WO2022118951A1 - Compound, polymerizable composition, optically anisotropic film, optical film, polarizing plate, and image display device - Google Patents

Compound, polymerizable composition, optically anisotropic film, optical film, polarizing plate, and image display device Download PDF

Info

Publication number
WO2022118951A1
WO2022118951A1 PCT/JP2021/044450 JP2021044450W WO2022118951A1 WO 2022118951 A1 WO2022118951 A1 WO 2022118951A1 JP 2021044450 W JP2021044450 W JP 2021044450W WO 2022118951 A1 WO2022118951 A1 WO 2022118951A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
substituent
ring
Prior art date
Application number
PCT/JP2021/044450
Other languages
French (fr)
Japanese (ja)
Inventor
愛子 吉田
晃逸 佐々木
友樹 平井
慎一 森嶌
翔 井本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022566999A priority Critical patent/JPWO2022118951A1/ja
Publication of WO2022118951A1 publication Critical patent/WO2022118951A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/28Two oxygen or sulfur atoms
    • C07D231/30Two oxygen or sulfur atoms attached in positions 3 and 5
    • C07D231/32Oxygen atoms
    • C07D231/36Oxygen atoms with hydrocarbon radicals, substituted by hetero atoms, attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/86Oxygen and sulfur atoms, e.g. thiohydantoin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • C07D239/62Barbituric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • C07D239/66Thiobarbituric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a compound, a polymerizable composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device.
  • the polymerizable compound exhibiting reverse wavelength dispersibility has features such as the ability to accurately convert the light wavelength over a wide wavelength range and the ability to thin the retardation film due to its high refractive index. Because of this, it is being actively researched. Further, as a polymerizable compound exhibiting reverse wavelength dispersibility, a T-type molecular design guideline is generally taken, the wavelength of the major axis of the molecule is shortened, and the wavelength of the minor axis located at the center of the molecule is lengthened. Is required to do. For example, Patent Document 1 describes a polymerizable liquid crystal compound represented by the following formula (a) ([Claim 1]).
  • the present invention provides a compound, a polymerizable composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device used for forming an optically anisotropic film having excellent reverse wavelength dispersibility. Make it an issue.
  • the present inventors use a compound having 2 to 4 groups represented by a predetermined structural formula in the short-axis skeleton (core) located at the center of the molecule.
  • core short-axis skeleton
  • C in the formula (1) described later represents a group represented by the formula (C-3) described later.
  • x represents 0,
  • X 2 represents O or S, and
  • the compound according to [1], wherein the constituent ring structure is a 5-membered ring or a 6-membered ring, which is a carbon ring or a heterocycle.
  • the carbocycle or the heterocycle may have a substituent and may form a fused ring with another 4- to 7-membered ring.
  • C in the formula (1) described later represents a group represented by the formula (C-4) described later.
  • the partial structure represented by the formula (1-1) described later in the formula (1) described later is a structure represented by the formula (1-1a) described later or the formula (1-1b) described later.
  • [5] The compound according to any one of [1] to [4], wherein A 1 and A 2 in the formula (1) described later represent a trans-cyclohexane-1,4-diyl group.
  • Z 1 in the formula (R-1) described later represents a polymerizable group.
  • the polymerizable group represents any polymerizable group selected from the group consisting of groups represented by the formulas (P-1) to (P-20) described later.
  • the compound described in. [7] The compound according to [6], wherein the polymerizable group is a group represented by the formula (P-1) or (P-2) described later.
  • the present invention it is possible to provide a compound, a polymerizable composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device used for forming an optically anisotropic film having excellent reverse wavelength dispersibility. can.
  • FIG. 1A is a schematic cross-sectional view showing an example of the optical film of the present invention.
  • FIG. 1B is a schematic cross-sectional view showing an example of the optical film of the present invention.
  • FIG. 1C is a schematic cross-sectional view showing an example of the optical film of the present invention.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • each component a substance corresponding to each component may be used alone or in combination of two or more.
  • the content of the component means the total content of the substances used in combination unless otherwise specified.
  • “(meth) acrylate” is a notation representing "acrylate” or “methacrylate”
  • (meth) acrylic” is a notation representing "acrylic” or “methacrylic”.
  • (Meta) acrylic” is a notation representing "acryloyl” or "methacrylic acid”.
  • the bonding direction of the divalent group (for example, -O-CO-) described in the present specification is not particularly limited, and for example, L 2 is-in the bonding of "L 1 -L 2 -L 3 ".
  • L 2 is * 1-O-CO- * 2. It may be * 1-CO-O- * 2.
  • substituent E includes not only an embodiment having no substituent but also an embodiment having one or more substituents.
  • the substituent includes, for example, the substituent E described below.
  • substituent E include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfuranyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group and a dimethyl group.
  • Examples thereof include an amino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyanogroup, and a linear or branched alkyl group having 1 to 20 carbon atoms which may be substituted by these.
  • one -CH 2- or two or more non-adjacent -CH 2- constituting the above alkyl group are independently -O-, -S-, -CO-, -COO-, respectively.
  • LE is -O-, -S-, -OCH 2- , -CH 2 O-, -CH 2 CH 2- , -CO-, -COO-, -OCO- , -CO-S-.
  • the compound of the present invention is a compound represented by the formula (1) described later (hereinafter, also abbreviated as “specific compound”).
  • the present invention as described above, by using the specific compound, the inverse wavelength dispersibility of the formed optically anisotropic film is improved.
  • the present inventors speculate as follows. That is, as the group (C) to which the specific compound binds to A core in the formula (1) described later, 2 to 2 to the group represented by any of the formulas (C-1) to (C-4) described later. It is considered that the reverse wavelength dispersibility was improved by having four of them, and as a result, the reverse wavelength dispersibility of the formed optically anisotropic film was improved.
  • the specific compound of the present invention will be described in detail.
  • the specific compound is a compound represented by the following formula (1).
  • C in the above formula (1) represents a group represented by any of the following formulas (C-1) to (C-4).
  • * represents a binding position with A core .
  • D is a group represented by any of the following formulas (D-1) to (D10) which may have a substituent (for example, the above-mentioned substituent E or the like). Represents.
  • * represents the bonding position with M.
  • D1 is -O-, -S-, or -NR D1 .
  • RD1 may have a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkanoyl group having 1 to 5 carbon atoms, or a substituent (for example, the above-mentioned substituent E). Represents phenyl.
  • R d1 and R d2 each independently represent an alkyl group having 1 to 20 carbon atoms which may have a substituent (for example, the above-mentioned substituent E or the like).
  • substituent E for example, the above-mentioned substituent E or the like.
  • one -CH 2- or two or more non-adjacent -CH 2- constituting the alkyl group independently have -O-, -S-, -CO-, -COO-, and-, respectively.
  • R d1 and R d2 may be bonded to each other to form a non-aromatic hydrocarbon ring having a 3- to 7-membered ring, and the non-aromatic hydrocarbon ring is a substituent (for example, the above-mentioned substituent E). Etc.), and the carbon atom constituting the non-aromatic hydrocarbon ring may be substituted with a heteroatom.
  • the groups represented by the above formulas (D-1) to (D-10) may have a substituent (for example, the above-mentioned substituent E or the like), and specifically, the group may have a substituent (eg, the above-mentioned substituent E).
  • the hydrogen atom bonded to the carbon atom constituting the ring structure in the above formulas (D-1) to (D-10) is a fluorine atom, a chlorine atom, a cyano group, a trifluoroacetyl group, a trifluoromethyl group, and the like.
  • a phenyl group which may have a substituent (for example, the above-mentioned substituent E), an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or , May be substituted with an alkanoyl group having 1 to 5 carbon atoms.
  • D in the above formula (C-1) is the above formula (D-6) and (D-) because the inverse wavelength dispersibility of the formed light absorption anisotropic film becomes better. 8) It is preferable that the group is represented by any of (D-10), and for the reason that the liquid crystal property of the specific compound is improved, any of the above formulas (D-6) and (D-10) can be used. It is more preferably the group represented.
  • J 1 represents a hydrogen atom or an alkyl group.
  • B 11 represents a substituent
  • S S
  • NR NR
  • C (CN) 2 R
  • R represents a substituent.
  • B 2 represents a hydrogen atom or a substituent.
  • J 1 in the above formula (C-2) is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group. It is more preferable to have a hydrogen atom or a methyl group.
  • alkoxy group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methoxy, ethoxy, n-butoxy, methoxyethoxy, etc.); 6 to 18 carbon atoms (preferably 6 to 6 carbon atoms).
  • Substituted or unsubstituted aryloxy group eg, phenoxy, 4-methoxyphenoxy, etc.
  • Alkylthio groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methylthio, ethylthio, etc.); An arylthio group having 6 to 10 carbon atoms (preferably 1 to 8 carbon atoms) (eg, phenylthio, etc.);
  • Substituted or unsubstituted sulfonyloxy groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methanesul
  • the Hammett substituent constant ( ⁇ p) value is 0.2 or more.
  • Hammett's substituent constants are, for example, Chem. Rev. 91,165 (1991). Particularly preferred substituents are a cyano group, a nitro group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, an alkylsulfonyl group and an arylsulfonyl group.
