WO2022119029A1 - 자율 구동형 내진시스템 - Google Patents

자율 구동형 내진시스템 Download PDF

Info

Publication number
WO2022119029A1
WO2022119029A1 PCT/KR2020/017719 KR2020017719W WO2022119029A1 WO 2022119029 A1 WO2022119029 A1 WO 2022119029A1 KR 2020017719 W KR2020017719 W KR 2020017719W WO 2022119029 A1 WO2022119029 A1 WO 2022119029A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
disposed
earthquake
displacement
resistant
Prior art date
Application number
PCT/KR2020/017719
Other languages
English (en)
French (fr)
Inventor
이용식
박성훈
Original Assignee
주식회사 에스알이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스알이엔지 filed Critical 주식회사 에스알이엔지
Publication of WO2022119029A1 publication Critical patent/WO2022119029A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/021Decoupling of vibrations by means of point-of-contact supports, e.g. ball bearings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present invention relates to a technique for designing a structure having a function of mounting an independent target device into a structure capable of strengthening seismic resistance so as to reduce the impact damage of an earthquake.
  • Earthquakes are classified into tectonic earthquakes, volcanic earthquakes, and collapse earthquakes according to their types and causes.
  • the point where the energy that causes this earthquake is generated is called the earthquake focus, and the surface vertically connected from the epicenter is called the epicenter.
  • the epicenter suffers the most damage because it is the closest indicator to the epicenter.
  • structures such as photovoltaic power generation facilities and distribution equipment that realize the supply and distribution of electricity are separate and independent equipment, unlike buildings and bridges, which correspond to equipment that is placed after the main equipment is built at the corresponding location, In reality, it is impossible to apply the seismic design of .
  • the present invention has been devised to solve the above-mentioned necessity, and an object of the present invention is to realize an autonomous driving type earthquake-resistant system disposed under an earthquake-resistant target object, by sensing vibration in the vertical direction (vertical direction) in the vertical direction. By adjusting the inclination of the support plate of It is to provide an autonomous driving type earthquake-resistant system that allows
  • the plates disposed adjacent to each other
  • the earthquake-resistant structure (A) detects the occurrence of displacement in the vertical direction of the displacement detection sensor unit 410 disposed on the upper plate, and adjusts the inclination of the upper plate, so that it is possible to provide an autonomous driving type earthquake-resistant system.
  • the vertical axis earthquake-resistant structure (B)) is spaced apart from the third plate 300 disposed on the second plate 200 and the third plate upper part, and the displacement sensor unit 410 A driving module for driving a displacement control module (B1) for changing the inclination of the third plate and changing the vertical displacement of the displacement control module (B1) coupled to a structure penetrating the fourth plate 400 on which is disposed (M); including, to be able to provide an autonomous driving type earthquake-resistant system.
  • the displacement control module (B1) a lead screw member 330 that rotates as the driving force of the driving motor is transmitted; a fixing member 320 that binds to the fourth plate 400 and transmits a change in vertical height according to the rotation of the lead screw member 330; Including, generating a vertical displacement of the fourth plate 400 via the fixing member 320, it is possible to provide an autonomous driving type earthquake-resistant system.
  • the displacement control module (B1) according to an embodiment of the present invention, an elastic protection member 370 having an accommodation space portion (H) for accommodating the risk screw member 330 in a buried structure therein;
  • an autonomous driving type earthquake-resistant system further comprising a.
  • a plurality of spacer members 380 are disposed in the spaced apart spaces of the third and fourth plates; further comprising, an autonomous driving type earthquake-resistant system can be provided.
  • the elastic protective member 370 and the spacer member 380 can provide an autonomous driving type earthquake-resistant system, the main material of which is urethane.
  • a communication module for transmitting the displacement detection sensor value to the outside; a power module for supplying power to the driving module, the displacement sensor, and the communication module; and a control module that generates a driving signal for driving control of the driving motor according to the displacement value sensed by the displacement sensor and transmits it to the driving motor.
  • the autonomous driving type earthquake-resistant system disposed under the earthquake-resistant object by sensing the vibration in the vertical direction (vertical direction) and adjusting the inclination of the support plate in the vertical direction, it is efficiently It is possible to buffer the impact in the vertical direction, and at the same time, there is an effect of efficiently mitigating the impact by arranging a transverse earthquake-resistant structure based on a rolling member corresponding to the impact in the left and right directions.
  • FIG. 1 is a perspective conceptual diagram of an autonomous driving type earthquake-resistant system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional conceptual view for explaining the configuration of the transverse axis earthquake-resistant structure (A), which is a major part in FIG. 1 .
  • FIG. 3 is a cross-sectional conceptual view for explaining the configuration of the longitudinal axis earthquake-resistant structure (B), which is an integral part of the present invention posted in FIG. 1 .
  • FIG. 4 is a conceptual diagram of an operating state for explaining the function of FIG. 3 .
  • FIG. 1 is a perspective conceptual diagram of an autonomous driving type earthquake-resistant system (hereinafter, referred to as 'the present invention') according to an embodiment of the present invention.
  • 2 is a cross-sectional conceptual view for explaining the configuration of the transverse axis earthquake-resistant structure (A), which is a major part in FIG. 1 .
  • 3 is a cross-sectional conceptual view for explaining the configuration of the longitudinal axis earthquake-resistant structure (B), which is an integral part of the present invention posted in FIG. 1 .
  • 4 is a conceptual diagram of an operating state for explaining the function of FIG. 3 .
  • the vertical axis seismic structure (B) performs a function of adjusting the inclination of the upper plate by detecting the displacement in the vertical direction of the displacement detecting sensor unit 410 disposed on the upper plate, and the horizontal axis earthquake resistance
  • the structure (A) is to be able to perform the function of buffering the shock according to the vibration in the horizontal direction.
  • the transverse earthquake-resistant structure (A) is described as a preferred embodiment, but is not limited thereto, and the fifth plate 500 on which the earthquake-resistant object is mounted.
  • a transverse earthquake-resistant relief body A can also be arrange
