WO2022121704A1 - 数据传输方法及设备 - Google Patents

数据传输方法及设备 Download PDF

Info

Publication number
WO2022121704A1
WO2022121704A1 PCT/CN2021/133442 CN2021133442W WO2022121704A1 WO 2022121704 A1 WO2022121704 A1 WO 2022121704A1 CN 2021133442 W CN2021133442 W CN 2021133442W WO 2022121704 A1 WO2022121704 A1 WO 2022121704A1
Authority
WO
WIPO (PCT)
Prior art keywords
cgo
ssb
matching
cgos
matching period
Prior art date
Application number
PCT/CN2021/133442
Other languages
English (en)
French (fr)
Inventor
周雷
邢艳萍
苗金华
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/255,126 priority Critical patent/US20240031956A1/en
Priority to EP21902411.4A priority patent/EP4262259A1/en
Publication of WO2022121704A1 publication Critical patent/WO2022121704A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security

Definitions

  • the present disclosure relates to the technical field of mobile communications, and in particular, to a data transmission method and device.
  • the Configured Grant (CG) scheduling transmission mechanism is similar to the semi-persistent scheduling in Long Term Evolution (LTE).
  • the configuration authorization scheduling transmission mechanism is mainly used for uplink transmission.
  • the base station (gNB) is pre-configured with uplink Physical Uplink Shared Channel (PUSCH) resources and the terminal (UE) does not need to send uplink data to the base station if there is uplink data to be sent.
  • Scheduling Request (SR) can be sent directly on resources scheduled by Configuration Authorization (CG).
  • the configuration grant scheduling transmission mechanism is usually that the base station (gNB) activates an uplink grant to the UE. If the UE does not receive the deactivation, it will always use the resources specified by the first uplink grant for uplink transmission.
  • gNB base station
  • Transmission type There are two types. Transmission type:
  • Configuration grant type 1 (type 1): configured by radio resource control (RRC) through high-level signaling (IE ConfiguredGrantConfig);
  • Configuration grant type 2 (type 2: Downlink control information (DCI) indicates the activation and deactivation of uplink authorization-free, and the required parameters are configured by the information element (IE) ConfiguredGrantConfig, but it is used only when it is activated by the DCI.
  • DCI Downlink control information
  • IE information element
  • Configuration authorization type 1 and type 2 are distinguished according to the field rrc-ConfiguredUplinkGrant in IE ConfiguredGrantConfig. If this field is configured, it is configuration authorization type 1, and if this field is not configured, it is configuration authorization type 2.
  • the configuration authorization scheduling transmission mechanism is mainly applicable to the connection mode (Connection mode) of the UE.
  • At least one embodiment of the present disclosure provides a data transmission method and device, which can realize data transmission of a terminal in a disconnected state based on a configuration authorization mechanism.
  • At least one embodiment provides a data transmission method, comprising:
  • the terminal in the non-connected state determines the target CGO corresponding to the target SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO;
  • the terminal sends uplink data on the target CGO.
  • the method before determining the target CGO corresponding to the target SSB, the method further includes:
  • the terminal determines the matching relationship between the SSB and the CGO according to the configuration of the base station
  • the terminal calculates to obtain the matching relationship between the SSB and the CGO;
  • the matching relationship is valid in at least one matching period, and the matching period is pre-configured or pre-agreed.
  • the determining of the target CGO corresponding to the target SSB includes:
  • the serial number of the target CGO corresponding to the target SSB is determined.
  • determining the sequence number of each CGO in the matching period includes:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the determining the sequence number of each CGO in the matching period further includes:
  • the numbering is performed according to the time corresponding to the starting OFDM of each CGO from near to far; for the case of CGOs with overlapping frequency domain but different starting OFDM symbols, Numbering is in ascending order of the smallest PRB serial number in each CGO.
  • the method before determining the sequence numbers of the respective CGOs in the matching period, the method further includes:
  • the terminal calculates and obtains the matching relationship between the SSB and the CGO, including:
  • the total number of CGOs CGO total in the matching period is greater than the total number of SSBs SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO sequentially matches with 1 SSB in the SSB, or, divide the CGO in the matching period into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the CGO total is not greater than the SSB total , according to Calculate the value of K 2 ; starting from the SSB with the smallest sequence number, every K 2 SSBs are sequentially matched with 1 CGO in the matching period, or the SSBs are divided into K 2 groups, and each SSB group is The total number of CGOs is included, and one SSB in each SSB group sequentially matches one CGO in the matching period.
  • the terminal determines the matching relationship between the SSB and the CGO according to the configuration of the base station, including:
  • each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • each CGO group contains a total of SSB CGOs, and one CGO in each CGO group sequentially matches one SSB in the SSB in sequence.
  • configuration authorization is configured to repeat the transmission:
  • M transmission opportunities TO in a CGO are used as a repeated transmission resource repetition bundle, corresponding to one or more SSBs;
  • N CGOs correspond to one or more SSBs as a repetition bundle, wherein each of the N CGOs includes 1 TO, and the N is less than or equal to the maximum number of CGOs in a matching period.
  • the repetition bundle The sequence number of the starting CGO is an integer multiple of N.
  • the CGO is configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CGs set the same matching relationship with the SSB.
  • At least one embodiment provides a data transmission method, comprising:
  • the base station determines the CGO corresponding to each SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO;
  • the base station uses the beam corresponding to the SSB to receive data sent by the terminal in the disconnected state on the CGO corresponding to the SSB.
  • the matching relationship between the SSB and the CGO is determined by the base station according to the configuration or calculated by the base station, wherein the matching relationship is valid in at least one matching period, so The matching period is pre-configured or pre-agreed.
  • the determining of the CGO corresponding to each SSB includes:
  • the serial number of the CGO corresponding to each SSB is determined.
  • the determining the sequence number of each CGO in the matching period includes:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the determining the sequence number of each CGO in the matching period further includes:
  • the numbering is performed according to the time corresponding to the starting OFDM of each CGO from near to far; for the case of CGOs with overlapping frequency domain but different starting OFDM symbols, Numbering is in ascending order of the smallest PRB serial number in each CGO.
  • the method before determining the sequence numbers of the respective CGOs in the matching period, the method further includes:
  • the matching relationship between the SSB and the CGO is calculated in the following manner:
  • the total number of CGOs CGO total in the matching period is greater than the total number of SSBs SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO is sequentially matched with 1 SSB in the SSB, or, the CGO in the matching period is divided into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the CGO total is not greater than the SSB total , according to Calculate the value of K 2 ; starting from the SSB with the smallest sequence number, every K 2 SSBs are sequentially matched with 1 CGO in the matching period, or the SSBs are divided into K 2 groups, and each SSB group is The total number of CGOs is included, and one SSB in each SSB group sequentially matches one CGO in the matching period.
  • the matching relationship between the SSB and the CGO is determined in the following manner:
  • each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • each CGO group contains a total of SSB CGOs, and one CGO in each CGO group sequentially matches one SSB in the SSB in sequence.
  • configuration authorization is configured to repeat the transmission:
  • M transmission opportunities TO in a CGO are used as a repeated transmission resource repetition bundle, corresponding to one or more SSBs;
  • N CGOs correspond to one or more SSBs as a repetition bundle, wherein each of the N CGOs includes 1 TO, and the N is less than or equal to the maximum number of CGOs in a matching period.
  • the repetition bundle The sequence number of the starting CGO is an integer multiple of N.
  • the CGO is configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CGs set the same matching relationship with the SSB.
  • At least one embodiment provides a terminal including a memory, a transceiver and a processor, wherein,
  • the memory for storing computer programs
  • the transceiver configured to send and receive data under the control of the processor
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • At least one embodiment provides a terminal, comprising:
  • a determining unit configured to determine the target CGO corresponding to the target SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO when the terminal is in a disconnected state;
  • a sending unit configured to send uplink data on the target CGO.
  • At least one embodiment provides a base station including a memory, a transceiver and a processor, wherein,
  • the memory for storing computer programs
  • the transceiver configured to send and receive data under the control of the processor
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the data sent by the terminal in the disconnected state is received on the CGO corresponding to the SSB.
  • At least one embodiment provides a base station, comprising:
  • a determining unit configured to determine the CGO corresponding to each SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO;
  • the receiving unit is configured to use the beam corresponding to the SSB to receive data sent by the terminal in the disconnected state on the CGO corresponding to the SSB.
  • At least one embodiment provides a processor-readable storage medium storing a computer program for causing the processor to execute the above method described.
  • the base station can use the beam corresponding to the SSB to receive uplink data sent by the UE.
  • the SSB-based configuration authorization mechanism in the embodiment of the present disclosure can better support small data transmission in a disconnected state, save power consumption of the terminal and reduce network overhead caused by frequent access to the network.
  • FIG. 1 is an example diagram of a matching relationship between an SSB and a CGO provided by an embodiment of the present disclosure
  • FIGS. 2A to 2I are diagrams illustrating several matching relationships between an SSB and a CGO provided by an embodiment of the present disclosure
  • 2J to 2K are several example diagrams of CGO numbers provided by embodiments of the present disclosure.
  • FIG. 2L is an example diagram of CGO sorting when the uplink and downlink configurations are changed according to an embodiment of the present disclosure
  • FIG. 3A-FIG. 3B are exemplary diagrams of several matching relationships between SSBs and CGOs provided by embodiments of the present disclosure
  • FIG. 4 is an example diagram of cross-BWP SSB and CGO matching provided by an embodiment of the present disclosure
  • 5A to 5C are diagrams illustrating several matching relationships between SSBs and CGOs provided by embodiments of the present disclosure
  • 6A-6B are diagrams illustrating several matching relationships between SSBs and CGOs provided by embodiments of the present disclosure
  • FIG. 7 is a schematic diagram of an application system of the data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is another schematic flowchart of the data transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is another schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • LTE Long Time Evolution
  • LTE-A Long Time Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • a CDMA system may implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • a TDMA system may implement a radio technology such as the Global System for Mobile Communication (GSM).
  • OFDMA systems can implement radios such as UltraMobile Broadband (UMB), Evolution-UTRA (E-UTRA), IEEE 802.21 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. technology.
  • UMB UltraMobile Broadband
  • E-UTRA Evolution-UTRA
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • Flash-OFDM Flash-OFDM
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3GPP).
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein may be used for both the systems and radio technologies mentioned above, as well as for other systems and radio technologies.
  • the following description describes an NR system for example purposes, and NR terminology is used in much of the following description, although these techniques are also applicable to applications other than NR system applications.
  • FIG. 7 shows a block diagram of a wireless communication system to which the embodiments of the present disclosure can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 may also be referred to as a user terminal or user equipment (UE, User Equipment), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal-side devices, it should be noted that, in the embodiments of the present disclosure, the specific type of the terminal 11 is not limited .
  • the network device 12 may be a base station and/or a core network element, wherein the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN, etc.) access point, or other access point, etc.), where a base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic Service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node or As long as the same technical effect is achieved by any other suitable term in the field, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of the present disclosure,
  • the base stations may communicate with the terminal 11 under the control of a base station controller, which in various examples may be part of a core network or some base station. Some base stations may communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may communicate with each other directly or indirectly via backhaul links, which may be wired or wireless communication links.
  • Wireless communication systems may support operation on multiple carriers (waveform signals of different frequencies).
