WO2022121018A1 - 机器人及其建图方法和装置 - Google Patents

机器人及其建图方法和装置 Download PDF

Info

Publication number
WO2022121018A1
WO2022121018A1 PCT/CN2020/140416 CN2020140416W WO2022121018A1 WO 2022121018 A1 WO2022121018 A1 WO 2022121018A1 CN 2020140416 W CN2020140416 W CN 2020140416W WO 2022121018 A1 WO2022121018 A1 WO 2022121018A1
Authority
WO
WIPO (PCT)
Prior art keywords
key frame
robot
point cloud
frame
current frame
Prior art date
Application number
PCT/CN2020/140416
Other languages
English (en)
French (fr)
Inventor
毕占甲
刘志超
赵勇胜
郭睿
Original Assignee
深圳市优必选科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优必选科技股份有限公司 filed Critical 深圳市优必选科技股份有限公司
Publication of WO2022121018A1 publication Critical patent/WO2022121018A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Definitions

  • the present application belongs to the field of robots, and in particular relates to a robot and a method and device for mapping the same.
  • the embodiments of the present application provide a robot and a mapping method and device thereof, so as to solve the problem that the robot needs to complete the mapping once in the prior art, and if it is interrupted, the mapping needs to be restarted, which is not conducive to improving the robot.
  • the problem of mapping efficiency is not conducive to improving the robot.
  • a first aspect of the embodiments of the present application provides a method for mapping a robot, the method comprising:
  • the robot According to the initial value position of the robot, search a first predetermined number of key frames in a pre-stored key frame library, and determine the reference point cloud corresponding to the searched key frames;
  • the built map corresponding to the pre-stored key frame library is improved.
  • searching for a first predetermined number of key frames in a pre-stored key frame library according to the initial value position of the robot including:
  • a sequence of key frames is obtained by sorting according to the distance, and a first predetermined number of key frames with smaller distances in the sequence are selected.
  • determining the reference point cloud corresponding to the searched key frame includes:
  • the reference point cloud of the i-th key frame is formed according to the point cloud of the intercepted 2w+1 key frames.
  • the feature point cloud corresponding to the current frame obtained by the robot is matched with the reference point cloud, and the target key frame corresponding to the current frame is determined, include:
  • the method before selecting the key frame with the best matching degree as the target key frame corresponding to the current frame, the method also includes:
  • the key frame with the best matching degree is selected as the target key frame corresponding to the current frame;
  • the initial value position is re-determined.
  • the matching degree between the current frame and each key frame is the point cloud to be registered corresponding to the current frame and each key frame.
  • the built map corresponding to the pre-stored key frame library is improved, including:
  • the first pose transformation matrix of the lidar coordinates at the current moment in the map coordinate system, and the lidar coordinates at the current moment are correcting
  • the third pose transformation matrix in the previous odometer coordinate system determines the fourth pose transformation matrix of the odometer coordinates before the correction of the odometer coordinate system at the current moment;
  • the third pose transformation matrix and the fourth pose transformation matrix determine the fifth pose transformation matrix of the current lidar coordinate system relative to the corrected odometer coordinate system
  • the built map is improved.
  • a second aspect of the embodiments of the present application provides a mapping device for a robot, and the device includes:
  • the initial value position acquisition unit is used to obtain the initial value position of the robot
  • a reference point cloud determination unit configured to search for a first predetermined number of key frames in a pre-stored key frame library according to the initial value position of the robot, and determine the reference point cloud corresponding to the searched key frames;
  • a target key frame matching unit configured to match the feature point cloud corresponding to the current frame obtained by the robot with the reference point cloud, and determine the target key frame corresponding to the current frame;
  • the map perfecting unit is used to perfect the built map corresponding to the pre-stored key frame library according to the target key frame corresponding to the current frame.
  • a third aspect of the embodiments of the present application provides a robot, including a memory, a processor, and a computer program stored in the memory and executable on the processor, which is implemented when the processor executes the computer program The steps of any one of the methods of the first aspect.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the method according to any one of the first aspects A step of.
  • the embodiments of the present application have the following beneficial effects: in the embodiments of the present application, by storing the pre-acquired key frames in the key frame library, when incremental mapping of the robot map needs to be performed, according to the determined The initial value position of the robot, find a predetermined number of key frames, and determine the target key frame corresponding to the current frame collected by the robot through point cloud matching. to be perfected. Therefore, when the robot performs simultaneous positioning and mapping, it does not need to be completed at one time, and the completed map can be effectively incrementally constructed without starting from scratch, thereby improving the efficiency of robot mapping.
  • FIG. 1 is a schematic flowchart of the implementation of a method for building a robot for mapping provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an implementation flow of a method for determining a reference point cloud provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an implementation flow of a method for selecting a target key frame provided by an embodiment of the present application