  • the structure shown in FIG. 1 will be described as a preferred embodiment.
  • the rolling member 120 disposed in the seating groove 110 formed on the surface of the first plate 100 is freely rolled in the space formed by the flow groove 210 of the second plate 200, and the second By moving the plate 200 forward, backward, left, and right directions, it is possible to mitigate transverse vibration.
  • the rolling member 120 as shown, can apply a structure capable of self-rotation within the seating groove 110, and in one embodiment of the present invention, a ball bearing structure can be seated and used.
  • the diameter (b) of the flow groove 210 is implemented as a diameter (b) greater than or equal to the diameter (a) of the seating groove 110 , so that the ball bearing structure can rotate within the seating groove 110 .
  • the second plate 200 moves freely as much as the space of the upper flow groove (for example, movement in the direction of the arrow at the bottom of FIG. 2 ) to alleviate the transverse vibration applied from the outside.
  • the vertical axis earthquake-resistant structure (B) is disposed at the upper or lower position of the horizontal axis earthquake-resistant structure (A), and a pair of plates 300 and 400 disposed to face each other spaced apart of the structure to be placed in
  • the longitudinal axis earthquake-resistant structure (B) is a preferred embodiment to be installed spaced apart from each other at at least four symmetrical positions of the autonomous driving type earthquake-resistant system, each of the longitudinal earthquake-resistant structure (B) It becomes possible to adjust the height of the fourth plate 400 according to the driving of the motor. If the height adjustment ratio of each of the vertical axis earthquake-resistant structures B is different, the inclination of the fourth plate 400 can be adjusted. Thereby, it is possible to perform the seismic function according to the vertical axis vibration.
  • the longitudinal axis earthquake-resistant structure (B) is spaced apart from the third plate 300 disposed on the second plate 200 and the third plate upper part.
  • a displacement control module (B1) that passes through the fourth plate 400 on which the displacement detection sensor unit 410 is disposed, and changes the inclination of the third plate, and the displacement control module (B1) ) may be configured to include a driving module (M) for driving the vertical displacement change.
  • the configuration of the displacement control module B1 includes a lead screw member 330 that rotates as the driving force of the driving motor M is transmitted, and the lead screw member 330, as shown in FIG. 3 (b).
  • Up and down displacement of the fourth plate 400 through the fixing member 320 including a fixing member 320 that binds and transmits a change in vertical height according to the rotation of the fourth plate 400 to be able to generate
  • the lead screw member 330 has one end fixed to the upper guide part 310 and rotates by receiving the driving force of the driving motor, and is drawn into the lower part along the insertion groove 365 of the lower guide part 360 to adjust the displacement.
  • the driving motor M is disposed on the fourth plate 400 , and the upper guide part 310 is disposed through the fourth plate, and the lower part thereof
  • the fixing member 320 may be closely fixed to the lower surface of the fourth plate 400 in the form of a plate.
  • the lead screw member 330 extends its lower portion and is disposed to vertically cross the separation space between the fourth plate 400 and the third plate 300, and the lower guide part 360 is the third It passes through the plate 300 and is disposed under the second fixing member 350 so as to be fixed in close contact with the lower portion of the third plate 300 .
  • This arrangement structure can be arranged so that a total of four components are arranged at the edge of the autonomous driving type earthquake-resistant system according to the present invention.
  • the control module reflects this gradient and feeds back the gradient of the fourth plate as a horizontal gradient.
  • the vertical movement displacement of the earthquake-resistant structure of the four longitudinal axes is set and driven.
  • This operation allows a total of four longitudinal earthquake-resistant structures (B) to be independently made. Through this, it is possible to implement a buffer for vibration in the longitudinal direction.
  • the displacement detection sensor unit 410 may further include a vibration sensor, and capture the vibration data of the installation place and installation facility of the smart seismic system to which the present invention is applied through the vibration sensor, and analyze it to respond can do.
  • a plurality of space members 380 can be disposed in the spaced apart space between the fourth plate 400 and the third plate 300 according to the present invention, and the spacer member 380 is made of a material having elasticity. It can be implemented with materials such as synthetic resin or synthetic rubber, and through this, it is possible to realize that the displacement of the separation space (x1, y1) is reduced or increased according to the operation of the lead screw member, and at the same time, the fourth plate 400 and the fourth plate 400 It may be possible to support between the three plates 300 .
  • the space member 380 may be additionally disposed between the fourth plate 400 and the fifth plate 500 , and between the second plate 200 and the third plate 300 . It can also be placed in a space away from Such a space member 380 may be implemented using urethane in the embodiment of the present invention.
  • the displacement control module (B1) may be configured to further include an elastic protection member 370 having an accommodating space portion (H) for accommodating the risk screw member 330 in a buried structure therein.
  • an elastic protection member 370 In the case of the elastic protective member 370, it performs a function of protecting the circumference of the lead screw, so that it can be implemented with a urethane material.
  • the protection member 420 for protecting the drive motor M is made of a urethane material, so that the protection and support function of the drive motor can be implemented.
  • FIG. 4 (a) shows a configuration in which an object (S) is installed to be seated on the ground surface (G) using the autonomous driving type earthquake-resistant system of the present invention
  • (b) is an earthquake Occurs, and a situation in which an inclination occurs on the ground surface (G) has occurred.
  • the displacement detection sensor detects the change in the inclination at which the inclination occurs, and controls the inclination gradient by adjusting the risk screw of the vertical axis earthquake-resistant structure, and through this, the target object (S) seated on the top
  • FIG. 4 (b) shows a configuration in which an object (S) is installed to be seated on the ground surface (G) using the autonomous driving type earthquake-resistant system of the present invention
  • (b) is an earthquake Occurs, and a situation in which an inclination occurs on the ground surface (G) has occurred.
  • the displacement detection sensor detects the change in the inclination at which the inclination occurs, and controls the inclination gradient by adjusting the risk screw of the

