WO2022121564A1 - 压气机静子缘板前缘构型方法和相应的静子缘板 - Google Patents

压气机静子缘板前缘构型方法和相应的静子缘板 Download PDF

Info

Publication number
WO2022121564A1
WO2022121564A1 PCT/CN2021/128418 CN2021128418W WO2022121564A1 WO 2022121564 A1 WO2022121564 A1 WO 2022121564A1 CN 2021128418 W CN2021128418 W CN 2021128418W WO 2022121564 A1 WO2022121564 A1 WO 2022121564A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
edge
leading edge
edge plate
jet
Prior art date
Application number
PCT/CN2021/128418
Other languages
English (en)
French (fr)
Inventor
曹传军
王进春
尹泽勇
李继保
吴帆
张晓诗
翟志龙
姜逸轩
Original Assignee
中国航发上海商用航空发动机制造有限责任公司
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发上海商用航空发动机制造有限责任公司, 中国航发商用航空发动机有限责任公司 filed Critical 中国航发上海商用航空发动机制造有限责任公司
Priority to EP21902271.2A priority Critical patent/EP4257827A1/en
Priority to US18/256,103 priority patent/US20240026894A1/en
Publication of WO2022121564A1 publication Critical patent/WO2022121564A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/322Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the field of compressors in aero-engines, in particular to the configurations of stators and edge plates in axial flow compressors.
  • Axial compressor is a compressor in which the flow direction of the airflow on the meridian plane is basically parallel to the axis of the rotor, and is often used in high-pressure compressors in aero-engines.
  • Axial compressors are generally composed of a series of rotors and stators alternately arranged to provide functions such as gas delivery and compression.
  • a certain axial gap is generally reserved between the rotor and the stator, and then a cavity structure is formed in the root area of the rotor and the stator.
  • a grate structure is generally designed at the root of the stator to prevent leakage loss.
  • a small part of the airflow will still enter the cavity structure through the grate structure, so that the leakage flow will have an impact on the main flow.
  • the present invention provides a method for configuring the leading edge of a compressor stator edge plate and a corresponding stator edge plate.
  • the present invention provides a method for configuring the leading edge of a compressor stator edge plate based on the free jet theory, including: by simplifying the airflow flow at the root of the rotor blade into a free jet flow, according to the flow at the root of the stator blade.
  • Mach number to determine the airflow expansion angle uses the axial spacing between the trailing edge of the adjacent rotor edge plate and the leading edge of the stator edge plate, the airflow expansion angle and the coefficient of deviation to calculate the first end point on the leading edge of the stator edge plate and the trailing edge of the adjacent rotor edge plate Determine the position of the first end point on the leading edge of the stator edge plate based on the radial height difference; determine the intersection of the leading edge of the stator blade and the stator edge plate as the position of the second end point on the leading edge of the stator edge plate ; and determine the profile line between the first end point and the second end point by spline bridging, so that the end of the profile line is tangent to the intersection of the root of the stator blade and the stator edge plate, and the profile The starting end of the line is kept in the same plane as the side wall of the leading edge of the stator edge plate.
  • the present invention provides a compressor stator edge plate having a leading edge configured according to the method described in the first aspect.
  • the present invention provides a compressor stator, comprising: a first jet orifice assembly and a second jet orifice assembly on a side surface respectively disposed on the bottom surface of an edge plate of the stator, the first and second jet orifice assemblies including peripheral A plurality of jet holes spaced apart; a grate structure corresponding to the edge plate is arranged at the bottom of the stator; wherein the second jet hole assembly is arranged to introduce air flow, and the first jet hole assembly is arranged to export air flow, and the first jet hole assembly is arranged to The assembly and the second jet orifice assembly are coupled by chamfering to form an air flow passage.
  • stator edge plate determined by the stator edge plate leading edge configuration method of the present invention can effectively avoid the impact loss of the mainstream through the determination of the leading edge plate shape line.
  • a jet hole assembly is arranged on the stator edge plate, which cooperates with the grate structure at the bottom of the stator, and can introduce high-pressure gas at the trailing edge of the stator blade into the tip of the grate structure to form an aerodynamic wall, effectively reducing leakage flow into the cavity. structure.
  • FIG. 1A is a diagram showing a compressor stator including a stator blade, a stator edge plate, a jet hole assembly, a grate structure in accordance with aspects of the present invention
  • FIG. 1B is an enlarged schematic view of the configuration of the leading edge of the stator edge plate
  • FIG. 2 shows a flow chart of a method for configuring a leading edge of a compressor stator edge plate based on free jet theory according to aspects of the present invention
  • FIG. 3 shows a three-dimensional perspective view of a jet orifice assembly for a stator edge plate in accordance with aspects of the present invention
  • FIG. 4 shows a front plan view of a jet orifice assembly for a stator edge plate in accordance with aspects of the present invention
  • FIG. 5 shows a cross-sectional view of a jet hole assembly for a stator edge plate, taken as section A-A in FIG. 4, in accordance with aspects of the present invention.
  • FIG. 6 is a graph showing a performance comparison of a compressor stator and a conventional type stator provided in accordance with aspects of the present invention.
  • an axial compressor refers to a compressor in which the flow direction of the air flow in the meridional plane is substantially parallel to the rotor axis.
  • the platform refers to the part that extends along the flow path at the root of the blade for the axial flow compressor rotor blade and the cantilevered stator blade to realize the shape of the flow path.
  • Free jet refers to a jet that is not restricted by side walls. In the free jet context, gas is ejected from a nozzle into an infinite space filled with a stationary medium that has the same physical properties as the injected gas stream.
