WO2022122921A1 - Process for the biotechnological production of 2-phenylethanols from plant sources - Google Patents

Process for the biotechnological production of 2-phenylethanols from plant sources Download PDF

Info

Publication number
WO2022122921A1
WO2022122921A1 PCT/EP2021/084999 EP2021084999W WO2022122921A1 WO 2022122921 A1 WO2022122921 A1 WO 2022122921A1 EP 2021084999 W EP2021084999 W EP 2021084999W WO 2022122921 A1 WO2022122921 A1 WO 2022122921A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
compound
amino acid
enzyme
cell catalyst
Prior art date
Application number
PCT/EP2021/084999
Other languages
German (de)
French (fr)
Inventor
Michel OELSCHLÄGEL
Anna Stuhr
André Pollender
Dagmar Ganz
Michael SCHLÖMANN
Original Assignee
Technische Universität Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Bergakademie Freiberg filed Critical Technische Universität Bergakademie Freiberg
Publication of WO2022122921A1 publication Critical patent/WO2022122921A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/14011Styrene monooxygenase (1.14.14.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/99Other intramolecular oxidoreductases (5.3.99)
    • C12Y503/99007Styrene-oxide isomerase (5.3.99.7)

Definitions

  • the invention relates to a process for the biocatalytic synthesis of 2-phenylethanols, in particular 3-hydroxytyrosol, a whole-cell catalyst, in particular a recombinant microorganism, and its use for the biocatalytic synthesis of a 2-phenylethanol by biocatalytic conversion from plant starting materials such as cinnamic acids, in particular caffeic acid.
  • 3-Hydroxytyrosol is considered one of the strongest known antioxidants and inhibits cell aging and degeneration processes triggered by free radicals. Thanks to its antioxidant effect, it prevents diseases such as cancer, arteriosclerosis or Alzheimer’s (Hu et al. 2014). Furthermore, positive effects on widespread diseases such as diabetes, on the cardiovascular system, the nervous system and the gastrointestinal tract are proven. Scientific studies have also demonstrated a strong antimicrobial effect against various types of pathogenic bacteria (Tafesh et al. 2011). Antiviral properties, e.g. against HIV, have also been proven (Bedoya et al. 2016).
  • 3-Hydroxytyrosol occurs naturally in some plants, especially olives and parts of the olive tree, but at low levels. In addition to extractive production, there are therefore biotechnological and chemical processes for the production of 3-hydroxytyrosol.
  • 3-hydroxytyrosol is obtained in the aqueous liquid that is produced when the olives are pressed and is known as vegetation water.
  • a disadvantage here is the complex product preparation for isolating the pure 3-hydroxytyrosol from the complex mixture of substances with structurally similar compounds. Fernandez-Bolanos et al. describe the use of large amounts of organic solvents to isolate 3-hydroxytyrosol from vegetation water (Fernandez-Bolanos et al. 2002).
  • the vegetation water is used directly in further processing.
  • consistent product quality is difficult here, since vegetation water is a complex solution.
  • 3-hydroxytyrosol in varying concentrations, depending on the batch. Consequently, those made from them differ Products with regard to their ingredients, even if the same content of 3-hydroxytyrosol is always set (Bellumori et al. 2019). This problem can only be avoided by using purified 3-hydroxytyrosol.
  • Another disadvantage of extractive production using olives is the dependence on harvest cycles.
  • US 2010/0047887 A1 and US 2010/0068775 A1 disclose a method and a microorganism for converting tyrosol to 3-hydroxytyrosol by means of hydroxylases, preferably in the presence of vitamin C (ascorbic acid) and glutathione.
  • US 2010/0047887 A1 describes product amounts of up to 8 mM in 16 h. With a cell concentration with an ODeoo in the range from 21 to 60, 3-hydroxytyrosol concentrations in the range from 1.6 to 1.8 g/l are achieved in a few hours, which corresponds to yields in the range from 58 to 65%.
  • US 2010/0068775 A1 describes conversions with up to 7.8 mM 3-hydroxytyrosol in 18 h or yields of up to 91%. The disadvantage here is that expensive tyrosol is used as the starting material. US 2010/0047887 A1 and US 2010/0068775 A1 also describe the use of expensive co-substrates such as vitamin C or glutathione.
  • CN 107201331 A and CN 107586794 A describe the use of cheaper glucose, which is first converted into 4-hydroxyphenylpyruvate by the shikimate metabolism in the bacterial cell, converted into tyrosol via 4-hydroxyphenylacetaldehyde and finally hydroxylated into 3-hydroxytyrosol.
  • the disadvantage of the processes starting from glucose is low amounts of 3-hydroxytyrosol, in particular CN 107586794 A discloses a product amount of 0.65 g/l after 48 hours.
  • CN 107201331 A describes conversions of up to 0.4 g/l.
  • WO 2012/135389 A2 discloses the production of 0.08 mM 3-hydroxytyrosol when using glucose (see WO 2012/135389 A2 Fig. 7).
  • CN 109295113 A, WO 2012/135389 A2 and WO 2017/223569 A1 describe the use of a decarboxylase or an amino acid transferase and a dehydrogenase; a monoamine oxidase and an alcohol dehydrogenase for the synthesis of 3-hydroxytyrosol from L-3,4-dihydroxyphenylalanine.
  • WO 2012/135389 A2 discloses amounts of product in the range from 0.47 to 0.74 mM with direct use of the intermediates L-3,4-dihydroxyphenylalanine or dopamine as substrate.
  • the disadvantage here is that expensive starting materials are used.
  • Shanker et al. disclose the conversion of ferulic acid to acetovanillon (apocynin) using Rhizopus oryzae cells, forming acetovanillon as the major metabolite, dihydroferulic acid, coniferyl alcohol, and dihydroconiferyl alcohol as by-products, and vanillin, vanillyl alcohol, vanillic acid, and phenylethyl alcohol as trace products ( ⁇ 1-3%) ( Shanker et al 2007).
  • Mabinya et al. disclose the bioconversion of ferulic acid and 4-vinylguaiacol by a white-rot fungus isolated from decaying wood, with 4-vinylguaiacol being further converted to acetovanillon (Mabinya et al. 2010). Furthermore, Mabinya et al. the formation of vanillin and vanillic acid, as well as 2-phenylethanol, 4-ethyl-2-methoxyphenol, 1-(2,3-dihydroxy-4-methoxy-6-methylphenyl)-ethanone, 4,5-dimethoxy-2-methylphenol and vanillic acid ethyl ester as by-products.
  • Zhou et al. describe an enantioselective one-pot synthesis of D-phenylglycines from racemic mandelic acids, styrenes or bio-based L-phenylalanine via cascade biocatalysis using a recombinant Escherichia coli LZ110, which co-expresses four enzymes (Zhou et al. 2017). Furthermore, Zhou et al. the use of E. coli LZ116 expressing seven enzymes to convert styrene to enantiopure D-phenylglycine, and the use of E. coli LZ143 expressing nine enzymes to convert L-phenylalanine to enantiopure D-phenylglycine.
  • EP 2 114 846 B1 or CN 101641316 A describes the preparation of 3-hydroxytyrosol from 4-chloroacetylcatechol using metal formate and formic acid in an aqueous solution and catalytic hydrogenation using a noble metal catalyst, preferably palladium (Pd) or ruthenium (Ru), in particular Pd/C or Ru/C, in an organic solvent, especially a liquid alkyl ester.
  • a noble metal catalyst preferably palladium (Pd) or ruthenium (Ru), in particular Pd/C or Ru/C
  • Pd/C or Ru/C ruthenium
  • a five-stage process starting from 3,4-dihydroxybenzene (CN 103664536 A) is also known.
  • CN 103664536 A describes the protection of the two phenol groups by the synthesis of 1,2-methylenedioxybenzene using dichloromethane, a Friedel-Crafts reaction to produce 3,4-methylenedioxyacetophenone, a Wolff-Kishner-Huangminglong reduction to produce 3,4 -methylenedioxyphenylacetic acid, a reduction to produce 3,4-methylenedioxyphenylethanol and a deprotection using boron tribromide or Pd/C.
  • a disadvantage of chemical processes is that they require expensive starting materials such as 3,4-dimethoxyphenylethanol in addition to expensive catalysts such as palladium. Furthermore, the use of petrochemical feedstocks is not sustainable.
  • the object of the present invention is to provide a method for synthesizing compounds of formula (V), which overcomes the disadvantages of the prior art, in particular to provide a cheaper, biotechnological method for synthesizing compounds of formula (V), with increased product quantities are obtained.
  • the object is achieved by the method according to the invention for the biocatalytic synthesis of a compound according to formula (V) by the biocatalytic conversion of a substance comprising at least one compound
  • R 1 is -H or -OH
  • R 2 is -H, -OH or -OCH3
  • a) providing at least one whole cell catalyst comprising i. a gene coding for an enzyme phenolic acid decarboxylase and ii. at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and iii. a gene coding for an enzyme styrene oxide isomerase, and iv.
  • a gene coding for an enzyme alcohol dehydrogenase, and at least one promoter for the controllable expression of genes i) to iv) in an aqueous medium b) activation of the whole cell catalyst with an inducer, the inducer leading to the expression of genes i) to iv).
  • a substance comprising at least one compound of formula (I) wherein the at least one compound of formula (I) is reacted with the enzymes defined in (a) to form a compound of formula (V).
  • the whole-cell catalyst there is no significant further metabolization of the compound of formula (V), ie no significant further conversion of the compound of formula (V) by the whole-cell catalyst.
  • the person skilled in the art can evaluate whether potentially disruptive metabolic pathways are present in the cell, for example disruptive genes in the tyrosine metabolism (in particular homoprotocatechuate degradation) or in the Phenylalanine metabolism (ring-opening mechanisms in dihydroxylated aromatic structures).
  • potentially disruptive metabolic pathways the possibility of inactivating such disruptive metabolic pathways by means of genetic engineering methods (negative mutant) or via targeted culture management (e.g.
  • the method according to the invention takes place with the sequence of steps a), b) and c), steps b) and c) taking place simultaneously or step c) taking place after step b).
  • the process according to the invention preferably takes place with the sequence of steps a), b) and c), with steps b) and c) taking place simultaneously.
  • the inventive method has the advantage that through the use of whole-cell catalysts, which express a phenolic acid decarboxylase, a monooxygenase comprising an oxygenase subunit and / or a reductase subunit, a styrene isomerase and an alcohol dehydrogenase, all enzymes simultaneously for the biocatalytic Synthesis of 2-phenylethanols, preferably 3-hydroxytyrosol.
  • the compound according to formula (I) is preferably a trans compound.
  • At least one of Ri and R2 is a hydroxy group.
  • the compound of formula (I) is selected from caffeic acid (3-(3,4-dihydroxyphenyl)propenoic acid), cinnamic acid (3-phenylpropenoic acid), 3-hydroxycinnamic acid, p-coumaric acid (4-hydroxycinnamic acid), 3-methoxycinnamic acid and ferulic acid (4-hydroxy-3-methoxycinnamic acid).
  • the compound according to formula (I) is preferably caffeic acid.
  • the compound of formula (V) is selected from 3-hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol), 2-(3-hydroxyphenyl)ethanol, 2-(4-hydroxyphenyl)ethanol, 2-(3- methoxyphenyl)ethanol and 2-(4-hydroxy-3-methoxy-phenyl)ethanol (homovanillyl alcohol).
  • the compound of formula (V) is preferably 3-hydroxytyrosol.
  • Ri and R2 are each a hydroxy group.
  • the term "whole cell catalyst” means a catalytically active cell.
  • the whole cell catalyst is an authentic microorganism (ie natural or unmodified microorganism) or a genetically modified microorganism.
  • a “genetically modified microorganism” is understood to mean a microorganism with at least one mutation, deletion or substitution in the genome or a microorganism in which further genes would be made available via additionally introduced vectors. The combination of artificial changes in the genome and introduction by means of vectors is also included here.
  • the genetically engineered microorganism is a knockout mutant or a deletion mutant of an authentic microorganism (i.e., an authentic microorganism with at least one gene knockout to inactivate a particular gene) (negative mutant) and/or an insertion mutant.
  • insertion mutation is understood to mean the introduction of at least one gene by genome insertion or by introduction of expression vectors.
  • the whole cell catalyst is a recombinant bacterial cell.
  • the bacterial cell is selected from Escherichia, Arthrobacter, Bacillus, Rhodococcus, Pseudomonas, Sphingobium, Sphingopyxis, Corynebacterium, Marinobacterium, Variovorax and Gordonia, preferably from Escherichia coli, Rhodococcus opacus 1 CP, Rhodococcus species ST-5, Pseudomonas fluorescens ST, Corynebacterium species AC-5, Pseudomonas putida CA-3, Pseudomonas putida 312 and Variovorax paradoxus EPS.
  • the bacterial cell is Escherichia coli, in particular a derivative of strain BL21 or strain B.
  • the whole cell catalyst is Escherichia coli with insertion mutation.
  • the nucleotide sequences of genes i.) to iv.) include authentic and/or artificial reading frames.
  • An artificial reading frame is preferably adapted to the "codon usage" of the host organism via gene synthesis.
  • suitable genes i.) to iv.) by methods known per se, such as by polymerase chain reaction (PCR) using short, synthetic nucleotide sequences (primers) starting from the DNA of conceivable donor organisms, amplified and then isolated.
  • the primers used are generally produced using known gene sequences due to existing homologies with genes i.) to iv.).
  • the genes can also be constructed using gene synthesis, which allows additional adaptations of the genes.
  • the vector for cloning an amplified gene is of low molecular mass and has selectable genes to result in a readily recognizable phenotype in a cell, allowing for easy selection of vector-containing and vector-free host cells.
  • the expression vector should have at least one strong promoter and/or regulatory sequence.
  • promoters are introduced in front of the genes by means of a PCR (via the primers) or by means of gene synthesis.
  • a ribosomal binding site (RBS) is expediently introduced in front of each gene by means of a vector, PCR or gene synthesis for optimal translation.
  • An origin of replication is also important for replication of the vector. For example, pET vector systems based on antibiotic selection, among others, are suitable.
  • microorganisms are known to those skilled in the art, with the microorganisms being cultured continuously or discontinuously in a batch process (batch cultivation) or in a fed-batch (feed process) or repeated fed-batch process (repetitive feed process) for the purpose of cultivation or biocatalytic conversion of a substance comprising a compound according to formula (I) are cultivated.
  • the cultivation takes place in shake flasks or in a fermenter.
  • the cultivation preferably takes place under physiological conditions at a temperature in the range from 10° C. to 50° C., preferably in the range from 20° C. to 40° C., particularly preferably in the range from 23° C. to 37° C., with the pH Value of the aqueous component is preferably in the range from 5.8 to 8.5, particularly preferably in the range from 6.5 to 8.0.
  • the whole-cell catalyst is provided with a low bacterial density, preferably with an ODeoo in the range from 0.3 to 1.7, particularly preferably with an ODeoo in the range from 0.5 to 1.1.
  • the whole-cell catalyst expediently has a low bacterial density, preferably with an ODeoo in the range from 0.3 to 1.7, particularly preferably with an ODeoo in the range from 0.5 to 1.1 , before.
  • ODeoo is a measure of the bacterial density, which is measured using UV/Vis spectroscopy or a photometer at a wavelength of 600 nm.
  • the at least one whole-cell catalyst is provided in step a) by inoculating a main culture using a preculture with an ODfeoo in the range from 0.7 to 5, so that the main culture has an ODeoo of at most 0.1, and then growing the main culture up to to an ODeoo in the range from 0.3 to 1.7, particularly preferably up to an ODeoo in the range from 0.5 to 1.1, at which the induction (step b) is carried out and the conversion (step c) is started.
  • the genes i.) to iv.) are naturally present in the whole-cell catalyst according to the invention or are introduced by genetic engineering methods.
  • a phenolic acid decarboxylase is an enzyme in bacteria that catalyzes the cleavage of a carboxy group (-COOH) from organic acids, particularly phenolic acids.
  • the whole cell catalyst comprises a phenolic acid decarboxylase capable of converting compound (I) to compound (II) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the whole-cell catalyst has at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase.
  • an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase.
  • styrene monooxygenase and indole monooxygenase have a substrate spectrum which enables high conversion of the compounds according to the invention.
  • An oxygenase is an enzyme in bacteria that incorporates at least one oxygen atom into an organic compound, forming at least one new hydroxy, carboxy, or epoxy group.
  • the oxygenase is a monooxygenase, i. H. an enzyme that incorporates an oxygen atom into an organic compound.
  • a styrene monooxygenase is an enzyme in bacteria that chemically reacts styrene with flavin adenine dinucleotide (FADH2) according to the reaction:
  • FAD is regenerated by the reductase subunit of styrene monooxygenase using NADH.
  • An indole monooxygenase is an enzyme in bacteria that chemically reacts indole with flavin adenine dinucleotide (FADH2) according to the reaction:
  • a reductase is an enzyme which catalyses the reduction of an organic compound, in particular FAD, with the simultaneous oxidation of a co-substrate, in particular NADH.
  • the whole cell catalyst comprises at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of converting compound (II) to compound (III) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the enzyme comprising an oxygenase subunit and/or a reductase subunit is a fusion protein.
  • a styrene oxide isomerase is an enzyme in bacteria that catalyzes the chemical conversion of unsubstituted or substituted styrene oxides to unsubstituted or substituted phenylacetaldehydes.
  • the whole cell catalyst comprises a styrene oxide isomerase capable of converting compound (III) to compound (IV) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • Alcohol dehydrogenase is an enzyme that catalyzes the chemical conversion of alcohols into aldehydes or ketones and the reverse reaction.
  • the enzyme is dependent on cofactors. Cofactors NADH, NADPH or cytochrome C are preferred.
  • Alcohol dehydrogenases often have a broad substrate spectrum, which is why a larger number of alcohol dehydrogenases can be used in the method according to the invention. Furthermore, advantageously, several alcohol dehydrogenases occur naturally in bacterial cells, which is why authentic alcohol dehydrogenases can be used in some whole-cell catalysts.
  • the whole cell catalyst comprises an alcohol dehydrogenase capable of converting compound (IV) to compound (V) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the corresponding gene and amino acid sequences for the enzymes mentioned are well known to the person skilled in the art or can be found in known databases (e.g. NCBI, RCSB PDB, UniProt, PDB Europe) can be taken.
  • the whole cell catalyst comprises i. At least two genes coding for an enzyme phenolic acid decarboxylase and/or ii. at least two genes coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and/or iii. at least two genes coding for an enzyme styrene oxide isomerase, and/or iv. at least two genes coding for an enzyme alcohol dehydrogenase, it being possible for the genes coding for an enzyme to be identical or different in each case.
  • two different genes for an enzyme allow an increase in the substrate spectrum. Furthermore, advantageously, two different genes for an enzyme allow a variation of the expression and thus an optimization of the running time of the method according to the invention.
  • the whole cell catalyst comprises i. an enzyme phenolic acid decarboxylase capable of compound (I) (N) to implement, and ii. at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of compound (II) to compound (III) implement, and iii. an enzyme styrene oxide isomerase capable of compound (III)
  • (IV) implement, and iv. an enzyme alcohol dehydrogenase capable of compound (IV) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the whole-cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, preferably with at least 95% sequence identity with a Sequence selected from SEQ ID No. 1 to SEQ ID No. 3, particularly preferably with at least
  • the whole cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
  • the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
  • the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9.
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9.
  • a whole-cell catalyst with an oxygenase subunit with an amino acid sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9 shows a higher conversion for hydroxylated, especially 3,4-dihydroxylated, compounds.
  • the whole cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15
  • the whole cell catalyst comprises a reductase subunit having an amino acid sequence selected from SEQ ID no. 10 to SEQ ID No. 15
  • the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, preferably SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9; and/or a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15
  • the enzyme comprising an oxygenase subunit with an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9 and/or a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15 by hydroxylated, in particular 3,4-dihydroxylated, intermediates which can occur in the process of the invention.
  • the whole-cell catalyst comprises a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, preferably with at least 95% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, particularly preferably with at least 98% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
  • the whole cell catalyst comprises a styrene oxide isomerase having an amino acid sequence selected from SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
  • the whole cell catalyst comprises i. a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, and ii. an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, and iii. a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, and iv. a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 13.
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
  • the whole-cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
  • the alcohol dehydrogenase is naturally occurring in the whole cell catalyst.
  • promoter means a nucleotide sequence on the DNA that enables the regulated expression of a gene.
  • genes coding for an enzyme phenolic acid decarboxylase, an enzyme comprising an oxygenase subunit and/or a reductase subunit, a styrene oxide isomerase and an alcohol dehydrogenase are functionally under the control of at least one regulatable promoter, with the promoters being identical or interrelated can be different.