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

본 발명은 지진의 충격피해를 저감할 수 있도록, 독립적인 대상 장치물을 거치하는 기능을 가지는 구조물을 내진성을 강화할 수 있는 구조물에 대한 것으로, 본 발명의 실시예에 따르면, 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템을 구현함에 있어서, 상하 방향(수직방향)의 진동을 센싱하여 상하 방향의 지지플레이트의 경사도를 조절함으로써, 효율적으로 상하방향의 충격을 완충할 수 있다.

Description

자율 구동형 내진시스템
본 발명은 지진의 충격피해를 저감할 수 있도록, 독립적인 대상 장치물을 거치하는 기능을 가지는 구조물을 내진성을 강화할 수 있는 구조로 설계하는 기술에 대한 것이다.
지구 내부의 에너지가 지표로 나와, 땅이 갈라지며 흔들리는 현상을 지진(地震, earthquake)이라고 하며, 이러한 지진이 일어나는 원리는 탄성반발(elastic rebound)이다. 지층은 힘을 받으면 휘어지며 모습이 바뀐다. 그러다 버틸 수 없을 만큼의 힘이 축적되면 지층이 끊어져 단층이 되고, 원래의 모습으로 돌아가려는 반발력에 의해 지진이 발생한다.
대부분의 지진은 오랜 기간에 걸쳐 대륙의 이동, 해저의 확장, 산맥의 형성 등에 작용하는 지구 내부의 커다란 힘에 의하여 발생된다. 이 밖에도 화산활동으로 지진이 발생하지만, 이 경우에는 그 규모가 비교적 작다. 또한 폭발물에 의해 인공적으로 지진이 발생하기도 한다.
지진은 그 형태와 발생하는 원인에 따라 구조지진(tectonic earthquake), 화산지진(volcanic earthquake), 함몰지진(implosions or collapse earthquake)으로 나눈다. 이 지진이 일어나는 원인인 에너지가 발생된 점을 진원(earthquake focus), 진원에서 수직으로 연결된 지표면을 진앙(epicenter)이라고 한다. 진앙은 진원에서 가장 가까운 지표이기 때문에 가장 큰 피해를 입는다.
이러한 지진에 따라 피해를 입는 다양양 구조물, 이를테면, 전신주, 배전반 등의 전기설비나, 건축물, 교량 등에 지진에 따른 충격을 견디거나 완화할 수 있는 다양한 내진 설계 기술이 보급되어 적용되고 있다.
특히, 태양광발전 설비나, 전기의 공급과 분배를 구현하는 배전장비 등의 구조물은 건축물이나 교량과는 달리, 별개의 독립적인 장비로 해당 위치에 주요 설비 구축후 배치되는 장비에 해당하여, 별도의 내진 설계를 적용하지는 못하는 것이 현실이며, 이에, 지진에 따른 충격에 매우 큰 피해를 입게되는바, 주시설물과 연계하는 독립적인 구조물(대상장비)에 대한 효율적인 내진 강화형 기술의 필요성이 커지고 있다.
본 발명은 상술한 필요성을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템을 구현함에 있어서, 상하 방향(수직방향)의 진동을 센싱하여 상하 방향의 지지플레이트의 경사도를 조절함으로써, 효율적으로 상하방향의 충격을 완충할 수 있도록 하며, 동시에, 좌우방향의 충격에 대응하는 롤링부재를 기반으로하는 횡축 내진구조체를 배치하여 효율적으로 충격을 완화할 수 있도록 하는 자율 구동형 내진시스템을 제공하는 데 있다.
상술한 과제를 해결하기 위한 수단으로서, 본 발명의 실시예에서는, 도 1 내지 도 4에 도시된 것과 같이, 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템에 있어서, 상호 인접하여 배치되는 플레이트(100, 200) 사이에 횡축 진동을 완화하는 롤링부재를 포함하는 횡축 내진구조체(A); 및 상기 횡축 내진구조체의 상부 또는 하부의 위치에 배치되며, 상호 대향하여 배치되는 한쌍의 플레이트(300, 400) 구조물의 이격공간에 배치되는 복수의 종축 내진구조체(B);를 포함하며, 상기 종축 내진구조체(A)는, 상측 플레이트에 배치되는 변위감지센서부(410)의 수직방향의 변위발생을 감지하여, 상기 상측 플레이트의 경사도를 조절하는, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
또한, 본 발명의 실시예에서는, 상기 횡축 내진구조체(A)는, 상호 대향하는 구조로 이격배치되는 제1플레이트(100) 및 제2플레이트(200); 상기 제1플레이트 표면에 배치되는 다수의 안착홈(110)과 상기 안착홈(110)에 배치되는 롤링부재(120); 상기 제1플레이트(100) 상부에 배치되는 제2플레이트(200)의 대향면에 상기 안착홈(110)에 대응되는 위치에 배치되며, 상기 안착홈(110)의 직경(a) 이상의 크기(b)로 구현되는 유동홈(210)이 마련되는, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
아울러, 상기 종축 내진구조체(B))는, 상기 제2플레이트(200)의 상부에 배치되는 제3플레이트(300)와, 상기 제3플레이트 상부에 이격배치되며, 상기 변위감지센서부(410)가 배치되는 제4플레이트(400)를 관통하는 구조로 결합하며, 상기 제3플레이트의 경사도를 변화시키는 변위조절모듈(B1)과, 상기 변위조절모듈(B1)의 상하 변위 변경을 구동하는 구동모듈(M);을 포함하는, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
