WO2022121562A1 - Devices and methods for temperature measurment - Google Patents

Devices and methods for temperature measurment Download PDF

Info

Publication number
WO2022121562A1
WO2022121562A1 PCT/CN2021/128370 CN2021128370W WO2022121562A1 WO 2022121562 A1 WO2022121562 A1 WO 2022121562A1 CN 2021128370 W CN2021128370 W CN 2021128370W WO 2022121562 A1 WO2022121562 A1 WO 2022121562A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
blackbody
processor
gray value
calibration
Prior art date
Application number
PCT/CN2021/128370
Other languages
French (fr)
Inventor
Xiaonan WANG
Lingrui KONG
Fei Xue
Original Assignee
Zhejiang Dahua Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Dahua Technology Co., Ltd. filed Critical Zhejiang Dahua Technology Co., Ltd.
Priority to EP21902269.6A priority Critical patent/EP4189342A4/en
Publication of WO2022121562A1 publication Critical patent/WO2022121562A1/en
Priority to US18/176,436 priority patent/US20230204429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/047Mobile mounting; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present disclosure generally relates to temperature measurement field, and in particular, to methods and devices for temperature measurement.
  • an infrared thermal imaging device is used in various industries. Using a non-contact infrared thermal imaging device to measure the temperature of a human body has an important impact in the fields of medical treatment, epidemic prevention, national defense, etc.
  • the infrared thermal imaging device may measure the temperature of an object by using a detector to detect an infrared signal generated by the thermal radiation of the subject, converting the infrared signal into an image, and display the temperature value through calculation. Therefore, the temperature measurement using the infrared thermal imaging device is greatly affected by the ambient temperature and the temperature of the infrared thermal imaging device.
  • a device for measuring a temperature includes: a blackbody configured to radiate a specified temperature, an infrared thermal imaging camera configured to measure a temperature of a target surface of the blackbody and a temperature of an object and at least one processor configured to calibrate the temperature of the object based on the specified temperature and the temperature of the target surface.
  • FIG. 1 is a schematic diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure
  • FIG. 2A is a schematic diagram illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure
  • FIG. 2B is a front view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure
  • FIG. 2C is a vertical view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure.
  • FIG. 2D is a right-side view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure
  • FIG. 3 is a flowchart illustrating an exemplary process for measuring the temperature according to some embodiments of the present disclosure
  • FIGs. 4A-B are schematic diagrams of moving a black body according to some embodiments of the present disclosure.
  • FIG. 5 is a flowchart illustrating an exemplary process for training a calibration model according to some embodiments of the present disclosure
  • FIG. 6 is a block diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure.
  • FIGs. 7A-C are schematic diagrams illustrating exemplary relationships between a reference temperature and a gray value difference according to some embodiments of the present disclosure.
  • the flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments in the present disclosure. It is to be expressly understood, the operations of the flowchart may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
  • FIG. 1 is a schematic diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure.
  • the temperature measurement system 100 may include a server 110, a network 120, a device for temperature measurement 130 (also referred to as a temperature measurement device) , one or more objects140, and a storage device 150.
  • the temperature measurement system 100 may provide a plurality of services.
  • Exemplary services may include a temperature measurement service, a temperature calibration service, etc.
  • the server 110 may be a single server or a server group.
  • the server group may be centralized, or distributed (e.g., the server 110 may be a distributed system) .
  • the server 110 may be local or remote.
  • the server 110 may access information and/or data stored in the device for temperature measurement 130, and/or the storage device 150 via the network 120.
  • the server 110 may be directly connected to the device for temperature measurement 130, and/or the storage device 150 to access stored information and/or data.
  • the server 110 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the server 110 may include a processing device 112.
  • the processing device 112 may process information and/or data related to temperature measurement to perform one or more functions described in the present disclosure.
  • the processing device 112 may measure the temperature of an object (e.g., a human body) .
  • the processing device 112 may calibrate the temperature of the object to obtain a target temperature of the object.
  • the processing device 112 may include one or more processing devices (e.g., single-core processing device (s) or multi-core processor (s) ) .
  • the processing device 112 may include a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , an application-specific instruction-set processor (ASIP) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof.
  • the processing device 112 may be integrated into the device for temperature measurement 130.
  • the network 120 may facilitate exchange of information and/or data.
  • one or more components of the temperature measurement system 100 e.g., the server 110, the device for temperature measurement 130, and the storage device 150
  • the server 110 may receive a measured temperature from the device 30 via the network 120.
  • the network 120 may be any type of wired or wireless network, or combination thereof.
  • the network 120 may include a cable network, a wireline network, an optical fiber network, a telecommunications network, an intranet, an Internet, a local area network (LAN) , a wide area network (WAN) , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a wide area network (WAN) , a public telephone switched network (PSTN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the network 120 may include one or more network access points.
  • the network 120 may include wired or wireless network access points such as base stations and/or internet exchange points 120-1, 120-2, ..., through which one or more components of the temperature measurement system 100 may be connected to the network 120 to exchange data and/or information.
  • the device for temperature measurement 130 may be configured to measure the temperature.
  • the device for temperature measurement 130 may include a temperature measuring device based on infrared thermal imaging (also referred to as an infrared thermal imaging temperature measurement device) .
  • the infrared thermal imaging temperature measuring device may realize long-distance, multi-target and non-contact temperature detection.
  • the device for temperature measurement 130 may include at least one temperature sensor, which may sense the temperature of the objects140. The details of the device for temperature measurement 130 may be found in FIG. 2.
  • the one or more objects140 may include the humans, for example, adults, children, etc., animals (e.g., pets) , or any other stuffs, or the like, or any combination thereof.
  • the height of one of the one or more objects140 may be not limited.
  • the one or more objects140 may be in various scenes, for example, bank, store, market, hotel, or the like, or any combination thereof.
  • the storage device 150 may store data and/or instructions. In some embodiments, the storage device 150 may store data obtained from the device for temperature measurement 130. In some embodiments, the storage device 150 may store data and/or instructions that the server 110 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, storage device 150 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, solid-state drives, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-and-write memory may include a random-access memory (RAM) .
  • RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically-erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • MROM mask ROM
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically-erasable programmable ROM
  • CD-ROM compact disk ROM
  • digital versatile disk ROM etc.
  • the storage device 160 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the storage device 150 may be connected to the network 120 to communicate with one or more components of the temperature measurement system 100 (e.g., the server 110, the device for temperature measurement 130) .
  • One or more components of the temperature measurement system 100 may access the data or instructions stored in the storage device 150 via the network 120.
  • the storage device 150 may be directly connected to or communicate with one or more components of the temperature measurement system 100 (e.g., the server 110, device for temperature measurement 130) .
  • the storage device 150 may be part of the server 110.
  • one or more components of the temperature measurement system 100 may have permissions to access the storage device 150.
  • one or more components of the temperature measurement system 100 may calibrate information related to the objects when one or more conditions are met.
  • the server 110 may calibrate the temperature of an object after a calibration is completed.
  • FIG. 2A is a schematic diagram illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure
  • FIG. 2B is a front view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure
  • FIG. 2C is a vertical view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure
  • FIG. 2D is a right side view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure.
  • the device for temperature measurement 130 may include a screen 210, a blackbody 220, a connecting rod 230, an infrared thermal imaging device 240 and at least one processor 250.
  • the infrared thermal imaging device 240 may include an infrared thermal imaging camera 241 and a visible light camera 242, and an acquisition direction of the infrared thermal imaging camera 241 may be the same as an acquisition direction of the visible light camera 242.
  • the screen 210 may be installed on the infrared thermal imaging device 240 through the connecting rod 230, and the screen 210 may face the acquisition direction of the infrared thermal imaging camera 241.
  • the blackbody 220 may be installed on the side of the screen 210 facing the infrared thermal imaging device 240, and the blackbody 220 may be located within the acquisition range of the infrared thermal imaging device 240.
  • the front of the screen 210 may face a detection region of the infrared thermal imaging camera 241 and/or the visible light camera 242.
  • the blackbody 220 may be on the back of the screen 210, and a radiation surface of the blackbody 220 may face the infrared thermal imaging camera 241, the blackbody 220 may appear exactly at the top right corner of the angle of view measured by the infrared thermal imaging camera 241.
  • one side of the connecting rod 230 may be connected to the screen 210 and the blackbody 220 by screw fixing, the other side of the connecting rod 230 may be fixed on the infrared thermal imaging device 240 by screw fixing, and a reinforcing rod may be added on the connecting rod 230 to fix and support.
  • the infrared thermal imaging camera 241 may be a camera on the infrared thermal imaging device 240, the front of the infrared thermal imaging camera 241 may face the blackbody 220 and the object, and the top right corner of the temperature measurement angle may completely cover the blackbody 220.
  • the visible light camera 242 may be a camera on the infrared thermal imaging device 240, and the front of the visible light camera 242 may face the object, the infrared thermal imaging device 240 may be connected to the connecting rod 230 by screw fixing.
  • the screen 210 may display text and/or animation information such as slogan, identity information, and temperature of the object.
  • the screen 210 may be light in weight.
  • the blackbody 220 may be configured to provide a specified temperature (also referred to as a base temperature, such as 35°C, 38°C, etc. ) under a specified power, .
  • the blackbody 220 may be light in weight.
  • the connecting rod 230 may play the role of connecting and supporting the screen 210, the blackbody 220 and the infrared thermal imaging device 240, and the structure may be firm and reliable.
  • the infrared thermal imaging camera 241 may be a camera for temperature measurement, which may display the temperature of all objects in the viewing angle and display the maximum temperature among the temperatures of the objects.
  • the visible light camera 242 may be an ordinary camera, which may automatically recognize the face for positioning and tracking.
  • the infrared thermal imaging device 240 may have the dual light fusion function of infrared thermal imaging and visible light, the infrared thermal imaging device 240 may use visible light to identify and track human faces and position the human faces in the infrared thermal imaging temperature measurement interface at the same time to automatically measure the temperature of the object, and finally display the temperature through the screen 210.
  • the device for temperature measurement 130 may be an integrated device with a stable and simple structure, and there is the blackbody 220 in the device for temperature measurement 130 and has the function of real-time calibration of temperature.
  • the device for temperature measurement 130 works, there is no need to change any structure, and accurate measurement may be carried out directly.
  • the infrared thermal imaging camera 220 may be configured to measure a temperature (also referred to as an estimated temperature) of a target surface of the blackbody and a temperature (also referred to as an estimated temperature) of an object.