  • FIG. 1A there is shown a diagrammatic representation of a compressor stator 101 including a stator blade 102 , a stator edge plate 103 , a jet hole assembly 104 , a grate structure 105 in accordance with various aspects of the present invention.
  • aspects of the present application are described in the context of an axial compressor.
  • a rotor-stator configuration is shown with rotor 110 on the left and stator 101 on the right.
  • the rotor may include blades 106, rim plates 107, and the stator 101 may similarly include blades 102, rim plates 103, and a bottom provided with a grate structure 105 connected to the bottom of the rotor rim plates.
  • the leading edge configuration of the stator edge plate, the jet hole assembly in the stator edge plate and the grate structure will be respectively described in the detailed description below.
  • FIG. 1B shows an enlarged schematic view of the configuration of the leading edge of the stator edge plate in FIG. 1A .
  • FIG. 2 shows a flowchart of a method 200 for a compressor stator edge plate leading edge configuration method based on free jet theory in accordance with various aspects of the present invention.
  • a leading edge configuration of a stator edge plate according to aspects of the present application will first be described with respect to FIGS. 1A , 1B and 2 .
  • the airflow expansion angle is determined according to the Mach number of the incoming flow at the blade root of the stator by simplifying the airflow flow at the root of the rotor blade as a free jet flow.
  • the airflow expansion angle ⁇ may be determined from the Mach number of the flow at the root of the stator blade (ie, near the hub).
  • the airflow expansion angle ⁇ may be determined based on the following fitting formula (1):
  • M is the Mach number of the flow at the root of the stator blade, and its value ranges from 0.1 to 0.8.
  • the Mach number M is 0.3, and at this time, the airflow expansion angle ⁇ can be determined as 9 degrees.
  • the radial height of the first end point on the leading edge of the stator edge plate and the trailing edge of the adjacent rotor edge plate is calculated using the axial spacing between the trailing edge of the adjacent rotor edge plate and the leading edge of the stator edge plate, the airflow expansion angle and the coefficient of deviation Difference. It can be seen from FIG. 1B that, in order to avoid the axial friction between the rotor and the stator, a certain axial gap is left between the trailing edge of the rotor edge plate and the leading edge of the next row of stator edge plates. In one example, the axial play is measured as d millimeters (mm). When the airflow at the root of the rotor blade passes through this axial gap, the flow tube expands.
  • the flow of airflow through the axial gap is reduced to free jet flow, resulting in a coefficient of deviation ⁇ .
  • This deviation is mainly due to the fact that in the actual cavity flow a small amount of high pressure gas from the subsequent stage will flow into the cavity through the grate structure, so that there is a small difference between the flow and the free jet result.
  • the value range of ⁇ may be between 0.8-1.2.
  • step 210 may be performed according to equation (2):
  • ⁇ y is the radial height difference between the first end point on the leading edge of the stator edge plate and the trailing edge of the adjacent rotor edge plate
  • is the airflow expansion angle determined based on the Mach number of the incoming flow at the root of the stator blade
  • is the deviation coefficient
  • the location of the first endpoint on the leading edge of the stator flange plate is determined based on the calculated radial height difference.
  • the location of the first endpoint determined in step 215 is the location of point B shown in FIG. 1B .
  • step 220 the intersection of the leading edge of the stator blade and the stator edge plate is determined as the position of the second endpoint on the leading edge of the stator edge plate.
  • the location of the second endpoint determined in step 220 is the location of point C shown in Figure IB.
  • the location of the second endpoint may be determined to be centered on the intersection of the stator blade leading edge and the stator edge plate plus some numerical tolerance.
  • the numerical tolerance may be ⁇ 0.3 times the vertical distance between the stator blade root leading edge and the stator blade edge plate side.
  • a profile line between the first end point and the second end point is determined by spline bridging, so that the end of the profile line is tangent to the intersection of the stator blade root and the stator edge plate, and The starting end of the profile line is kept on the same plane as the side wall of the leading edge of the stator edge plate.
  • the starting end of the mold line is the first end point B shown in FIG. 1B
  • the end of the mold line is the second end point point C shown in FIG. 1B
  • the profile line is configured such that the second end point C is the tangent point of the profile line to the intersection of the stator blade root and the stator lip (ie, the upper edge line of the stator lip).
  • the profile line is configured such that the first end point B remains in the same plane as the side wall of the leading edge of the stator lip, so that the first end B has a smooth transition with the lower half of the lip.
  • the sidewalls of the leading edge of the stator lip can be adjusted so that the first end point B has a smooth transition with the lip of the lower half.
  • the leading edge of the stator edge plate determined according to the method 200 shown in FIG. 2 can enable the airflow to enter the next row of stator blades relatively smoothly, thereby effectively avoiding impact loss.
  • FIGS. 1A , 1B, and 3 to 5 show a three-dimensional perspective view of a jet orifice assembly for a stator edge plate in accordance with aspects of the present invention.
  • 4 shows a front plan view of a jet orifice assembly for a stator edge plate in accordance with aspects of the present invention.
  • 5 shows a cross-sectional view of a jet hole assembly for a stator edge plate, taken as section A-A in FIG. 4, in accordance with aspects of the present invention.
  • the stator rim plate includes a first jet hole assembly 301 and a second jet hole assembly 302 respectively disposed on the bottom surface and the side surface of the stator rim plate.
  • the two jet orifice assembly includes a plurality of jet orifices 303 , 304 spaced circumferentially, as shown in FIGS. 3 and 4 .
  • the stator edge plate further includes a grate structure arranged at the bottom of the stator and corresponding to the stator edge plate. In one example, the grate structure includes a plurality of tips.