  • the substituent represented by B 11 is preferably an alkyl group, an aryl group, an alkoxy group, or an amino group.
  • C (CN) 2 is represented, and R is represented by a substituent.
  • R is represented by a substituent.
  • substituent represented by R include those exemplified as the substituent represented by B 11 and B 2 described above. Of these, an aryl group is preferable, and a phenyl group is more preferable.
  • J 2 represents a hydrogen atom or an alkyl group.
  • Y 1 represents an atomic group required to form a carbon ring or a heterocycle.
  • G represents an atomic group required to complete a conjugated double bond chain.
  • x represents 0 or 1.
  • Y1 in the above formula (C - 3) is an atomic group composed of heteroatoms (for example, nitrogen atom, oxygen atom or sulfur atom) in which the main chain forms a carbon atom or a heterocycle. .. That is, the main chain of this atomic group is a connecting group consisting of two atoms selected from carbon atoms or different atoms (for example, nitrogen atom, oxygen atom or sulfur atom), and these carbon atoms or different atoms have , Hydrogen atom or substituent is bonded so as to maintain an appropriate valence. A double bond may exist in this atomic group.
  • the ring structure composed of) is preferably a 4- to 7-membered ring or a heterocycle, and more preferably a 5-membered or 6-membered ring.
  • x represents 0,
  • X 2 represents O or S, and
  • Y 1 because the synthesis of the compound becomes easy and the inverse wavelength dispersibility of the formed optically anisotropic film becomes better.
  • the ring structure composed of W 1 is a 5-membered ring or a 6-membered ring carbocyclic ring or a heterocyclic ring.
  • These carbocycles or heterocycles may have a substituent and may further form a fused ring with another 4- to 7-membered ring.
  • the substituent include those exemplified as the substituent represented by the above-mentioned B 11 and B 2 .
  • B, N, O, S, Se, and Te are preferable, and N, O, and S are more preferable.
  • Examples of the carbon ring composed of Y 1 and W 1 include the following.
  • Ra and Rb independently represent a hydrogen atom or a substituent.
  • the carbon rings represented by the above formulas A-1, A-2, A-4, A-6 and A-7 are preferable, and they are represented by the above formulas A-1 and A-2. It is more preferable that the carbon ring is used.
  • heterocycle composed of Y 1 and W 1 examples include the following.
  • Ra, Rb and Rc independently represent a hydrogen atom or a substituent.
  • A-14, A-16, A-17, A-20, A-21, A-22, A-31, A-34 and A-55 are more preferred.
  • Examples of the substituent represented by Ra, Rb and Rc include those exemplified as the substituent represented by B 11 and B 2 described above.
  • substituent represented by B 11 and B 2 described above.
  • an alkyl group, a phenyl group, a group represented by the following formula (R-2) and the like can be mentioned.
  • an alkyl group When substituting with a carbon atom, an alkyl group, a group in which one or more of -CH 2- constituting the alkyl group is substituted with -O-, -S-, -NH- or -CO-, an alkenyl group, an alkynyl Examples thereof include a group, an aryl group, a cyano group, a nitro group, and a group represented by the following formula (R-2).
  • L 10 is -O-, -S-, -OCH 2- , -CH 2 O-, -CH 2 CH 2- , -CO-, -COO-, -OCO-, -CO-S-, -S.
  • Ra, Rb and Rc may be linked to each other to form a carbon ring or a heterocycle.
  • the carbon ring include a saturated or unsaturated 4- to 7-membered carbon ring such as a cyclohexyl ring, a cyclopentyl ring, a cyclohexene ring, and a benzene ring.
  • heterocycle examples include saturated or unsaturated 4- to 7-membered heterocycles such as a piperidine ring, a piperazine ring, a morpholine ring, a tetrahydrofuran ring, a furan ring, a thiophene ring, a pyridine ring, and a pyrazine ring. Can be done.
  • These carbocycles or heterocycles may further have substituents. Examples of the substituent include those exemplified as the substituent represented by the above-mentioned B 11 and B 2 .
  • R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or a substituent, respectively.
  • X 3 represents O, S, or NR 5
  • R 5 represents a hydrogen atom or a substituent.
  • J 3 represents a hydrogen atom or an alkyl group.
  • the substituent which is one aspect of R 1 , R 2 , R 3 , R 4 and R 5 in the above formula (C-4) the substituent represented by the above-mentioned Ra, Rb and Rc.
  • the X 3 in the above formula (C-4) is preferably O or S, and is preferably O, for the reason that the inverse wavelength dispersibility of the formed optically anisotropic film becomes better. Is more preferable.
  • J 3 in the said formula (C-4) the same thing as J 2 in the said formula (C-3) can be mentioned.
  • X 3 in the above formula (C-4) represents O
  • R 1 and R 2 are alkyl groups for the reason that the inverse wavelength dispersibility of the formed optically anisotropic film becomes better. It is preferable that R 3 and R 4 represent a hydrogen atom.
  • N in the above equation (1) represents an integer of 2 to 4, and the plurality of Cs may be the same or different.
  • n in the above formula (1) is preferably 2 or 4, and preferably 2 for the reason that the inverse wavelength dispersibility of the formed optically anisotropic film is better. More preferred.
  • a core in the above formula (1) may have a substituent (for example, the above-mentioned substituent E or the like), and is a monocyclic, condensed ring or ring-aggregated aromatic group having 4 to 18 carbon atoms. Represents an n + divalent group.
  • Examples of the monocyclic aromatic hydrocarbon ring constituting the monocyclic aromatic group include a benzene ring, and examples of the monocyclic aromatic heterocycle constituting the monocyclic aromatic group include a furan ring, a pyridine ring, and a pyrimidine. Rings, pyrazine rings and the like can be mentioned.
  • Examples of the aromatic hydrocarbon ring of the fused ring constituting the fused ring aromatic group include a naphthalene ring, an anthracene ring, and a phenanthrene ring, and examples of the aromatic heterocycle of the fused ring constituting the fused ring aromatic group include a naphthalene ring, an anthracene ring, and a phenanthrene ring. Examples thereof include a quinoline ring, an acridine ring, and a phenanthridine ring.
  • the ring assembly refers to a structure in which two rings do not have a covalent atom and are connected via a bond
  • examples of the structure constituting the ring-aggregated aromatic group include aromatic hydrocarbon rings of monocyclic and fused rings. Examples thereof include structures in which at least two rings selected from the group consisting of aromatic heterocycles of monocyclic and fused rings are directly linked.
  • Examples of the structure constituting the ring-assembled aromatic group having 4 to 18 carbon atoms include biphenyl, 2-phenylnaphthalene, 1-phenylnaphthalene and the like. Of these, a benzene ring, a naphthalene ring, and biphenyl are preferable, and biphenyl is particularly preferable from the viewpoint of improving birefringence.
  • the partial structure represented by the following formula (1-1) in the above formula (1) is the following formula (1-1a) or the following formula (1-).
  • the structure represented by 1b) is preferable.
  • n1 and n2 each independently represent an integer of 0 to 2. However, the sum of n1 and n2 represents an integer of 2 to 4.
  • each of the plurality of Cs may be the same or different, and has a substituent other than C (for example, the above-mentioned substituent E). You may.
  • R 11 to R 16 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 12 carbon atoms.
  • the plurality of L3s may be the same or different, and when m2 represents an integer of 2 to 4, a plurality of L3s may be the same or different.
  • L 4 may be the same or different from each other.
  • a 1 and A 2 in the above formula (1) may independently have a substituent (for example, the above-mentioned substituent E or the like), cyclohexane-1,4-diyl group, cyclopentane-. 1,3-Diyl group, cycloheptane-1,3-diyl group, cycloheptane-1,4-diyl group, decahydronaphthalene-2,6-diyl group, or 1,3-dioxane-2,5- Represents a diyl group.
  • a substituent for example, the above-mentioned substituent E or the like
  • a 1 and A 2 are substituents because it makes it easier to improve the reverse wavelength dispersibility of the formed light absorption anisotropic film and improve the orientation of the polymerizable composition.
  • a 3 and A 4 in the above formula (1) may independently have a substituent (for example, the above-mentioned substituent E, etc.), cyclohexane-1,4-diyl group, cyclopentane-. 1,3-Diyl group, cycloheptane-1,3-diyl group, cycloheptane-1,4-diyl group, benzene-1,4-diyl group (1,4-phenylene group), pyridine-2,5- Diyl group, pyrimidin-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-2,7-diyl group, naphthalene-1,4-diyl group, tetrahydronaphthalene-2,6-diyl group, deca Represents a hydronaphthalene-2,6-diyl group or a 1,3-dioxane-2
  • the plurality of A3s may be the same or different, and when m2 represents an integer of 2 to 4, a plurality of A3s may be the same or different.
  • A4 may be the same or different from each other.
  • a 3 and A 4 in the above formula (1) further improve the reverse wavelength dispersibility of the formed light absorption anisotropic film and facilitate the improvement of the orientation of the polymerizable composition.
  • Benzene-1,4-diyl group, cyclohexane-1,4-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-1 It is preferably a 4-diyl group, a tetrahydronaphthalene-2,6-diyl group, a decahydronaphthalene-2,6-diyl group, or a 1,3-dioxane-2,5-diyl group.