  • the at least one processor 230 may be configured to calibrate the estimated temperature of the object based on the specified temperature and the estimated temperature of the target surface.
  • the blackbody 220 may be a physical body that absorbs almost all incident electromagnetic radiation (e.g., infrared radiation) , regardless of frequency or angle of incidence.
  • the blackbody 220 in thermal equilibrium may emit electromagnetic blackbody radiation, and the radiation may be emitted according to Planck's law, meaning that the radiation has a spectrum that is determined by the specified temperature alone, not by the body's shape or composition of the blackbody 220.
  • the blackbody 220 may be manufactured manually by selecting an appropriate cavity shape and the uniformity of the cavity may be strictly controlled to make the blackbody 220 provide the specified temperature.
  • the size and the weight of the blackbody 220 may not be limited in the present disclosure.
  • the specified temperature may refer to an expected temperature provided by the blackbody.
  • the specified temperature may be 35°C.
  • the specified temperature may be preset according to a normal temperature of the human body by operators.
  • the normal temperature of the human body may be 36.5°C
  • the operators may set the temperature floating up and down by 1°C to 36.5°C as the specified temperature, such as 36°C.
  • the specified temperature may be obtained by determining the average temperature of the target surface of the blackbody.
  • the blackbody may be configured to select a preset count of the highest temperatures of different locations of the target surface of the blackbody 220, determine the average temperature of the highest temperatures, and designate the average temperature as the specified temperature.
  • the preset count may be an integer greater than a threshold, such as 10.
  • the highest temperatures may include 34.9°C, 34.93°C, 34.95°C, 34.97°C, 35°C, 35°C, 35.03°C, 35.05°C, 35.07°C, 35.1°C
  • the average temperature of the 10 temperatures may be 35°C, thus the specified temperature may be 35°C.
  • the infrared thermal imaging camera may be configured to receive the infrared emitted by the object to generated photoelectric information, process the photoelectric information of the infrared radiation, and finally convert the infrared radiation (or the photoelectric information) into numbers, signals, images, or the like.
  • the infrared thermal imaging camera may obtain an infrared thermal image of the object, perform a grayscale processing on the infrared thermal image, and obtain a grayscale image of the infrared thermal image.
  • the pixels in the grayscale may correspond to different parts of the object, specifically, the higher the temperature of the object, the larger the gray value of the pixels in the grayscale.
  • the infrared thermal imaging camera may obtain the temperature of the object according to the pixels in the grayscale.
  • the gray value may indicate the brightness of a pixel in the grayscale of the infrared thermal image obtained by the infrared thermal imaging camera, such as 0, 103, 255.
  • the temperature of the target surface of the blackbody 220 may be the highest temperature of all pixel points on the target surface of the blackbody.
  • the infrared thermal imaging camera may measure 5 temperatures on different locations of the uneven target surface of the blackbody, including 34.9°C, 34.93°C, 34.95°C, 34.97°C, 35°C, the highest temperature is 35°C, thus 35°C is the temperature of the target surface.
  • the temperature of the target surface may be measured by the infrared thermal imaging camera, and in particular, an infrared temperature sensor of the infrared thermal imaging camera.
  • the object may include persons or objects with temperature.
  • the object may include human (such as adults, children) and/or animals (such as cats, dogs) .
  • the estimated temperature of the object may be the temperature of the object before calibration, such as 34.9°C, 34.93°C.
  • the estimated temperature of the object may be measured by the infrared thermal imaging camera, and in particular, the infrared temperature sensor of the infrared thermal imaging camera.
  • the at least one processor 250 may be any unit/module that may calibrate the temperature of the object.
  • the at least one processor 250 may be configured to calibrate the temperature of the object according to operations including: determining a gray value difference between a reference gray value corresponding to the specified temperature and an estimated gray value corresponding to the temperature of the target surface that is determined from an image of the blackbody 220 acquired by the infrared thermal imaging camera 241; determining a temperature difference between the specified temperature and the temperature of the target surface; determining a calibration value based on the gray value difference and the temperature difference; and calibrating the temperature of the object based on the calibration value. More descriptions for calibrating the temperature of the object may be found in FIG. 3.
  • the at least one processor 250 may be configured to obtain a relationship between a reference temperature and a reference gray value corresponding to a standard blackbody at the reference temperature, and determine the reference gray value corresponding to the specified temperature based on the relationship and the specified temperature.
  • the reference temperature may be a temperature within a temperature range, such as any temperature between -30°C-70°C.
  • the temperature range may be the temperature measurement range of the device for measuring the temperature.
  • the standard blackbody may refer to a blackbody configured to obtain the corresponding relationship between the reference gray value and the reference temperature before the device for temperature measurement 130 leaves the factory.
  • the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature may reflect the connections and properties between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature.
  • the reference temperature may be determined based on the gray value corresponding to the standard blackbody at the reference temperature, and the gray value corresponding to the standard blackbody at the reference temperature may be related to the reference temperature.
  • the relationship may be linear or nonlinear.
  • the calibration model may be configured to obtain the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature. Specifically, the calibration model may obtain the reference temperature by the gray value corresponding to the standard blackbody at the reference temperature and obtain the gray value corresponding to the standard blackbody at the reference temperature by the reference temperature.
  • the calibration model may include a trained machine learning model.
  • the trained machine learning model may include neural networks, such as back propagation neural network, a rbf-radial basis function neural network, a perceptron neural network, or the like.
  • the calibration model may represent the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature.
  • the calibration model may be obtained by obtaining a plurality of training samples, wherein each of at least a portion of the training samples includes a sample temperature and a corresponding label, wherein the label represents a gray value corresponding to the standard blackbody at the sample temperature and training a calibration model based on the plurality of the training samples.
  • the details of obtaining the calibration model may be found in FIG. 5.
  • the temperature of the object may be calibrated in real time.
  • the temperature of the object may be calibrated in real-time when the object enters the measuring area.
  • the at least one processor may be configured to calibrate the temperature of the object based on a distance between the blackbody and the infrared thermal imaging camera that does not satisfies a condition.
  • the condition may include the distance between the blackbody and the infrared thermal imaging camera is beyond the preset distance range. For example, if the preset distance range is 2-5 meters, the distance less than 2 meters or the distance larger than 5 meters may indicate that the distance between the blackbody and the infrared thermal imaging camera does not satisfies the condition.
  • the at least one processor 250 may be configured to calibrate the temperature of the object in response to determining that the temperature of the object is within a temperature range.
  • the temperature range may refer to the temperature range beyond a standard temperature range.
  • the standard temperature range for human is 36.5-37°C
  • the temperature of the object less than 36.5°C and the temperature of the object larger than 37°C may be the temperature range.
  • the temperature range may be set by the operators.
  • the at least one processor 250 may be configured to obtain images of multiple objects, perform image recognition by processing the images, and obtain an image recognition result.
  • the image recognition result may represent a distance between each of the objects and the device for temperature measurement.
  • the at least one processor 250 may calibrate the temperature of the object closest to the device for temperature measurement among the multiple objects based on the image recognition result.
  • the images of at least one object may be static or dynamic images of the object. In some embodiments, the images may be in black and white or in color.
  • the distance between the object and the device for temperature measurement may be obtained by performing the image recognition.
  • the image recognition may be performed by processing the images based on a face recognition, especially the position coordinates of facial organ points.
  • the image recognition result may represent the distance between the object and the device for temperature measurement, for example, the distance may be the distance of the object perpendicular to the device for temperature measurement, such as 1.5 meters, 3 meters.
  • the at least one processor 250 may select the object closest to the device for temperature measurement, and calibrate the temperature of the selected object. For example, there are 3 objects, and the distance between the 3 objects and the device for temperature measurement are 1 meter, 2 meters, and 3 meters, thus the object with the distance of 1 meter from the device for temperature measurement may be selected.
  • the blackbody may be movable, and the blackbody may be moved according to a position of the object. The details of moving the blackbody may be found in FIG. 4.
  • FIG. 3 is a flowchart illustrating an exemplary process for measuring the temperature according to some embodiments of the present disclosure.
  • the process 300 may be performed by the processing device 112 or any other processor (e.g., the processor 250 in FIG. 2 and/or the modules in FIG. 6) .
  • the process 300 in FIG. 3 may execute the set of instructions, and when executing the instructions, the processing device 112 or any other processor may be configured to perform the process 300.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 300 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process illustrated in FIG. 3 and described below is not intended to be limiting.
  • a relationship between a reference temperature and a gray value difference may be obtained.
  • operation 310 may be performed by the processing device 112 (e.g., the calibration module 630) or the processor 250 in FIG. 2.
  • the reference temperature may be the temperature measurement range of the device for temperature measurement.
  • the reference temperature may be -20°C ⁇ 60°C.
  • the reference temperature may be divided into multiple temperature intervals. For example, the reference temperature may be divided into sections every 10°C.
  • the reference temperature may be extended according to rules. For example, the reference temperature may be extended according to the highest temperature of a temperature range of the reference temperature. As another example, the reference temperature may be extended according to the lowest temperature of the temperature range of the reference temperature. As a further example, for the reference temperature -20°C ⁇ 60°C, the reference temperature may be extended according to the temperature -20°C and the temperature 60°C: -30°C ⁇ -20°C, -20°C ⁇ -10°C, -10°C ⁇ 0°C, 0°C ⁇ 10°C, 10°C ⁇ -20°C, 20°C ⁇ 30°C, 30°C ⁇ 40°C, 40°C ⁇ 50°C, 50°C ⁇ 60°C, 60°C ⁇ 70°C.
  • the gray value corresponding to the standard blackbody of the temperature of the interval end of the multiple temperature intervals may be measured by the device for temperature measurement.
  • the gray value corresponding to the standard blackbody of the temperature -20°C, -10°C, 0°C, 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C may be measured by the device for temperature measurement.
  • the gray value difference may be determined by making a difference between the gray values of each two adjacent gray values. In some embodiments, the gray value difference corresponding to the lowest temperature in the multiple temperature intervals may be set to 0.
  • FIG. 7A is a schematic diagram illustrating an exemplary relationship between the reference temperature and the gray value difference according to some embodiments of the present disclosure.
  • the gray difference corresponding to -30°C may be set to 0, the gray value difference of each two adjacent gray values may be determined, and a relationship between the reference temperature and the gray value difference may be obtained.
  • a curve of the corresponding relationship between the reference temperature and the gray value difference may be obtained, and the gray value read by the device for temperature measurement may be converted into the temperature with this table each time.
  • the temperature difference between the specified temperature and the temperature of the target surface may be determined.
  • operation 320 may be performed by the processing device 112 (e.g., the calibration module 630) or the processor 250 in FIG. 2.