  • mapping device 4 is a schematic diagram of a mapping device for a robot provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a robot provided by an embodiment of the present application.
  • this application proposes a method for constructing a robot, as shown in Figure 1, the method includes:
  • the initial value position in the embodiment of the present application is the estimated initial position of the robot at the current moment when the robot incrementally builds the map.
  • the actual paid position may be the designated position of the user on the map received by the robot.
  • the user's designated position on the map can be received as Pi.
  • the distance between the robot's designated position Pi and the robot's real position Pt needs to be smaller than the preset distance threshold T.
  • the initial position of the robot may also be the position of the robot determined by the positioning module of the robot.
  • the positioning module may include, but is not limited to, base station positioning and the like.
  • a first predetermined number of key frames are searched in a pre-stored key frame library according to the initial value position of the robot, and a reference point cloud corresponding to the searched key frames is determined.
  • the key frame data collected before this simultaneous localization and mapping (SLAM) is stored in the key frame library. Including the position corresponding to the key frame, the point cloud information corresponding to the key frame, the transformation matrix information corresponding to the key frame, etc.
  • the transformation matrix information may include transformation matrices between coordinates such as the lidar coordinate system, the odometer coordinate system, and the map coordinate system.
  • the distance between the robot and the position points of each key frame in the key frame library can be estimated.
  • a sequence of key frames is obtained by sorting according to the distance, and a first predetermined number of key frames with smaller distances in the sequence are selected.
  • the key frame sequence can be obtained by sorting according to the size of the distance. Since the position point of the key frame is close to the initial value position, the key frame may match the current frame of the robot, the present application selects a first predetermined number of key frames with a smaller distance to perform point cloud matching with the current frame.
  • the first predetermined number of key frames may be determined according to a preset distance threshold.
  • the method of selecting the first predetermined number of key frames is not limited to the comparison of the distance with the initial value position, and the predetermined number of key frames may also be determined by other means of delimiting the position range.
  • the reference point cloud of the i-th key frame is formed according to the point cloud of the intercepted 2w+1 key frames.
  • the key frame to be matched can be taken as the center, and the length of the second predetermined number is used as the interception radius, and 2w+1 key frames can be intercepted in the key frame sequence. frame, select a certain number of surrounding keyframes to superimpose to obtain a reference point cloud, which can improve the registration efficiency.
  • the reference point cloud corresponding to the key frame may also be obtained through other key frame selection methods, for example, the point cloud corresponding to a single key frame may be used as the reference point cloud.
  • the feature point cloud corresponding to the current frame acquired by the robot is matched with the reference point cloud, and the target key frame corresponding to the current frame is determined.
  • the target key frame is a key frame corresponding to the current frame in the key frame library.
  • This embodiment of the present application can convert the point cloud of the current frame currently collected by the robot into a point cloud corresponding to the map coordinate system, that is, the point cloud to be registered, and convert the reference point stored in the key frame library and based on the map coordinate system
  • the cloud performs matching, thereby improving the accuracy and efficiency of matching.
  • the specific matching process can be shown in Figure 3, including:
  • the pose transformation matrix corresponding to the current frame of the robot is determined.
  • the pose transformation matrix corresponding to the robot when the image of the current frame is collected can be obtained, and through the pose transformation matrix, the change information of the robot pose can be determined.
  • the feature point cloud corresponding to the current frame is transformed into a point cloud to be registered.
  • the feature point cloud of the current frame collected by the robot can be transformed to obtain the feature point cloud corresponding to the map coordinate system, that is, the point cloud to be registered.
  • the to-be-registered point cloud is matched with the reference point cloud corresponding to each of the searched key frames, and the matching degree between the current frame and each key frame is determined.
  • the mean square error between the point cloud to be registered and the reference point cloud can be calculated through the nearest neighbor iterative algorithm.
  • the matching degree between the point cloud to be registered and the reference point cloud is reflected by the mean square error. The higher the matching degree between the point cloud to be registered and the reference point cloud, the smaller the mean square error value.
  • the key frame with the best matching degree is selected as the target key frame corresponding to the current frame.