  • the second orifice assembly 302 is arranged to introduce the air flow
  • the first orifice assembly 301 is arranged to export the air flow
  • the first orifice assembly 301 and the second orifice assembly 302 are coupled by chamfering to form an air flow path.
  • the cross-section of the first jet orifice assembly 301 may be the same as or different from the cross-section of the second jet orifice assembly 302 .
  • the cross section of the first jet hole assembly 301 is smaller than the cross section of the second jet hole assembly 302, so that the airflow path formed by the first jet hole assembly 301 and the second jet hole assembly 302 is a constricted flow path, As indicated by 501 in the A-A cross-sectional view shown in FIG. 5 .
  • the constricted flow path can effectively increase the jet velocity.
  • the direction of the jet holes 303 of the first jet hole assembly 301 may range from a direction perpendicular to the grate structure to a direction opposite to the direction of the incoming air flow (ie, the opposite direction of the air flow).
  • the air flow path formed by the first jet hole assembly 301 and the second jet hole assembly 302 can effectively reduce the entry of high-pressure gas into the cavity structure through the grate structure, because the air flow path formed by the jet hole assembly can The high-pressure gas at the trailing edge of the blade is introduced into the tip of the intermediate grate structure, thereby forming an aerodynamic wall there.
  • the aerodynamic wall surface can effectively block the high-pressure gas at the trailing edge of the stator blade from further flowing into the cavity structure through the grate structure, so as to achieve the effect of reducing the leakage gas flow.
  • the direction of the jet holes 303 of the first jet hole assembly 301 is opposite to the airflow direction.
  • the efficiency of introducing the high-pressure gas at the trailing edge of the stator blade into the blade tip of the intermediate grate structure 105 to form an aerodynamic wall surface will be further improved, so that the effect of suppressing the root leakage of the blade will be more obvious, as shown in Fig.
  • the A-A cross-sectional view shown in 5 is shown.
  • the second jet orifice assembly 302 is arranged parallel to the bottom surface of the rim plate.
  • the stator edge plate leading edge bottom is arranged in a stepped shape to accommodate the airflow trapped vortex.
  • the stepped bottom of the leading edge of the stator edge plate can accommodate the airflow trapped vortex formed here at the lower part of the step, thereby further reducing the leakage amount and reducing the influence of the leakage airflow on the main flow.
  • the shape of the jet holes 303, 304 includes circular, square, rectangular, or any combination thereof.
  • the stator edge plate including the jet hole assembly and the grate structure 105 further includes a leading edge configured according to the method of FIG. 2, as shown in FIGS. 1A and 1B.
  • the stator edge plate includes any combination of one or more of the following: the leading edge of the profile line is determined according to the configuration method described in FIG.
  • the assembly 301 and the second jet hole assembly 302 form the air flow passage and the grate structure, as well as the stepped edge plate leading edge bottom.
  • the stator edge plate includes a leading edge whose profile is determined according to the configuration method described in FIG. 2 , a first jet hole assembly 301 and a second jet hole assembly 302 respectively disposed on the bottom surface and the side surface of the edge plate.
  • stator edge plate Although aspects of the present invention are described above in the context of a stator edge plate, those skilled in the art will appreciate that the above-described method of leading edge configuration of a stator edge plate may be applied to a leading edge configuration of a rotor edge plate without depart from the spirit and scope of this application.
  • FIG. 6 is a graph showing a performance comparison of a compressor stator lip plate and a conventional lip plate provided in accordance with aspects of the present invention.
  • a single-channel three-dimensional numerical simulation is carried out for a three-row compressor blade, and the geometry of the cavity is not simulated in the numerical simulation.
  • the connection between the trailing edge point and point B of the front row blade edge plate is used as a solid wall boundary condition for simulation.
  • the Step solution corresponds to a traditional edge plate, that is, the front edge configuration of the stepped edge plate
  • the Chamfer solution corresponds to the edge plate configuration provided according to various aspects of the present invention.
  • Figure 6(a) shows a comparison diagram of the efficiency of the edge plate configured without adding the method according to the present invention and the edge plate configured by the method of the present invention, wherein the abscissa is the flow rate and the ordinate is the efficiency.
  • Figure 6 (b) shows a comparison chart of the pressure ratio between the edge plate configured according to the method of the present invention and the edge plate configured by the method of the present invention, wherein the abscissa is the flow rate, and the ordinate is the normalization pressure ratio.
  • the numerical simulation results show that the use of the traditional flange plate will form a larger radial positive angle of attack when the airflow passes through the root of the next row of blades, which will lead to the deterioration of the flow conditions near the blade root angle area, such as As shown in (c) in FIG. 6 , the pressure ratio and efficiency decrease as shown in (a) and (b) in FIG. 6 . It can be seen from FIG.
  • the efficiency with the configuration provided according to various aspects of the present invention is substantially improved by 2% and above.
  • the effect of using the configuration provided according to various aspects of the present invention is more significant, and the airflow can be smoothly flowed into the lower row vane channel, and the flow loss can be reduced, as shown in (d) of FIG. 6 . , and can increase the efficiency by about 2.5 percentage points at most.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明涉及压气机静子缘板前缘构型方法和相应的静子缘板。该构型方法包括:通过将转子叶片根部的气流流动简化为自由射流流动,根据静子的叶片根部处来流的马赫数来确定气流扩张角度;利用毗邻转子缘板尾缘与静子缘板前缘之间的轴向间距、气流扩张角度和偏差系数来计算静子缘板前缘上的第一端点与毗邻转子缘板尾缘的径向高度差;基于该径向高度差来确定静子缘板前缘上的第一端点的位置;将静子叶片前缘与静子缘板的交点确定为静子缘板前缘上的第二端点的位置;通过以样条曲线桥接的方式来确定第一端点与第二端点之间的型线,以使得该型线的末端与静子叶片根部和静子缘板的交线相切,并且该型线的起始端与静子缘板前缘侧壁保持在同一平面上。