또한, 상기 변위조절모듈(B1)은, 상기 구동 모터의 구동력이 전달됨에 따라 회전하는 리드스크류 부재(330); 상기 리드스크류 부재(330)의 회전에 따라 상하 높이의 변화를 상기 제4플레이트(400)와 결착하여 전달하는 고정부재(320); 를 포함하여, 상기 고정부재(320)를 매개로 상기 제4 플레이트(400)의 상하 변위를 발생시키는, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
아울러, 본 발명의 실시예에에 따른 상기 변위조절모듈(B1)은, 상기 리스스크류 부재(330)를 내부에 매립구조로 수용하는 수용공간부(H)를 구비하는 탄성보호부재(370);를 더 포함하는, 자율 구동형 내진시스템를 제공할 수 있도록 한다.
또한, 본 발명의 실시예에에 따른 상기 제3 및 제4플레이트의 이격공간에 다수 배치되는 스페이서부재(380);를 더 포함하는, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
아울러, 상기 탄성보호부재(370) 및 스페이서부재(380)는 주재질이 우레탄인, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
또한, 상기 제4 플레이트(400)의 상면에는, 상기 변위 감지 센서 값을 외부로 전송하기 위한 통신 모듈; 상기 구동모듈, 상기 변위 감지 센서, 상기 통신 모듈에 전원을 공급하기 위한 전원 모듈; 및 상기 변위 감지 센서에 의해 센싱된 변위값에 따라 상기 구동 모터의 구동 제어를 위한 구동신호를 생성하여 상기 구동 모터로 전달하는 제어 모듈;을 더 포함하는, 자율 구동형 내진시스템을 제공할 수 있도록 한다.
본 발명의 실시예에 따르면, 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템을 구현함에 있어서, 상하 방향(수직방향)의 진동을 센싱하여 상하 방향의 지지플레이트의 경사도를 조절함으로써, 효율적으로 상하방향의 충격을 완충할 수 있도록 하며, 동시에, 좌우방향의 충격에 대응하는 롤링부재를 기반으로하는 횡축 내진구조체를 배치하여 효율적으로 충격을 완화할 수 있도록 하는 효과가 있다.
또한, 본 발명의 다른 실시예에 따르면, 본 발명의 자율 구동형 내진시스템이 배치되는 장소나 설비에 대하여 진동 데이터를 획득하여 내진 설계의 데이터를 확보할 수 있도록 하며, 자이로센서, 진동센서, 모터콘트롤의 기능을 무선통신을 통헤 제어 및 모니터링이 가능하도록 하여, 관리의 효율성을 극대화할 수 있는 장점을 구현할 수 있도록 한다.
도 1은 본 발명의 실시예에 따른 자율 구동형 내진시스템의 사시개념도이다.
도 2는 도 1에서의 일요부인 횡축내진구조체(A)의 구성을 설명하기 위한 단면개념도이다.
도 3은 도 1에서 게시한 본 발명의 일요부인 종축 내진구조체(B)의 구성을 설명하기 위한 단면개념도이다.
도 4는 도 3의 기능을 설명하기 위한 작용상태개념도이다.
**부호의 설명**
100: 제1플레이트
110: 안착홈
120: 롤링부재
200: 제2플레이트
210: 유동홈
300: 제3플레이트
310: 상부 가이드부
320: 제1고정부재
330: 리드 스크류부재
360: 하부 가이드부
400: 제4플레이트
410: 변위감지센서부
500: 제5플레이트
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 실시예에 따른 자율 구동형 내진시스템(이하, '본 발명'이라 한다.)의 사시개념도이다. 도 2는 도 1에서의 일요부인 횡축내진구조체(A)의 구성을 설명하기 위한 단면개념도이다. 도 3은 도 1에서 게시한 본 발명의 일요부인 종축 내진구조체(B)의 구성을 설명하기 위한 단면개념도이다. 도 4는 도 3의 기능을 설명하기 위한 작용상태개념도이다.
도 1 내지 도 4를 참조하면, 본 발명은 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템에 있어서, 상호 인접하여 배치되는 플레이트(100, 200) 사이에 횡축 진동을 완화하는 롤링부재를 포함하는 횡축 내진구조체(A) 및 상기 횡축 내진구조체의 상부 또는 하부의 위치에 배치되며, 상호 대향하여 배치되는 한쌍의 플레이트(300, 400) 구조물의 이격공간에 배치되는 복수의 종축 내진구조체(B) 를 포함하여 구성될 수 있다.
이 경우, 상기 종축 내진구조체(B)는, 상측 플레이트에 배치되는 변위감지센서부(410)의 수직방향의 변위발생을 감지하여, 상기 상측 플레이트의 경사도를 조절하는 기능을 수행하며, 상기 횡축 내진 구조체(A)는 수평방향의 진동에 따른 충격을 완충하는 기능을 수행할 수 있도록 한다.
상기 횡축 내진구조체(A)는 도 1에 도시된 구조에서는, 최하부에 배치되는 구성을 바람직한 일실시예로 들어 설명하나, 이에 한정되는 것은 아니며, 내진 대상 물체가 거치되는 제5플레이트(500)의 위치에 횡축 내진구제체(A)를 배치할 수도 있다. 본 발명에서는, 도 1에 도시된 구조를 바람직한 실시예로 하여 설명하기로 한다.
구체적으로, 본 발명은 도 1 및 도 2에 도시된 것과 같이, 상호 인접하여 배치되는 플레이트(100, 200) 사이에 횡축 진동을 완화하는 롤링부재를 포함하는 횡축 내진구조체(A)를 구비할 수 있도록 한다.