  • the benzene-1,4-diyl group is easy to further improve the inverse wavelength dispersibility of the formed light absorption anisotropic film and further improve the orientation of the polymerizable composition.
  • Naphthalene-2,6-diyl group or cyclohexane-1,4-diyl group is preferable, and benzene-1,4-diyl group or cyclohexane-1,4-diyl group is more preferable. It is preferably a benzene-1,4-diyl group, and more preferably a benzene-1,4-diyl group.
  • m 1 and m 2 each independently represent an integer of 0 to 4.
  • the plurality of L3 and A3 may be the same or different, respectively
  • m2 represents an integer of 2 to 4
  • a plurality of L4 and A may be present. 4 may be the same or different from each other.
  • R 1 and R 2 in the above formula (1) independently represent a group represented by the following formula (R-1). Equation (R-1): -L 5 -R sp1 -Z 1
  • L5 is independently -O-, -S-, -COO-, -OCO- , and -CO from the viewpoint of easy availability of raw materials and easy synthesis.
  • R sp1 represents an alkylene group having 1 to 20 carbon atoms or a single bond.
  • one -CH 2- or two or more non-adjacent -CH 2- constituting the alkylene group independently have -O-, -COO-, -OCO-, and -OCO-O-, respectively.
  • the R sp1 in the above formula (R-1) preferably represents an alkylene group having 2 to 12 carbon atoms or a single bond, and has 2 to 10 carbon atoms, from the viewpoint of easy availability of raw materials and ease of synthesis. It is more preferable to represent an alkylene group or a single bond of the above, further preferably to represent an alkylene group having 2 to 8 carbon atoms, and particularly preferably to represent an alkylene group having 4 to 8 carbon atoms.
  • R sp1 in the above formula (R-1) examples include the groups shown in Table 1 below.
  • Z 1 represents a hydrogen atom or a polymerizable group.
  • the polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • a generally known radically polymerizable group can be used, and suitable examples thereof include an acryloyloxy group and a methacryloyloxy group. In this case, it is known that the acryloyloxy group is generally faster in terms of the polymerization rate, and the acryloyloxy group is preferable from the viewpoint of improving productivity, but the methacryloyloxy group can also be used as the polymerizable group in the same manner.
  • a generally known cationically polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiroorthoester group, and , Vinyloxy group and the like.
  • an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is particularly preferable.
  • particularly preferable polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20). In the following formula, * indicates the binding position with R sp1 .
  • Examples of -L 5 -R sp1 -Z 1 represented by the above formula (R-1) include the examples shown in Tables 2 to 4 below. In Tables 3 and 4 below, the numbers listed in the column of Z 1 are the numbers of the polymerizable groups represented by the above formulas (P-1) to (P-20).
  • Specific examples of the specific compound include compounds represented by the following formulas (1) to (136), and specifically, K (specifically, K (1) to (136) in the following formulas (1) to (136).
  • Examples of the side chain structure) include compounds having the side chain structures shown in Tables 5 to 11 below. In Tables 5 to 11 below, "*" shown in the side chain structure of K represents the bonding position with the aromatic ring. Further, in the side chain structure represented by K-1-12 or the like in Table 5 below, the group adjacent to the acryloyloxy group and the methacryloyl group, respectively, represents a propylene group (a group in which a methyl group is replaced with an ethylene group). , Represents a mixture of positional isomers with different positions of methyl groups.
  • the specific compound can be produced by a known method, for example, by the following method.
  • the biphenol derivative A-1 and the active methylene compound A- can be produced by dehydrating 2 to synthesize a condensate A-3 and then esterifying it with a cyclohexylcarboxylic acid derivative A-4.
  • a method of esterification reaction for example, a method of acid chlorideizing a carboxylic acid derivative A-4 with thionyl chloride or oxalyl chloride, a method of reacting a base with femaleyl lolide or the like to form a mixed acid anhydride, and then a condensate A.
  • Examples thereof include a method of allowing -3 to act in the presence of a base.
  • a method of directly esterifying the condensate A-3 and the carboxylic acid derivative A-4 using a condensing agent such as carbodiimide can be mentioned.
  • biphenol derivative A-1 for example, when J 1 is a hydrogen atom, it can be produced by a duff reaction with a biphenol or a Philsmayer reaction.
  • the specific compound represented by the above formula (1) Since the specific compound represented by the above formula (1) has 2 to 4 groups represented by C in the above formula (1), it exhibits a large reverse wavelength dispersibility when oriented. Therefore, the wavelength dispersibility of the anisotropic film can be adjusted to a desired range by producing an optically anisotropic film using the specific compound represented by the above formula (1).
  • a wide-band ⁇ / 4 wave plate can be obtained by forming a horizontal orientation using the specific compound represented by the above formula (1) and forming it into a fixed positive A plate.
  • the optically anisotropic film produced by using the polymerizable composition containing the specific compound represented by the above formula (1) can be thinned. Therefore, the optically anisotropic film formed by using the above-mentioned polymerizable composition is, for example, a retardation plate, a polarizing element, a selective reflection film, a color filter, an antireflection film, and a viewing angle, which are constituent elements of the optical element. It can be used for various purposes such as compensation film, holography, and alignment film.
  • the polymerizable composition of the present invention is a polymerizable composition containing the above-mentioned compound (specific compound) of the present invention.
  • the polymerizable composition of the present invention may contain a polymerizable compound, an orientation control agent, an arbitrary solvent, an additive and the like, in addition to the above-mentioned specific compound.
  • the specific compound is preferably 30 to 98% by mass, more preferably 40 to 95% by mass, based on the total solid content mass of the polymerizable composition.
  • the polymerizable compound may or may not have liquid crystallinity, but when the above-mentioned specific compound does not have liquid crystallinity, it is preferable that at least one of the polymerizable compounds has liquid crystallinity.
  • various physical properties such as the phase transition temperature and crystallinity of the polymerizable composition can be controlled.
  • the polymerizable compound is mixed with the above-mentioned specific compound and treated as a polymerizable composition, it is preferable that the polymerizable compound has high compatibility with the above-mentioned specific compound.
  • suitable polymerizable compounds will be described.
  • Non-liquid crystal polyfunctional polymerizable compound for example, a non-liquid crystal polyfunctional polymerizable compound is preferably mentioned.
  • a non-liquid crystal polyfunctional polymerizable compound By adding a non-liquid polyfunctional polymerizable compound to the polymerizable composition, even when the above-mentioned specific compound does not have a polymerizable group, it functions as a binder by polymerization curing to obtain the specific compound.
  • the orientation state can be fixed.
  • the layers are linked by a non-liquid crystal polyfunctional polymerizable compound, so that the proximity between the layers can be suppressed.
  • non-liquid polyfunctional polymerizable compounds examples include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth).
  • esters of polyhydric alcohols and (meth) acrylic acid eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth).
  • the content of the non-liquid polyfunctional polymerizable compound in the polymerizable composition is preferably 0.1 to 40% by mass, more preferably 0.1 to 30% by mass in terms of solid content concentration. It is particularly preferably 0.1 to 20% by mass, preferably 1 to 20% by mass, more preferably 5 to 20% by mass, and particularly preferably 10 to 20% by mass. ..
  • liquid crystal polymerizable compound for example, a liquid crystal compound having a polymerizable group (liquid crystal polymerizable compound) is preferably mentioned.
  • liquid crystal compounds can be classified into rod-shaped type and disk-shaped type according to their shape. Furthermore, there are small molecule and high molecular types, respectively.
  • a polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and it is more preferable to use a rod-shaped liquid crystal compound.
  • a liquid crystal compound having a polymerizable group is used for immobilization of the above-mentioned liquid crystal compound, but it is more preferable that the liquid crystal compound has two or more polymerizable groups in one molecule.
  • the liquid crystal compound is a mixture of two or more kinds, it is preferable that at least one kind of liquid crystal compound has two or more polymerizable groups in one molecule. After the liquid crystal compound is fixed by polymerization, it is no longer necessary to exhibit liquid crystallinity.
  • the type of the polymerizable group is not particularly limited, a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth) acryloyl group is more preferable.
  • rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A No. 11-513019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used, and discotics can be used.
  • liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 can be preferably used. However, it is not limited to these.
  • a liquid crystal compound having a reverse wavelength dispersibility can be used as the liquid crystal compound.
  • the liquid crystal compound having "reverse wavelength dispersibility" in the present specification the in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced by using the liquid crystal compound is measured. In this case, it means that the Re value becomes equal or higher as the measurement wavelength becomes larger.
  • the reverse wavelength dispersible liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersible film as described above, and is, for example, the general formula (1) described in JP-A-2010-084032.
  • the polymerizable composition of the present invention preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator depending on the type of the polymerization reaction.
  • a photopolymerization initiator capable of initiating a polymerization reaction by irradiation with ultraviolet rays is preferable.
  • the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (described in US Pat. No. 2,448,828), and ⁇ -hydrogen-substituted fragrances.
  • Group acidloin compounds (described in US Pat. No. 2,725,512), polynuclear quinone compounds (described in US Pat. Nos. 3,416127 and 2951758), combinations of triarylimidazole dimers and p-aminophenyl ketone (US patent). 3549365 (described in US Pat. No. 3,549,67), aclysine and phenazine compounds (Japanese Patent Laid-Open No. 60-105667, US Pat. No. 4,239,850), oxadiazole compounds (described in US Pat. No. 4,212,970), and acyl. Examples thereof include phosphine oxide compounds (described in Japanese Patent Publication No.
