WO2022118964A1 - 掘削流体、掘削方法及び掘削流体用添加剤 - Google Patents

掘削流体、掘削方法及び掘削流体用添加剤 Download PDF

Info

Publication number
WO2022118964A1
WO2022118964A1 PCT/JP2021/044520 JP2021044520W WO2022118964A1 WO 2022118964 A1 WO2022118964 A1 WO 2022118964A1 JP 2021044520 W JP2021044520 W JP 2021044520W WO 2022118964 A1 WO2022118964 A1 WO 2022118964A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavation
biodegradable
fluid
water
fiber
Prior art date
Application number
PCT/JP2021/044520
Other languages
English (en)
French (fr)
Inventor
成実 長縄
竜太郎 向井
Original Assignee
国立大学法人秋田大学
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学, 株式会社カネカ filed Critical 国立大学法人秋田大学
Priority to US18/255,424 priority Critical patent/US20240026205A1/en
Priority to JP2022567008A priority patent/JPWO2022118964A1/ja
Publication of WO2022118964A1 publication Critical patent/WO2022118964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/20Natural organic compounds or derivatives thereof, e.g. polysaccharides or lignin derivatives
    • C09K8/206Derivatives of other natural products, e.g. cellulose, starch, sugars
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/003Means for stopping loss of drilling fluid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids

Definitions

  • the present invention relates to an excavation fluid, an excavation method and an additive for an excavation fluid.
  • Drilling fluid (also referred to as “drilling muddy water” or simply “muddy water”) is used in drilling carried out for oil mining and the like.
  • the drilling fluid is inside a suction tank, which is a pump, inside a drill string (a series of pipes composed of a drill bit (corresponding to a drilling blade) and a drill pipe (a pipe that transmits rotational power to the drill bit)). It is sent to the well via an anuras (the gap between the drill string and the well wall) and returned to the surface of the ground for use. This allows excavations around the bottom of the pit and the drill bit (also called “cuttings”) to be transported to the surface (cuttings transport, hole cleaning).
  • the drilling fluid also plays a role as a lubricant and a cooling agent for the drill bit. Furthermore, the excavated fluid also plays a role of suppressing the inflow of the fluid into the well and the ejection to the ground in the stratum by controlling the pressure in the well.
  • the used excavation fluid (excavation fluid carried to the ground surface together with the cuttings) is reused after the cuttings are removed by a shale shaker (large sieving device) as necessary. That is, the drilling fluid is circulated between the suction tank, the drill string, the annulus, and the shale shaker.
  • the components of the excavated fluid may be adjusted (also referred to as “mud preparation”).
  • the well wall is highly permeable to water (such as when the soil particles that make up the well wall are coarse or when there are cracks in the well wall), it is sent into the well.
  • the excavated fluid may permeate the formation and part or all of the excavated fluid may not return to the surface (also called "well mud").
  • mud When mud is generated, there may be a problem that the stratum loosens and the well wall easily collapses, or a problem that sufficient excavation cannot be carried out due to a shortage of excavation fluid used for circulation.
  • an anti-mud agent has been used to prevent or stop mud.
  • the cracks are closed or, more microscopically, a mud wall is formed on the surface of the well wall.
  • Fibrous materials sucgar cane fibers, mineral fibers, etc.
  • granules limestone, marble, walnut shells, etc.
  • flaky materials mica pieces, resin film pieces, etc.
  • Patent Documents 1 and 2 are used as mud-preventing agents.
  • the present invention is an excavation fluid containing water, biodegradable fibers, and a thickener, wherein the thickener contains a water-absorbent silicate, and the fiber length of the biodegradable fibers is 5.0 mm or more.
  • the thickener further comprises a biodegradable polysaccharide. More preferably, the biodegradable polysaccharide is contained in the excavated fluid in an amount of 2.0 g / L or more and 5.0 g / L or less. Further, more preferably, the biodegradable polysaccharide contains at least one selected from the group consisting of carboxymethyl cellulose, polyanionic cellulose, xanthan gum and guar gum.
  • the water-absorbent silicate is contained in the drilling fluid in an amount of 0.01 g / L or more and 100 g / L or less.
  • the water-absorbent silicate comprises at least one selected from the group consisting of bentonite and sepiolite.
  • the biodegradable fiber contains a fiber made of a polyhydroxyalkanoate-based resin. More preferably, the polyhydroxyalkanoate-based resin contains 3-hydroxyalkanoic acid represented by the following general formula (1). [-CHR-CH 2 -CO-O-] (1)
  • R represents an alkyl group represented by C p H 2p + 1
  • p represents an integer of 1 to 15.
  • the polyhydroxyalkanoate-based resin contains poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • the content of the biodegradable fiber is 0.50 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the thickener.
  • the present invention has a step of excavating the well while feeding the excavation fluid into the well and discharging the excavated debris generated by the excavation to the outside of the well.
  • Water, biodegradable fiber, and thickener, the thickener contains a water-absorbing silicate, and the fiber length of the biodegradable fiber is 5.0 mm or more and 50 mm or less. ..
  • the excavation is a riser or riserless excavation in a marine environment.
  • the excavation is riserless excavation in a marine environment or excavation in a terrestrial environment.
  • the present invention is an additive for an excavation fluid containing a biodegradable fiber and a thickener, wherein the thickener contains a water-absorbent silicate, and the fiber length of the biodegradable fiber is 5. It relates to an additive for an excavation fluid having a thickness of 0.0 mm or more and 50 mm or less.
  • the drilling fluid according to this embodiment contains water, biodegradable fibers, and a thickener.
  • the thickener comprises a water-absorbent silicate.
  • the fiber length of the biodegradable fiber is 5.0 mm or more and 50 mm or less.
  • the water contained in the excavation fluid according to the present embodiment is not particularly limited.
  • water water contained in a conventionally known water-based excavation fluid can be used.
  • the water may be, for example, fresh water; brine (seawater, etc.); tap water; groundwater; and water that can enter a well by drilling a well in any environment such as flat land, mountains, rivers, canals, and oceans. (Rainwater, etc.) and the like.
  • the thickener is not particularly limited as long as it contains a water-absorbent silicate and increases the viscosity of the excavated fluid by addition.
  • the thickener may be the water-absorbent silicate and may contain components other than the water-absorbent silicate.
  • the components other than the water-absorbent silicate include biodegradable polysaccharides, organic colloids (polymers) and the like.
  • the water-absorbent silicate is not particularly limited as long as it functions as a thickener. In other words, the water-absorbent silicate is not particularly limited as long as it increases the viscosity of water by being added to water.
  • the water-absorbent silicate include bentonite, sepiolite and the like. Examples of commercially available bentonite products include “Tergel” manufactured by Ternite Co., Ltd. Examples of commercially available sepiolite products include "Thermogel” manufactured by Ternite Co., Ltd.
  • the thickener contains a water-absorbent silicate
  • a mud wall can be formed on the surface of the well wall by the water-absorbent material absorbed by the water-absorbent silicate.
  • the concentration of water-absorbing silicate in the excavated fluid is preferably 0.01 g / L or more, more preferably 1.0 g / g /. It is L or more, more preferably 10.0 g / L or more.
  • the concentration of the water-absorbent silicate in the excavated fluid is preferably 100 g / L or less, more preferably 80 g / L or less, and further preferably 60 g / L or less.
  • the thickener further contains the biodegradable polysaccharide as a component other than the water-absorbent silicate.
  • the biodegradable polysaccharide is not particularly limited as long as it is a biodegradable polysaccharide, has water solubility, and increases the viscosity of the excavated fluid by addition.
  • the "biodegradable” in the present embodiment means a property that can be decomposed into a small molecule compound by a microorganism in the natural world. Specifically, it is biodegraded based on tests suitable for each environment, such as ISO 14855 (compost) and ISO 14851 (activated sludge) under aerobic conditions, and ISO 14853 (aqueous phase) and ISO 15985 (solid phase) under anaerobic conditions. Whether or not it is degradable can be determined. In addition, the degradability of microorganisms in seawater can be evaluated by measuring the biochemical oxygen demand.
  • water-soluble polysaccharide in the present embodiment means that the shape of each polysaccharide can be maintained or a residue can be left depending on appropriate dissolution conditions (dissolution temperature, concentration, stirring time, etc.). It means that it dissolves in water. It suffices to dissolve part or all of the excavation fluid at least during the excavation work.
  • biodegradable polysaccharide examples include cellulose derivatives such as carboxymethyl cellulose and polyanionic cellulose; glucosamine such as chitosan; xanthan gum; and guagam.
  • cellulose derivatives such as carboxymethyl cellulose and polyanionic cellulose
  • glucosamine such as chitosan
  • xanthan gum examples include guagam.
  • at least one selected from the group consisting of carboxymethyl cellulose, polyanionic cellulose, xanthan gum and guar gum is preferable.
  • guar gum has the best viscosity and moisturizing properties at low temperatures
  • carboxymethyl cellulose has excellent viscosity and is inexpensive
  • polyanionic cellulose has excellent viscosity and high salt resistance
  • xanthan gum has excellent viscosity.
  • polysaccharides can be appropriately selected depending on the environment of the well to be excavated, the excavation conditions, the distribution condition of the market, and the like.
  • the weight average molecular weight of the biodegradable polysaccharide is preferably 200,000 or more. Further, it may be 1,000,000 or less.
  • the thickener further contains a biodegradable polysaccharide in addition to the water-absorbent silicate, so that the water-absorbent material (the water-absorbent material in which the water-absorbent silicate absorbs water) becomes.
  • the amount of excavated fluid that permeates the well wall by being coated with biodegradable polysaccharides to maintain a stable colloidal state of the excavated fluid and improve mud wall formation, that is, by stabilizing the mud wall (The amount of dehydration) can be reduced, that is, the permeation of the excavated fluid into the well wall can be further suppressed.
  • the concentration of the biodegradable polysaccharide in the excavated fluid is preferable. It is 2.0 g / L or more. Further, from the viewpoint of suppressing excessive thickening of the excavation fluid and maintaining good rheological characteristics and good excavation efficiency, the concentration of biodegradable polysaccharide in the excavation fluid is preferably 5.0 g / L or less. It is preferably 4.5 g / L or less.
  • organic colloids examples include PHPA (partically hydrolyzed polyacrylamide; Partical Hydrolized Poly Acrylamide).
  • PHPA may contain a copolymer of acrylamide and acrylic acid, and polyacrylamide.
  • Telcoat manufactured by Ternite Co., Ltd. can be mentioned.
  • the concentration of organic colloids (polymers) in the excavated fluid may be 0.01 g / L or more, 0.5 g / L or more, or 1.0 g / L or more, 10.0 g / L or less, 5.0 g / L or more. It may be L or less, or 3.0 g / L or less.
  • the biodegradable fiber contained in the excavated fluid is a fiber having biodegradability. Further, it is important that the fiber length of the biodegradable fiber is 5.0 mm or more and 50 mm or less.
  • fibers show the morphological characteristics of being thin and long.
  • the fineness of biodegradable fibers is represented by denier (D) or dtex.
  • Denier (D) displays the weight per 9,000 m length in g units, and dtex displays the weight per 10,000 m length in g units.
  • the fineness of the biodegradable fiber is preferably 1 dtex or more, more preferably 3 dtex or more, and even more preferably 5 dtex or more.
  • the fineness of the biodegradable fiber is preferably 100 dtex or less, more preferably 50 dtex or less, still more preferably 10 dtex or less.
  • the diameter and length of 50 to 100 randomly selected fibers are measured by a fineness measuring instrument DENICON-DC21 (manufactured by Search Co., Ltd.).
  • a method of calculating the average value can be mentioned. Therefore, the fineness can be rephrased as the average fiber diameter, and the fiber length can be rephrased as the average fiber length.
  • the biodegradable fiber contained in the excavation fluid is preferably water-insoluble. It is necessary to maintain the fiber shape in the drilling fluid, at least during the drilling operation.