  • the whole-cell catalyst is activated in a signal-dependent manner by contacting the whole-cell catalyst with an inductor, also activator, the induction the expression of the genes is signal-dependently induced and the whole-cell catalyst is converted into its active form.
  • the inducers preferably activate the regulatable promoter by interacting directly with a regulatable promoter or by binding to a repressor protein which then detaches from the promoter.
  • the at least one promoter for the regulatable expression of genes i) to iv) is a common promoter.
  • genes i) to iv) are each functionally under the control of a regulatable promoter.
  • the regulatable promoters differ from one another, such that the promoters can be activated in a primary signal-specific manner.
  • the presence of different inducers and/or activators in the whole-cell catalyst can thus advantageously lead to the expression of selected genes, as a result of which the stress for a recombinant cell is minimized.
  • promoters e.g. B. T7 promoter in pET16 expression systems that can be used for a method according to the invention are known to the person skilled in the art or can be found in known databases (eg EPD, TRED, MPromDB).
  • promoters introduced artificially into organisms and naturally occurring promoters can be used.
  • the term “inductor” is understood to mean a mostly low-molecular compound which switches on the genes required for the method according to the invention or inactivates an existing repressor so that the genetic information of the genes can be converted into proteins or enzymes.
  • the inducer is selected from isopropyl- ⁇ -D-thiogalactopyranoside (IPTG), tryptophan, or sugars such as arabinose or lactose.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • tryptophan or sugars such as arabinose or lactose.
  • sugars such as arabinose or lactose.
  • the inducer is a substrate inducer when using a corresponding promoter.
  • a substrate inducer is preferably glucose, an aromatic and/or aliphatic alcohol, styrene or a derivative thereof.
  • the inducer is isopropylb ⁇ -D-thiogalactopyranoside (IPTG).
  • the contacting of the whole-cell catalysts with an inducer preferably takes place in a concentration of the inducer based on the total volume of the aqueous component of between 10 pM and 1500 pM, particularly preferably between 100 pM and 1200 pM, very particularly preferably between 500 pM and 1000 pM.
  • the inductor is preferably added once.
  • At least step) takes place in a single-phase aqueous system or in a two-phase system.
  • a "two-phase system” is understood to mean a mixture of two solvents which are immiscible.
  • water or an aqueous medium is used as the first phase and a polar, organic solvent or an ionic liquid which is substantially immiscible with water is used as the second phase, the compound of the formula (I), the intermediates (II ) to (IV) and/or the product (V) preferably accumulates in the organic phase.
  • the organic phase advantageously protects the cells which are in the aqueous phase from the harmful effects of greater concentrations of the intermediates (II) to (IV) and from a high concentration of the product (V).
  • substantially water-immiscible polar organic solvents are ethyl acetate, n-octanol, n-decanol, or solvents with a comparable polarity.
  • the solvents mentioned are expediently suitable for the compounds of the formulas (I) to (V).
  • a biocatalytic conversion to a corresponding reaction product of the formula (V) takes place within a whole-cell catalyst.
  • the compound of formula (I) is resorbed by the whole cell catalyst, i. H. absorbed into the cell and biocatalytically converted by the enzymes of the whole-cell catalyst.
  • the whole-cell catalyst is preferably brought into contact with a compound according to formula (I) by direct addition of the substance to the culture medium as a solution and/or solid.
  • a compound according to formula (I) When added directly to the whole-cell biocatalyst, an organic phase can also be used as a substrate reservoir.
  • the substance comprising at least one compound according to formula (I) is a pure substance, a plant component or a plant extract.
  • Plant waste for example potato peelings or coffee residues from roasting plants, can also be used advantageously in the method according to the invention.
  • the use of a plant component or a plant extract comprising a compound according to formula (I) uses renewable raw materials and thus provides a sustainable process
  • the compound of formula (I) is caffeic acid.
  • Caffeic acid is expediently obtained from various plants or by enzymatic synthesis from other plant constituents, such as chlorogenic acid. Suitable plants for obtaining chlorogenic acid and/or caffeic acid include mugwort, stinging nettle, yarrow, coffee, potatoes or goutweed.
  • the substance comprising a compound of formula (I) is preferably mixed with a total concentration of the compound of formula (I) in the range of 5 mM and 30 mM, more preferably in the range of 10 mM and 25 mM, most preferably in the range of 15 mM and 20 mM used in a biocatalytic conversion and can be tracked continuously or discontinuously.
  • portion sizes in the range of 3mM to 8mM with batch addition or in the range of 1mM to 2mM per hour with continuous addition are particularly suitable .
  • aqueous medium is understood to mean a liquid comprising water.
  • the aqueous component must suitably meet the requirements of the whole-cell catalyst.
  • compositions of aqueous components, in particular culture media, for various microorganisms are known to those skilled in the art and are described, for example, by Panke et al. described (Panke et al. 1999).
  • Other additives e.g. carbon sources, Nitrogen sources, metal salts
  • buffer compounds such as e.g. B. hydrogen phosphate salts or TRIS; and basic compounds such as B. sodium hydroxide, potassium hydroxide or ammonia; or acidic compounds such as B. phosphoric acid or sulfuric acid; used in an appropriate manner.
  • phosphate-buffered media are used in the method according to the invention (Panke et al. 1999), with glucose being used as the carbon source.
  • Glucose is preferably initially used for culturing at a concentration in the range from 10 mM to 15 mM, based on the culture volume which contains the whole-cell catalyst.
  • glucose with a total concentration in the range of 40 mM to 60 mM is added in addition to the initial portion, preferably by means of continuous addition in the range of 2 mM to 4mM per hour.
  • the glucose can be added as a solution or as a solid.
  • antifoams such as B. fatty acid polyglycol esters or n-octanol; be used.
  • the aqueous component can include antibiotics such. B. chloramphenicol, ampicillin or kanamycin; to be added.
  • bacterial cells with partially inactivated metabolic pathways e.g. auxotrophic mutants
  • Bacterial cells are preferably used in the method according to the invention which contain at least one antibiotic resistance gene on an (expression) vector containing at least one gene defined in i.) to iv.).
  • the method according to the invention takes place under aerobic conditions.
  • oxygen or oxygen-containing gas mixtures such as. As air, entered into the aqueous component.
  • step c) takes place in a period of time in the range from 0 h to 2 h, preferably 0 h to 1 h, particularly preferably 0 h to 0.5 h after step b).
  • the highest conversion was obtained when inductor and substrate were added at the same time.
  • a standard pre-induction of a whole-cell catalyst with an inductor takes place for a few hours, in particular 6 h to 14 h, before the actual addition of the substrate to start the conversion.
  • the method according to the invention comprises at least one further step, the at least one further step being isolation of the compound of the formula (V) after steps a) to c).
  • the purification of the compound of the formula (V), obtained by means of the process according to the invention, is advantageously simpler than in the case of extraction by extraction, since fewer structurally similar ingredients have to be separated off.
  • the reaction product of the formula (V) is advantageously secreted by the whole-cell catalyst into the aqueous component, which promotes the isolation of at least one reaction product of the formula (V) from the biomass and the aqueous component.
  • the reaction product of the formula (V) is preferably isolated stepwise from the biomass and the aqueous component, the biomass being separated off from the aqueous component containing a reaction product of the formula (V) in a first step by centrifugation or filtration.
  • the compound of formula (V) is isolated by extraction of the aqueous component with an organic solvent selected from ethyl acetate, n-octanol, n-decanol or an aromatic and/or aliphatic solvent with comparable polarity.
  • the organic solvents mentioned are used in a single-phase, aqueous system for extraction after conversion of a compound of the formula (V).
  • the organic solvents mentioned serve in a two-phase system in the form of a second phase in addition to the aqueous component as a reservoir for a compound of formula (I) and/or for separating off a compound of formula (V).
  • solid phase extraction is also suitable for product separation.
  • Possible solid-phase materials include commercially available hydrophobic copolymers consisting of monomers of styrene, styrene derivatives, benzene, vinylbenzenes and/or vinylpyrrolidone, which, among other things, can also be polar modified or can contain groups with ion exchange properties.
  • the target product is expediently eluted from these materials with methanol or ethanol and/or by varying the pH.
  • the purification of the compound of formula (V) is followed by distillation after the liquid extraction or solid-phase extraction, the organic solvent preferably being separated off.
  • the organic solvent is removed by evaporation at a pressure in the range from 0.1 mbar to 1000 mbar, preferably in the range from 0.1 mbar to 750 mbar, particularly preferably in the range from 1 mbar to 400 mbar.
  • the product obtained can then be taken up in water and/or purified using preparative high-performance liquid chromatography. Depending on the work-up, the separated organic solvent can be used again for the next extraction or elution.
  • Another aspect of the invention relates to a whole cell catalyst comprising: i. a gene coding for an enzyme phenolic acid decarboxylase and ii. at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and iii. a gene coding for an enzyme styrene oxide isomerase, and iv. a gene coding for an enzyme alcohol dehydrogenase, and at least one promoter for the controllable expression of genes i) to iv).
  • the whole cell catalyst is a recombinant microorganism, preferably a recombinant bacterial cell.
  • the bacterial cell is selected from Escherichia, Arthrobacter, Bacillus, Rhodococcus, Pseudomonas, Sphingobium, Sphingopyxis, Corynebacterium, Marinobacterium, Variovorax and Gordonia, preferably from Escherichia coli, Rhodococcus opacus 1 CP, Rhodococcus species ST-5, Pseudomonas fluorescens ST, Corynebacterium species AC-5, Pseudomonas putida CA-3, Pseudomonas putida 312 and Variovorax paradoxus EPS.
  • the bacterial cell is Escherichia coli, in particular a derivative of strain BL21 or strain B.
  • the whole cell catalyst is Escherichia coli with insertion mutation.
  • insertion mutation is understood to mean the introduction of at least one gene by genome insertion or by introduction of expression vectors.
  • the nucleotide sequences of genes i.) to iv.) include authentic and/or artificial reading frames.
  • An artificial reading frame is preferably adapted to the "codon usage" of the host organism via gene synthesis.
  • the whole cell catalyst comprises a phenolic acid decarboxylase capable of converting compound (I) to compound (II) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the whole-cell catalyst has at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a monooxygenase, particularly preferably a styrene monooxygenase or an indole monooxygenase.
  • the whole cell catalyst comprises at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of converting compound (II) to compound (III) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the enzyme comprising an oxygenase subunit and/or a reductase subunit is a fusion protein, preferably according to SEQ ID no. 14 or SEQ ID no. 15
  • the whole cell catalyst comprises a styrene oxide isomerase capable of converting compound (III) to compound (IV) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the whole cell catalyst comprises an alcohol dehydrogenase capable of converting compound (IV) to compound (V) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the whole cell catalyst comprises i. At least two genes coding for an enzyme phenolic acid decarboxylase and/or ii. at least two genes coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and/or iii. at least two genes coding for an enzyme styrene oxide isomerase, and/or iv. at least two genes coding for an enzyme alcohol dehydrogenase, it being possible for the genes coding for an enzyme to be identical or different in each case.
  • the whole cell catalyst comprises i.
  • an enzyme phenolic acid decarboxylase capable of compound (I) implement, and ii. at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of compound (II) to compound (III) implement, and iii. an enzyme styrene oxide isomerase capable of compound (III) to connection (IV) implement, and iv. an enzyme alcohol dehydrogenase capable of compound (IV) where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
  • the whole-cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
  • the whole cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
  • the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
  • the whole-cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15
  • the whole cell catalyst comprises a reductase subunit having an amino acid sequence selected from SEQ ID no. 10 to SEQ ID No. 15
  • the whole-cell catalyst comprises a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, preferably with at least 95% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, particularly preferably with at least 98% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
  • the whole cell catalyst comprises a styrene oxide isomerase having an amino acid sequence selected from SEQ ID no. 16, SEQ ID NO. V or SEQ ID No. 18
  • the whole cell catalyst comprises i. a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, and ii. an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, and iii. a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, and iv. a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID No. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 13.
  • the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
  • the whole-cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
  • the alcohol dehydrogenase is naturally occurring in the whole cell catalyst.
  • genes coding for an enzyme phenolic acid decarboxylase, an enzyme comprising an oxygenase subunit and/or a reductase subunit, a styrene oxide isomerase and an alcohol dehydrogenase are functionally under the control of at least one regulatable promoter, with the promoters being identical or interrelated can be different.
  • the at least one promoter for the regulatable expression of genes i) to iv) is a common promoter.
  • genes i) to iv) are each functionally under the control of a regulatable promoter.
  • the regulatable promoters differ from one another, such that the promoters can be activated in a primary signal-specific manner.
  • promoters e.g. B. T7 promoter in pET16 expression systems that can be used for a method according to the invention are known to the person skilled in the art or can be found in known databases (eg EPD, TRED, MPromDB).
  • promoters introduced artificially into organisms and natural promoters can be used.
  • the invention also includes the use of a whole-cell catalyst according to the invention for the biocatalytic synthesis of a compound according to formula (V), by the biocatalytic conversion of a substance comprising at least one compound according to formula (I) wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3.
  • step 1 shows the influence of the pre-induction period (step b) before addition of the substrate caffeic acid (step c) on the formation of 3-hydroxytyrosol.
  • Example 2 shows the course of the conversion of caffeic acid into 3-hydroxytyrosol with a whole-cell catalyst according to the invention in the fermenter.
  • Example 1 Whole-cell catalyst according to the invention
  • the BL21 variant of Escherichia coli is used, which has its own alcohol dehydrogenase.
  • Escherichia coli T7Express lysY/lq or Escherichia coli BL21 (DE3)pLysS are particularly suitable.
  • the whole-cell catalyst according to the invention comprises SEQ ID no. 1 , SEQ ID No. 9, SEQ ID No. 15 with SEQ ID no. 17 (catalyst A) or SEQ ID no. 1 , SEQ ID No. 8, SEQ ID No. 14 with SEQ ID no. 17 (catalyst B) or SEQ ID no. 1 , SEQ ID No. 5, SEQ ID No. 12 with SEQ ID no.
  • the genes are equipped with a ribosomal binding site (RBS) upstream of each gene and subjected to an IPTG-sensitive promoter one after the other, in particular by introduction into the multiple cloning site (MCS) of pET or pRSF vectors or into a vector with several MCSs, especially pCOLA Duet. All genes can be introduced into the cell via one vector or alternatively via two vectors.
  • RBS ribosomal binding site
  • Catalyst E corresponds to strain BL21(DE3)pLysS, with the relevant genes being provided by means of the pCOLA Duet vector and pET vector.
  • Catalysts A to D are used on a 50 ml scale for the conversion of caffeic acid.
  • the pre-cultivation starting from cryocultures takes place first in test tubes with 4 ml LB medium, which additionally contains 100 pg/ml ampicillin, at 37° C. and 120 rpm overnight.
  • a concentration of 8 mM is set in the main cultures with solid caffeic acid. Further cultivation takes place at 120 rpm and 30°C. After about 6 hours, caffeic acid is added again at a concentration of 4 mM. After 12 h, samples are taken to demonstrate the functionality of the whole-cell catalysts by removing 100 to 250 ⁇ l of the main culture, stopping with methanol, centrifuging to separate the cells and analyzing the clear supernatant removed using high-performance liquid chromatography. With catalyst A, 7.4 mM product could be produced under these conditions after 12 h, which corresponded to a yield of 62%. Catalysts B and C revealed 8.7 mM product after 12 h and a yield of ca. 73%. Catalyst D achieved a product concentration of 10.3 mM and a yield of 86%.
  • Example 2 Cultivation of the biomass of catalyst E (see Example 1) in the preculture and in the main culture up to induction with 1 mM IPTG is carried out according to Example 2. Either 3 mM caffeic acid or 3 mM ferulic acid are added once in parallel with the induction. The cultures are then incubated at 30° C. and 120 rpm. After 24 hours, product formation is quantified as described in Example 2.
  • ferulic acid was used as starting material, 1.5 mM homovanillyl alcohol could be detected after 24 h, which corresponds to a yield of 50%. In the case of the cultures that were incubated with caffeic acid, 1.6 mM 3-hydroxytyrosol could be detected, which corresponds to a yield of 53%.
  • Example 1 For catalyst D (see Example 1), the influence of a pre-induction before the addition of the starting material was investigated.
  • the pre-cultivation and main cultivation takes place as described in Example 2, but a portion of 8 mM caffeic acid is added only once.
  • the caffeic acid is added after 0 h, 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h or 12 h after the addition of the inductor IPTG. Samples are taken and analyzed as described in Example 2. The results of the conversions after 21 hours are shown in FIG.
  • Catalyst A (see Example 1) is selected for this embodiment.
  • the cultivation conditions correspond to example 2. However, the cultivation of the preculture only takes place over a period of 6 h. Thereafter, 200 ml each of LB medium, which additionally contains 100 g/ml ampicillin, is inoculated twice with the contents of a preculture. Cultivation then takes place for 14 h at 37° C. and 120 rpm. The contents of the two flasks are mixed and 250 ml of this preculture are used to inoculate a fermenter. This contains 9 l of an M9* medium preheated to 37° C. (according to Panke et al., 1999) with 100 pg/ml ampicillin and 12.7 mM glucose.
  • the agitation speed and oxygen supply of the main culture is adjusted so that the pC>2 value is 50 to 90%.
  • the temperature is lowered to 30°C.
  • caffeic acid is added to a final concentration of 8 mM.
  • Further cultivation takes place at 30°C, with the stirring speed and air entry being adjusted to the needs of the culture so that the pO2 value is kept between 30 and 85%.
  • glucose is automatically added at a concentration of 2.4 mM per hour. A total of 50 to 51 mM glucose is introduced.
  • another 6 mM caffeic acid and after 14 hours 3 mM caffeic acid are added to the fermenter by adding solid substrate. The conversion was complete 24 hours after the induction. Samples were taken during the conversion and analyzed as described under example 2.
  • a total of 14.6 mM 3-hydroxytyrosol could be formed from 15 mM caffeic acid, which corresponds to a yield of 97%. This still corresponds to a product quantity of 2.3 g/l. Based on the total volume, about 21 g of product could be realized within 25 hours.
  • Catalyst D (see Example 1) was used for this example.
  • the pre-cultivation is carried out according to example 5.
  • the contents of the two flasks are mixed and 250 ml of this pre-culture for inoculation of a fermenter with 9 l of an M9* medium preheated to 37° C. (according to Panke et al., 1999) with 100 pg/ml Ampicillin and 12.7 mM glucose used.
  • the agitation speed and oxygen supply of the main culture is adjusted in such a way that the pCh Value is 50 to 90%.
  • the temperature is lowered to 30°C.
  • caffeic acid is added to a final concentration of 8 mM. Further cultivation takes place at 30°C, with the stirring speed and air entry being adjusted to the needs of the culture so that the pC>2 value is in the range between 40 and 75%. 1.75 hours after the induction, starting from a liquid stock solution, glucose is automatically added at a concentration of 2.4 mM per hour. A total of 40 to 41 mM glucose is added. In addition, 5.75 h after the induction, caffeic acid solution is automatically introduced into the fermenter at 1.2 mM per hour (a total of 12 mM in addition to the initial portion of 8 mM). The conversion is complete no later than 20 h after the induction. Samples were taken during the conversion and analyzed as in Example 2. The course of the conversion is shown in FIG.
  • a total of 19.4 mM 3-hydroxytyrosol were formed by using 20 mM caffeic acid, which corresponds to a yield of 97%. This also corresponds to a product quantity of almost 3 g/l. Based on the total volume, 27.7 g of product were obtained within 20 h.