  • the content of the photopolymerization initiator in the polymerizable composition is the solid content concentration with respect to the total polymerizable compound including the above-mentioned specific compound (provided that it has a polymerizable group) and the polymerizable compound. It is preferably 0.01 to 20% by mass, and more preferably 0.5 to 5% by mass.
  • the polymerizable composition may contain an orientation control agent, if necessary.
  • an orientation control agent for example, a small molecule orientation control agent or a polymer orientation control agent can be used.
  • the small molecule orientation control agent include paragraphs 0009 to 0083 of JP-A-2002-20363, paragraphs 0111 to 0120 of JP-A-2006-106662, and paragraphs 0021-0029 of JP-A-2012-211306. The description can be taken into account and this content is incorporated herein by reference.
  • the polymer orientation control agent for example, the description in paragraphs 0021 to 0057 of JP-A-2004-198511 and paragraphs 0121 to 0167 of JP-A-2006-106662 can be referred to, and the contents thereof. Is incorporated herein by reference.
  • the amount of the orientation control agent used is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the solid content in the polymerizable composition.
  • the orientation control agent for example, the specific compound of the present invention can be in a horizontally oriented state aligned in parallel with the surface of the film.
  • Agents additives (plasticizers) that lower the orientation temperature, other agents that impart functionality, and the like, and can be used as appropriate.
  • a solvent can be added to the polymerizable composition for the purpose of adjusting the viscosity or the like.
  • the solvent that can be used is not particularly limited as long as it does not reduce the manufacturing suitability, but it is preferably selected from at least one of the group consisting of ketones, esters, ethers, alcohols, alkanes, toluenes, chloroforms and methylene chlorides.
  • the amount of the solvent used is generally 50 to 90% by mass as the concentration in the polymerizable composition, but is not particularly limited.
  • the optically anisotropic film of the present invention is an optically anisotropic film obtained by polymerizing the above-mentioned polymerizable composition of the present invention. Further, since the optically anisotropic film of the present invention uses the above-mentioned compound of the present invention, it is an optically anisotropic film having excellent anti-wavelength dispersibility. Specifically, the optically anisotropic film of the present invention is preferably an optically anisotropic film satisfying the following formula (III), and is preferably an optically anisotropic film satisfying the following formula (IV). 0.50 ⁇ Re (450) / Re (550) ⁇ 0.95 ...
  • Re (450) represents the in-plane retardation of the optically anisotropic film at a wavelength of 450 nm
  • Re (550) represents the wavelength of the optically anisotropic film at a wavelength of 550 nm.
  • the in-plane retardation value is a value measured using light of a measurement wavelength using AxoScan OPMF-1 (manufactured by Optoscience).
  • the optically anisotropic film of the present invention is preferably a positive A plate or a positive C plate, and more preferably a positive A plate.
  • the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
  • the refractive index in the slow phase axial direction (the direction in which the refractive index in the plane is maximized) in the film plane is nx
  • the refractive index in the direction orthogonal to the slow phase axis in the plane in the plane is ny
  • the refraction in the thickness direction is nz
  • the positive A plate satisfies the relation of the formula (A1)
  • the positive C plate satisfies the relation of the formula (C1).
  • the positive A plate shows a positive value for Rth
  • the positive C plate shows a negative value for Rth.
  • includes not only the case where both are completely the same but also the case where both are substantially the same. “Substantially the same” means that in a positive A plate, for example, (ny-nz) ⁇ d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. It is included in “ny ⁇ nz”, and when (nx-nz) xd is -10 to 10 nm, preferably -5 to 5 nm, it is also included in "nx ⁇ nz”.
  • (nx-ny) ⁇ d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm, it is also included in “nx ⁇ ny”.
  • Re (550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, from the viewpoint of functioning as a ⁇ / 4 wave plate. , 130 to 150 nm is more preferable, and 130 to 140 nm is particularly preferable.
  • the " ⁇ / 4 wave plate” is a wave plate having a ⁇ / 4 function, and specifically, a linear polarization of a specific wavelength is converted into circular polarization (or a circular polarization is converted into linear polarization). It is a section manager board that has the function of
  • the method for producing the optically anisotropic film of the present invention is not particularly limited. For example, after developing the above-mentioned polymerizable composition of the present invention and heating it to orient the major axis of the molecule of the above-mentioned specific compound, the present invention is used. Examples thereof include a method of curing the polymerizable composition.
  • the same method as the method for producing an optically anisotropic film using a general liquid crystal compound can be applied to the fabrication of the optically anisotropic film of the present invention.
  • a method for producing an optically anisotropic film using a general liquid crystal compound for example, a method in which a composition containing a liquid crystal compound is enclosed in a void or the like and the orientation state or the like is manipulated by heat, electric field, pressure or the like. Further, after the polymerizable composition containing the liquid crystal compound is developed as a coating liquid on a support or the like and subjected to alignment treatment, the liquid crystal compound itself or the polymerizable component in the composition is polymerized and cured in order to fix the alignment state. There is a way to make it.
  • the above-mentioned polymerizable composition of the present invention is developed and heated to orient the major axis of the molecule of the above-mentioned specific compound, and then the polymerizable composition is cured to fix the orientation state.
  • a method for producing an optically anisotropic film will be described.
  • the polymerizable composition is developed, heated to orient the major axis of the molecule of the specific compound of the present invention, and then cured.
  • the orientation state is fixed to obtain an optically anisotropic film.
  • the method for developing the polymerizable composition is not particularly limited, but it is preferably carried out by applying (including casting) the polymerizable composition on the support.
  • the support used is not particularly limited, but in order to obtain the oriented state of the liquid crystal compound in the polymerizable composition developed on the support, the specific compound of the present invention is in the oriented state in the alignment step.
  • the glass transition temperature of the support is higher than the orientation temperature of the liquid crystal compound of the present invention.
  • a high support is preferred. If the support has a glass transition temperature higher than the orientation temperature, it is possible to prevent the support from being thermally deformed by heating at the time of orientation.
  • the temporary support When the temporary support is to be peeled off after forming the optically anisotropic film, a material having a surface texture that is easily peeled off may be used for the support.
  • a support glass, a polyester film which has not been subjected to an easy-adhesion treatment, or the like can be used.
  • the support When an optically anisotropic film is formed on the support and then used as it is as a laminate to be described later, the support may be an optical film substrate such as cellulose, cyclic olefin, acrylic, polycarbonate, polyester, or polyvinyl alcohol. Alternatively, a liquid crystal cell substrate or a polarizing element can be preferably used.
  • the polymerizable composition developed on a support or the like is brought into a desired orientation state with the major axis of the molecule of the specific compound of the present invention in the polymerizable composition.
  • the orientation state generally includes both types of liquid crystal phases such as nematic phase and smectic phase, and orientation of liquid crystal molecules necessary for display such as twist orientation, hybrid orientation, horizontal orientation, and vertical orientation.
  • the former is generally controlled by a phase transition due to changes in temperature or pressure, and the latter is generally controlled by an orientation process.
  • Orientation processing As a method of alignment treatment, for example, a method of orienting a liquid crystal compound in a desired direction by using an alignment film is common.
  • a rubbing-treated film made of an organic compound such as a polymer, an oblique vapor-deposited film of an inorganic compound, a film having microgrooves, or an organic compound such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, or methyl stearylate.
  • Examples include a film obtained by accumulating LB films by the Langmuir-Blogget method.
  • a polymer layer formed by rubbing the surface of the polymer layer or a polymer is used.
  • a photo-alignment film formed by photo-alignment treatment of the surface of the layer is preferable.
  • the heat resistance of these alignment films is the same as that described for the support.
  • the rubbing treatment is carried out by rubbing the surface of the polymer layer with paper or cloth several times in a certain direction.
  • the types of polymers used for the alignment layer are polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and JP-A-2005-99228.
  • the orthogonal alignment film or the like described in JP-A-2005-128503 can be preferably used.
  • the orthogonal alignment film referred to in the present invention means an alignment film in which the major axis of the molecule of the specific compound of the present invention is oriented substantially orthogonal to the rubbing direction of the orthogonal alignment film.
  • the thickness of the alignment layer does not have to be thick as long as it can provide the alignment function, and is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • a so-called photo-alignment film which is obtained by irradiating a photo-alignment material with polarized light or non-polarization to form an alignment film, can also be used. That is, a light distribution material may be applied onto the support to form a photoalignment film. Irradiation of polarized light can be performed from a vertical direction or an oblique direction with respect to the photoalignment film, and irradiation of non-polarization can be performed from an oblique direction with respect to the photoalignment film.
  • the photo-alignment material used for the photo-alignment film that can be used in the present invention is described in many documents and the like.
  • the photoalignment film of the present invention for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, JP-A-2007-121721,
  • a cinnamate compound 10-506420, JP-A-2003-505561, WO2010 / 150748, JP-A-2013-177561, and JP-A-2014-12823.
  • a cinnamate compound a chalcone compound, and a coumarin compound are mentioned as preferable examples.
