sensor portion 20.
 図2~図4を参照して、上記の通り、シャフト部10の凹部13を規定する壁面には、切削チップ91が取り付けられている。切削チップ91は、切削チップ91に形成されたねじ孔にねじ92が挿入され、締め付けられることでシャフト部10に対して固定されている。 With reference to FIGS. 2 to 4, as described above, the cutting tip 91 is attached to the wall surface defining the recess 13 of the shaft portion 10. The cutting tip 91 is fixed to the shaft portion 10 by inserting a screw 92 into a screw hole formed in the cutting tip 91 and tightening the screw 92.
 図2~図6を参照して、拡径部12は、八角柱状の形状を有する。図4および図5を参照して、拡径部12は、回転軸Aに沿う方向に見て、八角形状の形状を有する。より具体的には、拡径部12は、回転軸Aに垂直な断面において、正方形の4つの角部のそれぞれから同一の形状の4つの直角二等辺三角形を除去した八角形の形状を有している。この八角形の重心を回転軸Aが通過している。この八角形の形状は、回転軸Aに沿う方向において同一である。本体部11の中心軸と拡径部12の中心軸とは一致する。ここで、拡径部12の中心軸とは、上記八角形の重心を通る直線を意味する。 With reference to FIGS. 2 to 6, the enlarged diameter portion 12 has an octagonal columnar shape. With reference to FIGS. 4 and 5, the enlarged diameter portion 12 has an octagonal shape when viewed in a direction along the rotation axis A. More specifically, the enlarged diameter portion 12 has an octagonal shape in which four right-angled isosceles triangles having the same shape are removed from each of the four square portions in the cross section perpendicular to the rotation axis A. ing. The axis of rotation A passes through the center of gravity of this octagon. The shape of this octagon is the same in the direction along the rotation axis A. The central axis of the main body portion 11 and the central axis of the enlarged diameter portion 12 coincide with each other. Here, the central axis of the enlarged diameter portion 12 means a straight line passing through the center of gravity of the octagon.
 図4および図5を参照して、回転軸Aに沿う方向に見て、上記八角形は、交互に配置される長辺に対応する外周面12Aと長辺よりも短い短辺に対応する外周面12Bとによって構成されている。周方向において隣り合う上記八角形の各辺に対応する拡径部12の外周面12A,12Bの各面の、回転軸Aを通る垂線L,L同士がなす角θは互いに等しい。具体的には、角θは45°である。なお、上記八角形の形状は上記形状に限定されるものではなく、回転軸Aに沿う方向に見て、外周面12Aおよび外周面12Bの長さは同じであってもよい。 With reference to FIGS. 4 and 5, when viewed in the direction along the axis of rotation A, the octagon has an outer peripheral surface 12A corresponding to the alternately arranged long sides and an outer circumference corresponding to a short side shorter than the long side. It is composed of a surface 12B. The angles θ formed by the perpendicular lines LA and LB passing through the rotation axis A on the outer peripheral surfaces 12A and 12B of the enlarged diameter portions 12 corresponding to the sides of the octagons adjacent to each other in the circumferential direction are equal to each other. Specifically, the angle θ is 45 °. The octagonal shape is not limited to the above shape, and the outer peripheral surface 12A and the outer peripheral surface 12B may have the same length when viewed in the direction along the rotation axis A.
 図2~図6を参照して、各外周面12Bには、回転軸Aに沿う方向に延びる第1凹部16が形成されている。第1凹部16を規定する底面16Aは平面である。第1凹部16は、垂線Lと交差する位置に配置される。第1凹部16は、外周面12Bを回転軸Aに沿う方向に貫通している。拡径部12の外周面12A,12Bには、拡径部12の周方向に延びる第2凹部15が形成されている。第2凹部15は、第1凹部16に重なるように形成されている。第2凹部15は、第1凹部16と交差(直交)する。第2凹部15は、拡径部12の外周面12A,12Bの全周にわたって形成されている。すなわち、第2凹部15は環状に形成されている。 With reference to FIGS. 2 to 6, each outer peripheral surface 12B is formed with a first recess 16 extending in a direction along the rotation axis A. The bottom surface 16A defining the first recess 16 is a flat surface. The first recess 16 is arranged at a position intersecting the perpendicular line LB. The first recess 16 penetrates the outer peripheral surface 12B in the direction along the rotation axis A. Second recesses 15 extending in the circumferential direction of the enlarged diameter portion 12 are formed on the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12. The second recess 15 is formed so as to overlap the first recess 16. The second recess 15 intersects (orthogonally) the first recess 16. The second recess 15 is formed over the entire circumference of the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12. That is, the second recess 15 is formed in an annular shape.
 図6および図7を参照して、第2凹部15の深さdは、第1凹部16の深さdよりも大きい。本体部11の第1の端部10A側の拡径部12との境界部には、他の部分に比べて径の小さい第1小径部11Aが形成されている。本体部11の第2の端部10B側の拡径部12との境界部には、他の部分に比べて径の小さい第2小径部11Bが形成されている。シャフト部10には、シャフト部10を回転軸Aに沿う方向に貫通する貫通孔10Cが形成されている。貫通孔10Cは、回転軸Aを含むように延びる。
 (センサ部の構造)
With reference to FIGS. 6 and 7, the depth d 2 of the second recess 15 is larger than the depth d 1 of the first recess 16. A first small diameter portion 11A having a smaller diameter than the other portions is formed at the boundary portion of the main body portion 11 with the enlarged diameter portion 12 on the first end portion 10A side. A second small diameter portion 11B having a smaller diameter than the other portions is formed at the boundary portion of the main body portion 11 with the enlarged diameter portion 12 on the second end portion 10B side. The shaft portion 10 is formed with a through hole 10C that penetrates the shaft portion 10 in the direction along the rotation axis A. The through hole 10C extends so as to include the rotation axis A.
(Structure of sensor part)
 次に、図8~図17を参照して、センサ部20の構造について説明する。図8を参照して、センサ部20は、センサモジュール80と、センサモジュール80を収容するケース21と、ケース21の内部に充填された樹脂製の充填材93とを含んでいる。ケース21は、シャフト部10の外周面を取り囲む筒状の側壁部23と、シャフト部10の第1の端部10A側の側壁部23の開口を閉じる底壁部24と、シャフト部10の第2の端部10B側の側壁部23の開口を閉じる上壁部22と、を含んでいる。センサモジュール80は、複数の第1センサとしての複数のひずみセンサ31と、ひずみセンサ31に電気的に接続される基板49と、基板49に電気的に接続された無線通信部51(図10、図11参照)と、ひずみセンサ31に電力を供給する二次電池98と、二次電池98に接続され、ケース21の外周面において外部に露出する充電ポート99とを含む。二次電池98と基板49(基板49上の回路パターン)とは、配線98Bにより電気的に接続されている。二次電池98と充電ポート99とは、配線98Aにより電気的に接続されている。ひずみセンサ31は、シャフト部10の第1の物理量としてのひずみを検知する。無線通信部51は、ひずみセンサ31が検知したひずみの情報を含む信号を外部へと送信する。 Next, the structure of the sensor unit 20 will be described with reference to FIGS. 8 to 17. With reference to FIG. 8, the sensor unit 20 includes a sensor module 80, a case 21 for accommodating the sensor module 80, and a resin filler 93 filled inside the case 21. The case 21 has a cylindrical side wall portion 23 that surrounds the outer peripheral surface of the shaft portion 10, a bottom wall portion 24 that closes the opening of the side wall portion 23 on the first end portion 10A side of the shaft portion 10, and a first shaft portion 10. 2 includes an upper wall portion 22 that closes the opening of the side wall portion 23 on the end portion 10B side. The sensor module 80 includes a plurality of strain sensors 31 as a plurality of first sensors, a substrate 49 electrically connected to the strain sensor 31, and a wireless communication unit 51 electrically connected to the substrate 49 (FIG. 10, FIG. FIG. 11), a secondary battery 98 that supplies power to the strain sensor 31, and a charging port 99 that is connected to the secondary battery 98 and is exposed to the outside on the outer peripheral surface of the case 21. The secondary battery 98 and the substrate 49 (circuit pattern on the substrate 49) are electrically connected by the wiring 98B. The secondary battery 98 and the charging port 99 are electrically connected by wiring 98A. The strain sensor 31 detects the strain of the shaft portion 10 as a first physical quantity. The wireless communication unit 51 transmits a signal including strain information detected by the strain sensor 31 to the outside.
 図9を参照して、ひずみセンサ31は、ひずみセンサ部品30を構成する。ひずみセンサ部品30は、ひずみセンサ31と、ひずみセンサ31に接続され、先端にコネクタ33を有する配線32とを含んでいる。配線32は、帯状の形状を有している。ひずみセンサ31は、配線32の一方の端部近傍に配置されている。配線32の他方の端部に、コネクタ33が配置されている。 With reference to FIG. 9, the strain sensor 31 constitutes the strain sensor component 30. The strain sensor component 30 includes a strain sensor 31 and a wiring 32 connected to the strain sensor 31 and having a connector 33 at its tip. The wiring 32 has a strip-shaped shape. The strain sensor 31 is arranged near one end of the wiring 32. A connector 33 is arranged at the other end of the wiring 32.
 図10および図11を参照して、基板49は、基板モジュール40を構成する。基板49は、樹脂などの絶縁体からなる基板本体と、基板本体の表面に形成される銅などの導電体製の回路パターン(図示しない)とを含む。基板モジュール40は、基板49と、無線通信部51と、第2センサとしての加速度センサ52と、ソケット53と、ADコンバータ54とを含んでいる。無線通信部51、加速度センサ52、ソケット53およびADコンバータ54は、基板49の一方の主面上に配置され、基板49(基板49の回路パターン)と電気的に接続されている。加速度センサ52は、シャフト部10の第2の物理量としての加速度を検知する。加速度センサ52は、基板49上に複数配置されている。無線通信部51は、基板49を介して加速度センサ52に電気的に接続されている。無線通信部51は、加速度センサ52が検知したシャフト部10の加速度の情報を含む信号を外部へと送信する。 With reference to FIGS. 10 and 11, the substrate 49 constitutes the substrate module 40. The substrate 49 includes a substrate main body made of an insulator such as resin, and a circuit pattern (not shown) made of a conductor such as copper formed on the surface of the substrate main body. The board module 40 includes a board 49, a wireless communication unit 51, an acceleration sensor 52 as a second sensor, a socket 53, and an AD converter 54. The wireless communication unit 51, the acceleration sensor 52, the socket 53, and the AD converter 54 are arranged on one main surface of the substrate 49 and are electrically connected to the substrate 49 (circuit pattern of the substrate 49). The acceleration sensor 52 detects the acceleration of the shaft portion 10 as a second physical quantity. A plurality of acceleration sensors 52 are arranged on the substrate 49. The wireless communication unit 51 is electrically connected to the acceleration sensor 52 via the substrate 49. The wireless communication unit 51 transmits a signal including information on the acceleration of the shaft unit 10 detected by the acceleration sensor 52 to the outside.