Description

压气机静子缘板前缘构型方法和相应的静子缘板 技术领域
本发明涉及航空发动机中的压气机领域,尤其涉及轴流压气机中的静子及其缘板的构型。
背景技术
轴流压气机(axial compressor)是一种气流在子午面的流动方向基本平行于转子轴线的压气机,常用于航空发动机中的高压压气机。轴流压气机一般由一系列转子和静子交替排列构成,以提供气体输送、压缩等功能。
在轴流压气机中,为了避免转子和静子之间的轴向碰磨,一般会在转子与静子之间预留一定的轴向间隙,进而在转子和静子的根部区域形成容腔结构。同时,一般会在静子的根部设计有篦齿结构以用于防止泄露损失。但是在实际情况中,仍然会有少部分的气流通过篦齿结构进入到容腔结构中,使得泄漏流对主流产生影响。
除此之外,在结构形式方面不合理的缘板设计会使得上一排叶片根部的气体撞击到下一排叶片的缘板,进而造成流动损失,亦可称为撞击损失。同时叶片根部的泄漏流会进一步导致下一排叶片的根部的流动损失增加。泄漏流和流动损失两者极大地影响了压气机的效率水平。
因此,需要一种能够减小叶片根部的泄露流同时减小主流在下一排叶片缘板处的撞击损失的缘板。
发明内容
本发明提供了一种压气机静子缘板前缘构型方法和相应的静子缘板。
第一方面,本发明提供了一种基于自由射流理论的压气机静子缘板前缘构型方法,包括:通过将转子叶片根部的气流流动简化为自由射流流动,根据静子的叶片根部处来流的马赫数来确定气流扩张角度;利用毗邻转子缘板尾缘与静子缘板前缘之间的轴向间距、气流扩张角度和偏差系数来计算静子缘板前缘上的第一端点与毗邻转子缘板尾缘的径向高度差;基于径向高度差来确定静子缘板前缘上 的第一端点的位置;将静子叶片前缘与静子缘板的交点确定为静子缘板前缘上的第二端点的位置;以及通过以样条曲线桥接的方式来确定第一端点与第二端点之间的型线,以使得该型线的末端与静子叶片根部和静子缘板的交线相切,并且该型线的起始端与静子缘板前缘侧壁保持在同一平面上。
第二方面,本发明提供了一种具有根据第一方面所描述的方法构型的前缘的压气机静子缘板。
第三方面,本发明提供了一种压气机静子,包括:分别设置于静子的缘板的底面的第一射流孔组件和侧面的第二射流孔组件,第一和第二射流孔组件包括周向间隔的多个射流孔;布置在静子底部与缘板对应的篦齿结构;其中第二射流孔组件被布置成引入气流,而第一射流孔组件被布置成导出气流,并且第一射流孔组件与第二射流孔组件通过倒角方式被耦合以形成气流通路。
与现有技术相比,通过本发明的静子缘板前缘构型方法确定的静子缘板通过对前缘缘板型线的确定能够有效避免主流的撞击损失。同时在静子缘板设置有射流孔组件,与静子底部的篦齿结构相配合,能够将静子叶片尾缘处的高压气体引入篦齿结构的叶尖,形成气动壁面,有效减少泄漏流进入容腔结构。
附图描述
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1A是示出了根据本发明的各方面的包括静子叶片、静子缘板、射流孔组件、篦齿结构的压气机静子图示;
图1B是静子缘板前缘构型的放大示意图;
图2示出了根据本发明的各方面的基于自由射流理论的压气机静子缘板前缘构型方法的流程图;
图3示出了根据本发明的各方面的用于静子缘板的射流孔组件的三维立体示图;
图4示出了根据本发明的各方面的用于静子缘板的射流孔组件的正向平面示图;
图5示出了根据本发明的各方面的用于静子缘板的射流孔组件的以图4中的 A-A为截面的横截面视图;以及
图6示出了根据本发明的各方面提供的压气机静子与传统型静子的性能比较的示图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图对本申请进一步详细说明。在以下详细描述中,阐述了许多具体细节以提供对所描述的示例性实施例的透彻理解。然而,对于本领域技术人员显而易见的是,可以在没有这些具体细节中的一些或全部的情况下实践所描述的实施例。在其它示例性实施例中,没有详细描述公知的结构,以避免不必要地模糊本公开的概念。应当理解,本文所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。同时,在不冲突的情况下,实施例所描述的各个方面可以任意组合。
应当注意,在本申请中,轴流压气机(axial compressor)指的是气流在子午面的流动方向基本平行于转子轴线的压气机。缘板(platform)指的是对于轴流压缩机转子叶片以及悬臂式静子叶片而言,在叶片根部为实现流道形状而沿着流道延伸的部分。自由射流(free jet)指的是不受边壁限制的射流。在自由射流上下文中,气体从喷口喷射到一个无限大的空间内,该空间充满了静止的、且与喷入气流物理特性相同的介质。
应当领会,在本申请中使用的任何术语或词汇除非另有说明之外均表示其在本领域、具体地在航空发动机压气机领域中的惯常含义。
为了更好地理解本申请,下面结合附图和具体实施例来解说本申请的各个方面。