  • a multi-carrier transmitter can transmit modulated signals on these multiple carriers simultaneously.
  • each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal may be sent on a different carrier and may carry control information (eg, reference signals, control channels, etc.), overhead information, data, and the like.
  • the base station may communicate wirelessly with the terminal 11 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that make up only a portion of the coverage area.
  • a wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base stations may also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base stations may be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including coverage areas of base stations of the same or different types, coverage areas utilizing the same or different radio technologies, or coverage areas belonging to the same or different access networks) may overlap.
  • a communication link in a wireless communication system may include an uplink for carrying uplink (UL) transmissions (eg, from terminal 11 to network device 12), or for carrying downlink (DL) Downlink of transmission (eg, from network device 12 to terminal 11).
  • UL transmissions may also be referred to as reverse link transmissions, and DL transmissions may also be referred to as forward link transmissions.
  • Downlink transmissions may be performed using licensed bands, unlicensed bands, or both.
  • uplink transmissions may be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • the configuration authorization scheduling transmission mechanism in the disconnected state, is not currently supported. If the configuration authorization scheduling transmission mechanism in the connected state is directly applied to the disconnected state, the base station cannot obtain the CSI information of the downlink beamforming. , this is because the UE will not report Channel State Information (CSI) to the base station in the case of disconnected state (idle state/inactive state).
  • CSI Channel State Information
  • a data transmission method provided by an embodiment of the present disclosure when applied to a terminal side, includes:
  • Step 81 the terminal in the non-connected state determines the target CGO corresponding to the target SSB according to the matching relationship between the synchronization signal block (Synchronization Signal and PBCH block, SSB) and the configuration authorization transmission opportunity (Configured grant occasion, CGO).
  • the synchronization signal block Synchronization Signal and PBCH block, SSB
  • the configuration authorization transmission opportunity Configured grant occasion, CGO
  • the base station usually broadcasts and sends at least one SSB, and the total number of the at least one SSB is denoted as SSB total , and the at least one SSB and/or SSB total is usually configured by the base station to the terminal, and can be sent by broadcast or unicast.
  • Configure messages to configure The terminal may select one SSB from the at least one SSB as the target SSB according to the reception conditions of each SSB, for example, select the SSB with the best received signal quality as the target SSB.
  • the embodiment of the present disclosure may also select the target SSB according to other strategies, which is not specifically limited in the embodiment of the present disclosure.
  • Step 82 the terminal sends uplink data on the target CGO.
  • the terminal uses the CGO corresponding to the SSB to send uplink data, so that the base station can use the beam corresponding to the SSB to receive the data sent by the non-connected terminal on the CGO corresponding to the SSB, thereby
  • the beam corresponding to the SSB can be used for data transmission, thereby realizing data transmission of a terminal in a disconnected state based on a configuration authorization mechanism.
  • the terminal may also determine the matching relationship between the SSB and the CGO according to the configuration of the base station; or, the terminal obtains the matching relationship between the SSB and the CGO through calculation.
  • the matching relationship is valid in at least one matching period, and the matching period is pre-configured or pre-agreed.
  • the terminal may determine the sequence number of each CGO in the matching period; then, according to the matching relationship between the SSB sequence number and the CGO sequence number, determine the sequence number of the target CGO corresponding to the target SSB.
  • each CGO may be numbered according to a preset numbering rule.
  • numbering rules that can be used in the embodiments of the present disclosure are provided below, and the terminal can determine the sequence number of each CGO in the matching period according to one of the following numbering rules:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the embodiment of the present disclosure may also, for the case of CGOs with overlapping time domains but different starting OFDM symbols, according to the time corresponding to the starting OFDM of each CGO from near to far Numbering is performed in the order of the number; for the case of CGOs with overlapping frequency domains but different starting OFDM symbols, numbering is performed in ascending order of the minimum PRB sequence numbers in each CGO.
  • the order of the times from the nearest to the farthest means that the time is in the front, and the time is in the back.
  • some timeslots may be configured as uplink and downlink or flexible (Flexible) timeslots
  • whether the CGO of each time slot is valid can be determined according to the time slot configuration, wherein 1) when the time slot configuration is UL, the CGO configured in the time slot is valid; 2) when the time slot configuration is UL When it is DL, the CGO configured in the time slot is invalid; 3) When the time slot configuration is Flexible, the CGO configured in the time slot is determined to be valid or invalid, and whether it is valid or invalid can be preset. .
  • the terminal can obtain the matching relationship between the SSB and the CGO through calculation. Specifically, the terminal can perform the calculation in the following manner:
  • CGO total In the case that the total number of CGOs in the matching period, CGO total , is greater than the total number of SSBs, SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO sequentially matches with 1 SSB in the SSB, or, divide the CGO in the matching period into K 1
  • Each CGO group contains a total of SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB in sequence.
  • the terminal may determine the matching relationship between the SSB and the CGO according to the configuration of the base station, specifically:
  • each R SSB is sequentially matched with 1 CGO in the matching period, or, the The SSBs are divided into R groups, each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • the matching ratio R of the SSB and CGO configured by the base station is not greater than 1, and 1/R is an integer, starting from the CGO with the smallest sequence number in the matching period, every consecutive 1/R CGO is sequentially matched with 1 in the SSB.
  • SSBs are sequentially matched, or, the CGOs in the matching period are divided into 1/R groups, each CGO group contains a total of SSB CGOs, and 1 CGO in each CGO group is sequentially sequenced with 1 SSB in the SSB match.
  • the configuration authorization may be configured to be repeated transmission (repetition), in the case that the configuration authorization is configured to be repeated transmission: in the matching relationship, M transmission opportunities TO in a CGO are used as a repetition transmission resource (repetition bundle ), corresponding to one or more SSBs; or, N CGOs correspond to one or more SSBs as a repetition bundle, wherein the N CGOs all include 1 TO, and the N is less than or equal to one The maximum number of CGOs in the matching period.
  • the sequence number of the starting CGO of the repetition bundle is an integer multiple of N.
  • whether a repetition bundle corresponds to one or more SSBs is determined according to the matching relationship between the SSBs and the CGO.
  • the CGO may be configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CGs set the same matching relationship with the SSB.
  • the embodiment of the present disclosure can flexibly set the matching relationship of each set of CG configurations.
  • the data transmission method provided by the embodiment of the present disclosure when applied to the base station side, includes:
  • Step 91 the base station determines the CGO corresponding to each SSB according to the matching relationship between the synchronization signal block SSB and the CGO of the configuration authorization transmission opportunity.
  • the matching relationship between the SSB and the CGO may be determined by the base station according to the configuration, or calculated by the base station, wherein the matching relationship is valid in at least one matching period, and the matching period is pre-configured or pre-agreed.
  • the base station may also send configuration signaling to the terminal to configure the matching relationship between the SSB and the CGO, so that the terminal can obtain the same matching relationship.
  • Step 92 The base station uses the beam corresponding to the SSB to receive data sent by the terminal in the disconnected state on the CGO corresponding to the SSB.
  • the base station can receive the uplink data sent by the terminal using the CGO corresponding to the SSB, and the base station can use the beam corresponding to the SSB to receive when receiving, so that there is no CSI information of downlink beamforming.
  • the beam corresponding to the SSB is used for data transmission, thereby realizing a data transmission of a terminal in a disconnected state based on a configuration authorization mechanism.
  • the base station may determine the sequence number of each CGO in the matching period; then, according to the matching relationship between the SSB sequence number and the CGO sequence number, determine the sequence number of the target CGO corresponding to the target SSB.
  • each CGO may be numbered according to a preset numbering rule. Several numbering rules that can be used in the embodiments of the present disclosure are provided below, and the base station may determine the sequence numbers of the respective CGOs in the matching period according to a certain numbering rule described above, which will not be repeated here.
  • the embodiment of the present disclosure may also, for the case of CGOs with overlapping time domains but different starting OFDM symbols, according to the time corresponding to the starting OFDM of each CGO Numbering is performed from near to far; for the case of CGOs with overlapping frequency domains but different starting OFDM symbols, numbering is performed in ascending order of the minimum PRB sequence number in each CGO.
  • the order of the times from the nearest to the farthest means that the time is in the front, and the time is in the back.
  • time slots may be configured as uplink and downlink or flexible (Flexible) time slots
  • CGOs are numbered. Specifically, whether the CGO of each time slot is valid can be determined according to the time slot configuration, wherein 1) when the time slot configuration is UL, the CGO configured in the time slot is valid; 2) when the time slot configuration is UL When it is DL, the CGO configured in the time slot is invalid; 3) when the time slot configuration is Flexible, the CGO configured in the time slot is determined to be valid or invalid.
  • the base station can obtain the matching relationship between the SSB and the CGO through calculation. Specifically, the terminal can perform the calculation in the following manner:
  • CGO total In the case that the total number of CGOs in the matching period, CGO total , is greater than the total number of SSBs, SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO is sequentially matched with 1 SSB in the SSB, or, the CGO in the matching period is divided into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the base station may determine the matching relationship between the SSB and the CGO according to the configuration of the base station, specifically:
  • each R SSB is sequentially matched with 1 CGO in the matching period, or, the The SSBs are divided into R groups, each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • the matching ratio R of the SSB and CGO configured by the base station is not greater than 1, and 1/R is an integer, starting from the CGO with the smallest sequence number in the matching period, every consecutive 1/R CGO is sequentially matched with 1 in the SSB.
  • SSBs are sequentially matched, or, the CGOs in the matching period are divided into 1/R groups, each CGO group contains a total of SSB CGOs, and 1 CGO in each CGO group is sequentially sequenced with 1 SSB in the SSB match.
  • the configuration authorization may be configured to be repeated transmission (repetition), in the case that the configuration authorization is configured to be repeated transmission: in the matching relationship, M transmission opportunities TO in a CGO are used as a repetition transmission resource (repetition bundle ), corresponding to one or more SSBs; or, N CGOs correspond to one or more SSBs as a repetition bundle, wherein the N CGOs all include 1 TO, and the N is less than or equal to one The maximum number of CGOs in the matching period.
  • the sequence number of the starting CGO of the repetition bundle is an integer multiple of N.
  • the CGO may be configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CGs set the same matching relationship with the SSB.
  • the embodiment of the present disclosure can flexibly set the matching relationship of each set of CG configurations.
  • the gNB Before the terminal (UE) enters the disconnected state, the gNB sends the SSB-CGO matching ratio (ssb-perCG-occasion) parameter to match the SSB and the CGO through high-layer signaling, and sends the CG related configuration parameters to A configuration grant scheduling transmission (CG) used to configure the disconnected state of the UE.
  • ssb-perCG-occasion can specifically indicate 1:1, 2:1, 1:2, etc.
  • the matching relationship between the SSB and the CGO is configured through the RRC parameters, or the matching relationship between the SSB and the CGO is obtained through a calculation method.
  • the matching period can be directly configured by the high layer or configured by an indirect method (such as an integer multiple of the CGO period).
  • the CGOs are numbered first, and then matched according to the matching rules between SSBs and CGOs.
  • Rule 1 Numbering is performed in the order of frequency domain and then time domain within the matching period
  • Rule 2 It is numbered in the order of first time domain and then frequency domain within a matching period
  • Rule 3 Take the slot as the unit, number in the order of the time domain and then the frequency domain, and then number the slots in chronological order or use the slot as the unit, in the order of the frequency domain and then the time domain, and then number the slots in chronological order. .