Abstract

The invention relates to a method for the biocatalytic synthesis of 2-phenylethanols, in particular 3-hydroxytyrosol, using a whole-cell catalyst, in particular a recombinant microorganism, and to the use thereof for the biocatalytic synthesis of a 2-phenylethanol by means of a biocatalytic conversion of plant starting materials, such as cinnamic acid, in particular caffeic acid.

Description

Verfahren zur biotechnologischen Herstellung von 2-Phenylethanolen aus pflanzlichen Quellen Process for the biotechnological production of 2-phenylethanols from plant sources
Die Erfindung betrifft ein Verfahren zur biokatalytischen Synthese von 2-Phenylethanolen, insbesondere 3-Hydroxytyrosol, einen Ganzzellkatalysator, insbesondere einem rekombinanten Mikroorganismus, und dessen Verwendung zur biokatalytischen Synthese eines 2- Phenylethanols durch die biokatalytische Umsetzung aus pflanzlichen Ausgangsstoffen wie Zimtsäuren, insbesondere Kaffeesäure. The invention relates to a process for the biocatalytic synthesis of 2-phenylethanols, in particular 3-hydroxytyrosol, a whole-cell catalyst, in particular a recombinant microorganism, and its use for the biocatalytic synthesis of a 2-phenylethanol by biocatalytic conversion from plant starting materials such as cinnamic acids, in particular caffeic acid.
3-Hydroxytyrosol gilt als eines der stärksten bekannten Antioxidationsmittel und hemmt durch freie Radikale ausgelöste Prozesse der Zellalterung und -entartung. Durch seinen antioxidativen Effekt wirkt es Krankheiten wie Krebs, Arteriosklerose oder Alzheimer vorbeugend entgegen (Hu et al. 2014). Weiterhin sind positive Wirkungen auf Volkserkrankungen wie Diabetes, auf das Herz-Kreislaufsystem, das Nervensystem und den Magen-Darm-Trakt belegt. In wissenschaftlichen Untersuchungen konnte zudem eine stark antimikrobielle Wirkung gegen verschiedene pathogene Bakterienarten nachgewiesen werden (Tafesh et al. 2011). Auch antivirale Eigenschaften, u.a. gegen HIV, sind nachgewiesen (Bedoya et al. 2016). 3-Hydroxytyrosol is considered one of the strongest known antioxidants and inhibits cell aging and degeneration processes triggered by free radicals. Thanks to its antioxidant effect, it prevents diseases such as cancer, arteriosclerosis or Alzheimer’s (Hu et al. 2014). Furthermore, positive effects on widespread diseases such as diabetes, on the cardiovascular system, the nervous system and the gastrointestinal tract are proven. Scientific studies have also demonstrated a strong antimicrobial effect against various types of pathogenic bacteria (Tafesh et al. 2011). Antiviral properties, e.g. against HIV, have also been proven (Bedoya et al. 2016).
In der Natur kommt 3-Hydroxytyrosol in einigen Pflanzen vor, insbesondere in Oliven und Bestandteilen des Olivenbaums, allerdings mit einem geringen Gehalt. Zur Gewinnung von 3- Hydroxytyrosol existieren daher neben der extraktiven Gewinnung biotechnologische und chemische Verfahren. 3-Hydroxytyrosol occurs naturally in some plants, especially olives and parts of the olive tree, but at low levels. In addition to extractive production, there are therefore biotechnological and chemical processes for the production of 3-hydroxytyrosol.
Im Rahmen der extraktiven Gewinnung aus Olivenöl wird 3-Hydroxytyrosol in der wässrigen Flüssigkeit, die beim Pressen der Oliven entsteht und als Vegetationswasser bezeichnet wird, erhalten. Nachteilig ist dabei die aufwendige Produktaufbereitung zur Isolierung des reinen 3- Hydroxytyrosols aus dem komplexen Stoffgemisch mit strukturell ähnlichen Verbindungen. Fernandez-Bolanos et al. beschreiben den Einsatz großer Mengen an organischen Lösungsmitteln zur Isolierung von 3-Hydroxytyrosol aus Vegetationswasser (Fernandez-Bolanos et al. 2002). During the extraction process from olive oil, 3-hydroxytyrosol is obtained in the aqueous liquid that is produced when the olives are pressed and is known as vegetation water. A disadvantage here is the complex product preparation for isolating the pure 3-hydroxytyrosol from the complex mixture of substances with structurally similar compounds. Fernandez-Bolanos et al. describe the use of large amounts of organic solvents to isolate 3-hydroxytyrosol from vegetation water (Fernandez-Bolanos et al. 2002).
Alternativ wird anstelle einer komplexen Aufreinigung direkt das Vegetationswasser in der Weiterverarbeitung eingesetzt. Allerdings ist hierbei eine gleichbleibende Produktqualität schwierig, da es sich bei Vegetationswasser um eine komplex zusammengesetzte Lösung handelt. Neben vielen anderen Komponenten ist 3-Hydroxytyrosol mit - je nach Charge - schwankender Konzentration enthalten. Folglich unterscheiden sich die daraus hergestellten Produkte hinsichtlich ihrer Inhaltstoffe, selbst wenn immer ein gleicher Gehalt an 3- Hydroxytyrosol eingestellt wird (Bellumori et al. 2019). Dieses Problem kann nur durch die Verwendung aufgereinigten 3-Hydroxytyrosols vermieden werden. Ein weiterer Nachteil der extraktiven Gewinnung unter Nutzung von Oliven besteht in der Abhängigkeit von den Erntezyklen. Alternatively, instead of complex purification, the vegetation water is used directly in further processing. However, consistent product quality is difficult here, since vegetation water is a complex solution. In addition to many other components, it contains 3-hydroxytyrosol in varying concentrations, depending on the batch. Consequently, those made from them differ Products with regard to their ingredients, even if the same content of 3-hydroxytyrosol is always set (Bellumori et al. 2019). This problem can only be avoided by using purified 3-hydroxytyrosol. Another disadvantage of extractive production using olives is the dependence on harvest cycles.
Viele biotechnologische Verfahren setzten auf die Umsetzung des Ausgangsstoffes Tyrosol. US 2010/0047887 A 1 bzw. US 2010/0068775 A1 offenbaren ein Verfahren bzw. einen Mikroorganismus zur Umsetzung von Tyrosol mittels Hydroxylasen zu 3-Hydroxytyrosol, bevorzugt in Gegenwart von Vitamin C (Ascorbinsäure) und Gluthation. US 2010/0047887 A1 beschreibt Produktmengen bis 8 mM in 16 h. Mit einer Zellkonzentration mit einer ODeoo im Bereich von 21 bis 60 werden 3-Hydroxytyrosol-Konzentrationen im Bereich von 1 ,6 bis 1 ,8 g/l in wenigen Stunden erreicht, was Ausbeuten im Bereich von 58 bis 65 % entspricht. US 2010/0068775 A 1 beschreibt Umsätze mit bis zu 7,8 mM 3-Hydroxytyrosol in 18 h bzw. Ausbeuten von bis zu 91 %. Nachteilig wird dabei teures Tyrosol als Ausgangsstoff verwendet. US 2010/0047887 A 1 bzw. US 2010/0068775 A 1 beschreiben zudem die Verwendung teurer Cosubstrate, wie Vitamin C oder Gluthation. Many biotechnological processes rely on the conversion of the starting material tyrosol. US 2010/0047887 A1 and US 2010/0068775 A1 disclose a method and a microorganism for converting tyrosol to 3-hydroxytyrosol by means of hydroxylases, preferably in the presence of vitamin C (ascorbic acid) and glutathione. US 2010/0047887 A1 describes product amounts of up to 8 mM in 16 h. With a cell concentration with an ODeoo in the range from 21 to 60, 3-hydroxytyrosol concentrations in the range from 1.6 to 1.8 g/l are achieved in a few hours, which corresponds to yields in the range from 58 to 65%. US 2010/0068775 A1 describes conversions with up to 7.8 mM 3-hydroxytyrosol in 18 h or yields of up to 91%. The disadvantage here is that expensive tyrosol is used as the starting material. US 2010/0047887 A1 and US 2010/0068775 A1 also describe the use of expensive co-substrates such as vitamin C or glutathione.
CN 107201331 A und CN 107586794 A beschreiben die Verwendung von preisgünstigerer Glukose, welche zunächst durch den Shikimat-Metabolismus in der Bakterienzelle in 4- Hydroxyphenylpyruvat umgewandelt, über 4-Hydroxyphenylacetaldehyd in Tyrosol umgesetzt und schließlich zu 3-Hydroxytyrosol hydroxyl iert wird. Nachteilig weisen die Verfahren ausgehend von Glukose niedrige 3-Hydroxytyrosolmengen auf, insbesondere offenbart CN 107586794 A eine Produktmenge von 0,65 g/l nach 48 h. CN 107201331 A beschreibt Umsätze bis 0,4 g/l. WO 2012/135389 A2 offenbart die Gewinnung von 0,08 mM 3-Hydroxytyrosol bei der Verwendung von Glukose (siehe WO 2012/135389 A2 Fig. 7). CN 107201331 A and CN 107586794 A describe the use of cheaper glucose, which is first converted into 4-hydroxyphenylpyruvate by the shikimate metabolism in the bacterial cell, converted into tyrosol via 4-hydroxyphenylacetaldehyde and finally hydroxylated into 3-hydroxytyrosol. The disadvantage of the processes starting from glucose is low amounts of 3-hydroxytyrosol, in particular CN 107586794 A discloses a product amount of 0.65 g/l after 48 hours. CN 107201331 A describes conversions of up to 0.4 g/l. WO 2012/135389 A2 discloses the production of 0.08 mM 3-hydroxytyrosol when using glucose (see WO 2012/135389 A2 Fig. 7).
Andere Verfahren nutzen die Verbindungen Dopamin oder L-3,4-Dihydroxyphenylalanin, welche jeweils entweder direkt als Substrat dienen oder zellintern aus Tyrosin bzw. aus Glukose, welche zuvor in den Zellen in Tyrosin umgewandelt wird, gewonnen werden. CN 109295113 A, WO 2012/135389 A2 und WO 2017/223569 A1 beschreiben die Verwendung einer Decarboxylase bzw. einer Aminosäuretransferase und einer Dehydrogenase; einer Monoaminoxidase und einer Alkoholdehydrogenase zur Synthese von 3-Hydroxytyrosol aus L- 3,4-Dihydroxyphenylalanin. WO 2012/135389 A2 offenbart dabei Produktmengen im Bereich von 0,47 bis 0,74 mM bei direkter Verwendung der Intermediate L-3,4-Dihydroxyphenylalanin oder Dopamin als Substrat. Nachteilig wird dabei aber auf teure Ausgangsstoffe zurückgegriffen. Shanker et al. offenbaren die Umwandlung von Ferulasäure zu Acetovanillon (Apocynin) unter Verwendung von Rhizopus oryzae-Zellen, wobei Acetovanillon als Hauptmetabolit, Dihydroferulasäure, Coniferylalkohol und Dihydroconiferylalkohol als Nebenprodukte und Vanillin, Vanillylalkohol, Vanillinsäure und Phenylethylalkohol als Spurenprodukte (<1-3%) gebildet wurden (Shanker et al. 2007). Other methods use the compounds dopamine or L-3,4-dihydroxyphenylalanine, which either serve directly as a substrate or are obtained within the cell from tyrosine or from glucose, which is previously converted into tyrosine in the cells. CN 109295113 A, WO 2012/135389 A2 and WO 2017/223569 A1 describe the use of a decarboxylase or an amino acid transferase and a dehydrogenase; a monoamine oxidase and an alcohol dehydrogenase for the synthesis of 3-hydroxytyrosol from L-3,4-dihydroxyphenylalanine. WO 2012/135389 A2 discloses amounts of product in the range from 0.47 to 0.74 mM with direct use of the intermediates L-3,4-dihydroxyphenylalanine or dopamine as substrate. However, the disadvantage here is that expensive starting materials are used. Shanker et al. disclose the conversion of ferulic acid to acetovanillon (apocynin) using Rhizopus oryzae cells, forming acetovanillon as the major metabolite, dihydroferulic acid, coniferyl alcohol, and dihydroconiferyl alcohol as by-products, and vanillin, vanillyl alcohol, vanillic acid, and phenylethyl alcohol as trace products (<1-3%) ( Shanker et al 2007).
Mabinya et al. offenbaren die Biokonversion von Ferulasäure und 4-Vinylguaiacol durch einen Weißfäulepilz, isoliert aus verrottendem Holz, wobei 4-Vinylguaiacol weiter zu Acetovanillon umgewandelt wird (Mabinya et al. 2010). Weiterhin beschreiben Mabinya et al. die Bildung von Vanillin und Vanillinsäure, sowie als 2-Phenylethanol, 4-Ethyl-2-methoxyphenol, 1-(2,3- Dihydroxy-4-methoxy-6-methylphenyl)-ethanon, 4,5-Dimethoxy-2-methylphenol und Vanillinsäureethylester als Nebenprodukte. Mabinya et al. disclose the bioconversion of ferulic acid and 4-vinylguaiacol by a white-rot fungus isolated from decaying wood, with 4-vinylguaiacol being further converted to acetovanillon (Mabinya et al. 2010). Furthermore, Mabinya et al. the formation of vanillin and vanillic acid, as well as 2-phenylethanol, 4-ethyl-2-methoxyphenol, 1-(2,3-dihydroxy-4-methoxy-6-methylphenyl)-ethanone, 4,5-dimethoxy-2-methylphenol and vanillic acid ethyl ester as by-products.
Zhou et al. beschreiben eine enantioselektive Ein-Topf-Synthese von D-Phenylglycinen aus racemischen Mandelsäuren, Styrolen oder biobasiertem L-Phenylalanin über eine Kaskaden- Biokatalyse unter Verwendung eines rekombinanten Escherichia coli LZ110, welcher vier Enzyme koexprimiert (Zhou et al. 2017). Weiterhin beschreiben Zhou et al. die Verwendung von E. coli LZ116, welcher sieben Enzyme exprimiert, zur Umwandlung von Styrol zu enantiomerenreinem D-Phenylglycin, und die Verwendung von E. coli LZ143, welcher neun Enzyme exprimiert, zur Umwandlung von L-Phenylalanin zu enantiomerenreinem D- Phenylglycin. Zhou et al. describe an enantioselective one-pot synthesis of D-phenylglycines from racemic mandelic acids, styrenes or bio-based L-phenylalanine via cascade biocatalysis using a recombinant Escherichia coli LZ110, which co-expresses four enzymes (Zhou et al. 2017). Furthermore, Zhou et al. the use of E. coli LZ116 expressing seven enzymes to convert styrene to enantiopure D-phenylglycine, and the use of E. coli LZ143 expressing nine enzymes to convert L-phenylalanine to enantiopure D-phenylglycine.
Eine mögliche Alternative bieten chemische Verfahren. Das wichtigste chemische Verfahren, welches von der Wacker Chemie AG entwickelt wurde (US 8 822 738 B1), erlaubt die rein chemische Gewinnung von 3-Hydroxytyrosol aus 3,4-Dimethoxyphenylethanol mit Hilfe von Aluminium-basierten Katalysatoren, insbesondere Triisobutylaluminium oder Diisobutylaluminiumhydrid. Die Aufarbeitung erfolgt mittels einer wässrigen Lösung einer Hydroxycarboxylsäure und Extraktion mittels organischer Lösungsmittel. Chemical processes offer a possible alternative. The most important chemical process developed by Wacker Chemie AG (US Pat. No. 8,822,738 B1) allows the purely chemical production of 3-hydroxytyrosol from 3,4-dimethoxyphenylethanol using aluminum-based catalysts, in particular triisobutylaluminum or diisobutylaluminum hydride. The processing is carried out using an aqueous solution of a hydroxycarboxylic acid and extraction using organic solvents.
EP 2 114 846 B1 bzw. CN 101641316 A beschreibt die Herstellung von 3-Hydroxytyrosol aus 4- Chloracetylcatechol mittels Metallformiat und Ameisensäure in einer wässrigen Lösung und katalytischer Hydrierung mittels Edelmetallkatalysator, bevorzugt Palladium (Pd) oder Ruthenium (Ru), insbesondere Pd/C oder Ru/C, in einem organischen Lösungsmittel, insbesondere einem flüssigen Alkylester. Bekannt ist zudem ein fünfstufiges Verfahren ausgehend von 3,4-Dihydroxybenzen (CN 103664536 A). CN 103664536 A beschreibt den Schutz der zwei Phenolgruppen durch die Synthese von 1 ,2-Methylendioxybenzen mittels Dichlormethan, eine Friedel-Crafts-Reaktion zur Herstellung von 3,4-Methylendioxyacetophenon, eine Wolff-Kishner-Huangminglong-Reduktion zur Herstellung von 3,4-Methylendioxyphenylessigsäure, eine Reduktion zur Herstellung von 3,4- Methylendioxyphenylethanol und eine Entfernung der Schutzgruppe mittels Bortribromid oder Pd/C. EP 2 114 846 B1 or CN 101641316 A describes the preparation of 3-hydroxytyrosol from 4-chloroacetylcatechol using metal formate and formic acid in an aqueous solution and catalytic hydrogenation using a noble metal catalyst, preferably palladium (Pd) or ruthenium (Ru), in particular Pd/C or Ru/C, in an organic solvent, especially a liquid alkyl ester. A five-stage process starting from 3,4-dihydroxybenzene (CN 103664536 A) is also known. CN 103664536 A describes the protection of the two phenol groups by the synthesis of 1,2-methylenedioxybenzene using dichloromethane, a Friedel-Crafts reaction to produce 3,4-methylenedioxyacetophenone, a Wolff-Kishner-Huangminglong reduction to produce 3,4 -methylenedioxyphenylacetic acid, a reduction to produce 3,4-methylenedioxyphenylethanol and a deprotection using boron tribromide or Pd/C.
Nachteilig werden bei chemischen Verfahren neben teuren Katalysatoren, wie Palladium, teure Ausgangsstoffe, wie 3,4-Dimethoxyphenylethanol, benötigt. Weiterhin ist die Verwendung von petrochemischen Ausgangsstoffen nicht nachhaltig. A disadvantage of chemical processes is that they require expensive starting materials such as 3,4-dimethoxyphenylethanol in addition to expensive catalysts such as palladium. Furthermore, the use of petrochemical feedstocks is not sustainable.
Daher besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren zur Synthese von Verbindungen nach Formel (V) bereitzustellen, welches die Nachteile des Standes der Technik überwindet, insbesondere ein günstigeres, biotechnologisches Verfahren zur Synthese von Verbindungen nach Formel (V) bereitzustellen, wobei erhöhte Produktmengen erhalten werden. Therefore, the object of the present invention is to provide a method for synthesizing compounds of formula (V), which overcomes the disadvantages of the prior art, in particular to provide a cheaper, biotechnological method for synthesizing compounds of formula (V), with increased product quantities are obtained.
Ferner ist es Aufgabe der Erfindung, einen Ganzzellkatalysator zur biokatalytischen Synthese einer Verbindung nach Formel (V) bereitzustellen. It is also an object of the invention to provide a whole-cell catalyst for the biocatalytic synthesis of a compound of the formula (V).
Erfindungsgemäß wird die Aufgabe gelöst durch das erfindungsgemäße Verfahren zur biokatalytischen Synthese einer Verbindung nach Formel (V)
Figure imgf000006_0001
durch die biokatalytische Umsetzung eines Stoffes umfassend mindestens eine Verbindung nach
According to the invention, the object is achieved by the method according to the invention for the biocatalytic synthesis of a compound according to formula (V)
Figure imgf000006_0001
by the biocatalytic conversion of a substance comprising at least one compound
Formel (I) Formula (I)
Figure imgf000007_0001
wobei R1 -H oder -OH ist, wobei R2 -H, -OH oder -OCH3 ist, umfassend die folgenden Schritte: a) Bereitstellen mindestens eines Ganzzellkatalysators umfassend i. ein Gen kodierend für ein Enzym Phenolsäure-Decarboxylase und ii. mindestens ein Gen kodierend für ein Enzym umfassend eine Oxygenase- Untereinheit und/oder eine Reduktase-Untereinheit, bevorzugt einer Styrol- Monooxygenase oder Indol-Monooxygenase, und iii. ein Gen kodierend für ein Enzym Styroloxid-Isomerase, und iv. ein Gen kodierend für ein Enzym Alkoholdehydrogenase, und mindestens einen Promotor zur regulierbaren Expression der Gene i) bis iv), in einem wässrigen Medium, b) Aktivierung des Ganzzellkatalysators mit einem Induktor, wobei der Induktor zur Expression der Gene i) bis iv) führt, und c) Kontaktieren des Ganzzellkatalysators mit einem Stoff umfassend mindestens eine Verbindung nach Formel (I), wobei die mindestens eine Verbindung nach Formel (I) mit den in (a) definierten Enzymen zu einer Verbindung nach Formel (V) umgesetzt wird.
Figure imgf000007_0001
wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3, comprising the following steps: a) providing at least one whole cell catalyst comprising i. a gene coding for an enzyme phenolic acid decarboxylase and ii. at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and iii. a gene coding for an enzyme styrene oxide isomerase, and iv. a gene coding for an enzyme alcohol dehydrogenase, and at least one promoter for the controllable expression of genes i) to iv) in an aqueous medium, b) activation of the whole cell catalyst with an inducer, the inducer leading to the expression of genes i) to iv). , and c) contacting the whole-cell catalyst with a substance comprising at least one compound of formula (I), wherein the at least one compound of formula (I) is reacted with the enzymes defined in (a) to form a compound of formula (V).
Erfindungsgemäß erfolgt keine signifikante weitere Verstoffwechselung der Verbindung nach Formel (V), d. h. keine signifikante weitere Umsetzung der Verbindung nach Formel (V) durch den Ganzzellkatalysator. Der Fachmann kann bei der Auswahl des Ganzzellkatalysators durch Einsicht in entsprechende Datenbanken (u. a. KEGG PATHWAY Database) oder durch einfache Vorversuche evaluieren, ob potenziell störende Stoffwechselwege in der Zelle vorhanden sind, beispielweise störende Gene im Tyrosin-Stoffwechsel (insbesondere Homoprotocatechuat- Abbau) oder im Phenylalanin-Stoffwechsel (ringöffnende Mechanismen bei dihydroxylierten aromatischen Strukturen). Im Falle von potenziell störenden Stoffwechselwegen sind Möglichkeiten der Inaktivierung solcher störenden Stoffwechselwege mittels gentechnischer Methoden (Negativmutante) oder über eine gezielte Kulturführung (z. B. substratvermittelte Inhibierung durch Glukose oder Verzicht auf Medienkomponenten, welche potenziell auf solche störenden Stoffwechselwege induzierend wirken) dem Fachmann bekannt oder ableitbar. Vorteilhaft erfolgt bei dem erfindungsgemäßen Verfahren kein Substituentenwechsel am Benzolring. According to the invention, there is no significant further metabolization of the compound of formula (V), ie no significant further conversion of the compound of formula (V) by the whole-cell catalyst. When selecting the whole-cell catalyst, the person skilled in the art can evaluate whether potentially disruptive metabolic pathways are present in the cell, for example disruptive genes in the tyrosine metabolism (in particular homoprotocatechuate degradation) or in the Phenylalanine metabolism (ring-opening mechanisms in dihydroxylated aromatic structures). In the case of potentially disruptive metabolic pathways, the possibility of inactivating such disruptive metabolic pathways by means of genetic engineering methods (negative mutant) or via targeted culture management (e.g. substrate-mediated inhibition by glucose or omission of media components which potentially have an inducing effect on such disruptive metabolic pathways) are known to the person skilled in the art or derivable. Advantageously, there is no change of substituents on the benzene ring in the process according to the invention.
In Ausführungsformen erfolgt das erfindungsgemäße Verfahren mit der Reihenfolge der Schritte a), b) und c), wobei die Schritte b) und c) gleichzeitig oder Schritt c) nach Schritt b) erfolgt. Bevorzugt erfolgt das erfindungsgemäße Verfahren mit der Reihenfolge der Schritte a), b) und c), wobei die Schritte b) und c) gleichzeitig erfolgen. In embodiments, the method according to the invention takes place with the sequence of steps a), b) and c), steps b) and c) taking place simultaneously or step c) taking place after step b). The process according to the invention preferably takes place with the sequence of steps a), b) and c), with steps b) and c) taking place simultaneously.