 基板49は、リジッド基板である。基板49は、帯状の形状を有している。基板49は、第1区域41、第2区域42、第3区域43、第4区域44、第5区域45、第6区域46、第7区域47および第8区域48を含んでいる。第1区域41~第8区域48は、基板49の長手方向においてこの順で配置されている。第1区域41には、無線通信部51および加速度センサ52が搭載されている。第2区域42には、ソケット53が搭載されている。第3区域43には、加速度センサ52が搭載されている。第4区域44には、ソケット53が搭載されている。第5区域45には、加速度センサ52およびADコンバータ54が搭載されている。第6区域46には、ソケット53が搭載されている。第7区域47には、加速度センサ52が搭載されている。第8区域48には、ソケット53が搭載されている。 The board 49 is a rigid board. The substrate 49 has a strip-shaped shape. The substrate 49 includes a first zone 41, a second zone 42, a third zone 43, a fourth zone 44, a fifth zone 45, a sixth zone 46, a seventh zone 47 and an eighth zone 48. The first area 41 to the eighth area 48 are arranged in this order in the longitudinal direction of the substrate 49. The wireless communication unit 51 and the acceleration sensor 52 are mounted on the first area 41. A socket 53 is mounted in the second area 42. An acceleration sensor 52 is mounted in the third area 43. A socket 53 is mounted in the fourth area 44. An acceleration sensor 52 and an AD converter 54 are mounted in the fifth area 45. A socket 53 is mounted in the sixth area 46. An acceleration sensor 52 is mounted in the seventh area 47. A socket 53 is mounted in the eighth area 48.
 隣り合う第1区域41~第8区域48の間には、他の部分に比べて厚みが小さい折り曲げ可能領域49Aが形成されている。折り曲げ可能領域49Aは、基板49の幅方向(長手方向に垂直な方向)の両端を繋ぐ溝である。第1区域41は、無線通信部51が搭載される第2領域である。第5区域45は、ADコンバータ54が搭載される第3領域である。折り曲げ可能領域49Aは、第2領域および第3領域に比べて厚みが小さい第4領域である。基板49の長手方向における第1区域41、第3区域43、第5区域45および第7区域47の長さは、拡径部12を回転軸Aに沿う方向に見た上記八角形の長辺である外周面12Aの長さを一定の比αで拡張した長さとなっている。基板49の長手方向における第2区域42、第4区域44、第6区域46および第8区域48の長さは、拡径部12を回転軸Aに沿う方向に見た上記八角形の短辺である外周面12Bの長さを上記一定の比αで拡張した長さとなっている。 A bendable region 49A having a thickness smaller than that of other portions is formed between the adjacent first region 41 to eighth region 48. The bendable region 49A is a groove connecting both ends of the substrate 49 in the width direction (direction perpendicular to the longitudinal direction). The first area 41 is a second area in which the wireless communication unit 51 is mounted. The fifth area 45 is a third area in which the AD converter 54 is mounted. The bendable region 49A is a fourth region having a smaller thickness than the second region and the third region. The lengths of the first area 41, the third area 43, the fifth area 45, and the seventh area 47 in the longitudinal direction of the substrate 49 are the long sides of the octagon when the enlarged diameter portion 12 is viewed in the direction along the rotation axis A. The length of the outer peripheral surface 12A is extended by a constant ratio α. The lengths of the second area 42, the fourth area 44, the sixth area 46, and the eighth area 48 in the longitudinal direction of the substrate 49 are the short sides of the octagon when the enlarged diameter portion 12 is viewed in the direction along the rotation axis A. The length of the outer peripheral surface 12B is extended by the above-mentioned constant ratio α.
 次に、ケース21について説明する。図8および図13~図17を参照して、ケース21は、ケース本体61と、第1固定部材63と、第2固定部材65と、蓋22と、保持部81とを含む。ケース本体61は、図13に示すように、中央に貫通孔61Aを有する円盤状の底壁部24と、底壁部24の外周から立ち上がり、円筒状の形状を有する側壁部23とを含む。底壁部24には、底壁部24を厚み方向に貫通するねじ孔62が周方向に複数個(ここでは8個)等間隔に形成されている。ケース本体61を構成する材料は、たとえば金属である。採用可能な金属としては、アルミニウム合金、鉄合金(ステンレス鋼などの鋼)などを挙げることができる。第1固定部材63と第2固定部材65とは、ケース21をシャフト部10に対して固定する環状の固定部材67を構成する。 Next, case 21 will be described. With reference to FIGS. 8 and 13-17, the case 21 includes a case body 61, a first fixing member 63, a second fixing member 65, a lid 22, and a holding portion 81. As shown in FIG. 13, the case body 61 includes a disk-shaped bottom wall portion 24 having a through hole 61A in the center, and a side wall portion 23 rising from the outer periphery of the bottom wall portion 24 and having a cylindrical shape. The bottom wall portion 24 is formed with a plurality of (here, eight) screw holes 62 penetrating the bottom wall portion 24 in the thickness direction at equal intervals in the circumferential direction. The material constituting the case body 61 is, for example, metal. Examples of the metal that can be adopted include aluminum alloys and iron alloys (steel such as stainless steel). The first fixing member 63 and the second fixing member 65 form an annular fixing member 67 that fixes the case 21 to the shaft portion 10.
 図14を参照して、第1固定部材63は、2つに分割された円環平板状の形状を有する。第1固定部材63には、上記ケース本体61の底壁部24のねじ孔62に対応するように、ねじ孔64が周方向に複数個(ここでは2つに分割された第1固定部材63において合計8個)等間隔に形成されている。第1固定部材63の内周面63Aは、シャフト部10の第1小径部11Aに対応する形状を有する。2つの第1固定部材63を組み合わせて環状にした状態で、内周面63Aの直径は、第1小径部11Aの直径と同一またはわずかに大きい。第1固定部材63を構成する材料は、たとえば金属である。採用可能な金属としては、アルミニウム合金、鉄合金(ステンレス鋼などの鋼)などを挙げることができる。 With reference to FIG. 14, the first fixing member 63 has an annular flat plate shape divided into two. The first fixing member 63 has a plurality of screw holes 64 in the circumferential direction (here, the first fixing member 63 is divided into two) so as to correspond to the screw holes 62 of the bottom wall portion 24 of the case body 61. 8 pieces in total) are formed at equal intervals. The inner peripheral surface 63A of the first fixing member 63 has a shape corresponding to the first small diameter portion 11A of the shaft portion 10. In a state where the two first fixing members 63 are combined to form an annular shape, the diameter of the inner peripheral surface 63A is the same as or slightly larger than the diameter of the first small diameter portion 11A. The material constituting the first fixing member 63 is, for example, metal. Examples of the metal that can be adopted include aluminum alloys and iron alloys (steel such as stainless steel).
 図15を参照して、第2固定部材65は、平板円弧状の形状を有する部品である。本実施の形態においては、ケース21は、2つの第2固定部材65を含む。各第2固定部材65の内周面65Aは、拡径部12の外周面の平面形状の一部に対応する形状、すなわち八角形の一部に対応する形状を有している。第2固定部材65には、上記ケース本体61の底壁部24のねじ孔62および第1固定部材63のねじ孔64に対応するように、ねじ孔66が複数個(ここでは各第2固定部材65について2つずつ)形成されている。第2固定部材65を構成する材料は、たとえば樹脂である。 With reference to FIG. 15, the second fixing member 65 is a component having a flat plate arc shape. In this embodiment, the case 21 includes two second fixing members 65. The inner peripheral surface 65A of each second fixing member 65 has a shape corresponding to a part of the planar shape of the outer peripheral surface of the enlarged diameter portion 12, that is, a shape corresponding to a part of an octagon. The second fixing member 65 has a plurality of screw holes 66 (here, each second fixing) so as to correspond to the screw holes 62 of the bottom wall portion 24 of the case body 61 and the screw holes 64 of the first fixing member 63. (Two for each member 65) are formed. The material constituting the second fixing member 65 is, for example, resin.
 図16を参照して、蓋(上壁部)22は、中央に貫通孔22Aを有する円盤状の形状を有する。蓋22を構成する材料は、たとえば樹脂である。 With reference to FIG. 16, the lid (upper wall portion) 22 has a disk-shaped shape having a through hole 22A in the center. The material constituting the lid 22 is, for example, resin.
