WO2022119256A1 - Drug response prediction device using self-attention-based hierachical network, and method therefor - Google Patents

Drug response prediction device using self-attention-based hierachical network, and method therefor Download PDF

Info

Publication number
WO2022119256A1
WO2022119256A1 PCT/KR2021/017761 KR2021017761W WO2022119256A1 WO 2022119256 A1 WO2022119256 A1 WO 2022119256A1 KR 2021017761 W KR2021017761 W KR 2021017761W WO 2022119256 A1 WO2022119256 A1 WO 2022119256A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
pathway
level
network
gene
Prior art date
Application number
PCT/KR2021/017761
Other languages
French (fr)
Korean (ko)
Inventor
남호정
진일중
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2022119256A1 publication Critical patent/WO2022119256A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/60In silico combinatorial chemistry
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/90Programming languages; Computing architectures; Database systems; Data warehousing

Definitions

  • the present invention relates to drug reactivity prediction, and more particularly, to drug reactivity prediction technology using an artificial neural network.
  • the method of experimenting based on living organisms is called in vivo, and the method through a glass test tube is called in-vitro.
  • GDSC Geneomics of Drug Sensitivity in Cancer
  • the inventors of the present invention have been working hard to solve the problems of drug reactivity prediction using artificial intelligence of the prior art. After much effort, the present invention was completed after much effort to complete a drug responsiveness prediction device and method including an artificial intelligence network that can reflect the importance that varies depending on the expression level of genes for new or existing cancer cells.
  • An object of the present invention is to provide an apparatus and method for predicting drug reactivity including an artificial intelligence network that can reflect the state of cells, such as the amount of gene expression in cells that change frequently based on the self-attention technique. .
  • a gene-level network that outputs pathway activity in a gene-level self-attention-based artificial intelligence network that inputs gene expression levels and drug descriptors for each pathway; a pathway-level network that receives the pathway activity as an input and outputs a pathway feature multiplied by a weight to a pathway-level self-attention-based AI network; a drug network that outputs drug descriptors using a drug deep learning network (DNN); and a reactivity prediction network for outputting a drug response prediction using a drug response deep learning network by inputting the weighted pathway feature and the drug descriptor as inputs.
  • DNN drug deep learning network
  • the gene-level network obtains a gene-level attention score by using a value passed through a gene-level weight network with the gene expression level and drug descriptor as inputs, and the gene-level attention score and the gene expression level It is characterized in that the pathway activity is obtained by a value multiplied by .
  • the pathway level network obtains a pathway level attention score as a value passed through a pathway level weight network with the pathway activity and drug descriptor as inputs, and multiplies the pathway level attention score by the pathway activity. It is characterized in that a path feature multiplied by a weight is obtained.
  • the drug descriptor is characterized in that it is obtained using a Morgan fingerprint.
  • the reactivity prediction network is characterized in that the drug response prediction is output as an IC50 predicted value.
  • the step (a) is to obtain a gene level attention score (Attention Score) using the value passed through the gene level weight network as the input of the gene expression level and the drug descriptor, the gene level attention score and the gene expression It is characterized in that the pathway activity is calculated as a value multiplied by the amount.
  • a gene level attention score (Attention Score) using the value passed through the gene level weight network as the input of the gene expression level and the drug descriptor, the gene level attention score and the gene expression It is characterized in that the pathway activity is calculated as a value multiplied by the amount.
  • the pathway-level network obtains a pathway-level attention score using a value passed through a pathway-level weighting network with the pathway activity and drug descriptor as inputs, and the pathway-level attention score and the pathway A value multiplied by the activity is characterized in that a pathway feature multiplied by the weight is obtained.
  • the drug descriptor in step (c) is characterized in that it is obtained using a Morgan fingerprint.
  • the step (d) is characterized in that the drug response prediction is output as an IC50 predicted value.
  • the network state is changed to reflect this, and it is possible to predict an accurate drug response.
  • FIG. 1 is a schematic structural diagram of a self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a gene level network according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a pathway level network according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a drug network according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a reactive prediction network according to a preferred embodiment of the present invention.
  • FIG. 6 is a graph showing the drug reactivity results predicted by the self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for predicting self-attention-based drug reactivity according to another preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
  • Self-attention-based drug reactivity prediction apparatus 100 is a gene-level network 110 , a pathway-level network 120 , a drug network 130 , and reactivity and a Response Prediction network 140 .
  • the self-attention-based drug reactivity prediction apparatus 100 predicts the reactivity between a drug and cancer cells using an artificial intelligence network.
  • the self-attention-based drug reactivity prediction apparatus 100 may include a processor and a memory, and program codes for driving the processor and learned network data may be stored in the memory.
  • an artificial intelligence neural network based on the Self-Attention technique to obtain the Attention Score, it has the advantage of being able to check the change in importance according to the state of each cell or the amount of gene expression.
  • the gene-level network 110 and the pathway-level network 120 of the present invention use self-attention-based artificial intelligence neural network networks.
  • the gene-level network 110 receives the gene expression level 10 and the drug descriptor 20 of the sample and outputs pathway activity based on self-attention, and the pathway level (Pathway- level) the network 120 receives the pathway activity as an input and outputs the pathway activity multiplied by the weight.
  • the reactivity prediction network 140 receives the pathway activity multiplied by the weight from the pathway level network 120 and the drug network 130 and the drug descriptor multiplied by the weight, and outputs an IC50 value 30 .
  • IC50 refers to the amount of drug that can eliminate half (50%) of cancer cells.
  • the drug descriptor uses the Morgan Fingerprint.
  • this self-attention-based network it is possible to specify a gene or pathway that has a high attention score, that is, a target gene or pathway for a drug, rather than simply how effective a drug is on which cancer cell. That is, unlike the prior art, an interpretable network can be used.
  • FIG. 2 is a schematic structural diagram of a gene level network according to a preferred embodiment of the present invention.
  • the gene level network 110 receives the gene expression level 10 and the drug descriptor 20 of the sample as inputs and outputs the pathway activity 12 based on self-attention.
  • the network output (u ij ) is obtained as an output.
  • the attention score ( ⁇ ij ) can be obtained as follows.
  • This attention score ( ⁇ ij ) is multiplied by the gene expression level (g ij ) again to obtain the pathway activity (12, p i ) for each pathway as follows.
  • FIG. 3 is a schematic structural diagram of a pathway level network according to a preferred embodiment of the present invention.
  • pathway activity 14 With the previously obtained pathway activity 12 as an input, the pathway activity 14 multiplied by a weight based on self-attention is obtained.
  • the pathway activity 12 and the drug descriptor 20 are input to the network, and the network output value u i is obtained as follows.
  • the attention score ( ⁇ i ) can be obtained, which is expressed by the following equation.
  • the gene level network 110 and the pathway level network 120 do not simply pass the input value through the artificial intelligence network, but continuously reflect the importance to the network, so that the network changes depending on the cell or the state of the cell and can be applied. can have an effect.
  • FIG. 4 is a schematic structural diagram of a drug network according to a preferred embodiment of the present invention.
  • the drug network 130 outputs the drug descriptor 22 passing the drug descriptor 20 through a general artificial neural network.
  • a deep neural network (DNN) or the like may be used as the artificial neural network.
  • the drug descriptors 22 and c that have passed through the drug network 130 may be expressed by the following equation.
  • FIG. 5 is a schematic structural diagram of a reactive prediction network according to a preferred embodiment of the present invention.
  • the drug response value (r) can be expressed by the following formula.
  • FIG. 6 is a graph showing the drug reactivity results predicted by the self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
  • 6a shows a comparison of predicted values and observed values for a case where both the cell line and the drug are unknown (Unseen Pair), and b is the cell line when the cell line is unknown. It shows the comparison of the predicted value and the observed value at the time (Unseen Cell Line). It shows that when the IC50 is predicted based on self-interest, an improved result is obtained compared to the prior art.
  • FIG. 7 is a flowchart of a method for predicting self-attention-based drug reactivity according to another preferred embodiment of the present invention.
  • the self-attention-based drug reactivity prediction method according to the present invention may be performed by a controller including one or more processors and a memory.
  • Pathway activity is first calculated by the network learned using a database such as GDSC (S10).
  • the gene expression level of the sample and the drug descriptor are passed through the network as inputs, the attention score is calculated based on the output value, and then it is multiplied by the gene expression level to calculate the pathway activity.
  • pathway activity If the pathway activity is obtained, it is again input to the network together with the drug descriptor to obtain an output value, and by multiplying the attention score by the output value by the pathway activity, a pathway feature that is a weighted pathway activity can be obtained (S20).
  • the drug descriptor is calculated by a method such as Morgan fingerprint, and the output is obtained through an artificial neural network such as DNN (S30). can be (S40).
  • the self-attention-based drug response prediction device and method as described above, it is possible to predict more accurately drug response according to the cell state or gene expression level by constructing a network using the attention score that reflects importance rather than a fixed network weight. It works.
  • the self-attention-based drug reactivity prediction device is a drug reactivity prediction technology using an artificial neural network and can be applied to medicine and medical fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Databases & Information Systems (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioethics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