Das erfindungsgemäße Verfahren hat den Vorteil, dass durch die Verwendung von Ganzzellkatalysatoren, welche eine Phenolsäure-Decarboxylase, eine Monooxygenase umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit, eine Styroloxid- Isomerase und eine Alkoholdehydrogenase exprimieren, alle Enzyme simultan für die biokatalytische Synthese von 2-Phenylethanolen, bevorzugt von 3-Hydroxytyrosol, vorliegen. Vorteilhaft ist mit dem erfindungsgemäßen Verfahren eine nachhaltige Gewinnung von Verbindungen nach Formel (V) bzw. von 2-Phenylethanolen, insbesondere von 3-Hydroxytyrosol, möglich. Weiterhin vorteilhaft wurden mit dem erfindungsgemäßen Verfahren Ausbeuten von mindestens 95 % erreicht. The inventive method has the advantage that through the use of whole-cell catalysts, which express a phenolic acid decarboxylase, a monooxygenase comprising an oxygenase subunit and / or a reductase subunit, a styrene isomerase and an alcohol dehydrogenase, all enzymes simultaneously for the biocatalytic Synthesis of 2-phenylethanols, preferably 3-hydroxytyrosol. With the process according to the invention, it is advantageously possible to obtain compounds of the formula (V) or 2-phenylethanols, in particular 3-hydroxytyrosol, in a sustainable manner. Yields of at least 95% were also advantageously achieved with the process according to the invention.
Bevorzugt ist die Verbindung nach Formel (I) eine trans-Verbindung. The compound according to formula (I) is preferably a trans compound.
In Ausführungsformen ist mindestens ein Rest ausgewählt aus Ri und R2 eine Hydroxygruppe. In embodiments, at least one of Ri and R2 is a hydroxy group.
In Ausführungsformen ist die Verbindung nach Formel (I) aus Kaffeesäure (3-(3,4-Dihydroxy- phenyl)propensäure), Zimtsäure (3-Phenylpropensäure), 3-Hydroxyzimtsäure, p-Cumarsäure (4- Hydroxyzimtsäure), 3-Methoxyzimtsäure und Ferulasäure (4-Hydroxy-3-methoxyzimtsäure) ausgewählt. Bevorzugt ist die Verbindung nach Formel (I) Kaffeesäure. In embodiments, the compound of formula (I) is selected from caffeic acid (3-(3,4-dihydroxyphenyl)propenoic acid), cinnamic acid (3-phenylpropenoic acid), 3-hydroxycinnamic acid, p-coumaric acid (4-hydroxycinnamic acid), 3-methoxycinnamic acid and ferulic acid (4-hydroxy-3-methoxycinnamic acid). The compound according to formula (I) is preferably caffeic acid.
In Ausführungsformen ist die Verbindung nach Formel (V) aus 3-Hydroxytyrosol (2-(3,4- Dihydroxyphenyl)ethanol), 2-(3-Hydroxyphenyl)ethanol, 2-(4-Hydroxyphenyl)ethanol, 2-(3- Methoxyphenyl)ethanol und 2-(4-Hydroxy-3-methoxy-phenyl)ethanol (Homovanillylalkohol) ausgewählt. Bevorzugt ist die Verbindung nach Formel (V) 3-Hydroxytyrosol. In embodiments, the compound of formula (V) is selected from 3-hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol), 2-(3-hydroxyphenyl)ethanol, 2-(4-hydroxyphenyl)ethanol, 2-(3- methoxyphenyl)ethanol and 2-(4-hydroxy-3-methoxy-phenyl)ethanol (homovanillyl alcohol). The compound of formula (V) is preferably 3-hydroxytyrosol.
In Ausführungsformen sind Ri und R2 jeweils eine Hydroxygruppe. In embodiments, Ri and R2 are each a hydroxy group.
Unter dem Begriff „Ganzzellkatalysator“ wird eine katalytisch aktive Zelle verstanden. In Ausführungsformen ist der Ganzzellkatalysator ein authentischer Mikroorganismus (d. h. natürlicher bzw. unveränderter Mikroorganismus) oder ein genetisch veränderter Mikroorganismus. The term "whole cell catalyst" means a catalytically active cell. In embodiments, the whole cell catalyst is an authentic microorganism (ie natural or unmodified microorganism) or a genetically modified microorganism.
Unter einem „genetisch veränderten Mikroorganismus“ wird ein Mikroorganismus mit mindestens einer Mutation, Deletion oder Substitution im Genom oder ein Mikroorganismus, in welchem über zusätzlich eingebrachte Vektoren weitere Gene bereitgestellt wärden, verstanden. Auch die Kombination aus künstlichen Veränderungen im Genom und durch Einbringung mittels Vektoren ist hier umfasst. A “genetically modified microorganism” is understood to mean a microorganism with at least one mutation, deletion or substitution in the genome or a microorganism in which further genes would be made available via additionally introduced vectors. The combination of artificial changes in the genome and introduction by means of vectors is also included here.
In Ausführungsformen ist der genetisch veränderte Mikroorganismus eine Knockout-Mutante oder eine Deletionsmutante eines authentischen Mikroorganismus (d. h. ein authentischer Mikroorganismus mit mindestens einem Gen-Knock-Out zur Inaktivierung eines bestimmten Gens) (Negativmutante) und/oder eine Insertionsmutante. Unter dem Begriff „Insertionsmutation“ wird die Einbringung von mindestens einem Gen durch Genom-Insertion oder durch Einbringung von Expressionsvektoren verstanden. In embodiments, the genetically engineered microorganism is a knockout mutant or a deletion mutant of an authentic microorganism (i.e., an authentic microorganism with at least one gene knockout to inactivate a particular gene) (negative mutant) and/or an insertion mutant. The term "insertion mutation" is understood to mean the introduction of at least one gene by genome insertion or by introduction of expression vectors.
In bevorzugten Ausführungsformen ist der Ganzzellkatalysatoreine rekombinante Bakterienzelle. In preferred embodiments, the whole cell catalyst is a recombinant bacterial cell.
In Ausführungsformen ist die Bakterienzelle aus Escherichia, Arthrobacter, Bacillus, Rhodococcus, Pseudomonas, Sphingobium, Sphingopyxis, Corynebacterium, Marinobacterium, Variovorax und Gordonia ausgewählt, bevorzugt aus Escherichia coli, Rhodococcus opacus 1 CP, Rhodococcus species ST-5, Pseudomonas fluorescens ST, Corynebacterium species AC-5, Pseudomonas putida CA-3, Pseudomonas putida 312 und Variovorax paradoxus EPS. In embodiments, the bacterial cell is selected from Escherichia, Arthrobacter, Bacillus, Rhodococcus, Pseudomonas, Sphingobium, Sphingopyxis, Corynebacterium, Marinobacterium, Variovorax and Gordonia, preferably from Escherichia coli, Rhodococcus opacus 1 CP, Rhodococcus species ST-5, Pseudomonas fluorescens ST, Corynebacterium species AC-5, Pseudomonas putida CA-3, Pseudomonas putida 312 and Variovorax paradoxus EPS.
In bevorzugten Ausführungsformen ist die Bakterienzelle Escherichia coli, insbesondere ein Derivat von Stamm BL21 oder Stamm B. In preferred embodiments, the bacterial cell is Escherichia coli, in particular a derivative of strain BL21 or strain B.
In bevorzugten Ausführungsformen ist der Ganzzellkatalysator Escherichia coli mit Insertionsmutation. In preferred embodiments, the whole cell catalyst is Escherichia coli with insertion mutation.
Die Nukleotidsequenzen der Gene i.) bis iv.) umfassen dabei authentische und/oder artifizielle Leserahmen. Bevorzugt ist ein artifizieller Leserahmen über eine Gensynthese an das ’’Codon Usage" des Wirtsorganismus angepasst. The nucleotide sequences of genes i.) to iv.) include authentic and/or artificial reading frames. An artificial reading frame is preferably adapted to the "codon usage" of the host organism via gene synthesis.
Prinzipiell können geeignete Gene i.) bis iv.) durch an sich bekannte Methoden, wie beispielsweise durch Polymerase-Ketten-Reaktion (PCR) mit Hilfe von kurzen, synthetischen Nukleotidsequenzen (Primern) ausgehend von der DNA denkbarer Spenderorganismen, amplifiziert und anschließend isoliert werden. Die Herstellung der verwendeten Primer erfolgt im Allgemeinen anhand bekannter Gensequenzen aufgrund bestehender Homologien zu den Genen i.) bis iv.). Alternativ können die Gene auch mittels Gensynthese konstruiert werden, was zusätzliche Anpassungen der Gene erlaubt. Idealerweise weist der Vektor für die Klonierung eines amplifizierten Gens eine geringe Molekülmasse auf und besitzt selektierbare Gene, um in einer Zelle zu einem leicht erkennbaren Phänotyp zu führen, so dass eine einfache Selektion von vektorhaltigen und vektorfreien Wirtszellen möglich ist. Um eine hohe Ausbeute an DNA und entsprechenden Genprodukten zu erhalten, sollte der Expressionsvektor mindestens einen starken Promotor und/oder Regulatorsequenzen aufweisen. Alternativ werden Promotoren durch eine PCR (über die Primer) oder mittels Gensynthesen vor den Genen eingebracht. Zweckmäßig wird vor jedem Gen zudem zur optimalen Translation eine ribosomale Bindungsstelle (RBS) mittels Vektor, PCR oder Gensynthese eingebracht. Für eine Replikation des Vektors ist zudem ein Replikationsursprung wichtig. Beispielsweise sind u.a. pET-Vektorsysteme basierend auf einer Antibiotikaselektion geeignet. In principle, suitable genes i.) to iv.) by methods known per se, such as by polymerase chain reaction (PCR) using short, synthetic nucleotide sequences (primers) starting from the DNA of conceivable donor organisms, amplified and then isolated. The primers used are generally produced using known gene sequences due to existing homologies with genes i.) to iv.). Alternatively, the genes can also be constructed using gene synthesis, which allows additional adaptations of the genes. Ideally, the vector for cloning an amplified gene is of low molecular mass and has selectable genes to result in a readily recognizable phenotype in a cell, allowing for easy selection of vector-containing and vector-free host cells. In order to obtain a high yield of DNA and corresponding gene products, the expression vector should have at least one strong promoter and/or regulatory sequence. Alternatively, promoters are introduced in front of the genes by means of a PCR (via the primers) or by means of gene synthesis. In addition, a ribosomal binding site (RBS) is expediently introduced in front of each gene by means of a vector, PCR or gene synthesis for optimal translation. An origin of replication is also important for replication of the vector. For example, pET vector systems based on antibiotic selection, among others, are suitable.
Die Methoden zur Kultivierung von Mikroorganismen sind dem Fachmann bekannt, wobei die Mikroorganismen kontinuierlich oder diskontinuierlich im batch-Verfahren (Satzkultivierung) oder im fed-batch (Zulaufverfahren) oder repeated fed-batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Anzucht oder der biokatalytischen Umsetzung eines Stoffes umfassend eine Verbindung nach Formel (I) kultiviert werden. The methods for cultivating microorganisms are known to those skilled in the art, with the microorganisms being cultured continuously or discontinuously in a batch process (batch cultivation) or in a fed-batch (feed process) or repeated fed-batch process (repetitive feed process) for the purpose of cultivation or biocatalytic conversion of a substance comprising a compound according to formula (I) are cultivated.
In Ausführungsformen erfolgt die Anzucht in Schüttel kolben oder im Fermenter. Bevorzugt erfolgt die Kultivierung unter physiologischen Bedingungen bei einer Temperatur im Bereich von 10 °C bis 50 °C, bevorzugt im Bereich von 20 °C bis 40 °C, besonders bevorzugt im Bereich von 23 °C und 37 °C, wobei der pH-Wert der wässrigen Komponente bevorzugt im Bereich von 5,8 bis 8,5, besonders bevorzugt im Bereich von 6,5 bis 8,0 liegt. In embodiments, the cultivation takes place in shake flasks or in a fermenter. The cultivation preferably takes place under physiological conditions at a temperature in the range from 10° C. to 50° C., preferably in the range from 20° C. to 40° C., particularly preferably in the range from 23° C. to 37° C., with the pH Value of the aqueous component is preferably in the range from 5.8 to 8.5, particularly preferably in the range from 6.5 to 8.0.
In Ausführungsformen wird der Ganzzellkatalysator mit einer niedrigen Bakteriendichte, bevorzugt mit einer ODeoo im Bereich von 0,3 bis 1 ,7, besonders bevorzugt mit einer ODeoo im Bereich von 0,5 bis 1 ,1 , bereitgestellt. Zweckmäßig liegt der Ganzzellkatalysator in Schritt b) und zu Beginn von Schritt c) mit einer niedrigen Bakteriendichte, bevorzugt mit einer ODeoo im Bereich von 0,3 bis 1 ,7, besonders bevorzugt mit einer ODeoo im Bereich von 0,5 bis 1 ,1, vor. Unter dem Begriff „ODeoo“ wird ein Maß für die Bakteriendichte verstanden, welche mittels einer UV/Vis- Spektroskopie bzw. eines Photometers bei einer Wellenlänge von 600 nm gemessen wird. In Ausführungsformen erfolgt die Bereitstellung des mindestens einen Ganzzellkatalysators in Schritt a) durch Animpfen einer Hauptkultur mittels einer Vorkultur mit einer ODfeoo im Bereich von 0,7 bis 5, sodass die Hauptkultur eine ODeoo von maximal 0,1 aufweist, und anschließendes Anwachsen der Hauptkultur bis zu einer ODeoo im Bereich von 0,3 bis 1 ,7, besonders bevorzugt bis zu einer ODeoo im Bereich von 0,5 bis 1 ,1 , bei welcher die Induktion (Schritt b) durchgeführt und der Umsatz (Schritt c) gestartet wird. In embodiments, the whole-cell catalyst is provided with a low bacterial density, preferably with an ODeoo in the range from 0.3 to 1.7, particularly preferably with an ODeoo in the range from 0.5 to 1.1. In step b) and at the beginning of step c), the whole-cell catalyst expediently has a low bacterial density, preferably with an ODeoo in the range from 0.3 to 1.7, particularly preferably with an ODeoo in the range from 0.5 to 1.1 , before. The term “ODeoo” is a measure of the bacterial density, which is measured using UV/Vis spectroscopy or a photometer at a wavelength of 600 nm. In embodiments, the at least one whole-cell catalyst is provided in step a) by inoculating a main culture using a preculture with an ODfeoo in the range from 0.7 to 5, so that the main culture has an ODeoo of at most 0.1, and then growing the main culture up to to an ODeoo in the range from 0.3 to 1.7, particularly preferably up to an ODeoo in the range from 0.5 to 1.1, at which the induction (step b) is carried out and the conversion (step c) is started.
In Ausführungsformen liegen die Gene i.) bis iv.) im erfindungsgemäßen Ganzzellkatalysator natürlich vor oder werden durch gentechnische Verfahren eingebracht. In embodiments, the genes i.) to iv.) are naturally present in the whole-cell catalyst according to the invention or are introduced by genetic engineering methods.
Eine Phenolsäure-Decarboxylase ist ein Enzym in Bakterien, das die Abspaltung einer Carboxygruppe (-COOH) aus organischen Säuren, insbesondere Phenolsäuren, katalysiert. A phenolic acid decarboxylase is an enzyme in bacteria that catalyzes the cleavage of a carboxy group (-COOH) from organic acids, particularly phenolic acids.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Phenolsäure-Decarboxylase, welche fähig ist Verbindung (I) zu Verbindung (II)
Figure imgf000011_0001
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises a phenolic acid decarboxylase capable of converting compound (I) to compound (II)
Figure imgf000011_0001
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
Erfindungsgemäß weist der Ganzzellkatalysator mindestens ein Gen kodierend für ein Enzym umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit, bevorzugt einer Styrol-Monooxygenase oder Indol-Monooxygenase, auf. Vorteilhaft weisen Styrol- Monooxygenase und Indol-Monooxygenase ein Substratspektrum auf, welches einen hohen Umsatz der erfindungsgemäßen Verbindungen ermöglicht. According to the invention, the whole-cell catalyst has at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase. Advantageously, styrene monooxygenase and indole monooxygenase have a substrate spectrum which enables high conversion of the compounds according to the invention.
Eine Oxygenase ist ein Enzym in Bakterien, das mindestens ein Sauerstoffatom in eine organische Verbindung einbaut, wobei mindestens eine neue Hydroxy-, Carboxy- oder Epoxygruppe gebildet wird. Bevorzugt ist die Oxygenase eine Monooxygenase, d. h. ein Enzym, das ein Sauerstoffatom in eine organische Verbindung einbaut. An oxygenase is an enzyme in bacteria that incorporates at least one oxygen atom into an organic compound, forming at least one new hydroxy, carboxy, or epoxy group. Preferably the oxygenase is a monooxygenase, i. H. an enzyme that incorporates an oxygen atom into an organic compound.
Eine Styrol-Monooxygenase ist ein Enzym in Bakterien, das die chemische Umsetzung von Styrol mit Flavin-Adenin-Dinukleotid (FADH2) gemäß der Reaktion: A styrene monooxygenase is an enzyme in bacteria that chemically reacts styrene with flavin adenine dinucleotide (FADH2) according to the reaction:
Styrol + FADH2 + O2 «-> 2-Phenyloxiran + FAD + H2O als ersten Schritt des aeroben Styrol-Abbauweges (d. h. in Gegenwart von Sauerstoff) in Bakterien zum Zwischenprodukt 2-Phenyloxiran (Styroloxid) katalysiert. FAD wird dabei von der Reduktase-Untereinheit der Styrol-Monooxygenase unter NADH-Verbrauch wieder regeneriert. styrene + FADH2 + O2 «-> 2-phenyloxirane + FAD + H2O as the first step of the aerobic styrene degradation pathway (ie in the presence of oxygen) in bacteria to the intermediate 2-phenyloxirane (styrene oxide). FAD is regenerated by the reductase subunit of styrene monooxygenase using NADH.
Eine Indol-Monooxygenase ist ein Enzym in Bakterien, das die chemische Umsetzung von Indol mit Flavin-Adenin-Dinukleotid (FADH2) gemäß der Reaktion: An indole monooxygenase is an enzyme in bacteria that chemically reacts indole with flavin adenine dinucleotide (FADH2) according to the reaction:
Indol + FADH2 + O2 «-> Indoloxid + FAD + H2O katalysiert. FAD wird dabei von der Reduktase-Untereinheit der Indol-Monooxygenase unter NADH-Verbrauch wieder regeneriert. Indole + FADH2 + O2 «-> indole oxide + FAD + H2O catalyzed. FAD is regenerated by the reductase subunit of indole monooxygenase using NADH.
Eine Reduktase ist ein Enzym, welches eine Reduktion einer organischen Verbindung, insbesondere FAD, unter gleichzeitiger Oxidation eines Cosubstrats, insbesondere NADH, katalysiert. A reductase is an enzyme which catalyses the reduction of an organic compound, in particular FAD, with the simultaneous oxidation of a co-substrate, in particular NADH.
In Ausführungsformen umfasst der Ganzzellkatalysator mindestens ein Enzym mit einer Oxygenase-Untereinheit und/oder einer Reduktase-Untereinheit, welches fähig ist Verbindung (II) zu Verbindung (III)
Figure imgf000012_0001
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of converting compound (II) to compound (III)
Figure imgf000012_0001
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
In Ausführungsformen ist das Enzym umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit ein Fusionsprotein. In embodiments, the enzyme comprising an oxygenase subunit and/or a reductase subunit is a fusion protein.
Eine Styroloxid-Isomerase ist ein Enzym in Bakterien, welches die chemische Umsetzung von unsubstituierten oder substituierten Styroloxiden zu unsubstituierten oder substituierten Phenylacetaldehyden katalysiert. A styrene oxide isomerase is an enzyme in bacteria that catalyzes the chemical conversion of unsubstituted or substituted styrene oxides to unsubstituted or substituted phenylacetaldehydes.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Styroloxid-Isomerase, welche fähig ist Verbindung (III) zu Verbindung (IV)
Figure imgf000013_0001
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises a styrene oxide isomerase capable of converting compound (III) to compound (IV)
Figure imgf000013_0001
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
Eine Alkoholdehydrogenase ist ein Enzym, welches die chemische Umsetzung von Alkoholen in Aldehyde oder Ketone sowie die Umkehrreaktion katalysiert. Das Enzym ist von Cofaktoren abhängig. Bevorzugt sind Cofaktoren NADH, NADPH oder Cytochrom C. Vorteilhaft weisen Alkoholdehydrogenasen oft ein breites Substratspektrum auf, weshalb eine größere Anzahl von Alkoholdehydrogenasen im erfindungsgemäßen Verfahren eingesetzt werden kann. Weiterhin vorteilhaft kommen mehrere Alkoholdehydrogenasen natürlich in Bakterienzellen vor, weshalb bei einigen Ganzzellkatalysatoren authentische Alkoholdehydrogenasen genutzt werden können. An alcohol dehydrogenase is an enzyme that catalyzes the chemical conversion of alcohols into aldehydes or ketones and the reverse reaction. The enzyme is dependent on cofactors. Cofactors NADH, NADPH or cytochrome C are preferred. Alcohol dehydrogenases often have a broad substrate spectrum, which is why a larger number of alcohol dehydrogenases can be used in the method according to the invention. Furthermore, advantageously, several alcohol dehydrogenases occur naturally in bacterial cells, which is why authentic alcohol dehydrogenases can be used in some whole-cell catalysts.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Alkoholdehydrogenase, welche fähig ist Verbindung (IV) zu Verbindung (V)
Figure imgf000013_0002
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises an alcohol dehydrogenase capable of converting compound (IV) to compound (V)
Figure imgf000013_0002
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
Die entsprechenden Gen- und Aminosäuresequenzen für die genannten Enzyme (Phenolsäure- Decarboxylase, Oxygenase einer Monooxygenase, Reduktase einer Monooxygenase, Styroloxid-Isomerase und Alkoholdehydrogenase) sind dem Fachmann bestens bekannt oder können bekannten Datenbanken (z. B. NCBI, RCSB PDB, UniProt, PDB Europa) entnommen werden. The corresponding gene and amino acid sequences for the enzymes mentioned (phenolic acid decarboxylase, oxygenase of a monooxygenase, reductase of a monooxygenase, styrene oxide isomerase and alcohol dehydrogenase) are well known to the person skilled in the art or can be found in known databases (e.g. NCBI, RCSB PDB, UniProt, PDB Europe) can be taken.
In Ausführungsformen umfasst der Ganzzellkatalysator i. Mindestens zwei Gene kodierend für ein Enzym Phenolsäure-Decarboxylase und/oder ii. mindestens zwei Gene kodierend für ein Enzym umfassend eine Oxygenase- Untereinheit und/oder eine Reduktase-Untereinheit, bevorzugt einer Styrol- Monooxygenase oder Indol-Monooxygenase, und/oder iii. mindestens zwei Gene kodierend für ein Enzym Styroloxid-Isomerase, und/oder iv. mindestens zwei Gene kodierend für ein Enzym Alkoholdehydrogenase, wobei die Gene kodierend für ein Enzym jeweils gleich oder unterschiedlich sein können. In embodiments, the whole cell catalyst comprises i. At least two genes coding for an enzyme phenolic acid decarboxylase and/or ii. at least two genes coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and/or iii. at least two genes coding for an enzyme styrene oxide isomerase, and/or iv. at least two genes coding for an enzyme alcohol dehydrogenase, it being possible for the genes coding for an enzyme to be identical or different in each case.
Vorteilhaft ermöglichen zwei unterschiedliche Gene für ein Enzym eine Erhöhung des Substratspektrums. Weiterhin vorteilhaft ermöglichen zwei unterschiedliche Gene für ein Enzym eine Variation der Expression und damit eine Optimierung der Laufzeit des erfindungsgemäßen Verfahrens. Advantageously, two different genes for an enzyme allow an increase in the substrate spectrum. Furthermore, advantageously, two different genes for an enzyme allow a variation of the expression and thus an optimization of the running time of the method according to the invention.