  • biodegradable fibers include fibers derived from biological resources (biomass) such as microorganisms, plants and animals. Fibers derived from biological resources (biomass) include those obtained by extracting fibers possessed by biological resources (biomass) and those obtained by chemically synthesizing monomers possessed by biological resources (biomass).
  • the biodegradable fiber examples include monofiber or composite fiber containing a polyhydroxyalkanoate resin and an aliphatic polyester such as polylactic acid; or a polysaccharide such as cellulose.
  • a fiber made of a polyhydroxyalkanoate-based resin is preferable. This is because the biodegradation mechanism of the polyhydroxyalkanoate-based resin is most clarified and it has an appropriate decomposition rate in the environment, so that it is useful as an environment-friendly material.
  • the poly (3-hydroxy alkanoate) resin is a polyester containing 3-hydroxy alkanoic acid as a monomer. That is, the poly (3-hydroxyalkanoate) -based resin is a resin containing 3-hydroxyalkanoic acid as a constituent unit.
  • the poly (3-hydroxy alkanoate) resin may be a homopolymer or a copolymer.
  • the polyhydroxyalkanoate-based resin contains 3-hydroxyalkanoic acid represented by the following general formula (1) as a constituent unit. This is because it is possible to achieve both appropriate molding processability and good biodegradability.
  • R represents an alkyl group represented by C p H 2p + 1
  • p represents an integer of 1 to 15.
  • the poly (3-hydroxyalkanoate) -based resin preferably contains a poly (3-hydroxybutyrate) -based resin.
  • the poly (3-hydroxybutyrate) resin is a resin containing 3-hydroxybutyrate as a constituent unit.
  • the poly (3-hydroxybutyrate) resin may be a homopolymer or a copolymer.
  • Examples of the poly (3-hydroxyalkanoate) resin containing 3-hydroxybutyrate as a constituent unit include P3HB, P3HB3HH, P3HB3HV, P3HB4HB, and poly (3-hydroxybutyrate-co-3-hydroxyoctanoate).
  • P3HB means poly (3-hydroxybutyrate).
  • P3HB3HH means poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • P3HB3HV means poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
  • P3HB4HB means poly (3-hydroxybutyrate-co-4-hydroxybutyrate).
  • the poly (3-hydroxyalkanoate) -based resin contains P3HB. Is preferable.
  • P3HB, P3HB3HH, P3HB3HV, P3HB4HB and the like are preferable from the viewpoint of improving the biodegradability of the biodegradable fiber and improving the molding processability of the biodegradable fiber. ..
  • the poly (3-hydroxy alkanoate) resin contains 3-hydroxybutyrate as a constituent unit, preferably 85.0 mol% or more.
  • the poly (3-hydroxy alkanoate) resin contains 85.0 mol% or more of 3-hydroxybutyrate as a constituent unit, the rigidity of the biodegradable fiber is increased.
  • the poly (3-hydroxy alkanoate) resin contains 3-hydroxybutyrate as a constituent unit in an amount of preferably 99.5 mol% or less, more preferably 97.0 mol% or less. Since the poly (3-hydroxy alkanoate) resin contains 99.5 mol% or less of 3-hydroxybutyrate as a constituent unit, the biodegradable fiber is excellent in flexibility.
  • the biodegradable fiber may contain only one type of the poly (3-hydroxyalkanoate) resin, or may contain two or more types of the poly (3-hydroxyalkanoate) resin.
  • the poly (3-hydroxy alkanoate) resin may contain a copolymer (P3HB3HH or the like)
  • the poly (3-hydroxy alkanoate) resin may contain two or more types of copolymers having different average composition ratios of the constituent units.
  • the weight average molecular weight of the poly (3-hydroxy alkanoate) resin is preferably 50,000 to 3,000,000, more preferably 50,000 to 1,500,000. When the weight average molecular weight of the poly (3-hydroxy alkanoate) resin is 3,000,000 or less, the biodegradable fiber can be easily formed. When the weight average molecular weight of the poly (3-hydroxy alkanoate) resin is 50,000 or more, the strength of the biodegradable fiber can be increased.
  • the weight average molecular weight in the present embodiment is measured by gel permeation chromatography (GPC) using a chloroform eluent from a polystyrene-equivalent molecular weight distribution. As the column in the GPC, an appropriate column for measuring the molecular weight may be used.
  • polyhydroxy alkanoate-based resin poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is most preferable.
  • it is excellent in biodegradability, has a small environmental load, and has excellent cutting transport and hole cleaning ability.
  • the viscosity of the drilling fluid in the high shear rate region such as around the drill bit is kept low.
  • the viscosity (and shear stress) of the excavated fluid in the low shear rate region can be increased (in other words, while maintaining the fluidity), so that the ability of cutting transport and hole cleaning can be sufficiently improved.
  • the fiber made of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is particularly excellent in biodegradability, the environmental load due to being discarded or dumped and remaining is small. Specifically, for example, since it has an excellent seawater decomposition property that it is decomposed into water and carbon dioxide by microorganisms existing in seawater and does not remain in seawater, the environmental load is small even if it is dumped in the ocean.
  • the excavation fluid according to the present embodiment can further suppress the permeation of the excavation fluid into the well wall. Since the excavation fluid according to the present embodiment contains the biodegradable fiber, the permeation of the excavation fluid into the well wall can be further suppressed by the biodegradable fiber having a fiber length in a predetermined range. It is considered that this is due to the fact that it is contained in the mud wall and the gap between the mud walls is reduced.
  • the fiber length of the biodegradable fiber is preferably 5.0 mm or more, more preferably 7.0 mm or more, still more preferably 10.0 mm or more.
  • the fiber length of the biodegradable fiber is preferably 50 mm or less, more preferably 40 mm or less, still more preferably 30 mm or less.
  • the excavation fluid according to the present embodiment contains biodegradable fibers based on 100 parts by mass of the thickener, preferably 0.50 parts by mass or more, more preferably 2.0 parts by mass. It contains parts by mass, more preferably 5.0 parts by mass or more.
  • the concentration of biodegradable fibers in the excavated fluid is preferably 0.050 g / L or more, more preferably 0.10 g / L or more.
  • the excavation fluid according to the present embodiment contains biodegradable fibers with respect to 100 parts by mass of the thickener.
  • the content is preferably 500 parts by mass or less, more preferably 200 parts by mass or less.
  • the concentration of biodegradable fibers in the excavated fluid is preferably 10.0 g / L or less, more preferably 5.0 g / L or less.
  • the excavation fluid according to the present embodiment may contain optional components other than water, biodegradable fibers and thickeners in addition to water, biodegradable fibers and thickeners within the scope of the object of the present invention. can.
  • the optional component examples include a weighting agent such as barite; a dispersant such as a lignosulfonic acid derivative and humic acid; a mud rock hydration swelling inhibitor such as KCl (potassium chloride); a dehydration regulator; a mud wall strengthening agent; lubrication. Agents; surfactants; and pH adjusters such as caustic soda.
  • the drilling fluid additive according to this embodiment is used to prepare a drilling fluid by being mixed with water. That is, the excavation fluid according to the present embodiment can be obtained by mixing the additive for the excavation fluid according to the present embodiment with water.
  • the additive for drilling fluid according to the present embodiment contains a biodegradable fiber and a thickener.
  • the thickener comprises a water-absorbent silicate.
  • the fiber length of the biodegradable fiber is 5.0 mm or more and 50 mm or less.
  • the excavation fluid and the additive for excavation fluid according to the present embodiment are configured as described above, but next, the excavation method according to the present embodiment will be described.
  • the excavation method includes a step of excavating the well while feeding the excavation fluid into the well, and discharging the excavated debris generated by the excavation to the outside of the well.
  • the drilling fluid contains water, biodegradable fibers, and a thickener.
  • the thickener comprises a water-absorbent silicate.
  • the fiber length of the biodegradable fiber is 5.0 mm or more and 50 mm or less.
  • Specific examples of the method of excavating a well include a method of inserting a drill string (a series of pipes composed of a drill bit and a drill pipe) into the well and crushing or scraping the stratum with the drill bit. ..
  • the excavated debris As a method of discharging the excavated debris to the outside of the well, specifically, for example, the excavated debris is transported to the ground surface through an annulus together with the excavation fluid, so that the excavated debris is discharged to the well. There is a method of sending it out of the well.
  • Excavation fluid sent out of the well and having excavation debris is collected, excavation fluid is removed from the excavation fluid with a shale shaker (large sieving device), the composition of the excavation fluid is adjusted as necessary, and excavation is performed.
  • the fluid can also be pumped into the well and the drilling fluid can be reused for drilling.
  • the excavation fluid circulates in the suction tank, which is a pump, the drill string, the annulus, and the shale shaker.
  • riser pipe the pipe that connects the bottom of the sea and the excavation equipment on the sea to form an annulus through which the excavation fluid with excavation debris flows is called a riser pipe, and excavation using the riser pipe is called riser excavation.
  • a jet prevention device may be installed at the upper part of the well, that is, at the well entrance.
  • Riserless drilling can be performed if the drilling fluid that is sent out of the well and has excavated debris is not recovered.
  • Riserless excavation is excavation that does not use a riser pipe. In riserless excavation, excavation fluid can be sent into the well to discharge the excavated debris out of the well. The discharged digging waste is not collected and is discarded in seawater.
  • the riserless excavation is suitable for shallow excavation as compared with the riser excavation, and can excavate many places in a short time.
  • the excavation may be riser excavation or riserless excavation in a marine environment, or excavation in a land environment.
  • the environment in which the excavation method according to the present embodiment is used is not particularly limited, and can be used in any environment such as flat land, mountains, rivers, canals, and the ocean.
  • the excavation method according to the present embodiment is preferably used in a marine environment where reduction of environmental load is particularly required. It can also be used for geothermal well excavation. Since the stratum in the geothermal zone has a much higher temperature than oil and natural gas and the pressure in the stratum is low, it is desirable to use a heat-resistant component as a component of the excavation fluid.
  • the excavation fluid according to the present embodiment contains water, biodegradable fibers, and a thickener.
  • the thickener comprises a water-absorbent silicate.
  • the fiber length of the biodegradable fiber is 5.0 mm or more and 50 mm or less.
  • the thickener contains a water-absorbent silicate, a mud wall can be formed on the surface of the well wall by the water-absorbent material absorbed by the water-absorbent silicate. As a result, it is possible to suppress the permeation of the excavated fluid into the well wall, that is, to suppress the mud.