  • the numbering is performed according to the starting OFDM sequence number of each CGO from small to large.
  • the minimum PRB sequence number is numbered from small to large.
  • the CGO configured in the slot Before numbering, it is necessary to determine whether the CGO of each slot is valid according to the slot configuration. If the slot is configured as Flexible/UL, the CGO configured in the slot is valid. If the slot is configured as DL, the CGO configured in the slot is invalid. .
  • SSB and CGO are both in the initial BWP situation, SSB and CGO are in one-to-one correspondence.
  • SSB0 corresponds to CG0
  • SSB1 corresponds to CG1
  • SSB2 corresponds to CG2
  • SSB3 corresponds to CG3.
  • CG is used to represent CGO in FIGS. 1 to 6B , that is, CG0 represents CGO0
  • CG1 represents CGO1, and so on.
  • CG Granted Scheduling Transmission
  • FIG. 2A if the number of repetitions is 2, two consecutive CGOs match one SSB, so the corresponding relationship is: SSB0 corresponds to CG0 and CG1; SSB1 corresponds to CG2 and CG3.
  • Figure 2C if the number of repetitions is 2, there are other matching methods between SSB and CGO, namely: SSB0 corresponds to CG0 and CG4, SSB1 corresponds to CG1 and CG5, SSB2 corresponds to CG2 and CG6, and SSB3 corresponds to CG3 and CG7 .
  • the base station uses two parameters, ssb-perCG-occasion and Periodicity, to configure authorized scheduling transmission for the terminal in the disconnected state through high-level signaling.
  • the ssb-perCG-occasion parameter is used to indicate the matching relationship between SSBs and CGOs in a matching period. For example, one SSB corresponds to multiple CGOs, one SSB corresponds to one CGO, and multiple SSBs correspond to one CGO.
  • Periodicity indicates the length of one period of the configuration grant scheduling transmission.
  • M indicates that a matching cycle of CGO and SSB includes the number of CGO cycles (optionally an integer multiple of the CG0 cycle).
  • An example of configuring an authorization configuration is as follows:
  • the matching period can be directly configured by a high layer or configured by an indirect method (eg, an integer multiple of the CGO period or an integer multiple of the SSB period).
  • the total number of SSBs 4
  • the total number of CG repetitions N 2
  • ssb-perCG-occasion 2:1
  • the numbering principle is: first fix the time domain resource number and slot number, and then increase the frequency domain number. number, and then increase the time domain resource sequence number and slot sequence number in turn.
  • time-domain resources are given serial numbers in chronological order, and then the multiple frequency-domain resources are numbered according to the same time-domain resources, starting from the one with the smallest PRB frequency index.
  • both SSB and CGO start from the smallest sequence number and perform matching in sequence.
  • the total number of SSBs is determined to be 4 according to the SSB configuration.
  • the adjacent N CGOs are used as a repetition bundle to correspond to the SSB;
  • SSB0 corresponds to CG0&CG1
  • SSB1 corresponds to CG2&CG3
  • SSB2 corresponds to CG4&CG5
  • SSB3 corresponds to CG6&CG7, as shown in FIG. 2D.
  • the ssb-perCG-occasion parameter it is determined that the 2:1 matching relationship between SSB and CGO is SSB0&SSB1 corresponding to CG0&CG1, SSB2&SSB3 corresponding to CG2&CG3, SSB0&SSB1 corresponding to CG4&CG5, SSB2&SSB3 corresponding to CG6&CG7, as shown in Figure 2E.
  • the base station can configure the matching ratio between the SSB and the CGO through the ssb-perCG-occasion parameter, as shown in FIG. 3A , FIG. 1 or FIG. 3B .
  • FIG. 3A shows that SSB and CGO are 2:1, that is, 2 SSBs correspond to 1 CGO.
  • Figure 1 shows that SSB and CGO are 1:1, that is, 1 SSB corresponds to 1 CGO.
  • Figure 3B shows that SSB and CGO are 1:2, that is, 1 SSB corresponds to 2 CGOs.
  • the matching period can be the same as the CGO period, and the same number of CGOs as the number of SSBs can be configured in one matching period.
  • the time interval between two CGOs is the matching period/total number of SSBs.
  • the matching cycle includes 4 CGO cycles, and the same number of CGOs as the total number of SSBs are configured in each CGO cycle, which can reduce the data transmission delay on the CGO corresponding to each SSB.
  • the CGO corresponding to the same SSB Can be used for repetition transfers.
  • the matching period includes 8 CGO periods, 4 CGO resources are configured in each CGO period, each CGO period matches one SSB, and the CGO corresponding to the same SSB can be used for repetition transmission.
  • K transmission opportunities (TO) in a CGO are used as a repetition bundle to correspond to one or read SSB sequence numbers. Specifically, whether a repetition bundle corresponds to one or more SSB serial numbers can be determined according to the matching relationship.
  • N (consecutive or non-consecutive) CGOs (each CGO contains 1 TO) can be used as a repetition bundle to correspond to the SSB, and the maximum value of N is the total number of CGOs contained in a matching period; N can be Configured through RRC signaling, the starting CGO of the repetition bundle is the CGO whose CGO sequence number is divisible by N.
  • the change of the DL/UL configuration will affect the CGO ordering. If a certain slot indicated by the SFI of the DCI changes from UL to flexible, the CGO ordering does not change. If a certain slot indicated by the SFI of the DCI is from UL to DL, the CGO contained in the slot will be eliminated when the CGO is sorted.
  • a schematic diagram of Mode 1 when the CG is configured with repetition, a schematic diagram of Mode 1. If the number of repetitions is 2, the two TOs used for repetition transmission in a CGO can be directly matched with the SSB.
  • Each CGO corresponds to an SSB.
  • SSB0 corresponds to CG0
  • SSB1 corresponds to CG1
  • SSB2 corresponds to CG2.
  • SSB3 corresponds to CG3.
  • the first schematic diagram of Mode 2 is shown. If the number of repetitions is 2, two consecutive CGOs match one SSB, so the corresponding relationship is: SSB0 corresponds to CG0 and CG1; SSB1 corresponds to CG2 and CG3. As shown in Figure 2C, if the number of repetitions is 2, there are other matching methods between SSB and CGO, namely: SSB0 corresponds to CG0 and CG4, SSB1 corresponds to CG1 and CG5, SSB2 corresponds to CG2 and CG6, and SSB3 corresponds to CG3 and CG7 .
  • the starting point is the CGO whose CGO serial number is divisible by 2. In the figure, CG0 and CG2 are the starting points of the repetition bundle.
  • the second schematic diagram of Mode 2 when the CG is configured with repetition, the second schematic diagram of Mode 2. Without considering the CGO repetition, first calculate the matching relationship between the SSB and the CGO, and after the matching relationship is determined, the same SSB corresponds to the CGO and then make the repetition bundle.
  • the relationship is: SSB0 corresponds to CG0&CG4, SSB1 corresponds to CG1&CG5, SSB2 corresponds to CG2&CG6, and SSB3 corresponds to CG3&CG7.
  • This example is mainly for the matching relationship between SSB and CGO across BWP, as shown in Figure 3, mainly to support the matching between SSB and CGO across BWP.
  • the gNB configures too many CGOs in the initial BWP, the upstream load of the initial BWP will be too large.
  • configure the CGOs in other BWPs the working BWPs before the UE enters the disconnected state
  • the gNB needs to configure the matching relationship between the SSB on the initial BWP and the CGO on other BWPs.
  • this also shows that the beam sent by the gNB corresponding to the SSB is the same as the beam received by the CGO.
  • the gNB needs to indicate which BWP is used for CG transmission in the RRC release.
  • the BWP details are as follows.
  • This example mainly considers that the number of CGOs is increased by configuring multiple CGO time-frequency resources in one cycle, thereby increasing the number of CGOs corresponding to the SSB, which can reduce the transmission delay.
  • the number of CGOs is increased by configuring multiple CGO time-frequency resources in one cycle, thereby increasing the number of CGOs corresponding to the SSB, which can reduce the transmission delay.
  • four CGOs are configured in one cycle, and each CGO corresponds to one SSB.
  • the UE will not send two CGOs at the same time.
  • supporting multiple CGO configurations in one cycle can increase CG transmission resources.
  • the CGOs need to be numbered first.
  • the numbering process is as follows:
  • the multiple frequency domain resources are numbered according to the same time domain resource, starting from the PRB with the smallest frequency index, and there are two frequency domain resources.
  • CGs are numbered according to step 1, and the numbering result is shown in Fig. 5A. It can also be numbered as shown in FIG. 5B , first fix a frequency domain resource sequence number, and then increase the time domain resource sequence number and slot sequence number in turn; after all CGO numbers of the same frequency domain resource sequence number are completed, the frequency domain resource sequence number +1 and then sequentially. Increase the time domain resource sequence number and slot sequence number until all CGO numbers are completed. Or according to FIG. 5C , first fix the slot sequence number and the frequency domain resource sequence number, then increase the time domain resource sequence number to number the CGOs, and then sequentially increase the frequency domain resource sequence number and the slot sequence number.
  • This example is mainly for how multiple sets of CG resources are configured for one UE to correspond to the SSB.
  • the two sets of CG resource configuration can be configured separately and the matching relationship with SSB is mainly based on how much CG resource is allocated and the amount of SSB configuration, the gNB can configure the matching relationship with SSB separately for each set of CG resources.
  • the matching ratio between CG configuration 1 and SSB is 1:2, that is, one SSB corresponds to two CGO resources in CG configuration 1.
  • the matching ratio between CG configuration 2 and SSB is 1:1, that is, one SSB corresponds to one CGO resource in CG configuration 2.
  • CG configuration 1 and CG configuration 2 are both independent configuration and SSB matching ratio.
  • the gNB may also configure only one matching ratio with the SSB for multiple sets of CG configurations. As shown in Figure 6B, the gNB configures the same SSB matching ratio of 1:2 for CG configuration 1 and CG configuration 2, that is, one SSB corresponds to two CGO resources in the CG configuration, which can save RRC signaling overhead.
  • the embodiment of the present disclosure associates the SSB with the CGO, and the gNB can use the beam corresponding to the SSB to receive uplink data sent by the UE.
  • the SSB-based configuration authorization mechanism in the embodiment of the present disclosure can better support small data transmission in a disconnected state, save the power consumption of the terminal and reduce the network overhead caused by frequent access to the network.
  • an embodiment of the present disclosure provides a terminal, including:
  • a determining unit 101 configured to determine the target CGO corresponding to the target SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO when the terminal is in a disconnected state;
  • the sending unit 102 is configured to send uplink data on the target CGO.
  • the terminal further includes:
  • the matching relationship obtaining unit is used to determine the matching relationship between the SSB and the CGO according to the configuration of the base station before determining the target CGO corresponding to the target SSB; or, calculate the matching relationship between the SSB and the CGO; Wherein, the matching relationship is valid in at least one matching period, and the matching period is pre-configured or pre-agreed.
  • the determining unit 101 is further configured to determine the serial number of each CGO in the matching period; and determine the serial number of the target CGO corresponding to the target SSB according to the matching relationship between the SSB serial number and the CGO serial number.
  • the determining unit 101 is further configured to determine the serial number of each CGO in the matching period according to one of the following numbering rules:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the determining unit 101 is further configured to number CGOs with overlapping time domain but different starting OFDM symbols according to the time corresponding to the starting OFDM of each CGO from near to far; for frequency domain overlapping but starting OFDM symbols
  • the sequence numbers of the minimum PRBs in each CGO are numbered in ascending order.
  • the determining unit 101 is further configured to determine whether the CGO of each time slot is valid according to the time slot configuration before determining the sequence number of each CGO in the matching period, wherein when the time slot configuration is UL, The CGO configured in the time slot is valid; when the time slot is configured as DL, the CGO configured in the time slot is invalid; when the time slot configuration is Flexible, the CGO configured in the time slot is determined to be valid or invalid .
  • the matching relationship obtaining unit is further used for:
  • the total number of CGOs CGO total in the matching period is greater than the total number of SSBs SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO sequentially matches with 1 SSB in the SSB, or, divide the CGO in the matching period into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the CGO total is not greater than the SSB total , according to Calculate the value of K 2 ; starting from the SSB with the smallest sequence number, every K 2 SSBs are sequentially matched with 1 CGO in the matching period, or the SSBs are divided into K 2 groups, and each SSB group is The total number of CGOs is included, and one SSB in each SSB group sequentially matches one CGO in the matching period.
  • the matching relationship obtaining unit is further used for:
  • each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • each CGO group contains a total of SSB CGOs, and one CGO in each CGO group sequentially matches one SSB in the SSB in sequence.
  • M transmission opportunities TO in a CGO are used as a repeated transmission resource repetition bundle, corresponding to one or more SSBs;
  • N CGOs correspond to one or more SSBs as a repetition bundle, wherein each of the N CGOs includes 1 TO, and the N is less than or equal to the maximum number of CGOs in a matching period.
  • the repetition bundle The sequence number of the starting CGO is an integer multiple of N.
  • the CGO is configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CG settings have the same matching relationship with the SSB.
  • the device in this embodiment is a device corresponding to the method shown in FIG. 8 , and the implementation manners in the above embodiments are all applicable to the embodiments of the device, and the same technical effect can also be achieved.