In Ausführungsformen umfasst der Ganzzellkatalysator i. ein Enzym Phenolsäure-Decarboxylase, welches fähig ist Verbindung (I)
Figure imgf000014_0002
(N) umzusetzen, und ii. mindestens ein Enzym mit einer Oxygenase-Untereinheit und/oder einer Reduktase-Untereinheit, welches fähig ist Verbindung (II)
Figure imgf000014_0001
zu Verbindung (III)
Figure imgf000015_0001
umzusetzen, und iii. ein Enzym Styroloxid-Isomerase, welches fähig ist Verbindung (III)
Figure imgf000015_0002
In embodiments, the whole cell catalyst comprises i. an enzyme phenolic acid decarboxylase capable of compound (I)
Figure imgf000014_0002
(N) to implement, and ii. at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of compound (II)
Figure imgf000014_0001
to compound (III)
Figure imgf000015_0001
implement, and iii. an enzyme styrene oxide isomerase capable of compound (III)
Figure imgf000015_0002
(IV) umzusetzen, und iv. ein Enzym Alkoholdehydrogenase, welches fähig ist Verbindung (IV)
Figure imgf000015_0003
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
(IV) implement, and iv. an enzyme alcohol dehydrogenase capable of compound (IV)
Figure imgf000015_0003
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, besonders bevorzugt mit mindestensIn embodiments, the whole-cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, preferably with at least 95% sequence identity with a Sequence selected from SEQ ID No. 1 to SEQ ID No. 3, particularly preferably with at least
98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3. 98% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3. In embodiments, the whole cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
In weiteren Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9. In further embodiments, the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9. In embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
In bevorzugten Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase- Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9. In preferred embodiments, the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9. Vorteilhaft weist ein Ganzzellkatalysator mit einer Oxygenase-Untereinheit mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9 einen höheren Umsatz für hydroxylierte, insbesondere 3,4-dihydroxylierte, Verbindungen auf. In embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9. Advantageously, a whole-cell catalyst with an oxygenase subunit with an amino acid sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9 shows a higher conversion for hydroxylated, especially 3,4-dihydroxylated, compounds.
In weiteren Ausführungsformen umfasst der Ganzzellkatalysatoreine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15. In Ausführungsformen umfasst der Ganzzellkatalysator eine Reduktase-Untereinheit mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15. In further embodiments, the whole cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15 In embodiments, the whole cell catalyst comprises a reductase subunit having an amino acid sequence selected from SEQ ID no. 10 to SEQ ID No. 15
In weiteren Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, bevorzugt SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9; und/oder eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15. In further embodiments, the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, preferably SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9; and/or a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15
Vorteilhaft erfolgt keine Hemmung des Enzyms umfassend eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 8 oder SEQ ID No. 9 und/oder eine Reduktase- Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15 durch hydroxylierte, insbesondere 3,4-dihydroxylierte, Intermediate, welche in dem erfindungsgemäßen Verfahren auftreten können. Advantageously, there is no inhibition of the enzyme comprising an oxygenase subunit with an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4, SEQ ID No. 5, SEQ ID No. 8 or SEQ ID no. 9 and/or a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15 by hydroxylated, in particular 3,4-dihydroxylated, intermediates which can occur in the process of the invention.
In weiteren Ausführungsformen umfasst der Ganzzellkatalysator eine Styroloxid-Isomerase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18, bevorzugt mit mindestens 95 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18. In further embodiments, the whole-cell catalyst comprises a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, preferably with at least 95% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, particularly preferably with at least 98% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
In Ausführungsformen umfasst der Ganzzellkatalysator eine Styroloxid-Isomerase mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18. In embodiments, the whole cell catalyst comprises a styrene oxide isomerase having an amino acid sequence selected from SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
In bevorzugten Ausführungsformen umfasst der Ganzzellkatalysator i. eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, und ii. eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, und iii. eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, und iv. eine Styroloxid-Isomerase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18. In preferred embodiments, the whole cell catalyst comprises i. a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, and ii. an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, and iii. a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, and iv. a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
In Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 13. In embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 13.
In alternativen Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase- Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15. In alternative embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
In alternativen Ausführungsformen umfasst der Ganzzellkatalysator eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15. In alternative embodiments, the whole-cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
In Ausführungsformen kommt die Alkoholdehydrogenase in dem Ganzzellkatalysator natürlich vor. In embodiments, the alcohol dehydrogenase is naturally occurring in the whole cell catalyst.
Unter dem Begriff „Promotor“ wird eine Nukleotid-Sequenz auf der DNA verstanden, die die regulierte Expression eines Gens ermöglicht. The term "promoter" means a nucleotide sequence on the DNA that enables the regulated expression of a gene.
Die Gene kodierend für ein Enzym Phenolsäure-Decarboxylase, ein Enzym umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit, eine Styroloxid-Isomerase und eine Alkoholdehydrogenase, sind funktionell unter die Kontrolle mindestens eines regulierbaren Promotors gestellt, wobei die Promotoren identisch oder untereinander unterschiedlich sein können. The genes coding for an enzyme phenolic acid decarboxylase, an enzyme comprising an oxygenase subunit and/or a reductase subunit, a styrene oxide isomerase and an alcohol dehydrogenase are functionally under the control of at least one regulatable promoter, with the promoters being identical or interrelated can be different.
In Ausführungsformen erfolgt die Aktivierung des Ganzzellkatalysators signalabhängig durch das Kontaktieren des Ganzzellkatalysators mit einem Induktor, auch Aktivator, wobei die Induktion der Expression der Gene signalabhängig induziert und der Ganzzellkatalysator in seine aktive Form überführt wird. Vorzugsweise aktivieren die Induktoren den regulierbaren Promotor, in dem sie direkt mit einem regulierbaren Promotor interagieren bzw. in dem sie an ein Repressorprotein binden, das sich daraufhin vom Promotor löst. Durch das Kontaktieren des Ganzzellkatalysators mit einem Induktor werden die o. g. Enzyme in dem Ganzzellkatalysatorgebildet und stehen somit für die biokatalytische Umsetzung eines Substrates der Formel (I) zur Verfügung. In embodiments, the whole-cell catalyst is activated in a signal-dependent manner by contacting the whole-cell catalyst with an inductor, also activator, the induction the expression of the genes is signal-dependently induced and the whole-cell catalyst is converted into its active form. The inducers preferably activate the regulatable promoter by interacting directly with a regulatable promoter or by binding to a repressor protein which then detaches from the promoter. By contacting the whole-cell catalyst with an inducer, the above-mentioned enzymes are formed in the whole-cell catalyst and are thus available for the biocatalytic conversion of a substrate of the formula (I).
In Ausführungsformen ist der mindestens eine Promotor zur regulierbaren Expression der Gene i) bis iv) ein gemeinsamer Promotor. In embodiments, the at least one promoter for the regulatable expression of genes i) to iv) is a common promoter.
In alternativen Ausführungsformen stehen die Gene i) bis iv) funktionell unter der Kontrolle jeweils eines regulierbaren Promotors. In alternative embodiments, genes i) to iv) are each functionally under the control of a regulatable promoter.
In Ausführungsformen unterscheiden sich die regulierbaren Promotoren voneinander, sodass die Promotoren Primärsignal-spezifisch aktivierbar sind. Vorteilhaft kann somit die Anwesenheit unterschiedlicher Induktoren und/oder Aktivatoren in dem Ganzzellkatalysator zur Expression ausgewählter Gene führen, wodurch der Stress für eine rekombinante Zelle minimiert wird. In embodiments, the regulatable promoters differ from one another, such that the promoters can be activated in a primary signal-specific manner. The presence of different inducers and/or activators in the whole-cell catalyst can thus advantageously lead to the expression of selected genes, as a result of which the stress for a recombinant cell is minimized.
Die entsprechenden Nukleinsäuresequenzen für Promotoren, z. B. T7-Promotor bei pET16- Expressionsystemen, die für ein erfindungsgemäßes Verfahren eingesetzt werden können, sind dem Fachmann bekannt oder können bekannten Datenbanken (z. B. EPD, TRED, MPromDB) entnommen werden. Vorteilhaft können künstlich in Organismen eingebrachte Promotoren und natürliche vorkommende Promotoren verwendet werden. The corresponding nucleic acid sequences for promoters, e.g. B. T7 promoter in pET16 expression systems that can be used for a method according to the invention are known to the person skilled in the art or can be found in known databases (eg EPD, TRED, MPromDB). Advantageously, promoters introduced artificially into organisms and naturally occurring promoters can be used.
Unter dem Begriff „Induktor“ wird eine meist niedermolekulare Verbindung verstanden, welche die für das erfindungsgemäße Verfahren notwendigen Gene anschaltet oder einen vorhandenen Repressor inaktiviert, sodass die genetische Information der Gene in Proteine bzw. Enzyme umwandelt werden kann. The term “inductor” is understood to mean a mostly low-molecular compound which switches on the genes required for the method according to the invention or inactivates an existing repressor so that the genetic information of the genes can be converted into proteins or enzymes.
In Ausführungsformen ist der Induktor aus Isopropyl-ß-D-thiogalactopyranosid (IPTG), Tryptophan oder Zuckern wie Arabinose oder Lactose ausgewählt. In embodiments, the inducer is selected from isopropyl-β-D-thiogalactopyranoside (IPTG), tryptophan, or sugars such as arabinose or lactose.
In weiteren Ausführungsformen ist der Induktor ein Substrat-Induktor bei der Verwendung eines entsprechenden Promotors. Bevorzugt ist ein Substrat-Induktor Glukose, ein aromatischer und/oder aliphatischer Alkohol, Styrol oder deren Derivat. In bevorzugten Ausführungsformen ist der Induktor Isopropybß-D-thiogalactopyranosid (IPTG). In further embodiments, the inducer is a substrate inducer when using a corresponding promoter. A substrate inducer is preferably glucose, an aromatic and/or aliphatic alcohol, styrene or a derivative thereof. In preferred embodiments, the inducer is isopropylbβ-D-thiogalactopyranoside (IPTG).
Bevorzugt erfolgt das Kontaktieren der Ganzzellkatalysatoren mit einem Induktor in einer Konzentration des Induktors bezogen auf das Gesamtvolumen der wässrigen Komponente zwischen 10 pM und 1.500 pM, besonders bevorzugt zwischen 100 pM und 1.200 pM, ganz besonders bevorzugt zwischen 500 pM und 1.000 pM. Bevorzugt wird der Induktor einmalig zugegeben. The contacting of the whole-cell catalysts with an inducer preferably takes place in a concentration of the inducer based on the total volume of the aqueous component of between 10 pM and 1500 pM, particularly preferably between 100 pM and 1200 pM, very particularly preferably between 500 pM and 1000 pM. The inductor is preferably added once.
In Ausführungsformen erfolgt mindestens Schritte) in einem einphasigen wässrigen System oder in einem zweiphasigen System. Unter einem „zweiphasigen System“ wird ein Gemisch von zwei Lösungsmitteln verstanden, welche nicht mischbar sind. In Ausführungsformen wird als erste Phase Wasser bzw. ein wässriges Medium und als zweite Phase ein polares, organisches Lösungsmittel oder eine ionische Flüssigkeit, welche substanziell nicht mit Wasser mischbar ist, verwendet, wobei sich die Verbindung nach Formel (I), die Intermediate (II) bis (IV) und/oder das Produkt (V) bevorzugt in der organischen Phase akkumuliert. Vorteilhaft werden durch die organische Phase die Zellen, welche sich in der wässrigen Phase befinden, vor schädlichen Auswirkungen größerer Konzentrationen an den Intermediaten (II) bis (IV) und vor einer hohen Konzentration des Produkts (V) geschützt. In embodiments, at least step) takes place in a single-phase aqueous system or in a two-phase system. A "two-phase system" is understood to mean a mixture of two solvents which are immiscible. In embodiments, water or an aqueous medium is used as the first phase and a polar, organic solvent or an ionic liquid which is substantially immiscible with water is used as the second phase, the compound of the formula (I), the intermediates (II ) to (IV) and/or the product (V) preferably accumulates in the organic phase. The organic phase advantageously protects the cells which are in the aqueous phase from the harmful effects of greater concentrations of the intermediates (II) to (IV) and from a high concentration of the product (V).
In Ausführungsformen sind substanziell nicht mit Wasser mischbare, polare, organische Lösungsmittel Ethylacetat, n-Octanol, n-Decanol oder Lösungsmittel mit einer vergleichbaren Polarität. Zweckmäßig sind die genannten Lösungsmittel für die Verbindungen nach Formel (I) bis (V) geeignet. In embodiments, substantially water-immiscible polar organic solvents are ethyl acetate, n-octanol, n-decanol, or solvents with a comparable polarity. The solvents mentioned are expediently suitable for the compounds of the formulas (I) to (V).
Durch das Kontaktieren des Ganzzellkatalysators mit einem Stoff umfassend eine Verbindung nach Formel (I) findet innerhalb eines Ganzzellkatalysators eine biokatalytische Umsetzung zu einem korrespondierenden Reaktionsprodukt der Formel (V) statt. In Ausführungsformen wird die Verbindung nach Formel (I) von dem Ganzzellkatalysator resorbiert, d. h. in die Zelle aufgenommen, und durch die Enzyme des Ganzzellkatalysators biokatalytisch umgesetzt. By contacting the whole-cell catalyst with a substance comprising a compound of the formula (I), a biocatalytic conversion to a corresponding reaction product of the formula (V) takes place within a whole-cell catalyst. In embodiments, the compound of formula (I) is resorbed by the whole cell catalyst, i. H. absorbed into the cell and biocatalytically converted by the enzymes of the whole-cell catalyst.
Bevorzugt erfolgt das Kontaktieren des Ganzzellkatalysators mit einer Verbindung nach Formel (I) durch direkte Zugabe des Stoffes zum Kulturmedium als Lösung und/oder Feststoff. Bei direkter Zugabe zum Ganzzellbiokatalysator kann zudem eine organische Phase als Substratreservoir Anwendung finden. The whole-cell catalyst is preferably brought into contact with a compound according to formula (I) by direct addition of the substance to the culture medium as a solution and/or solid. When added directly to the whole-cell biocatalyst, an organic phase can also be used as a substrate reservoir.
Zweckmäßig erfolgt durch die Variation der Prozessführung hinsichtlich der Form der Zugabe des Stoffes umfassend eine Verbindung nach Formel (I) eine Anpassung an die Zelldichte und den verwendeten Organismus, wodurch ein optimaler biokatalytischer Umsatz von Verbindungen der Formel (I) und eine möglichst lange Prozesslaufzeit ermöglicht wird. Expediently, by varying the process control with regard to the form of addition of the substance comprising a compound of formula (I), an adaptation to the cell density and the used organism, whereby an optimal biocatalytic conversion of compounds of formula (I) and the longest possible process time is made possible.
In Ausführungsformen ist der Stoff umfassend mindestens eine Verbindung nach Formel (I) ein Reinstoff, ein Pflanzenbestandteil oder ein Pflanzenextrakt. Vorteilhaft können auch Pflanzenabfallstoffe, beispielsweise Kartoffelschalen oder Kaffeereste aus Röstereien, im erfindungsgemäßen Verfahren eingesetzt werden. Vorteilhaft wird durch die Verwendung eines Pflanzenbestandteils oder eines Pflanzenextraktes umfassend eine Verbindung nach Formel (I) nachwachsende Rohstoffe verwendet und somit ein nachhaltiges Verfahren bereitgestellt In embodiments, the substance comprising at least one compound according to formula (I) is a pure substance, a plant component or a plant extract. Plant waste, for example potato peelings or coffee residues from roasting plants, can also be used advantageously in the method according to the invention. Advantageously, the use of a plant component or a plant extract comprising a compound according to formula (I) uses renewable raw materials and thus provides a sustainable process
In bevorzugten Ausführungsformen ist die Verbindung nach Formel (I) Kaffeesäure. Zweckmäßig wird Kaffeesäure aus verschiedenen Pflanzen oder durch eine enzymatische Synthese aus anderen Pflanzeninhaltstoffen, wie Chlorogensäure, erhalten. Geeignete Pflanzen zur Gewinnung von Chlorogensäure und/oder Kaffeesäure sind u.a. Beifuß, Brennnessel, Schafgarbe, Kaffee, Kartoffeln oder Giersch. In preferred embodiments, the compound of formula (I) is caffeic acid. Caffeic acid is expediently obtained from various plants or by enzymatic synthesis from other plant constituents, such as chlorogenic acid. Suitable plants for obtaining chlorogenic acid and/or caffeic acid include mugwort, stinging nettle, yarrow, coffee, potatoes or goutweed.
Der Stoff umfassend eine Verbindung nach Formel (I) wird vorzugsweise mit einer Gesamtkonzentration der Verbindung nach Formel (I) im Bereich von 5 mM und 30 mM, besonders bevorzugt im Bereich von 10 mM und 25 mM, ganz besonders bevorzugt im Bereich von 15 mM und 20 mM in einer biokatalytischen Umsetzung eingesetzt und kann kontinuierlich oder diskontinuierlich nachgeführt werden. The substance comprising a compound of formula (I) is preferably mixed with a total concentration of the compound of formula (I) in the range of 5 mM and 30 mM, more preferably in the range of 10 mM and 25 mM, most preferably in the range of 15 mM and 20 mM used in a biocatalytic conversion and can be tracked continuously or discontinuously.
In Ausführungsformen erfolgt die Verwendung von Portionsgrößen im Bereich von 3mM bis 8 mM bei einer diskontinuierlichen Zugabe oder im Bereich von 1 mM bis 2 mM pro Stunde bei einer kontinuierlichen Zugabe. Besonders geeignet ist eine Kombination von diskontinuierlicher Zugabe am Anfang mit einer initialen Portionsgröße im Bereich von 5 mM bis 8 mM und anschließend nach 2 h bis 7 h einer kontinuierlichen Zugabe mit einer Portionsgröße im Bereich von 1 ,2 mM bis 1 ,8 mM pro Stunde. In embodiments, use is made of portion sizes in the range of 3mM to 8mM with batch addition or in the range of 1mM to 2mM per hour with continuous addition. A combination of discontinuous addition at the beginning with an initial portion size in the range from 5 mM to 8 mM and then after 2 hours to 7 hours of continuous addition with a portion size in the range from 1.2 mM to 1.8 mM per hour is particularly suitable .
Unter dem Begriff „wässriges Medium“ wird eine Flüssigkeit umfassend Wasser verstanden. Die wässrige Komponente muss in geeigneter Weise den Ansprüchen des Ganzzellkatalysators genügen. The term "aqueous medium" is understood to mean a liquid comprising water. The aqueous component must suitably meet the requirements of the whole-cell catalyst.
Zusammensetzungen von wässrigen Komponenten, insbesondere Kulturmedien, für verschiedene Mikroorganismen sind dem Fachmann bekannt und beispielsweise von Panke et al. beschrieben (Panke et al. 1999). Weitere Zusatzstoffe (z. B. Kohlenstoffquellen, Stickstoffquellen, Metallsalze) können zu der wässrigen Komponente in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugeführt werden. Zur pH-Wert-Kontrolle der wässrigen Komponente werden Pufferverbindungen, wie z. B. Hydrogenphosphatsalze oder TRIS; und basische Verbindungen, wie z. B. Natriumhydroxid, Kaliumhydroxid oder Ammoniak; oder saure Verbindungen, wie z. B. Phosphorsäure oder Schwefelsäure; in geeigneter Weise eingesetzt. Compositions of aqueous components, in particular culture media, for various microorganisms are known to those skilled in the art and are described, for example, by Panke et al. described (Panke et al. 1999). Other additives (e.g. carbon sources, Nitrogen sources, metal salts) can be added to the aqueous component in the form of a one-time batch or supplied in a suitable manner during the cultivation. To control the pH of the aqueous component, buffer compounds such as e.g. B. hydrogen phosphate salts or TRIS; and basic compounds such as B. sodium hydroxide, potassium hydroxide or ammonia; or acidic compounds such as B. phosphoric acid or sulfuric acid; used in an appropriate manner.
In Ausführungsformen werden im erfindungsgemäßen Verfahren Phosphat-gepufferte Medien verwendet (Panke et al. 1999), wobei Glukose als Kohlenstoffquelle eingesetzt wird. Bevorzugt wird Glukose initial mit einer Konzentration im Bereich von 10 mM bis 15 mM bezogen auf das Kulturvolumen, welches den Ganzzellkatalysator enthält, zur Anzucht eingesetzt. In embodiments, phosphate-buffered media are used in the method according to the invention (Panke et al. 1999), with glucose being used as the carbon source. Glucose is preferably initially used for culturing at a concentration in the range from 10 mM to 15 mM, based on the culture volume which contains the whole-cell catalyst.