The present invention relates to an in-silico type drug sensitivity prediction device and method using a hierarchical artificial intelligence network. According to the present invention, by predicting drug sensitivity by using a self-attention-based artificial intelligence network, changes in cell state such as changes in gene expression level can be reflected to the network, and thus, it is possible to more accurately predict a drug response.

Description

자기주의 기반 계층구조 네트워크를 이용한 약물 반응 예측 장치 및 그 방법 Drug response prediction device and method using self-attention-based hierarchical network
본 발명은 약물의 반응성 예측에 관한 것으로, 특히 인공 신경망을 활용한 약물 반응성 예측 기술에 관한 것이다.The present invention relates to drug reactivity prediction, and more particularly, to drug reactivity prediction technology using an artificial neural network.
생명공학 연구 방법에 있어서 살아있는 생명체를 기반으로 실험하는 방법을 인 비보(In Vivo)라 하고 유리 시험관을 통한 방법을 인 비트로(In-Vitro)라 한다. In the biotechnology research method, the method of experimenting based on living organisms is called in vivo, and the method through a glass test tube is called in-vitro.
실험용 동물이나 시험관에 세포를 배양하여 약물 반응을 시험하는 경우 시간이나 비용의 문제뿐 아니라 윤리적인 문제에 직면하기 때문에 최근에는 실제 생명체나 세포가 아닌 컴퓨터의 시뮬레이션을 기반으로 약물의 반응성을 예측하는 인 실리코(In-Silico) 방법이 시도되고 있다.In case of testing drug response by culturing cells in laboratory animals or test tubes, it faces ethical issues as well as time and cost issues. In-silico methods are being tried.
특히 딥러닝(Deep Learning)이나 머신러닝(Machine Learning)과 같은 인공지능 학습방법이 발달하면서 인공지능에 약물 반응성을 학습시켜 암 세포주에 적합한 약물을 찾아내려는 여러 시도가 이루어지고 있다. 인공지능의 학습은 GDSC (Genomics of Drug Sensitivity in Cancer)라는 데이터베이스를 이용하여 이루어질 수 있다.In particular, with the development of artificial intelligence learning methods such as deep learning and machine learning, various attempts are being made to find drugs suitable for cancer cell lines by learning drug responsiveness to artificial intelligence. Learning of artificial intelligence can be accomplished using a database called GDSC (Genomics of Drug Sensitivity in Cancer).
그런데 이렇게 학습한 인공지능을 이용하여 새로운 암세포에 대한 약물 반응성을 찾아내는 것은 쉽지 않다. 학습한 인공지능의 네트워크가 새로운 암세포에 대해 잘 맞지 않을 경우가 있을 수 있고, 이미 학습한 암세포라 하더라도 세포의 상태가 계속 변화하기 때문에 유전자의 발현량에 따라 유전자의 중요도가 달라질 수 있기 때문이다.However, it is not easy to find drug responsiveness to new cancer cells using the learned artificial intelligence. This is because the learned network of artificial intelligence may not be suitable for new cancer cells, and the importance of a gene may vary depending on the expression level of the gene because the state of the cell continues to change even for cancer cells that have already been learned.
본 발명의 발명자들은 이러한 종래 기술의 인공지능을 이용한 약물 반응성 예측의 문제점들을 해결하기 위해 연구 노력해 왔다. 새로운 암세포에 대해 또는 기존의 암세포라도 유전자의 발현량에 따라 달라지는 중요도를 반영할 수 있는 인공지능 네트워크를 포함하는 약물 반응성 예측 장치 및 그 방법을 완성하기 위해 많은 노력 끝에 본 발명을 완성하기에 이르렀다.The inventors of the present invention have been working hard to solve the problems of drug reactivity prediction using artificial intelligence of the prior art. After much effort, the present invention was completed after much effort to complete a drug responsiveness prediction device and method including an artificial intelligence network that can reflect the importance that varies depending on the expression level of genes for new or existing cancer cells.
본 발명의 목적은 자기주의(Self-Attention) 기법을 기반으로 수시로 변화하는 세포의 유전자 발현량 등 세포의 상태를 반영할 수 있는 인공지능 네트워크를 포함하는 약물 반응성 예측 장치 및 방법을 제공하는 데 있다. An object of the present invention is to provide an apparatus and method for predicting drug reactivity including an artificial intelligence network that can reflect the state of cells, such as the amount of gene expression in cells that change frequently based on the self-attention technique. .
한편, 본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론 할 수 있는 범위 내에서 추가적으로 고려될 것이다.On the other hand, other objects not specified in the present invention will be additionally considered within the range that can be easily inferred from the following detailed description and effects thereof.
본 발명에 따른 자기주의 기반 약물 반응성 예측 장치는, Self-attention-based drug reactivity prediction device according to the present invention,
패스웨이별 유전자 발현량 및 약물 표현자를 입력으로 한 유전자 레벨 자기주의(Self-Attention) 기반 인공지능 네트워크에서 패스웨이(Pathway) 활성도(Activity)를 출력하는 유전자 레벨 네트워크; 상기 패스웨이 활성도를 입력으로 하여 패스웨이 레벨 자기주의 기반 인공지능 네트워크로 가중치가 곱해진 패스웨이 피쳐(Feature)를 출력하는 패스웨이 레벨 네트워크; 약물 딥러닝 네트워크(DNN: Deep Neural Network)를 이용하여 약물 표현자를 출력하는 약물 네트워크; 및 상기 가중치가 곱해진 패스웨이 피쳐 및 상기 약물 표현자를 입력으로 하여 약물 반응 딥러닝 네트워크를 이용하여 약물 반응 예측을 출력하는 반응성 예측 네트워크;를 포함한다.a gene-level network that outputs pathway activity in a gene-level self-attention-based artificial intelligence network that inputs gene expression levels and drug descriptors for each pathway; a pathway-level network that receives the pathway activity as an input and outputs a pathway feature multiplied by a weight to a pathway-level self-attention-based AI network; a drug network that outputs drug descriptors using a drug deep learning network (DNN); and a reactivity prediction network for outputting a drug response prediction using a drug response deep learning network by inputting the weighted pathway feature and the drug descriptor as inputs.