参考图1A,图1A示出了根据本发明的各方面的包括静子叶片102、静子缘板103、射流孔组件104、篦齿结构105的压气机静子101图示。在一些示例中,在轴流压气机的上下文中描述本申请的各方面。在一些示例中,如图1A所示,示出了转子-静子结构,其中左侧为转子110,右侧为静子101。转子可包括叶片106、缘板107,而静子101可类似地包括叶片102、缘板103以及与转子缘板底部相连接的、设置有篦齿结构105的底部。在下文详细描述中将分别对静子缘板的前缘构型、静子缘板中的射流孔组件和篦齿结构进行描述。
如图1B所示,图1B的虚线圆形示出了图1A中的静子缘板前缘构型的放大示意图。图2示出了根据本发明的各方面的基于自由射流理论的压气机静子缘板前缘构型方法200的流程图。首先将根据图1A、1B和图2来描述根据本申请的各方面的静子缘板的前缘构型。
在步骤205,通过将转子叶片根部的气流流动简化为自由射流流动,根据静子的叶片根部处来流的马赫数来确定气流扩张角度。在一个示例中,气流扩张角度α可以根据静子叶片根部处(即靠近轮毂处)来流的马赫数来确定。在一个示例中,气流扩张角度α可以基于以下拟合公式(1)来确定:
α=-280.2M 5+615.04M 4-471.35M 3+137.19M 2-0.0831M+4.9801    (1)
其中M为静子叶片根部处来流的马赫数,取值范围为0.1-0.8。在一个优选示例中,马赫数M取0.3,此时气流扩张角度α可以被确定为9度。
在步骤210,利用毗邻转子缘板尾缘与静子缘板前缘之间的轴向间距、气流扩张角度和偏差系数来计算静子缘板前缘上的第一端点与毗邻转子缘板尾缘的径向高度差。从图1B中可以看到,为了避免转子和静子之间的轴向碰磨,在转子缘板尾缘和下一排静子缘板前缘之间留有一定的轴向间隙。在一个示例中,该轴向间隙被测得为d毫米(mm)。转子叶片根部的气流经过该轴向间隙时,流管会扩张。在一个示例中,将气流流过该轴向间隙时的流动简化为自由射流流动,从而产生一偏差系数δ。该偏差主要是由于在实际的空腔流动中后面级的少量高压气体会通过篦齿结构流入该空腔,从而使得该流动与自由射流结果之间存在少量差异而产生的。在一个示例中,δ的取值范围可以在0.8-1.2之间。
在一个示例中,步骤210可以根据式(2)来执行:
Δy=d*tanα*δ      (2)
其中Δy为静子缘板前缘上的第一端点与毗邻转子缘板尾缘的径向高度差,α为基于静子的叶片根部处来流的马赫数所确定的气流扩张角度,δ为偏差系数。
在步骤215,基于计算得出的径向高度差来确定静子缘板前缘上的第一端点的位置。在一个示例中,步骤215所确定的第一端点的位置是图1B中示出的B点的位置。
在步骤220,将静子叶片前缘与静子缘板的交点确定为静子缘板前缘上的第二端点的位置。在一个示例中,步骤220所确定的第二端点的位置是图1B中示 出的C点的位置。在一个示例中,第二端点的位置可以被确定为以静子叶片前缘与静子缘板的交点为中心加上某一数值容差。在一个示例中,该数值容差可以是静子叶片根部前缘和静子叶片缘板侧面之间的垂直距离的±0.3倍。
在步骤225,通过以样条曲线桥接的方式来确定第一端点与第二端点之间的型线,以使得该型线的末端与静子叶片根部和静子缘板的交线相切,并且该型线的起始端与静子缘板前缘侧壁保持在同一平面上。在一个示例中,该型线的起始端为图1B中示出的第一端点B,而该型线的末端为图1B中示出的第二端点C点。在一个示例中,该型线被构型成使得第二端点C是该型线与静子叶片根部和静子缘板的交线(即静子缘板的上边缘线)的切点。在一个示例中,该型线被构型成使得第一端点B与静子缘板前缘侧壁保持在同一平面上,从而使得第一端点B与下半部分的缘板光滑过渡。在一个示例中,可以调整静子缘板前缘侧壁以使得第一端点B与下半部分的缘板光滑过渡。
根据图2所示的方法200所确定的静子缘板前缘能够使气流相对平滑地进入下一排静叶,从而有效地避免撞击损失。
接着将根据图1A、图1B、图3至图5来描述根据本申请的各方面的包括射流孔组件的静子缘板。图3示出了根据本发明的各方面的用于静子缘板的射流孔组件的三维立体示图。图4示出了根据本发明的各方面的用于静子缘板的射流孔组件的正向平面示图。图5示出了根据本发明的各方面的用于静子缘板的射流孔组件的以图4中的A-A为截面的横截面视图。
如图1A和1B所示,根据本发明的各方面的静子缘板包括分别设置于静子的缘板的底面与侧面的第一射流孔组件301和第二射流孔组件302,该第一和第二射流孔组件包括周向间隔的多个射流孔303、304,如图3和图4所示。该静子缘板进一步包括布置在静子底部与静子缘板对应的篦齿结构。在一个示例中,篦齿结构包括多个叶尖。在一个示例中,第二射流孔组件302被布置成引入气流,而第一射流孔组件301被布置成导出气流,并且第一射流孔组件301与第二射流孔组件302通过倒角方式被耦合以形成气流通路。
在一个示例中,第一射流孔组件301的横截面可以与第二射流孔组件302的横截面相同或不同。在一个优选示例中,第一射流孔组件301的横截面小于第二射流孔组件302的横截面,从而由第一射流孔组件301与第二射流孔组件302形 成的气流通路是收缩流路,如图5中所示出的A-A横截面示图中的501所指示的。在该优选示例中,呈收缩状的流路能够有效提升射流速度。