  • the above-mentioned device provided by the embodiment of the present disclosure can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the parts and beneficial effects that are the same as the method embodiment in this embodiment will not be described in detail here. Repeat.
  • FIG. 11 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal includes: a processor 1101 , a transceiver 1102 , a memory 1103 , a user interface 1104 and a bus interface.
  • the terminal further includes: a program stored on the memory 1103 and executable on the processor 1101 .
  • the processor 1101 implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the matching relationship Before determining the target CGO corresponding to the target SSB, determine the matching relationship between the SSB and the CGO according to the configuration of the base station; or, calculate the matching relationship between the SSB and the CGO; wherein, the matching relationship is in It is valid for at least one matching period, and the matching period is pre-configured or pre-agreed.
  • the processor further implements the following steps when executing the program:
  • the serial number of the target CGO corresponding to the target SSB is determined.
  • the processor further implements the following steps when executing the program:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the processor further implements the following steps when executing the program:
  • the numbering is performed according to the time corresponding to the starting OFDM of each CGO from near to far; for the case of CGOs with overlapping frequency domain but different starting OFDM symbols, Numbering is in ascending order of the smallest PRB serial number in each CGO.
  • the processor further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the total number of CGOs CGO total in the matching period is greater than the total number of SSBs SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO is sequentially matched with 1 SSB in the SSB, or, the CGO in the matching period is divided into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the CGO total is not greater than the SSB total , according to Calculate the value of K 2 ; starting from the SSB with the smallest sequence number, every K 2 SSBs are sequentially matched with 1 CGO in the matching period, or the SSBs are divided into K 2 groups, and each SSB group is The total number of CGOs is included, and one SSB in each SSB group sequentially matches one CGO in the matching period.
  • the processor further implements the following steps when executing the program:
  • each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • each CGO group contains a total of SSB CGOs, and one CGO in each CGO group sequentially matches one SSB in the SSB in sequence.
  • M transmission opportunities TO in a CGO are used as a repeated transmission resource repetition bundle, corresponding to one or more SSBs;
  • N CGOs correspond to one or more SSBs as a repetition bundle, wherein each of the N CGOs includes 1 TO, and the N is less than or equal to the maximum number of CGOs in a matching period.
  • the repetition bundle The sequence number of the starting CGO is an integer multiple of N.
  • the CGO is configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CG settings have the same matching relationship with the SSB.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1101 and various circuits of memory represented by memory 1103 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1102 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the user interface 1104 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 may store data used by the processor 1101 in performing operations.
  • the device in this embodiment is a device corresponding to the method shown in FIG. 8 above, and the implementation manners in the above embodiments are all applicable to the embodiments of the device, and the same technical effect can also be achieved.
  • the transceiver 1102 and the memory 1103, as well as the transceiver 1102 and the processor 1101 can be communicated and connected through a bus interface, the function of the processor 1101 can also be realized by the transceiver 1102, and the function of the transceiver 1102 can also be realized by the processor 1101 realized.
  • a computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the terminal in the non-connected state determines the target CGO corresponding to the target SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO;
  • the terminal sends uplink data on the target CGO.
  • the program When the program is executed by the processor, it can realize all the above-mentioned implementation manners in the data transmission method applied to the terminal side, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present disclosure provides a base station shown in FIG. 12 , including:
  • the determining unit 121 is used to determine the CGO corresponding to each SSB according to the matching relationship between the synchronization signal block SSB and the configuration authorization sending opportunity CGO;
  • the receiving unit 122 is configured to use the beam corresponding to the SSB to receive data sent by the terminal in the disconnected state on the CGO corresponding to the SSB.
  • the matching relationship between the SSB and the CGO is determined by the base station according to the configuration, or calculated by the base station, wherein the matching relationship is valid in at least one matching period, and the matching period is pre-configured. or pre-agreed.
  • the base station further includes:
  • the configuration unit is configured to send configuration signaling to the terminal to configure the matching relationship between the SSB and the CGO.
  • the determining unit 121 is further configured to determine the serial number of each CGO in the matching period; and determine the serial number of the CGO corresponding to each SSB according to the matching relationship between the SSB serial number and the CGO serial number.
  • the determining unit 121 is further configured to determine the sequence number of each CGO in the matching period according to one of the following numbering rules:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the determining unit 121 is further configured to, for the case of CGOs that overlap in the time domain but have different starting OFDM symbols, perform numbering according to the order of the time corresponding to the starting OFDM of each CGO from near to far; In the case of CGOs with overlapping domains but different starting OFDM symbols, numbering is performed in ascending order of the minimum PRB sequence numbers in each CGO.
  • the determining unit 121 is further configured to determine whether the CGO of each time slot is valid according to the time slot configuration before determining the sequence number of each CGO in the matching period, wherein, in the time slot configuration When it is UL, the CGO configured in the time slot is valid; when the time slot is configured as DL, the CGO configured in the time slot is invalid; when the time slot is configured as Flexible, the CGO configured in the time slot is determined is valid or invalid.
  • the matching relationship between the SSB and the CGO is calculated in the following manner:
  • the total number of CGOs CGO total in the matching period is greater than the total number of SSBs SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO is sequentially matched with 1 SSB in the SSB, or, the CGO in the matching period is divided into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the CGO total is not greater than the SSB total , according to Calculate the value of K 2 ; starting from the SSB with the smallest sequence number, every K 2 SSBs are sequentially matched with 1 CGO in the matching period, or the SSBs are divided into K 2 groups, and each SSB group is The total number of CGOs is included, and one SSB in each SSB group sequentially matches one CGO in the matching period.
  • the matching relationship between the SSB and the CGO is determined in the following manner:
  • each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • each CGO group contains a total of SSB CGOs, and one CGO in each CGO group sequentially matches one SSB in the SSB in sequence.
  • M transmission opportunities TO in a CGO are used as a repeated transmission resource repetition bundle, corresponding to one or more SSBs;
  • N CGOs correspond to one or more SSBs as a repetition bundle, wherein each of the N CGOs includes 1 TO, and the N is less than or equal to the maximum number of CGOs in a matching period.
  • the repetition bundle The sequence number of the starting CGO is an integer multiple of N.
  • the CGO is configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CG settings have the same matching relationship with the SSB.
  • the apparatus in this embodiment is a device corresponding to the method shown in FIG. 9 , and the implementation manners in the above embodiments are all applicable to the embodiments of the device, and the same technical effect can also be achieved. It should be noted here that the above-mentioned device provided by the embodiment of the present disclosure can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same as the method embodiment in this embodiment is not repeated here. The parts and beneficial effects will be described in detail.
  • an embodiment of the present disclosure provides a schematic structural diagram of a base station, including: a processor 1301, a transceiver 1302, a memory 1303, and a bus interface, wherein:
  • the base station further includes: a program stored on the memory 1303 and executable on the processor 1301, the program implements the following steps when executed by the processor 1301:
  • the data sent by the terminal in the disconnected state is received on the CGO corresponding to the SSB.
  • the processor further implements the following steps when executing the program:
  • the matching relationship between the SSB and the CGO is determined by the base station according to the configuration, or calculated by the base station, wherein the matching relationship is valid in at least one matching period, and the matching period is pre-configured or pre-agreed .
  • the processor further implements the following steps when executing the program: sending configuration signaling to the terminal to configure the matching relationship between the SSB and the CGO.
  • the processor further implements the following steps when executing the program:
  • the serial number of the CGO corresponding to each SSB is determined.
  • the processor further implements the following steps when executing the program:
  • Numbering rule 1 Determine the serial number of each CGO in the matching period according to the sequence numbering in the time domain and then in the frequency domain;
  • Numbering rule 2 Determine the sequence number of each CGO in the matching period according to the sequence numbering in the frequency domain and then in the time domain;
  • Numbering rule 3 In each time slot in the matching period, the numbering is performed in the time domain and then in the frequency domain, and the time slots in the matching period are numbered in time order; In each time slot, the numbering is performed in the frequency domain and then in the time domain, respectively, and the numbering is performed in the time sequence between the time slots of the matching period.
  • the processor further implements the following steps when executing the program:
  • the numbering is performed according to the time corresponding to the starting OFDM of each CGO from near to far; for the case of CGOs with overlapping frequency domain but different starting OFDM symbols, Numbering is in ascending order of the smallest PRB serial number in each CGO.
  • the processor further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the total number of CGOs CGO total in the matching period is greater than the total number of SSBs SSB total , according to Calculate the value of K 1 ; starting from the CGO with the smallest sequence number in the matching period, every consecutive K 1 CGO is sequentially matched with 1 SSB in the SSB, or, the CGO in the matching period is divided into K 1
  • Each CGO group contains total SSB CGOs , and 1 CGO in each CGO group sequentially matches 1 SSB in the SSB;
  • the CGO total is not greater than the SSB total , according to Calculate the value of K 2 ; starting from the SSB with the smallest sequence number, every K 2 SSBs are sequentially matched with 1 CGO in the matching period, or the SSBs are divided into K 2 groups, and each SSB group is The total number of CGOs is included, and one SSB in each SSB group sequentially matches one CGO in the matching period.
  • the processor further implements the following steps when executing the program:
  • each SSB group contains a total of CGO SSBs, and 1 SSB in each SSB group sequentially matches with 1 CGO in the matching period;
  • each CGO group contains a total of SSB CGOs, and one CGO in each CGO group sequentially matches one SSB in the SSB in sequence.
  • M transmission opportunities TO in a CGO are used as a repeated transmission resource repetition bundle, corresponding to one or more SSBs;
  • N CGOs correspond to one or more SSBs as a repetition bundle, wherein each of the N CGOs includes 1 TO, and the N is less than or equal to the maximum number of CGOs in a matching period.
  • the repetition bundle The sequence number of the starting CGO is an integer multiple of N.
  • the CGO is configured on a BWP other than the initial BWP.
  • each set of CG configurations independently sets the matching relationship with the SSB, or multiple sets of CG settings have the same matching relationship with the SSB.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1301 and various circuits of memory represented by memory 1303 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1302 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1303 may store data used by the processor 1301 when performing operations.
  • the terminal in this embodiment is a device corresponding to the method shown in FIG. 9 above, and the implementation manners in the above embodiments are all applicable to the embodiments of the terminal, and the same technical effect can also be achieved.
  • the transceiver 1302 and the memory 1303, as well as the transceiver 1302 and the processor 1301 can be communicated and connected through a bus interface, the function of the processor 1301 can also be realized by the transceiver 1302, and the function of the transceiver 1302 can also be realized by the processor 1301 realized.
  • a computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the data sent by the terminal in the disconnected state is received on the CGO corresponding to the SSB.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present disclosure.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.
  • modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the function of the above determined module.
  • the implementation of other modules is similar. In addition, all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above methods, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及设备,该方法包括:非连接态的终端根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;所述终端在所述目标CGO上发送上行数据。