 図17および図8を参照して、保持部81は、平板環状の形状を有する底壁部82と、底壁部82の外周から立ち上がる環状の外周壁84と、底壁部82の内周から立ち上がる環状の内周壁83と、内周壁83の内周側に接続される電池保持部85とを含んでいる。内周壁83は、外周壁84に沿って延びている。内周壁83と外周壁84との間隔は全周にわたって略一定である。軸方向に見て、内周壁83と外周壁84との間の隙間は、拡径部12を回転軸Aに沿う方向に見た上記八角形を一定の割合で拡大した八角形状の形状を有している。軸方向に見て、内周壁83と外周壁84との間の隙間は、基板49の長手方向における第1区域41、第3区域43、第5区域45および第7区域47の長さに対応する長さの長辺と、第2区域42、第4区域44、第6区域46および第8区域48に対応する長さの短辺とが交互に配置された八角形状の形状を有している。内周壁83と外周壁84との間の間隔は、基板モジュール40の厚みと同じか、または基板モジュール40の厚みよりわずかに大きい。保持部81は、外周壁84がケース本体61の側壁部23の内周に沿うようにケース本体61の内部に配置することが可能な形状を有している。 With reference to FIGS. 17 and 8, the holding portion 81 is formed from a bottom wall portion 82 having a flat plate annular shape, an annular outer peripheral wall 84 rising from the outer periphery of the bottom wall portion 82, and an inner circumference of the bottom wall portion 82. It includes a rising annular inner peripheral wall 83 and a battery holding portion 85 connected to the inner peripheral side of the inner peripheral wall 83. The inner peripheral wall 83 extends along the outer peripheral wall 84. The distance between the inner peripheral wall 83 and the outer peripheral wall 84 is substantially constant over the entire circumference. When viewed in the axial direction, the gap between the inner peripheral wall 83 and the outer peripheral wall 84 has an octagonal shape in which the enlarged diameter portion 12 is viewed in the direction along the rotation axis A and is enlarged at a constant rate. is doing. When viewed in the axial direction, the gap between the inner peripheral wall 83 and the outer peripheral wall 84 corresponds to the lengths of the first zone 41, the third zone 43, the fifth zone 45, and the seventh zone 47 in the longitudinal direction of the substrate 49. It has an octagonal shape in which the long sides of the length corresponding to the second area 42, the fourth area 44, the sixth area 46, and the eighth area 48 are alternately arranged. There is. The distance between the inner peripheral wall 83 and the outer peripheral wall 84 is the same as the thickness of the substrate module 40 or slightly larger than the thickness of the substrate module 40. The holding portion 81 has a shape that allows the outer peripheral wall 84 to be arranged inside the case main body 61 so as to be along the inner circumference of the side wall portion 23 of the case main body 61.
 次に、シャフト部10に対するひずみセンサ部品30、基板モジュール40およびケース21の設置について説明する。ひずみセンサ部品30は、ひずみセンサ31が第2凹部15を跨ぎ、かつひずみセンサ31が第1凹部16内に収容されるように配置される(図2、図4、図8等参照)。ひずみセンサ部品30は、4つの外周面12Bのそれぞれに設置される。その結果、回転軸Aに沿う方向に見て、ひずみセンサ31が、八角形の各辺に対応する拡径部12の外周面のうち、回転軸Aを通る垂線Lが互いに90°をなす拡径部12の外周面12B(短辺に対応する外周面)の全てに配置される。 Next, the installation of the strain sensor component 30, the board module 40, and the case 21 on the shaft portion 10 will be described. The strain sensor component 30 is arranged so that the strain sensor 31 straddles the second recess 15 and the strain sensor 31 is housed in the first recess 16 (see FIGS. 2, 4, 8, etc.). The strain sensor component 30 is installed on each of the four outer peripheral surfaces 12B. As a result, when viewed in the direction along the rotation axis A, the strain sensor 31 forms 90 ° with each other in the vertical lines LB passing through the rotation axis A on the outer peripheral surface of the enlarged diameter portion 12 corresponding to each side of the octagon. It is arranged on all of the outer peripheral surfaces 12B (outer peripheral surfaces corresponding to the short sides) of the enlarged diameter portion 12.
 ケース21は、シャフト部10に対してひずみセンサ部品30が設置された状態で設置することができる。具体的には、まず、外周壁84がケース本体61の側壁部23の内周に沿うように保持部81がケース本体61の内部に配置される。この状態で、ケース本体61の底壁部24の貫通孔61Aをシャフト部10の本体部11が貫通するように、ケース本体61が配置される。第1固定部材63は、底壁部24上に配置された状態で、内周面63Aが本体部11の第1小径部11Aの底壁に接触するように、第1小径部11Aにはめ込まれる。つまり、固定部材67を構成する第1固定部材63は、シャフト部10の外周面に周方向に延びるように形成された溝である第1小径部11Aにはめ込まれる。これにより、回転軸Aに沿う方向においてセンサ部20がシャフト部10に対して位置決めされる。 The case 21 can be installed in a state where the strain sensor component 30 is installed on the shaft portion 10. Specifically, first, the holding portion 81 is arranged inside the case main body 61 so that the outer peripheral wall 84 is along the inner circumference of the side wall portion 23 of the case main body 61. In this state, the case body 61 is arranged so that the body portion 11 of the shaft portion 10 penetrates the through hole 61A of the bottom wall portion 24 of the case body 61. The first fixing member 63 is fitted into the first small diameter portion 11A so that the inner peripheral surface 63A comes into contact with the bottom wall of the first small diameter portion 11A of the main body portion 11 in a state of being arranged on the bottom wall portion 24. .. That is, the first fixing member 63 constituting the fixing member 67 is fitted into the first small diameter portion 11A which is a groove formed so as to extend in the circumferential direction on the outer peripheral surface of the shaft portion 10. As a result, the sensor unit 20 is positioned with respect to the shaft unit 10 in the direction along the rotation axis A.
 第2固定部材65は、第1固定部材63上に配置された状態で、内周面65Aが拡径部12の外周面12A,12Bに接触するように配置される。そして、第2固定部材65のねじ孔66、第1固定部材63のねじ孔64を貫通し、底壁部24のねじ孔62にまで到達するねじ69によって、ケース本体61、第1固定部材63および第2固定部材65が互いに固定される。このとき、第1固定部材63の内径が第1小径部11Aの外径に対応しているため、ケース本体61の中心軸と回転軸Aとが一致する。また、第2固定部材65の内周面65Aが拡径部12の外周面の平面形状の一部に対応する形状(八角形の一部に対応する形状)を有しているため、ケース本体61がシャフト部10に対して相対的に周方向に回転することが阻害される。つまり、固定部材67を構成する第2固定部材65の内周面65Aは、第1平坦部としての拡径部12の外周面12A,12Bに対向する第2平坦部(8角形の辺に対応する領域)を含んでいる。そして、第1平坦部である外周面12A,12Bと第2平坦部である内周面65Aの平坦領域とが接触することによりセンサ部20がシャフト部10に対して相対的に回転することが規制されている。 The second fixing member 65 is arranged so that the inner peripheral surface 65A comes into contact with the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12 in a state of being arranged on the first fixing member 63. Then, the case body 61 and the first fixing member 63 are formed by the screw 69 that penetrates the screw hole 66 of the second fixing member 65 and the screw hole 64 of the first fixing member 63 and reaches the screw hole 62 of the bottom wall portion 24. And the second fixing member 65 are fixed to each other. At this time, since the inner diameter of the first fixing member 63 corresponds to the outer diameter of the first small diameter portion 11A, the central axis of the case body 61 and the rotation axis A coincide with each other. Further, since the inner peripheral surface 65A of the second fixing member 65 has a shape corresponding to a part of the planar shape of the outer peripheral surface of the enlarged diameter portion 12 (a shape corresponding to a part of the octagon), the case main body. The rotation of the 61 in the circumferential direction relative to the shaft portion 10 is hindered. That is, the inner peripheral surface 65A of the second fixing member 65 constituting the fixing member 67 corresponds to the second flat portion (corresponding to the octagonal side) facing the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12 as the first flat portion. The area to be used) is included. Then, the sensor portion 20 rotates relative to the shaft portion 10 due to the contact between the outer peripheral surfaces 12A and 12B which are the first flat portions and the flat regions of the inner peripheral surfaces 65A which are the second flat portions. It is regulated.
 図8および図12を参照して、基板モジュール40は、基板49において無線通信部51、加速度センサ52、ソケット53およびADコンバータ54等が搭載される側の主面が拡径部12の外周面12A,12Bに向かい合うように、保持部81の内周壁83と外周壁84との間に差し込まれることにより、保持部81に保持される。つまり、保持部81は、一対の壁部である内周壁83および外周壁84でセンサモジュール80を挟むことによって保持している。このとき、第1区域41、第3区域43、第5区域45および第7区域47が外周面12Aに向かい合うように配置され、第2区域42、第4区域44、第6区域46および第8区域48が外周面12Bに向かい合うように配置される。また、基板49は、回転軸Aに沿う方向の両端を繋ぐ溝(幅方向の両端を繋ぐ溝)である折り曲げ可能領域49Aにおいて屈曲する。 With reference to FIGS. 8 and 12, in the board module 40, the main surface on the board 49 on which the wireless communication unit 51, the acceleration sensor 52, the socket 53, the AD converter 54, etc. are mounted is the outer peripheral surface of the enlarged diameter portion 12. It is held by the holding portion 81 by being inserted between the inner peripheral wall 83 and the outer peripheral wall 84 of the holding portion 81 so as to face the 12A and 12B. That is, the holding portion 81 is held by sandwiching the sensor module 80 between the inner peripheral wall 83 and the outer peripheral wall 84, which are a pair of wall portions. At this time, the first area 41, the third area 43, the fifth area 45 and the seventh area 47 are arranged so as to face the outer peripheral surface 12A, and the second area 42, the fourth area 44, the sixth area 46 and the eighth area are arranged. The area 48 is arranged so as to face the outer peripheral surface 12B. Further, the substrate 49 bends in the bendable region 49A, which is a groove connecting both ends in the direction along the rotation axis A (a groove connecting both ends in the width direction).
 その結果、回転軸Aに沿う方向に見て、基板49は、拡径部12の外周面12A,12Bとの間に間隔をおいて外周面12A,12Bを取り囲むように配置される。ソケット53は、外周面12Bに向かい合う基板49の主面上に配置される。そして、ひずみセンサ31に接続された配線32の端部に位置するコネクタ33が、ソケット53に接続される。これにより、基板49とひずみセンサ31とが電気的に接続される。図8に示すように、配線32は、アーチ状に反った状態となっている。すなわち、配線32は、ひずみセンサ31とソケット53とを、たるみをもって接続する。二次電池98は、保持部81の電池保持部85により保持される。 As a result, when viewed in the direction along the rotation axis A, the substrate 49 is arranged so as to surround the outer peripheral surfaces 12A and 12B at intervals from the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12. The socket 53 is arranged on the main surface of the substrate 49 facing the outer peripheral surface 12B. Then, the connector 33 located at the end of the wiring 32 connected to the strain sensor 31 is connected to the socket 53. As a result, the substrate 49 and the strain sensor 31 are electrically connected. As shown in FIG. 8, the wiring 32 is in a state of being warped in an arch shape. That is, the wiring 32 connects the strain sensor 31 and the socket 53 with slack. The secondary battery 98 is held by the battery holding portion 85 of the holding portion 81.