상기 유전자 레벨 네트워크는, 상기 유전자 발현량 및 약물 표현자를 입력으로 유전자 레벨 가중치(Weight) 네트워크를 통과한 값을 이용하여 유전자 레벨 어텐션 스코어(Attention Score)를 구하고 상기 유전자 레벨 어텐션 스코어와 상기 유전자 발현량을 곱한 값으로 상기 패스웨이 활성도를 구하는 것을 특징으로 한다.The gene-level network obtains a gene-level attention score by using a value passed through a gene-level weight network with the gene expression level and drug descriptor as inputs, and the gene-level attention score and the gene expression level It is characterized in that the pathway activity is obtained by a value multiplied by .
상기 패스웨이 레벨 네트워크는, 상기 패스웨이 활성도와 약물 표현자를 입력으로 패스웨이 레벨 가중치 네트워크를 통과한 값으로 패스웨이 레벨 어텐션 스코어를 구하고 상기 패스웨이 레벨 어텐션 스코어와 상기 패스웨이 활성도를 곱한 값으로 상기 가중치가 곱해진 패스웨이 피쳐(Feature)를 구하는 것을 특징으로 한다.The pathway level network obtains a pathway level attention score as a value passed through a pathway level weight network with the pathway activity and drug descriptor as inputs, and multiplies the pathway level attention score by the pathway activity. It is characterized in that a path feature multiplied by a weight is obtained.
상기 약물 표현자는 모르간 핑거프린트(Morgan Fingerprint)를 이용하여 구하는 것을 특징으로 한다.The drug descriptor is characterized in that it is obtained using a Morgan fingerprint.
상기 반응성 예측 네트워크는 상기 약물 반응 예측을 IC50 예측값으로 출력하는 것을 특징으로 한다.The reactivity prediction network is characterized in that the drug response prediction is output as an IC50 predicted value.
본 발명의 다른 실시예에 따른 자기주의 기반 약물 반응성 예측 방법은,A self-attention-based drug reactivity prediction method according to another embodiment of the present invention,
(a) 패스웨이별 유전자 발현량 및 약물 표현자를 입력으로 한 유전자 레벨 자기주의(Self-Attention) 기반 인공지능 네트워크에서 패스웨이(Pathway) 활성도(Activity)를 출력하는 단계; (b) 상기 패스웨이 활성도를 입력으로 하여 패스웨이 레벨 자기주의 기반 인공지능 네트워크로 가중치가 곱해진 패스웨이 피쳐(Feature)를 출력하는 단계; (c) 약물 딥러닝 네트워크(DNN: Deep Neural Network)를 이용하여 약물 표현자를 출력하는 단계; 및 (d) 상기 가중치가 곱해진 패스웨이 피쳐 및 상기 약물 표현자를 입력으로 하여 약물 반응 딥러닝 네트워크를 이용하여 약물 반응 예측을 출력하는 단계를 포함한다.(a) outputting a pathway activity in a gene-level self-attention-based artificial intelligence network with gene expression levels and drug descriptors for each pathway as inputs; (b) outputting a weighted pathway feature to a pathway-level self-attention-based AI network using the pathway activity as an input; (c) outputting a drug descriptor using a drug deep learning network (DNN); and (d) outputting a drug response prediction using a drug response deep learning network by inputting the weighted pathway feature and the drug descriptor as inputs.
상기 (a)단계는 상기 유전자 발현량 및 약물 표현자를 입력으로 유전자 레벨 가중치(Weight) 네트워크를 통과한 값을 이용하여 유전자 레벨 어텐션 스코어(Attention Score)를 구하고, 상기 유전자 레벨 어텐션 스코어와 상기 유전자 발현량을 곱한 값으로 상기 패스웨이 활성도를 구하는 것을 특징으로 한다.The step (a) is to obtain a gene level attention score (Attention Score) using the value passed through the gene level weight network as the input of the gene expression level and the drug descriptor, the gene level attention score and the gene expression It is characterized in that the pathway activity is calculated as a value multiplied by the amount.
상기 (b)단계는 상기 패스웨이 레벨 네트워크는, 상기 패스웨이 활성도와 약물 표현자를 입력으로 패스웨이 레벨 가중치 네트워크를 통과한 값으로 패스웨이 레벨 어텐션 스코어를 구하고 상기 패스웨이 레벨 어텐션 스코어와 상기 패스웨이 활성도를 곱한 값으로 상기 가중치가 곱해진 패스웨이 피쳐(Feature)를 구하는 것을 특징으로 한다.In the step (b), the pathway-level network obtains a pathway-level attention score using a value passed through a pathway-level weighting network with the pathway activity and drug descriptor as inputs, and the pathway-level attention score and the pathway A value multiplied by the activity is characterized in that a pathway feature multiplied by the weight is obtained.
상기 (c) 단계에서 상기 약물 표현자는 모르간 핑거프린트(Morgan Fingerprint)를 이용하여 구하는 것을 특징으로 한다.The drug descriptor in step (c) is characterized in that it is obtained using a Morgan fingerprint.
상기 (d)단계는 상기 약물 반응 예측을 IC50 예측값으로 출력하는 것을 특징으로 한다.The step (d) is characterized in that the drug response prediction is output as an IC50 predicted value.
본 발명에 따르면 자기주의 기법을 기반으로 계층적 네트워크를 사용하므로 유전자 발현량이 변경되는 등 세포 상태가 계속 변화해도 이를 반영하여 네트워크 상태를 변경하여 정확한 약물 반응을 예측할 수 있는 효과가 있다.According to the present invention, since a hierarchical network is used based on the self-attention technique, even if the cell state continues to change, such as a change in gene expression level, the network state is changed to reflect this, and it is possible to predict an accurate drug response.
한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.On the other hand, even if it is an effect not explicitly mentioned herein, it is added that the effects described in the following specification expected by the technical features of the present invention and their potential effects are treated as described in the specification of the present invention.