Description

数据传输方法及设备
相关申请的交叉引用
本申请主张在2020年12月11日在中国提交的中国专利申请号No.202011458790.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信技术领域,具体涉及一种数据传输方法及设备。
背景技术
第五代移动通信系统(5G)新空口(NR)技术中,配置授权(Configured grant,CG)调度传输机制类似于长期演进(LTE)中的半静态调度。配置授权调度传输机制主要用于上行传输,基站(gNB)预先配置了上行物理共享信道(Physical Uplink Shared Channel,PUSCH)资源并且终端(UE)如果有上行数据需要发送并不需要向基站发送上行的调度请求(Scheduling Request,SR),可以直接在配置授权(CG)调度的资源上发送。
配置授权调度传输机制通常为基站(gNB)通过激活一次上行授权给UE,在UE未收到去激活的情况下,将会一直使用第一次上行授权所指定资源进行上行传输,其有两种传输类型:
配置授权类型1(type 1):由无线资源控制(RRC)通过高层信令进行配置(IE ConfiguredGrantConfig);
配置授权类型2(type 2:由下行控制信息(DCI)进行指示上行免授权的激活和去激活,其需要的参数由信息单元(IE)ConfiguredGrantConfig进行配置,但是需要由DCI激活时才进行使用。
配置授权type 1和type 2根据IE ConfiguredGrantConfig中字段rrc-ConfiguredUplinkGrant进行区别,如果该字段被配置,则为配置授权type 1,如果该字段未被配置,则为配置授权type 2。
目前,配置授权调度传输机制主要适用于UE的连接态(Connection mode)。
发明内容
本公开的至少一个实施例提供了一种数据传输方法及设备,能够基于配置授权机制,实现非连接态下的终端的数据传输。
根据本公开的一个方面,至少一个实施例提供了一种数据传输方法,包括:
非连接态的终端根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
所述终端在所述目标CGO上发送上行数据。
此外,根据本公开的至少一个实施例,在确定目标SSB所对应的目标CGO之前,还包括:
所述终端根据基站的配置,确定所述SSB与CGO之间的匹配关系;
或者,
终端计算得到所述SSB与CGO之间的匹配关系;
其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
此外,根据本公开的至少一个实施例,所述确定目标SSB所对应的目标CGO,包括:
确定所述匹配周期内的各个CGO的序号;
按照SSB序号与CGO序号之间的匹配关系,确定目标SSB所对应的目标CGO的序号。
此外,根据本公开的至少一个实施例,确定所述匹配周期内的各个CGO的序号,包括:
按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周 期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
此外,根据本公开的至少一个实施例,所述确定所述匹配周期内的各个CGO的序号,还包括:
针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
此外,根据本公开的至少一个实施例,在确定所述匹配周期内的各个CGO的序号之前,还包括:
根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
此外,根据本公开的至少一个实施例,所述终端计算得到所述SSB与CGO之间的匹配关系,包括:
在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000001
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000002
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
此外,根据本公开的至少一个实施例,所述终端根据基站的配置,确定所述SSB与CGO之间的匹配关系,包括:
在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序 号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
此外,根据本公开的至少一个实施例,在配置授权被配置为重复传输的情况下:
所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
或者,
N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
此外,根据本公开的至少一个实施例,所述CGO配置在初始BWP以外的BWP上。
此外,根据本公开的至少一个实施例,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
根据本公开的另一方面,至少一个实施例提供了一种数据传输方法,包括:
基站根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
所述基站利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
此外,根据本公开的至少一个实施例,所述SSB与CGO之间的匹配关系是基站根据配置确定的,或者是基站计算得到的,其中,所述匹配关系在 至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
此外,根据本公开的至少一个实施例,还包括:
向终端发送配置信令,配置所述SSB与CGO之间的匹配关系。
此外,根据本公开的至少一个实施例,所述确定各个SSB所对应的CGO,包括:
确定所述匹配周期内的各个CGO的序号;
按照SSB序号与CGO序号之间的匹配关系,确定各个SSB所对应的CGO的序号。
此外,根据本公开的至少一个实施例,所述确定所述匹配周期内的各个CGO的序号,包括:
按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
此外,根据本公开的至少一个实施例,所述确定所述匹配周期内的各个CGO的序号,还包括:
针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
此外,根据本公开的至少一个实施例,在确定所述匹配周期内的各个CGO的序号之前,还包括:
根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙 配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
此外,根据本公开的至少一个实施例,所述SSB与CGO之间的匹配关系,按照以下方式计算得到:
在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000003
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000004
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
此外,根据本公开的至少一个实施例,所述SSB与CGO之间的匹配关系,按照以下方式确定:
在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
此外,根据本公开的至少一个实施例,在配置授权被配置为重复传输的情况下:
所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
或者,
N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
此外,根据本公开的至少一个实施例,所述CGO配置在初始BWP以外的BWP上。
此外,根据本公开的至少一个实施例,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括存储器、收发机和处理器,其中,
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
在所述终端处于非连接态的情况下,根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
在所述目标CGO上发送上行数据。
根据本公开的另一方面,至少一个实施例提供了一种终端,包括:
确定单元,用于在所述终端处于非连接态的情况下,根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
发送单元,用于在所述目标CGO上发送上行数据。
根据本公开的另一方面,至少一个实施例提供了一种基站,包括存储器、收发机和处理器,其中,
所述存储器,用于存储计算机程序;
所述收发机,用于在所述处理器的控制下收发数据;
所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
根据本公开的另一方面,至少一个实施例提供了一种基站,包括:
确定单元,用于根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
接收单元,用于利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
根据本公开的另一方面,至少一个实施例提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述的方法。
与相关技术相比,本公开实施例提供的数据传输方法及设备,通过将SSB与CGO相关联,基站能够利用SSB所对应的波束来接收UE发送的上行数据。通过本公开实施例基于SSB的配置授权机制可以更好的支持在非连接态下的小数据传输,节省终端耗电和减少由于频繁接入网络导致的网络开销。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例提供的SSB与CGO的一种匹配关系示例图;
图2A~图2I为本公开实施例提供的SSB与CGO的若干匹配关系示例图;
图2J~图2K为本公开实施例提供的CGO编号的若干示例图;
图2L为本公开实施例提供的上下行配置改变时的CGO排序的示例图;
图3A~图3B为本公开实施例提供的SSB与CGO的若干匹配关系示例图;
图4为本公开实施例提供的跨BWP的SSB与CGO匹配的示例图;
图5A~图5C为本公开实施例提供的SSB与CGO的若干匹配关系示例 图;
图6A~图6B为本公开实施例提供的SSB与CGO的若干匹配关系示例图;
图7为本公开实施例所述数据传输方法的一种应用系统示意图;
图8为本公开实施例所述数据传输方法的一种流程示意图;
图9为本公开实施例所述数据传输方法的另一种流程示意图;
图10为本公开实施例提供的终端的一种结构示意图;
图11为本公开实施例提供的终端的另一种结构示意图;
图12为本公开实施例提供的基站的一种结构示意图;
图13为本公开实施例提供的基站的另一种结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于NR系统以及长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division  Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE 802.21(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图7,图7示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作用户终端或用户设备(UE,User Equipment),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿 戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。网络设备12可以是基站和/或核心网网元,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端11通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端11进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端11到网络设备12)的上行链路,或用于承载下行链路 (Downlink,DL)传输(例如,从网络设备12到终端11)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
相关技术中,在非连接态下,目前并不支持配置授权调度传输机制,如果将连接态下的配置授权调度传输机制直接应用到非连接态就会有基站无法获得下行波束赋型的CSI信息,这是由于在非连接态(空闲态/非激活态)的情况下,UE不会报告信道状态信息(CSI)给基站。
请参照图8,本公开实施例提供的一种数据传输方法,在应用于终端侧时,包括:
步骤81,非连接态的终端根据同步信号块(Synchronization Signal and PBCH block,SSB)与配置授权发送机会(Configured grant occasion,CGO)之间的匹配关系,确定目标SSB所对应的目标CGO。
这里,基站通常广播发送至少一个SSB,所述至少一个SSB的总数量记为SSB total,所述至少一个SSB和/或SSB total通常是基站配置给终端的,具体可以通过广播或单播方式发送配置消息进行配置。终端可以根据各个SSB的接收情况,从所述至少一个SSB中选择出一个SSB作为目标SSB,例如,选择接收信号质量最优的SSB作为目标SSB。当然,本公开实施例也可以按照其他策略选择目标SSB,本公开实施例对此不做具体限定。
步骤82,所述终端在所述目标CGO上发送上行数据。
通过以上步骤,本公开实施例中终端利用SSB所对应的CGO发送上行数据,这样基站可以利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据,从而可以在没有下行波束赋型的CSI信息的情况下,利用SSB对应的波束进行数据传输,从而实现了一种基于配置授权机制的非连接态下的终端的数据传输。
在上述步骤81之前,所述终端还可以根据基站的配置,确定所述SSB与CGO之间的匹配关系;或者,终端通过计算得到所述SSB与CGO之间的匹配关系。其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
具体的,在上述步骤81中,所述终端可以确定所述匹配周期内的各个CGO的序号;然后,按照SSB序号与CGO序号之间的匹配关系,确定目标SSB所对应的目标CGO的序号。
本公开实施例中,各个CGO可以按照预设编号规则进行编号。下面提供若干种可以用于本公开实施例的编号规则,终端可以按照以下某一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
在确定所述匹配周期内的各个CGO的序号时,本公开实施例还可以针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。这里,所述时刻从近到远的顺序是指时间靠前在前,时间靠后的在后。
考虑到某些时隙可能被配置为上下行或可变(Flexible)时隙,因此在CGO编号时候需要考虑这些时隙中的CGO是否有效,如果无效,则不需要对这些无效的CGO进行编号。具体的,可以根据时隙配置,确定每个时隙的CGO是否有效,其中,1)在所述时隙配置为UL时,所述时隙配置的CGO有效;2)在所述时隙配置为DL时,所述时隙配置的CGO无效;3)在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效,具体是否为有效或无效,可以预先设定好。
作为匹配方式一,终端可以通过计算得到所述SSB与CGO之间的匹配关系,具体的,所述终端可以按照以下方式进行计算:
1)在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000005
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
2)在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000006
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
作为匹配方式二,所述终端可以根据基站的配置,确定所述SSB与CGO之间的匹配关系,具体的:
1)在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
2)在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
考虑到配置授权可能会被配置为重复传输(repetition),在配置授权被配置为重复传输的情况下:所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源(repetition bundle),与一个或多个SSB相对应;或者,N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
另外,一个repetition bundle对应于一个还是多个SSB,是根据所述SSB与CGO之间的匹配关系确定的。
另外,本公开实施例中,所述CGO可以配置在初始BWP以外的BWP上。
可选地,在单用户(单个终端)支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。本公开实施例可以灵活设置各套CG配置的匹配关系。
以上从终端侧对本公开实施例的方法进行了说明。下面进一步从基站侧进行说明。
请参照图9,本公开实施例提供的数据传输方法,在应用于基站侧时包括:
步骤91,基站根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO。
这里,所述SSB与CGO之间的匹配关系可以是基站根据配置确定的,或者是基站计算得到的,其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。例如,在基站配置所述匹配关系时,所述基站还可以向终端发送配置信令,配置所述SSB与CGO之间的匹配关系,以使得终端能够获得相同的匹配关系。
步骤92,所述基站利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
通过以上步骤,基站可以接收终端利用SSB所对应的CGO发送的上行数据,基站在接收时,可以利用所述SSB对应的波束进行接收,从而可以在没有下行波束赋型的CSI信息的情况下,利用SSB对应的波束进行数据传输,从而实现了一种基于配置授权机制的非连接态下的终端的数据传输。
具体的,在上述步骤91中,所述基站可以确定所述匹配周期内的各个CGO的序号;然后,按照SSB序号与CGO序号之间的匹配关系,确定目标SSB所对应的目标CGO的序号。本公开实施例中,各个CGO可以按照预设编号规则进行编号。下面提供若干种可以用于本公开实施例的编号规则,基站可以按照前文所述的某一种编号规则,确定所述匹配周期内的各个CGO的序号此处不再赘述。
类似的,基站在确定所述匹配周期内的各个CGO的序号时,本公开实施 例还可以针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。这里,所述时刻从近到远的顺序是指时间靠前在前,时间靠后的在后。
类似的,考虑到某些时隙可能被配置为上下行或可变(Flexible)时隙,因此在CGO编号时候需要考虑这些时隙中的CGO是否有效,如果无效,则不需要对这些无效的CGO进行编号。具体的,可以根据时隙配置,确定每个时隙的CGO是否有效,其中,1)在所述时隙配置为UL时,所述时隙配置的CGO有效;2)在所述时隙配置为DL时,所述时隙配置的CGO无效;3)在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
作为匹配方式一,基站可以通过计算得到所述SSB与CGO之间的匹配关系,具体的,所述终端可以按照以下方式进行计算:
1)在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000007
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
2)在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000008
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