 図12を参照して、回転軸Aに沿う方向に見て、回転軸Aを通る直線が、基板49の表面のうち無線通信部51およびADコンバータ54が搭載される部分に対する垂線Lとなるように、センサモジュール80は配置されている。また、回転軸Aを通る直線が、基板49の表面のうちソケット53(コネクタ)が搭載される部分に対する垂線Lとなるように、センサモジュール80は配置されている。これにより、比較的質量の大きいこれらの部品に加わる、切削工具1の回転による遠心力が、基板49の表面に沿う方向に加わることを抑制される。その結果、これらの部品の電気的接続等に異常が生じることを抑制することができる。 With reference to FIG. 12, when viewed in the direction along the rotation axis A, the straight line passing through the rotation axis A is a perpendicular line LA with respect to the portion of the surface of the substrate 49 on which the wireless communication unit 51 and the AD converter 54 are mounted. As such, the sensor module 80 is arranged. Further, the sensor module 80 is arranged so that the straight line passing through the rotation axis A is a perpendicular line LB with respect to the portion of the surface of the substrate 49 on which the socket 53 (connector) is mounted. As a result, the centrifugal force due to the rotation of the cutting tool 1 applied to these parts having a relatively large mass is suppressed from being applied in the direction along the surface of the substrate 49. As a result, it is possible to prevent an abnormality from occurring in the electrical connection or the like of these parts.
 加速度センサ52は、基板49の第1区域41、第3区域43、第5区域45および第7区域47上に配置されている。そのため、上記のように基板モジュール40が保持部81に保持されることにより、回転軸Aに沿う方向に見て、加速度センサ52が、八角形の各辺に対応する拡径部12の外周面のうち、回転軸Aを通る垂線Lが互いに90°をなす拡径部12の外周面12A(長辺に対応する外周面)に向かい合う位置に配置される。 The accelerometer 52 is arranged on the first area 41, the third area 43, the fifth area 45, and the seventh area 47 of the substrate 49. Therefore, when the substrate module 40 is held by the holding portion 81 as described above, the acceleration sensor 52 is viewed in the direction along the rotation axis A, and the acceleration sensor 52 is the outer peripheral surface of the enlarged diameter portion 12 corresponding to each side of the octagon. Of these, the vertical lines LA passing through the rotation axis A are arranged at positions facing the outer peripheral surface 12A (outer peripheral surface corresponding to the long side) of the enlarged diameter portion 12 forming 90 ° with each other.
 図10および図8を参照して、回転軸Aに沿う方向において、加速度センサ52とひずみセンサ31とは同じ位置に配置されている。このようにすることにより、センサの設置に必要な軸方向の長さを小さくすることができる。その結果、センサ部20を小さくすることができる。ここで、「回転軸Aに沿う方向において、加速度センサ52とひずみセンサ31とは同じ位置に配置されている」状態とは、図8および図10を参照して、回転軸Aに沿う方向における加速度センサ52の測定範囲a(具体的には加速度を検知するための電気抵抗配線が配置されている範囲)とひずみセンサ31の測定範囲b(具体的にはひずみを検知するための電気抵抗配線が配置されている範囲)とが少なくとも一部において重複することを意味する。回転軸Aに沿う方向における加速度センサ52とひずみセンサ31との位置関係は、加速度およびひずみの検知の容易性等を考慮して変更してもよい。たとえば、回転軸Aに沿う方向において、ひずみセンサ31は、加速度センサ52よりも第1の端部10Aから遠い位置(切削チップ91から遠い側;図8において上側)に配置されてもよい。切削加工によって生じるシャフト部10のひずみは、切削チップからより離れることで大きくなる。切削加工によって生じるシャフト部10の加速度は、切削チップにより近い位置で大きくなる。そのため、このような配置を採用することにより、ひずみセンサ31および加速度センサ52によるひずみおよび加速度の検知の感度が向上する。一方、回転軸Aに沿う方向において、ひずみセンサ31は、加速度センサ52よりも第1の端部10Aに近い位置(切削チップ91から近い側;図8において下側)に配置されてもよい。シャフト部10が長い場合、上記配置ではひずみセンサ31が配置される位置におけるシャフト部10のひずみが、大きくなりすぎる場合がある。このような場合、ひずみセンサ31を、加速度センサ52よりも第1の端部10Aに近い位置に配置することで、ひずみセンサ31が配置される位置におけるひずみの大きさを、ひずみセンサ31が検知しやすい範囲とすることができる。 With reference to FIGS. 10 and 8, the acceleration sensor 52 and the strain sensor 31 are arranged at the same position in the direction along the rotation axis A. By doing so, it is possible to reduce the axial length required for installing the sensor. As a result, the sensor unit 20 can be made smaller. Here, the state in which the acceleration sensor 52 and the strain sensor 31 are arranged at the same position in the direction along the rotation axis A is the state in the direction along the rotation axis A with reference to FIGS. 8 and 10. The measurement range a of the acceleration sensor 52 (specifically, the range in which the electric resistance wiring for detecting acceleration is arranged) and the measurement range b of the strain sensor 31 (specifically, the electric resistance wiring for detecting strain). It means that it overlaps with (the range in which) is arranged at least in part. The positional relationship between the acceleration sensor 52 and the strain sensor 31 in the direction along the rotation axis A may be changed in consideration of the ease of detecting acceleration and strain. For example, in the direction along the rotation axis A, the strain sensor 31 may be arranged at a position farther from the first end 10A than the acceleration sensor 52 (the side far from the cutting tip 91; the upper side in FIG. 8). The strain of the shaft portion 10 caused by the cutting process increases as the distance from the cutting tip increases. The acceleration of the shaft portion 10 generated by the cutting process increases at a position closer to the cutting tip. Therefore, by adopting such an arrangement, the sensitivity of detecting strain and acceleration by the strain sensor 31 and the acceleration sensor 52 is improved. On the other hand, in the direction along the rotation axis A, the strain sensor 31 may be arranged at a position closer to the first end 10A than the acceleration sensor 52 (the side closer to the cutting tip 91; the lower side in FIG. 8). If the shaft portion 10 is long, the strain of the shaft portion 10 at the position where the strain sensor 31 is arranged may become too large in the above arrangement. In such a case, by arranging the strain sensor 31 at a position closer to the first end 10A than the acceleration sensor 52, the strain sensor 31 detects the magnitude of the strain at the position where the strain sensor 31 is arranged. It can be in a range that is easy to do.
 また、図8および図12を参照して、本実施の形態においては、ひずみセンサ31には温度センサが含まれている。つまり、本実施の形態においては、ひずみセンサ31として、ひずみセンサ31と温度センサとが一体となったセンサが採用されている。温度センサは、必ずしもひずみセンサ31と一体である必要はなく、別体であってもよい。この場合、図8を参照して、回転軸Aに沿う方向において、温度センサはひずみセンサ31と同じ位置に配置される。より具体的には、図8および図12を参照して、温度センサは、拡径部12の外周面12A,12Bのうち、回転軸Aに沿う方向においてひずみセンサ31の測定範囲bに対応する環状の領域(拡径部12の外周面12A,12Bのうち幅が測定範囲bに一致する帯状の領域)の中の任意の位置に配置される。温度センサは、本開示の切削工具において必須ではないが、これを採用することにより、ひずみセンサ31が設置される位置または拡径部12の外周面12A,12Bのうち、ひずみセンサ31の測定範囲bに対応する領域の温度を検知することができる。温度センサによって検知された温度に基づいて、ひずみセンサ31が設置される位置または拡径部12の外周面12A,12Bのうち、ひずみセンサ31の測定範囲bに対応する領域における熱ひずみを算出することができる。熱ひずみは、温度変化と線膨張係数との積である。ひずみセンサ31によって検知されたひずみを熱ひずみに基づいて補正することにより、切削によって生じたひずみをより正確に把握することができる。 Further, referring to FIGS. 8 and 12, in the present embodiment, the strain sensor 31 includes a temperature sensor. That is, in the present embodiment, as the strain sensor 31, a sensor in which the strain sensor 31 and the temperature sensor are integrated is adopted. The temperature sensor does not necessarily have to be integrated with the strain sensor 31, and may be a separate body. In this case, referring to FIG. 8, the temperature sensor is arranged at the same position as the strain sensor 31 in the direction along the rotation axis A. More specifically, with reference to FIGS. 8 and 12, the temperature sensor corresponds to the measurement range b of the strain sensor 31 in the direction along the rotation axis A among the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12. It is arranged at an arbitrary position in the annular region (a band-shaped region whose width corresponds to the measurement range b among the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12). Although the temperature sensor is not essential in the cutting tool of the present disclosure, by adopting the temperature sensor, the measurement range of the strain sensor 31 in the position where the strain sensor 31 is installed or in the outer peripheral surfaces 12A and 12B of the diameter-expanded portion 12 The temperature in the region corresponding to b can be detected. Based on the temperature detected by the temperature sensor, the thermal strain is calculated in the region corresponding to the measurement range b of the strain sensor 31 among the outer peripheral surfaces 12A and 12B of the position where the strain sensor 31 is installed or the enlarged diameter portion 12. be able to. Thermal strain is the product of temperature change and coefficient of linear expansion. By correcting the strain detected by the strain sensor 31 based on the thermal strain, the strain generated by cutting can be grasped more accurately.
 図8を参照して、上記のようにケース本体61内にセンサモジュール80が収容された状態で、ケース本体61の内部に樹脂製の充填材93が充填される。これにより、センサモジュール80がケース本体61に対して固定される。このとき、センサモジュール80が保持部81により保持されていることにより、流動可能状態(固化前)の充填材93の流入によってセンサモジュール80が意図しない位置に移動することが抑制される。そして、蓋(上壁部)22が、側壁部23の端面および拡径部12の端面上に載置された状態で、たとえばねじなどによって拡径部12に対して固定される。このようにして、ケース21は、センサモジュール80を内部に収容した状態で、シャフト部10に対して固定される。
 (切削工具の動作)