  • the calibration value based on the gray value difference and the temperature difference may be determined.
  • operation 330 may be performed by the processing device 112 (e.g., calibration module 630) or the processor 250 in FIG. 2.
  • the calibration value may be an additional gray value that the estimated gray value corresponding to the temperature of the target surface needs to be adjusted.
  • the temperature of the target surface of the blackbody may be T 1
  • the specified temperature may be the gray value difference between T 1 and may be the calibration value.
  • the calibration value when the temperature of the target surface of the blackbody is lower than the specified temperature, the calibration value may be determined by the specified temperature and the relationship between the reference temperature and the gray value difference.
  • the gray value difference may be determined by the relationship between the reference temperature and the gray value difference
  • a gray value difference of a unit temperature may be determined according to the temperature interval and the adjacent gray value difference corresponding to the specified temperature
  • the temperature difference between the specified temperature and the temperature of the target surface may be determined
  • the calibration value may be determined according to the gray value difference and the temperature difference.
  • the calibration value may be calculated by multiplying the gray value difference by the temperature difference.
  • the gray value difference interval of the specified temperature may be determined, for example, the specified temperature is in the range 30°C ⁇ 40°C, the gray value difference interval of the specified temperature may be in G 40 , and the gray value difference of every 10°Cmay be G 40 , thus the calibration value for each 1°C may be and the total calibration value may be
  • an estimated temperature of the object may be calibrated based on the calibration value.
  • operation 340 may be performed by the processing device 112 (e.g., calibration module 630) or the processor 250 in FIG. 2.
  • each adjacent gray difference G -20 , G -10 , G 0 , G 10 , G 20 , G 30 , G 40 , G 50 , G 60 , and G 70 may be increased by the temperature of the target surface may be changed from T 1 to T 2 after a period of time (one frame or several frames) from the last measurement, and then the temperature of the object may be calibrated by finally the temperature of the target surface T n may be the same as the specified temperature in this way, that is, the function of real-time calibration may be achieved.
  • FIGs. 7B-C are schematic diagrams illustrating an exemplary relationship between the reference temperature and the gray value difference according to some embodiments of the present disclosure
  • the blackbody may be turned on to provide the specified temperature 35°C
  • the specified temperature provided by the blackbody may be 35°C theoretically, however, the actual specified temperature may be affected by non-uniformity, thus 10 pixel points on the target surface of the blackbody may be selected: 34.9°C, 34.93°C, 34.95°C, 34.97°C, 35°C, 35°C, 35.03°C, 35.05°C, 35.07°C, 35.1°C
  • the average temperature of the 10 temperatures is 35°C
  • the specified temperature may be 35°C
  • the temperature of the target surface may be 34.8°C.
  • the adjacent gray value difference at the specified temperature of 35°C may be 448, the gray value difference of every 10°C may be 448, thus the calibration value for each 1°C may be and the total calibration value may be each adjacent gray value difference (except -30°C) may be increased by 8.96, and the updated relationship between the reference temperature and the gray value difference may be shown in FIG. 7C.
  • the device for temperature measurement provided by the embodiments of this present disclosure not only explains the principle, but also describes the compensation algorithm and process in detail to ensure the measurement accuracy in real-time, but also selects the average temperature of multiple highest temperatures on the target surface of the blackbody on time to further ensure the accuracy.
  • the device for temperature measurement has real-time calibration function before and after leaving the factory, no matter how the device is used, the measurement accuracy will not produce large errors.
  • the device for temperature measurement may be an integrated device with stable and simple structure. There is a blackbody in the device, which has the function of real-time calibration of the reference temperature. When the equipment works, there is no need to change any structure, and accurate measurement may be carried out directly.
  • the device may ensure the stability and the accuracy of the temperature measurement without human participation and changing any structure in the whole measurement process, reduce the measurement cost and improve the measurement efficiency. It is suitable for various working environments. Moreover, the production cost is low and suitable for large-scale production.
  • FIGs. 4A-4B are schematic diagrams illustrating the movable blackbody according to some embodiments of the present disclosure.
  • the blackbody in order to measure the temperature easily, may be placed on the side close to the object or other suitable positions.
  • the blackbody may be movable. In some embodiments, the blackbody may be moved by the operators manually or automatically. For example, the blackbody may be moved by a moving device, such as a cart, the operator may place the blackbody on the cart and push the blackbody to a suitable position.
  • a moving device such as a cart
  • the blackbody may be moved according to the position of the object.
  • the position of the object may represent the position of the object when the temperature of the object is measured, for example, when the image of the object is acquired for temperature measurement.
  • the blackbody may be moved so that the position of the blackbody reaches a position symmetrical to the object.
  • the position symmetrical to the object may indicate that the object and the blackbody are symmetrical to an axis (e.g., the vertical axis) of the device for measuring the temperature.
  • the dotted lines may indicate the axis of the device for measuring the temperature, and the object may be symmetrical to the blackbody based on the axis.
  • the operators may measure the distance between the object and the axis of the device for temperature measurement, and then move the blackbody so that the position of the blackbody reaches the position symmetrical to the object.
  • FIG. 5 is a flowchart illustrating an exemplary process for obtaining the calibration model according to some embodiments of the present disclosure.
  • the process 500 may be performed by the processing device 112 or any other processor (e.g., the processor 250 in FIG. 2) .
  • the process 500 in FIG. 5 may execute the set of instructions, and when executing the instructions, the processing device 112 or any other processor may be configured to perform the process 500.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 500 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process illustrated in FIG. 5 and described below is not intended to be limiting.
  • the plurality of the training samples may be obtained.
  • each of at least a portion of the training samples may include a sample temperature and a corresponding label.
  • the sample temperature may include a plurality of temperatures.
  • the sample temperature may be the temperatures at the same interval, such as -30°C, -20°C, -10°C, 0°C and 10°C.
  • the sample temperature may be a range of temperatures, such as 30°C-70°C.
  • the label may represent a gray value of a pixel corresponding to the standard blackbody in an image acquired by the at least one processor when the standard blackbody is at the sample temperature.
  • the gray value of the pixel corresponding to the standard blackbody at the sample temperature -30°C may be 0, and the gray value of the pixel corresponding to the standard blackbody at the sample temperature -20°C may be 103.
  • a preliminary calibration model may be trained based on the plurality of the training samples.
  • the preliminary calibration model may be a prior calibration model that has been trained using a training set including at least one training sample different from the plurality of the training samples or a machine learning model that has been not trained using any training samples.
  • the preliminary calibration model may be trained based on the plurality of the training samples with labels. Specifically, the plurality of the labeled training samples with labels may be input into the calibration model, and the parameters of the calibration model may be updated by training.
  • the labels may be the gray value of the pixel corresponding to the standard blackbody in the image acquired by the at least one processor when the standard blackbody is at the sample temperature, such as 103, 161.
  • the labels may be obtained by manually setting the temperature of the blackbody.
  • the training when the training calibration model meets the preset conditions, the training may end.
  • the preset condition may be that the result of the loss function converges or is less than the preset threshold.
  • FIG. 6 is a block diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure.
  • the system 600 may include a radiation module 610, a measurement module 620, and a calibration module 630.
  • the radiation module 610 may be configured to provide and/or obtain a specified temperature provided by a blackbody. In some embodiments, the radiation module 610 may be configured to obtain the specified temperature provided the blackbody as described elsewhere in the present disclosure.
  • the measurement module 620 may be configured to obtain the temperature of a target surface of the blackbody and the temperature of the object. In some embodiments, the measurement module 610 may obtain the temperature of a target surface of the blackbody and the temperature of the object detected by the device for temperature measurement described elsewhere in the present disclosure.
  • the calibration module 630 may be configured to calibrate the temperature of the object based on the specified temperature and the temperature of the target surface.
  • the calibration module 630 may be configured to calibrate the temperature of the object according to operations including determining the gray value difference between the reference gray value corresponding to the specified temperature and the estimated gray value corresponding to the temperature of the target surface that is determined from the image of the blackbody acquired by the infrared thermal imaging camera, determining the temperature difference between the specified temperature and the temperature of the target surface, determining the calibration value based on the gray value difference and the temperature difference, and calibrating the temperature of the object based on the calibration value.
  • the calibration module 630 may be configured to obtain the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature, and determine the reference gray value corresponding to the specified temperature based on the relationship and the specified temperature.
  • the calibration module 630 may be configured to obtain the relationship using the calibration model, wherein the calibration model includes the trained machine learning model.
  • the calibration module 630 may be obtained according to operations including obtaining the plurality of training samples, wherein each of at least the portion of the training samples includes the sample temperature and the corresponding label, wherein the label represents the gray value corresponding to the standard blackbody at the sample temperature, and training a calibration model based on the plurality of the training samples.
  • the calibration module 630 may be configured to calibrate the temperature of the object in real-time.
  • the calibration module 630 may be configured to calibrating the temperature of the object based on the distance between the blackbody and the infrared thermal imaging camera that does not satisfies the condition.
  • the calibration module 630 may be configured to calibrating the temperature of the object in response to determining that the temperature of the object is within the temperature range.
  • the calibration module 630 may be configured to obtain the images of at least one object, perform image recognition by processing the images and obtaining the image recognition result, wherein the image recognition result represents the distance between the object and the device for temperature measurement, and calibrate the temperature of the object closest to the device for temperature measurement based on the image recognition result.
  • the modules in the system 600 may be connected to or communicated with each other via a wired connection or a wireless connection.
  • the wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof.
  • the wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof.
  • LAN Local Area Network
  • WAN Wide Area Network
  • NFC Near Field Communication
  • Two or more of the modules may be combined into a single module, and any one of the modules may be divided into two or more units.
  • the radiation module 610 and the measurement module 620 are combined as a single module which is configured to obtain the location parameter and the orientation parameter associated with the device.
  • the system 600 includes a storage module (not shown) which is used to store data generated by the above-mentioned modules.
  • aspects of the present disclosure may be illustrated and described herein in any of a count of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a "block, " “module, ” “device, ” “unit, ” “component, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 1703, Perl, COBOL 1702, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a software as a service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • an Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, etc.
  • SaaS software as a service