  • the excavation fluid according to the present embodiment can further suppress the permeation of the excavation fluid into the well wall by containing the biodegradable fiber having a fiber length of 5.0 mm or more and 50 mm or less. Since the excavation fluid according to the present embodiment contains the biodegradable fiber, the permeation of the excavation fluid into the well wall can be further suppressed by the biodegradable fiber having a fiber length in a predetermined range. It is considered that this is due to the fact that it is contained in the mud wall and the gap between the mud walls is reduced. Therefore, according to the present embodiment, it is possible to provide an excavation fluid, an excavation method, and an additive for the excavation fluid, which are highly effective in preventing mud.
  • the excavation fluid according to the present embodiment contains biodegradable fibers together with the water-absorbent silicate, so that the amount of the water-absorbent silicate is suppressed as compared with the excavation fluid not containing the biodegradable fibers. It is possible to improve the preventive property of spillage. Since the biodegradable fiber is easily decomposed in the environment, the excavation fluid according to the present embodiment can enhance the preventive property of mud while suppressing the load on the environment. In addition, the excavation fluid according to the present embodiment can suppress the amount of water-absorbing silicate stocked at the excavation site.
  • the thickener further contains a biodegradable polysaccharide.
  • the thickener further contains a biodegradable polysaccharide in addition to the water-absorbent silicate, so that the water-absorbent material (the water-absorbent material in which the water-absorbent silicate absorbs water) becomes.
  • the mud wall is stabilized by being coated with the biodegradable polysaccharide, and as a result, the permeation of the excavated fluid into the well wall can be further suppressed.
  • the excavation fluid according to the present embodiment contains a biodegradable polysaccharide together with a water-absorbent silicate and a biodegradable fiber, so that the excavation fluid contains a biodegradable polysaccharide, so that the excavation fluid does not contain a biodegradable polysaccharide. It is possible to improve the preventive property of mud while suppressing the amount of the acid salt. Since the biodegradable polysaccharide is easily decomposed in the environment, the excavation fluid according to the present embodiment can enhance the prevention of mud while suppressing the load on the environment. In addition, the excavation fluid according to the present embodiment can suppress the amount of water-absorbing silicate stocked at the excavation site.
  • the excavation fluid, the excavation method, and the additive for the excavation fluid according to the present invention are not limited to the above-described embodiment. Further, the excavation fluid, the excavation method, and the additive for the excavation fluid according to the present invention are not limited by the above-mentioned effects. Further, the excavation fluid, the excavation method and the additive for the excavation fluid according to the present invention can be variously changed without departing from the gist of the present invention.
  • Telpolymer H main component: polyanionic cellulose-based polymer (PAC) which is a biodegradable polysaccharide
  • PAC polyanionic cellulose-based polymer
  • Tap water was prepared as water. Then, using these materials and a household mixer, the excavated fluids of Test Examples 1 to 15, 26, and 27 (Examples and Comparative Examples) having the blending ratios shown in Table 1 below were prepared.
  • the concentration of biodegradable fiber means the concentration of biodegradable fiber in the excavated fluid
  • the concentration of biodegradable polysaccharide is the concentration of biodegradable polysaccharide in the excavated fluid.
  • the concentration of the water-absorbent silicate means the concentration of the water-absorbent silicate in the excavation fluid
  • the fiber length means the fiber length of the biodegradable fiber.
  • the solid content concentration in the mud wall was calculated using the following formula.
  • CS [ ⁇ WL / (A ⁇ FC) ⁇ + 1] ⁇
  • MS CS Concentration of solid content in the mud wall (vol%)
  • WL Dehydration amount (cm 3 )
  • FC Mud wall thickness (cm)
  • MS Concentration of solid content (vol%) in excavation fluid (muddy water)
  • the filtration area was 45.8 cm 2 .
  • the density of bentonite was set to 2.55 g / cm 3 in consideration of the swelling of bentonite in the excavation fluid (muddy water) due to hydration.
  • the concentration of biodegradable polysaccharide in the excavation fluid is 4.0 g / L
  • the concentration of water-absorbing silicate (bentonite) in the excavation fluid is 15.
  • the result of the test example which is 0g / L is shown.
  • Test Example 9 Comparative Example in which the excavated fluid does not contain biodegradable fibers, biodegradability.
  • the amount of dehydration was smaller than that of Test Examples 11 and 12 (Comparative Examples) in which the fiber length of the fiber was as short as 3.0 mm. From this, it can be seen that according to the present invention, mud can be suppressed.
  • Test Examples 11 and 12 Comparative Examples in which the fiber length of the biodegradable fiber is as short as 3.0 mm, the amount of dehydration was small even though the thickness of the mud wall was small. From this, it can be seen that according to the present embodiment, the thickness of the mud wall can be reduced while suppressing the mud loss.
  • the concentration of biodegradable polysaccharide in the excavation fluid is 1.0 g / L
  • the concentration of water-absorbing silicate (bentonite) in the excavation fluid is 15.
  • the result of the test example which is 0g / L is shown.
  • Test Examples 13 and 14 As shown in Table 3 and FIG. 3, in Test Examples 13 and 14 (Examples) within the scope of the present invention, compared with Test Example 10 (Comparative Example) in which the excavation fluid does not contain biodegradable fibers. The amount of dehydration was low. From this, it can be seen that according to the present invention, mud can be suppressed.
  • Test Example 10 Comparative Example in which the excavated fluid does not contain biodegradable fibers.
  • the thickness of the mud wall was small, the amount of dehydration was small. From this, it can be seen that according to the present embodiment, the thickness of the mud wall can be reduced while suppressing the mud loss.
  • FIGS. 5 and 6 show test examples in which the excavation fluid does not contain biodegradable polysaccharides and the concentration of water-absorbing silicate (bentonite) in the excavation fluid is 80.0 g / L. The result of is shown.
  • Test Example 15 Comparative Example in which the excavated fluid does not contain biodegradable fibers.
  • the amount of dehydration was smaller than that of. From this, it can be seen that according to the present invention, mud can be suppressed.
  • Test Example 15 in which the excavation fluid does not contain biodegradable fibers Compared with (Comparative Example), the amount of dehydration was small even though the thickness of the mud wall was small. From this, it can be seen that according to the present embodiment, the thickness of the mud wall can be reduced while suppressing the mud loss.
  • Table 5 shows the results of a test example in which the fiber length of the biodegradable polysaccharide is 14.0 mm and the concentration of water-absorbing silicate (bentonite) in the excavated fluid is 15.0 g / L.
  • the concentration of the biodegradable polysaccharide in the excavated fluid is 4.0 g / L
  • the concentration of the biodegradable polysaccharide in the excavated fluid is 1.0 g / L.
  • the thickness of the mud wall was large and the amount of dehydration was small. From this, it can be seen that by including the biodegradable polysaccharide in the excavation fluid, the thickness of the mud wall can be increased, and as a result, the amount of dehydration can be reduced.
  • Example fluids of Test Examples 16 to 25 and 28 to 32 Thermogel (Sepiolite) manufactured by Ternite Co., Ltd. was used as the water-absorbent silicate, and the mixing ratio was set as shown in Table 6 below.
  • the excavated fluids of Test Examples 16 to 25 and 28 to 32 (Examples and Comparative Examples) were prepared.
  • the concentration of biodegradable polysaccharide in the excavation fluid is 4.0 g / L
  • the concentration of water-absorbing silicate (sepiolite) in the excavation fluid is 15.
  • the result of the test example which is 0g / L is shown.
  • Test Example 19 (Comparative Example) in which the excavated fluid does not contain biodegradable fibers, raw. The amount of dehydration was smaller than that of Test Example 31, in which the amount of degradable fibers was the same and the fiber length of the biodegradable fibers was 3.0 mm. Further, as shown in Table 7 and FIG. 7, in Test Examples 28, 30 and 18 (Examples) within the scope of the present invention, Test Example 19 (Comparative Example) in which the excavated fluid does not contain biodegradable fibers.
  • the amount of dehydration was smaller than that of Test Example 32 in which the amount of biodegradable fibers was the same and the fiber length of the biodegradable fibers was 3.0 mm. From this, it can be seen that according to the present invention, mud can be suppressed.
  • Test Example 19 (Comparative Example) in which the excavated fluid does not contain biodegradable fibers. Compared with Test Example 31 in which the amount of biodegradable fibers was the same and the fiber length of the biodegradable fibers was 3.0 mm, the amount of dehydration was small even though the thickness of the mud wall was small. Further, as shown in Table 7 and FIG. 7, in Test Examples 28, 30 and 18 (Examples) within the scope of the present invention, Test Example 19 (Comparative Example) in which the excavated fluid does not contain biodegradable fibers.
  • the concentration of biodegradable polysaccharide in the excavation fluid is 1.0 g / L
  • the concentration of water-absorbing silicate (sepiolite) in the excavation fluid is 15.
  • the result of the test example which is 0g / L is shown.
  • Test Examples 20 and 21 within the scope of the present invention, compared with Test Example 22 (Comparative Example) in which the excavation fluid does not contain biodegradable fibers.
  • the amount of dehydration was low. From this, it can be seen that according to the present invention, mud can be suppressed.
  • Test Example 22 Comparative Example in which the excavated fluid does not contain biodegradable fibers.
  • the thickness of the mud wall was small, the amount of dehydration was small. From this, it can be seen that according to the present embodiment, the thickness of the mud wall can be reduced while suppressing the mud loss.
  • FIGS. 11 and 12 show test examples in which the excavation fluid does not contain biodegradable polysaccharides and the concentration of water-absorbing silicate (sepiolite) in the excavation fluid is 80.0 g / L. The result of is shown.
  • Test Examples 23 and 24 within the scope of the present invention, compared with Test Example 25 (Comparative Example) in which the excavation fluid does not contain biodegradable fibers. The amount of dehydration was low. From this, it can be seen that according to the present invention, mud can be suppressed.
  • Test Example 25 Comparative Example in which the excavated fluid does not contain biodegradable fibers.
  • the thickness of the mud wall was small, the amount of dehydration was small. From this, it can be seen that according to the present embodiment, the thickness of the mud wall can be reduced while suppressing the mud loss.
  • Table 10 shows the results of a test example in which the fiber length of the biodegradable polysaccharide is 14.0 mm and the concentration of water-absorbent silicate (sepiolite) in the excavated fluid is 15.0 g / L.
  • the concentration of the biodegradable polysaccharide in the excavated fluid is 4.0 g / L
  • the concentration of the biodegradable polysaccharide in the excavated fluid is 1.0 g / L.
  • the thickness of the mud wall was large and the amount of dehydration was small. From this, it can be seen that by including the biodegradable polysaccharide in the excavation fluid, the thickness of the mud wall can be increased, and as a result, the amount of dehydration can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本発明は、水、生分解性繊維、及び増粘剤を含有する掘削流体であって、前記増粘剤が吸水性ケイ酸塩を含み、前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削流体等である。