도 1은 본 발명의 바람직한 어느 실시예에 따른 자기주의 기반 약물 반응성 예측 장치의 개략적인 구조도이다.1 is a schematic structural diagram of a self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 어느 실시예에 따른 유전자 레벨 네트워크의 개략적인 구조도이다.2 is a schematic structural diagram of a gene level network according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 어느 실시예에 따른 패스웨이 레벨 네트워크의 개략적인 구조도이다.3 is a schematic structural diagram of a pathway level network according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 어느 실시예에 따른 약물 네트워크의 개략적인 구조도이다.4 is a schematic structural diagram of a drug network according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 어느 실시예에 따른 반응성 예측 네트워크의 개략적인 구조도이다.5 is a schematic structural diagram of a reactive prediction network according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 어느 실시예에 따른 자기주의 기반 약물 반응성 예측 장치에 의해 예측한 약물 반응성 결과를 나타낸 그래프이다.6 is a graph showing the drug reactivity results predicted by the self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 다른 실시예에 따른 자기주의 기반 약물 반응성 예측 방법의 흐름도이다.7 is a flowchart of a method for predicting self-attention-based drug reactivity according to another preferred embodiment of the present invention.
※ 첨부된 도면은 본 발명의 기술사상에 대한 이해를 위하여 참조로서 예시된 것임을 밝히며, 그것에 의해 본 발명의 권리범위가 제한되지는 아니한다※ It is revealed that the accompanying drawings are exemplified as a reference for understanding the technical idea of the present invention, and the scope of the present invention is not limited thereby
이하, 도면을 참조하여 본 발명의 다양한 실시예가 안내하는 본 발명의 구성과 그 구성으로부터 비롯되는 효과에 대해 살펴본다. 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. Hereinafter, the configuration of the present invention guided by various embodiments of the present invention and effects resulting from the configuration will be described with reference to the drawings. In the description of the present invention, if it is determined that related known functions are obvious to those skilled in the art and may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.Terms such as 'first' and 'second' may be used to describe various elements, but the elements should not be limited by the above terms. The above term may be used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a 'first component' may be termed a 'second component', and similarly, a 'second component' may also be termed a 'first component'. can Also, the singular expression includes the plural expression unless the context clearly dictates otherwise. Unless otherwise defined, terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those of ordinary skill in the art.
이하, 도면을 참조하여 본 발명의 다양한 실시예가 안내하는 본 발명의 구성과 그 구성으로부터 비롯되는 효과에 대해 살펴본다.Hereinafter, the configuration of the present invention guided by various embodiments of the present invention and effects resulting from the configuration will be described with reference to the drawings.
도 1은 본 발명의 바람직한 어느 실시예에 따른 자기주의 기반 약물 반응성 예측 장치의 개략적인 구조도이다.1 is a schematic structural diagram of a self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
본 발명에 따른 자기주의 기반 약물 반응성 예측 장치(100)는 유전자 레벨(Gene-level) 네트워크(110), 패스웨이 레벨(Pathway-level) 네트워크(120), 약물(Drug) 네트워크(130) 및 반응성 예측(Response Prediction) 네트워크(140)를 포함한다.Self-attention-based drug reactivity prediction apparatus 100 according to the present invention is a gene-level network 110 , a pathway-level network 120 , a drug network 130 , and reactivity and a Response Prediction network 140 .
자기주의 기반 약물 반응성 예측 장치(100)는 인공지능 네트워크를 사용하여 약물과 암세포간의 반응성을 예측한다. 인공지능 네트워크 구현을 위해 자기주의 기반 약물 반응성 예측 장치(100)는 프로세서 및 메모리를 포함할 수 있고, 메모리에는 프로세서 구동을 위한 프로그램 코드와 학습된 네트워크 데이터 등이 저장될 수 있다. The self-attention-based drug reactivity prediction apparatus 100 predicts the reactivity between a drug and cancer cells using an artificial intelligence network. For realizing an artificial intelligence network, the self-attention-based drug reactivity prediction apparatus 100 may include a processor and a memory, and program codes for driving the processor and learned network data may be stored in the memory.
종래기술의 인공 신경망에서 네트워크 가중치(Weight)가 학습되면 고정된 가중치에 의해 약물과 유전자 또는 패스웨이 사이의 반응성을 예측했지만 본 발명에서는 가중치를 고정하지 않고 입력에 의해 가중치를 수정하여 중요도 값인 어텐션 스코어(Attention Score)를 구하는 자기주의(Self-Attention) 기법을 기반으로 인공지능 신경망 네트워크를 구성함으로써 각 세포의 상태나 유전자 발현량에 따른 중요도 변화를 체크할 수 있는 장점이 있다.When a network weight is learned in an artificial neural network of the prior art, the reactivity between a drug and a gene or pathway is predicted by a fixed weight. By constructing an artificial intelligence neural network based on the Self-Attention technique to obtain the Attention Score, it has the advantage of being able to check the change in importance according to the state of each cell or the amount of gene expression.
이를 위해 본 발명의 유전자 레벨(Gene-level) 네트워크(110), 패스웨이 레벨(Pathway-level) 네트워크(120)는 자기주의 기반 인공지능 신경망 네트워크를 사용한다.To this end, the gene-level network 110 and the pathway-level network 120 of the present invention use self-attention-based artificial intelligence neural network networks.
유전자 레벨(Gene-level) 네트워크(110)는 샘플의 유전자 발현량(10)과 약물 표현자(20)를 입력받아 자기주의 기반으로 패스웨이 활성도(Activity)를 출력하고, 패스웨이 레벨(Pathway-level) 네트워크(120)는 패스웨이 활성도를 입력받아 가중치가 곱해진 패스웨이 활성도를 출력한다.The gene-level network 110 receives the gene expression level 10 and the drug descriptor 20 of the sample and outputs pathway activity based on self-attention, and the pathway level (Pathway- level) the network 120 receives the pathway activity as an input and outputs the pathway activity multiplied by the weight.