In weiteren Ausführungsformen wird vor, gleichzeitig mit oder nach der Aktivierung des Ganzzellkatalysators mit einem Induktor in Schritt b) weiterhin Glukose mit einer Gesamtkonzentration im Bereich von 40 mM bis 60 mM zusätzlich zur initialen Portion zugegeben, bevorzugt mittels der kontinuierlichen Zugabe im Bereich von 2 mM bis 4 mM pro Stunde. Die Glukose kann als Lösung oder als Feststoff zugegeben werden. In further embodiments, before, at the same time as or after the activation of the whole-cell catalyst with an inducer in step b), glucose with a total concentration in the range of 40 mM to 60 mM is added in addition to the initial portion, preferably by means of continuous addition in the range of 2 mM to 4mM per hour. The glucose can be added as a solution or as a solid.
Zur Kontrolle der Schaumentwicklung können Antischaummittel, wie z. B. Fettsäurepolyglykolester oder n-Octanol; eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können der wässrigen Komponente unter anderem Antibiotika, wie z. B. Chloramphenicol, Ampicillin oder Kanamycin; hinzugefügt werden. In Ausführungsformen erfolgt zur Aufrechterhaltung der Plasmidstabilität der Einsatz von Bakterienzellen mit teilweise inaktivierten Stoffwechselwegen (bspw. auxotrophe Mutanten), wobei auf einem (Expressions-)Vektor, enthaltend mindestens ein Gen definiert in i.) bis iv.), u. a. Gene zur Komplettierung unvollständiger Stoffwechselwege enthalten sind. Bevorzugt werden im erfindungsgemäßen Verfahren Bakterienzellen eingesetzt, welche auf einem (Expressions-)Vektor, enthaltend mindestens ein Gen definiert in i.) bis iv.), mindestens ein Antibiotika-Resistenzgen enthalten. To control foaming, antifoams such as B. fatty acid polyglycol esters or n-octanol; be used. To maintain the stability of plasmids, the aqueous component can include antibiotics such. B. chloramphenicol, ampicillin or kanamycin; to be added. In embodiments, bacterial cells with partially inactivated metabolic pathways (e.g. auxotrophic mutants) are used to maintain plasmid stability, with an (expression) vector containing at least one gene defined in i.) to iv.), e.g. Genes to complete incomplete metabolic pathways are included. Bacterial cells are preferably used in the method according to the invention which contain at least one antibiotic resistance gene on an (expression) vector containing at least one gene defined in i.) to iv.).
In Ausführungsformen erfolgt das erfindungsgemäße Verfahren unter aeroben Bedingungen. Um aerobe Bedingungen aufrecht zu erhalten, werden Sauerstoff oder sauerstoffhaltige Gasmischungen, wie z. B. Luft, in die wässrige Komponente eingetragen. In embodiments, the method according to the invention takes place under aerobic conditions. In order to maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as. As air, entered into the aqueous component.
In Ausführungsformen erfolgt Schritt c) in einem Zeitraum im Bereich von 0 h bis 2 h, bevorzugt 0 h bis 1 h, besonders bevorzugt 0 h bis 0,5 h nach Schritt b). Überraschend wurde der höchste Umsatz bei einer gleichzeitigen Zugabe von Induktor und Substrat erhalten. Im Vergleich dazu erfolgt bei biotechnologischen Verfahren standardmäßig eine Vorinduktion eines Ganzzellkatalysators mit einem Induktor für einige Stunden, insbesondere 6 h bis 14 h, vor der eigentlichen Substratzugabe zum Start des Umsatzes. In embodiments, step c) takes place in a period of time in the range from 0 h to 2 h, preferably 0 h to 1 h, particularly preferably 0 h to 0.5 h after step b). Surprisingly, the highest conversion was obtained when inductor and substrate were added at the same time. In comparison In biotechnological processes, a standard pre-induction of a whole-cell catalyst with an inductor takes place for a few hours, in particular 6 h to 14 h, before the actual addition of the substrate to start the conversion.
In weiteren Ausführungsformen umfasst das erfindungsgemäße Verfahren mindestens einen weiteren Schritt, wobei der mindestens eine weitere Schritt eine Isolierung der Verbindung nach Formel (V) nach den Schritten a) bis c) ist. Vorteilhaft ist die Aufreinigung der Verbindung nach Formel (V), erhalten mittels des erfindungsgemäßen Verfahrens, einfacher als bei einer extraktiven Gewinnung, da weniger strukturell ähnliche Inhaltsstoffe abzutrennen sind. Weiterhin vorteil haft wird das Reaktionsprodukt der Formel (V) von dem Ganzzellkatalysator in die wässrige Komponente sekretiert, wodurch die Isolierung mindestens eines Reaktionsproduktes der Formel (V) von der Biomasse und der wässrigen Komponente begünstigt wird. In further embodiments, the method according to the invention comprises at least one further step, the at least one further step being isolation of the compound of the formula (V) after steps a) to c). The purification of the compound of the formula (V), obtained by means of the process according to the invention, is advantageously simpler than in the case of extraction by extraction, since fewer structurally similar ingredients have to be separated off. Furthermore, the reaction product of the formula (V) is advantageously secreted by the whole-cell catalyst into the aqueous component, which promotes the isolation of at least one reaction product of the formula (V) from the biomass and the aqueous component.
Bevorzugt erfolgt die Isolierung des Reaktionsproduktes der Formel (V) von der Biomasse und der wässrigen Komponente schrittweise, wobei in einem ersten Schritt durch Zentrifugation oder Filtration die Biomasse von der wässrigen Komponente, enthaltend ein Reaktionsprodukt der Formel (V), abgetrennt wird. The reaction product of the formula (V) is preferably isolated stepwise from the biomass and the aqueous component, the biomass being separated off from the aqueous component containing a reaction product of the formula (V) in a first step by centrifugation or filtration.
In Ausführungsformen erfolgt die Isolierung der Verbindung der Formel (V) durch Extraktion der wässrigen Komponente mit einem organischen Lösungsmittel ausgewählt aus Ethylacetat, n- Octanol, n-Decanol oder einem aromatischen und/oder aliphatischen Lösungsmittel mit vergleichbarer Polarität. In embodiments, the compound of formula (V) is isolated by extraction of the aqueous component with an organic solvent selected from ethyl acetate, n-octanol, n-decanol or an aromatic and/or aliphatic solvent with comparable polarity.
In Ausführungsformen dienen die genannten organischen Lösungsmittel in einem einphasigen, wässrigen System zur Extraktion nach dem Umsatz einer Verbindung nach Formel (V). In alternativen Ausführungsformen dienen die genannten organischen Lösungsmittel in einem zweiphasigen System in Form einer zweiten Phase neben der wässrigen Komponente als Reservoir für eine Verbindung nach Formel (I) und/oder zur Abtrennung einer Verbindung nach Formel (V). In embodiments, the organic solvents mentioned are used in a single-phase, aqueous system for extraction after conversion of a compound of the formula (V). In alternative embodiments, the organic solvents mentioned serve in a two-phase system in the form of a second phase in addition to the aqueous component as a reservoir for a compound of formula (I) and/or for separating off a compound of formula (V).
Neben der Extraktion mit organischen Lösungsmitteln eignet sich darüber hinaus die Festphasenextraktion zur Produktabtrennung. Als Festphasenmaterialen kommen u. a. kommerziell erhältliche hydrophobe Copolymere bestehend aus Monomeren von Styrol, Styrolderivaten, Benzol, Vinylbenzole und/oder Vinylpyrrolidon in Frage, die u. a. auch polar modifiziert sein können oder Gruppen mit lonentauschereigenschaften enthalten können. Zweckmäßig erfolgt die Elution des Zielproduktes von diesen Materialen mit Methanol oder Ethanol und/oder durch eine Variation des pH-Wertes. In addition to extraction with organic solvents, solid phase extraction is also suitable for product separation. Possible solid-phase materials include commercially available hydrophobic copolymers consisting of monomers of styrene, styrene derivatives, benzene, vinylbenzenes and/or vinylpyrrolidone, which, among other things, can also be polar modified or can contain groups with ion exchange properties. The target product is expediently eluted from these materials with methanol or ethanol and/or by varying the pH.
In Ausführungsformen erfolgt zur Aufreinigung der Verbindung nach Formel (V) im Anschluss an die Flüssigextraktion oder Festphasenextraktion eine Destillation, wobei bevorzugt das organische Lösungsmittel abgetrennt wird. In Ausführungsformen erfolgt die Abtrennung des organischen Lösungsmittels durch Verdampfung bei einem Druck im Bereich von 0,1 mbar bis 1000 mbar, bevorzugt im Bereich von 0,1 mbar bis 750 mbar, besonders bevorzugt im Bereich von 1 mbar bis 400 mbar. Das erhaltene Produkt kann anschließend in Wasser aufgenommen werden und/oder über präparative Hochleistungsflüssigchromatographie aufgereinigt werden. Das abgetrennte organische Lösungsmittel kann je nach Aufarbeitung wieder für die nächste Extraktion oder Elution eingesetzt werden. In embodiments, the purification of the compound of formula (V) is followed by distillation after the liquid extraction or solid-phase extraction, the organic solvent preferably being separated off. In embodiments, the organic solvent is removed by evaporation at a pressure in the range from 0.1 mbar to 1000 mbar, preferably in the range from 0.1 mbar to 750 mbar, particularly preferably in the range from 1 mbar to 400 mbar. The product obtained can then be taken up in water and/or purified using preparative high-performance liquid chromatography. Depending on the work-up, the separated organic solvent can be used again for the next extraction or elution.
Ein weiterer Aspekt der Erfindung betrifft einen Ganzzellkatalysator umfassend: i. ein Gen kodierend für ein Enzym Phenolsäure-Decarboxylase und ii. mindestens ein Gen kodierend für ein Enzym umfassend eine Oxygenase- Untereinheit und/oder eine Reduktase-Untereinheit, bevorzugt einer Styrol- Monooxygenase oder Indol-Monooxygenase, und iii. ein Gen kodierend für ein Enzym Styroloxid-Isomerase, und iv. ein Gen kodierend für ein Enzym Alkoholdehydrogenase, und mindestens einen Promotor zur regulierbaren Expression der Gene i) bis iv).Another aspect of the invention relates to a whole cell catalyst comprising: i. a gene coding for an enzyme phenolic acid decarboxylase and ii. at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and iii. a gene coding for an enzyme styrene oxide isomerase, and iv. a gene coding for an enzyme alcohol dehydrogenase, and at least one promoter for the controllable expression of genes i) to iv).
In Ausführungsformen ist der Ganzzellkatalysator ein rekombinanter Mikroorganismus, bevorzugt eine rekombinante Bakterienzelle. In embodiments, the whole cell catalyst is a recombinant microorganism, preferably a recombinant bacterial cell.
In Ausführungsformen ist die Bakterienzelle aus Escherichia, Arthrobacter, Bacillus, Rhodococcus, Pseudomonas, Sphingobium, Sphingopyxis, Corynebacterium, Marinobacterium, Variovorax und Gordonia ausgewählt, bevorzugt aus Escherichia coli, Rhodococcus opacus 1 CP, Rhodococcus species ST-5, Pseudomonas fluorescens ST, Corynebacterium species AC-5, Pseudomonas putida CA-3, Pseudomonas putida 312 und Variovorax paradoxus EPS. In embodiments, the bacterial cell is selected from Escherichia, Arthrobacter, Bacillus, Rhodococcus, Pseudomonas, Sphingobium, Sphingopyxis, Corynebacterium, Marinobacterium, Variovorax and Gordonia, preferably from Escherichia coli, Rhodococcus opacus 1 CP, Rhodococcus species ST-5, Pseudomonas fluorescens ST, Corynebacterium species AC-5, Pseudomonas putida CA-3, Pseudomonas putida 312 and Variovorax paradoxus EPS.
In bevorzugten Ausführungsformen ist die Bakterienzelle Escherichia coli, insbesondere ein Derivat von Stamm BL21 bzw. Stamm B. In preferred embodiments, the bacterial cell is Escherichia coli, in particular a derivative of strain BL21 or strain B.
In bevorzugten Ausführungsformen ist der Ganzzellkatalysator Escherichia coli mit Insertionsmutation. Unter dem Begriff „Insertionsmutation“ wird die Einbringung von mindestens einem Gen durch Genom-Insertion oder durch Einbringung von Expressionsvektoren verstanden. Die Nukleotidsequenzen der Gene i.) bis iv.) umfassen dabei authentische und/oder artifizielle Leserahmen. Bevorzugt ist ein artifizieller Leserahmen über eine Gensynthese an das ’’Codon Usage" des Wirtsorganismus angepasst. In preferred embodiments, the whole cell catalyst is Escherichia coli with insertion mutation. The term "insertion mutation" is understood to mean the introduction of at least one gene by genome insertion or by introduction of expression vectors. The nucleotide sequences of genes i.) to iv.) include authentic and/or artificial reading frames. An artificial reading frame is preferably adapted to the "codon usage" of the host organism via gene synthesis.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Phenolsäure-Decarboxylase, welche fähig ist Verbindung (I) zu Verbindung (II)
Figure imgf000025_0001
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises a phenolic acid decarboxylase capable of converting compound (I) to compound (II)
Figure imgf000025_0001
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
Erfindungsgemäß weist der Ganzzellkatalysator mindestens ein Gen kodierend für ein Enzym umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit, bevorzugt eine Monooxygenase, besonders bevorzugt eine Styrol-Monooxygenase oder eine Indol- Monooxygenase, auf. According to the invention, the whole-cell catalyst has at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a monooxygenase, particularly preferably a styrene monooxygenase or an indole monooxygenase.
In Ausführungsformen umfasst der Ganzzellkatalysator mindestens ein Enzym mit einer Oxygenase-Untereinheit und/oder einer Reduktase-Untereinheit, welches fähig ist Verbindung (II) zu Verbindung (III)
Figure imgf000025_0002
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of converting compound (II) to compound (III)
Figure imgf000025_0002
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
In Ausführungsformen ist das Enzym umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit ein Fusionsprotein, bevorzugt nach SEQ ID No. 14 oder SEQ ID No. 15. In embodiments, the enzyme comprising an oxygenase subunit and/or a reductase subunit is a fusion protein, preferably according to SEQ ID no. 14 or SEQ ID no. 15
In Ausführungsformen umfasst der Ganzzellkatalysator eine Styroloxid-Isomerase, welche fähig ist Verbindung (III) zu Verbindung (IV)
Figure imgf000026_0001
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises a styrene oxide isomerase capable of converting compound (III) to compound (IV)
Figure imgf000026_0001
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Alkoholdehydrogenase, welche fähig ist Verbindung (IV) zu Verbindung (V)
Figure imgf000026_0002
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises an alcohol dehydrogenase capable of converting compound (IV) to compound (V)
Figure imgf000026_0002
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
Die entsprechenden Gen- und Aminosäuresequenzen für die genannten Enzyme (Phenolsäure- Decarboxylase, Oxygenase, Reduktase, Styroloxid-Isomerase und Alkoholdehydrogenase) sind dem Fachmann bestens bekannt oder können bekannten Datenbanken (z. B. NCBI, RCSB PDB, UniProt, PDB Europa) entnommen werden. The corresponding gene and amino acid sequences for the enzymes mentioned (phenolic acid decarboxylase, oxygenase, reductase, styrene oxide isomerase and alcohol dehydrogenase) are well known to those skilled in the art or can be found in known databases (e.g. NCBI, RCSB PDB, UniProt, PDB Europe). will.
In Ausführungsformen umfasst der Ganzzellkatalysator i. Mindestens zwei Gene kodierend für ein Enzym Phenolsäure-Decarboxylase und/oder ii. mindestens zwei Gene kodierend für ein Enzym umfassend eine Oxygenase- Untereinheit und/oder eine Reduktase-Untereinheit, bevorzugt einer Styrol- Monooxygenase oder Indol-Monooxygenase, und/oder iii. mindestens zwei Gene kodierend für ein Enzym Styroloxid-Isomerase, und/oder iv. mindestens zwei Gene kodierend für ein Enzym Alkoholdehydrogenase, wobei die Gene kodierend für ein Enzym jeweils gleich oder unterschiedlich sein können. In Ausführungsformen umfasst der Ganzzellkatalysator i. ein Enzym Phenolsäure-Decarboxylase, welches fähig ist Verbindung (I)
Figure imgf000027_0004
umzusetzen, und ii. mindestens ein Enzym mit einer Oxygenase-Untereinheit und/oder einer Reduktase-Untereinheit, welches fähig ist Verbindung (II)
Figure imgf000027_0001
zu Verbindung (III)
Figure imgf000027_0002
umzusetzen, und iii. ein Enzym Styroloxid-Isomerase, welches fähig ist Verbindung (III)
Figure imgf000027_0003
zu Verbindung (IV)
Figure imgf000028_0001
umzusetzen, und iv. ein Enzym Alkoholdehydrogenase, welches fähig ist Verbindung (IV)
Figure imgf000028_0002
umzusetzen, wobei R1 -H oder -OH ist und wobei R2 -H, -OH oder -OCH3 ist.
In embodiments, the whole cell catalyst comprises i. At least two genes coding for an enzyme phenolic acid decarboxylase and/or ii. at least two genes coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit, preferably a styrene monooxygenase or indole monooxygenase, and/or iii. at least two genes coding for an enzyme styrene oxide isomerase, and/or iv. at least two genes coding for an enzyme alcohol dehydrogenase, it being possible for the genes coding for an enzyme to be identical or different in each case. In embodiments, the whole cell catalyst comprises i. an enzyme phenolic acid decarboxylase capable of compound (I)
Figure imgf000027_0004
implement, and ii. at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of compound (II)
Figure imgf000027_0001
to compound (III)
Figure imgf000027_0002
implement, and iii. an enzyme styrene oxide isomerase capable of compound (III)
Figure imgf000027_0003
to connection (IV)
Figure imgf000028_0001
implement, and iv. an enzyme alcohol dehydrogenase capable of compound (IV)
Figure imgf000028_0002
where R 1 is -H or -OH and where R 2 is -H, -OH or -OCH3.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3. In embodiments, the whole-cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
In Ausführungsformen umfasst der Ganzzellkatalysator eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3. In embodiments, the whole cell catalyst comprises a phenolic acid decarboxylase having an amino acid sequence selected from SEQ ID no. 1 to SEQ ID No. 3.
In weiteren Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9. In Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9. In further embodiments, the whole-cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9. In embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence selected from SEQ ID no. 4 to SEQ ID No. 9.
In weiteren Ausführungsformen umfasst der Ganzzellkatalysator eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, bevorzugt mit mindestens 95 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15. In further embodiments, the whole-cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, preferably with at least 95% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, particularly preferably with at least 98% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15
In Ausführungsformen umfasst der Ganzzellkatalysator eine Reduktase-Untereinheit mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15. In embodiments, the whole cell catalyst comprises a reductase subunit having an amino acid sequence selected from SEQ ID no. 10 to SEQ ID No. 15
In weiteren Ausführungsformen umfasst der Ganzzellkatalysator eine Styroloxid-Isomerase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18, bevorzugt mit mindestens 95 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18, besonders bevorzugt mit mindestens 98 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18. In further embodiments, the whole-cell catalyst comprises a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, preferably with at least 95% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18, particularly preferably with at least 98% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
In Ausführungsformen umfasst der Ganzzellkatalysator eine Styroloxid-Isomerase mit einer Aminosäuresequenz ausgewählt aus SEQ ID No. 16, SEQ ID No. V oder SEQ ID No. 18. In embodiments, the whole cell catalyst comprises a styrene oxide isomerase having an amino acid sequence selected from SEQ ID no. 16, SEQ ID NO. V or SEQ ID No. 18
In bevorzugten Ausführungsformen umfasst der Ganzzellkatalysator i. eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, und ii. eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, und iii. eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, und iv. eine Styroloxid-Isomerase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18. In preferred embodiments, the whole cell catalyst comprises i. a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, and ii. an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, and iii. a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, and iv. a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18
In Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 13. In embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID No. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 13.
In alternativen Ausführungsformen umfasst der Ganzzellkatalysator eine Oxygenase- Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15. In alternative embodiments, the whole cell catalyst comprises an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
In alternativen Ausführungsformen umfasst der Ganzzellkatalysator eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15. In alternative embodiments, the whole-cell catalyst comprises a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15
In Ausführungsformen kommt die Alkoholdehydrogenase in dem Ganzzellkatalysator natürlich vor. In embodiments, the alcohol dehydrogenase is naturally occurring in the whole cell catalyst.
Die Gene kodierend für ein Enzym Phenolsäure-Decarboxylase, ein Enzym umfassend eine Oxygenase-Untereinheit und/oder eine Reduktase-Untereinheit, eine Styroloxid-Isomerase und eine Alkoholdehydrogenase, sind funktionell unter die Kontrolle mindestens eines regulierbaren Promotors gestellt, wobei die Promotoren identisch oder untereinander unterschiedlich sein können. The genes coding for an enzyme phenolic acid decarboxylase, an enzyme comprising an oxygenase subunit and/or a reductase subunit, a styrene oxide isomerase and an alcohol dehydrogenase are functionally under the control of at least one regulatable promoter, with the promoters being identical or interrelated can be different.