Description

掘削流体、掘削方法及び掘削流体用添加剤
 本発明は、掘削流体、掘削方法及び掘削流体用添加剤に関する。
 石油の採掘等のために実施される掘削では、掘削流体(「掘削泥水」とも呼ばれ、また、単に「泥水」とも呼ばれる。)が用いられている。
 具体的には、掘削流体は、ポンプたるサクションタンクでドリルストリング(ドリルビット(掘削刃に相当するもの)及びドリルパイプ(ドリルビットに回転動力を伝えるパイプ)で構成された一連のパイプ)の内部を介して坑井に送入され、アニュラス(ドリルストリングと坑井壁との間の隙間)を通って地表まで戻されて用いられている。
 これにより、坑底やドリルビットの周辺の掘屑(「カッティングス」とも呼ばれる。)を地表まで運ぶこと(カッティングストランスポート、ホールクリーニング)ができる。
 また、掘削流体は、ドリルビットの潤滑剤や冷却剤としての役割も担っている。
 さらに、掘削流体は、坑井内の圧力を制御することにより、地層内における流体の坑井内への流入や地上への噴出を抑制する役割も担っている。
 使用済みの掘削流体(カッティングスとともに地表まで運ばれた掘削流体)は、必要に応じてシェールシェーカー(大型のふるい装置)などでカッティングスを除去されてから再利用される。すなわち、掘削流体は、サクションタンク、ドリルストリング、アニュラス、及び、シェールシェーカーの間を循環して用いられている。
 なお、掘削流体を再利用する際には、掘削流体の成分の調整(「調泥」ともいう。)を実施することもある。
 坑井壁が水の浸透性が高いものとなっている場合(坑井壁の地層を構成する土粒子が粗い場合や、坑井壁に割れ目が存在する場合など)には、坑井内に送り込んだ掘削流体が地層に浸透して、掘削流体の一部または全部が地表に戻らないこと(「逸泥」ともいう。)がある。
 逸泥が生じると、地層が緩んで坑井壁が崩れやすくなるという問題や、循環させて用いる掘削流体が不足して十分な掘削を実施できなくなるという問題などが生じ得る。
 従来、逸泥を生じ難くし、あるいは止めるために、逸泥防止剤が用いられている。該逸泥防止剤を掘削流体に含ませ、該逸泥防止剤を含む掘削流体をアニュラスに流通させることにより、前記割れ目を閉塞したり、より微視的には坑井壁の表面に泥壁が形成されるなどして前記土粒子の間隙を閉塞することにより、逸泥が抑制される。
 逸泥防止剤としては、繊維状物(サトウキビの繊維、鉱物繊維等)、粒状物(石灰岩、大理石、クルミの殻等)、薄片状物(雲母片、樹脂フィルム片等)などが用いられている(例えば、特許文献1、2)。
国際公開第2015/072317号 国際公開第2013/161755号
 ところで、今後、逸泥のさらなる抑制が求められ得るが、逸泥のさらなる抑制について、これまで十分な検討がなされていない。
 そこで、本発明は、逸泥の防止性が高い掘削流体、掘削方法及び掘削流体用添加剤を提供することを課題とする。
 本発明は、水、生分解性繊維、及び増粘剤を含有する掘削流体であって、前記増粘剤が吸水性ケイ酸塩を含み、前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削流体に関する。
 好ましくは、前記増粘剤は、生分解性多糖類を更に含む。さらに好ましくは、前記生分解性多糖類は、前記掘削流体において2.0g/L以上5.0g/L以下含まれる。また、さらに好ましくは、前記生分解性多糖類は、カルボキシメチルセルロース、ポリアニオニックセルロース、キサンタンガム及びグアガムよりなる群から選択される少なくとも一種を含む。
 好ましくは、前記吸水性ケイ酸塩は、前記掘削流体において0.01g/L以上100g/L以下含まれる。
 好ましくは、前記吸水性ケイ酸塩は、ベントナイト及びセピオライトよりなる群から選択される少なくとも1種を含む。
 好ましくは、前記生分解性繊維は、ポリヒドロキシアルカノエート系樹脂からなる繊維を含む。さらに好ましくは、前記ポリヒドロキシアルカノエート系樹脂が、下記一般式(1)で示される3-ヒドロキシアルカン酸を含む。
[-CHR-CH-CO-O-]   (1)
 前記一般式(1)中、RはC2p+1で表されるアルキル基を示し、pは1~15の整数を示す。
 さらに好ましくは、前記ポリヒドロキシアルカノエート系樹脂が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を含む。
 好ましくは、前記生分解性繊維の含有量は、前記増粘剤100質量部に対して、0.50質量部以上500質量部以下である。
 また、本発明は、坑井に掘削流体を送入しながら前記坑井の掘削を実施し、該掘削で生じた掘屑を前記坑井の外に排出する工程を有し、前記掘削流体が、水、生分解性繊維、及び増粘剤を含有し、前記増粘剤が吸水性ケイ酸塩を含み、前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削方法に関する。
 好ましくは、前記掘削は、海洋環境におけるライザー掘削又はライザーレス掘削である。
 好ましくは、前記掘削は、海洋環境におけるライザーレス掘削、又は、陸上環境における掘削である。
 さらに、本発明は、生分解性繊維、及び増粘剤を含有する掘削流体用添加剤であって、前記増粘剤が吸水性ケイ酸塩を含み、前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削流体用添加剤に関する。
 本発明によれば、逸泥の防止性が高い掘削流体、掘削方法及び掘削流体用添加剤を提供し得る。
試験例の掘削流体における生分解性繊維の濃度と、脱水量との関係(生分解性多糖類の濃度:4.0g/L、吸水性ケイ酸塩(ベントナイト)の濃度:15.0g/L)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、泥壁の厚さとの関係(生分解性多糖類の濃度:4.0g/L、吸水性ケイ酸塩(ベントナイト)の濃度:15.0g/L)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、脱水量との関係(生分解性多糖類の濃度:1.0g/L、吸水性ケイ酸塩(ベントナイト)の濃度:15.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、泥壁の厚さとの関係(生分解性多糖類の濃度:1.0g/L、吸水性ケイ酸塩(ベントナイト)の濃度:15.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、脱水量との関係(生分解性多糖類:なし、吸水性ケイ酸塩(ベントナイト)の濃度:80.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、泥壁の厚さとの関係(生分解性多糖類:なし、吸水性ケイ酸塩(ベントナイト)の濃度:80.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、脱水量との関係(生分解性多糖類の濃度:4.0g/L、吸水性ケイ酸塩(セピオライト)の濃度:15.0g/L)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、泥壁の厚さとの関係(生分解性多糖類の濃度:4.0g/L、吸水性ケイ酸塩(セピオライト)の濃度:15.0g/L)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、脱水量との関係(生分解性多糖類の濃度:1.0g/L、吸水性ケイ酸塩(セピオライト)の濃度:15.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、泥壁の厚さとの関係(生分解性多糖類の濃度:1.0g/L、吸水性ケイ酸塩(セピオライト)の濃度:15.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、脱水量との関係(生分解性多糖類:なし、吸水性ケイ酸塩(セピオライト)の濃度:80.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。 試験例の掘削流体における生分解性繊維の濃度と、泥壁の厚さとの関係(生分解性多糖類:なし、吸水性ケイ酸塩(セピオライト)の濃度:80.0g/L、生分解性繊維の繊維長:14.0mm)を示す図である。
 以下、本発明の一実施形態について説明する。
〔掘削流体〕
 本実施形態に係る掘削流体は、水、生分解性繊維、及び増粘剤を含有する。
 前記増粘剤は、吸水性ケイ酸塩を含む。
 前記生分解性繊維の繊維長は、5.0mm以上50mm以下である。
 (水)
 本実施形態に係る掘削流体に含まれる水は、特に限定されるものではない。該水としては、従来公知の水系掘削流体に含まれる水を用いることができる。該水としては、例えば、清水;ブライン(海水等);水道水;地下水;及び平地、山地、河川、運河、及び海洋等のあらゆる環境で行われる坑井の掘削により坑井に侵入し得る水(雨水等)等が挙げられる。
 (増粘剤)
 増粘剤は、吸水性ケイ酸塩を含むものであって、添加により掘削流体の粘度を増加するものであれば、特に限定されない。
 増粘剤は、前記吸水性ケイ酸塩であってよく、前記吸水性ケイ酸塩以外の成分を含んでよい。
 前記吸水性ケイ酸塩以外の成分としては、生分解性多糖類、有機コロイド(ポリマー類)等が挙げられる。
 前記吸水性ケイ酸塩は、増粘剤として機能するものであれば、特に限定されない。言い換えれば、吸水性ケイ酸塩は、水に添加されることで水の粘度を増加させるものであれば、特に限定されない。
 吸水性ケイ酸塩としては、ベントナイト、セピオライト等が挙げられる。
 ベントナイトの市販品としては、株式会社テルナイト社製の「テルゲル」が挙げられる。セピオライトの市販品としては、株式会社テルナイト社製の「サーモゲル」が挙げられる。
 本実施形態に係る掘削流体は、増粘剤が吸水性ケイ酸塩を含むことで、吸水性ケイ酸塩が水を吸収した吸水物により泥壁を坑井壁の表面に形成することができ、その結果、坑井壁に掘削流体が浸透するのを抑制することができ、すなわち、逸泥を抑制することができる。
 泥壁を坑井壁の表面に形成することにより逸泥を抑制するという観点から、掘削流体における吸水性ケイ酸塩の濃度は、好ましくは0.01g/L以上、より好ましくは1.0g/L以上、さらに好ましくは10.0g/L以上である。
 一方で、泥壁が分厚くなり過ぎると、泥壁とドリルストリングとの隙間が狭くなって、ドリルストリングが抑留する(言い換えれば、動かなくなる)といった掘削障害が生じやすくなる。そういったことから、掘削流体における吸水性ケイ酸塩の濃度は、好ましくは100g/L以下、より好ましくは80g/L以下、さらに好ましくは60g/L以下である。
 前記増粘剤は、前記吸水性ケイ酸塩以外の成分として、前記生分解性多糖類を更に含むことが好ましい。
 前記生分解性多糖類は、生分解性を有する多糖類であって、水溶性を有し、添加により掘削流体の粘度を増加するものであれば、特に限定されない。
 ここで、本実施形態における「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質をいう。具体的には、好気条件ではISO 14855(compost)及びISO 14851(activated sludge)、嫌気条件ではISO 14853(aqueous phase)及びISO 15985(solid phase)等、各環境に適合した試験に基づいて生分解性の有無が判断できる。また、海水中における微生物の分解性については、生物化学的酸素要求量(Biochemical oxygen demand)の測定により評価できる。
 また、本実施形態における「水溶性を有する多糖類」とは、各多糖類の適切な溶解条件(溶解温度、濃度、又は攪拌時間等)によって、その形状を保持することも残留物を残すことも無く水に溶解することを指す。少なくとも掘削作業中、掘削流体に一部又は全部が溶解すればよい。
 生分解性多糖類としては、例えば、カルボキシメチルセルロース、及びポリアニオニックセルロース等のセルロース誘導体;キトサン等のグルコサミン;キサンタンガム;及びグアガム等が挙げられる。これらの中でも、カルボキシメチルセルロース、ポリアニオニックセルロース、キサンタンガム及びグアガムよりなる群から選択される少なくとも一種が好ましい。例えば、グアガムは低温条件における粘性と保湿性が最も優れており、カルボキシメチルセルロースは優れた粘性を有しつつ安価であり、ポリアニオニックセルロースは優れた粘性を有しつつ耐塩性が高く、キサンタンガムは少量で高い粘性を発現し、シアシニング性(せん断速度が上がると粘度が下がる特性)を有するためである。これらの多糖類は、掘削する坑井の環境や掘削条件、市場の流通状況等により適切に選択することができる。
 生分解性多糖類の重量平均分子量としては、200,000以上が好ましい。また、1,000,000以下であってよい。
 本実施形態に係る掘削流体は、増粘剤が吸水性ケイ酸塩に加えて生分解性多糖類を更に含むことにより、前記吸水物(吸水性ケイ酸塩が水を吸収した吸水物)が生分解性多糖類に被覆されて掘削流体の安定なコロイド状態を維持し、泥壁形成性を改善すること、すなわち、泥壁が安定することで、坑井壁を透過する掘削流体の量(脱水量)を減少させることができ、すなわち、坑井壁に掘削流体が浸透するのをより一層抑制することができる。
 前記吸水物(吸水性ケイ酸塩が水を吸収した吸水物)を生分解性多糖類で被覆して泥壁を安定させるという観点から、掘削流体における生分解性多糖類の濃度は、好ましくは2.0g/L以上である。
 また、掘削流体の過剰な増粘を抑え、良好なレオロジー特性と良好な掘削効率とを維持する観点から、掘削流体における生分解性多糖類の濃度は、好ましくは5.0g/L以下、より好ましくは4.5g/L以下である。
 前記有機コロイド(ポリマー類)としては、PHPA(部分的に加水分解されたポリアクリルアミド;Partical Hydrolized Poly Acrylamide)等が挙げられる。
 PHPAは、アクリルアミドとアクリル酸との共重合体、及び、ポリアクリルアミドを含んでもよい。
 PHPAの市販品としては、株式会社テルナイト社製の「テルコート」が挙げられる。
 掘削流体における有機コロイド(ポリマー類)の濃度は、0.01g/L以上、0.5g/L以上、又は1.0g/L以上であってよく、10.0g/L以下、5.0g/L以下、又は3.0g/L以下であってよい。
 (生分解性繊維)