즉, 상기 횡축 내진구조체(A)는, 상호 대향하는 구조로 이격배치되는 제1플레이트(100) 및 제2플레이트(200), 상기 제1플레이트 표면에 배치되는 다수의 안착홈(110)과 상기 안착홈(110)에 배치되는 롤링부재(120), 상기 제1플레이트(100) 상부에 배치되는 제2플레이트(200)의 대향면에 상기 안착홈(110)에 대응되는 위치에 배치되며, 상기 안착홈(110)의 직경(a) 이상의 직경(b)으로 구현되는 유동홈(210)이 마련되는 구조로 구현될 수 있도록 한다.
상기 제1플레이트(100) 표면에 형성되는 안착홈(110)에 배치되는 롤링부재(120)는 상기 제2플레이트(200)의 유동홈(210)이 형성하는 공간에서 자유롭게 롤링되면서, 상기 제2플레이트(200)를 전, 후, 좌, 우 방향으로 유동시키며, 횡축 진동을 완화할 수 있게 할 수 있다. 이러한 상기 롤링부재(120)는, 도시된 것과 같이, 안착홈(110) 내에서 자체 회전이 가능한 구조의 구조물을 적용할 수 있으며, 본 발명의 일예에서는, 볼베어링 구조물을 안착하여 사용할수 있도록 한다.
특히, 상기 유동홈(210)의 직경(b)는 상기 안착홈(110)의 직경(a) 이상의 직경(b)으로 구현하여, 볼베어링 구조물이 안착홈(110) 내에서 회전할 수 있도록 하는 상태에서, 상부의 유동홈의 공간 만큼 제2플레이트(200)가 자유롭게 움직이며(일예로, 도 2 하단의 화살표 방향의 움직임) 외부에서 인가되는 횡축 진동을 완화할 수 있도록 한다.
상기 종축 내진구조체(B)는 도 1에 도시된 것과 같이, 상기 횡축 내진구조체(A)의 상부 또는 하부의 위치에 배치되며, 상호 대향하여 배치되는 한쌍의 플레이트(300, 400) 구조물의 이격공간에 배치될 수 있도록 한다.
도 1의 실시예에서는, 상기 횡축 내진구조체(A)의 상부에 상기 종축 내진구조체(B)가 배치되는 구조를 바람직한 실시예로 설명한다,(전술한 것과 같이, 횡축 내진구조체(A)가 제5플레이트(500)의 위치에 배치되는 경우에는, 위치가 상호 바뀌어질 수 있다.)
도 1에 도시된 것과 같이, 상기 종축 내진구조체(B)는 자율 구동형 내진시스템의 적어도 4개의 대칭되는 위치에 상호 간 이격 설치되는 것을 바람직한 실시예로 하며, 각각의 상기 종축 내진구조체(B)가 모터의 구동에 따라 제4플레이트(400)의 높낮이를 조정할 수 있게 되는바, 각각의 상기 종축 내진구조체(B)의 높낮이 조정 비율을 다르게 할 경우, 제4플레이트(400)의 경사도를 조절할 수 있게 되어, 종축 진동에 따른 내진 기능을 수행할 수 있도록 할 수 있다.
이를 위해, 도 1 및 도 3에 도시된 것과 같이, 상기 종축 내진구조체(B)는 상기 제2플레이트(200)의 상부에 배치되는 제3플레이트(300)와, 상기 제3플레이트 상부에 이격배치되며, 상기 변위감지센서부(410)가 배치되는 제4플레이트(400)를 관통하는 구조로 결합하며, 상기 제3플레이트의 경사도를 변화시키는 변위조절모듈(B1)과, 상기 변위조절모듈(B1)의 상하 변위 변경을 구동하는 구동모듈(M)을 포함하여 구성될 수 있다.
상기 변위조절모듈(B1)의 구성은, 도 3 (b)에 도시된 것과 같이, 구동 모터(M)의 구동력이 전달됨에 따라 회전하는 리드스크류 부재(330)와, 상기 리드스크류 부재(330)의 회전에 따라 상하 높이의 변화를 상기 제4플레이트(400)와 결착하여 전달하는 고정부재(320), 를 포함하여, 상기 고정부재(320)를 매개로 상기 제4 플레이트(400)의 상하 변위를 발생시킬 수 있도록 한다.
상기 리드스크류 부재(330)은 상부 가이드부(310)에 일단이 고정되고, 구동모터의 구동력을 받아 회전하여, 하부 가이드부(360)의 삽입홈(365)을 따라 하부로 인입되어 변위조정이 가능하도록 할 수 있다.
일예로, 도 3 (a)의 개념도를 살펴보면, 구동모터(M)는 제4플레이트(400)의 상부에 배치되며, 제4플레이트를 관통하여 상부 가이드부(310)이 배치되고, 그 하부에 고정부재(320)이 판(plate) 형태로 제4플레이트(400)의 하부면에 밀착고정될 수 있도록 한다.
상기 리드스크류 부재(330)은 그 하부를 연장하여, 제4플레이트(400)과 제3플레이트(300) 사이의 이격공간을 상하로 가로지르는 구조로 배치되며, 하부 가이드부(360)은 제3플레이트(300)을 관통하여 그 하부에 배치되며, 제2고정부재(350)는 제3플레이트(300)의 하부에 밀착하여 고정되도록 배치된다.
이러한 배치 구조는, 총 4개의 구성이 본 발명인 자율 구동형 내진시스템의 에지부에 배치되도록 배치할 수 있다.
이를 통해, 변위감지센서(410)에서 지진에 따른 제4플레이트 표면 자체의 겨아도의 변화를 감지하게 되면, 제어모듈에서 이러한 경사도를 반영하여 제4플레이트의 경사도를 수평경사도로 피드백하기 위한 제어명령을 송출하게 된다. 구동모터를 회전하여 리드스크루 부재의 회전수를 제어하고, 설정된 피드백이 필요한 경사도를 구현하기 위해, 4개의 종축 내진구조체의 상하 이동 변위를 설정하여 구동시키게 된다.