반응성 예측 네트워크(140)는 패스웨이 레벨 네트워크(120)와 약물 네트워크(130)에서 가중치가 곱해진 패스웨이 활성도와 가중치가 곱해진 약물 표현자를 입력받아 IC50값(30)을 출력한다. IC50은 암세포의 절반(50%)이 제거될 수 있는 약의 양을 의미한다. 약물 표현자는 모르간 핑거프린트(Morgan Fingerprint)를 이용한다.The reactivity prediction network 140 receives the pathway activity multiplied by the weight from the pathway level network 120 and the drug network 130 and the drug descriptor multiplied by the weight, and outputs an IC50 value 30 . IC50 refers to the amount of drug that can eliminate half (50%) of cancer cells. The drug descriptor uses the Morgan Fingerprint.
이렇게 자기주의 기반 네트워크를 이용하면 단순히 어떤 약이 어떤 암세포에 얼마나 효과가 있는지가 아니라 어텐션 스코어가 높은, 즉 약물의 타겟이 되는 유전자 또는 패스웨이를 특정할 수 있다. 즉 종래기술과 달리 해석가능한 네트워크를 사용할 수 있는 것이다.Using this self-attention-based network, it is possible to specify a gene or pathway that has a high attention score, that is, a target gene or pathway for a drug, rather than simply how effective a drug is on which cancer cell. That is, unlike the prior art, an interpretable network can be used.
도 2 내지 5는 각 네트워크의 구조를 좀 더 자세히 나타낸다.2 to 5 show the structure of each network in more detail.
도 2는 본 발명의 바람직한 어느 실시예에 따른 유전자 레벨 네트워크의 개략적인 구조도이다.2 is a schematic structural diagram of a gene level network according to a preferred embodiment of the present invention.
유전자 레벨 네트워크(110)는 샘플의 유전자 발현량(10)과 약물 표현자(20)를 입력으로 하여 자기주의 기반으로 패스웨이 활성도(12)를 출력한다.The gene level network 110 receives the gene expression level 10 and the drug descriptor 20 of the sample as inputs and outputs the pathway activity 12 based on self-attention.
우선 유전자 발현량(10)과 약물 표현자(20)가 네트워크의 가중치와 곱해진 출력을 얻게 된다. 이는 다음 식으로 나타내진다.First, an output obtained by multiplying the gene expression level (10) and the drug descriptor (20) by the weight of the network is obtained. This is expressed by the following equation.
uij = tanh(WG[gd] + bG)ij u ij = tanh(W G [gd] + b G ) ij
유전자 발현량(g)와 약물 표현자(d)에 네트워크 가중치(WG)가 곱해지고 바이어스(bG)가 더해져 네트워크를 통과하면 네트워크 출력(uij)을 출력으로 얻게 된다.When the gene expression level (g) and the drug descriptor (d) are multiplied by the network weight (W G ) and the bias (b G ) is added to pass through the network, the network output (u ij ) is obtained as an output.
이 네트워크 출력(uij)의 소프트 맥스(Soft Max) 값을 구하면 다음과 같이 어텐션 스코어(αij)를 얻을 수 있다.If the soft max value of this network output (u ij ) is obtained, the attention score (α ij ) can be obtained as follows.
Figure PCTKR2021017761-appb-img-000001
Figure PCTKR2021017761-appb-img-000001
이 어텐션 스코어(αij)를 다시 유전자 발현량(gij)과 곱하여 다음과 같이 각 페스웨이에 대한 패스웨이 활성도(12, pi)를 얻을 수 있다.This attention score (α ij ) is multiplied by the gene expression level (g ij ) again to obtain the pathway activity (12, p i ) for each pathway as follows.
Figure PCTKR2021017761-appb-img-000002
Figure PCTKR2021017761-appb-img-000002
도 3은 본 발명의 바람직한 어느 실시예에 따른 패스웨이 레벨 네트워크의 개략적인 구조도이다.3 is a schematic structural diagram of a pathway level network according to a preferred embodiment of the present invention.
앞에서 구한 패스웨이 활성도(12)를 입력으로 하여 자기주의 기반으로 가중치가 곱해진 패스웨이 활성도(14)를 구하게 된다.With the previously obtained pathway activity 12 as an input, the pathway activity 14 multiplied by a weight based on self-attention is obtained.
우선 패스웨이 활성도(12)와 약물 표현자(20)를 네트워크에 입력하여 네트워크 출력값(ui)을 다음 식과 같이 얻는다.First, the pathway activity 12 and the drug descriptor 20 are input to the network, and the network output value u i is obtained as follows.
ui = tanh(WP[pd] + bp)i u i = tanh(W P [pd] + b p ) i
네트워크 출력값(ui)에 대한 소프트 맥스 값을 계산하면 어텐션 스코어(αi)를 얻을 수 있고 이는 다음 식과 같다.By calculating the soft max value for the network output value (u i ), the attention score (α i ) can be obtained, which is expressed by the following equation.
Figure PCTKR2021017761-appb-img-000003
Figure PCTKR2021017761-appb-img-000003
이 어텐션 스코어(αi)와 앞에서 구한 패스웨이 활성도(12)를 다시 네트워크에 통과시키면 가중치가 곱해진 패스웨이 활성도(14, s)를 구할 수 있다.If this attention score (α i ) and the previously obtained pathway activity 12 are passed through the network again, the weighted pathway activity 14, s can be obtained.
이렇게 유전자 레벨 네트워크(110)와 패스웨이 레벨 네트워크(120)에서는 단순히 입력 값을 인공지능 네트워크에 통과시키는 것이 아니라 중요도를 네트워크에 계속 반영함으로써 세포에 따라 혹은 세포의 상태에 따라 네트워크가 변화하며 적용할 수 있는 효과가 있다.In this way, the gene level network 110 and the pathway level network 120 do not simply pass the input value through the artificial intelligence network, but continuously reflect the importance to the network, so that the network changes depending on the cell or the state of the cell and can be applied. can have an effect.
도 4는 본 발명의 바람직한 어느 실시예에 따른 약물 네트워크의 개략적인 구조도이다.4 is a schematic structural diagram of a drug network according to a preferred embodiment of the present invention.
약물 네트워크(130)는 약물 표현자(20)를 일반적인 인공 신경망을 통과시킨 약물 표현자(22)를 출력한다. 인공 신경망으로 DNN(Deep Neural Network) 등이 사용될 수 있다. 약물 네트워크(130)를 통과한 약물 표현자(22, c)는 다음 식으로 나타낼 수 있다.The drug network 130 outputs the drug descriptor 22 passing the drug descriptor 20 through a general artificial neural network. A deep neural network (DNN) or the like may be used as the artificial neural network. The drug descriptors 22 and c that have passed through the drug network 130 may be expressed by the following equation.