 掘削流体に含まれる生分解性繊維は、生分解性を有する繊維である。
 また、前記生分解性繊維の繊維長は、5.0mm以上50mm以下であることが重要である。
 また、繊維とは、細くて長いという形態的特徴を示すものである。
 生分解性繊維の繊度はデニール(D)又はdtexで表される。デニール(D)は9,000mの長さ当たりの重量をg単位で表した数字で表示し、dtexは10,000mの長さ当たりの重量をg単位で表した数字で表示する。生分解性繊維の繊度は、1dtex以上が好ましく、3dtex以上がより好ましく、5dtex以上がさらに好ましい。また、生分解性繊維の繊度は、100dtex以下が好ましく、50dtex以下がより好ましく、10dtex以下がさらに好ましい。
 生分解性繊維の繊度及び繊維長の測定方法としては、無作為に抽出した50~100本の繊維の直径及び長さをそれぞれ繊度測定器DENICON-DC21(サーチ株式会社製)によって測定し、その平均値を算出する方法が挙げられる。したがって、繊度は平均繊維径、繊維長は平均繊維長と言い換えることができる。
 また、掘削流体に含まれる生分解性繊維は、非水溶性であることが好ましい。少なくとも掘削作業中、掘削流体中で繊維形状を保持する必要がある。
 生分解性繊維としては、微生物、植物及び動物等の生物資源(バイオマス)由来の繊維が挙げられる。生物資源(バイオマス)由来の繊維には、生物資源(バイオマス)が有する繊維を抽出したもの、及び生物資源(バイオマス)が有するモノマーを化学合成したものが含まれる。
 生分解性繊維としては、例えば、ポリヒドロキシアルカノエート系樹脂及びポリ乳酸等の脂肪族ポリエステル;又はセルロース等の多糖類を含む、単繊維又は複合繊維が挙げられる。これらの中でも、生分解性繊維としては、ポリヒドロキシアルカノエート系樹脂からなる繊維(単繊維又は複合繊維を含む)が好ましい。ポリヒドロキシアルカノエート系樹脂は生分解機構が最も明らかにされており、環境中における適切な分解速度を有するため、環境調和型の材料として有用なためである。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシアルカン酸をモノマーとするポリエステルである。
 すなわち、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位として3-ヒドロキシアルカン酸を含む樹脂である。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、単独重合体であってもよく、共重合体であってもよい。
 ポリヒドロキシアルカノエート系樹脂は、下記一般式(1)で示される3-ヒドロキシアルカン酸を構成単位として含むことがより好ましい。適切な成形加工性と良好な生分解性とを両立することが可能なためである。
[-CHR-CH-CO-O-]   (1)
 前記一般式(1)中、RはC2p+1で表されるアルキル基を示し、pは1~15の整数を示す。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、ポリ(3-ヒドロキシブチレート)系樹脂を含むことが好ましい。
 なお、ポリ(3-ヒドロキシブチレート)系樹脂は、構成単位として3-ヒドロキシブチレートを含む樹脂である。ポリ(3-ヒドロキシブチレート)系樹脂は、単独重合体であってもよく、共重合体であってもよい。
 3-ヒドロキシブチレートを構成単位として含むポリ(3-ヒドロキシアルカノエート)系樹脂としては、例えば、P3HB、P3HB3HH、P3HB3HV、P3HB4HB、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)等が挙げられる。
 ここで、P3HBは、ポリ(3-ヒドロキシブチレート)を意味する。
 P3HB3HHは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を意味する。
 P3HB3HVは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)を意味する。
 P3HB4HBは、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)を意味する。
 なお、P3HBは、P3HB自体、及び、P3HB以外のポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する機能を有するので、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、P3HBを含むことが好ましい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂としては、生分解性繊維の生分解性を高めつつ、生分解性繊維の成型加工性を高めるという観点から、P3HB、P3HB3HH、P3HB3HV、P3HB4HBなどが好ましい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位としての3-ヒドロキシブチレートを、好ましくは85.0モル%以上含む。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂が構成単位としての3-ヒドロキシブチレートを85.0モル%以上含むことにより、生分解性繊維の剛性が高くなる。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位としての3-ヒドロキシブチレートを、好ましくは99.5モル%以下、より好ましくは97.0モル%以下含む。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂が構成単位としての3-ヒドロキシブチレートを99.5モル%以下含むことにより、生分解性繊維が柔軟性に優れる。
 前記生分解性繊維は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂を1種類のみ含んでもよく、2種以上含んでもよい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、共重合体(P3HB3HH等)を含む場合には、構成単位の平均組成比が異なる2種類以上の共重合体を含んでもよい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量は、好ましくは50,000~3,000,000、より好ましくは50,000~1,500,000である。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量が3,000,000以下であることにより、生分解性繊維の成形がしやすくなる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂の重量平均分子量が50,000以上であることにより、生分解性繊維の強度を高めることができる。
 なお、本実施形態における重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。
 さらに、ポリヒドロキシアルカノエート系樹脂としては、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)が最も好ましい。特に、生分解性に優れ、環境負荷が小さく、カッティングストランスポート及びホールクリーニングの能力に優れるためである。
 ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)からなる繊維を掘削流体に含ませることにより、ドリルビットの周辺等の高せん断速度領域にある掘削流体の粘度を低く保ったまま(言い換えれば、流動性を保ったまま)、低せん断速度領域にある掘削流体の粘度(及びせん断応力)を高くできるため、カッティングストランスポート及びホールクリーニングの能力を十分に向上することができる。
 また、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)からなる繊維は、特に生分解性に優れるため、廃棄又は投棄されること、及び残留することによる環境負荷が小さい。具体的には、例えば、海水中に存在する微生物により水と二酸化炭素に分解され海水中に残存しなくなるという優れた海水分解特性を有するため、海洋中に投棄しても環境負荷が小さい。
 本実施形態に係る掘削流体は、繊維長が5.0mm以上50mm以下である生分解性繊維を含むことにより、坑井壁に掘削流体が浸透するのをより一層抑制することができる。
 本実施形態に係る掘削流体が該生分解性繊維を含むことで坑井壁に掘削流体が浸透するのをより一層抑制することができるのは、繊維長が所定範囲の生分解性繊維が、前記泥壁に含まれて、泥壁の隙間が少なくなることによるものと考えられる。
 生分解性繊維の繊維長は、5.0mm以上が好ましく、7.0mm以上がより好ましく、10.0mm以上がさらに好ましい。
 また、生分解性繊維の繊維長は、50mm以下が好ましく、40mm以下がより好ましく、30mm以下がさらに好ましい。
 泥壁の隙間を少なくするという観点から、本実施形態に係る掘削流体は、増粘剤100質量部に対して生分解性繊維を、好ましくは0.50質量部以上、より好ましくは2.0質量部、さらに好ましくは5.0質量部以上含む。また、掘削流体における生分解性繊維の濃度は、好ましくは0.050g/L以上、より好ましくは0.10g/L以上である。
 また、増粘剤との効果的な相互作用による逸泥の抑制を効果的に発揮させるという観点から、本実施形態に係る掘削流体は、増粘剤100質量部に対して生分解性繊維を、好ましくは500質量部以下、より好ましくは200質量部以下含む。また、掘削流体における生分解性繊維の濃度は、好ましくは10.0g/L以下、より好ましくは5.0g/L以下である。
 (任意成分)
 本実施形態に係る掘削流体は、本発明の目的の範囲において、水、生分解性繊維及び増粘剤の他に、水、生分解性繊維及び増粘剤以外の任意成分を含有することができる。
 該任意成分としては、例えば、バライト等の加重剤;リグノスルホン酸誘導体及びフミン酸等の分散剤;KCl(塩化カリウム)等の泥岩水和膨潤抑制剤;脱水調整剤;泥壁強化剤;潤滑剤;界面活性剤;並びに苛性ソーダ等のpH調整剤等が挙げられる。
 [掘削流体用添加剤]
 本実施形態に係る掘削流体用添加剤は、水と混合されることにより掘削流体を作製するのに用いられる。すなわち、本実施形態に係る掘削流体用添加剤と、水とを混合することにより、本実施形態に係る掘削流体を得ることができる。
 本実施形態に係る掘削流体用添加剤は、生分解性繊維、及び増粘剤を含有する。
 前記増粘剤は、吸水性ケイ酸塩を含む。
 前記生分解性繊維の繊維長は、5.0mm以上50mm以下である。
 本実施形態に係る掘削流体及び掘削流体用添加剤は、上記の如く構成されているが、次に、本実施形態に係る掘削方法について説明する。
 [掘削方法]
 本実施形態に係る掘削方法は、坑井に掘削流体を送入しながら前記坑井の掘削を実施し、該掘削で生じた掘屑を前記坑井の外に排出する工程を有する。
 前記掘削流体は、水、生分解性繊維、及び増粘剤を含有する。
 前記増粘剤は、吸水性ケイ酸塩を含む。
 前記生分解性繊維の繊維長は、5.0mm以上50mm以下である。
 本実施形態に係る掘削流体を坑井に送入しながら前記坑井の掘削を実施し、該掘削で生じた掘屑を前記坑井の外に排出する工程について述べる。
 坑井を掘削する方法としては、具体的には、例えば、ドリルストリング(ドリルビット及びドリルパイプで構成された一連のパイプ)を坑井に入れ、ドリルビットにより地層を砕く又は削る方法が挙げられる。
 前記掘削で生じた掘屑を前記坑井の外に排出する方法としては、具体的には、例えば、前記掘屑を掘削流体と共にアニュラスを通じて、地表まで運搬することにより、前記堀屑を前記坑井の外に送る方法が挙げられる。
 前記坑井の外に送られ且つ掘屑を有する掘削流体を回収し、掘削流体から掘屑をシェールシェーカー(大型のふるい装置)で除去し、必要に応じて掘削流体の成分を調整し、掘削流体を坑井に送入して、掘削流体を掘削に再度使用することもできる。このとき、掘削流体は、ポンプたるサクションタンク、ドリルストリング、アニュラス、及び、シェールシェーカーを循環する。
 ところで、海洋環境において、掘屑を有する掘削流体が流れるアニュラスを形成するために海底面と海上の掘削装置をつなぐパイプをライザーパイプといい、ライザーパイプを用いる掘削をライザー掘削という。
 ライザー掘削には、海洋環境において掘屑を有する掘削流体を回収できるという利点、坑井が壊れにくいためより深い掘削が可能になるという利点、及び、坑井内の圧力調整が容易であるという利点などがある。坑井内の圧力上昇により、坑井内から噴出物が噴出することを防ぐため、坑井の上部つまり坑口に、防噴装置(BOP)を設置してよい。
 坑井外に送られ且つ掘屑を有する掘削流体を回収しない場合には、ライザーレス掘削を実施することができる。ライザーレス掘削は、ライザーパイプを用いない掘削である。ライザーレス掘削においては、坑井に掘削流体を送入することで、掘削で生じた掘屑を坑井の外に排出できる。排出された掘屑は回収されず海水中に廃棄される。なお、ライザーレス掘削は、ライザー掘削と比較して、浅い掘削に適し、また、短時間で多くの場所を掘削できる掘削である。
 前記掘削は、海洋環境におけるライザー掘削若しくはライザーレス掘削、又は、陸上環境における掘削であってもよい。
 本実施形態に係る掘削方法を用いる環境は、特に限定されず、平地、山地、河川、運河、及び海洋等のあらゆる環境下で用いることができる。環境負荷の低減が特に要求される海洋環境において、本実施形態に係る掘削方法は好適に用いられる。また、地熱井掘削にも用いることができる。なお、地熱地帯の地層は、石油・天然ガスに比べてはるかに高温で、地層の圧力が低いため、掘削流体を構成する成分としては、熱に強い成分を用いることが望ましい。
 本実施形態に係る掘削流体は、上記のように構成されているので、以下の利点を有するものである。
 即ち、本実施形態に係る掘削流体は、水、生分解性繊維、及び増粘剤を含有する。前記増粘剤は、吸水性ケイ酸塩を含む。前記生分解性繊維の繊維長は、5.0mm以上50mm以下である。
 本実施形態に係る掘削流体は、増粘剤が吸水性ケイ酸塩を含むことで、吸水性ケイ酸塩が水を吸収した吸水物により泥壁を坑井壁の表面に形成することができ、その結果、坑井壁に掘削流体が浸透するのを抑制でき、すなわち、逸泥を抑制することができる。