With reference to FIG. 8, with the sensor module 80 housed in the case body 61 as described above, the resin filler 93 is filled inside the case body 61. As a result, the sensor module 80 is fixed to the case body 61. At this time, since the sensor module 80 is held by the holding portion 81, it is suppressed that the sensor module 80 moves to an unintended position due to the inflow of the filler 93 in the flowable state (before solidification). Then, the lid (upper wall portion) 22 is placed on the end surface of the side wall portion 23 and the end surface of the diameter-expanded portion 12, and is fixed to the diameter-expanded portion 12 by, for example, a screw. In this way, the case 21 is fixed to the shaft portion 10 in a state where the sensor module 80 is housed inside.
(Operation of cutting tool)
 切削工具1の動作時においては、切削工具1は、回転軸Aまわりに回転する。そして、被加工物に切削チップ91が接触することにより、被加工物が加工される。このとき、シャフト部10のひずみおよび加速度が、それぞれひずみセンサ31および加速度センサ52により検知される。アナログ信号であるひずみおよび加速度の情報は、ADコンバータ54においてデジタル信号に変換された後、無線通信部51により外部へと送信される。ここで、ケース21の蓋(上壁部)22が樹脂製であるため、無線通信部51は、蓋(上壁部)22を通して外部へと信号を送信することができる。この信号は、外部において受信され、分析されることにより、回転軸に垂直な面内におけるシャフト部10の状態が把握される。
 (本実施の形態の効果)
During the operation of the cutting tool 1, the cutting tool 1 rotates around the rotation axis A. Then, when the cutting tip 91 comes into contact with the workpiece, the workpiece is machined. At this time, the strain and acceleration of the shaft portion 10 are detected by the strain sensor 31 and the acceleration sensor 52, respectively. The strain and acceleration information, which is an analog signal, is converted into a digital signal by the AD converter 54 and then transmitted to the outside by the wireless communication unit 51. Here, since the lid (upper wall portion) 22 of the case 21 is made of resin, the wireless communication unit 51 can transmit a signal to the outside through the lid (upper wall portion) 22. By receiving and analyzing this signal externally, the state of the shaft portion 10 in the plane perpendicular to the rotation axis is grasped.
(Effect of this embodiment)
 本実施の形態の切削工具1においては、ひずみセンサ31(温度センサを含む)および加速度センサ52が、シャフト部10のひずみ、温度および加速度を検知し、これらの情報を含む信号が無線通信部51によって外部へと送信される。センサ(ひずみセンサ31および加速度センサ52)および無線通信部51を含むセンサモジュール80は、ケース21に含まれる保持部81によって適切な位置に保持されている。そのため、本実施の形態の切削工具1は、センサモジュール80およびケース21を含むセンサ部20の採用による回転のバランスの悪化が抑制された切削工具1となっている。 In the cutting tool 1 of the present embodiment, the strain sensor 31 (including the temperature sensor) and the acceleration sensor 52 detect the strain, temperature and acceleration of the shaft portion 10, and the signal including these information is the wireless communication unit 51. Is sent to the outside by. The sensor module 80 including the sensors (strain sensor 31 and acceleration sensor 52) and the wireless communication unit 51 is held in an appropriate position by the holding unit 81 included in the case 21. Therefore, the cutting tool 1 of the present embodiment is a cutting tool 1 in which deterioration of the rotation balance is suppressed due to the adoption of the sensor unit 20 including the sensor module 80 and the case 21.
 また、本実施の形態においては、ケース21は、シャフト部10の外周面を取り囲む筒状の側壁部23と、シャフト部10の第1の端部10A側の側壁部23の開口を閉じる底壁部24と、シャフト部10の第2の端部10B側の側壁部の開口を閉じる上壁部22と、を含んでいる。保持部81は、底壁部24に配置されている。その結果、保持部81によってセンサモジュール80を適切な位置に保持することが容易となっている。 Further, in the present embodiment, the case 21 has a bottom wall that closes the opening of the cylindrical side wall portion 23 that surrounds the outer peripheral surface of the shaft portion 10 and the side wall portion 23 on the first end portion 10A side of the shaft portion 10. A portion 24 and an upper wall portion 22 that closes the opening of the side wall portion on the second end portion 10B side of the shaft portion 10 are included. The holding portion 81 is arranged on the bottom wall portion 24. As a result, the holding portion 81 makes it easy to hold the sensor module 80 in an appropriate position.
 また、本実施の形態においては、底壁部24は金属製である。上壁部22は樹脂製である。底壁部24が金属製であることにより、切り屑の衝突に対する十分な耐久性を確保することが容易となっている。上壁部22が樹脂製であることにより、無線通信部51からの信号の外部への送信が容易となっている。 Further, in the present embodiment, the bottom wall portion 24 is made of metal. The upper wall portion 22 is made of resin. Since the bottom wall portion 24 is made of metal, it is easy to ensure sufficient durability against collision of chips. Since the upper wall portion 22 is made of resin, it is easy to transmit the signal from the wireless communication unit 51 to the outside.
 また、本実施の形態においては、センサモジュール80は、センサ(ひずみセンサ31および加速度センサ52)に電力を供給する二次電池98と、二次電池98に接続され、側壁部23において外部に露出する充電ポート99とを含んでいる。これにより、センサへの給電をケース21の内部に配置される二次電池98から行うことができる。また、充電ポート99を側壁部23において外部に露出するように配置することにより、切り屑が充電ポート99に衝突することが抑制されている。 Further, in the present embodiment, the sensor module 80 is connected to the secondary battery 98 that supplies power to the sensors (strain sensor 31 and the acceleration sensor 52) and the secondary battery 98, and is exposed to the outside at the side wall portion 23. Includes a charging port 99 and a charging port 99. As a result, power can be supplied to the sensor from the secondary battery 98 arranged inside the case 21. Further, by arranging the charging port 99 so as to be exposed to the outside on the side wall portion 23, it is suppressed that chips collide with the charging port 99.
 また、本実施の形態においては、保持部81は、一対の壁部である内周壁83および外周壁84を含んでいる。保持部81は、センサモジュール80の一部を内周壁83および外周壁84で挟むことによって保持している。その結果、センサモジュール80を保持部81によって保持することが容易となっている。 Further, in the present embodiment, the holding portion 81 includes a pair of wall portions, an inner peripheral wall 83 and an outer peripheral wall 84. The holding portion 81 holds a part of the sensor module 80 by sandwiching it between the inner peripheral wall 83 and the outer peripheral wall 84. As a result, it is easy to hold the sensor module 80 by the holding portion 81.
 また、本実施の形態においては、固定部材67は、底壁部24に対して固定されている。その結果、センサ部20がシャフト部10に対して相対的に回転することを規制しつつ、センサ部20をシャフト部10に設置することが一層容易となっている。 Further, in the present embodiment, the fixing member 67 is fixed to the bottom wall portion 24. As a result, it is easier to install the sensor unit 20 on the shaft unit 10 while restricting the rotation of the sensor unit 20 relative to the shaft unit 10.
 また、本実施の形態においては、固定部材67には、回転軸Aに沿う方向に貫通するねじ孔64,66が形成されている。固定部材67は、ねじ69によって底壁部24に対して固定されていている。ねじ69は、ねじ孔64,66を貫通し、底壁部24に進入している。その結果、センサ部20をシャフト部10に設置することが一層容易となっている。
 (基板の変形例)
Further, in the present embodiment, the fixing member 67 is formed with screw holes 64 and 66 penetrating in the direction along the rotation axis A. The fixing member 67 is fixed to the bottom wall portion 24 by a screw 69. The screw 69 penetrates the screw holes 64 and 66 and enters the bottom wall portion 24. As a result, it is easier to install the sensor unit 20 on the shaft unit 10.
(Modification example of board)
 リジッド基板である上記実施の形態の基板49に代えて、以下のような変形例の基板49を採用してもよい。図18および図19を参照して、本変形例の基板49は、フレキシブル基板である本体部49Bと、第2領域および第3領域としての第1区域41および第5区域45に少なくとも配置され、本体部49Bよりもヤング率の大きい補強板72と、を含んでいる。本変形例では、補強板72は、第1区域41、第3区域43、第5区域45および第7区域47に配置されている。このように、フレキシブル基板である本体部49Bを採用し、必要な部分のみ補強板72によって補強する構造とすることにより、上記実施の形態と同様の効果を得ることができる。
 (他の変形例)
Instead of the substrate 49 of the above-described embodiment, which is a rigid substrate, the substrate 49 of the following modified example may be adopted. With reference to FIGS. 18 and 19, the substrate 49 of the present modification is arranged at least in the main body 49B which is a flexible substrate and the first area 41 and the fifth area 45 as the second and third regions. It includes a reinforcing plate 72 having a Young's modulus larger than that of the main body 49B. In this modification, the reinforcing plate 72 is arranged in the first area 41, the third area 43, the fifth area 45, and the seventh area 47. As described above, by adopting the main body portion 49B which is a flexible substrate and having a structure in which only the necessary portion is reinforced by the reinforcing plate 72, the same effect as that of the above embodiment can be obtained.
(Other variants)
 上記実施の形態では、ひずみセンサ31および加速度センサ52の2種類のセンサが、それぞれ第1センサおよび第2センサとして採用される場合を説明した。しかし、たとえば第2センサとしての加速度センサ52が省略されてもよい。またひずみセンサ31が省略され、加速度センサ52のみが採用されてもよい。すなわち、第1センサは加速度センサであってもよい。さらに、ひずみおよび加速度以外の他の物理量を検出するセンサが、ひずみセンサ31および加速度センサ52の一方または両方に代えて採用されてもよいし、これらに加えて採用されてもよい。 In the above embodiment, the case where two types of sensors, the strain sensor 31 and the acceleration sensor 52, are adopted as the first sensor and the second sensor, respectively, has been described. However, for example, the acceleration sensor 52 as the second sensor may be omitted. Further, the strain sensor 31 may be omitted and only the acceleration sensor 52 may be adopted. That is, the first sensor may be an acceleration sensor. Further, a sensor that detects physical quantities other than strain and acceleration may be adopted in place of one or both of the strain sensor 31 and the acceleration sensor 52, or may be adopted in addition to these.