c = ReLU(WDd + bD)c = ReLU(W D d + b D )
도 5는 본 발명의 바람직한 어느 실시예에 따른 반응성 예측 네트워크의 개략적인 구조도이다.5 is a schematic structural diagram of a reactive prediction network according to a preferred embodiment of the present invention.
마지막으로 가중치가 곱해진 패스웨이(14)와 인공 신경망을 통과한 약물 표현자(22)가 연결되어 DNN 등의 인공 신경망을 통과하면 최종적으로 샘플에 대한 약물의 IC50 값(30)을 얻게 된다.Finally, when the weighted pathway 14 and the drug descriptor 22 that have passed through the artificial neural network are connected and pass through an artificial neural network such as DNN, an IC50 value 30 of the drug for the sample is finally obtained.
약물 반응값(r)은 다음 식으로 나타낼 수 있다.The drug response value (r) can be expressed by the following formula.
r = ReLU(WR[sc]+bR)r = ReLU(W R [sc]+b R )
이렇게 자기주의 기반 어텐션 스코어를 이용하면 약물이 어떤 암세포에 대해 효과가 있는지 여부를 판단할 수 있을뿐 아니라 암세포의 구체적으로 어떤 유전자에 효과적인지, 또는 어떤 패스웨이에 좀 더 큰 영향을 미치는 지 번역(Interpretation)이 가능한 장점이 있다.Using this self-attention-based attention score, it is possible not only to judge whether a drug is effective against which cancer cells, but also to translate ( Interpretation) is possible.
도 6은 본 발명의 바람직한 어느 실시예에 따른 자기주의 기반 약물 반응성 예측 장치에 의해 예측한 약물 반응성 결과를 나타낸 그래프이다.6 is a graph showing the drug reactivity results predicted by the self-attention-based drug reactivity prediction device according to a preferred embodiment of the present invention.
도 6의 a는 셀라인(Cell Line)과 약물(Drug)이 모두 알려져 있지 않은 경우(Unseen Pair)에 대한 예측값과 관찰값의 비교를 나타내고, b는 셀 라인이(Cell Line)이 알려져 있지 않았을 때(Unseen Cell Line)의 예측값과 관찰값의 비교를 나타낸다. 자기주의 기반으로 IC50을 예측하였을 때 종래기술에 비해 향상된 결과가 나타남을 보여준다.6a shows a comparison of predicted values and observed values for a case where both the cell line and the drug are unknown (Unseen Pair), and b is the cell line when the cell line is unknown. It shows the comparison of the predicted value and the observed value at the time (Unseen Cell Line). It shows that when the IC50 is predicted based on self-interest, an improved result is obtained compared to the prior art.
도 7은 본 발명의 바람직한 다른 실시예에 따른 자기주의 기반 약물 반응성 예측 방법의 흐름도이다. 7 is a flowchart of a method for predicting self-attention-based drug reactivity according to another preferred embodiment of the present invention.
본 발명에 따른 자기주의 기반 약물 반응성 예측 방법은 하나 이상의 프로세서와 메모리를 포함하는 제어부에 의해 수행될 수 있다.The self-attention-based drug reactivity prediction method according to the present invention may be performed by a controller including one or more processors and a memory.
GDSC 등의 데이터베이스를 이용하여 학습한 네트워크에 의해 우선 패스웨이 활성도를 산출한다(S10).Pathway activity is first calculated by the network learned using a database such as GDSC (S10).
샘플의 유전자 발현량과 약물 표현자를 입력으로 한여 네트워크를 통과시키고, 출력 값에 의한 어텐션 스코어를 구한 후 이를 다시 유전자 발현량과 곱하여 패스웨이 활성도를 산출하게 된다.The gene expression level of the sample and the drug descriptor are passed through the network as inputs, the attention score is calculated based on the output value, and then it is multiplied by the gene expression level to calculate the pathway activity.
패스웨이 활성도를 구하면 이를 다시 약물 표현자와 함께 네트워크에 입력시켜 출력값을 구하고, 출력값에 의한 어텐션 스코어를 패스웨이 활성도에 곱함으로써 가중치가 반영된 패스웨이 활성도인 패스웨이 피쳐를 구할 수 있다(S20).If the pathway activity is obtained, it is again input to the network together with the drug descriptor to obtain an output value, and by multiplying the attention score by the output value by the pathway activity, a pathway feature that is a weighted pathway activity can be obtained (S20).
모르간 핑거프린트 등과 같은 방법으로 약물 표현자를 산출하여 DNN 등의 인공 신경망을 통해 출력을 구하고(S30), 약물 표현자와 패스웨이 피쳐를 연결하여 다시 DNN을 통과시킴으로써 최종 약물 반응 예측 값인 IC50 값을 얻을 수 있다(S40).The drug descriptor is calculated by a method such as Morgan fingerprint, and the output is obtained through an artificial neural network such as DNN (S30). can be (S40).
이상과 같은 자기주의 기반의 약물 반응 예측 장치 및 방법에 의하면 고정된 네트워크 가중치가 아닌 중요도가 반영된 어텐션 스코어를 이용하여 네트워크를 구성함으로써 세포의 상태나 유전자 발현량에 따라 보다 정확한 약물 반응성을 예측할 수 있는 효과가 있다.According to the self-attention-based drug response prediction device and method as described above, it is possible to predict more accurately drug response according to the cell state or gene expression level by constructing a network using the attention score that reflects importance rather than a fixed network weight. It works.
본 발명의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명이 보호범위가 제한될 수도 없음을 다시 한 번 첨언한다.The protection scope of the present invention is not limited to the description and expression of the embodiments explicitly described above. In addition, it is added once again that the protection scope of the present invention cannot be limited due to obvious changes or substitutions in the technical field to which the present invention pertains.
본 발명에 따른 자기주의 기반 약물 반응성 예측 장치는 인공 신경망을 활용한 약물 반응성 예측 기술로서 의약 및 의료 분야 등에 적용될 수 있다.The self-attention-based drug reactivity prediction device according to the present invention is a drug reactivity prediction technology using an artificial neural network and can be applied to medicine and medical fields.