 また、本実施形態に係る掘削流体は、繊維長が5.0mm以上50mm以下である生分解性繊維を含むことにより、坑井壁に掘削流体が浸透するのをより一層抑制することができる。
 本実施形態に係る掘削流体が該生分解性繊維を含むことで坑井壁に掘削流体が浸透するのをより一層抑制することができるのは、繊維長が所定範囲の生分解性繊維が、前記泥壁に含まれて、泥壁の隙間が少なくなることによるものと考えられる。
 従って、本実施形態によれば、逸泥の防止性が高い掘削流体、掘削方法及び掘削流体用添加剤を提供し得る。
 本実施形態に係る掘削流体は、吸水性ケイ酸塩とともに、生分解性繊維を含むことで、生分解性繊維を含まない掘削流体に比べて、吸水性ケイ酸塩の量を抑制しつつ、逸泥の防止性を高めることができる。生分解性繊維は、環境中で分解されやすいため、本実施形態に係る掘削流体は、環境への負荷を抑制しつつ、逸泥の防止性を高めることができる。また、本実施形態に係る掘削流体は、掘削する現場での吸水性ケイ酸塩をストックする量を抑制できる。
 また、本実施形態に係る掘削流体は、増粘剤が生分解性多糖類を更に含むことが好ましい。
 本実施形態に係る掘削流体は、増粘剤が吸水性ケイ酸塩に加えて生分解性多糖類を更に含むことにより、前記吸水物(吸水性ケイ酸塩が水を吸収した吸水物)が生分解性多糖類に被覆されて泥壁が安定し、その結果、坑井壁に掘削流体が浸透するのをより一層抑制することができる。
 また、本実施形態に係る掘削流体は、吸水性ケイ酸塩及び生分解性繊維とともに、生分解性多糖類を含むことで、生分解性多糖類を含まない掘削流体に比べて、吸水性ケイ酸塩の量を抑制しつつ、逸泥の防止性を高めることができる。生分解性多糖類は、環境中で分解されやすいため、本実施形態に係る掘削流体は、環境への負荷を抑制しつつ、逸泥の防止性を高めることができる。また、本実施形態に係る掘削流体は、掘削する現場での吸水性ケイ酸塩をストックする量を抑制できる。
 なお、本発明に係る掘削流体、掘削方法及び掘削流体用添加剤は、上記実施形態に限定されるものではない。また、本発明に係る掘削流体、掘削方法及び掘削流体用添加剤は、上記した作用効果によって限定されるものでもない。さらに、本発明に係る掘削流体、掘削方法及び掘削流体用添加剤は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 次に、試験例(実施例および比較例)を挙げて本発明についてさらに具体的に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。
(試験例1~15、26、27の掘削流体)
 下記材料を用意した。
 すなわち、生分解性繊維として、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)からなる繊維(P3HB3HH繊維)を、平均繊維長3.0mm、5.0mm、10.0mm、及び14.0mmに切断したものをそれぞれ用意した。
 なお、P3HB3HH繊維の繊度は10.0dtex、引張強度は1.3cN/dtex、伸度70.0%、及びヤング率は2.2GPaである。
 生分解性多糖類を含む材料として、(株)テルナイト社製のテルポリマーH(主成分:生分解性多糖類たるポリアニオニックセルロース系ポリマー(PAC))を用意した。
 吸水性ケイ酸塩として、(株)テルナイト社製のテルゲル(ベントナイト、米国ワイオミング州産)を用意した。
 水として水道水を用意した。
 そして、これらの材料、及び、家庭用ミキサーを用いて、下記表1に示す配合割合の試験例1~15、26、27(実施例及び比較例)の掘削流体を作製した。
 なお、下記表、及び、図において、生分解性繊維の濃度は、掘削流体における生分解性繊維の濃度を意味し、生分解性多糖類の濃度は、掘削流体における生分解性多糖類の濃度を意味し、吸水性ケイ酸塩の濃度は、掘削流体における吸水性ケイ酸塩の濃度を意味し、繊維長は、生分解性繊維の繊維長を意味する。
Figure JPOXMLDOC01-appb-T000001
(評価試験)
 ろ過試験装置であるLPLTフィルタープレスを用いて、各試験例の掘削流体を7MPaの圧力で30分間ろ過した(ろ過試験)。
 そして、フィルターを通過した液の量(「脱水量」ともいう。)、ろ過試験装置のフィルターの表面に形成された泥壁の厚さ、及び、該泥壁における固形分の濃度を求めた。
 なお、泥壁における固形分の濃度は、下記式を用いて算出した。
 C = 〔{WL/(A×FC)}+1〕×M
  C:泥壁における固形分の濃度(vol%)
  WL:脱水量(cm
  A:ろ過面積(cm
  FC:泥壁の厚さ(cm)
  M:掘削流体(泥水)における固形分の濃度(vol%)
 ここで、ろ過面積は、45.8cmであった。
 また、掘削流体(泥水)における固形分の濃度を算出するのに当たり、掘削流体(泥水)におけるベントナイトが水和によって膨潤することを考慮して、ベントナイトの密度を2.55g/cmとした。
 結果を下記表2~5、及び、図1~6に示す。
 なお、試験例毎に、上記ろ過試験を3回実施した。結果としては、3回分の測定値の算術平均値を示す。
 下記表2、及び、図1、2には、掘削流体における生分解性多糖類の濃度が4.0g/Lであり、且つ、掘削流体における吸水性ケイ酸塩(ベントナイト)の濃度が15.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2、及び、図1に示すように、本発明の範囲内の試験例1~6(実施例)では、掘削流体が生分解性繊維を含まない試験例9(比較例)、生分解性繊維の繊維長が3.0mmと短い試験例11、12(比較例)に比べて、脱水量が少なかった。
 このことから、本発明によれば、逸泥を抑制し得ることがわかる。
 ところで、一般的には、泥壁の厚さが大きいほど、脱水量が少なくなるので、逸泥を抑制するには、泥壁の厚さを大きくすることが望ましい。一方で、泥壁が分厚くなり過ぎると、掘削の際に泥壁とドリルストリングとの隙間が狭くなって、ドリルストリングが抑留する(言い換えれば、動かなくなる)といった掘削障害が生じやすくなるため、ドリルストリングの抑留を抑制するには、泥壁の厚さを小さくすることが望ましい。
 ここで、表2、及び、図1、2に示すように、本発明の範囲内の試験例1~6(実施例)では、掘削流体が生分解性繊維を含まない試験例9(比較例)、生分解性繊維の繊維長が3.0mmと短い試験例11、12(比較例)に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 このことから、本実施形態によれば、逸泥を抑制しつつも、泥壁の厚さを小さくし得ることがわかる。
 下記表3、及び、図3、4には、掘削流体における生分解性多糖類の濃度が1.0g/Lであり、且つ、掘削流体における吸水性ケイ酸塩(ベントナイト)の濃度が15.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3、及び、図3に示すように、本発明の範囲内の試験例13、14(実施例)では、掘削流体が生分解性繊維を含まない試験例10(比較例)に比べて、脱水量が少なかった。
 このことからも、本発明によれば、逸泥を抑制し得ることがわかる。
 また、表3、及び、図3、4に示すように、本発明の範囲内の試験例13、14(実施例)では、掘削流体が生分解性繊維を含まない試験例10(比較例)に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 このことからも、本実施形態によれば、逸泥を抑制しつつも、泥壁の厚さを小さくし得ることがわかる。
 下記表4、及び、図5、6には、掘削流体が生分解性多糖類を含まず、且つ、掘削流体における吸水性ケイ酸塩(ベントナイト)の濃度が80.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4、及び、図5に示すように、本発明の範囲内の試験例7、8、26、27(実施例)では、掘削流体が生分解性繊維を含まない試験例15(比較例)に比べて、脱水量が少なかった。
 このことからも、本発明によれば、逸泥を抑制し得ることがわかる。
 また、表4、及び、図5、6に示すように、本発明の範囲内の試験例7、8、26、27(実施例)では、掘削流体が生分解性繊維を含まない試験例15(比較例)に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 このことからも、本実施形態によれば、逸泥を抑制しつつも、泥壁の厚さを小さくし得ることがわかる。
 下記表5には、生分解性多糖類の繊維長が14.0mmであり、掘削流体における吸水性ケイ酸塩(ベントナイト)の濃度が15.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、掘削流体における生分解性多糖類の濃度が4.0g/Lである試験例5、6では、掘削流体における生分解性多糖類の濃度が1.0g/Lである試験例13、14に比べて、泥壁の厚さが大きく、また、脱水量が少なかった。
 このことから、生分解性多糖類を掘削流体に含ませることで、泥壁の厚さを大きくでき、その結果、脱水量を小さくできることがわかる。
(試験例16~25、28~32の掘削流体)
 吸水性ケイ酸塩として(株)テルナイト社製のサーモゲル(セピオライト)を用い、下記表6に示す配合割合にしたこと以外は、試験例1~15、26、27の掘削流体と同様にして、試験例16~25、28~32(実施例及び比較例)の掘削流体を作製した。
Figure JPOXMLDOC01-appb-T000006
 そして、試験例16~25、28~32に対して、上記評価試験を実施した。
 なお、ろ過面積は、45.8cmであった。
 また、掘削流体(泥水)における固形分の濃度を算出するのに当たり、掘削流体(泥水)におけるセピオライトが水和によって膨潤することを考慮して、セピオライトの密度を2.00g/cmとした。
 結果を下記表7~10、及び、図7~12に示す。
 下記表7、及び、図7、8には、掘削流体における生分解性多糖類の濃度が4.0g/Lであり、且つ、掘削流体における吸水性ケイ酸塩(セピオライト)の濃度が15.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000007
 表7、及び、図7に示すように、本発明の範囲内の試験例16、29、17(実施例)では、掘削流体が生分解性繊維を含まない試験例19(比較例)、生分解性繊維の量が同じで且つ生分解性繊維の繊維長が3.0mmである試験例31に比べて、脱水量が少なかった。
 また、表7、及び、図7に示すように、本発明の範囲内の試験例28、30、18(実施例)では、掘削流体が生分解性繊維を含まない試験例19(比較例)、生分解性繊維の量が同じで且つ生分解性繊維の繊維長が3.0mmである試験例32に比べて、脱水量が少なかった。
 このことから、本発明によれば、逸泥を抑制し得ることがわかる。
 表7、及び、図7、8に示すように、本発明の範囲内の試験例16、29、17(実施例)では、掘削流体が生分解性繊維を含まない試験例19(比較例)、生分解性繊維の量が同じで且つ生分解性繊維の繊維長が3.0mmである試験例31に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 また、表7、及び、図7に示すように、本発明の範囲内の試験例28、30、18(実施例)では、掘削流体が生分解性繊維を含まない試験例19(比較例)、生分解性繊維の量が同じで且つ生分解性繊維の繊維長が3.0mmである試験例32に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 このことから、本実施形態によれば、逸泥を抑制しつつも、泥壁の厚さを小さくし得ることがわかる。
 下記表8、及び、図9、10には、掘削流体における生分解性多糖類の濃度が1.0g/Lであり、且つ、掘削流体における吸水性ケイ酸塩(セピオライト)の濃度が15.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000008
 表8、及び、図9に示すように、本発明の範囲内の試験例20、21(実施例)では、掘削流体が生分解性繊維を含まない試験例22(比較例)に比べて、脱水量が少なかった。
 このことからも、本発明によれば、逸泥を抑制し得ることがわかる。
 また、表8、及び、図9、10に示すように、本発明の範囲内の試験例20、21(実施例)では、掘削流体が生分解性繊維を含まない試験例22(比較例)に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 このことからも、本実施形態によれば、逸泥を抑制しつつも、泥壁の厚さを小さくし得ることがわかる。
 下記表9、及び、図11、12には、掘削流体が生分解性多糖類を含まず、且つ、掘削流体における吸水性ケイ酸塩(セピオライト)の濃度が80.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000009
 表9、及び、図11に示すように、本発明の範囲内の試験例23、24(実施例)では、掘削流体が生分解性繊維を含まない試験例25(比較例)に比べて、脱水量が少なかった。
 このことからも、本発明によれば、逸泥を抑制し得ることがわかる。
 また、表9、及び、図11、12に示すように、本発明の範囲内の試験例23、24(実施例)では、掘削流体が生分解性繊維を含まない試験例25(比較例)に比べて、泥壁の厚さが小さいにも関わらず、脱水量が少なかった。
 このことからも、本実施形態によれば、逸泥を抑制しつつも、泥壁の厚さを小さくし得ることがわかる。
 下記表10には、生分解性多糖類の繊維長が14.0mmであり、掘削流体における吸水性ケイ酸塩(セピオライト)の濃度が15.0g/Lである試験例の結果を示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、掘削流体における生分解性多糖類の濃度が4.0g/Lである試験例17、18では、掘削流体における生分解性多糖類の濃度が1.0g/Lである試験例20、21に比べて、泥壁の厚さが大きく、また、脱水量が少なかった。
 このことから、生分解性多糖類を掘削流体に含ませることで、泥壁の厚さを大きくでき、その結果、脱水量を小さくできることがわかる。