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Radiation Pyrometers (AREA)

Abstract

A device for temperature measurement, includes a blackbody (2) configured to radiate a specified temperature, an infrared thermal imaging camera (4) configured to measure a temperature of a target surface of the blackbody (2) and a temperature of an object, and at least one processor configured to calibrate the temperature of the object based on the specified temperature and the temperature of the target surface.

Description

DEVICES AND METHODS FOR TEMPERATURE MEASURMENT
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority of Chinese Patent Application No. 202011445541.7, filed on December 9, 2020, the contents of which are entirely incorporated herein by reference.
TECHNICAL FIELD
The present disclosure generally relates to temperature measurement field, and in particular, to methods and devices for temperature measurement.
BACKGROUND
With the rapid development of science and technology, an infrared thermal imaging device is used in various industries. Using a non-contact infrared thermal imaging device to measure the temperature of a human body has an important impact in the fields of medical treatment, epidemic prevention, national defense, etc. The infrared thermal imaging device may measure the temperature of an object by using a detector to detect an infrared signal generated by the thermal radiation of the subject, converting the infrared signal into an image, and display the temperature value through calculation. Therefore, the temperature measurement using the infrared thermal imaging device is greatly affected by the ambient temperature and the temperature of the infrared thermal imaging device.
Thus, it is desirable to develop effective devices and methods for temperature measurement with improved accuracy to reduce the measurement error.
SUMMARY
According to some embodiments of the present disclosure, a device for measuring a temperature is provided. The device includes: a blackbody configured to radiate a specified temperature, an infrared thermal imaging camera configured to  measure a temperature of a target surface of the blackbody and a temperature of an object and at least one processor configured to calibrate the temperature of the object based on the specified temperature and the temperature of the target surface.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure;
FIG. 2A is a schematic diagram illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure;
FIG. 2B is a front view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure;
FIG. 2C is a vertical view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure;
FIG. 2D is a right-side view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure;
FIG. 3 is a flowchart illustrating an exemplary process for measuring the temperature according to some embodiments of the present disclosure;
FIGs. 4A-B are schematic diagrams of moving a black body according to some embodiments of the present disclosure;
FIG. 5 is a flowchart illustrating an exemplary process for training a calibration model according to some embodiments of the present disclosure;
FIG. 6 is a block diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure;
FIGs. 7A-C are schematic diagrams illustrating exemplary relationships between a reference temperature and a gray value difference according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
The following description is presented to enable any person skilled in the art to make and use the present disclosure, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.
The terminology used herein is to describe example embodiments only and is not intended to be limiting. As used herein, the singular forms "a, " "an, " and "the" may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprise, " "comprises, " and/or "comprising, " "include, " "includes, " and/or "including, " when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
These and other features, and characteristics of the present disclosure, as  well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
The flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments in the present disclosure. It is to be expressly understood, the operations of the flowchart may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
FIG. 1 is a schematic diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure. The temperature measurement system 100 may include a server 110, a network 120, a device for temperature measurement 130 (also referred to as a temperature measurement device) , one or more objects140, and a storage device 150.
The temperature measurement system 100 may provide a plurality of services. Exemplary services may include a temperature measurement service, a temperature calibration service, etc.
In some embodiments, the server 110 may be a single server or a server group. The server group may be centralized, or distributed (e.g., the server 110 may be a distributed system) . In some embodiments, the server 110 may be local or remote. For example, the server 110 may access information and/or data stored in the device for temperature measurement 130, and/or the storage device 150 via the network 120. As another example, the server 110 may be directly connected to the device for temperature measurement 130, and/or the storage device 150 to  access stored information and/or data. In some embodiments, the server 110 may be implemented on a cloud platform. Merely by way of example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
In some embodiments, the server 110 may include a processing device 112. The processing device 112 may process information and/or data related to temperature measurement to perform one or more functions described in the present disclosure. For example, the processing device 112 may measure the temperature of an object (e.g., a human body) . As another example, the processing device 112 may calibrate the temperature of the object to obtain a target temperature of the object. In some embodiments, the processing device 112 may include one or more processing devices (e.g., single-core processing device (s) or multi-core processor (s) ) . Merely by way of example, the processing device 112 may include a central processing unit (CPU) , an application-specific integrated circuit (ASIC) , an application-specific instruction-set processor (ASIP) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a controller, a microcontroller unit, a reduced instruction-set computer (RISC) , a microprocessor, or the like, or any combination thereof. In some embodiments, the processing device 112 may be integrated into the device for temperature measurement 130.
The network 120 may facilitate exchange of information and/or data. In some embodiments, one or more components of the temperature measurement system 100 (e.g., the server 110, the device for temperature measurement 130, and the storage device 150) may transmit information and/or data to other component (s) of the temperature measurement system 100 via the network 120. For example, the server 110 may receive a measured temperature from the device 30 via the network 120. In some embodiments, the network 120 may be any type of wired or  wireless network, or combination thereof. Merely by way of example, the network 120 may include a cable network, a wireline network, an optical fiber network, a telecommunications network, an intranet, an Internet, a local area network (LAN) , a wide area network (WAN) , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a wide area network (WAN) , a public telephone switched network (PSTN) , a Bluetooth network, a ZigBee network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the network 120 may include one or more network access points. For example, the network 120 may include wired or wireless network access points such as base stations and/or internet exchange points 120-1, 120-2, …, through which one or more components of the temperature measurement system 100 may be connected to the network 120 to exchange data and/or information.
The device for temperature measurement 130 may be configured to measure the temperature. In some embodiments, the device for temperature measurement 130 may include a temperature measuring device based on infrared thermal imaging (also referred to as an infrared thermal imaging temperature measurement device) . The infrared thermal imaging temperature measuring device may realize long-distance, multi-target and non-contact temperature detection. The device for temperature measurement 130 may include at least one temperature sensor, which may sense the temperature of the objects140. The details of the device for temperature measurement 130 may be found in FIG. 2.
The one or more objects140 may include the humans, for example, adults, children, etc., animals (e.g., pets) , or any other stuffs, or the like, or any combination thereof. In some embodiments, the height of one of the one or more objects140 may be not limited. In some embodiments, the one or more objects140 may be in various scenes, for example, bank, store, market, hotel, or the like, or any combination thereof.
The storage device 150 may store data and/or instructions. In some  embodiments, the storage device 150 may store data obtained from the device for temperature measurement 130. In some embodiments, the storage device 150 may store data and/or instructions that the server 110 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, storage device 150 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, solid-state drives, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-and-write memory may include a random-access memory (RAM) . Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically-erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage device 160 may be implemented on a cloud platform. Merely by way of example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
In some embodiments, the storage device 150 may be connected to the network 120 to communicate with one or more components of the temperature measurement system 100 (e.g., the server 110, the device for temperature measurement 130) . One or more components of the temperature measurement system 100 may access the data or instructions stored in the storage device 150 via the network 120. In some embodiments, the storage device 150 may be directly connected to or communicate with one or more components of the temperature measurement system 100 (e.g., the server 110, device for temperature  measurement 130) . In some embodiments, the storage device 150 may be part of the server 110.
In some embodiments, one or more components of the temperature measurement system 100 (e.g., the server 110, device for temperature measurement 130) may have permissions to access the storage device 150. In some embodiments, one or more components of the temperature measurement system 100 may calibrate information related to the objects when one or more conditions are met. For example, the server 110 may calibrate the temperature of an object after a calibration is completed.
FIG. 2A is a schematic diagram illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure, FIG. 2B is a front view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure, FIG. 2C is a vertical view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure, and FIG. 2D is a right side view illustrating exemplary device for temperature measurement according to some embodiments of the present disclosure.