Claims (6)

  1. 하나 이상의 프로세서 및 메모리를 포함하는 제어부를 포함하는 자기주의 기반 약물 반응성 예측 장치에 있어서, 상기 제어부는:In the self-attention-based drug reactivity prediction device comprising a controller including one or more processors and a memory, the controller comprises:
    임의의 셀라인 및 약물에 대해 패스웨이별 유전자 발현량 및 약물 표현자를 입력으로 한 유전자 레벨 자기주의(Self-Attention) 기반 인공지능 신경망 네트워크에서 패스웨이(Pathway) 활성도(Activity)를 출력하는 유전자 레벨 네트워크;Gene-level self-attention-based artificial intelligence neural network that inputs gene expression level and drug descriptor by pathway for arbitrary cell lines and drugs Gene level that outputs pathway activity network;
    상기 패스웨이 활성도를 입력으로 하여 패스웨이 레벨 자기주의 기반 인공지능 신경망 네트워크로 가중치가 곱해진 패스웨이 피쳐(Feature)를 출력하는 패스웨이 레벨 네트워크;a pathway-level network that receives the pathway activity as an input and outputs a pathway feature multiplied by a weight to a pathway-level self-attention-based artificial intelligence neural network network;
    약물 딥러닝 네트워크(DNN: Deep Neural Network)를 이용하여 약물 표현자를 출력하는 약물 네트워크; 및a drug network that outputs drug descriptors using a drug deep learning network (DNN); and
    상기 가중치가 곱해진 패스웨이 피쳐 및 상기 약물 표현자를 입력으로 하여 약물 반응 딥러닝 네트워크를 이용하여 약물 반응 예측을 출력하는 반응성 예측 네트워크;를 포함하고,Responsiveness prediction network for outputting drug response prediction using the drug response deep learning network by inputting the weighted pathway feature and the drug descriptor as inputs;
    상기 유전자 레벨 네트워크는, 상기 유전자 발현량 및 약물 표현자를 입력으로 유전자 레벨 가중치(Weight) 네트워크를 통과한 값을 이용하여 유전자 레벨 어텐션 스코어를 구하고, 상기 유전자 레벨 어텐션 스코어를 상기 유전자 발현량과 곱하여 상기 패스웨이 활성도를 구하고,The gene level network obtains a gene level attention score by using a value passed through a gene level weight network with the gene expression level and drug descriptor as inputs, and multiplies the gene level attention score with the gene expression level to pass the pass Find the way activity,
    상기 패스웨이 레벨 네트워크는, 상기 패스웨이 활성도와 약물 표현자를 입력으로 패스웨이 레벨 가중치 네트워크를 통과한 값으로 패스웨이 레벨 어텐션 스코어를 구하고, 상기 패스웨이 레벨 어텐션 스코어를 상기 패스웨이 활성도와 곱하여 상기 패스웨이 피쳐를 구하는 것을 특징으로 하고,The pathway level network is configured to obtain a pathway level attention score as a value passed through a pathway level weight network with the pathway activity and drug descriptors as inputs, and multiply the pathway level attention score by the pathway activity to pass the path Characterized in finding a way feature,
    상기 유전자 레벨 어텐션 스코어는 상기 유전자 발현량 및 약물 표현자의 입력에 의해 수정된 가중치가 적용되고,The gene level attention score is applied with a weight modified by the input of the gene expression level and drug descriptor,
    상기 패스웨이 레벨 어테션 스코어는 상기 패스웨이 활성도 및 약물 표현자의 입력에 의해 수정된 가중치가 적용되고,The pathway level attention score is applied with a weight modified by the input of the pathway activity and drug descriptor,
    상기 제어부는the control unit
    상기 유전자 레벨 어텐션 스코어 및 패스웨이 레벨 어텐션 스코어를 기초로 상기 유전자 및 패스웨이의 중요도를 판단하여, 상기 약물의 타겟이 되는 상기 유전자 및 패스웨이를 특정하는By determining the importance of the gene and pathway based on the gene-level attention score and the pathway-level attention score, specifying the gene and pathway that are the target of the drug
    자기주의 기반 약물 반응성 예측 장치.Self-Awareness-Based Drug Reactivity Prediction Device.
  2. 제1항에 있어서,According to claim 1,
    상기 약물 표현자는 모르간 핑거프린트(Morgan Fingerprint)를 이용하여 구하는 것을 특징으로 하는, 자기주의 기반 약물 반응성 예측 장치.The drug descriptor is characterized in that it is obtained using a Morgan fingerprint (Morgan Fingerprint), self-attention-based drug reactivity prediction device.
  3. 제1항에 있어서,According to claim 1,
    상기 반응성 예측 네트워크는 상기 약물 반응 예측을 IC50 예측값으로 출력하는 것을 특징으로 하는, 자기주의 기반 약물 반응성 예측 장치.The self-attention-based drug reactivity prediction device, characterized in that the reactivity prediction network outputs the drug response prediction as an IC50 predicted value.
  4. 하나 이상의 프로세서 및 메모리를 포함하는 제어부에 의해 수행되는 자기주의 기반 약물 반응성 예측 방법에 있어서:In the self-attention-based drug reactivity prediction method performed by a control unit including one or more processors and memory:
    (a) 임의의 셀라인 및 약물에 대해 패스웨이별 유전자 발현량 및 약물 표현자를 입력으로 한 유전자 레벨 자기주의(Self-Attention) 기반 인공지능 신경망 네트워크에서 패스웨이(Pathway) 활성도(Activity)를 출력하는 단계; (a) Pathway activity is output from a gene-level self-attention-based artificial intelligence neural network that inputs gene expression levels and drug descriptors by pathway for arbitrary cell lines and drugs to do;
    (b) 상기 패스웨이 활성도를 입력으로 하여 패스웨이 레벨 자기주의 기반 인공지능 신경망 네트워크로 가중치가 곱해진 패스웨이 피쳐(Feature)를 출력하는 단계;(b) outputting a weighted pathway feature to a pathway-level self-attention-based artificial intelligence neural network using the pathway activity as an input;
    (c) 약물 딥러닝 네트워크(DNN: Deep Neural Network)를 이용하여 약물 표현자를 출력하는 단계; 및(c) outputting a drug descriptor using a drug deep learning network (DNN); and
    (d) 상기 가중치가 곱해진 패스웨이 피쳐 및 상기 약물 표현자를 입력으로 하여 약물 반응 딥러닝 네트워크를 이용하여 약물 반응 예측을 출력하는 단계;를 포함하고,(d) outputting a drug response prediction using a drug response deep learning network by inputting the weighted pathway feature and the drug descriptor as inputs;
    상기 (a)단계는, 상기 유전자 발현량 및 약물 표현자를 입력으로 유전자 레벨 가중치(Weight) 네트워크를 통과한 값을 이용하여 유전자 레벨 어텐션 스코어를 구하고, 상기 유전자 레벨 어텐션 스코어를 상기 유전자 발현량과 곱하여 상기 패스웨이 활성도를 구하고,In step (a), a gene level attention score is obtained using a value passed through a gene level weight network as an input with the gene expression level and drug descriptor, and the gene level attention score is multiplied by the gene expression level. Find the pathway activity,
    상기 (b)단계는, 상기 패스웨이 활성도와 약물 표현자를 입력으로 패스웨이 레벨 가중치 네트워크를 통과한 값으로 패스웨이 레벨 어텐션 스코어를 구하고, 상기 패스웨이 레벨 어텐션 스코어를 상기 패스웨이 활성도와 곱하여 상기 패스웨이 피쳐를 구하는 것을 특징으로 하고,In the step (b), a pathway level attention score is obtained as a value passed through a pathway level weight network with the pathway activity and drug descriptors as inputs, and the pathway level attention score is multiplied by the pathway activity to pass the path Characterized in finding a way feature,
    상기 (a)단계는 상기 유전자 레벨 어텐션 스코어를 기초로 상기 유전자의 중요도를 판단하여 상기 약물의 타겟이 되는 상기 유전자를 특정하고, 상기 (b)단계는 상기 패스웨이 레벨 어텐션 스코어를 기초로 상기 패스웨이의 중요도를 판단하여 상기 약물의 타겟이 되는 상기 패스웨이를 특정하는 단계이고,The step (a) determines the importance of the gene based on the gene-level attention score to specify the gene as a target of the drug, and the step (b) determines the pass-through level based on the pathway level attention score determining the importance of the way and specifying the pathway that is the target of the drug,
    상기 유전자 레벨 어텐션 스코어는 상기 유전자 발현량 및 약물 표현자의 입력에 의해 수정된 가중치가 적용되고,The gene level attention score is applied with a weight modified by the input of the gene expression level and drug descriptor,
    상기 패스웨이 레벨 어테션 스코어는 상기 패스웨이 활성도 및 약물 표현자의 입력에 의해 수정된 가중치가 적용되는The pathway level attention score is a weighted value modified by the input of the pathway activity and drug descriptor.
    자기주의 기반 약물 반응성 예측 방법.A method for predicting drug reactivity based on self-attention.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 (c) 단계에서 상기 약물 표현자는 모르간 핑거프린트(Morgan Fingerprint)를 이용하여 구하는 것을 특징으로 하는, 자기주의 기반 약물 반응성 예측 방법.In the step (c), the drug descriptor is obtained by using a Morgan fingerprint, a self-attention-based drug reactivity prediction method.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 (d)단계는 상기 약물 반응 예측을 IC50 예측값으로 출력하는 것을 특징으로 하는, 자기주의 기반 약물 반응성 예측 방법.In the step (d), the self-attention-based drug reactivity prediction method, characterized in that the drug response prediction is output as an IC50 predicted value.
PCT/KR2021/017761 2020-12-01 2021-11-29 Drug response prediction device using self-attention-based hierachical network, and method therefor WO2022119256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200165834 2020-12-01
KR10-2020-0165834 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022119256A1 true WO2022119256A1 (en) 2022-06-09