즉, 도 3 (a) 및 도 4에서처럼, 제4플레이트(400)과 제3플레이트(300) 사이의 이격공간의 간격(y1)을 최대치로하여, 상기 구동모터(M)의 회전을 통한 리드스크류의 회전수를 제어할 수 있도록 한다. 이렇게 상기 리드 스크류부재(330)가 회전수를 제어받아 회전하면, 점차 길이가 줄어들어 변위 간격(y2)만큼 줄어들게 되면, 제4플레이트(400)의 한쪽이 기울어지게 되어 경사가 구현되게 된다.
또는, 도 3 (a)의 우측에 배치된 종축 내진구조체(B)의 구성도, 일정한 비율로 제4플레이트(400)과 제3플레이트(300) 사이의 이격공간의 간격(x1)을 줄이거나 일정 부분 늘리는 과정을 통해 변위 간격(x2)로 조정하게 된다.이러한 동작은 총 4개의 종축 내진구조체(B)가 독립적으로 이루어질 수 있게 된다. 이를 통해, 종축 방향의 진동에 대한 완충을 구현할 수 있도록 한다.
이러한 본 발명의 종축 내진구조체(B)의 구동은, 제4플레이트(400)의 상부에 배치되는 변위감지센서부(410)의 센싱값을 기반으로 구현할 수 있도록 한다. 상기 변위감지센서부(410)는 기울기를 센싱하는 자이로센서를 포함하도록 하여, 상하의 진동을 가지는 종축 진동에 대하여, 제4플레이트 자체의 기울기의 수평값을 실시간으로 감지하여 피드백하고, 이를 종축 내진구조체(B)의 구동을 통해 시현할 수 있도록 한다.
아울러, 변위감지센서부(410)에는 진동센서를 더 포함할 수 있으며, 진동센서를 통해 본 발명이 적용되는 스마트 내진시스템의 설치 장소 및 설치 설비의 진동 데이터를 획드하고, 이를 분석하여 대응할 수 있도록 할 수 있다.
이를 위해, 본 발명에 따른 상기 제4 플레이트(400)의 상면에는, 상기 변위 감지 센서 값을 외부로 전송하기 위한 통신 모듈, 구동모듈, 상기 변위 감지 센서, 상기 통신 모듈에 전원을 공급하기 위한 전원 모듈 및 상기 변위 감지 센서에 의해 센싱된 변위값에 따라 상기 구동 모터의 구동 제어를 위한 구동신호를 생성하여 상기 구동 모터로 전달하는 제어 모듈을 더 포함하여 구성될 수 있도록 한다.
또한, 본 발명에 따른 제4플레이트(400)과 제3플레이트(300) 사이의 이격공간에는 스페이스부재(380)가 다수 배치될 수 있도록 하며, 상기 스페이서부재(380)은 탄성을 가지는 재질로 구성되는 합성수지나 합성고무 등의 재료로 구현할 수 있으며, 이를 통해 리드스크류 부재의 동작에 따라 이격공간(x1, y1)의 변위가 줄어들거나 늘어나는 것을 구현할 수 있음과 동시에, 제4플레이트(400)과 제3플레이트(300) 사이를 지지할 수 있도록 할 수 있다.
상기 스페이스부재(380)은 도 1에서는 도시되지 않았으나, 제4플레이트(400)과 제5플레이트(500) 사이에도 추가로 배치할 수 있으며, 제2플레이트(200) 및 제3플레이트(300) 사이의 이격공간에도 배치할 수 있다. 이러한 스페이스 부재(380)은 본 발명의 실시예에서는 우레탄을 사용하여 구현할 수 있도록 한다.
나아가, 상기 변위조절모듈(B1)은, 상기 리스스크류 부재(330)를 내부에 매립구조로 수용하는 수용공간부(H)를 구비하는 탄성보호부재(370)를 더 포함하여 구성될 수 있다. 상기 탄성보호부재(370)의 경우, 리드 스크류의 둘레를 보호하는 기능을 수행하며, 우레탄 재질로 구현할 수 있도록 한다.
아울러, 도 3 (a)에서와 같이, 구동모터(M)을 보호하는 보호부재(420)을 우레탄 재질로 구성하여, 구동모터의 보호와 지지기능을 구현할 수 있도록 할 수 있다.
이상의 본 발명의 실시예에 따르면, 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템을 구현함에 있어서, 상하 방향(종축방향)의 진동을 센싱하여 상하 방향의 지지플레이트의 경사도를 조절함으로써, 효율적으로 상하방향의 충격을 완충할 수 있도록 하며,동시에, 좌우방향(횡축방향)의 진동에 대응하는 롤링부재를 기반으로하는 횡축 내진구조체를 배치하여 횡축방향에도 효율적으로 충격을 완화할 수 있도록 하는 자율 구동형 내진시스템을 제공할 수 있게 된다.
도 4를 참조하면, 도 4는 (a) 본 발명의 자율 구동형 내진시스템을 이용하여 지표면(G)에 대상물체(S)를 안착하도록 설치한 구성을 도시한 것이고, (b)는 지진이 발생하여 지표면(G)에 경사가 발생하는 상황을 발생한 것이다. 이 경우, 상술한 것처럼, 경사가 발생한 경사의 변화를 변위감지센서에서 감지하고, 이를 종축 내진 구조체의 리스스크류를 조절하여, 경사 구배를 제어하고, 이를 통해 최상부에 안착한 대상물체(S)에 대해서는 (a)의 도면과 같이 수평한 위치로 안착한 상태를 유지할 수 있도록 하는 것을 개념적으로 나타낸 것이다. (b)에 도시된 것과 같이, △X에 해당하는 간격만큼 리스크르류부재가 줄어들게 되면서, 하부의 지표면의 경사와 기울어진 정도를 부정하고, 상부의 제4플레이트의 경사를 수평으로 유지할 수 있도록 할 수 있다.
이상에서와 같이 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 바람직한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아니다. 이처럼 이 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 본 발명의 실시예의 결합을 통해 다양한 실시예들이 가능함을 이해할 수 있을 것이다.