 上記実施の形態では、本開示の切削工具の一例としてエンドミルについて説明したが、本開示の切削工具はこれに限られない。本開示の切削工具は、たとえばドリル、フライスカッター、ボーリング、リーマ、タップ等であってもよい。 In the above embodiment, the end mill has been described as an example of the cutting tool of the present disclosure, but the cutting tool of the present disclosure is not limited to this. The cutting tool of the present disclosure may be, for example, a drill, a milling cutter, a boring, a reamer, a tap, or the like.
 上記実施の形態では、シャフト部10の、センサ部20に取り囲まれる領域に配置される拡径部12が、回転軸Aに沿う方向に見て八角形である場合について説明した。しかし、拡径部の平面形状は4n角形(nは2以上の自然数)であればよく、たとえば十二角形、十六角形、二十角形であってもよい。 In the above embodiment, the case where the enlarged diameter portion 12 arranged in the region surrounded by the sensor portion 20 of the shaft portion 10 is octagonal when viewed in the direction along the rotation axis A has been described. However, the planar shape of the enlarged diameter portion may be a 4n square (n is a natural number of 2 or more), and may be, for example, a dodecagon, a hexadecagon, or an icosagon.
 上記実施の形態では、ひずみセンサ31が、八角形の各辺に対応する拡径部12の外周面12A,12Bの各面のうち、回転軸Aを通る垂線が互いに90°をなす拡径部12の外周面12Bの全て(4面)上に配置される場合について説明したが、ひずみセンサは、少なくとも2面上に配置されればよい。より一般化して説明すると、4n角形の各辺に対応する第1領域(拡径部)の外周面の各面のうち、第1の外周面と、第1の外周面との関係で回転軸を通る垂線が互いに90°をなす第2の外周面の合計2つの外周面、またはこれに加えて第1の外周面との関係で回転軸を通る垂線が180°をなす第3の外周面の合計3つの外周面を一組の外周面として、当該一組の外周面のそれぞれにひずみセンサは配置される。回転軸を通る垂線が互いに90°をなす第1の外周面および第2の外周面にひずみセンサを設置することにより、回転軸に垂直な平面内に作用する荷重の大きさと方向とに関する情報を得ることができる。さらに、第3の外周面にもひずみセンサを設置することにより、回転軸に平行な荷重の影響を除去し、回転軸に垂直な平面内に作用する荷重の大きさと方向とに関する情報を、より正確に得ることができる。上記一組の外周面は、複数存在していてもよい。たとえば、上記一組の外周面が2つ存在する場合、2つの外周面または3つの外周面を含む各一組の外周面のそれぞれにひずみセンサは配置される。すなわち、最大6つの外周面にひずみセンサは配置される。2つの一組の外周面の間には、角度の制限はない。 In the above embodiment, the strain sensor 31 has an enlarged diameter portion in which the vertical lines passing through the rotation axis A of the outer peripheral surfaces 12A and 12B of the enlarged diameter portion 12 corresponding to each side of the octagon form 90 ° with each other. Although the case where the strain sensors are arranged on all (four surfaces) of the outer peripheral surfaces 12B of the twelve has been described, the strain sensors may be arranged on at least two surfaces. More generally, of the outer peripheral surfaces of the first region (expanded portion) corresponding to each side of the 4n square, the rotation axis is related to the first outer peripheral surface and the first outer peripheral surface. A total of two outer peripheral surfaces of the second outer peripheral surface in which the vertical lines passing through the outer peripheral surface form 90 ° with each other, or in addition to this, a third outer peripheral surface in which the vertical line passing through the rotation axis forms 180 ° in relation to the first outer peripheral surface. A total of three outer peripheral surfaces are set as a set of outer peripheral surfaces, and strain sensors are arranged on each of the set of outer peripheral surfaces. By installing strain sensors on the first outer peripheral surface and the second outer peripheral surface where the perpendiculars passing through the rotation axis form 90 ° with each other, information on the magnitude and direction of the load acting in the plane perpendicular to the rotation axis can be obtained. Obtainable. Furthermore, by installing a strain sensor on the third outer peripheral surface, the influence of the load parallel to the rotation axis is removed, and information on the magnitude and direction of the load acting in the plane perpendicular to the rotation axis can be obtained. Can be obtained accurately. A plurality of the outer peripheral surfaces of the above set may exist. For example, when there are two sets of outer peripheral surfaces, the strain sensor is arranged on each of the outer peripheral surfaces of each set including the two outer peripheral surfaces or the three outer peripheral surfaces. That is, the strain sensors are arranged on a maximum of six outer peripheral surfaces. There is no angle limit between the two sets of perimeter surfaces.
 上記実施の形態では、第1固定部材63と第2固定部材65とが別体である場合について説明した。しかし、第1固定部材63と第2固定部材65とは一体であってもよい。この場合、第1固定部材63と第2固定部材65とは一体の金属製の部材であってもよい。 In the above embodiment, the case where the first fixing member 63 and the second fixing member 65 are separate bodies has been described. However, the first fixing member 63 and the second fixing member 65 may be integrated. In this case, the first fixing member 63 and the second fixing member 65 may be an integral metal member.
 上記実施の形態では、ケース21の内部が樹脂製の充填材93によって充填される場合について説明した。しかし、充填材93は必須の構成ではなく、たとえば保持部81によりセンサモジュール80が十分強固に保持される場合には省略してもよい。 In the above embodiment, the case where the inside of the case 21 is filled with the resin filler 93 has been described. However, the filler 93 is not an essential configuration and may be omitted if, for example, the sensor module 80 is sufficiently firmly held by the holding portion 81.
 また、上記実施の形態では、保持部81および固定部材67が底壁24に対して固定される場合について説明したが、保持部81および固定部材67の一方または両方が上壁部22に対して固定されてもよい。 Further, in the above embodiment, the case where the holding portion 81 and the fixing member 67 are fixed to the bottom wall 24 has been described, but one or both of the holding portion 81 and the fixing member 67 are fixed to the upper wall portion 22. It may be fixed.
 また、上記実施の形態では、側壁部23が金属製であり、上壁部22が樹脂製である場合について説明した。しかし、上壁部22が金属製であり、側壁部23の少なくとも一部が樹脂製であってもよい。 Further, in the above embodiment, the case where the side wall portion 23 is made of metal and the upper wall portion 22 is made of resin has been described. However, the upper wall portion 22 may be made of metal, and at least a part of the side wall portion 23 may be made of resin.
 また、センサモジュール80は、基板49上に搭載されるスイッチ、可変抵抗および電池ホルダのうち少なくとも1つの部品をさらに含んでいてもよい。この場合、回転軸Aに沿う方向に見て、回転軸Aを通る直線が、基板49の表面のうち上記部品が搭載される部分に対する垂線Lまたは垂線Lとなるように、センサモジュール80は配置されることが好ましい。 Further, the sensor module 80 may further include at least one component of a switch, a variable resistor and a battery holder mounted on the substrate 49. In this case, the sensor module 80 is such that the straight line passing through the rotation axis A when viewed in the direction along the rotation axis A is a perpendicular line LA or a perpendicular line LB with respect to the portion of the surface of the substrate 49 on which the above component is mounted. Is preferably placed.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed this time are exemplary in all respects and are not restrictive in any respect. The scope of the present invention is defined by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 切削工具、10 シャフト部、10A 第1の端部、10B 第2の端部、10C 貫通孔、11 本体部、11A 第1小径部、11B 第2小径部、12 拡径部、12A 外周面、12B 外周面、13 凹部、15 第2凹部、16 第1凹部、16A 底面、20 センサ部、21 ケース、22 蓋、22A 貫通孔、23 側壁部、24 底壁部、30 センサ部品、31 ひずみセンサ、32 配線、33 コネクタ、40 基板モジュール、41 第1区域、42 第2区域、43 第3区域、44 第4区域、45 第5区域、46 第6区域、47 第7区域、48 第8区域、49 基板、49A 折り曲げ可能領域、49B 本体部、51 無線通信部、52 加速度センサ、53 ソケット、54 ADコンバータ、61 ケース本体、61A 貫通孔、62 ねじ孔、63 第1固定部材、63A 内周面、64 ねじ孔、65 第2固定部材、65A 内周面、66 ねじ孔、67 固定部材、72 補強板、80 センサモジュール、81 保持部、82 底壁部、83 内周壁、84 外周壁、85 電池保持部、91 切削チップ、92 ねじ、93 充填材、98 二次電池、98A 配線、98B 配線、99…充電ポート、A 回転軸、L,L 垂線、θ 角度、d,d 深さ、a,b 測定範囲。 1 Cutting tool, 10 Shaft part, 10A 1st end part, 10B 2nd end part, 10C through hole, 11 main body part, 11A 1st small diameter part, 11B 2nd small diameter part, 12 enlarged diameter part, 12A outer peripheral surface , 12B outer peripheral surface, 13 recess, 15 second recess, 16 first recess, 16A bottom surface, 20 sensor part, 21 case, 22 lid, 22A through hole, 23 side wall part, 24 bottom wall part, 30 sensor parts, 31 strain Sensor, 32 wiring, 33 connector, 40 board module, 41 1st area, 42 2nd area, 43 3rd area, 44 4th area, 45 5th area, 46 6th area, 47 7th area, 48 8th area Area, 49 board, 49A bendable area, 49B main body, 51 wireless communication part, 52 acceleration sensor, 53 socket, 54 AD converter, 61 case body, 61A through hole, 62 screw hole, 63 first fixing member, 63A Peripheral surface, 64 screw holes, 65 second fixing member, 65A inner peripheral surface, 66 screw holes, 67 fixing member, 72 reinforcing plate, 80 sensor module, 81 holding part, 82 bottom wall part, 83 inner peripheral wall, 84 outer peripheral wall , 85 Battery holder, 91 Cutting tip, 92 screw, 93 Filling material, 98 Secondary battery, 98A wiring, 98B wiring, 99 ... Charging port, A rotating shaft, LA, LA vertical line, θ angle, d 1 , d 2 depth, a, b measurement range.