As illustrated in FIG. 2A-D, the device for temperature measurement 130 may include a screen 210, a blackbody 220, a connecting rod 230, an infrared thermal imaging device 240 and at least one processor 250. The infrared thermal imaging device 240 may include an infrared thermal imaging camera 241 and a visible light camera 242, and an acquisition direction of the infrared thermal imaging camera 241 may be the same as an acquisition direction of the visible light camera 242. The screen 210 may be installed on the infrared thermal imaging device 240 through the connecting rod 230, and the screen 210 may face the acquisition direction of the infrared thermal imaging camera 241. The blackbody 220 may be installed on the side of the screen 210 facing the infrared thermal imaging device  240, and the blackbody 220 may be located within the acquisition range of the infrared thermal imaging device 240.
In some embodiments, the front of the screen 210 may face a detection region of the infrared thermal imaging camera 241 and/or the visible light camera 242. In some embodiments, the blackbody 220 may be on the back of the screen 210, and a radiation surface of the blackbody 220 may face the infrared thermal imaging camera 241, the blackbody 220 may appear exactly at the top right corner of the angle of view measured by the infrared thermal imaging camera 241. In some embodiments, one side of the connecting rod 230 may be connected to the screen 210 and the blackbody 220 by screw fixing, the other side of the connecting rod 230 may be fixed on the infrared thermal imaging device 240 by screw fixing, and a reinforcing rod may be added on the connecting rod 230 to fix and support. In some embodiments, the infrared thermal imaging camera 241 may be a camera on the infrared thermal imaging device 240, the front of the infrared thermal imaging camera 241 may face the blackbody 220 and the object, and the top right corner of the temperature measurement angle may completely cover the blackbody 220. In some embodiments, the visible light camera 242 may be a camera on the infrared thermal imaging device 240, and the front of the visible light camera 242 may face the object, the infrared thermal imaging device 240 may be connected to the connecting rod 230 by screw fixing.
In some embodiments, the screen 210 may display text and/or animation information such as slogan, identity information, and temperature of the object. In some embodiments, the screen 210 may be light in weight. In some embodiments, the blackbody 220 may be configured to provide a specified temperature (also referred to as a base temperature, such as 35℃, 38℃, etc. ) under a specified power, . In some embodiments, the blackbody 220 may be light in weight. In some embodiments, the connecting rod 230 may play the role of connecting and supporting the screen 210, the blackbody 220 and the infrared thermal imaging  device 240, and the structure may be firm and reliable. In some embodiments, the infrared thermal imaging camera 241 may be a camera for temperature measurement, which may display the temperature of all objects in the viewing angle and display the maximum temperature among the temperatures of the objects. In some embodiments, the visible light camera 242 may be an ordinary camera, which may automatically recognize the face for positioning and tracking. In some embodiments, the infrared thermal imaging device 240 may have the dual light fusion function of infrared thermal imaging and visible light, the infrared thermal imaging device 240 may use visible light to identify and track human faces and position the human faces in the infrared thermal imaging temperature measurement interface at the same time to automatically measure the temperature of the object, and finally display the temperature through the screen 210.
In some embodiments, the device for temperature measurement 130 may be an integrated device with a stable and simple structure, and there is the blackbody 220 in the device for temperature measurement 130 and has the function of real-time calibration of temperature. When the device for temperature measurement 130 works, there is no need to change any structure, and accurate measurement may be carried out directly.
The infrared thermal imaging camera 220 may be configured to measure a temperature (also referred to as an estimated temperature) of a target surface of the blackbody and a temperature (also referred to as an estimated temperature) of an object. The at least one processor 230 may be configured to calibrate the estimated temperature of the object based on the specified temperature and the estimated temperature of the target surface.
The blackbody 220 may be a physical body that absorbs almost all incident electromagnetic radiation (e.g., infrared radiation) , regardless of frequency or angle of incidence. The blackbody 220 in thermal equilibrium may emit electromagnetic blackbody radiation, and the radiation may be emitted according to Planck's law,  meaning that the radiation has a spectrum that is determined by the specified temperature alone, not by the body's shape or composition of the blackbody 220. In some embodiments, the blackbody 220 may be manufactured manually by selecting an appropriate cavity shape and the uniformity of the cavity may be strictly controlled to make the blackbody 220 provide the specified temperature. In some embodiments, the size and the weight of the blackbody 220 may not be limited in the present disclosure.
In some embodiments, the specified temperature may refer to an expected temperature provided by the blackbody. For example, the specified temperature may be 35℃.
In some embodiments, the specified temperature may be preset according to a normal temperature of the human body by operators. For example, the normal temperature of the human body may be 36.5℃, the operators may set the temperature floating up and down by 1℃ to 36.5℃ as the specified temperature, such as 36℃.
In some embodiments, the specified temperature may be obtained by determining the average temperature of the target surface of the blackbody. Specifically, the blackbody may be configured to select a preset count of the highest temperatures of different locations of the target surface of the blackbody 220, determine the average temperature of the highest temperatures, and designate the average temperature as the specified temperature. The preset count may be an integer greater than a threshold, such as 10. For example, the highest temperatures may include 34.9℃, 34.93℃, 34.95℃, 34.97℃, 35℃, 35℃, 35.03℃, 35.05℃, 35.07℃, 35.1℃, the average temperature of the 10 temperatures may be 35℃, thus the specified temperature may be 35℃.
Any object with temperature will emit infrared radiation, the infrared thermal imaging camera may be configured to receive the infrared emitted by the object to generated photoelectric information, process the photoelectric information of the  infrared radiation, and finally convert the infrared radiation (or the photoelectric information) into numbers, signals, images, or the like.
In some embodiments, the infrared thermal imaging camera may obtain an infrared thermal image of the object, perform a grayscale processing on the infrared thermal image, and obtain a grayscale image of the infrared thermal image. The pixels in the grayscale may correspond to different parts of the object, specifically, the higher the temperature of the object, the larger the gray value of the pixels in the grayscale. The infrared thermal imaging camera may obtain the temperature of the object according to the pixels in the grayscale. The gray value may indicate the brightness of a pixel in the grayscale of the infrared thermal image obtained by the infrared thermal imaging camera, such as 0, 103, 255.
In some embodiments, since the target surface of the blackbody may be uneven, the temperature of the target surface of the blackbody 220 may be the highest temperature of all pixel points on the target surface of the blackbody. For example, the infrared thermal imaging camera may measure 5 temperatures on different locations of the uneven target surface of the blackbody, including 34.9℃, 34.93℃, 34.95℃, 34.97℃, 35℃, the highest temperature is 35℃, thus 35℃ is the temperature of the target surface.
In some embodiments, the temperature of the target surface may be measured by the infrared thermal imaging camera, and in particular, an infrared temperature sensor of the infrared thermal imaging camera.
In some embodiments, the object may include persons or objects with temperature. In some embodiments, the object may include human (such as adults, children) and/or animals (such as cats, dogs) .
In some embodiments, the estimated temperature of the object may be the temperature of the object before calibration, such as 34.9℃, 34.93℃.
In some embodiments, the estimated temperature of the object may be measured by the infrared thermal imaging camera, and in particular, the infrared temperature sensor of the infrared thermal imaging camera.
The at least one processor 250 may be any unit/module that may calibrate the temperature of the object.
In some embodiments, the at least one processor 250 may be configured to calibrate the temperature of the object according to operations including: determining a gray value difference between a reference gray value corresponding to the specified temperature and an estimated gray value corresponding to the temperature of the target surface that is determined from an image of the blackbody 220 acquired by the infrared thermal imaging camera 241; determining a temperature difference between the specified temperature and the temperature of the target surface; determining a calibration value based on the gray value difference and the temperature difference; and calibrating the temperature of the object based on the calibration value. More descriptions for calibrating the temperature of the object may be found in FIG. 3.
In some embodiments, the at least one processor 250 may be configured to obtain a relationship between a reference temperature and a reference gray value corresponding to a standard blackbody at the reference temperature, and determine the reference gray value corresponding to the specified temperature based on the relationship and the specified temperature.
In some embodiments, the reference temperature may be a temperature within a temperature range, such as any temperature between -30℃-70℃. In some embodiments, the temperature range may be the temperature measurement range of the device for measuring the temperature.
In some embodiments, the standard blackbody may refer to a blackbody configured to obtain the corresponding relationship between the reference gray value  and the reference temperature before the device for temperature measurement 130 leaves the factory.
In some embodiments, the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature may reflect the connections and properties between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature. Specifically, the reference temperature may be determined based on the gray value corresponding to the standard blackbody at the reference temperature, and the gray value corresponding to the standard blackbody at the reference temperature may be related to the reference temperature. In some embodiments, the relationship may be linear or nonlinear.
In some embodiments, the calibration model may be configured to obtain the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature. Specifically, the calibration model may obtain the reference temperature by the gray value corresponding to the standard blackbody at the reference temperature and obtain the gray value corresponding to the standard blackbody at the reference temperature by the reference temperature.
In some embodiments, the calibration model may include a trained machine learning model. In some embodiments, the trained machine learning model may include neural networks, such as back propagation neural network, a rbf-radial basis function neural network, a perceptron neural network, or the like. In some embodiments, the calibration model may represent the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature.