Claims (8)

  1. 내진 대상 물체의 하부에 배치되는 자율 구동형 내진시스템에 있어서,
    상호 인접하여 배치되는 플레이트(100, 200) 사이에 횡축 진동을 완화하는 롤링부재를 포함하는 횡축 내진구조체(A); 및
    상기 횡축 내진구조체의 상부 또는 하부의 위치에 배치되며, 상호 대향하여 배치되는 한쌍의 플레이트(300, 400) 구조물의 이격공간에 배치되는 복수의 종축 내진구조체(B); 를 포함하며,
    상기 종축 내진구조체(B)는, 상측 플레이트에 배치되는 변위감지센서부(410)의 수직방향의 변위발생을 감지하여, 상기 상측 플레이트의 경사도를 조절하는,
    자율 구동형 내진시스템.
  2. 청구항 1에 있어서,
    상기 횡축 내진구조체(A)는,
    상호 대향하는 구조로 이격배치되는 제1플레이트(100) 및 제2플레이트(200);
    상기 제1플레이트 표면에 배치되는 다수의 안착홈(110)과 상기 안착홈(110)에 배치되는 롤링부재(120);
    상기 제1플레이트(100) 상부에 배치되는 제2플레이트(200)의 대향면에 상기 안착홈(110)에 대응되는 위치에 배치되며, 상기 안착홈(110)의 직경(a) 이상의 크기(b)로 구현되는 유동홈(210)이 마련되는,
    자율 구동형 내진시스템.
  3. 청구항 2에 있어서,
    상기 종축 내진구조체(B))는,
    상기 제2플레이트(200)의 상부에 배치되는 제3플레이트(300)와, 상기 제3플레이트 상부에 이격배치되며, 상기 변위감지센서부(410)가 배치되는 제4플레이트(400)를 관통하는 구조로 결합하며,
    상기 제3플레이트의 경사도를 변화시키는 변위조절모듈(B1)과,
    상기 변위조절모듈(B1)의 상하 변위 변경을 구동하는 구동모듈(M);을 포함하는,
    자율 구동형 내진시스템.
  4. 청구항 3에 있어서,
    상기 변위조절모듈(B1)은,
    상기 구동 모터(M)의 구동력이 전달됨에 따라 회전하는 리드스크류 부재(330);
    상기 리드스크류 부재(330)의 회전에 따라 상하 높이의 변화를 상기 제4플레이트(400)와 결착하여 전달하는 고정부재(320);
    를 포함하여, 상기 고정부재(320)를 매개로 상기 제4 플레이트(400)의 상하 변위를 발생시키는,
    자율 구동형 내진시스템.
  5. 청구항 4에 있어서,
    상기 변위조절모듈(B1)은,
    상기 리스스크류 부재(330)를 내부에 매립구조로 수용하는 수용공간부(H)를 구비하는 탄성보호부재(370);를 더 포함하는,
    자율 구동형 내진시스템.
  6. 청구항 5에 있어서,
    상기 제3 및 제4플레이트의 이격공간에 다수 배치되는 스페이서부재(380);를 더 포함하는,
    자율 구동형 내진시스템.
  7. 청구항 6에 있어서,
    상기 탄성보호부재(370) 및 스페이서부재(380)는 주재질이 우레탄인,
    자율 구동형 내진시스템.
  8. 청구항 7에 있어서,
    상기 제4 플레이트(400)의 상면에는,
    상기 변위 감지 센서 값을 외부로 전송하기 위한 통신 모듈;
    상기 구동모듈, 상기 변위 감지 센서, 상기 통신 모듈에 전원을 공급하기 위한 전원 모듈; 및
    상기 변위 감지 센서에 의해 센싱된 변위값에 따라 상기 구동 모터의 구동 제어를 위한 구동신호를 생성하여 상기 구동 모터로 전달하는 제어 모듈;을 더 포함하는,
    자율 구동형 내진시스템.
PCT/KR2020/017719 2020-12-01 2020-12-07 자율 구동형 내진시스템 WO2022119029A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0165250 2020-12-01
KR1020200165250A KR102607721B1 (ko) 2020-12-01 2020-12-01 자율 구동형 내진시스템