Claims (14)

  1.  水、生分解性繊維、及び増粘剤を含有する掘削流体であって、
    前記増粘剤が吸水性ケイ酸塩を含み、
    前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削流体。
  2.  前記増粘剤が、生分解性多糖類を更に含む、請求項1に記載の掘削流体。
  3.  前記生分解性多糖類が、前記掘削流体において2.0g/L以上5.0g/L以下含まれる、請求項2に記載の掘削流体。
  4.  前記生分解性多糖類が、カルボキシメチルセルロース、ポリアニオニックセルロース、キサンタンガム及びグアガムよりなる群から選択される少なくとも一種を含む、請求項2又は3に記載の掘削流体。
  5.  前記吸水性ケイ酸塩が、前記掘削流体において0.01g/L以上100g/L以下含まれる、請求項1~4の何れか一項に記載の掘削流体。
  6.  前記吸水性ケイ酸塩が、ベントナイト及びセピオライトよりなる群から選択される少なくとも1種を含む、請求項1~5の何れか一項に記載の掘削流体。
  7.  前記生分解性繊維がポリヒドロキシアルカノエート系樹脂からなる繊維を含む、請求項1~6のいずれか一項に記載の掘削流体。
  8.  前記ポリヒドロキシアルカノエート系樹脂が、下記一般式(1)で示される3-ヒドロキシアルカン酸を含む、請求項7に記載の掘削流体。
    [-CHR-CH-CO-O-]   (1)
     前記一般式(1)中、RはC2p+1で表されるアルキル基を示し、pは1~15の整数を示す。
  9.  前記ポリヒドロキシアルカノエート系樹脂が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を含む、請求項7に記載の掘削流体。
  10.  前記生分解性繊維の含有量が、前記増粘剤100質量部に対して、0.50質量部以上500質量部以下である、請求項1~9のいずれか一項に記載の掘削流体。
  11.  坑井に掘削流体を送入しながら前記坑井の掘削を実施し、該掘削で生じた掘屑を前記坑井の外に排出する工程を有し、
    前記掘削流体は、水、生分解性繊維、及び増粘剤を含有し、
    前記増粘剤が吸水性ケイ酸塩を含み、
    前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削方法。
  12.  前記掘削が海洋環境におけるライザー掘削又はライザーレス掘削である、請求項11に記載の掘削方法。
  13.  前記掘削が、海洋環境におけるライザーレス掘削、又は、陸上環境における掘削である、請求項11に記載の掘削方法。
  14.  生分解性繊維、及び増粘剤を含有する掘削流体用添加剤であって、
    前記増粘剤が吸水性ケイ酸塩を含み、
    前記生分解性繊維の繊維長が5.0mm以上50mm以下である、掘削流体用添加剤。
PCT/JP2021/044520 2020-12-04 2021-12-03 掘削流体、掘削方法及び掘削流体用添加剤 WO2022118964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/255,424 US20240026205A1 (en) 2020-12-04 2021-12-03 Drilling fluid, drilling method, and drilling fluid additive
JP2022567008A JPWO2022118964A1 (ja) 2020-12-04 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-201762 2020-12-04
JP2020201762 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118964A1 true WO2022118964A1 (ja) 2022-06-09

Family

ID=81853412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044520 WO2022118964A1 (ja) 2020-12-04 2021-12-03 掘削流体、掘削方法及び掘削流体用添加剤

Country Status (3)

Country Link
US (1) US20240026205A1 (ja)
JP (1) JPWO2022118964A1 (ja)
WO (1) WO2022118964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216279A (zh) * 2022-08-03 2022-10-21 陕西中煤新能源有限公司 一种中深层钻井用钻井液体系及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160108713A1 (en) * 2014-10-20 2016-04-21 Schlumberger Technology Corporation System and method of treating a subterranean formation
JP2017071673A (ja) * 2015-10-06 2017-04-13 王子ホールディングス株式会社 木質繊維を含む組成物
US20180057729A1 (en) * 2016-08-31 2018-03-01 Saudi Arabian Oil Company Date Tree Trunk-Based Fibrous Loss Circulation Materials
WO2020246541A1 (ja) * 2019-06-07 2020-12-10 国立大学法人秋田大学 掘削流体、掘削方法及び掘削流体添加剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818596B1 (en) * 2001-09-19 2004-11-16 James Hayes Dry mix for water based drilling fluid
US8887808B2 (en) * 2011-11-09 2014-11-18 Halliburton Energy Services, Inc. Engineered methods and materials for wellbore strengthening in subterranean operations
WO2015130277A1 (en) * 2014-02-26 2015-09-03 Halliburton Energy Services, Inc. Protein-based fibrous bridging material and process and system for treating a wellbore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160108713A1 (en) * 2014-10-20 2016-04-21 Schlumberger Technology Corporation System and method of treating a subterranean formation
JP2017071673A (ja) * 2015-10-06 2017-04-13 王子ホールディングス株式会社 木質繊維を含む組成物
US20180057729A1 (en) * 2016-08-31 2018-03-01 Saudi Arabian Oil Company Date Tree Trunk-Based Fibrous Loss Circulation Materials
WO2020246541A1 (ja) * 2019-06-07 2020-12-10 国立大学法人秋田大学 掘削流体、掘削方法及び掘削流体添加剤

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216279A (zh) * 2022-08-03 2022-10-21 陕西中煤新能源有限公司 一种中深层钻井用钻井液体系及其制备方法

Also Published As

Publication number Publication date
US20240026205A1 (en) 2024-01-25
JPWO2022118964A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
Fink Oil field chemicals
US5955401A (en) Clay-free biodegradable wellbore fluid and method for using same fluid
US10889743B2 (en) Method for making a drilling composition and treating a subterranean formation
US6632779B1 (en) Wellbore treatment and completion fluids and methods of using the same
AU726193B2 (en) Well servicing fluid for trenchless directional drilling
NO20111305A1 (no) Sjovannsbaserte, partikkelfrie, miljovennlige bore- og kompletteringsfluider
EA011205B1 (ru) Раствор брейкерного флюида и способы с его использованием
EA001682B1 (ru) Жидкая среда, содержащая нанофибриллы целлюлозы, и ее применение при разработке нефтяных месторождений
BRPI0610458A2 (pt) método de limpeza de um furo de poço, método de produção de um hidrocarboneto a partir de uma formação e solução
WO2022118964A1 (ja) 掘削流体、掘削方法及び掘削流体用添加剤
WO2012080465A1 (en) Lignosulfonate grafts with an acid, ester and non-ionic monomers
US20080210428A1 (en) Method of removing filter cake
US7829506B1 (en) Clay stabilizing aqueous drilling fluids
WO2020246541A1 (ja) 掘削流体、掘削方法及び掘削流体添加剤
NO20180877A1 (en) Environmentally friendly wellbore consolidating/fluid loss material
RU2230092C2 (ru) Буровые растворы
US11130898B2 (en) Treatment fluids containing high density iodide brines
CN104497996B (zh) 一种硝酸钙环保钻井液及制备方法
US20020169081A1 (en) Composition for oil and gas drilling fluids containing organic compounds
RU2274651C1 (ru) Полимерглинистый раствор для бурения скважин в многолетнемерзлых породах
US6852675B2 (en) Nutrient source for marine organisms from drilling fluids additives
AU2002316038B2 (en) Composition for oil and gas drilling fluids containing organic compounds
RU2290426C1 (ru) Буровой раствор без твердой фазы с улучшенными смазочными свойствами
RU2222566C1 (ru) Буровой раствор
US20240166934A1 (en) Water-based drilling mud formulation using wastewater discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18255424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900713

Country of ref document: EP

Kind code of ref document: A1