  • the matching degree of the reference point cloud corresponding to the key frame determined by the initial value position can be calculated with the point cloud to be registered one by one, and the key frame with the largest matching degree, that is, the key frame with the smallest mean square error, can be obtained as the target key frame.
  • the step of comparing the best matching degree value with a preset matching degree threshold value may also be included.
  • the initial value position can be far away from the actual position, and the found key frame is not an accurate target key frame.
  • the initial value position can be re-determined, and further Find the exact target keyframe. If the matching degree threshold is greater than or equal to the preset matching degree threshold, for example, the mean square error is smaller than the preset error threshold, the key frame with the best matching degree can be used as the target key frame corresponding to the current frame.
  • the built map corresponding to the pre-stored key frame library is improved according to the target key frame corresponding to the current frame.
  • a closed-loop factor can be established according to the current key frame index and the matching historical key frame index.
  • the position of the robot in the built map can be determined, and the local positioning of the robot can be realized.
  • the pose transformation matrix T_odomold_2_odomnew can be expressed as:
  • T_map_2_odomold is the second pose transformation matrix of the odometer coordinate system of the target key frame in the map coordinate system
  • T_map_2_lidar is the first pose transformation matrix of the lidar coordinates at the current moment in the map coordinate system
  • T_odomnew_2_lidar is the current moment.
  • T_odomold_2_lidar T_odomold_2_odomnew*T_odomnew_2_lidar
  • the robot can optimize the pose according to the odometer coordinate system when the previous map was built, and combined with the local positioning information of the robot, the robot can complete the incremental map more effectively, making SLAM more effective.
  • the process is not limited to one-time completion.
  • When building a second map there is no need to start over. It can effectively combine the previous map data and the built map for incremental map building, that is, to expand or expand the previous map. Update, effectively improve the efficiency of robot mapping.
  • FIG. 4 is a schematic diagram of a robot mapping device provided by an embodiment of the application. As shown in FIG. 4 , the device includes:
  • an initial value position obtaining unit 401 used for obtaining the initial value position of the robot
  • a reference point cloud determination unit 402 configured to search a first predetermined number of key frames in a pre-stored key frame library according to the initial value position of the robot, and determine the reference point cloud corresponding to the searched key frames;
  • a target key frame matching unit 403 configured to match the feature point cloud corresponding to the current frame obtained by the robot with the reference point cloud, and determine the target key frame corresponding to the current frame;
  • the map perfecting unit 404 is configured to perfect the built map corresponding to the pre-stored key frame library according to the target key frame corresponding to the current frame.
  • the robot mapping device shown in FIG. 4 corresponds to the robot mapping method shown in FIG. 1 .
  • FIG. 5 is a schematic diagram of a robot provided by an embodiment of the present application.
  • the robot 5 of this embodiment includes: a processor 50 , a memory 51 , and a computer program 52 stored in the memory 51 and executable on the processor 50 , such as a robot mapping program.
  • the processor 50 executes the computer program 52, the steps in each of the above embodiments of the robot mapping method are implemented.
  • the processor 50 executes the computer program 52, the functions of the modules/units in the foregoing device embodiments are implemented.
  • the computer program 52 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 51 and executed by the processor 50 to complete the this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 52 in the robot 5 .
  • the robot may include, but is not limited to, a processor 50 and a memory 51 .
  • FIG. 5 is only an example of the robot 5, and does not constitute a limitation to the robot 5. It may include more or less components than the one shown, or combine some components, or different components, such as
  • the robot may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 50 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 51 may be an internal storage unit of the robot 5 , such as a hard disk or a memory of the robot 5 .
  • the memory 51 can also be an external storage device of the robot 5, such as a plug-in hard disk equipped on the robot 5, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash card (Flash Card) and so on.
  • the memory 51 may also include both an internal storage unit of the robot 5 and an external storage device.
  • the memory 51 is used to store the computer program and other programs and data required by the robot.
  • the memory 51 can also be used to temporarily store data that has been output or will be output.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the apparatus/terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the present application can implement all or part of the processes in the methods of the above embodiments, and it can also be completed by instructing the relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium.
  • the computer program When executed by a processor, the steps of each of the above method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunication signal and software distribution medium, etc.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Excluded are electrical carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种机器人的建图方法,包括:获取机器人的初值位置;根据机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云;将机器人获取的当前帧所对应的特征点云与参考点云进行匹配,确定当前帧对应的目标关键帧;根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。从而可以使得机器人进行同时定位与建图时,不需要一次性完成,不需要重头开始也能有效的对已完成的地图进行增量建图,能够提高机器人建图的效率。还涉及一种机器人的建图装置、一种机器人及一种计算机可读存储介质。