Claims (13)

  1.  回転軸に沿って第1の端部から第2の端部まで延びるシャフト部と、
     前記シャフト部の長手方向の一部を取り囲むように配置されるセンサ部と、を備え、
     前記シャフト部の前記回転軸まわりに回転することによって、被加工物を切削する切削工具であって、
     前記センサ部は、
     前記シャフト部の物理量を検知するセンサと、前記センサに電気的に接続される基板と、前記基板に電気的に接続され、前記センサが検知した前記物理量の情報を含む信号を外部へと送信する無線通信部と、を含むセンサモジュールと、
     前記センサモジュールを収容するケースと、を含み、
     前記ケースは、前記センサモジュールを保持する保持部を含む、切削工具。
    A shaft that extends from the first end to the second end along the axis of rotation,
    A sensor portion arranged so as to surround a part of the shaft portion in the longitudinal direction is provided.
    A cutting tool that cuts a workpiece by rotating around the axis of rotation of the shaft portion.
    The sensor unit is
    A sensor that detects the physical quantity of the shaft portion, a substrate that is electrically connected to the sensor, and a signal that is electrically connected to the substrate and contains information on the physical quantity detected by the sensor are transmitted to the outside. The wireless communication unit, the sensor module including, and
    Including a case for accommodating the sensor module.
    The case is a cutting tool that includes a holding portion that holds the sensor module.
  2.  前記第1の端部は、前記被加工物を切削する刃が配置される側の端部であり、
     前記ケースは、
     前記シャフト部の外周面を取り囲む筒状の側壁部と、
     前記シャフト部の前記第1の端部側の前記側壁部の開口を閉じる底壁部と、
     前記シャフト部の前記第2の端部側の前記側壁部の開口を閉じる上壁部と、を含む、請求項1に記載の切削工具。
    The first end portion is an end portion on the side where a blade for cutting the workpiece is arranged.
    The case is
    A cylindrical side wall portion that surrounds the outer peripheral surface of the shaft portion, and
    A bottom wall portion that closes the opening of the side wall portion on the first end side of the shaft portion, and a bottom wall portion.
    The cutting tool according to claim 1, further comprising an upper wall portion that closes an opening of the side wall portion on the second end side of the shaft portion.
  3.  前記保持部は、前記底壁部または前記上壁部に配置される、請求項2に記載の切削工具。 The cutting tool according to claim 2, wherein the holding portion is arranged on the bottom wall portion or the upper wall portion.
  4.  前記底壁部は金属製であり、
     前記上壁部および前記側壁部の少なくとも一部は樹脂製である、請求項2または請求項3に記載の切削工具。
    The bottom wall is made of metal and
    The cutting tool according to claim 2 or 3, wherein at least a part of the upper wall portion and the side wall portion is made of resin.
  5.  前記センサモジュールは、前記センサに電力を供給する二次電池と、
     前記二次電池に接続され、前記側壁部において外部に露出する充電ポートと、をさらに含む、請求項2から請求項4のいずれか1項に記載の切削工具。
    The sensor module includes a secondary battery that supplies electric power to the sensor, and
    The cutting tool according to any one of claims 2 to 4, further comprising a charging port connected to the secondary battery and exposed to the outside at the side wall portion.
  6.  前記保持部は、少なくとも一対の壁部を含み、
     前記保持部は、前記センサモジュールの少なくとも一部を前記少なくとも一対の壁部で挟むことによって保持する、請求項1から請求項5のいずれか1項に記載の切削工具。
    The holding portion includes at least a pair of wall portions.
    The cutting tool according to any one of claims 1 to 5, wherein the holding portion holds at least a part of the sensor module by sandwiching it between the at least a pair of wall portions.
  7.  前記センサ部は、前記ケースを前記シャフト部に対して固定する環状の固定部材をさらに含み、
     前記センサ部により取り囲まれる前記シャフト部の外周面は、第1平坦部を有し、
     前記固定部材の内周面は、前記第1平坦部と前記シャフト部の径方向において対向する第2平坦部を有し、
     前記第1平坦部と前記第2平坦部とが接触することにより前記センサ部が前記シャフト部に対して相対的に回転することが規制される、請求項1から請求項6のいずれか1項に記載の切削工具。
    The sensor portion further includes an annular fixing member that secures the case to the shaft portion.
    The outer peripheral surface of the shaft portion surrounded by the sensor portion has a first flat portion.
    The inner peripheral surface of the fixing member has a second flat portion facing the first flat portion in the radial direction of the shaft portion.
    One of claims 1 to 6, wherein the sensor portion is restricted from rotating relative to the shaft portion when the first flat portion and the second flat portion come into contact with each other. Cutting tool described in.
  8.  前記回転軸に沿う方向に見て、
     前記センサ部により取り囲まれる前記シャフト部の外周面は、前記第1平坦部を含む多角形形状を有し、
     前記固定部材の内周面は、前記多角形形状に対応する部分を有し、前記多角形形状に対応する部分が前記第2平坦部である、請求項7に記載の切削工具。
    Looking in the direction along the axis of rotation,
    The outer peripheral surface of the shaft portion surrounded by the sensor portion has a polygonal shape including the first flat portion.
    The cutting tool according to claim 7, wherein the inner peripheral surface of the fixing member has a portion corresponding to the polygonal shape, and the portion corresponding to the polygonal shape is the second flat portion.
  9.  前記ケースは、
     前記シャフト部の外周面を取り囲む筒状の側壁部と、
     前記シャフト部の前記第1の端部側の前記側壁部の開口を閉じる底壁部と、
     前記シャフト部の前記第2の端部側の前記側壁部の開口を閉じる上壁部と、を含み、
     前記固定部材は、前記底壁部または前記上壁部に対して固定される、請求項7または請求項8に記載の切削工具。
    The case is
    A cylindrical side wall portion that surrounds the outer peripheral surface of the shaft portion, and
    A bottom wall portion that closes the opening of the side wall portion on the first end side of the shaft portion, and a bottom wall portion.
    Includes an upper wall portion that closes the opening of the side wall portion on the second end side of the shaft portion.
    The cutting tool according to claim 7 or 8, wherein the fixing member is fixed to the bottom wall portion or the upper wall portion.
  10.  前記固定部材には、前記回転軸に沿う方向に貫通するねじ孔が形成されており、
     前記固定部材は、ねじによって前記底壁部または前記上壁部に対して固定されており、
     前記ねじは、前記ねじ孔を貫通し、前記底壁部または前記上壁部に進入している、請求項9に記載の切削工具。
    The fixing member is formed with a screw hole penetrating in a direction along the rotation axis.
    The fixing member is fixed to the bottom wall portion or the upper wall portion by a screw, and is fixed to the bottom wall portion or the upper wall portion.
    The cutting tool according to claim 9, wherein the screw penetrates the screw hole and enters the bottom wall portion or the upper wall portion.
  11.  前記シャフト部の外周面には、前記シャフト部の周方向に延びる溝が形成されており、
     前記固定部材の一部が前記溝にはめ込まれている、請求項7から請求項10のいずれか1項に記載の切削工具。
    A groove extending in the circumferential direction of the shaft portion is formed on the outer peripheral surface of the shaft portion.
    The cutting tool according to any one of claims 7 to 10, wherein a part of the fixing member is fitted in the groove.
  12.  前記回転軸に沿う方向に見て、前記回転軸を通る直線が、前記基板の表面のうち前記無線通信部が搭載される部分に対する垂線となるように、前記センサモジュールは配置される、請求項1から請求項11のいずれか1項に記載の切削工具。 The sensor module is arranged so that a straight line passing through the rotation axis when viewed in a direction along the rotation axis is a perpendicular line to a portion of the surface of the substrate on which the wireless communication unit is mounted. The cutting tool according to any one of claims 1 to 11.
  13.  前記センサモジュールは、前記基板上に搭載されるADコンバータ、スイッチ、コネクタ、可変抵抗および電池ホルダからなる群から選択される少なくとも1つの部品をさらに含み、
     前記回転軸に沿う方向に見て、前記回転軸を通る直線が、前記基板の表面のうち前記少なくとも1つの部品が搭載される部分に対する垂線となるように、前記センサモジュールは配置される、請求項1から請求項12のいずれか1項に記載の切削工具。
     