作为匹配方式二,所述基站可以根据基站的配置,确定所述SSB与CGO之间的匹配关系,具体的:
1)在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
2)在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
考虑到配置授权可能会被配置为重复传输(repetition),在配置授权被配置为重复传输的情况下:所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源(repetition bundle),与一个或多个SSB相对应;或者,N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
另外,本公开实施例中,所述CGO可以配置在初始BWP以外的BWP上。
可选地,在单用户(单个终端)支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。本公开实施例可以灵活设置各套CG配置的匹配关系。
以上分别从终端和基站侧对本公开实施例的方法进行了说明。为帮助更好的理解本公开,下面提供若干具体示例。
示例1
本示例针对SSB与CGO都在同一个部分带宽(BWP)的情况。在终端(UE)进入非连接态之前,gNB通过高层信令下发SSB与CGO的匹配比例(ssb-perCG-occasion)参数以用于SSB与CGO的匹配,以及下发CG的相关配置参数以用于配置UE的非连接态的配置授权调度传输(CG)。同时gNB可以配置一个匹配周期,在匹配周期内进行SSB与CGO的进行匹配。ssb-perCG-occasion具体可以指示1:1、2:1、1:2等。
在一个匹配周期内,通过RRC参数来配置SSB与CGO之间的匹配关系或者通过计算方法来获得SSB与CGO匹配关系。匹配周期可以通过高层直接配置或者通过间接方法配置(如CGO周期的整数倍)。
CG没有配置repetition的情况下,在一个匹配周期内,首先对CGO进行 编号,然后按照SSB与CGO之间匹配规则进行匹配。
具体编号规则如下:
规则1:在匹配周期内按照先频域再时域的顺序进行编号;
规则2:是在一个匹配周期内按照先时域再频域的顺序进行编号;
规则3:以slot为单位,按照先时域再频域的顺序编号,slot间再按照时间顺序编号或者以slot为单位,按照先频域再时域的顺序编号,slot间再按照时间顺序编号。
针对时域重叠但起点/结束符号不同的CGO的情况,按照每个CGO的起始OFDM序号从小到大进行编号,针对频域重叠但起点/结束符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大进行编号。
在进行编号之前,需要根据Slot配置确定每个Slot的CGO是否有效,如果Slot配置为Flexible/UL,那么在该slot配置的CGO有效,如果Slot配置成DL,那么在该slot配置的CGO为无效。
如图1所示的一种匹配关系,SSB和CGO都在初始BWP的情况,SSB与CGO是一一对应的。SSB0对应CG0,SSB1对应CG1,SSB2对应CG2,SSB3对应CG3。需要说明的是,为表示方便,图1~图6B中使用CG表示CGO,即CG0表示CGO0,CG1表示CGO1,以此类推。
如果配置授权调度传输(CG)支持repetition的话,有两种可能的资源匹配方式如图2A和图2C。如图2A所示,如果repetition的次数为2的话,连续两个CGO匹配一个SSB,因此对应关系为:SSB0对应CG0和CG1;SSB1对应CG2和CG3。如图2C所示,如果repetition的次数为2的话,还有另外的SSB与CGO的匹配方式,即:SSB0对应CG0和CG4,SSB1对应CG1和CG5,SSB2对应CG2和CG6,SSB3对应CG3和CG7。
基站通过高层信令利用ssb-perCG-occasion和Periodicity两个参数给非连接态下的终端配置授权调度传输。ssb-perCG-occasion参数用于指示一个匹配周期内,SSB与CGO匹配关系,如一个SSB对应多个CGO,一个SSB对应一个CGO,多个SSB对应一个CGO。
首先将ssb-perCG-occasion与1进行比较,如果ssb-perCG-occasion>1,说明多个SSB序号对应一个CGO,因此先将SSB按照ssb-perCG-occasion个为 一组进行分组,然后按照匹配方式一进行CGO与SSB匹配;如果ssb-perCG-occasion<1,说明1个SSB序号对应多个CGO先将CGO按照1/ssb-perCG-occasion个为一组进行分组,再按照匹配方式一进行CGO与SSB匹配。
Periodicity指示配置授权调度传输一个周期的长度。M表示一个CGO和SSB的匹配周期包含CGO周期个数(可选CG0周期的整数倍)。
配置授权配置的一种示例如下:
Figure PCTCN2021133442-appb-000009
TCG表示SSB与CGO匹配周期,在这个TCG=M*Periodicity之内,匹配关系不变。匹配周期可以通过高层直接配置或者通过间接方法配置(如CGO周期的整数倍或者SSB周期的整数倍)。
在TCG之内,SSB与CGO的匹配关系如下。
举例说明:SSB总数=4,CG repetition总数N=2,ssb-perCG-occasion=2:1
匹配周期为M=8个CGO周期,Periodicity=1ms,每个CGO周期内包含1个CGO的情况下的,匹配过程为:
A)首先设置SSB与CGO的匹配周期,这个周期可以通过高层信令直接配置或者通过高层信令指示CGO周期的整数倍来获得。匹配周期为TCG=M*Periodicity=8ms。
B)然后计算一个匹配周期内的CGO总数为8,对一个匹配周期内CGO进行(0~7)编号,编号原则为:先固定时域资源序号和slot序号,然后增加频域序号对CGO进行编号,再依次增加时域资源序号和slot序号。
这里,先按照时间顺序给时域资源序号,再按照相同时域资源多个频域资源进行编号从PRB频率index最小的开始编号。
C)在一个匹配周期内,SSB和CGO都是从最小序号开始,按顺序依次进行匹配。根据SSB配置确定SSB的总数为4。
D)根据CG repetition次数N=2,将相邻的N个CGO作为一个repetition  bundle与SSB进行对应;
E)计算CG repetition bundle总数为在一个匹配周期内总的CG数/CG repetition次数;上例中CGO的repetition bundle总数为8/2=4
F)通过计算公式
Figure PCTCN2021133442-appb-000010
确定的SSB与CGO的匹配关系为:K=CG repetition bundle总数/SSB总数=1,(这里面CG repetition bundle总数作为CGOtotal)或者直接根据高层信令配置SSB与CGO的匹配比例ssb-perCG-occasion比例直接确定SSB与CGO对应比例2:1。因为ssb-perCG-occasion>1,因此先将SSB按照2个为一组进行分组,同样CG repetition=2,因此也需要对CGO按照2个为一组进行分组,然后再将SSB与CGO进行匹配。
最终确定SSB与CGO的匹配关系为:
G)根据计算确定的匹配关系为:SSB0对应CG0&CG1,SSB1对应CG2&CG3,SSB2对应CG4&CG5,SSB3对应CG6&CG7,如图2D所示。
H)根据ssb-perCG-occasion参数确定2:1的SSB与CGO匹配关系为SSB0&SSB1对应CG0&CG1,SSB2&SSB3对应CG2&CG3,SSB0&SSB1对应CG4&CG5,SSB2&SSB3对应CG6&CG7,如图2E所示。
基站(gNB)可以通过ssb-perCG-occasion参数来配置SSB与CGO的匹配比例,具体如图3A,图1或者图3B所示。图3A表示为SSB与CGO是2:1,也就是2个SSB对应1个CGO。图1则表示为SSB与CGO是1:1,也就是1个SSB对应1个CGO。图3B表示为SSB与CGO是1:2,也就是1个SSB对应2个CGO。
如图2F所示,如果CGO周期很大,匹配周期可以与CGO周期相同,在一个匹配周期内可以配置与SSB个数相同的CGO。两个CGO之间的时间间隔为匹配周期/SSB总数。
如图2G所示,匹配周期包含4个CGO周期,每个CGO周期内配置了与SSB总数相同的CGO,这样可以减少对应每个SSB的CGO上数据传输时延,对于同一个SSB对应的CGO可以用于repetition传输。
如图2H所示,匹配周期包含8个CGO周期,每个CGO周期内配置了4个CGO资源,每个CGO周期匹配一个SSB,对于同一个SSB对应的CGO 可以用于repetition传输。
如图2J和2K所示,在一个匹配周期内,多CGO配置下,CGO时频资源有重叠的时候,可以按照每个CGO的起始OFDM序号从小到大进行编号,针对频域重叠但起点/结束符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大进行编号。
CG配置repetition的情况下,CGO与SSB匹配方式有两种:
方式1:一个CGO中的K个传输机会(Transmission Occasion,TO)作为一个repetition bundle对应一个或读个SSB序号。具体的,一个repetition bundle对应于一个还是多个SSB序号,可以根据匹配关系确定的。
方式2:可以将N个(连续的或者非连续的)CGO(每个CGO包含1个TO)作为一个repetition bundle与SSB进行对应,N的最大值为一个匹配周期内包含的CGO总数;N可以通过RRC信令进行配置,repetition bundle的起始CGO为CGO序号能被N整除的CGO。
如图2L所示,DL/UL配置发生变化会影响CGO排序,如果DCI的SFI指示的某个slot从UL到flexible的时候,CGO排序不变。如果DCI的SFI指示的某个slot从UL到DL的时候,CGO排序时候,会剔除这个slot包含的CGO。
如图2B所示,CG配置repetition的情况下,方式1的示意图。如果repetition的次数为2的话,可以将一个CGO内的两个用于repetition传输的TO直接与SSB进行匹配,每个CGO对应一个SSB,图中的SSB0对应CG0,SSB1对应CG1,SSB2对应CG2,SSB3对应CG3。
如图2A所示,CG配置repetition的情况下,方式2的第一种示意图。如果repetition的次数为2的话,连续两个CGO匹配一个SSB,因此对应关系为:SSB0对应CG0和CG1;SSB1对应CG2和CG3。如图2C所示,如果repetition的次数为2的话,还有另外的SSB与CGO的匹配方式,即:SSB0对应CG0和CG4,SSB1对应CG1和CG5,SSB2对应CG2和CG6,SSB3对应CG3和CG7。起始点为CGO序号能被2整除的CGO,图中的CG0,CG2为repetition bundle的起始点。
如图2C所示,CG配置repetition的情况下,方式2的第二种示意图。先 不考虑CGO repetition,先计算SSB与CGO的匹配关系,等匹配关系确定后,相同的SSB对应CGO再做repetition bundle。因此在一个匹配周期内,SSB与CGO的匹配关系为8/4=2:1;确定CGO与SSB匹配关系之后再确定CGO repetition bundle(CG0&CG4,CG1&CG5,CG2&CG6,CG3&CG7)最终确定SSB与CGO的匹配关系为:SSB0对应CG0&CG4,SSB1对应CG1&CG5,SSB2对应CG2&CG6,SSB3对应CG3&CG7。
示例2:
本示例主要是针对跨BWP的SSB与CGO之间的匹配关系,具体如图3所示,主要是支持跨BWP的SSB与CGO的匹配。因为如果gNB在initial BWP配置过多的CGO,会导致initial BWP的上行负荷(load)过大,为了上行的负载均衡,将CGO配置在其他BWP(在UE进入非连接态之前的工作BWP);同时gNB需要配置initial BWP上的SSB与其他BWP上CGO的匹配关系。同时这也说明SSB所对应gNB发送Beam与CGO的接收beam一样。gNB需要在RRC release指示哪一个BWP用于CG传输,BWP详细信息如下。
Figure PCTCN2021133442-appb-000011
示例3:
本示例主要是考虑在一个周期内,通过配置多个CGO时频资源来增加CGO数量,进而增加了SSB所对应的CGO数量,这样可以减少传输时延。具体见图5A所示,在一个周期内配置了4个CGO,每个CGO对应一个SSB,这样的话虽然在一个周期内配置了多个CGO,但是UE也不会在同一时刻同时发送两个CGO,另外在一个周期内支持多个CGO配置可以增加CG传输资源。
针对在一个周期的时频域上配置多个CGO的情况,需要先对CGO编号,编号过程如下:
1)首先计算一个匹配周期内的CGO总数(1个匹配周期内有两个CGO 周期并且一个周期内的CG个数为4,CG总数为8)),然后对一个匹配周期内CGO进行编号,编号原则为:先固定slot序号和时域序号,然后增加频域序号对CGO进行编号,再依次增加时域资源序号和slot序号。
2)先按照时间顺序给时域资源序号,图5A中按照时间顺序的一个匹配周期内的时域资源一共有4个。
3)再按照相同时域资源多个频域资源进行编号从PRB频率index最小的开始,频域资源有2个。
4)然后按照步骤1对CG进行编号,编号结果如图5A所示。还可以按照图5B所示进行编号,先固定一个频域资源序号,然后依次增加时域资源序号和slot序号;相同的频域资源序号的所有CGO编号完成后再频域资源序号+1然后依次增加时域资源序号和slot序号直到所有CGO编号完成。或者按照图5C,先固定slot序号和频域资源序号,然后增加时域资源序号对CGO进行编号,再依次增加频域资源序号和slot序号。
5)CG0编号完成后再根据实施例1中SSB与CGO匹配原则对一个匹配周期内的CGO与SSB进行一一配对。
示例4:
本示例主要是针对一个UE配置了多套CG资源如何与SSB对应。如图6A和图6B所示。2套CG资源配置可以分别配置与SSB匹配关系主要是根据CG资源分配多少以及SSB配置量,gNB能够对于每套CG资源进行单独配置与SSB的匹配关系。如图6A所示,CG配置1与SSB的匹配比例为1:2即一个SSB对应CG配置1中的两个CGO资源。
CG配置2与SSB的匹配比例为1:1即一个SSB对应CG配置2中的一个CGO资源。CG配置1和CG配置2都是独立配置与SSB匹配比例。gNB也可以针对多套CG配置仅仅配置一种与SSB匹配比例。如图6B,gNB给CG配置1和CG配置2配置了相同的SSB匹配比例1:2即即一个SSB对应CG配置中的两个CGO资源,这样可以节省RRC信令开销。
从以上各示例可以看出,本公开实施例将SSB与CGO相关联,gNB能够利用SSB所对应Beam来接收UE发送的上行数据。通过本公开实施例基于SSB的配置授权机制可以更好的支持在非连接态下的小数据传输,可以节 省终端耗电和减少由于频繁接入网络导致的网络开销。
以上介绍了本公开实施例的各种方法。下面将进一步提供实施上述方法的装置。
请参照图10,本公开实施例提供了一种终端,包括:
确定单元101,用于在所述终端处于非连接态的情况下,根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
发送单元102,用于在所述目标CGO上发送上行数据。
可选的,所述终端还包括:
匹配关系获得单元,用于在确定目标SSB所对应的目标CGO之前,根据基站的配置,确定所述SSB与CGO之间的匹配关系;或者,计算得到所述SSB与CGO之间的匹配关系;其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
所述确定单元101,还用于确定所述匹配周期内的各个CGO的序号;按照SSB序号与CGO序号之间的匹配关系,确定目标SSB所对应的目标CGO的序号。
所述确定单元101,还用于按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
所述确定单元101,还用于针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最 小PRB序号从小到大的顺序进行编号。
所述确定单元101,还用于在确定所述匹配周期内的各个CGO的序号之前,根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
可选的,所述匹配关系获得单元,还用于:
在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000012
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000013
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
可选的,所述匹配关系获得单元,还用于:
在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
可选的,其特征在于,在配置授权被配置为重复传输的情况下:
所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输 资源repetition bundle,与一个或多个SSB相对应;
或者,
N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
可选的,所述CGO配置在初始BWP以外的BWP上。
可选的,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
需要说明的是,该实施例中的设备是与上述图8所示的方法对应的设备,上述各实施例中的实现方式均适用于该设备的实施例中,也能达到相同的技术效果。本公开实施例提供的上述设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参照图11,本公开实施例提供的终端的一种结构示意图,该终端包括:处理器1101、收发机1102、存储器1103、用户接口1104和总线接口。
在本公开实施例中,终端还包括:存储在存储器上1103并可在处理器1101上运行的程序。
所述处理器1101执行所述程序时实现以下步骤:
在终端处于非连接态的情况下,根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
在所述目标CGO上发送上行数据。
可选的,所述处理器执行所述程序时还实现以下步骤:
在确定目标SSB所对应的目标CGO之前,根据基站的配置,确定所述SSB与CGO之间的匹配关系;或者,计算得到所述SSB与CGO之间的匹配关系;其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
可选的,所述处理器执行所述程序时还实现以下步骤:
确定所述匹配周期内的各个CGO的序号;
按照SSB序号与CGO序号之间的匹配关系,确定目标SSB所对应的目 标CGO的序号。
可选的,所述处理器执行所述程序时还实现以下步骤:
按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
可选的,所述处理器执行所述程序时还实现以下步骤:
针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
可选的,所述处理器执行所述程序时还实现以下步骤:
在确定所述匹配周期内的各个CGO的序号之前:
根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
可选的,所述处理器执行所述程序时还实现以下步骤:
在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000014
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000015
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
可选的,所述处理器执行所述程序时还实现以下步骤:
在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
可选的,在配置授权被配置为重复传输的情况下:
所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
或者,
N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
可选的,所述CGO配置在初始BWP以外的BWP上。
可选的,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