In some embodiments, the calibration model may be obtained by obtaining a plurality of training samples, wherein each of at least a portion of the training samples includes a sample temperature and a corresponding label, wherein the label  represents a gray value corresponding to the standard blackbody at the sample temperature and training a calibration model based on the plurality of the training samples. The details of obtaining the calibration model may be found in FIG. 5.
In some embodiments, the temperature of the object may be calibrated in real time. Specially, the temperature of the object may be calibrated in real-time when the object enters the measuring area.
In some embodiments, the at least one processor may be configured to calibrate the temperature of the object based on a distance between the blackbody and the infrared thermal imaging camera that does not satisfies a condition.
In some embodiments, the condition may include the distance between the blackbody and the infrared thermal imaging camera is beyond the preset distance range. For example, if the preset distance range is 2-5 meters, the distance less than 2 meters or the distance larger than 5 meters may indicate that the distance between the blackbody and the infrared thermal imaging camera does not satisfies the condition.
In some embodiments, the at least one processor 250 may be configured to calibrate the temperature of the object in response to determining that the temperature of the object is within a temperature range.
In some embodiments, the temperature range may refer to the temperature range beyond a standard temperature range. For example, if the standard temperature range for human is 36.5-37℃, the temperature of the object less than 36.5℃ and the temperature of the object larger than 37℃ may be the temperature range.
In some embodiments, the temperature range may be set by the operators.
In some embodiments, the at least one processor 250 may be configured to obtain images of multiple objects, perform image recognition by processing the images, and obtain an image recognition result. The image recognition result may represent a distance between each of the objects and the device for temperature  measurement. The at least one processor 250 may calibrate the temperature of the object closest to the device for temperature measurement among the multiple objects based on the image recognition result.
In some embodiments, the images of at least one object may be static or dynamic images of the object. In some embodiments, the images may be in black and white or in color.
In some embodiments, the distance between the object and the device for temperature measurement may be obtained by performing the image recognition.
In some embodiments, the image recognition may be performed by processing the images based on a face recognition, especially the position coordinates of facial organ points.
In some embodiments, the image recognition result may represent the distance between the object and the device for temperature measurement, for example, the distance may be the distance of the object perpendicular to the device for temperature measurement, such as 1.5 meters, 3 meters.
In some embodiments, the at least one processor 250 may select the object closest to the device for temperature measurement, and calibrate the temperature of the selected object. For example, there are 3 objects, and the distance between the 3 objects and the device for temperature measurement are 1 meter, 2 meters, and 3 meters, thus the object with the distance of 1 meter from the device for temperature measurement may be selected.
In some embodiments, the blackbody may be movable, and the blackbody may be moved according to a position of the object. The details of moving the blackbody may be found in FIG. 4.
FIG. 3 is a flowchart illustrating an exemplary process for measuring the temperature according to some embodiments of the present disclosure. In some embodiments, the process 300 may be performed by the processing device 112 or any other processor (e.g., the processor 250 in FIG. 2 and/or the modules in FIG. 6) .  The process 300 in FIG. 3 may execute the set of instructions, and when executing the instructions, the processing device 112 or any other processor may be configured to perform the process 300. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 300 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process illustrated in FIG. 3 and described below is not intended to be limiting.
In 310, a relationship between a reference temperature and a gray value difference may be obtained. In some embodiments, operation 310 may be performed by the processing device 112 (e.g., the calibration module 630) or the processor 250 in FIG. 2.
In some embodiments, the reference temperature may be the temperature measurement range of the device for temperature measurement. For example, the reference temperature may be -20℃~60℃.
In some embodiments, the reference temperature may be divided into multiple temperature intervals. For example, the reference temperature may be divided into sections every 10℃.
In some embodiments, the reference temperature may be extended according to rules. For example, the reference temperature may be extended according to the highest temperature of a temperature range of the reference temperature. As another example, the reference temperature may be extended according to the lowest temperature of the temperature range of the reference temperature. As a further example, for the reference temperature -20℃~60℃, the reference temperature may be extended according to the temperature -20℃ and the temperature 60℃: -30℃~-20℃, -20℃~-10℃, -10℃~0℃, 0℃~10℃, 10℃~-20℃, 20℃~30℃, 30℃~40℃, 40℃~50℃, 50℃~60℃, 60℃~70℃.
In some embodiments, the gray value corresponding to the standard blackbody of the temperature of the interval end of the multiple temperature intervals may be measured by the device for temperature measurement. For example, the gray value corresponding to the standard blackbody of the temperature -20℃, -10℃, 0℃, 10℃, 20℃, 30℃, 40℃, 50℃, 60℃, 70℃ may be measured by the device for temperature measurement.
In some embodiments, the gray value difference may be determined by making a difference between the gray values of each two adjacent gray values. In some embodiments, the gray value difference corresponding to the lowest temperature in the multiple temperature intervals may be set to 0.
FIG. 7A is a schematic diagram illustrating an exemplary relationship between the reference temperature and the gray value difference according to some embodiments of the present disclosure. As shown in FIG. 7A, the gray difference corresponding to -30℃ may be set to 0, the gray value difference of each two adjacent gray values may be determined, and a relationship between the reference temperature and the gray value difference may be obtained. In some embodiments, a curve of the corresponding relationship between the reference temperature and the gray value difference may be obtained, and the gray value read by the device for temperature measurement may be converted into the temperature with this table each time.
In 320, the temperature difference between the specified temperature and the temperature of the target surface may be determined. In some embodiments, operation 320 may be performed by the processing device 112 (e.g., the calibration module 630) or the processor 250 in FIG. 2.
The temperature difference may be the difference between the specified temperature and the temperature of the target surface. For example, if the specified temperature is 35℃ and the temperature of the target surface is 34.8℃, thus the temperature difference is 35-34.8=0.2℃.
In 330, the calibration value based on the gray value difference and the temperature difference may be determined. In some embodiments, operation 330 may be performed by the processing device 112 (e.g., calibration module 630) or the processor 250 in FIG. 2.
In some embodiments, the calibration value may be an additional gray value that the estimated gray value corresponding to the temperature of the target surface needs to be adjusted.
In some embodiments, the temperature of the target surface of the blackbody may be T 1, the specified temperature may be
Figure PCTCN2021128370-appb-000001
the gray value difference between T 1 and
Figure PCTCN2021128370-appb-000002
may be the calibration value.
In some embodiments, when the temperature of the target surface of the blackbody is lower than the specified temperature, the calibration value may be determined by the specified temperature and the relationship between the reference temperature and the gray value difference. Specifically, the gray value difference may be determined by the relationship between the reference temperature and the gray value difference, a gray value difference of a unit temperature may be determined according to the temperature interval and the adjacent gray value difference corresponding to the specified temperature, the temperature difference between the specified temperature and the temperature of the target surface may be determined, and the calibration value may be determined according to the gray value difference and the temperature difference.
In some embodiments, the calibration value may be calculated by multiplying the gray value difference by the temperature difference.
In some embodiments, the gray value difference interval of the specified temperature
Figure PCTCN2021128370-appb-000003
may be determined, for example, the specified temperature
Figure PCTCN2021128370-appb-000004
is in the range 30℃~40℃, the gray value difference interval of the specified temperature
Figure PCTCN2021128370-appb-000005
may be in G 40, and the gray value difference of every 10℃may be  G 40, thus the calibration value for each 1℃ may be
Figure PCTCN2021128370-appb-000006
and the total calibration value may be
Figure PCTCN2021128370-appb-000007
In 340, an estimated temperature of the object may be calibrated based on the calibration value. In some embodiments, operation 340 may be performed by the processing device 112 (e.g., calibration module 630) or the processor 250 in FIG. 2.
In some embodiments, each adjacent gray difference G -20, G -10, G 0, G 10, G 20, G 30, G 40, G 50, G 60, and G 70 may be increased by
Figure PCTCN2021128370-appb-000008
the temperature of the target surface may be changed from T 1 to T 2 after a period of time (one frame or several frames) from the last measurement, and then the temperature of the object may be calibrated by
Figure PCTCN2021128370-appb-000009
finally the temperature of the target surface T n may be the same as the specified temperature
Figure PCTCN2021128370-appb-000010
in this way, that is, the function of real-time calibration may be achieved.
The following descriptions take an example of the specified temperature of 35℃. FIGs. 7B-C are schematic diagrams illustrating an exemplary relationship between the reference temperature and the gray value difference according to some embodiments of the present disclosure, as shown in FIG. 7B, the blackbody may be turned on to provide the specified temperature 35℃, the specified temperature provided by the blackbody may be 35℃ theoretically, however, the actual specified temperature may be affected by non-uniformity, thus 10 pixel points on the target surface of the blackbody may be selected: 34.9℃, 34.93℃, 34.95℃, 34.97℃, 35℃, 35℃, 35.03℃, 35.05℃, 35.07℃, 35.1℃, the average temperature of the 10 temperatures is 35℃, thus the specified temperature may be 35℃, and the temperature of the target surface may be 34.8℃. The adjacent gray value difference at the specified temperature of 35℃ may be 448, the gray value difference of every 10℃ may be 448, thus the calibration value for each 1℃ may be 
Figure PCTCN2021128370-appb-000011
and the total calibration value may be
Figure PCTCN2021128370-appb-000012
each adjacent  gray value difference (except -30℃) may be increased by 8.96, and the updated relationship between the reference temperature and the gray value difference may be shown in FIG. 7C.