Description

机器人及其建图方法和装置
本申请要求于2020年12月08日在中国专利局提交的、申请号为202011424296.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于机器人领域,尤其涉及一种机器人及其建图方法和装置。
背景技术
随着技术的进步,商用服务器机人越来越普及。并且,感知外界环境的多线激光雷达传感器的成本也在逐渐降低,越来越多的多线激光雷达传感器出现在商用服务机器人配置中,因此,机器人的即时定位与建图(英文全称为simultaneous localization and mapping,英文简称为SLAM)技术也得到了迅猛的进步和发展。
目前,通过SLAM技术建图时,通常需要一次性完成。如果机器人在建图过程中遇到异常情况中止,或者后续需要进行扩展建图时,则需要重头开始进行建图,不利于提高机器人建图效率。
技术问题
有鉴于此,本申请实施例提供了一种机器人及其建图方法和装置,以解决现有技术中机器人建图时需要一次完成,如果中断,则需要重头开始进行建图,不利于提高机器人建图效率的问题。
技术解决方案
本申请实施例的第一方面提供了一种机器人的建图方法,所述方法包括:
获取机器人的初值位置;
根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云;
将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧;
根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。
结合第一方面,在第一方面的第一种可能实现方式中,根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,包括:
获取预先存储的关键帧与所述初值位置的距离;
根据所述距离进行排序得到关键帧序列,选择序列中距离较小的第一预定数量的关键帧。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,确定所查找的关键帧对应的参考点云,包括:
在所述关键帧序列中,以第i个关键帧为中心,以第二预定数量w的长度在所述关键帧序列截取2w+1个关键帧,其中,i为小于第一预定数量的正整数,w为大于或等于0的整数;
根据所截取的2w+1个关键帧的点云构成所述第i个关键帧的参考点云。
结合第一方面,在第一方面的第三种可能实现方式中,将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧,包括:
确定机器人当前帧对应的位姿变换矩阵;
根据所述位姿变换矩阵,将所述当前帧所对应的特征点云变换为待配准点云;
将所述待配准点云与所查找的各个关键帧对应的参考点云进行匹配,确定当前帧与各个关键帧的匹配度;
选择匹配度最佳的关键帧作为当前帧对应的目标关键帧。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式中,在选择 匹配度最佳的关键帧作为当前帧对应的目标关键帧之前,所述方法还包括:
将匹配度最佳的关键帧的匹配度与预先设定的匹配度阈值进行比较;
如果匹配度最佳的关键帧的匹配度大于或等于预先设定的匹配度阈值,则选择匹配度最佳的关键帧作为当前帧对应的目标关键帧;
如果匹配度最佳的关键帧的匹配度小于预先设定的匹配度阈值,则重新确定所述初值位置。
结合第一方面的第三种可能实现方式,在第一方面的第五种可能实现方式中,所述当前帧与各个关键帧的匹配度,为当前帧对应的待配准点云与各个关键帧对应的参考点云的最小均方误差。
结合第一方面,在第一方面的第六种可能实现方式中,根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善,包括:
根据目标关键帧的里程计坐标系在地图坐标系中的第二位姿变换矩阵、当前时刻的激光雷达坐标在地图坐标系中的第一位姿变换矩阵,以及当前时刻的激光雷达坐标在校正前的里程计坐标系中的第三位姿变换矩阵,确定当前时刻的里程计坐标系在校正前的里程计坐标的第四位姿变换矩阵;
根据所述第三位姿变换矩阵和所述第四位姿变换矩阵,确定当前的激光雷达坐标系相对于校正后的里程计坐标系的第五位姿变换矩阵;
根据当前帧所对应的目标帧在地图坐标系中的位置,以及第一位姿变换矩阵,对已建地图进行完善。
本申请实施例的第二方面提供了一种机器人的建图装置,所述装置包括:
初值位置获取单元,用于获取机器人的初值位置;
参考点云确定单元,用于根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云;
目标关键帧匹配单元,用于将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧;
地图完善单元,用于根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。
本申请实施例的第三方面提供了一种机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面任一项所述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述方法的步骤。
有益效果
本申请实施例与现有技术相比存在的有益效果是:本申请实施例通过将预先获取的关键帧通过关键帧库进行存储,在需要对机器人地图进行增量建图时,根据所确定的机器人的初值位置,查找预定数量的关键帧,并通过点云匹配的方式确定机器人所采集的当前帧对应的目标关键帧,根据所确定的目标关键帧,对关键帧库对应的已建地图进行完善。从而可以使得机器人进行同时定位与建图时,不需要一次性完成,不需要重头开始也能有效的对已完成的地图进行增量建图,从而能够提高机器人建图的效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种机器人的建图方法的实现流程示意图;
图2是本申请实施例提供的一种参考点云确定方法的实现流程示意图;
图3是本申请实施例提供的一种目标关键帧选择方法的实现流程示意图;
图4是本申请实施例提供的一种机器人的建图装置的示意图;
图5是本申请实施例提供的机器人的示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
目前,对于机器人同时定位与建图操作中,通常需要一次性完成场景中的地图构建。在完成场景中的地图构建后,可得到包括充足的静态环境信息的地图。但是,如果在构建地图过程中出现中断,比如机器人在构建过程中出现异常停机。在重新开机时,机器人的位姿发生变化,机器人则需要重头开始地图构建。或者,当地图需要进一步扩展或局部更新,则需要重头开始进行地图构建,不利于提高机器人地图构建效率。
基于此问题,本申请提出了一种机器人的建图方法,如图1所示,该方法包括:
在S101中,获取机器人的初值位置。
具体的,本申请实施例中的初值位置,即机器人在对地图进行增量建图时,所估计的机器人在当前时刻的初始位置。