Publications (1)

Publication Number Publication Date
WO2022119029A1 true WO2022119029A1 (ko) 2022-06-09

Family

ID=81854017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017719 WO2022119029A1 (ko) 2020-12-01 2020-12-07 자율 구동형 내진시스템

Country Status (2)

Country Link
KR (1) KR102607721B1 (ko)
WO (1) WO2022119029A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152690A2 (ko) * 2010-06-04 2011-12-08 Je Hee Mun 일정 진도 이상의 지진에 응답하는 면진장치
KR101814160B1 (ko) * 2017-09-26 2018-01-02 (주)베셀 내진기능을 갖춘 물탱크 지지장치
KR20190066173A (ko) * 2017-12-05 2019-06-13 가톨릭관동대학교산학협력단 수평유지 장치
KR102067244B1 (ko) * 2019-03-20 2020-02-17 박성훈 내진 구조물
KR102166000B1 (ko) * 2020-02-10 2020-10-15 (주)성창 전방향 내진 성능을 갖는 배전반

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972735B1 (ko) 2019-02-01 2019-04-25 제희문 면진장치
KR102084140B1 (ko) 2019-08-13 2020-03-04 야베스텍 주식회사 내진성능이 구비된 태양광 발전용 시스템 배전반
KR102140485B1 (ko) 2020-05-21 2020-08-03 주식회사 유환 태양광 모듈 설치 구조물용 내진 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152690A2 (ko) * 2010-06-04 2011-12-08 Je Hee Mun 일정 진도 이상의 지진에 응답하는 면진장치
KR101814160B1 (ko) * 2017-09-26 2018-01-02 (주)베셀 내진기능을 갖춘 물탱크 지지장치
KR20190066173A (ko) * 2017-12-05 2019-06-13 가톨릭관동대학교산학협력단 수평유지 장치
KR102067244B1 (ko) * 2019-03-20 2020-02-17 박성훈 내진 구조물
KR102166000B1 (ko) * 2020-02-10 2020-10-15 (주)성창 전방향 내진 성능을 갖는 배전반

Also Published As

Publication number Publication date
KR102607721B1 (ko) 2023-11-29
KR20220076595A (ko) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2011007986A2 (ko) 태양광 발전장치
Hall et al. Isolated buildings and the 1997 UBC near-source factors
WO2022119029A1 (ko) 자율 구동형 내진시스템
WO2013115539A1 (en) Four degrees of freedom motion apparatus
WO2011152690A2 (ko) 일정 진도 이상의 지진에 응답하는 면진장치
WO2016171411A1 (ko) 내진설계를 위한 부유공법
WO2013157752A1 (ko) 태양광 발전용 추적장치
US9732516B2 (en) Object, such as a building, provided with a system for preventing damage from earthquakes to the object
CN216625172U (zh) 一种用于水利水电工程电缆固定保护装置
WO2018182113A1 (ko) 수상 부유식 태양광 발전 시스템
CN106679952A (zh) 减隔震装置多功能试验机
CN101267067A (zh) 移动式电气设备的触点接通装置和系统
WO2018169142A1 (ko) 태양광 모듈
WO2017142117A1 (ko) 로켓 추진체 회수 장치와 방법, 추진체 회수 제어 장치 및 방법
CN107160377A (zh) 一种空间机械臂地面三维空间运动测试装置及方法
KR102213521B1 (ko) 내진장치
WO2019190196A1 (ko) 고고도 구조물의 균형유지시스템
JPH10246004A (ja) 免震荷重受替え方法
WO2015023018A1 (ko) 반발력을 이용한 압전 하베스팅 시스템
JP4990729B2 (ja) 免震建物
KR102329485B1 (ko) 드론을 이용한 중력 보상 장치, 이를 포함하는 태양전지판 지상 시험 시스템, 및 그 방법
WO2012091475A2 (ko) 태양광 추적 장치
Becker et al. An active pre-alignment system and metrology network for CLIC
WO2022240047A1 (ko) 발파 작업을 위한 기지국 장치 및 이를 포함하는 트래킹 네트워크 시스템
KR102626110B1 (ko) Cctv 설치 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964377

Country of ref document: EP

Kind code of ref document: A1