Family

ID=81854198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017761 WO2022119256A1 (en) 2020-12-01 2021-11-29 Drug response prediction device using self-attention-based hierachical network, and method therefor

Country Status (2)

Country Link
KR (1) KR20220077111A (en)
WO (1) WO2022119256A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022537A (en) * 2016-08-23 2018-03-06 주식회사 스탠다임 Method for predicting therapeutic efficacy of combined drug by machine learning ensemble model
KR101964694B1 (en) * 2017-03-28 2019-08-07 가천대학교 산학협력단 Device, Method, and Computer-Readable Medium for Judging Drug Similarity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022537A (en) * 2016-08-23 2018-03-06 주식회사 스탠다임 Method for predicting therapeutic efficacy of combined drug by machine learning ensemble model
KR101964694B1 (en) * 2017-03-28 2019-08-07 가천대학교 산학협력단 Device, Method, and Computer-Readable Medium for Judging Drug Similarity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALI OSKOOEI, JANNIS BORN, MATTEO MANICA, VIGNESHWARI SUBRAMANIAN, JULIO SÁEZ-RODRÍGUEZ, MARÍA RODRÍGUEZ MARTÍNEZ: "PaccMann: Prediction of anticancer compound sensitivity with multi-modal attention-based neural networks", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 14 July 2019 (2019-07-14), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081435937 *
WANG XUEWEI, SUN ZHIFU, ZIMMERMANN MICHAEL T., BUGRIM ANDREJ, KOCHER JEAN-PIERRE: "Predict drug sensitivity of cancer cells with pathway activity inference", BMC MEDICAL GENOMICS, BIOMED CENTRAL LTD, LONDON UK, vol. 12, no. S1, 1 January 2019 (2019-01-01), London UK , pages 15, XP055937356, ISSN: 1755-8794, DOI: 10.1186/s12920-018-0449-4 *
YANG MI, SIMM JAAK, LAM CHI CHUNG, ZAKERI POOYA, VAN WESTEN GERARD J. P., MOREAU YVES, SAEZ-RODRIGUEZ JULIO: "Linking drug target and pathway activation for effective therapy using multi-task learning", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 8, no. 1, 1 December 2018 (2018-12-01), US , pages 8322, XP055937354, ISSN: 2045-2322, DOI: 10.1038/s41598-018-25947-y *

Also Published As

Publication number Publication date
KR20220077111A (en) 2022-06-08

Similar Documents

Publication Publication Date Title
Tseng et al. Comprehensive literature review and statistical considerations for microarray meta-analysis
Ong et al. Modelling regulatory pathways in E. coli from time series expression profiles
WO2022124725A1 (en) Method, device, and computer program for predicting interaction between compound and protein
WO2020230977A1 (en) Metacognition-based high-speed environmental search method and device
WO2022119256A1 (en) Drug response prediction device using self-attention-based hierachical network, and method therefor
WO2022146080A1 (en) Algorithm and method for dynamically changing quantization precision of deep-learning network
WO2022163996A1 (en) Device for predicting drug-target interaction by using self-attention-based deep neural network model, and method therefor
WO2021107276A1 (en) Deep recurrent neural network-based energy usage prediction and load control device and method
Zhu et al. Globally predicting protein functions based on co-expressed protein–protein interaction networks and ontology taxonomy similarities
WO2021080043A1 (en) Somatic mutation detection device and method, having reduced sequencing platform-specific errors
WO2020184892A1 (en) Deep learning error minimization system for real-time generation of big data analysis model of mobile application user, and control method therefor
Niu et al. TRIMER: Transcription regulation integrated with metabolic regulation
WO2023038501A1 (en) System for predicting drug responses by using convolutional neural network based on drug and cell line similarity matrix
WO2022270840A1 (en) Deep learning-based word recommendation system for predicting and improving foreign language learner's vocabulary ability
WO2022245062A1 (en) Method and system for artificial intelligence-based genomic analysis and pharmaceutical substance development
WO2022154586A1 (en) Method for determining target protein of compound, and target protein determination apparatus performing said method
WO2019103223A1 (en) Data input/output saturation detection apparatus and method
WO2022196971A1 (en) Method for estimating tissue-level information from cellular-level information, and device therefor
WO2021137470A1 (en) Method, apparatus, and computer program for predicting interaction of compound and protein
Hofestädt et al. Information processing for the analysis of metabolic pathways and inborn errors
WO2023096034A1 (en) Electronic device for predicting drug-drug interactions and control method therefor
WO2020184816A1 (en) Data processing method for deriving new drug candidate
Politi et al. Modelling the effects of cell-to-cell variability on the output of interconnected gene networks in bacterial populations
Brazhnik Inferring gene networks from steady-state response to single-gene perturbations
Ye et al. Multi-scale methodology: a key to deciphering systems biology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 21900944

Country of ref document: EP

Kind code of ref document: A1