所述实付位置可以为机器人接收到的用户在地图中的指定位置。比如,可以接收用户在地图上的指定位置为Pi。为了提高机器人增量建图的精度,机器人的指定位置Pi与机器人真实位置Pt之间的距离需要小于预设的距离阈值T。
在可能的实现方式中,机器人的初值位置也可以为机器人的定位模块所确定的机器人的位置。定位模块可以包括但不限于基站定位等。
在S102中,根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云。
由于机器人的初值位置与真实位置之间可能会存在差异。为了准确的获取机器人当前位置在关键帧库中所匹配的关键帧,可以通过点云匹配的方式,查找所匹配的关键帧。点云匹配的过程可以如图2所示,包括:
在S201中,获取预先存储的关键帧与所述初值位置的距离。
在所述关键帧库中存储有本次同时定位与建图(SLAM)之前所采集的关键帧的数据。包括关键帧对应的位置、关键帧对应的点云信息、关键帧所对应的变换矩阵信息等。变换矩阵信息可能包括激光雷达坐标系、里程计坐标系、地图坐标系等坐标之间的变换矩阵。
根据预先存储的关键帧库中的关键帧的位置信息,结合机器人初值位置,可以估计机器人与关键帧库中的各个关键帧的位置点的距离。
在S202中,根据所述距离进行排序得到关键帧序列,选择序列中距离较小的第一预定数量的关键帧。
根据所估计计算得到的距离,按照距离的大小进行排序,可以得到关键帧序列。由于关键帧的位置点距离初值位置较近时,该关键帧可能与机器人的当前帧匹配,本申请选择距离较小的第一预定数量的关键帧与当前帧进行点云匹配。
由于初值位置与真实位置相差一定的距离,因此,可以根据预先设定的距离阈值来确定第一预定数量的关键帧。
当然,选择第一预定数量的关键帧的方式不局限于与初值位置的距离的大小比较,还可以通过其它位置范围的划定方式来确定预定数量的关键帧。
在S203中,在所述关键帧序列中,以第i个关键帧为中心,以第二预定数量w的长度在所述关键帧序列截取2w+1个关键帧,其中,i为小于第一预定数量的正整数,w为大 于或等于0的整数。
在S204中,根据所截取的2w+1个关键帧的点云构成所述第i个关键帧的参考点云。
确定关键帧用于匹配的其它关键帧的一种实现方式中,可以以待匹配的关键帧为中心,以第二预定数量的长度作为截取半径,在关键帧序列中截取到2w+1个关键帧,选择周围一定数量的关键帧进行叠加得到参考点云,从而能够提高配准效率。
或者,在可能的实现方式中,也可以通过其它的关键帧选择方式,获取关键帧对应的参考点云,比如可以通过单个关键帧对应的点云作为参考点云。
在S103中,将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧。
其中,目标关键帧为关键帧库中与当前帧对应的关键帧。
为了便于将机器人在当前时刻所采集的当前帧与预先存储的关键帧进行比较,需要将机器人的当前帧与存储的关键帧进行坐标统一。本申请实施例可以将机器人当前所采集的当前帧的点云转换为地图坐标系对应的点云,即待配准点云,将关键帧库中所存储的、以地图坐标系为基础的参考点云进行匹配,从而提高匹配的准确度和效率。具体匹配过程可以如图3所示,包括:
在S301中,确定机器人当前帧对应的位姿变换矩阵。
根据机器人的位姿信息,可以获取机器人在采集当前帧的图像时所对应的位姿变换矩阵,通过该位姿变换矩阵,可以确定机器人位姿的变化信息。
在S302中,根据所述位姿变换矩阵,将所述当前帧所对应的特征点云变换为待配准点云。
根据所确定的机器人的位姿变换矩阵,可以对机器人所采集的当前帧的特征点云进行变换,得到地图坐标系对应的特征点云,即待配准点云。
在S303中,将所述待配准点云与所查找的各个关键帧对应的参考点云进行匹配,确定当前帧与各个关键帧的匹配度。
将所述待配准点云与所查找到的各个关键帧对应的参考点云进行匹配时,可以通过最近邻迭代算法,计算待配准点云与参考点云之间的均方误差。通过均方误差来反应待配准点云与参考点云之间的匹配度。待配准点云与参考点云之间的匹配度越高,则均方误差值越小。
在S304中,选择匹配度最佳的关键帧作为当前帧对应的目标关键帧。
可以将通过初值位置所确定的关键帧对应的参考点云逐个与待配准点云进行匹配度计算,得到匹配度最大的关键帧,即最小的均方误差的关键帧,作为目标关键帧。
在本申请可能的实现方式中,还可以包括将匹配度最佳值与预设的匹配度阈值进行比较的步骤。通过匹配度阈值的筛选,可以避免初值位置与实际位置相隔较远,所查找到的关键帧并非准确的目标关键帧的情况,在这种情况下,可以重新确定所述初值位置,进一步查找准确的目标关键帧。如果匹配度阈值大于或等于预先设定的匹配度阈值,比如均方误差小于预先设定的误差阈值,则可以将匹配度最佳的关键帧作为当前帧对应的目标关键帧。
在S104中,根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。
在确定了当前帧对应的目标关键帧后,可以根据当前关键帧索引与匹配的历史关键帧索引,建立闭环因子。即可确定机器人在已建地图中的位置,实现对机器人的局部定位。
在本申请实施例中,由于二次开机建图时,机器人当前的里程计数据与之前建图的里程计数据没有匹配,在建图过程中,需要融合之前的里程计数据进行位姿优化,因此,需要对前后两次建图的里程计坐标系进行校正。
假设当前的里程计坐标系为odomnew,上次建图时的里程计坐标系为odomold,则上次建图的里程计坐标系odomold中的坐标点转换为当前的里程计坐标系odomnew的第四位 姿变换矩阵T_odomold_2_odomnew可以为表示:
T_odomold_2_odomnew
=(T_map_2_odomold) -1*T_map_2_lidar*(T_odomnew_2_lidar) -1
其中,T_map_2_odomold为目标关键帧的里程计坐标系在地图坐标系中的第二位姿变换矩阵,T_map_2_lidar为当前时刻的激光雷达坐标在地图坐标系中的第一位姿变换矩阵,T_odomnew_2_lidar为当前时刻的激光雷达坐标在校正前的里程计坐标系中的第三位姿变换矩阵。
在确定上次建图的里程计坐标系odomold中的坐标点转换为当前的里程计坐标系odomnew的第四位姿变换矩阵T_odomold_2_odomnew后,可以根据公式:T_odomold_2_lidar=T_odomold_2_odomnew*T_odomnew_2_lidar,确定当前的激光雷达坐标系相对于校正后的里程计坐标系的第五位姿变换矩阵T_odomold_2_lidar。
根据校正后的里程计坐标系,可以使得机器人能够根据之前建图时的里程计坐标系进行位姿优化,结合机器人的局部定位信息,从而能够更为有效的完成机器人增量建图,使得SLAM过程中不局限于一次性完成,在二次建图时,可以不需要重头开始,可以有效的结合之前的建图数据和所建的地图进行增量建图,即对之前的地图进行扩展或更新,有效的提高机器人建图效率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图4为本申请实施例提供的一种机器人的建图装置的示意图,如图4所示,该装置包括:
初值位置获取单元401,用于获取机器人的初值位置;
参考点云确定单元402,用于根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云;
目标关键帧匹配单元403,用于将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧;
地图完善单元404,用于根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。
图4所示的机器人建图装置,与图1所示的机器人建图方法对应。
图5是本申请一实施例提供的机器人的示意图。如图5所示,该实施例的机器人5包括:处理器50、存储器51以及存储在所述存储器51中并可在所述处理器50上运行的计算机程序52,例如机器人的建图程序。所述处理器50执行所述计算机程序52时实现上述各个机器人的建图方法实施例中的步骤。或者,所述处理器50执行所述计算机程序52时实现上述各装置实施例中各模块/单元的功能。
示例性的,所述计算机程序52可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器51中,并由所述处理器50执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序52在所述机器人5中的执行过程。
所述机器人可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是机器人5的示例,并不构成对机器人5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述机器人还可以包括输入输出设备、网络接入设备、总线等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管 逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51可以是所述机器人5的内部存储单元,例如机器人5的硬盘或内存。所述存储器51也可以是所述机器人5的外部存储设备,例如所述机器人5上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所述机器人5的内部存储单元也包括外部存储设备。所述存储器51用于存储所述计算机程序以及所述机器人所需的其他程序和数据。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进 行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种机器人的建图方法,其特征在于,所述方法包括:
    获取机器人的初值位置;
    根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云;
    将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧;
    根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。
  2. 根据权利要求1所述的方法,其特征在于,根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,包括:
    获取预先存储的关键帧与所述初值位置的距离;
    根据所述距离进行排序得到关键帧序列,选择序列中距离较小的第一预定数量的关键帧。
  3. 根据权利要求2所述的方法,其特征在于,确定所查找的关键帧对应的参考点云,包括:
    在所述关键帧序列中,以第i个关键帧为中心,以第二预定数量w的长度在所述关键帧序列截取2w+1个关键帧,其中,i为小于第一预定数量的正整数,w为大于或等于0的整数;
    根据所截取的2w+1个关键帧的点云构成所述第i个关键帧的参考点云。
  4. 根据权利要求1所述的方法,其特征在于,将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧,包括:
    确定机器人当前帧对应的位姿变换矩阵;
    根据所述位姿变换矩阵,将所述当前帧所对应的特征点云变换为待配准点云;
    将所述待配准点云与所查找的各个关键帧对应的参考点云进行匹配,确定当前帧与各个关键帧的匹配度;
    选择匹配度最佳的关键帧作为当前帧对应的目标关键帧。
  5. 根据权利要求4所述的方法,其特征在于,在选择匹配度最佳的关键帧作为当前帧对应的目标关键帧之前,所述方法还包括:
    将匹配度最佳的关键帧的匹配度与预先设定的匹配度阈值进行比较;
    如果匹配度最佳的关键帧的匹配度大于或等于预先设定的匹配度阈值,则选择匹配度最佳的关键帧作为当前帧对应的目标关键帧;
    如果匹配度最佳的关键帧的匹配度小于预先设定的匹配度阈值,则重新确定所述初值位置。
  6. 根据权利要求4所述的方法,其特征在于,所述当前帧与各个关键帧的匹配度,为当前帧对应的待配准点云与各个关键帧对应的参考点云的最小均方误差。
  7. 根据权利要求1所述的方法,其特征在于,根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善,包括:
    根据目标关键帧的里程计坐标系在地图坐标系中的第二位姿变换矩阵、当前时刻的激光雷达坐标在地图坐标系中的第一位姿变换矩阵,以及当前时刻的激光雷达坐标在校正前的里程计坐标系中的第三位姿变换矩阵,确定当前时刻的里程计坐标系在校正前的里程计坐标的第四位姿变换矩阵;
    根据所述第三位姿变换矩阵和所述第四位姿变换矩阵,确定当前的激光雷达坐标系相对于校正后的里程计坐标系的第五位姿变换矩阵;
    根据当前帧所对应的目标帧在地图坐标系中的位置,以及第一位姿变换矩阵,对已建地图进行完善。
  8. 一种机器人的建图装置,其特征在于,所述装置包括:
    初值位置获取单元,用于获取机器人的初值位置;
    参考点云确定单元,用于根据所述机器人的初值位置,在预先存储的关键帧库中查找第一预定数量的关键帧,确定所查找的关键帧对应的参考点云;
    目标关键帧匹配单元,用于将机器人获取的当前帧所对应的特征点云与所述参考点云进行匹配,确定所述当前帧对应的目标关键帧;
    地图完善单元,用于根据当前帧所对应的目标关键帧,对预先存储的关键帧库对应的已建地图进行完善。
  9. 一种机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤。
PCT/CN2020/140416 2020-12-08 2020-12-28 机器人及其建图方法和装置 WO2022121018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011424296.1 2020-12-08
CN202011424296.1A CN112595323A (zh) 2020-12-08 2020-12-08 机器人及其建图方法和装置