可理解的,本公开实施例中,所述计算机程序被处理器1101执行时可实现上述图8所示的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链 接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1104还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。
需要说明的是,该实施例中的设备是与上述图8所示的方法对应的设备,上述各实施例中的实现方式均适用于该设备的实施例中,也能达到相同的技术效果。该设备中,收发机1102与存储器1103,以及收发机1102与处理器1101均可以通过总线接口通讯连接,处理器1101的功能也可以由收发机1102实现,收发机1102的功能也可以由处理器1101实现。在此需要说明的是,本公开实施例提供的上述设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现以下步骤:
非连接态的终端根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
所述终端在所述目标CGO上发送上行数据。
该程序被处理器执行时能实现上述应用于终端侧的数据传输方法中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
本公开实施例提供了图12所示的一种基站,包括:
确定单元121,用于根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
接收单元122,用于利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
可选的,所述SSB与CGO之间的匹配关系是基站根据配置确定的,或 者是基站计算得到的,其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
可选的,所述基站还包括:
配置单元,用于向终端发送配置信令,配置所述SSB与CGO之间的匹配关系。
可选的,所述确定单元121,还用于确定所述匹配周期内的各个CGO的序号;按照SSB序号与CGO序号之间的匹配关系,确定各个SSB所对应的CGO的序号。
可选的,所述确定单元121,还用于按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
可选的,所述确定单元121,还用于针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
可选的,所述确定单元121,还用于在确定所述匹配周期内的各个CGO的序号之前,根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
可选的,所述SSB与CGO之间的匹配关系,按照以下方式计算得到:
在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的 情况下,根据
Figure PCTCN2021133442-appb-000016
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000017
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
可选的,所述SSB与CGO之间的匹配关系,按照以下方式确定:
在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
可选的,在配置授权被配置为重复传输的情况下:
所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
或者,
N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
可选的,所述CGO配置在初始BWP以外的BWP上。
可选的,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
需要说明的是,该实施例中的装置是与上述图9所示的方法对应的设备,上述各实施例中的实现方式均适用于该设备的实施例中,也能达到相同的技术效果。在此需要说明的是,本公开实施例提供的上述设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参考图13,本公开实施例提供了基站的一结构示意图,包括:处理器1301、收发机1302、存储器1303和总线接口,其中:
在本公开实施例中,基站还包括:存储在存储器上1303并可在处理器1301上运行的程序,所述程序被处理器1301执行时实现如下步骤:
根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
可选的,所述处理器执行所述程序时还实现以下步骤:
所述SSB与CGO之间的匹配关系是基站根据配置确定的,或者是基站计算得到的,其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
可选的,所述处理器执行所述程序时还实现以下步骤:向终端发送配置信令,配置所述SSB与CGO之间的匹配关系。
可选的,所述处理器执行所述程序时还实现以下步骤:
确定所述匹配周期内的各个CGO的序号;
按照SSB序号与CGO序号之间的匹配关系,确定各个SSB所对应的CGO的序号。
可选的,所述处理器执行所述程序时还实现以下步骤:
按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
可选的,所述处理器执行所述程序时还实现以下步骤:
针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
可选的,所述处理器执行所述程序时还实现以下步骤:
根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
可选的,所述处理器执行所述程序时还实现以下步骤:
在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
Figure PCTCN2021133442-appb-000018
计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
在所述CGO total不大于所述SSB total的情况下,根据
Figure PCTCN2021133442-appb-000019
计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
可选的,所述处理器执行所述程序时还实现以下步骤:
在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个 SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
可选的,在配置授权被配置为重复传输的情况下:
所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
或者,
N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
可选的,所述CGO配置在初始BWP以外的BWP上。
可选的,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
可理解的,本公开实施例中,所述计算机程序被处理器1301执行时可实现上述图9所示的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1303代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1301负责管理总线架构和通常的处理,存储器1303可以存储处理器1301在执行操作时所使用的数据。
需要说明的是,该实施例中的终端是与上述图9所示的方法对应的设备,上述各实施例中的实现方式均适用于该终端的实施例中,也能达到相同的技 术效果。该设备中,收发机1302与存储器1303,以及收发机1302与处理器1301均可以通过总线接口通讯连接,处理器1301的功能也可以由收发机1302实现,收发机1302的功能也可以由处理器1301实现。在此需要说明的是,本公开实施例提供的上述设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现以下步骤:
根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
该程序被处理器执行时能实现上述应用于基站的数据传输方法中的所有实现方式,且能达到相同的技术效果,为避免重复,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor, DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种数据传输方法,包括:
    非连接态的终端根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
    所述终端在所述目标CGO上发送上行数据。
  2. 根据权利要求1所述的方法,其中,在确定目标SSB所对应的目标CGO之前,还包括:
    所述终端根据基站的配置,确定所述SSB与CGO之间的匹配关系;
    或者,
    终端计算得到所述SSB与CGO之间的匹配关系;
    其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
  3. 根据权利要求2所述的方法,其中,所述确定目标SSB所对应的目标CGO,包括:
    确定所述匹配周期内的各个CGO的序号;
    按照SSB序号与CGO序号之间的匹配关系,确定目标SSB所对应的目标CGO的序号。
  4. 根据权利要求3所述的方法,其中,确定所述匹配周期内的各个CGO的序号,包括:
    按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
    编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
    编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
    编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
  5. 根据权利要求4所述的方法,其中,所述确定所述匹配周期内的各个CGO的序号,还包括:
    针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
  6. 根据权利要求5所述的方法,其中,在确定所述匹配周期内的各个CGO的序号之前,还包括:
    根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
  7. 根据权利要求2所述的方法,其中,所述终端计算得到所述SSB与CGO之间的匹配关系,包括:
    在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
    Figure PCTCN2021133442-appb-100001
    计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
    在所述CGO total不大于所述SSB total的情况下,根据
    Figure PCTCN2021133442-appb-100002
    计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
  8. 根据权利要求2所述的方法,其中,所述终端根据基站的配置,确定所述SSB与CGO之间的匹配关系,包括:
    在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个 SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
    在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
  9. 根据权利要求2所述的方法,其中,在配置授权被配置为重复传输的情况下:
    所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
    或者,
    N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中,所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
  10. 根据权利要求2所述的方法,其中,所述CGO配置在初始BWP以外的BWP上。
  11. 据权利要求2所述的方法,其中,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
  12. 一种数据传输方法,包括:
    基站根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
    所述基站利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
  13. 根据权利要求12所述的方法,其中,
    所述SSB与CGO之间的匹配关系是基站根据配置确定的,或者是基站计算得到的,其中,所述匹配关系在至少一个匹配周期内有效,所述匹配周期是预先配置的或预先约定的。
  14. 根据权利要求12所述的方法,还包括:
    向终端发送配置信令,配置所述SSB与CGO之间的匹配关系。
  15. 根据权利要求13所述的方法,其中,所述确定各个SSB所对应的CGO,包括:
    确定所述匹配周期内的各个CGO的序号;
    按照SSB序号与CGO序号之间的匹配关系,确定各个SSB所对应的CGO的序号。
  16. 根据权利要求15所述的方法,其中,所述确定所述匹配周期内的各个CGO的序号,包括:
    按照以下一种编号规则,确定所述匹配周期内的各个CGO的序号:
    编号规则一:按照先时域再频域的顺序编号,确定所述匹配周期内的各个CGO的序号;
    编号规则二:按照先频域再时域的顺序编号,确定所述匹配周期内的各个CGO的序号;
    编号规则三:在所述匹配周期内的每个时隙中,分别按照先时域再频域的顺序编号,在匹配周期的时隙间按照时间顺序编号;或者,在所述匹配周期内的每个时隙中,分别按照先频域再时域的顺序编号,在匹配周期的时隙间按照时间顺序编号。
  17. 根据权利要求16所述的方法,其中,所述确定所述匹配周期内的各个CGO的序号,还包括:
    针对时域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO的起始OFDM对应的时刻从近到远的顺序进行编号;针对频域重叠但起始OFDM符号不同的CGO的情况,按照每个CGO中的最小PRB序号从小到大的顺序进行编号。
  18. 根据权利要求17所述的方法,其中,在确定所述匹配周期内的各个CGO的序号之前,还包括:
    根据时隙配置,确定每个时隙的CGO是否有效,其中,在所述时隙配置为UL时,所述时隙配置的CGO有效;在所述时隙配置为DL时,所述时隙配置的CGO无效;在所述时隙配置为Flexible时,所述时隙配置的CGO确定为有效或无效。
  19. 根据权利要求13所述的方法,其中,所述SSB与CGO之间的匹配关系,按照以下方式计算得到:
    在所述匹配周期内的CGO的总数量CGO total大于SSB的总数量SSB total的情况下,根据
    Figure PCTCN2021133442-appb-100003
    计算得到K 1的取值;从所述匹配周期中最小序号的CGO开始,每连续K 1个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成K 1组,每个CGO组中包含SSB total个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配;
    在所述CGO total不大于所述SSB total的情况下,根据
    Figure PCTCN2021133442-appb-100004
    计算得到K 2的取值;从最小序号的SSB开始,每K 2个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成K 2组,每个SSB组中包含CGO total个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配。
  20. 根据权利要求13所述的方法,其中,所述SSB与CGO之间的匹配关系,按照以下方式确定:
    在基站配置的SSB与CGO的匹配比例R为大于1的整数时,从最小序号的SSB开始,每R个SSB依次与所述匹配周期内的1个CGO顺序匹配,或者,将所述SSB分成R组,每个SSB组中包含CGO总数个SSB,每个SSB组中的1个SSB依次与所述匹配周期内中的1个CGO顺序匹配;
    在基站配置的SSB与CGO的匹配比例R不大于1,且1/R为整数时,从所述匹配周期中最小序号的CGO开始,每连续1/R个CGO依次与SSB中的1个SSB顺序匹配,或者,将所述匹配周期中的CGO分成1/R组,每个CGO组中包含SSB总数个CGO,每个CGO组中的1个CGO依次与SSB中的1个SSB顺序匹配。
  21. 根据权利要求13所述的方法,其中,在配置授权被配置为重复传输的情况下:
    所述匹配关系中,一个CGO中的M个传输机会TO作为一个重复传输资源repetition bundle,与一个或多个SSB相对应;
    或者,
    N个CGO作为一个repetition bundle与一个或多个SSB相对应,其中, 所述N个CGO均包括有1个TO,所述N小于或等于一个匹配周期内的CGO的最大数量,所述repetition bundle的起始CGO的序号为N的整数倍。
  22. 根据权利要求13所述的方法,其中,所述CGO配置在初始BWP以外的BWP上。
  23. 根据权利要求13所述的方法,其中,在单用户支持多套CG配置的时候,每套CG配置独立设置与SSB的匹配关系,或者,多套CG设置相同的与SSB匹配关系。
  24. 一种终端,包括存储器、收发机和处理器,其中,
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在所述终端处于非连接态的情况下,根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
    在所述目标CGO上发送上行数据。
  25. 一种终端,包括:
    确定单元,用于在所述终端处于非连接态的情况下,根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定目标SSB所对应的目标CGO;
    发送单元,用于在所述目标CGO上发送上行数据。
  26. 一种基站,包括存储器、收发机和处理器,其中,
    所述存储器,用于存储计算机程序;
    所述收发机,用于在所述处理器的控制下收发数据;
    所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    根据同步信号块SSB与配置授权发送机会CGO之间的匹配关系,确定各个SSB所对应的CGO;
    利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
  27. 一种基站,包括:
    确定单元,用于根据同步信号块SSB与配置授权发送机会CGO之间的 匹配关系,确定各个SSB所对应的CGO;
    接收单元,用于利用所述SSB对应的波束,在所述SSB对应的CGO上接收非连接态的终端发送的数据。
  28. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至23任一项所述的方法。
PCT/CN2021/133442 2020-12-11 2021-11-26 数据传输方法及设备 WO2022121704A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/255,126 US20240031956A1 (en) 2020-12-11 2021-11-26 Data transmission method and device
EP21902411.4A EP4262259A1 (en) 2020-12-11 2021-11-26 Data transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011458790.X 2020-12-11
CN202011458790.XA CN114630321B (zh) 2020-12-11 2020-12-11 数据传输方法及设备