  • Particularly preferred are an azo compound, a photocrosslinkable polyimide, a polyamide, an ester, a cinnamate compound, and a chalcone compound.
  • the alignment film by selecting the material of the alignment film, it can be peeled off from the temporary support for forming the optically anisotropic film, or only the optically anisotropic film can be peeled off, and transfer, that is, the peeled optically anisotropic film is attached. By combining them, it is possible to provide a thin optically anisotropic film having a thickness of several ⁇ m. Further, it is also preferable that a rubbing alignment film or a photo-alignment film is directly applied and laminated on the linear polarizing element, and the rubbing or photo-alignment treatment is performed to impart an alignment function. That is, the laminate of the present invention may be a laminate having a linear polarizing element and having a light alignment film or a rubbing alignment film on the surface of the linear polarizing element.
  • the pre-tilt angle is low.
  • a photo-alignment film as an alignment film and applying it to the IPS method, it is possible to achieve both high contrast with reduced frontal light leakage and good viewing angle dependence with reduced oblique color change. Therefore, it is preferable to use the photoalignment film as the alignment film.
  • the photoalignment film it is preferable to apply an orientation restricting force to the photoalignment film by a step of irradiating the photoalignment film with polarization from a vertical direction or an oblique direction or a step of irradiating the photoalignment film with unpolarized light from an oblique direction.
  • the oblique direction is preferably a direction at an angle of 5 to 45 degrees with respect to the photoalignment film, and more preferably a direction at an angle of 10 to 30 degrees.
  • the irradiation intensity it is preferable to irradiate ultraviolet rays of 200 to 2000 mJ / cm 2 .
  • a desired alignment state can be obtained by using a vertical alignment film or a vertical alignment agent.
  • a vertical alignment film reference can be made to paragraphs [0083] to [2002] of JP-A-2002-294240, and for the vertical alignment agent, paragraphs [0083] to [0083] of JP-A-2006-106662 can be referred to. ..
  • the liquid crystal phase of a liquid crystal compound can generally be transferred by changes in temperature or pressure. In the case of a liquid crystal having a lyotropic property, it can be transferred by the amount of the solvent. In the present invention, it is preferable that the liquid crystal having a thermotropic property undergoes a phase transition by a temperature change in consideration of the subsequent operation of fixing the orientation state.
  • the case of fixing the state of the horizontally oriented smectic phase will be described as an example.
  • the temperature range in which the liquid crystal compound expresses the nematic phase is generally higher than the temperature range in which the liquid crystal compound expresses the smectic phase with higher order. Therefore, the liquid crystal compound is changed from the nematic phase to the smectic phase by heating the liquid crystal compound to the temperature range in which the liquid crystal compound expresses the nematic phase and then lowering the heating temperature to the temperature range in which the liquid crystal compound expresses the smectic phase. It is preferable to transfer.
  • the temperature at which the polymerizable composition of the present invention changes from the smectic phase to the nematic phase is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 140 ° C. or lower.
  • the lower limit of the temperature for transitioning from the smectic phase to the nematic phase is not particularly limited, but is generally 20 ° C. or higher. The lower the phase transition temperature is, the more options are available from the viewpoint of heat resistance of the material used for the support and the alignment layer, which is preferable.
  • the temperature at which the compound changes from the smectic phase to the nematic phase can be easily measured by observing the composition with a polarizing microscope.
  • a polarizing microscope For example, in the nematic phase, the Schlieren texture peculiar to the nematic phase is observed, but in the smectic A phase, it shifts to the focal conic fan texture, so by observing the texture with a polarizing microscope while raising or lowering the temperature. Can be measured.
  • the heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
  • the heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
  • the nematic phase also has less light scattering components unlike the normal nematic phase. , It can be a nematic phase that can realize high contrast.
  • the present invention it is also a preferred embodiment to heat the polymerizable composition in a temperature range in which the nematic phase is expressed to form a monodomain in this temperature range, and then to immobilize the composition.
  • the optically anisotropic film produced in such an embodiment has a significantly higher contrast than the optically anisotropic film produced from a polymerizable composition that expresses only a normal nematic phase.
  • the heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
  • the above polymerizable composition is once subjected to the phase transition temperature of the nematic phase-isotropic phase. After heating above, the temperature is gradually lowered below the phase transition temperature of the smectic phase-nematic phase or the phase transition temperature of the smectic phase-isotropic phase at a predetermined rate, thereby passing through the nematic phase and then smectic. It can be transferred to the phase.
  • the temperature after the decrease is preferably 10 ° C.
  • the cooling rate is preferably in the range of 1 to 100 ° C./min, and preferably in the range of 5 to 50 ° C./min. If the cooling rate is too fast, orientation defects will occur, and if it is too slow, manufacturing time will be long.
  • the tilt angle of the optically anisotropic film can be controlled by tilting the liquid crystal compound molecule in a state where the primary structure of the smectic phase is appropriately separated.
  • a method of controlling the tilt angle of the liquid crystal compound a method of imparting a pre-tilt angle by an alignment film whose rubbing conditions are controlled, and a polar angle on the support side or the air interface side by adding a tilt angle control agent to the liquid crystal layer. There is a method of controlling the above, and it is preferable to use them together.
  • the tilt angle control agent can use, for example, a copolymer of a fluoroaliphatic group-containing monomer, a polymer with an aromatic fused ring functional group, or a carboxyl group, a sulfo group, a phosphonoxy group, or a salt thereof. It is preferable to use a copolymer with the containing monomer. Further, by using a plurality of tilt angle control agents, more precise and stable control becomes possible. As such an inclination angle control agent, the description in paragraphs 0022 to 0063 of JP-A-2008-257205 and paragraphs 0017 to 0124 of JP-A-2006-91732 can be referred to.
  • the orientation state can be fixed by thermal polymerization or polymerization by an active energy ray, and can be carried out by appropriately selecting a polymerizable group or a polymerization initiator suitable for the polymerization.
  • a polymerization reaction by irradiation with ultraviolet rays can be preferably used. When the irradiation amount of ultraviolet rays is small, unpolymerized polymerizable liquid crystal and other polymerizable compounds remain, which causes temperature changes in optical characteristics and deterioration over time.
  • the irradiation conditions it is preferable to determine the irradiation conditions so that the ratio of the remaining polymerizable compound is 5% or less, and the irradiation conditions depend on the formulation of the polymerizable composition and the film thickness of the optically anisotropic film, but as a guide. It is preferable to carry out the irradiation at an irradiation amount of 200 mJ / cm 2 or more.
  • the optical film of the present invention is an optical film having the optically anisotropic film of the present invention.
  • 1A, 1B and 1C (hereinafter, these drawings are abbreviated as "FIG. 1" when no particular distinction is required) are schematic cross-sectional views showing an example of the optical film of the present invention, respectively.
  • FIG. 1 is a schematic diagram, and the thickness relationship and positional relationship of each layer do not always match the actual ones, and the support, alignment film, and hardcoat layer shown in FIG. 1 all have an arbitrary configuration. It is a member.
  • the optical film 10 shown in FIG. 1 has a support 16, an alignment film 14, and an optically anisotropic film 12 in this order. Further, as shown in FIG.
  • the optical film 10 may have the hard coat layer 18 on the side opposite to the side where the alignment film 14 of the support 16 is provided, and as shown in FIG. 1C, the optical film 10 may have a hard coat layer 18.
  • the hard coat layer 18 may be provided on the side of the optically anisotropic film 12 opposite to the side on which the alignment film 14 is provided.
  • optically anisotropic film of the optical film of the present invention is the above-mentioned optically anisotropic film of the present invention.
  • the thickness of the optically anisotropic film is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the optical film of the present invention may have a support as a base material for forming an optically anisotropic film.
  • a support is preferably transparent, and specifically, the light transmittance is preferably 80% or more.
  • Examples of such a support include a glass substrate and a polymer film, and examples of the polymer film material include a cellulose-based polymer; an acrylic-based polymer having an acrylic acid ester polymer such as polymethylmethacrylate and a lactone ring-containing polymer.
  • thermoplastic norbornene polymers polycarbonate polymers; polyester polymers such as polyethylene terephthalate and polyethylene naphthalate; styrene polymers such as polystyrene and acrylonitrile / styrene copolymers (AS resin); polyethylene, polypropylene, ethylene / propylene Polyolefin-based polymers such as polymers; Vinyl chloride-based polymers; Amido-based polymers such as nylon and aromatic polyamides; Imid-based polymers; Examples thereof include vinylidene chloride-based polymers; vinyl alcohol-based polymers; vinyl butyral-based polymers; allylate-based polymers; polyoxymethylene-based polymers; epoxy-based polymers; or polymers in which these polymers are mixed. Further, the stator described later may also serve as such a support.
  • the thickness of the support is not particularly limited, but is preferably 5 to 60 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the optical film of the present invention has any of the above-mentioned supports, it is preferable that the optical film has an alignment film between the support and the optically anisotropic film.
  • the support described above may also serve as an alignment film.
  • the alignment film is generally composed of a polymer as a main component.
  • the polymer material for an alignment film has been described in a large number of documents, and a large number of commercially available products are available.
  • the polymer material used in the present invention is preferably polyvinyl alcohol or polyimide, and its derivatives. Particularly modified or unmodified polyvinyl alcohol is preferable.