在一个示例中,第一射流孔组件301的射流孔303方向的范围可包括从垂直于篦齿结构的方向到与气流来流的方向相反的方向(即逆气流方向)。在一个示例中,第一射流孔组件301与第二射流孔组件302所形成的气流通路能够有效减小高压气体通过篦齿结构进入容腔结构,因为射流孔组件所形成的气流通路能够将静子叶片尾缘处的高压气体引入中间篦齿结构的叶尖,从而在此形成气动壁面。该气动壁面能够有效地阻塞静子叶片尾缘处的高压气体通过篦齿结构进一步流入容腔结构,从而达到减小泄漏气流量的效果。在一个优选示例中,第一射流孔组件301的射流孔303方向为逆气流方向。在该优选示例中,将静子叶片尾缘处的高压气体引入中间篦齿结构105的叶尖从而在此形成气动壁面的效率会进一步提升,从而抑制叶片根部泄露的效果将更为明显,如图5中所示出的A-A横截面示图所示。
在一个示例中,第二射流孔组件302被布置成平行于缘板的底面。在一个示例中,静子缘板前缘底部被布置成台阶状以容纳气流驻涡。该台阶状的静子缘板前缘底部能够在该台阶下部容纳在此形成的气流驻涡,从而进一步减小泄漏量,并且能够减少泄漏气流对主流产生的影响。在一个示例中,射流孔303、304的形状包括圆形、正方形、矩形或其任何组合。在一个示例中,包括射流孔组件和篦齿结构105的静子缘板进一步包括根据图2的方法构型的前缘,如图1A和1B中所示。在一个示例中,该静子缘板包括以下一项或多项的任意组合:根据图2所描述的构型方法确定型线的前缘、由分别设置于缘板底面与侧面的第一射流孔组件301和第二射流孔组件302形成的气流通路和篦齿结构、以及台阶状的缘板前缘底部。在一个优选示例中,该静子缘板包括根据图2所描述的构型方法确定型线的前缘、由分别设置于缘板底面与侧面的第一射流孔组件301和第二射流孔组件302形成的气流通路和篦齿结构、以及台阶状的缘板前缘底部中的每一者。
尽管上文是在静子缘板的上下文中来描述本发明的各方面的,但是本领域技术人员应当理解上述静子缘板的前缘构型方法可适用于转子缘板的前缘构型而不背离本申请的精神和范围。
接着,参考图6来描述根据本申请的各方面的静子缘板与传统型缘板的性能 对比。图6示出了根据本发明的各方面提供的压气机静子缘板与传统型缘板的性能比较的示图。
在一个示例中,针对某个三排压气机叶片,开展单通道的三维数值模拟,数值模拟中未对容腔的几何进行模拟,利用上式(2)确定B点(δ取1.1)位置后,将前排叶片缘板的尾缘点和B点连接作为固壁边界条件进行模拟。如图6所示,Step方案对应的是传统型缘板,即台阶型缘板前缘构型,Chamfer方案对应的是根据本发明的各方面提供的缘板构型。图6中(a)给出了未添加根据本发明的方法构型的缘板和利用本发明的方法构型的缘板的效率对比图,其中横坐标是流量,纵坐标是效率。图6中(b)给出了未添加根据本发明的方法构型的缘板和利用本发明的方法构型的缘板的压比对比图,其中横坐标是流量,纵坐标是归一化压比。从图6中可以看到,数值模拟结果显示,利用传统型缘板在气流经过下一排叶片的根部时会形成较大的径向正攻角,进而导致叶根角区附近流动状况恶化,如图6中的(c)所示,压比和效率下降,如图6中的(a)和(b)所示。从图6中可以看到,当无量纲流量小于1时,利用根据本发明的各方面提供的构型的效率基本上都提升了2%及以上。在低流量的工况下,利用根据本发明的各方面提供的构型的效果更为显著,可以使气流顺畅流入下排叶片通道,减小流动损失,如图6中的(d)所示,且最多可使效率提升约2.5个百分点。
应当注意,上述方法描述了可能的实现,并且各操作和步骤可被重新安排或以其他方式被修改且其他实现也是可能的。此外,来自两种或更多种方法的各方面可被组合。
如本文(包括权利要求中)所使用的,在项目列举(例如,以附有诸如“中的至少一个”或“中的一个或多个”之类的措辞的项目列举)中使用的“或”指示包含性列举,以使得例如A、B或C中的至少一个的列举意指A或B或C或AB或AC或BC或ABC(即,A和B和C)。同样,如本文所使用的,短语“基于”不应被解读为引述封闭条件集。例如,被描述为基于条件“A”的示例性步骤可基于条件A和条件B两者而不脱离本公开的范围。换言之,如本文所使用的,短语“基于”应当以与短语“至少部分地基于”相同的方式来解读。
在附图中,类似组件或特征可具有相同的附图标记。此外,相同类型的各个组件可通过在附图标记后跟随短划线以及在类似组件之间进行区分的第二标记来 加以区分。如果在说明书中仅使用第一附图标记,则该描述可应用于具有相同的第一附图标记的类似组件中的任何一个组件而不论第二附图标记、或其他后续附图标记如何。
本文结合附图阐述的说明描述了示例配置而不代表可被实现或者落在权利要求的范围内的所有示例。本文所使用的术语“示例性”意指“用作示例、实例或解说”,而并不意指“优于”或“胜过其他示例”。本详细描述包括具体细节以提供对所描述的技术的理解。然而,可在没有这些具体细节的情况下实践这些技术。在一些实例中,众所周知的结构和设备以框图形式示出以避免模糊所描述的示例的概念。
提供本文中的描述是为了使得本领域技术人员能够制作或使用本公开。对本公开的各种修改对于本领域技术人员将是显而易见的,并且本文中所定义的普适原理可被应用于其他变形而不会脱离本公开的范围。由此,本公开并非被限定于本文中所描述的示例和设计,而是应被授予与本文所公开的原理和新颖特征相一致的最广范围。