Publications (1)

Publication Number Publication Date
WO2022121704A1 true WO2022121704A1 (zh) 2022-06-16

Family

ID=81896112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133442 WO2022121704A1 (zh) 2020-12-11 2021-11-26 数据传输方法及设备

Country Status (4)

Country Link
US (1) US20240031956A1 (zh)
EP (1) EP4262259A1 (zh)
CN (1) CN114630321B (zh)
WO (1) WO2022121704A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769505A (zh) * 2018-07-26 2020-02-07 维沃移动通信有限公司 随机接入方法、终端及网络设备
CN111278160A (zh) * 2019-03-29 2020-06-12 维沃移动通信有限公司 一种映射方法、终端设备及网络侧设备
CN111565471A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种信息传输方法、装置及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116846529A (zh) * 2017-08-07 2023-10-03 Lg电子株式会社 无线通信系统中发送或接收信号的方法和装置及可读介质
CN111148262B (zh) * 2018-11-07 2021-09-24 维沃移动通信有限公司 一种数据传输方法、信息配置方法、终端及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769505A (zh) * 2018-07-26 2020-02-07 维沃移动通信有限公司 随机接入方法、终端及网络设备
CN111565471A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种信息传输方法、装置及设备
CN111278160A (zh) * 2019-03-29 2020-06-12 维沃移动通信有限公司 一种映射方法、终端设备及网络侧设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "CG-based SDT", 3GPP DRAFT; R2-2009057, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942102 *
QUALCOMM INCORPORATED: "Discussion on CG based NR small data transmission", 3GPP DRAFT; R2-2010007, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942750 *

Also Published As

Publication number Publication date
CN114630321A (zh) 2022-06-14
EP4262259A1 (en) 2023-10-18
CN114630321B (zh) 2023-10-13
US20240031956A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US11540309B2 (en) Data transmission method and apparatus
US11006410B2 (en) Method and apparatus for transmitting uplink information
JP7091329B2 (ja) 基準信号の伝送方法及び通信装置
JP7016404B2 (ja) リソース割り当て方法、端末及びネットワークデバイス
EP2710844B1 (en) Method and apparatus for configuring sounding reference signal for segment carrier
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
TW201218827A (en) Csi-rs signaling method and base station
US20130201946A1 (en) Transmission of Reference Signals
TW201242286A (en) Base station device, mobile terminal device, and communication control method
WO2022022357A1 (zh) 波束指示方法、装置、终端及网络侧设备
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
CN111278162A (zh) 一种通信接入的方法和设备
TW201826824A (zh) 上行傳輸方法、終端與網路設備
TW201813353A (zh) 導頻信號的傳輸方法和設備
JP2020502831A (ja) 信号送信方法、端末機器およびネットワーク機器
JP7097890B2 (ja) 情報伝送方法、ネットワーク装置及び端末装置
JP2021508417A (ja) 信号伝送方法、ネットワーク装置と端末装置
WO2022121704A1 (zh) 数据传输方法及设备
US11317419B2 (en) Wireless communication method, terminal device, and network device
JP7313420B2 (ja) データ伝送方法及び装置
TW201804774A (zh) 傳輸數據的方法、網絡設備和終端設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255126

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902411

Country of ref document: EP

Effective date: 20230711