In Ausführungsformen ist der mindestens eine Promotor zur regulierbaren Expression der Gene i) bis iv) ein gemeinsamer Promotor. In embodiments, the at least one promoter for the regulatable expression of genes i) to iv) is a common promoter.
In alternativen Ausführungsformen stehen die Gene i) bis iv) funktionell unter der Kontrolle jeweils eines regulierbaren Promotors. In alternative embodiments, genes i) to iv) are each functionally under the control of a regulatable promoter.
In Ausführungsformen unterscheiden sich die regulierbaren Promotoren voneinander, sodass die Promotoren Primärsignal-spezifisch aktivierbar sind. In embodiments, the regulatable promoters differ from one another, such that the promoters can be activated in a primary signal-specific manner.
Die entsprechenden Nukleinsäuresequenzen für Promotoren, z. B. T7-Promotor bei pET16- Expressionsystemen, die für ein erfindungsgemäßes Verfahren eingesetzt werden können, sind dem Fachmann bekannt oder können bekannten Datenbanken (z. B. EPD, TRED, MPromDB) entnommen werden. Vorteilhaft können künstlich in Organismen eingebrachte Promotoren und natürliche Promotoren verwendet werden. Die Erfindung umfasst auch die Verwendung eines erfindungsgemäßen Ganzzellkatalysators zur biokatalytischen Synthese einer Verbindung nach Formel (V),
Figure imgf000031_0001
durch die biokatalytische Umsetzung eines Stoffes umfassend mindestens eine Verbindung nach Formel (I)
Figure imgf000031_0002
wobei R1 -H oder -OH ist, wobei R2 -H, -OH oder -OCH3 ist.
The corresponding nucleic acid sequences for promoters, e.g. B. T7 promoter in pET16 expression systems that can be used for a method according to the invention are known to the person skilled in the art or can be found in known databases (eg EPD, TRED, MPromDB). Advantageously, promoters introduced artificially into organisms and natural promoters can be used. The invention also includes the use of a whole-cell catalyst according to the invention for the biocatalytic synthesis of a compound according to formula (V),
Figure imgf000031_0001
by the biocatalytic conversion of a substance comprising at least one compound according to formula (I)
Figure imgf000031_0002
wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3.
Für die Realisierung der Erfindung ist es auch zweckmäßig, die vorbeschriebenen Ausführungsformen und Merkmale der Ansprüche zu kombinieren. For the realization of the invention, it is also expedient to combine the above-described embodiments and features of the claims.
Nachfolgend soll die Erfindung anhand einiger Ausführungsbeispiele und zugehöriger Figuren eingehender erläutert werden. Die Ausführungsbeispiele sollen dabei die Erfindung beschreiben ohne diese zu beschränken. The invention will be explained in more detail below with reference to some exemplary embodiments and associated figures. The exemplary embodiments are intended to describe the invention without restricting it.
Es zeigen die It show the
Fig. 1 den Einfluss der Vorinduktionsdauer (Schritt b) vor Zugabe des Substrates Kaffeesäure (Schritt c) auf die Bildung von 3-Hydroxytyrosol. 1 shows the influence of the pre-induction period (step b) before addition of the substrate caffeic acid (step c) on the formation of 3-hydroxytyrosol.
Fig. 2 den Verlauf des Umsatzes von Kaffeesäure in 3-Hydroxtyrosol mit einem erfindungsgemäßen Ganzzellkatalysator im Fermenter. Beispiel 1 : Erfindunqsqemäßer Ganzzellkatalysator 2 shows the course of the conversion of caffeic acid into 3-hydroxytyrosol with a whole-cell catalyst according to the invention in the fermenter. Example 1 Whole-cell catalyst according to the invention
In einem ersten Ausführungsbeispiel wird die BL21-Variante von Escherichia coli verwendet, welche eine eigene Alkohol-Dehydrogenasen besitzt. Besonders geeignet sind Escherichia coli T7Express lysY/lq oder Escherichia coli BL21 (DE3)pLysS. Der erfindungsgemäße Ganzzellkatalysator umfasst SEQ ID No. 1 , SEQ ID No. 9, SEQ ID No. 15 mit SEQ ID No. 17 (Katalysator A) oder SEQ ID No. 1 , SEQ ID No. 8, SEQ ID No. 14 mit SEQ ID No. 17 (Katalysator B) oder SEQ ID No. 1 , SEQ ID No. 5, SEQ ID No. 12 mit SEQ ID No. 17 (Katalysator C) oder SEQ ID No. 1 , SEQ ID No. 4, SEQ ID No. 10 mit SEQ ID No. 17 (Katalysator D) oder SEQ ID No. 1 , SEQ ID No. 15 mit SEQ ID No. 17 (Katalysator E). Die Gene werden ausgestattet mit je einer einem jedem Gen vorgelagerten ribosomalen Bindungsstelle (RBS) hintereinander einem IPTG- sensitiven Promotor unterworfen, insbesondere durch Einbringung in die Multiple Cloning Site (MCS) von pET- oder pRSF-Vektoren oder in einen Vektor mit mehreren MCSs, insbesondere pCOLA-Duet. Dabei kann die Einbringung aller Gene in die Zelle über einen Vektor oder alternativ über zwei Vektoren erfolgen. In a first embodiment, the BL21 variant of Escherichia coli is used, which has its own alcohol dehydrogenase. Escherichia coli T7Express lysY/lq or Escherichia coli BL21 (DE3)pLysS are particularly suitable. The whole-cell catalyst according to the invention comprises SEQ ID no. 1 , SEQ ID No. 9, SEQ ID No. 15 with SEQ ID no. 17 (catalyst A) or SEQ ID no. 1 , SEQ ID No. 8, SEQ ID No. 14 with SEQ ID no. 17 (catalyst B) or SEQ ID no. 1 , SEQ ID No. 5, SEQ ID No. 12 with SEQ ID no. 17 (catalyst C) or SEQ ID no. 1 , SEQ ID No. 4, SEQ ID No. 10 with SEQ ID no. 17 (catalyst D) or SEQ ID no. 1 , SEQ ID No. 15 with SEQ ID no. 17 (Catalyst E). The genes are equipped with a ribosomal binding site (RBS) upstream of each gene and subjected to an IPTG-sensitive promoter one after the other, in particular by introduction into the multiple cloning site (MCS) of pET or pRSF vectors or into a vector with several MCSs, especially pCOLA Duet. All genes can be introduced into the cell via one vector or alternatively via two vectors.
Im Falle der Katalysatoren A bis D erfolgt die Einbringung aller genannter Gene in Stamm T7Express lysY/lq über einen einzelnen pET-Vektor. Katalysator E entspricht dagegen Stamm BL21 (DE3)pLysS, wobei die relevanten Gene mittels pCOLA-Duet-Vektor und pET-Vektor bereitgestellt werden. In the case of catalysts A to D, all genes mentioned are introduced into strain T7Express lysY/lq via a single pET vector. Catalyst E, on the other hand, corresponds to strain BL21(DE3)pLysS, with the relevant genes being provided by means of the pCOLA Duet vector and pET vector.
Beispiel 2: Umsatz von Kaffeesäure in 3-Hvdroxytyrosol im Maßstab von 50 ml Example 2: Conversion of caffeic acid into 3-hydroxytyrosol on a 50 ml scale
Die Katalysatoren A bis D (siehe Beispiel 1) werden im Maßstab von 50 ml für den Umsatz von Kaffeesäure eingesetzt. Die Vorkultivierung ausgehend von Kryokulturen erfolgt zunächst in Reagenzgläsern mit 4 ml LB-Medium, welches zusätzlich 100 pg/ml Ampicillin enthält, bei 37°C und 120 rpm über Nacht. Anschließend erfolgt das Animpfen der Hauptkultur, bestehend aus 50 ml M9*-Medium (nach Panke et al. 1999) mit 100 pg/ml Ampicillin, durch Einbringen von 3,5 ml Vorkultur. Diese Kulturen werden bei 37°C und 120 rpm bis zu einer Zelldichte von ODsoo = 0,6 angezogen und anschließend mit 1 mM IPTG induziert. Zeitgleich wird mit fester Kaffeesäure eine Konzentration von 8 mM in den Hauptkulturen eingestellt. Die weitere Kultivierung erfolgt bei 120 rpm und 30°C. Nach ca. 6 h wird nochmals Kaffeesäure mit einer Konzentration von 4 mM zugegeben. Nach 12 h erfolgt die Probenahme zum Nachweis der Funktionsfähigkeit der Ganzzellkatalysatoren durch Entnahme von 100 bis 250 pl der Hauptkultur, Abstoppen mit Methanol, Zentrifugation zur Zellabtrennung und Analyse des klaren, abgenommenen Überstandes mittels Hochleistungsflüssigchromatographie. Mit Katalysator A waren unter diesen Bedingungen nach 12 h 7,4 mM Produkt realisierbar, was einer Ausbeute von 62 % entsprach. Katalysator B und C offenbarten nach 12 h 8,7 mM Produkt und eine Ausbeute von ca. 73 %. Katalysator D erreichte eine Produktkonzentration von 10,3 mM und eine Ausbeute von 86 %. Catalysts A to D (see Example 1) are used on a 50 ml scale for the conversion of caffeic acid. The pre-cultivation starting from cryocultures takes place first in test tubes with 4 ml LB medium, which additionally contains 100 pg/ml ampicillin, at 37° C. and 120 rpm overnight. Then the main culture, consisting of 50 ml M9* medium (according to Panke et al. 1999) with 100 pg/ml ampicillin, is inoculated by introducing 3.5 ml preculture. These cultures are grown at 37° C. and 120 rpm to a cell density of ODsoo=0.6 and then induced with 1 mM IPTG. At the same time, a concentration of 8 mM is set in the main cultures with solid caffeic acid. Further cultivation takes place at 120 rpm and 30°C. After about 6 hours, caffeic acid is added again at a concentration of 4 mM. After 12 h, samples are taken to demonstrate the functionality of the whole-cell catalysts by removing 100 to 250 μl of the main culture, stopping with methanol, centrifuging to separate the cells and analyzing the clear supernatant removed using high-performance liquid chromatography. With catalyst A, 7.4 mM product could be produced under these conditions after 12 h, which corresponded to a yield of 62%. Catalysts B and C revealed 8.7 mM product after 12 h and a yield of ca. 73%. Catalyst D achieved a product concentration of 10.3 mM and a yield of 86%.
Beispiel 3: Umsatz von Ferulasäure und Kaffeesäure mit Katalysator E Example 3: Conversion of ferulic acid and caffeic acid with catalyst E
Die Anzucht der Biomasse von Katalysator E (siehe Beispiel 1) in der Vorkultur sowie in der Hauptkultur bis zur Induktion mit 1 mM IPTG erfolgt entsprechend Beispiel 2. Parallel zur Induktion werden einmalig entweder 3 mM Kaffeesäure oder 3 mM Ferulasäure zugegeben. Anschließend werden die Kulturen bei 30°C und 120 rpm inkubiert. Nach 24 h wird die Produktbildung, wie in Beispiel 2 beschrieben, quantifiziert. Cultivation of the biomass of catalyst E (see Example 1) in the preculture and in the main culture up to induction with 1 mM IPTG is carried out according to Example 2. Either 3 mM caffeic acid or 3 mM ferulic acid are added once in parallel with the induction. The cultures are then incubated at 30° C. and 120 rpm. After 24 hours, product formation is quantified as described in Example 2.
Nach 24 h konnten im Falle der Verwendung von Ferulasäure als Edukt 1 ,5 mM Homovanillylalkohol nachgewiesen werden, was einer Ausbeute von 50 % entspricht. Im Falle der Kulturen, die mit Kaffeesäure inkubiert wurden, ließen sich 1 ,6 mM 3-Hydroxytyrosol nachweisen, was einer Ausbeute von 53 % entspricht. If ferulic acid was used as starting material, 1.5 mM homovanillyl alcohol could be detected after 24 h, which corresponds to a yield of 50%. In the case of the cultures that were incubated with caffeic acid, 1.6 mM 3-hydroxytyrosol could be detected, which corresponds to a yield of 53%.
Beispiel 4: Einfluss des Induktionszeitpunktes auf den Umsatz von Kaffeesäure Example 4 Influence of the induction time on the conversion of caffeic acid
Für Katalysator D (siehe Beispiel 1) wurde der Einfluss einer Vorinduktion vor der Zugabe des Edukts untersucht. Die Vorkultivierung und Hauptkultivierung erfolgt wie in Beispiel 2 beschrieben, allerdings wird nur einmalig eine Portion von 8 mM Kaffeesäure zugegeben. Je nach Ansatz wird nach der Zugabe des Induktors IPTG die Kaffeesäure nach 0 h, 0,5 h, 1 h, 1 ,5 h, 2 h, 4 h, 6 h oder 12 h zugegeben. Die Entnahme von Proben und Analyse der Proben erfolgt wie unter Beispiel 2 angegeben. Die Ergebnisse der Umsätze nach 21 h sind in Fig. 1 dargestellt. For catalyst D (see Example 1), the influence of a pre-induction before the addition of the starting material was investigated. The pre-cultivation and main cultivation takes place as described in Example 2, but a portion of 8 mM caffeic acid is added only once. Depending on the batch, the caffeic acid is added after 0 h, 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h or 12 h after the addition of the inductor IPTG. Samples are taken and analyzed as described in Example 2. The results of the conversions after 21 hours are shown in FIG.
Deutlich erkennbar ist eine signifikante Abnahme der erreichbaren Produktmengen, wenn die Kaffeesäure erst 1 h nach der Induktion zugegeben wird. Folglich ist eine Zugabe in einem Zeitraum von 0 bis 2 h, bevorzugt 0 bis 0,5 h, erfindungsgemäß sinnvoll. Längere, sonst übliche Vorinduktionszeiten würden dagegen in diesem Fall zu äußerst geringen 3-Hydroxytyrosol- Mengen führen. Beispiel 5: Umsatz von Kaffeesäure in 3-Hydroxytyrosol mit Biokatalysator A im Maßstab vonA significant decrease in the product quantities that can be achieved is clearly recognizable if the caffeic acid is only added 1 h after the induction. Consequently, addition over a period of 0 to 2 hours, preferably 0 to 0.5 hours, is useful according to the invention. On the other hand, longer, otherwise usual pre-induction times would lead to extremely low amounts of 3-hydroxytyrosol in this case. Example 5 Conversion of caffeic acid into 3-hydroxytyrosol with biocatalyst A on a scale of
9,25 I im Fermenter 9.25 I in the fermenter
Für dieses Ausführungsbeispiel wird Katalysator A (siehe Beispiel 1) ausgewählt. Die Kultivierungsbedingungen entsprechen Beispiel 2. Allerdings erfolgt die Kultivierung der Vorkultur nur über einen Zeitraum von 6 h. Danach werden zweimal mit dem Inhalt von je einer Vorkultur je 200 ml LB-Medium, welches zusätzlich 100 g/ml Ampicillin enthält, angeimpft. Danach erfolgt die Kultivierung für 14 h bei 37°C und 120 rpm. Der Inhalt der beiden Kolben wird gemischt und 250 ml dieser Vorkultur zur Inokulation eines Fermenters eingesetzt. Dieser enthält 9 I eines auf 37°C vortemperierten M9*-Mediums (nach Panke et al., 1999) mit 100 pg/ml Ampicillin und 12,7 mM Glukose. Die Rührgeschwindigkeit und Sauerstoffversorgung der Hauptkultur wird so eingestellt, dass der pC>2-Wert bei 50 bis 90 % liegt. Kurz vor der Induktion wird die Temperatur auf 30°C gesenkt. Die Induktion mit 1 mM IPTG erfolgt bei einer Zelldichte der Hauptkultur von ODeoo = 0,6. Zeitgleich wird Kaffeesäure in einer Endkonzentration von 8 mM zugegeben. Die weitere Kultivierung erfolgt bei 30°C, wobei Rührgeschwindigkeit und Lufteintrag an den Bedarf der Kultur angepasst wurden, sodass der pO2-Wert zwischen 30 und 85 % gehalten wird. 1 ,5 h nach der Induktion wird ausgehend von einer flüssigen Stammlösung automatisiert Glukose mit einer Konzentration von 2,4 mM je Stunde zugegeben. Insgesamt werden 50 bis 51 mM Glukose eingebracht. Nach 6 h werden dem Fermenter nochmals 6 mM Kaffeesäure und nach 14 h 3 mM Kaffeesäure durch Zugabe von festem Substrat zugesetzt. 24 h nach der Induktion war der Umsatz beendet. Die Entnahme von Proben während des Umsatzes und die Analyse der Proben erfolgt wie unter Beispiel 2 angegeben. Catalyst A (see Example 1) is selected for this embodiment. The cultivation conditions correspond to example 2. However, the cultivation of the preculture only takes place over a period of 6 h. Thereafter, 200 ml each of LB medium, which additionally contains 100 g/ml ampicillin, is inoculated twice with the contents of a preculture. Cultivation then takes place for 14 h at 37° C. and 120 rpm. The contents of the two flasks are mixed and 250 ml of this preculture are used to inoculate a fermenter. This contains 9 l of an M9* medium preheated to 37° C. (according to Panke et al., 1999) with 100 pg/ml ampicillin and 12.7 mM glucose. The agitation speed and oxygen supply of the main culture is adjusted so that the pC>2 value is 50 to 90%. Just before induction, the temperature is lowered to 30°C. The induction with 1 mM IPTG takes place at a cell density of the main culture of ODeoo=0.6. At the same time, caffeic acid is added to a final concentration of 8 mM. Further cultivation takes place at 30°C, with the stirring speed and air entry being adjusted to the needs of the culture so that the pO2 value is kept between 30 and 85%. 1.5 hours after the induction, starting from a liquid stock solution, glucose is automatically added at a concentration of 2.4 mM per hour. A total of 50 to 51 mM glucose is introduced. After 6 hours, another 6 mM caffeic acid and after 14 hours 3 mM caffeic acid are added to the fermenter by adding solid substrate. The conversion was complete 24 hours after the induction. Samples were taken during the conversion and analyzed as described under example 2.
Insgesamt konnten von 15 mM eingesetzter Kaffeesäure 14,6 mM 3-Hydroxytyrosol gebildet werden, was einer Ausbeute von 97 % entspricht. Das entspricht weiterhin einer Produktmenge von 2,3 g/l. Bezogen auf das Gesamtvolumen konnten ca. 21 g Produkt binnen 25 h realisiert werden. A total of 14.6 mM 3-hydroxytyrosol could be formed from 15 mM caffeic acid, which corresponds to a yield of 97%. This still corresponds to a product quantity of 2.3 g/l. Based on the total volume, about 21 g of product could be realized within 25 hours.
Beispiel 6: Umsatz von Kaffeesäure in 3-Hydroxytyrosol mit Biokatalysator D im Maßstab von 9,25 I im Fermenter Example 6 Conversion of caffeic acid into 3-hydroxytyrosol with biocatalyst D on a scale of 9.25 l in the fermenter
Für dieses Beispiel wurde Katalysator D (siehe Beispiel 1) verwendet. Die Vorkultivierung erfolgt entsprechend Beispiel 5. Der Inhalt der beiden Kolben wird gemischt und 250 ml dieser Vorkultur zur Inokulation eines Fermenters mit 9 I eines auf 37°C vortemperierten M9*-Mediums (nach Panke et al., 1999) mit 100 pg/ml Ampicillin und 12,7 mM Glukose eingesetzt. Die Rührgeschwindigkeit und Sauerstoffversorgung der Hauptkultur wird so eingestellt, dass der pCh- Wert bei 50 bis 90 % liegt. Kurz vor der Induktion wird die Temperatur auf 30°C gesenkt. Die Induktion erfolgt bei einer Zelldichte von ODeoo = 0,6 mit 1 mM IPTG. Zeitgleich wird Kaffeesäure in einer Endkonzentration von 8 mM zugegeben. Die weitere Kultivierung erfolgt bei 30°C, wobei Rührgeschwindigkeit und Lufteintrag an den Bedarf der Kultur angepasst wärden, sodass der pC>2-Wert im Bereich zwischen 40 und 75 % liegt. 1 ,75 h nach der Induktion wird ausgehend von einer flüssigen Stammlösung automatisiert Glukose mit einer Konzentration von 2,4 mM je Stunde zugegeben. Insgesamt werden 40 bis 41 mM Glukose zugegeben. Zudem wird 5,75 h nach der Induktion automatisiert Kaffeesäurelösung mit 1 ,2 mM pro Stunde in den Fermenter eingeleitet (insgesamt 12 mM neben der initialen Portion von 8 mM). Spätestens 20 h nach der Induktion ist der Umsatz beendet. Die Entnahme von Proben während des Umsatzes und die Analyse der Proben erfolgt entsprechend Beispiel 2. Der Verlauf des Umsatzes ist in Fig. 2 dargestellt. Catalyst D (see Example 1) was used for this example. The pre-cultivation is carried out according to example 5. The contents of the two flasks are mixed and 250 ml of this pre-culture for inoculation of a fermenter with 9 l of an M9* medium preheated to 37° C. (according to Panke et al., 1999) with 100 pg/ml Ampicillin and 12.7 mM glucose used. The agitation speed and oxygen supply of the main culture is adjusted in such a way that the pCh Value is 50 to 90%. Just before induction, the temperature is lowered to 30°C. The induction takes place at a cell density of ODeoo=0.6 with 1 mM IPTG. At the same time, caffeic acid is added to a final concentration of 8 mM. Further cultivation takes place at 30°C, with the stirring speed and air entry being adjusted to the needs of the culture so that the pC>2 value is in the range between 40 and 75%. 1.75 hours after the induction, starting from a liquid stock solution, glucose is automatically added at a concentration of 2.4 mM per hour. A total of 40 to 41 mM glucose is added. In addition, 5.75 h after the induction, caffeic acid solution is automatically introduced into the fermenter at 1.2 mM per hour (a total of 12 mM in addition to the initial portion of 8 mM). The conversion is complete no later than 20 h after the induction. Samples were taken during the conversion and analyzed as in Example 2. The course of the conversion is shown in FIG.
Insgesamt wurden durch den Einsatz von 20 mM Kaffeesäure 19,4 mM 3-Hydroxytyrosol gebildet, was einer Ausbeute von 97 % entspricht. Das entspricht zudem einer Produktmenge von fast 3 g/l. Bezogen auf das Gesamtvolumen wurden 27,7 g Produkt binnen 20 h erhalten. A total of 19.4 mM 3-hydroxytyrosol were formed by using 20 mM caffeic acid, which corresponds to a yield of 97%. This also corresponds to a product quantity of almost 3 g/l. Based on the total volume, 27.7 g of product were obtained within 20 h.
Zitierte Nichtpatentliteratur Non-patent literature cited
Bedoya LM, Beltran M, Obregon-Calderon P, Garcia-Perez J, de la Torre HE, Gonzalez N, Perez- Olmeda M, Aunon D, Capa L, Gomez-Acebo E, et al. (2016) Hydroxytyrosol: A new class of microbicide displaying broad anti-HIV-1 activity. Aids 30:2767-2776. Bedoya LM, Beltran M, Obregon-Calderon P, Garcia-Perez J, de la Torre HE, Gonzalez N, Perez-Olmeda M, Aunon D, Capa L, Gomez-Acebo E, et al. (2016) Hydroxytyrosol: A new class of microbicide displaying broad anti-HIV-1 activity. AIDS 30:2767-2776.
Bellumori M, Cecchi L, Innocenti M, Clodoveo ML, Corbo F, Mulinacci N (2019) The EFSA health claim on olive oil polyphenols: acid hydrolysis validation and total hydroxytyrosol and tyrosol determination in Italian virgin olive oils. Molecules 24(11): 2179. Bellumori M, Cecchi L, Innocenti M, Clodoveo ML, Corbo F, Mulinacci N (2019) The EFSA health claim on olive oil polyphenols: acid hydrolysis validation and total hydroxytyrosol and tyrosol determination in Italian virgin olive oils. Molecules 24(11):2179.
Fernandez-Bolanos J, Rodriguez G, Rodriguez R, Heredia A, Guillen R, Jimenez A (2002) Produc tion in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two- phase olive oil processing or “Alperujo”. J. Agric. Food Chem. 50: 6804-6811. Fernandez-Bolanos J, Rodriguez G, Rodriguez R, Heredia A, Guillen R, Jimenez A (2002) Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or “Alperujo”. J Agric. Food Chem. 50: 6804-6811.
Hu T, He X-W, Jiang J-G, Xu X-L (2014) Hydroxytyrosol and its potential therapeutic effects. J. Agric. Food Chem. 62: 1449-1455. Hu T, He X-W, Jiang J-G, Xu X-L (2014) Hydroxytyrosol and its potential therapeutic effects. J Agric. Food Chem. 62:1449-1455.
Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl. Environ. Microbiol. 65: 2324-2332. Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. appl. environment microbiol. 65: 2324-2332.
Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, Azaizeh H (2011) Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary and Alternative Medicine: eCAM, 431021. Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, Azaizeh H (2011) Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary and Alternative Medicine: eCAM, 431021.