Claims (10)

  1. 一种基于自由射流理论的压气机静子缘板前缘构型方法,包括:
    通过将转子叶片根部的气流流动简化为自由射流流动,根据所述静子的叶片根部处来流的马赫数来确定所述转子叶片根部的气流流经毗邻转子缘板尾缘与静子缘板前缘之间的轴向间距时产生的气流扩张角度;
    利用毗邻转子缘板尾缘与静子缘板前缘之间的轴向间距、所述气流扩张角度和偏差系数来计算所述静子缘板前缘上的第一端点与毗邻转子缘板尾缘的径向高度差,所述偏差系数通过将气流流经所述轴向间距时的流动简化为自由射流流动而产生;
    基于所述径向高度差来确定所述静子缘板前缘上的第一端点的位置;
    将静子叶片前缘与静子缘板的交点确定为所述静子缘板前缘上的第二端点的位置;以及
    通过以样条曲线桥接的方式来确定第一端点与第二端点之间的型线,以使得所述型线的末端与静子叶片根部和静子缘板的交线相切,并且所述型线的起始端与所述静子缘板前缘侧壁保持在同一平面上。
  2. 如权利要求1所述的方法,其特征在于,所述气流扩张角度α根据所述静子叶片根部处来流的马赫数基于下式来确定:
    α=-280.2M 5+615.04M 4-471.35M 3+137.19M 2-0.0831M+4.9801
    其中M为所述静子叶片根部处来流的马赫数,M的取值范围为0.1至0.8。
  3. 如权利要求2所述的方法,其特征在于,所述径向高度差通过下式来计算:
    Δy=d*tanα*δ
    其中d为测得的毗邻转子缘板尾缘与静子缘板前缘之间的轴向间距,α为气流扩张角度,δ为偏差系数,所述偏差系数δ的取值范围为0.8至1.2。
  4. 一种具有如权利要求1至3中任一项所述的方法构型的前缘的压气机静子缘板。
  5. 一种具有如权利要求4所述的压气机静子缘板的压气机静子,包括:分别设置于所述静子的缘板的底面的第一射流孔组件和侧面的第二射流孔组件,所述第一和第二射流孔组件包括周向间隔的多个射流孔;
    布置在所述静子底部与所述缘板对应的篦齿结构;
    其中所述第二射流孔组件被布置成引入气流,而所述第一射流孔组件被布置成导出气流,并且所述第一射流孔组件与所述第二射流孔组件通过倒角方式被耦合以形成气流通路。
  6. 如权利要求5所述的压气机静子,其特征在于,所述第一射流孔组件的横截面小于所述第二射流孔组件的横截面,从而使得形成的气流通路是收缩流路。
  7. 如权利要求5所述的压气机静子,其特征在于,所述第一射流孔组件的射流孔方向的范围包括从垂直于所述篦齿结构的方向到与气流来流方向相反的方向。
  8. 如权利要求5所述的压气机静子,其特征在于,所述第二射流孔组件被布置成平行于所述缘板的底面。
  9. 如权利要求5所述的压气机静子,其特征在于,所述静子缘板前缘底部被布置成台阶状以容纳气流驻涡。
  10. 如权利要求5所述的压气机静子,其特征在于,所述射流孔的形状包括圆形、正方形、矩形或其任何组合。
PCT/CN2021/128418 2020-12-07 2021-11-03 压气机静子缘板前缘构型方法和相应的静子缘板 WO2022121564A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21902271.2A EP4257827A1 (en) 2020-12-07 2021-11-03 Method for configuring leading edge of stator platform of compressor, and corresponding stator platform
US18/256,103 US20240026894A1 (en) 2020-12-07 2021-11-03 A method for configuring a leading edge of a compressor stator platform and the corresponding stator platform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011413883.0 2020-12-07
CN202011413883.0A CN112211853B (zh) 2020-12-07 2020-12-07 压气机静子缘板前缘构型方法和相应的静子缘板

Publications (1)

Publication Number Publication Date
WO2022121564A1 true WO2022121564A1 (zh) 2022-06-16

Family

ID=74068125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128418 WO2022121564A1 (zh) 2020-12-07 2021-11-03 压气机静子缘板前缘构型方法和相应的静子缘板

Country Status (4)