  • the alignment film that can be used in the present invention for example, the alignment film described in International Publication No. 01/88574, page 43, lines 24 to 49, line 8; paragraphs [0071] to [00905] of Japanese Patent No. 3907735. ].
  • a photoalignment film as the alignment film because it is possible to prevent surface deterioration by not contacting the surface of the alignment film when the alignment film is formed.
  • the photoalignment film is not particularly limited, but is a polymer material such as a polyamide compound or a polyimide compound described in paragraphs [0024] to [0043] of International Publication No. 2005/096041; A liquid crystal alignment film formed by a liquid crystal alignment agent having a photo-oriented group; a trade name LPP-JP265CP manufactured by Polyimide Technologies, etc. can be used.
  • the thickness of the alignment film is not particularly limited, but from the viewpoint of alleviating the surface irregularities that may exist on the support and forming an optically anisotropic film having a uniform film thickness, 0. It is preferably 01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m, and even more preferably 0.01 to 0.5 ⁇ m.
  • the optical film of the present invention preferably has a hardcoat layer in order to impart physical strength to the film.
  • the hardcourt layer may be provided on the side opposite to the side where the alignment film of the support is provided (see FIG. 1B), and the side where the alignment film of the optically anisotropic film is provided. May have a hardcourt layer on the opposite side (see FIG. 1C).
  • the hard coat layer those described in paragraphs [0190] to [0196] of JP-A-2009-98658 can be used.
  • the optical film of the present invention may have another optically anisotropic film in addition to the optically anisotropic film of the present invention. That is, the optical film of the present invention may have a laminated structure of the optically anisotropic film of the present invention and another optically anisotropic film.
  • Such other optically anisotropic films are optically anisotropic obtained by using the above-mentioned inverse wavelength dispersible liquid crystal compound or other polymerizable compound (particularly, liquid crystal compound) without blending the above-mentioned specific compound. If it is a film, it is not particularly limited.
  • liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type according to their shapes.
  • a polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound (disk-shaped liquid crystal compound). Two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of disk-shaped liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a disk-shaped liquid crystal compound may be used.
  • the liquid crystal compound For the immobilization of the above-mentioned liquid crystal compound, it is more preferable to form a rod-shaped liquid crystal compound having a polymerizable group or a disk-shaped liquid crystal compound, and the liquid crystal compound may have two or more polymerizable groups in one molecule. More preferred. When the liquid crystal compound is a mixture of two or more kinds, it is preferable that at least one kind of liquid crystal compound has two or more polymerizable groups in one molecule.
  • the rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A No. 11-513019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used, and discotics can be used.
  • liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 can be preferably used. However, it is not limited to these.
  • the optical film of the present invention preferably contains an ultraviolet (UV) absorber in consideration of the influence of external light (particularly ultraviolet light).
  • the ultraviolet absorber may be contained in the optically anisotropic film of the present invention, or may be contained in a member other than the optically anisotropic film constituting the optical film of the present invention.
  • a support is preferably mentioned.
  • the ultraviolet absorber any conventionally known agent capable of exhibiting ultraviolet absorption can be used.
  • a benzotriazole-based or hydroxyphenyltriazine-based ultraviolet absorber may be used from the viewpoint of obtaining the ultraviolet absorbing ability (ultraviolet blocking ability) used in an image display device because of its high ultraviolet absorbing property. preferable.
  • two or more kinds of ultraviolet absorbers having different maximum absorption wavelengths can be used in combination.
  • Specific examples of the ultraviolet absorber include the compounds described in paragraphs [0258] to [0259] of JP2012-18395, paragraphs [0055] to [0105] of JP2007-72163. Examples thereof include the compounds described in.
  • Tinuvin 400, Tinuvin 405, Tinuvin 460, Tinuvin 477, Tinuvin 479, Tinuvin 1577 (all manufactured by BASF) and the like can be used.
  • the polarizing plate of the present invention has the above-mentioned optical film of the present invention and a polarizing element. Further, the polarizing plate of the present invention can be used as a circular polarizing plate when the above-mentioned optically anisotropic film of the present invention is a ⁇ / 4 wave plate (positive A plate). Further, in the polarizing plate of the present invention, when the above-mentioned optically anisotropic film of the present invention is a ⁇ / 4 wave plate (positive A plate), the slow axis of the ⁇ / 4 wave plate and absorption of a splitter described later are absorbed.
  • the angle formed with the shaft is preferably 30 to 60 °, more preferably 40 to 50 °, further preferably 42 to 48 °, and particularly preferably 45 °.
  • the "slow-phase axis" of the ⁇ / 4 wave plate means the direction in which the refractive index becomes maximum in the plane of the ⁇ / 4 wave plate
  • the "absorption axis" of the substituent means the direction in which the absorbance is highest. Means.
  • the polarizing plate of the polarizing plate of the present invention is not particularly limited as long as it is a member having a function of converting light into a specific linear polarization, and conventionally known absorption-type and reflection-type splitters can be used. ..
  • As the absorption type polarizing element an iodine-based polarizing element, a dye-based polarizing element using a dichroic dye, a polyene-based polarizing element, and the like are used.
  • Iodine-based splitters and dye-based splitters include coated and stretched splitters, both of which can be applied, but polarized light produced by adsorbing iodine or a dichroic dye on polyvinyl alcohol and stretching it.
  • Japanese Patent No. 5048120 Japanese Patent No. 5143918, Japanese Patent No. 4691205, and Patent No. 5048120
  • Patent No. Japanese Patent No. 4751481 and Japanese Patent No. 4751486 can be mentioned, and known techniques relating to these substituents can also be preferably used.
  • the reflective classifier a splitter in which thin films having different birefringences are laminated, a wire grid type splitter, a carboxylator in which a cholesteric liquid crystal having a selective reflection region and a 1/4 wave plate are combined, and the like are used.
  • At least one selected from the group consisting of a polyvinyl alcohol-based resin (a polymer containing -CH2 -CHOH- as a repeating unit, particularly a polyvinyl alcohol and an ethylene-vinyl alcohol copolymer) in that the adhesion is more excellent. It is preferable that the polymer contains one).
  • the thickness of the polarizing element is not particularly limited, but is preferably 1 ⁇ m to 60 ⁇ m, more preferably 2 ⁇ m to 30 ⁇ m, and even more preferably 3 ⁇ m to 15 ⁇ m.
  • an adhesive layer may be arranged between the optically anisotropic film in the optical film of the present invention and the polarizing element.
  • G "/ G') represents a substance having a value of 0.001 to 1.5, and includes so-called adhesives, substances that easily creep, and the like.
  • Examples of the pressure-sensitive adhesive that can be used in the present invention include, but are not limited to, polyvinyl alcohol-based pressure-sensitive adhesives.
  • the image display device of the present invention is an image display device having the optical film of the present invention or the polarizing plate of the present invention.
  • the display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel.
  • EL organic electroluminescence
  • a liquid crystal cell and an organic EL display panel are preferable, and a liquid crystal cell is more preferable.
  • the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element and an organic EL display device using an organic EL display panel as a display element, and the liquid crystal display device is preferable. More preferred.
  • the liquid crystal display device which is an example of the image display device of the present invention, is a liquid crystal display device having the above-mentioned polarizing plate of the present invention and a liquid crystal cell.
  • the polarizing plate of the present invention among the polarizing plates provided on both sides of the liquid crystal cell, it is preferable to use the polarizing plate of the present invention as the polarizing plate on the front side, and the polarizing plate of the present invention as the polarizing plate on the front side and the rear side. Is more preferable to use.
  • the liquid crystal cells constituting the liquid crystal display device will be described in detail below.
  • the liquid crystal cell used in the liquid crystal display device is a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe-Field-Switching) mode, or a TN (Fringe-Field-Switching) mode. Twisted Nematic) mode is preferred, but is not limited to these.
  • the rod-shaped liquid crystal molecules are substantially horizontally oriented when no voltage is applied, and are further twisted to 60 to 120 °.
  • the TN mode liquid crystal cell is most often used as a color TFT liquid crystal display device, and has been described in many documents.
  • the rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied.
  • a VA mode liquid crystal cell in a narrow sense (1) in which rod-shaped liquid crystal molecules are oriented substantially vertically when no voltage is applied and substantially horizontally when a voltage is applied
  • 176625 Japanese Patent Publication No. 176625
  • SID97 Voltage of technique. Papers (Proceedings) 28 (1997) 845 in which the VA mode is multi-domainized for expanding the viewing angle.
  • Liquid crystal cells in a mode in which rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied and twisted and multi-domain oriented when a voltage is applied. (1998)) and (4) SURVIVAL mode liquid crystal cell (announced at LCD International 98). Further, it may be any of PVA (Patternized Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Stained Alignment). Details of these modes are described in Japanese Patent Application Laid-Open No. 2006-215326 and Japanese Patent Application Laid-Open No. 2008-538819.
  • the rod-shaped liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond in a plane by applying an electric field parallel to the substrate surface.
  • the display is black when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are orthogonal to each other.
  • Methods for reducing leakage light when displaying black in an oblique direction and improving the viewing angle by using an optical compensation sheet are described in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. It is disclosed in JP-A-11-133408, JP-A-11-305217, JP-A-10-307291, and the like.