Claims

Patentansprüche patent claims
1. Verfahren zur biokatalytischen Synthese einer Verbindung nach Formel (V)
Figure imgf000037_0001
durch die biokatalytische Umsetzung eines Stoffes umfassend mindestens eine Verbindung nach Formel (I)
Figure imgf000037_0002
wobei R1 -H oder -OH ist, wobei R2 -H, -OH oder -OCH3 ist, umfassend die folgenden Schritte: a) Bereitstellen mindestens eines Ganzzellkatalysators umfassend i. ein Gen kodierend für ein Enzym Phenolsäure-Decarboxylase und ii. mindestens ein Gen kodierend für ein Enzym umfassend eine Oxygenase- Untereinheit und/oder eine Reduktase-Untereinheit und iii. ein Gen kodierend für ein Enzym Styroloxid-Isomerase, und iv. ein Gen kodierend für ein Enzym Alkoholdehydrogenase, und mindestens einen Promotor zur regulierbaren Expression der Gene i) bis iv), in einem wässrigen Medium, b) Aktivierung des Ganzzellkatalysators mit einem Induktor, wobei der Induktor zur Expression der Gene i) bis iv) führt, und c) Kontaktieren des Ganzzellkatalysators mit einem Stoff umfassend mindestens eine Verbindung nach Formel (I), wobei die mindestens eine Verbindung nach Formel (I) mit den in (a) definierten Enzymen zu einer Verbindung nach Formel (V) umgesetzt wird. hren nach Anspruch 1 , dadurch gekennzeichnet, dass der Ganzzellkatalysator i. ein Enzym Phenolsäure-Decarboxylase, welches fähig ist Verbindung (I)
Figure imgf000038_0004
umzusetzen, und ii. mindestens ein Enzym mit einer Oxygenase-Untereinheit und/oder einer Reduktase-Untereinheit, welches fähig ist Verbindung (II)
Figure imgf000038_0001
zu Verbindung (III)
Figure imgf000038_0002
umzusetzen, und iii. ein Enzym Styroloxid-Isomerase, welches fähig ist Verbindung (III)
Figure imgf000038_0003
zu Verbindung (IV)
Figure imgf000039_0001
umzusetzen, und iv. ein Enzym Alkoholdehydrogenase, welches fähig ist Verbindung (IV)
Figure imgf000039_0002
1. Process for the Biocatalytic Synthesis of a Compound of Formula (V)
Figure imgf000037_0001
by the biocatalytic conversion of a substance comprising at least one compound according to formula (I)
Figure imgf000037_0002
wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3, comprising the following steps: a) providing at least one whole cell catalyst comprising i. a gene coding for an enzyme phenolic acid decarboxylase and ii. at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit and iii. a gene coding for an enzyme styrene oxide isomerase, and iv. a gene coding for an enzyme alcohol dehydrogenase, and at least one promoter for the controllable expression of genes i) to iv) in an aqueous medium, b) activation of the whole cell catalyst with an inducer, the inducer leading to the expression of genes i) to iv). , and c) contacting the whole-cell catalyst with a substance comprising at least one compound of formula (I), wherein the at least one compound of formula (I) is reacted with the enzymes defined in (a) to form a compound of formula (V). ears according to claim 1, characterized in that the whole cell catalyst i. an enzyme phenolic acid decarboxylase capable of compound (I)
Figure imgf000038_0004
implement, and ii. at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of compound (II)
Figure imgf000038_0001
to compound (III)
Figure imgf000038_0002
implement, and iii. an enzyme styrene oxide isomerase capable of compound (III)
Figure imgf000038_0003
to connection (IV)
Figure imgf000039_0001
implement, and iv. an enzyme alcohol dehydrogenase capable of compound (IV)
Figure imgf000039_0002
(V) umzusetzen, umfasst, wobei R1 -H oder -OH ist, wobei R2 -H, -OH oder -OCH3 ist. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Ganzzellkatalysator i. eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, und/oder ii. eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, und/oder iii. eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, und/oder iv. eine Styroloxid-Isomerase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18 umfasst. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Ganzzellkatalysator eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 13, oder eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15, oder eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15 umfasst. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Ganzzellkatalysator ein rekombinanter Mikroorganismus ist. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Induktor Isopropyl-ß-D-thiogalactopyranosid (IPTG) ist. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens Schritt e) in einem einphasigen wässrigen System oder in einem zweiphasigen System erfolgt. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Stoff umfassend mindestens eine Verbindung nach Formel (I) ein Reinstoff, ein Pflanzenbestandteil oder Pflanzenextrakt ist. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Schritt c) in einem Zeitraum im Bereich von 0 h bis 2 h nach Schritt b) erfolgt. Ganzzellkatalysator umfassend: i. ein Gen kodierend für ein Enzym Phenolsäure-Decarboxylase und ii. mindestens ein Gen kodierend für ein Enzym umfassend eine Oxygenase- Untereinheit und/oder eine Reduktase-Untereinheit und iii. ein Gen kodierend für ein Enzym Styroloxid-Isomerase, und iv. ein Gen kodierend für ein Enzym Alkoholdehydrogenase, und mindestens einen Promotor zur regulierbaren Expression der Gene i) bis iv). zellkatalysator nach Anspruch 10 umfassend i. ein Enzym Phenolsäure-Decarboxylase, welches fähig ist Verbindung (I)
Figure imgf000041_0001
umzusetzen, und ii. mindestens ein Enzym mit einer Oxygenase-Untereinheit und/oder einer Reduktase-Untereinheit, welches fähig ist Verbindung (II)
Figure imgf000041_0002
umzusetzen, und iii. ein Enzym Styroloxid-Isomerase, welches fähig ist Verbindung (III)
(V) wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3. The method according to claim 1 or 2, characterized in that the whole cell catalyst i. a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, and/or ii. an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, and/or iii. a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, and/or iv. a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18 includes. Method according to one of Claims 1 to 3, characterized in that the whole-cell catalyst contains an oxygenase subunit with an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 13, or an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15, or a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15 includes. Process according to one of Claims 1 to 4, characterized in that the whole-cell catalyst is a recombinant microorganism. Process according to any one of Claims 1 to 5, characterized in that the inducer is isopropyl-β-D-thiogalactopyranoside (IPTG). Process according to one of Claims 1 to 6, characterized in that at least step e) takes place in a single-phase aqueous system or in a two-phase system. Method according to one of Claims 1 to 7, characterized in that the substance comprising at least one compound according to formula (I) is a pure substance, a plant component or plant extract. Method according to one of Claims 1 to 8, characterized in that step c) takes place in a period in the range from 0 h to 2 h after step b). Whole cell catalyst comprising: i. a gene coding for an enzyme phenolic acid decarboxylase and ii. at least one gene coding for an enzyme comprising an oxygenase subunit and/or a reductase subunit and iii. a gene coding for an enzyme styrene oxide isomerase, and iv. a gene coding for an enzyme alcohol dehydrogenase, and at least one promoter for the controllable expression of genes i) to iv). A cell catalyst according to claim 10 comprising i. an enzyme phenolic acid decarboxylase capable of compound (I)
Figure imgf000041_0001
implement, and ii. at least one enzyme having an oxygenase subunit and/or a reductase subunit capable of compound (II)
Figure imgf000041_0002
implement, and iii. an enzyme styrene oxide isomerase capable of compound (III)
Figure imgf000042_0001
Figure imgf000042_0001
(IV) umzusetzen, und iv. ein Enzym Alkoholdehydrogenase, welches fähig ist Verbindung (IV)
Figure imgf000042_0002
(IV) implement, and iv. an enzyme alcohol dehydrogenase capable of compound (IV)
Figure imgf000042_0002
(V) umzusetzen, wobei R1 -H oder -OH ist, wobei R2 -H, -OH oder -OCH3 ist. nzzellkatalysator nach Anspruch 10 oder 11 umfassend i. eine Phenolsäure-Decarboxylase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 1 bis SEQ ID No. 3, und/oder ii. eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9, und/oder iii. eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 15, und/oder iv. eine Styroloxid-Isomerase mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 16, SEQ ID No. 17 oder SEQ ID No. 18. Ganzzellkatalysator nach einem der Ansprüche 10 bis 12 umfassend eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 10 bis SEQ ID No. 13, oder eine Oxygenase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit einer Sequenz ausgewählt aus SEQ ID No. 4 bis SEQ ID No. 9 und eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15, oder eine Reduktase-Untereinheit mit einer Aminosäuresequenz mit mindestens 90 % Sequenzidentität mit SEQ ID No. 14 oder SEQ ID No. 15. Ganzzellkatalysator nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Ganzzellkatalysator ein rekombinanter Mikroorganismus ist. Verwendung eines Ganzzellkatalysators nach einem der Ansprüche 10 bis 14 zur biokatalytischen Synthese einer Verbindung nach Formel (V),
Figure imgf000043_0001
durch die biokatalytische Umsetzung eines Stoffes umfassend mindestens eine Verbindung nach Formel (I)
(V) wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3. nz cell catalyst according to claim 10 or 11 comprising i. a phenolic acid decarboxylase having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 1 to SEQ ID No. 3, and/or ii. an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9, and/or iii. a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 15, and/or iv. a styrene oxide isomerase having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 16, SEQ ID NO. 17 or SEQ ID no. 18. whole-cell catalyst according to any one of claims 10 to 12 comprising an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 10 to SEQ ID No. 13, or an oxygenase subunit having an amino acid sequence with at least 90% sequence identity with a sequence selected from SEQ ID no. 4 to SEQ ID No. 9 and a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15, or a reductase subunit having an amino acid sequence with at least 90% sequence identity with SEQ ID no. 14 or SEQ ID no. 15. whole-cell catalyst according to any one of claims 10 to 13, characterized in that the whole-cell catalyst is a recombinant microorganism. Use of a whole-cell catalyst according to any one of claims 10 to 14 for the biocatalytic synthesis of a compound of formula (V),
Figure imgf000043_0001
by the biocatalytic conversion of a substance comprising at least one compound according to formula (I)
Figure imgf000044_0001
wobei R1 -H oder -OH ist, wobei R2 -H, -OH oder -OCH3 ist.
Figure imgf000044_0001
wherein R 1 is -H or -OH, wherein R 2 is -H, -OH or -OCH3.
PCT/EP2021/084999 2020-12-09 2021-12-09 Process for the biotechnological production of 2-phenylethanols from plant sources WO2022122921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020132795.1A DE102020132795A1 (en) 2020-12-09 2020-12-09 Process for the biotechnological production of 2-phenylethanols from plant sources
DE102020132795.1 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022122921A1 true WO2022122921A1 (en) 2022-06-16

Family

ID=79259356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/084999 WO2022122921A1 (en) 2020-12-09 2021-12-09 Process for the biotechnological production of 2-phenylethanols from plant sources

Country Status (2)

Country Link
DE (1) DE102020132795A1 (en)
WO (1) WO2022122921A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641316A (en) 2007-03-07 2010-02-03 帝斯曼知识产权资产管理有限公司 Process for the preparation of hydroxytyrosol
US20100047887A1 (en) 2006-11-27 2010-02-25 Jihane Achkar Method for preparing hydroxytyrosol
WO2012135389A2 (en) 2011-03-28 2012-10-04 The Regents Of The University Of California Host cells and methods for oxidizing aromatic amino acids
CN103664536A (en) 2012-09-17 2014-03-26 天津科技大学 Synthetic method of hydroxytyrosol
US8822738B1 (en) 2013-03-05 2014-09-02 Wacker Chemie Ag Process for the preparation of hydroxytyrosol
CN107201331A (en) 2016-03-18 2017-09-26 中国科学院天津工业生物技术研究所 Express hydroxytyrosol and the Escherichia coli of hydroxytyrosol glucoside and construction method and application
WO2017223569A1 (en) 2016-06-24 2017-12-28 The Regents Of The University Of California Host cells and methods for producing hydroxytyrosol
CN107586794A (en) 2017-11-01 2018-01-16 北京化工大学 The method of heterologous metabolic pathway production tyrosol and hydroxytyrosol
WO2018217168A1 (en) * 2017-05-23 2018-11-29 National University Of Singapore Bioproduction of phenethyl alcohol, aldehyde, acid, amine, and related compounds
WO2019023019A1 (en) * 2017-07-25 2019-01-31 Arizona Board Of Regents On Behalf Of Arizona State University Microbial production of 2-phenylethanol from renewable substrates
CN109295113A (en) 2018-10-23 2019-02-01 江南大学 A method of producing hydroxytyrosol
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100047887A1 (en) 2006-11-27 2010-02-25 Jihane Achkar Method for preparing hydroxytyrosol
US20100068775A1 (en) 2006-11-27 2010-03-18 Jihane Achkar Novel genes for the fermentative production of hydroxytyrosol
CN101641316A (en) 2007-03-07 2010-02-03 帝斯曼知识产权资产管理有限公司 Process for the preparation of hydroxytyrosol
EP2114846B1 (en) 2007-03-07 2010-12-08 DSM IP Assets B.V. Process for the preparation of hydroxytyrosol
WO2012135389A2 (en) 2011-03-28 2012-10-04 The Regents Of The University Of California Host cells and methods for oxidizing aromatic amino acids
CN103664536A (en) 2012-09-17 2014-03-26 天津科技大学 Synthetic method of hydroxytyrosol
US8822738B1 (en) 2013-03-05 2014-09-02 Wacker Chemie Ag Process for the preparation of hydroxytyrosol
CN107201331A (en) 2016-03-18 2017-09-26 中国科学院天津工业生物技术研究所 Express hydroxytyrosol and the Escherichia coli of hydroxytyrosol glucoside and construction method and application
WO2017223569A1 (en) 2016-06-24 2017-12-28 The Regents Of The University Of California Host cells and methods for producing hydroxytyrosol
WO2018217168A1 (en) * 2017-05-23 2018-11-29 National University Of Singapore Bioproduction of phenethyl alcohol, aldehyde, acid, amine, and related compounds
WO2019023019A1 (en) * 2017-07-25 2019-01-31 Arizona Board Of Regents On Behalf Of Arizona State University Microbial production of 2-phenylethanol from renewable substrates
CN107586794A (en) 2017-11-01 2018-01-16 北京化工大学 The method of heterologous metabolic pathway production tyrosol and hydroxytyrosol
CN109295113A (en) 2018-10-23 2019-02-01 江南大学 A method of producing hydroxytyrosol
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BEDOYA LMBEITRAN MOBREGON-CALDERON PGARCIA-PEREZ JDE LA TORRE HEGONZALEZ NPEREZ-OLMEDA MAUNON DCAPA LGOMEZ-ACEBO E ET AL.: "Hydroxytyrosol: A new class of microbicide displaying broad anti-HIV-1 activity", AIDS, vol. 30, 2016, pages 2767 - 2776
BELLUMORI MCECCHI LINNOCENTI MCLODOVEO MLCORBO FMULINACCI N: "The EFSA health claim on olive oil polyphenols: acid hydrolysis validation and total hydroxytyrosol and tyrosol determination in Italian virgin olive oils", MOLECULES, vol. 24, no. 11, 2019, pages 2179
DATABASE WPI [online] 12 March 2021 (2021-03-12), UNIV SHANGHAI JIAOTONG: "Biosynthesis of high additional value-added compounds using lignocellulose derivatives comprises e.g. modifying Escherichia coli to obtain biocatalysts and using lignocellulose derivatives as starting materials", XP055917272, Database accession no. 2021-30755G *
FERNÄNDEZ-BOLANOS JRODRIGUEZGRODRIGUEZ RHEREDIA AGUILLEN RJIMENEZ A: "Produc tion in large quantities of highly purified hydroxytyrosol from liquid-solid waste of twophase olive oil processing or ''Alperujo", J. AGRIC. FOOD CHEM., vol. 50, 2002, pages 6804 - 6811
HU THE X-WJIANG J-GXU X-L: "Hydroxytyrosol and its potential therapeutic effects", J. AGRIC. FOOD CHEM., vol. 62, 2014, pages 1449 - 1455
LUKITO, B.R. ET AL.: "One-Pot Production of Natural 2-Phenylethanol from L -Phenylalanine via Cascade Biotransformations", CHEMCATCHEM, vol. 11, no. 2, 9 January 2019 (2019-01-09), pages 831 - 840, XP055916485, Retrieved from the Internet <URL:https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fcctc.201801613> DOI: 10.1002/cctc.201801613 *
PANKE SMEYER AHUBER CMWITHOLT BWUBBOLTS MG: "An alkane-responsive expression system for the production of fine chemicals", APPL. ENVIRON. MICROBIOL., vol. 65, 1999, pages 2324 - 2332
TAFESH ANAJAMI NJADOUN JHALAHLIH FRIEPL HAZAIZEH H: "Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater", EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE: ECAM, 2011, pages 431021, XP002691214, DOI: 10.1155/2011/431021

Also Published As

Publication number Publication date
DE102020132795A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
DE112007002868T5 (en) New genes for the fermentative production of hydroxytyrosol
JP4359349B2 (en) Production method of vanillin
JP5762666B2 (en) Biosynthesis of phloroglucinol and production of 1,3-dihydroxybenzene therefrom
DE102007015583A1 (en) An enzyme for the production of methylmalonyl-coenzyme A or ethylmalonyl-coenzyme A and its use
EP3824078A1 (en) Biotechnological production of cannabinoids
EP0845532A2 (en) Enzymes for the synthesis of coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin, vanillic acid and their applications
AT501928B1 (en) PROCESS FOR THE PREPARATION OF CHIRAL ALCOHOLS
DE102005036880A1 (en) Stereoselective synthesis of chiral diols
EP2089530B1 (en) Process for the preparation of (4s)-3,4-dihydroxy-2,6,6-trimethyl-cyclohex-2-enone and derivatives thereof employing the azoarcus phenylethanol dehydrogenase
WO2022122921A1 (en) Process for the biotechnological production of 2-phenylethanols from plant sources
DE19523269C2 (en) Process for the production of acyloin, pyruvate decarboxylase suitable therefor as well as its production and DNA sequence of the PDC gene coding for it
WO2022156857A1 (en) Process for preparing 2,4-dihydroxybutyrate or l-threonine using a microbial metabolic pathway
EP1379675B1 (en) Method for the oxidation of aromatic compounds
EP3625352B1 (en) Method for the fermentative de novo synthesis of resin acids
WO2008022627A2 (en) Method for the production of optically active hydroxyalkyl acetates by racemate resolution of 4-hydroxy-2 ketones with the help of baeyer-villger monooxygenases
EP1313870A2 (en) Method for the improved production and isolation of trans-dihydroxycyclohexadiene carboxylic acids and/or derivatives thereof and a genetically modified organism suitable for the above
DE102013211075B9 (en) Biotechnological process for the preparation of substituted or unsubstituted phenylacetic acids and ketones with enzymes of microbial styrene degradation
EP2890801B1 (en) Microbial biotransformation of aromatic acids to their reduced carbon aromatic acids
WO2009053489A1 (en) Fermentative production of alpha-ketoglutaric acid
EP2193194B1 (en) Method for producing 2-methyl-1,2-dihydroxypropane
DE10260457A1 (en) Mutants of the Delftia acidovorans MC1 bacterial strain and their use in the production of high-purity S enantiomers of 2-phenoxypropionic acid derivatives
DE112018007299T5 (en) Method of making Danshensu
DE102007051452A1 (en) Microbial reaction system, useful for the fermentative preparation of alpha-ketoglutaric acid, comprises recombinant microorganism and reaction medium, where an inactivation of the glutamate dehydrogenase is present in the microorganism
EP3056561A1 (en) Microorganisms with reduced enzyme activity
DE102008042144A1 (en) Process for the preparation of silbenoids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836419

Country of ref document: EP

Kind code of ref document: A1