Country Link
US (1) US20240026894A1 (zh)
EP (1) EP4257827A1 (zh)
CN (1) CN112211853B (zh)
WO (1) WO2022121564A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235404A (zh) * 2022-09-22 2022-10-25 中国航发燃气轮机有限公司 一种重型燃气轮机转静子间隙修正方法
CN116150893A (zh) * 2023-04-19 2023-05-23 北京航空航天大学 一种航空发动机篦齿封严机构设计方法及篦齿封严机构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112211853B (zh) * 2020-12-07 2021-02-12 中国航发上海商用航空发动机制造有限责任公司 压气机静子缘板前缘构型方法和相应的静子缘板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009696B3 (de) * 2004-02-27 2005-08-18 Honda Motor Co., Ltd. Turbinen-Flügelprofil für Axial-Turbine und Turbinenschaufel für Axial-Turbine
US20080131271A1 (en) * 2006-11-30 2008-06-05 General Electric Company Advanced booster stator vane
US20090317232A1 (en) * 2008-06-23 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Blade shroud with aperture
US20130315738A1 (en) * 2011-02-10 2013-11-28 Snecma Airfoil and platform assembly for supersonic flow
CN105934562A (zh) * 2013-11-26 2016-09-07 通用电气公司 转子泄放组件
CN106979177A (zh) * 2016-01-18 2017-07-25 通用电气公司 涡轮压缩机导叶
CN109209995A (zh) * 2017-06-30 2019-01-15 中国航发商用航空发动机有限责任公司 轴流压气机
CN112211853A (zh) * 2020-12-07 2021-01-12 中国航发上海商用航空发动机制造有限责任公司 压气机静子缘板前缘构型方法和相应的静子缘板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960604B1 (fr) * 2010-05-26 2013-09-20 Snecma Ensemble a aubes de compresseur de turbomachine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009696B3 (de) * 2004-02-27 2005-08-18 Honda Motor Co., Ltd. Turbinen-Flügelprofil für Axial-Turbine und Turbinenschaufel für Axial-Turbine
US20080131271A1 (en) * 2006-11-30 2008-06-05 General Electric Company Advanced booster stator vane
US20090317232A1 (en) * 2008-06-23 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Blade shroud with aperture
US20130315738A1 (en) * 2011-02-10 2013-11-28 Snecma Airfoil and platform assembly for supersonic flow
CN105934562A (zh) * 2013-11-26 2016-09-07 通用电气公司 转子泄放组件
CN106979177A (zh) * 2016-01-18 2017-07-25 通用电气公司 涡轮压缩机导叶
CN109209995A (zh) * 2017-06-30 2019-01-15 中国航发商用航空发动机有限责任公司 轴流压气机
CN112211853A (zh) * 2020-12-07 2021-01-12 中国航发上海商用航空发动机制造有限责任公司 压气机静子缘板前缘构型方法和相应的静子缘板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235404A (zh) * 2022-09-22 2022-10-25 中国航发燃气轮机有限公司 一种重型燃气轮机转静子间隙修正方法
CN115235404B (zh) * 2022-09-22 2022-12-06 中国航发燃气轮机有限公司 一种重型燃气轮机转静子间隙修正方法
CN116150893A (zh) * 2023-04-19 2023-05-23 北京航空航天大学 一种航空发动机篦齿封严机构设计方法及篦齿封严机构
CN116150893B (zh) * 2023-04-19 2023-06-16 北京航空航天大学 一种航空发动机篦齿封严机构设计方法及篦齿封严机构

Also Published As

Publication number Publication date
CN112211853B (zh) 2021-02-12
EP4257827A1 (en) 2023-10-11
CN112211853A (zh) 2021-01-12
US20240026894A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2022121564A1 (zh) 压气机静子缘板前缘构型方法和相应的静子缘板
US9593584B2 (en) Turbine rotor blade of a gas turbine
US9605545B2 (en) Gas turbine blade with tip sections offset towards the pressure side and with cooling channels
JP4184323B2 (ja) ガスタービンエンジンのタービン用の中空回転翼
CN107313860B (zh) 一种用于预旋冷却系统的叶型接受孔结构
US9394794B2 (en) Fluid-flow machine—blade with hybrid profile configuration
US9140129B2 (en) Turbomachine with axial compression or expansion
KR20170015175A (ko) 축류 압축기, 그것을 구비한 가스 터빈 및 축류 압축기의 정익
US10012087B2 (en) Gas turbine including a contoured end wall section of a rotor blade
US10082031B2 (en) Rotor of a turbine of a gas turbine with improved cooling air routing
CN104196574B (zh) 一种燃气涡轮冷却叶片
US20180258774A1 (en) Tip leakage flow directionality control
EP2518269B1 (en) Stator vane assembly for a gas turbine
JP6100758B2 (ja) ガスタービンディフューザ吹き込み法および対応するディフューザ
US20140186190A1 (en) Tip leakage flow directionality control
CN113153447B (zh) 一种强化涡轮静叶端壁泄漏流冷却的预旋结构
CN109209995B (zh) 轴流压气机
Cheng et al. Effect of film-hole configuration on film-cooling effectiveness of squealer tips
CN104220758A (zh) 包括具有优化的上游形状的腔体的压缩机壳体
CN115749969A (zh) 一种前缘自引气和叶顶自适应喷气的转子叶片
CN113153446B (zh) 一种涡轮导向器及具有其的大膨胀比向心涡轮
US8506241B1 (en) Turbine blade with cooling and tip sealing
US20130224019A1 (en) Turbine cooling system and method
CN109424368B (zh) 涡轮叶片
US11952913B2 (en) Turbine blade with improved swirl cooling performance at leading edge and engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902271

Country of ref document: EP

Effective date: 20230707