  • the organic EL display device which is an example of the image display device of the present invention, includes, for example, a ⁇ / 4 plate (positive A plate) made of a polarizing element, an optically anisotropic film of the present invention, and an organic EL from the viewing side.
  • a mode having a display panel in this order is preferably mentioned.
  • the organic EL display panel is a display panel configured by using an organic EL element formed by sandwiching an organic light emitting layer (organic electroluminescence layer) between electrodes (between a cathode and an anode).
  • the configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
  • the synthesis of the carboxylic acid (CA-1) represented by the above formula (CA-1) was carried out by the method described in paragraphs [0092] to [00903] of International Publication No. 2019/017444.
  • the synthesis of the carboxylic acid (CA-2) was carried out by the method described in paragraph [0227] of JP-A-2019-73496A.
  • the synthesis of the carboxylic acid (CA-3) represented by the above formula (CA-3) is carried out in paragraphs [0122] to [0125] with reference to paragraphs [0108] to [0109] of JP-A-2016-081035. It was done by the method described in.
  • the carboxylic acid (CA-4) represented by the above formula (CA-4) is 4-methylsulfonyl with reference to the method described in paragraphs [0092] to [093] of International Publication No. 2019/017444.
  • Oxybutyl acrylate was synthesized in the same manner except that it was changed to 2-methylsulfonyloxyethyl methacrylate.
  • the carboxylic acid (CA-5) represented by the above formula (CA-5) can be obtained in 4,4'with reference to the methods described in paragraphs [0092] to [00903] of International Publication No. 2019/017444.
  • -Dicyclohexanedicarboxylic acid was synthesized in the same manner except that it was changed to 1,4-trans-cyclohexanedicarboxylic acid.
  • the intermediate (S-2-b) is synthesized by using 2,5-dimethoxybenzene-1,4-dicarboxyaldehyde as a raw material and by the method described in paragraph [0242] of JP-A-2019-120945. gone.
  • the intermediate (S-2-d) is the same as the method for synthesizing the intermediate (S-1-d) except that the intermediate (S-1-b) is changed to the intermediate (S-2-b). Synthesized by the method.
  • Example 1 Manufacturing of optical film
  • a polymerizable composition having the following composition was prepared and applied to a glass substrate with a rubbing-treated polyimide alignment film (SE-130 manufactured by Nissan Chemical Industries, Ltd.) by spin coating.
  • the coating film was oriented at 180 ° C. to form a liquid crystal layer.
  • a retardation value (Re (450)) having a wavelength of 450 nm and a retardation value (Re (550)) having a wavelength of 550 nm were obtained using Axo Scan (OPMF-1, manufactured by Optoscience).
  • Example 1 From the results of Example 1 and Comparative Example 1, it was found that the inverse wavelength dispersibility of the formed optically anisotropic film was inferior when the specific compound was not blended (Comparative Example 1). On the other hand, it was found that when a specific compound was blended, an optically anisotropic film having excellent reverse wavelength dispersibility could be formed (Example 1).
  • Examples 2 to 10 An optical film was produced in the same manner as in Example 1 except that the specific compound was changed to the compound shown in Table 16 below. Further, with respect to the produced optically anisotropic film, the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm were measured, and Re (450) / Re ( 550) was calculated. The wavelength dispersibility was evaluated according to the following evaluation criteria. These results are shown in Table 16 below.
  • Wavelength dispersibility x Re (450) / Re (550)
  • Example 16 From the results shown in Table 16 above, it was found that when other specific compounds were blended, an optically anisotropic film having excellent reverse wavelength dispersibility could be formed as in Example 1 (Examples 2 to 10).
  • Example 11 Manufacturing of optical film
  • a polymerizable composition (coating liquid for an optically anisotropic film) having the following composition was prepared, and a glass substrate with a polyimide alignment film (SE-150 manufactured by Nissan Chemical Industry Co., Ltd.) subjected to a rubbing treatment was spin-coated. Applied. After the coating film is heated and oriented on a hot plate to form a liquid crystal layer. After the temperature was lowered, the orientation was fixed by irradiation with ultraviolet rays of 1000 mJ / cm 2 , an optically anisotropic film was formed, and an optical film for wavelength dispersion measurement was obtained.
  • SE-150 manufactured by Nissan Chemical Industry Co., Ltd.
  • Optically anisotropic layer film coating liquid ⁇ -Polymerizable liquid crystal compound II-1 15.00 parts by mass-Specific compound S-7 3.00 parts by mass-Photopolymerization initiator (Irgacure 819, manufactured by BASF) 0.45 parts by mass-Fluorine-containing compound A 0.12 Parts by mass / chloroform 35.00 parts by mass ⁇
  • the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm were measured, and Re (450) / Re. (550) was calculated.
  • the wavelength dispersibility was evaluated according to the same evaluation criteria as in Examples 2 to 10, and was evaluated as B. From this, it was found that an optically anisotropic film having excellent reverse wavelength dispersibility can be formed also in Example 11.
  • Example 12 to 17 An optical film was produced in the same manner as in Example 1 except that the specific compound was changed to the compound shown in Table 15 below. Further, for the produced optically anisotropic film, the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm were measured by the same method as in Example 1. Then, Re (450) / Re (550) was calculated and evaluated. These results are shown in Table 17 below.
  • Example 17 From the results shown in Table 17 above, it was found that when a specific compound was blended, an optically anisotropic film having excellent reverse wavelength dispersibility could be formed as in Example 1 (Examples 12 to 17).

Abstract

The present invention addresses the problem of providing: a compound to be used in forming an optically anisotropic film having excellent reverse wavelength dispersion properties; a polymerizable composition; an optically anisotropic film; an optical film; a polarizing plate; and an image display device. A compound according to the present invention is represented by formula (1).

Description

化合物、重合性組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置Compounds, polymerizable compositions, optically anisotropic films, optical films, polarizing plates and image display devices
 本発明は、化合物、重合性組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置に関する。 The present invention relates to a compound, a polymerizable composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device.
 逆波長分散性を示す重合性化合物は、広い波長範囲での正確な光線波長の変換が可能になること、および、高い屈折率を有するために位相差フィルムを薄膜化できること、などの特徴を有しているため、盛んに研究されている。
 また、逆波長分散性を示す重合性化合物としては、一般にT型の分子設計指針が取られており、分子長軸の波長を短波長化し、分子中央に位置する短軸の波長を長波長化することが要求されている。
 例えば、特許文献1には、下記式(a)表される重合性液晶化合物が記載されている([請求項1])。
Figure JPOXMLDOC01-appb-I000009
The polymerizable compound exhibiting reverse wavelength dispersibility has features such as the ability to accurately convert the light wavelength over a wide wavelength range and the ability to thin the retardation film due to its high refractive index. Because of this, it is being actively researched.
Further, as a polymerizable compound exhibiting reverse wavelength dispersibility, a T-type molecular design guideline is generally taken, the wavelength of the major axis of the molecule is shortened, and the wavelength of the minor axis located at the center of the molecule is lengthened. Is required to do.
For example, Patent Document 1 describes a polymerizable liquid crystal compound represented by the following formula (a) ([Claim 1]).
Figure JPOXMLDOC01-appb-I000009
特開2018-087152号公報Japanese Unexamined Patent Publication No. 2018-087152
 本発明者らは、特許文献1に記載された重合性液晶化合物について検討したところ、化合物の構造によっては、形成される光学異方性膜の逆波長分散性が不十分である問題があることを明らかとした。 As a result of examining the polymerizable liquid crystal compound described in Patent Document 1, the present inventors have a problem that the inverse wavelength dispersibility of the formed optically anisotropic film is insufficient depending on the structure of the compound. Was clarified.
 そこで、本発明は、逆波長分散性に優れた光学異方性膜の形成に用いられる化合物、重合性組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置を提供することを課題とする。 Therefore, the present invention provides a compound, a polymerizable composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device used for forming an optically anisotropic film having excellent reverse wavelength dispersibility. Make it an issue.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、分子中央に位置する短軸の骨格(コア)に、所定の構造式で表される基を2~4個有する化合物を用いることにより、形成される光学異方性膜の逆波長分散性が良好となることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of diligent studies to achieve the above problems, the present inventors use a compound having 2 to 4 groups represented by a predetermined structural formula in the short-axis skeleton (core) located at the center of the molecule. As a result, it was found that the inverse wavelength dispersibility of the formed optically anisotropic film was improved, and the present invention was completed.
That is, it was found that the above problem can be achieved by the following configuration.