Publications (1)

Publication Number Publication Date
WO2022121018A1 true WO2022121018A1 (zh) 2022-06-16

Family

ID=75188851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140416 WO2022121018A1 (zh) 2020-12-08 2020-12-28 机器人及其建图方法和装置

Country Status (2)

Country Link
CN (1) CN112595323A (zh)
WO (1) WO2022121018A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308771A (zh) * 2022-10-12 2022-11-08 深圳市速腾聚创科技有限公司 障碍物的检测方法及装置、介质及电子设备
CN115390085A (zh) * 2022-07-28 2022-11-25 广州小马智行科技有限公司 基于激光雷达的定位方法、装置、计算机设备和存储介质
CN115630185A (zh) * 2022-09-23 2023-01-20 深圳市云洲创新科技有限公司 一种重定位方法、水面航行器及存储介质
CN116481517A (zh) * 2023-06-25 2023-07-25 深圳市普渡科技有限公司 扩展建图方法、装置、计算机设备和存储介质
CN116592869A (zh) * 2023-04-13 2023-08-15 广州汽车集团股份有限公司 地图的更新方法、装置、电子设备及存储介质
WO2024193095A1 (zh) * 2023-03-21 2024-09-26 上海仙工智能科技有限公司 一种地图自动更新方法及系统、存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674351B (zh) * 2021-07-27 2023-08-08 追觅创新科技(苏州)有限公司 一种机器人的建图方法及机器人
CN113624222B (zh) * 2021-07-30 2024-09-13 深圳市优必选科技股份有限公司 一种地图的更新方法、机器人及可读存储介质
CN113899357B (zh) * 2021-09-29 2023-10-31 北京易航远智科技有限公司 视觉slam的增量建图方法、装置、机器人及可读存储介质
CN114136316B (zh) * 2021-12-01 2024-08-02 珠海一微半导体股份有限公司 基于点云特征点的惯导误差消除方法、芯片及机器人
CN114279456B (zh) * 2021-12-06 2024-04-30 纵目科技(上海)股份有限公司 图片构建/车辆定位方法、系统、终端及计算机存储介质
CN115191871B (zh) * 2022-06-07 2024-05-28 深圳市倍思科技有限公司 一种数据时间同步的方法、装置、清洁机器人及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087827A (ko) * 2017-01-25 2018-08-02 한국과학기술연구원 무선 환경 변화에 강인한 slam 방법 및 장치
CN109141393A (zh) * 2018-07-02 2019-01-04 北京百度网讯科技有限公司 重定位方法、设备及存储介质
US20190219401A1 (en) * 2018-01-12 2019-07-18 The Trustees Of The University Of Pennsylvania Probabilistic data association for simultaneous localization and mapping
CN110561416A (zh) * 2019-08-01 2019-12-13 深圳市银星智能科技股份有限公司 一种激光雷达重定位方法及机器人
US20200116498A1 (en) * 2018-10-16 2020-04-16 Ubtech Robotics Corp Visual assisted distance-based slam method and mobile robot using the same
CN111311684A (zh) * 2020-04-01 2020-06-19 亮风台(上海)信息科技有限公司 一种进行slam初始化的方法与设备
CN111795687A (zh) * 2020-06-29 2020-10-20 深圳市优必选科技股份有限公司 一种机器人地图更新方法、装置、可读存储介质及机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087827A (ko) * 2017-01-25 2018-08-02 한국과학기술연구원 무선 환경 변화에 강인한 slam 방법 및 장치
US20190219401A1 (en) * 2018-01-12 2019-07-18 The Trustees Of The University Of Pennsylvania Probabilistic data association for simultaneous localization and mapping
CN109141393A (zh) * 2018-07-02 2019-01-04 北京百度网讯科技有限公司 重定位方法、设备及存储介质
US20200116498A1 (en) * 2018-10-16 2020-04-16 Ubtech Robotics Corp Visual assisted distance-based slam method and mobile robot using the same
CN110561416A (zh) * 2019-08-01 2019-12-13 深圳市银星智能科技股份有限公司 一种激光雷达重定位方法及机器人
CN111311684A (zh) * 2020-04-01 2020-06-19 亮风台(上海)信息科技有限公司 一种进行slam初始化的方法与设备
CN111795687A (zh) * 2020-06-29 2020-10-20 深圳市优必选科技股份有限公司 一种机器人地图更新方法、装置、可读存储介质及机器人