    The sensor module further comprises at least one component selected from the group consisting of AD converters, switches, connectors, variable resistors and battery holders mounted on the substrate.
    The sensor module is arranged such that a straight line passing through the axis of rotation when viewed in a direction along the axis of rotation is a perpendicular line to a portion of the surface of the substrate on which the at least one component is mounted. The cutting tool according to any one of items 1 to 12.
PCT/JP2020/046112 2020-12-10 2020-12-10 Cutting tool WO2022123740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/046112 WO2022123740A1 (en) 2020-12-10 2020-12-10 Cutting tool
JP2022537206A JP7156581B1 (en) 2020-12-10 2020-12-10 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046112 WO2022123740A1 (en) 2020-12-10 2020-12-10 Cutting tool

Publications (1)

Publication Number Publication Date
WO2022123740A1 true WO2022123740A1 (en) 2022-06-16

Family

ID=81973429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046112 WO2022123740A1 (en) 2020-12-10 2020-12-10 Cutting tool

Country Status (2)

Country Link
JP (1) JP7156581B1 (en)
WO (1) WO2022123740A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518048A (en) * 2008-03-17 2011-06-23 エイ. サプロック,クリストファー Smart machining system and smart tool holder used therefor
JP2013115876A (en) * 2011-11-25 2013-06-10 Ihi Corp Secondary battery module
JP2014139950A (en) * 2012-08-21 2014-07-31 Panasonic Corp Lamp and lighting device
CN104139322A (en) * 2014-07-18 2014-11-12 哈尔滨工业大学 Capacitive intelligent knife handle system for detection of four-dimensional cutting force
CN106112694A (en) * 2016-07-08 2016-11-16 燕山大学 A kind of strain-type intelligence handle of a knife system for two dimension Milling Force monitoring
CN110103076A (en) * 2019-05-08 2019-08-09 北京理工大学 A kind of intelligent boring bar system of deep hole boring machining state real-time monitoring
JP2020062746A (en) * 2018-10-01 2020-04-23 京セラ株式会社 Holder, cutting tool and method for producing cutting workpiece
WO2020173562A1 (en) * 2019-02-27 2020-09-03 The Provost, Fellows, Foundation Scholars, & The Other Members Of Board, Of The College Of The Holy & Undiv. Trinity Of Queen Elizabeth Near Dublin System for wireless and passive monitoring of strain during manufacturing processes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668460B2 (en) * 1987-08-17 1994-08-31 ジェイアールスリー インコーポレイティッド Force-moment sensor unit
JP6461629B2 (en) 2015-02-04 2019-01-30 株式会社マキタ Electric tool
JP7443213B2 (en) * 2020-09-28 2024-03-05 株式会社日立製作所 Tool condition detection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518048A (en) * 2008-03-17 2011-06-23 エイ. サプロック,クリストファー Smart machining system and smart tool holder used therefor
JP2013115876A (en) * 2011-11-25 2013-06-10 Ihi Corp Secondary battery module
JP2014139950A (en) * 2012-08-21 2014-07-31 Panasonic Corp Lamp and lighting device
CN104139322A (en) * 2014-07-18 2014-11-12 哈尔滨工业大学 Capacitive intelligent knife handle system for detection of four-dimensional cutting force
CN106112694A (en) * 2016-07-08 2016-11-16 燕山大学 A kind of strain-type intelligence handle of a knife system for two dimension Milling Force monitoring
JP2020062746A (en) * 2018-10-01 2020-04-23 京セラ株式会社 Holder, cutting tool and method for producing cutting workpiece
WO2020173562A1 (en) * 2019-02-27 2020-09-03 The Provost, Fellows, Foundation Scholars, & The Other Members Of Board, Of The College Of The Holy & Undiv. Trinity Of Queen Elizabeth Near Dublin System for wireless and passive monitoring of strain during manufacturing processes
CN110103076A (en) * 2019-05-08 2019-08-09 北京理工大学 A kind of intelligent boring bar system of deep hole boring machining state real-time monitoring

Also Published As

Publication number Publication date
JP7156581B1 (en) 2022-10-19
JPWO2022123740A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7036726B2 (en) Sensor modules, tool holders, and cutting assemblies for cutting tools
US7082865B2 (en) Digital torque wrench
EP3650815B1 (en) Absolute encoder
CN102362163B (en) Torque sensor
JP5007083B2 (en) Force sensor chip
WO2011069515A2 (en) Multiaxial force-torque sensors
WO2022124078A1 (en) Cutting tool
WO2022123740A1 (en) Cutting tool
US6725734B1 (en) Rotation sensor
WO2024047704A1 (en) Milling tool, milling tool system, and sensor device
WO2024047703A1 (en) Milling tool and sensor device
KR101437058B1 (en) Apparatus for the concentricity adjustment and method for concentricity adjustment using the same
JPS6375633A (en) Load detector
JPH07113588B2 (en) Force-moment sensor
JP5208636B2 (en) Measuring instrument for rotating shaft
JP2020125991A (en) Multi-axis sensor
CN110864833A (en) Torque measuring device
US20220118529A1 (en) Tool holder with measuring apparatus
JP7264255B2 (en) Rotary tools and rotary machining systems
CN116985179B (en) Joint module and robot joint
JP7204091B2 (en) torque transducer
US20230286092A1 (en) Intelligent tool holder
WO2021111892A1 (en) Torque sensor
CA3008741C (en) Sensor module and tool holder for a cutting tool
CN118143333A (en) Accurate milling handle of a knife of intelligence based on timely normal position compensation of piezoelectricity drive cutter wearing and tearing high accuracy and state monitoring

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022537206

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965122

Country of ref document: EP

Kind code of ref document: A1