The device for temperature measurement provided by the embodiments of this present disclosure not only explains the principle, but also describes the compensation algorithm and process in detail to ensure the measurement accuracy in real-time, but also selects the average temperature of multiple highest temperatures on the target surface of the blackbody on time to further ensure the accuracy. The device for temperature measurement has real-time calibration function before and after leaving the factory, no matter how the device is used, the measurement accuracy will not produce large errors. Moreover, the device for temperature measurement may be an integrated device with stable and simple structure. There is a blackbody in the device, which has the function of real-time calibration of the reference temperature. When the equipment works, there is no need to change any structure, and accurate measurement may be carried out directly. At the same time, the device may ensure the stability and the accuracy of the temperature measurement without human participation and changing any structure in the whole measurement process, reduce the measurement cost and improve the measurement efficiency. It is suitable for various working environments. Moreover, the production cost is low and suitable for large-scale production.
It should be noted that the above description of the processing 300 provided for the purposes of illustration, and is not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIGs. 4A-4B are schematic diagrams illustrating the movable blackbody according to some embodiments of the present disclosure.
In some embodiments, in order to measure the temperature easily, the blackbody may be placed on the side close to the object or other suitable positions.
In some embodiments, the blackbody may be movable. In some embodiments, the blackbody may be moved by the operators manually or automatically. For example, the blackbody may be moved by a moving device, such as a cart, the operator may place the blackbody on the cart and push the blackbody to a suitable position.
In some embodiments, the blackbody may be moved according to the position of the object. In some embodiments, the position of the object may represent the position of the object when the temperature of the object is measured, for example, when the image of the object is acquired for temperature measurement.
Specially, the blackbody may be moved so that the position of the blackbody reaches a position symmetrical to the object. The position symmetrical to the object may indicate that the object and the blackbody are symmetrical to an axis (e.g., the vertical axis) of the device for measuring the temperature. As illustrated in FIG. 4A-B, the dotted lines may indicate the axis of the device for measuring the temperature, and the object may be symmetrical to the blackbody based on the axis.
In some embodiments, the operators may measure the distance between the object and the axis of the device for temperature measurement, and then move the blackbody so that the position of the blackbody reaches the position symmetrical to the object.
FIG. 5 is a flowchart illustrating an exemplary process for obtaining the calibration model according to some embodiments of the present disclosure. In some embodiments, the process 500 may be performed by the processing device 112 or any other processor (e.g., the processor 250 in FIG. 2) . The process 500 in FIG. 5 may execute the set of instructions, and when executing the instructions, the  processing device 112 or any other processor may be configured to perform the process 500. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 500 may be accomplished with one or more additional operations not described and/or without one or more of the operations herein discussed. Additionally, the order in which the operations of the process illustrated in FIG. 5 and described below is not intended to be limiting.
In 510, the plurality of the training samples may be obtained.
In some embodiments, each of at least a portion of the training samples may include a sample temperature and a corresponding label.
In some embodiments, the sample temperature may include a plurality of temperatures. For example, the sample temperature may be the temperatures at the same interval, such as -30℃, -20℃, -10℃, 0℃ and 10℃. For another example, the sample temperature may be a range of temperatures, such as 30℃-70℃.
In some embodiments, the label may represent a gray value of a pixel corresponding to the standard blackbody in an image acquired by the at least one processor when the standard blackbody is at the sample temperature. For example, the gray value of the pixel corresponding to the standard blackbody at the sample temperature -30℃ may be 0, and the gray value of the pixel corresponding to the standard blackbody at the sample temperature -20℃ may be 103.
In 520, a preliminary calibration model may be trained based on the plurality of the training samples. As used herein, the preliminary calibration model may be a prior calibration model that has been trained using a training set including at least one training sample different from the plurality of the training samples or a machine learning model that has been not trained using any training samples.
In some embodiments, the preliminary calibration model may be trained based on the plurality of the training samples with labels. Specifically, the plurality  of the labeled training samples with labels may be input into the calibration model, and the parameters of the calibration model may be updated by training.
In some embodiments, the labels may be the gray value of the pixel corresponding to the standard blackbody in the image acquired by the at least one processor when the standard blackbody is at the sample temperature, such as 103, 161.
In some embodiments, the labels may be obtained by manually setting the temperature of the blackbody.
In some embodiments, when the training calibration model meets the preset conditions, the training may end. The preset condition may be that the result of the loss function converges or is less than the preset threshold.
FIG. 6 is a block diagram illustrating an exemplary temperature measurement system according to some embodiments of the present disclosure. As shown in FIG. 6, the system 600 may include a radiation module 610, a measurement module 620, and a calibration module 630.
In some embodiments, the radiation module 610 may be configured to provide and/or obtain a specified temperature provided by a blackbody. In some embodiments, the radiation module 610 may be configured to obtain the specified temperature provided the blackbody as described elsewhere in the present disclosure.
In some embodiments, the measurement module 620 may be configured to obtain the temperature of a target surface of the blackbody and the temperature of the object. In some embodiments, the measurement module 610 may obtain the temperature of a target surface of the blackbody and the temperature of the object detected by the device for temperature measurement described elsewhere in the present disclosure.
In some embodiments, the calibration module 630 may be configured to calibrate the temperature of the object based on the specified temperature and the temperature of the target surface.
In some embodiments, the calibration module 630 may be configured to calibrate the temperature of the object according to operations including determining the gray value difference between the reference gray value corresponding to the specified temperature and the estimated gray value corresponding to the temperature of the target surface that is determined from the image of the blackbody acquired by the infrared thermal imaging camera, determining the temperature difference between the specified temperature and the temperature of the target surface, determining the calibration value based on the gray value difference and the temperature difference, and calibrating the temperature of the object based on the calibration value.
In some embodiments, the calibration module 630 may be configured to obtain the relationship between the reference temperature and the gray value corresponding to the standard blackbody at the reference temperature, and determine the reference gray value corresponding to the specified temperature based on the relationship and the specified temperature.
In some embodiments, the calibration module 630 may be configured to obtain the relationship using the calibration model, wherein the calibration model includes the trained machine learning model.
In some embodiments, the calibration module 630 may be obtained according to operations including obtaining the plurality of training samples, wherein each of at least the portion of the training samples includes the sample temperature and the corresponding label, wherein the label represents the gray value corresponding to the standard blackbody at the sample temperature, and training a calibration model based on the plurality of the training samples.
In some embodiments, the calibration module 630 may be configured to calibrate the temperature of the object in real-time.
In some embodiments, the calibration module 630 may be configured to calibrating the temperature of the object based on the distance between the blackbody and the infrared thermal imaging camera that does not satisfies the condition.
In some embodiments, the calibration module 630 may be configured to calibrating the temperature of the object in response to determining that the temperature of the object is within the temperature range.
In some embodiments, the calibration module 630 may be configured to obtain the images of at least one object, perform image recognition by processing the images and obtaining the image recognition result, wherein the image recognition result represents the distance between the object and the device for temperature measurement, and calibrate the temperature of the object closest to the device for temperature measurement based on the image recognition result.
The modules in the system 600 may be connected to or communicated with each other via a wired connection or a wireless connection. The wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof. The wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof. Two or more of the modules may be combined into a single module, and any one of the modules may be divided into two or more units. For example, the radiation module 610 and the measurement module 620 are combined as a single module which is configured to obtain the location parameter and the orientation parameter associated with the device. As another example, the system 600 includes a storage module (not shown) which is used to store data generated by the above-mentioned modules.
It should be noted that the above description of the processing 500 provided for the purposes of illustration, and is not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment, ” “one embodiment, ” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a count of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely  software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a "block, " “module, ” “device, ” “unit, ” “component, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 1703, Perl, COBOL 1702, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer  through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a software as a service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations, therefore, is not intended to limit the claimed processes and methods to any order except as may be preset in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software-only solution-e.g., an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, claimed subject matter may lie in less than all features of a single foregoing disclosed embodiment.