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115390085A (zh) * 2022-07-28 2022-11-25 广州小马智行科技有限公司 基于激光雷达的定位方法、装置、计算机设备和存储介质
CN115630185A (zh) * 2022-09-23 2023-01-20 深圳市云洲创新科技有限公司 一种重定位方法、水面航行器及存储介质
CN115630185B (zh) * 2022-09-23 2024-02-02 深圳市云洲创新科技有限公司 一种重定位方法、水面航行器及存储介质
CN115308771A (zh) * 2022-10-12 2022-11-08 深圳市速腾聚创科技有限公司 障碍物的检测方法及装置、介质及电子设备
CN115308771B (zh) * 2022-10-12 2023-03-14 深圳市速腾聚创科技有限公司 障碍物的检测方法及装置、介质及电子设备
WO2024193095A1 (zh) * 2023-03-21 2024-09-26 上海仙工智能科技有限公司 一种地图自动更新方法及系统、存储介质
CN116592869A (zh) * 2023-04-13 2023-08-15 广州汽车集团股份有限公司 地图的更新方法、装置、电子设备及存储介质
CN116592869B (zh) * 2023-04-13 2024-05-03 广州汽车集团股份有限公司 地图的更新方法、装置、电子设备及存储介质
CN116481517A (zh) * 2023-06-25 2023-07-25 深圳市普渡科技有限公司 扩展建图方法、装置、计算机设备和存储介质
CN116481517B (zh) * 2023-06-25 2023-10-13 深圳市普渡科技有限公司 扩展建图方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN112595323A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2022121018A1 (zh) 机器人及其建图方法和装置
CN110561423B (zh) 位姿变换的方法、机器人及存储介质
CN110657803B (zh) 机器人定位方法、装置以及存储装置
US20210183097A1 (en) Spare Part Identification Using a Locally Learned 3D Landmark Database
JP6505939B1 (ja) 充電台の識別方法、装置、ロボット及びコンピュータ読取可能な記憶媒体
CN110648363A (zh) 相机姿态确定方法、装置、存储介质及电子设备
US11941989B2 (en) Method for determining collision distance, storage medium and electronic equipment
CN111177295A (zh) 建图重影消除方法、装置、计算机可读存储介质及机器人
WO2022062355A1 (zh) 一种融合定位方法及装置
CN112198878B (zh) 一种即时地图构建方法、装置、机器人及存储介质
EP3716103A2 (en) Method and apparatus for determining transformation matrix, and non-transitory computer-readable recording medium
CN111145634B (zh) 一种校正地图的方法及装置
CN115265489B (zh) 一种动态遥感监测的国土测绘方法及其系统
WO2023005020A1 (zh) 反光板定位方法、机器人及计算机可读存储介质
US11034028B2 (en) Pose determining method for mobile robot and apparatus and mobile robot thereof
CN115406452A (zh) 一种实时定位及建图方法、装置及终端设备
CN111368860A (zh) 重定位方法及终端设备
CN114724056A (zh) 回环检测方法、相关设备以及装置
WO2022036981A1 (zh) 机器人及其地图构建方法和装置
WO2022252482A1 (zh) 机器人及其环境地图构建方法和装置
CN112212851B (zh) 一种位姿确定方法、装置、存储介质及移动机器人
WO2023168747A1 (zh) 基于域控制器平台的自动泊车的停车位标注方法及装置
CN114359678A (zh) 数据标注方法和装置
US20240060781A1 (en) Map matching method, control apparatus, storage medium, and vehicle
CN110874246A (zh) 一种模块加载方法、系统及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964947

Country of ref document: EP

Kind code of ref document: A1