Claims (10)

  1. A device for temperature measurement, comprising:
    a blackbody configured to provide a specified temperature;
    an infrared thermal imaging camera configured to measure a temperature of a target surface of the blackbody and a temperature of an object; and
    at least one processor configured to calibrate the temperature of the object based on the specified temperature and the temperature of the target surface.
  2. The device of claim 1, wherein the at least one processor is configured to calibrate the temperature of the object according to operations including:
    obtaining a relationship between a reference temperature and a gray value difference;
    determining a temperature difference between the specified temperature and the temperature of the target surface;
    determining a calibration value based on the gray value difference and the temperature difference; and
    calibrating the temperature of the object based on the calibration value.
  3. The device of claim 2, wherein the at least one processor is further configured to:
    determine the gray value difference corresponding to a standard blackbody at the reference temperature.
  4. The device of claim 3, wherein the at least one processor is further configured to:
    obtain the relationship using a calibration model, wherein the calibration model includes a trained machine learning model.
  5. The device of claim 4, wherein the calibration model is obtained according to operations including:
    obtaining a plurality of training samples, wherein each of at least a portion of the training samples includes a sample temperature and a corresponding label, wherein the label represents a gray value corresponding to the standard blackbody at the sample temperature;
    training a calibration model based on the plurality of the training samples.
  6. The device of claim 1, wherein the at least one processor is further configured to:
    calibrate the temperature of the object in real-time.
  7. The device of claim 1, wherein the at least one processor is further configured to:
    calibrating the temperature of the object based on a distance between the blackbody and the infrared thermal imaging camera that does not satisfies a condition.
  8. The device of claim 1, wherein the at least one processor is further configured to:
    calibrating the temperature of the object in response to determining that the temperature of the object is within a temperature range.
  9. The device of claim 1, wherein the at least one processor is further configured to:
    obtaining images of at least one object;
    performing image recognition by processing the images and obtaining an image recognition result, wherein the image recognition result represents a distance between the object and the device for temperature measurement;
    calibrating the temperature of the object closest to the device for temperature measurement based on the image recognition result.
  10. The device of claim 1, wherein the blackbody is movable, and the blackbody is moved according to a position of the object.
PCT/CN2021/128370 2020-12-09 2021-11-03 Devices and methods for temperature measurment WO2022121562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21902269.6A EP4189342A4 (en) 2020-12-09 2021-11-03 Devices and methods for temperature measurment
US18/176,436 US20230204429A1 (en) 2020-12-09 2023-02-28 Devices and methods for temperature measurment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011445541.7A CN112665727B (en) 2020-12-09 2020-12-09 Infrared thermal imaging temperature measurement method
CN202011445541.7 2020-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/176,436 Continuation US20230204429A1 (en) 2020-12-09 2023-02-28 Devices and methods for temperature measurment

Publications (1)

Publication Number Publication Date
WO2022121562A1 true WO2022121562A1 (en) 2022-06-16

Family

ID=75402093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128370 WO2022121562A1 (en) 2020-12-09 2021-11-03 Devices and methods for temperature measurment

Country Status (4)

Country Link
US (1) US20230204429A1 (en)
EP (1) EP4189342A4 (en)
CN (1) CN112665727B (en)
WO (1) WO2022121562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115165115A (en) * 2022-09-07 2022-10-11 中亿(深圳)信息科技有限公司 Body temperature measuring method and device of smart watch, medium and wearable device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665727B (en) * 2020-12-09 2022-04-15 浙江大华技术股份有限公司 Infrared thermal imaging temperature measurement method
CN113551784A (en) * 2021-06-02 2021-10-26 浙江大华技术股份有限公司 Temperature measuring method, temperature measuring device and computer storage medium
CN113532654A (en) * 2021-06-30 2021-10-22 浙江大华技术股份有限公司 Temperature compensation method and device, computer equipment and storage medium
CN115655485B (en) * 2022-12-21 2023-04-07 浙江华感科技有限公司 Temperature measurement method and device, electronic equipment and storage medium
CN116128770B (en) * 2023-04-13 2023-08-04 杭州微影软件有限公司 Image generation method and device, electronic equipment and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349786A (en) * 2000-06-06 2001-12-21 Denso Corp Calibration method for non-contact temperature sensor
CN1821732A (en) * 2006-04-06 2006-08-23 中国人民解放军空军航空医学研究所 Method and device for real-time correcting infrared measuring temperature
CN108562363A (en) * 2018-05-04 2018-09-21 中国传媒大学 Method for accurately measuring infrared radiation characteristic transient temperature field
CN110108364A (en) * 2019-05-08 2019-08-09 武汉高德智感科技有限公司 A kind of movable body temperature screening technique and system based on black matrix timing-compensation
CN110726475A (en) * 2019-10-12 2020-01-24 浙江大华技术股份有限公司 Infrared temperature measurement calibration method and device, infrared thermal imaging equipment and storage device
CN110823381A (en) * 2019-11-05 2020-02-21 浙江大华技术股份有限公司 Method and device for determining correction temperature, storage medium and electronic device
CN211452611U (en) * 2020-03-16 2020-09-08 北京迈格威科技有限公司 Temperature measuring device
CN112161711A (en) * 2020-09-28 2021-01-01 深圳市商汤科技有限公司 Temperature correction method and device, black body and infrared temperature measurement equipment and system
CN112665727A (en) * 2020-12-09 2021-04-16 浙江大华技术股份有限公司 Infrared thermal imaging temperature measurement method
CN113375814A (en) * 2020-03-10 2021-09-10 百度在线网络技术(北京)有限公司 Infrared temperature measurement calibration method and device, electronic equipment and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741276A (en) * 2017-09-05 2018-02-27 中国航空工业集团公司洛阳电光设备研究所 A kind of method for improving technics of temperature measurement precision with infrared thermal imager
CN109870239B (en) * 2019-03-12 2020-04-07 北京环境特性研究所 Self-adaptive calibration method for uncooled infrared focal plane detector
CN211477416U (en) * 2020-03-26 2020-09-11 吉林省中业光电技术有限公司 Infrared human body temperature measuring system
US11604098B2 (en) * 2020-06-23 2023-03-14 Microsoft Technology Licensing, Llc Distance correction for body temperature estimation
CN111751006B (en) * 2020-06-24 2021-10-19 北京环境特性研究所 Data calibration method, target radiation characteristic analysis method and device
CN112033545B (en) * 2020-08-17 2022-04-22 深圳市视美泰技术股份有限公司 Human body temperature infrared measurement method and device and computer equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349786A (en) * 2000-06-06 2001-12-21 Denso Corp Calibration method for non-contact temperature sensor
CN1821732A (en) * 2006-04-06 2006-08-23 中国人民解放军空军航空医学研究所 Method and device for real-time correcting infrared measuring temperature
CN108562363A (en) * 2018-05-04 2018-09-21 中国传媒大学 Method for accurately measuring infrared radiation characteristic transient temperature field
CN110108364A (en) * 2019-05-08 2019-08-09 武汉高德智感科技有限公司 A kind of movable body temperature screening technique and system based on black matrix timing-compensation
CN110726475A (en) * 2019-10-12 2020-01-24 浙江大华技术股份有限公司 Infrared temperature measurement calibration method and device, infrared thermal imaging equipment and storage device
CN110823381A (en) * 2019-11-05 2020-02-21 浙江大华技术股份有限公司 Method and device for determining correction temperature, storage medium and electronic device
CN113375814A (en) * 2020-03-10 2021-09-10 百度在线网络技术(北京)有限公司 Infrared temperature measurement calibration method and device, electronic equipment and storage medium
CN211452611U (en) * 2020-03-16 2020-09-08 北京迈格威科技有限公司 Temperature measuring device
CN112161711A (en) * 2020-09-28 2021-01-01 深圳市商汤科技有限公司 Temperature correction method and device, black body and infrared temperature measurement equipment and system
CN112665727A (en) * 2020-12-09 2021-04-16 浙江大华技术股份有限公司 Infrared thermal imaging temperature measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4189342A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115165115A (en) * 2022-09-07 2022-10-11 中亿(深圳)信息科技有限公司 Body temperature measuring method and device of smart watch, medium and wearable device
CN115165115B (en) * 2022-09-07 2023-07-04 中亿(深圳)信息科技有限公司 Body temperature measuring method and device of intelligent watch, medium and wearable device

Also Published As

Publication number Publication date
CN112665727B (en) 2022-04-15
US20230204429A1 (en) 2023-06-29
CN112665727A (en) 2021-04-16
EP4189342A4 (en) 2024-01-03
EP4189342A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2022121562A1 (en) Devices and methods for temperature measurment
Piatti et al. Sr-4000 and camcube3. 0 time of flight (tof) cameras: Tests and comparison
US20230084728A1 (en) Systems and methods for object measurement
CN107340064B (en) Thermal imaging system heterogeneity based on scan rectangle black matrix evaluates means for correcting
CN112146763B (en) Temperature measurement method and system based on automatic identification
Schramm et al. Combining modern 3D reconstruction and thermal imaging: Generation of large-scale 3D thermograms in real-time
WO2022104816A1 (en) Temperature compensation method and system for thermal camera
CN113267258A (en) Infrared temperature measurement method, device, equipment, intelligent inspection robot and storage medium
CN105716721A (en) Infrared temperature detecting precision correcting method
CN110501026A (en) Camera internal position element caliberating device and method based on array asterism
RU2492477C1 (en) Method and device for determining volume of stack of round timber located on vehicle
CN111325793A (en) System and method for dynamically calibrating pixel size based on light spot in image measurement
Thelen et al. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps
CN109087341B (en) Fusion method of close-range hyperspectral camera and ranging sensor
Adamczyk et al. Temperature compensation method for mechanical base of 3d-structured light scanners
Andreev et al. Estimation of cloud height using ground-based stereophotography: methods, error analysis, and validation
CN116878669A (en) Temperature compensation method based on short wave infrared temperature measurement, fire monitoring method and system
CN113670445B (en) Method for calibrating imaging heterogeneity of thermal infrared imager
CN105676098A (en) Device and method for detecting response non-uniformity and linearity of CCD
Chulichkov et al. Stereoscopic ground-based determination of the cloud base height: camera position adjusting with account for lens distortion
CN115862057A (en) Portable monocular distance measurement human body abnormal behavior detection method
Chulichkov et al. Selection of optical model of stereophotography experiment for determination the cloud base height as a problem of testing of statistical hypotheses
Chulichkov et al. Stereoscopic ground-based determination of the cloud base height: theory of camera position calibration with account for lens distortion
CN112508171A (en) Image depth estimation method and device based on multilayer convolutional neural network
Konyakhin et al. Electrooptic converter for measuring linear shifts of the section boards at the main dish of the radiotelescope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021902269

Country of ref document: EP

Effective date: 20230301

NENP Non-entry into the national phase

Ref country code: DE