 [1] 後述する式(1)で表される化合物。
 [2] 後述する式(1)中のCが、後述する式(C-3)で表される基を表し、
 後述する式(C-3)中のxが0を表し、XがOまたはSを表し、Yと、-C(=C)-(G)x-C(=X)-とで構成される環構造が、5員環または6員環の炭素環または複素環である、[1]に記載の化合物。
 ただし、炭素環または複素環は、置換基を有していてもよく、他の4~7員環と縮合環を形成していてもよい。
 [3] 後述する式(1)中のCが、後述する式(C-4)で表される基を表し、
 後述する式(C-4)中のXがOを表し、RおよびRがアルキル基を表し、RおよびRが水素原子を表す、[1]に記載の化合物。
 [4] 後述する式(1)中の後述する式(1-1)で表される部分構造が、後述する式(1-1a)または後述する式(1-1b)で表される構造である、[1]~[3]のいずれかに記載の化合物。
 [5] 後述する式(1)中のAおよびAが、トランス-シクロヘキサン-1,4-ジイル基を表す、[1]~[4]のいずれかに記載の化合物。
 [6] 後述する式(R-1)中のZが、重合性基を表し、
 重合性基が、後述する式(P-1)~(P-20)で表される基からなる群から選択されるいずれかの重合性基を表す、[1]~[5]のいずれかに記載の化合物。
 [7] 重合性基が、後述する式(P-1)または(P-2)で表される基である、[6]に記載の化合物。
 [8] 後述する式(1)中のm1およびm2が、それぞれ独立に、0~1の整数を表す、[1]~[7]のいずれかに記載の化合物。
 [9] [1]~[8]のいずれかに記載の化合物を含有する、重合性組成物。
 [10] [9]に記載の重合性組成物を重合して得られる光学異方性膜。
 [11] [10]に記載の光学異方性膜を有する光学フィルム。
 [12] [11]に記載の光学フィルムと、偏光子とを有する、偏光板。
 [13] [11]に記載の光学フィルム、または、[12]に記載の偏光板を有する、画像表示装置。
[1] A compound represented by the formula (1) described later.
[2] C in the formula (1) described later represents a group represented by the formula (C-3) described later.
In the formula (C-3) described later, x represents 0, X 2 represents O or S, and Y 1 and -C (= C)-(G) x-C (= X 2 )- The compound according to [1], wherein the constituent ring structure is a 5-membered ring or a 6-membered ring, which is a carbon ring or a heterocycle.
However, the carbocycle or the heterocycle may have a substituent and may form a fused ring with another 4- to 7-membered ring.
[3] C in the formula (1) described later represents a group represented by the formula (C-4) described later.
The compound according to [1], wherein X 3 in the formula (C-4) described later represents O, R 1 and R 2 represent an alkyl group, and R 3 and R 4 represent a hydrogen atom.
[4] The partial structure represented by the formula (1-1) described later in the formula (1) described later is a structure represented by the formula (1-1a) described later or the formula (1-1b) described later. A compound according to any one of [1] to [3].
[5] The compound according to any one of [1] to [4], wherein A 1 and A 2 in the formula (1) described later represent a trans-cyclohexane-1,4-diyl group.
[6] Z 1 in the formula (R-1) described later represents a polymerizable group.
Any of [1] to [5], wherein the polymerizable group represents any polymerizable group selected from the group consisting of groups represented by the formulas (P-1) to (P-20) described later. The compound described in.
[7] The compound according to [6], wherein the polymerizable group is a group represented by the formula (P-1) or (P-2) described later.
[8] The compound according to any one of [1] to [7], wherein m1 and m2 in the formula (1) described later independently represent an integer of 0 to 1.
[9] A polymerizable composition containing the compound according to any one of [1] to [8].
[10] An optically anisotropic film obtained by polymerizing the polymerizable composition according to [9].
[11] An optical film having the optically anisotropic film according to [10].
[12] A polarizing plate having the optical film according to [11] and a polarizing element.
[13] An image display device having the optical film according to [11] or the polarizing plate according to [12].
 本発明によれば、逆波長分散性に優れた光学異方性膜の形成に用いられる化合物、重合性組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置を提供することができる。 According to the present invention, it is possible to provide a compound, a polymerizable composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display device used for forming an optically anisotropic film having excellent reverse wavelength dispersibility. can.
図1Aは、本発明の光学フィルムの一例を示す模式的な断面図である。FIG. 1A is a schematic cross-sectional view showing an example of the optical film of the present invention. 図1Bは、本発明の光学フィルムの一例を示す模式的な断面図である。FIG. 1B is a schematic cross-sectional view showing an example of the optical film of the present invention. 図1Cは、本発明の光学フィルムの一例を示す模式的な断面図である。FIG. 1C is a schematic cross-sectional view showing an example of the optical film of the present invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
 また、本明細書において、各成分は、各成分に該当する物質を1種単独で用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
 また、本明細書において表記される2価の基(例えば、-O-CO-)の結合方向は特に限定されず、例えば、「L-L-L」の結合においてLが-O-CO-である場合、L側に結合している位置を*1、L側に結合している位置を*2とすると、Lは*1-O-CO-*2であってもよく、*1-CO-O-*2であってもよい。
Further, in the present specification, as each component, a substance corresponding to each component may be used alone or in combination of two or more. Here, when two or more kinds of substances are used in combination for each component, the content of the component means the total content of the substances used in combination unless otherwise specified.
Further, in the present specification, "(meth) acrylate" is a notation representing "acrylate" or "methacrylate", and "(meth) acrylic" is a notation representing "acrylic" or "methacrylic". "(Meta) acrylic" is a notation representing "acryloyl" or "methacrylic acid".
Further, the bonding direction of the divalent group (for example, -O-CO-) described in the present specification is not particularly limited, and for example, L 2 is-in the bonding of "L 1 -L 2 -L 3 ". In the case of O-CO-, if the position bonded to the L 1 side is * 1 and the position bonded to the L 3 side is * 2, L 2 is * 1-O-CO- * 2. It may be * 1-CO-O- * 2.
 また、本明細書において、「置換基を有していてもよい」とは、置換基を有していない態様はもとより、1つ以上の置換基を有する態様を含むものである。
 ここで、置換基とは、例えば、以下に記載する置換基Eが挙げられる。
 <置換基E>
 置換基Eとしては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、シアノ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、または、これらによって置換されていてもよい炭素数1~20の直鎖状もしくは分岐状のアルキル基などが挙げられる。ただし、上記アルキル基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-、または、-C≡C-によって置換されていてもよい。
 また、置換基Eとしては、例えば、-L-RspE-Zで表される基が挙げられる。
 ここで、Lは、-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-、または、単結合を表す。
 RspEは、炭素数1~20のアルキレン基、または、単結合を表す。ただし、上記アルキレン基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、または、-C≡C-に置換されていてもよい。
 Zは、水素原子、または、重合性基を表す。
 なお、このような置換基Eを化合物内に複数有する場合は、複数の置換基Eは、それぞれ同一であっても異なっていてもよい。
Further, in the present specification, "may have a substituent" includes not only an embodiment having no substituent but also an embodiment having one or more substituents.
Here, the substituent includes, for example, the substituent E described below.
<Substituent E>
Examples of the substituent E include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a pentafluorosulfuranyl group, a nitro group, a cyano group, an isocyano group, an amino group, a hydroxyl group, a mercapto group, a methylamino group and a dimethyl group. Examples thereof include an amino group, a diethylamino group, a diisopropylamino group, a trimethylsilyl group, a dimethylsilyl group, a thioisocyanogroup, and a linear or branched alkyl group having 1 to 20 carbon atoms which may be substituted by these. However, one -CH 2- or two or more non-adjacent -CH 2- constituting the above alkyl group are independently -O-, -S-, -CO-, -COO-, respectively. -OCO-, -CO-S-, -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -CH = CH-COO-, -CH = CH-OCO -, -COO-CH = CH-, -OCO-CH = CH-, -CH = CH-, -CF = CF-, or -C≡C- may be substituted.
Further, as the substituent E , for example, a group represented by −LE −R spE −ZE can be mentioned.
Here, LE is -O-, -S-, -OCH 2- , -CH 2 O-, -CH 2 CH 2- , -CO-, -COO-, -OCO- , -CO-S-. , -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -OCO-NH-, -NH-COO-, -NH-CO-NH-, -NH- O-, -O-NH-, -SCH 2-, -CH 2 S-, -CF 2 O-, -OCF 2-, -CF 2 S-, -SCF 2- , -CH = CH - COO-, -CH = CH-OCO-, -COO-CH = CH-, -OCO-CH = CH-, -COO-CH 2 CH 2- , -OCO-CH 2 CH 2- , -CH 2 CH 2 -COO- , -CH 2 CH 2 -OCO-, -COO-CH 2- , -OCO-CH 2- , -CH 2 -COO-, -CH 2 -OCO-, -CH = CH-, -N = N-, -CH = N-, -N = CH-, -CH = NN = CH-, -CF = CF-, -C≡C-, or a single bond.
R spE represents an alkylene group having 1 to 20 carbon atoms or a single bond. However, one -CH 2- or two or more non-adjacent -CH 2- constituting the above-mentioned alkylene group independently have -O-, -COO-, -OCO-, and -OCO-O, respectively. -, -CO-NH-, -NH-CO-, -CH = CH-, or -C≡C- may be substituted.
ZE represents a hydrogen atom or a polymerizable group.
When a plurality of such substituents E are contained in the compound, the plurality of substituents E may be the same or different from each other.
[化合物]
 本発明の化合物は、後述する式(1)で表される化合物(以下、「特定化合物」とも略す。)である。
[Compound]
The compound of the present invention is a compound represented by the formula (1) described later (hereinafter, also abbreviated as “specific compound”).
 本発明においては、上述した通り、特定化合物を用いることにより、形成される光学異方性膜の逆波長分散性が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、特定化合物が、後述する式(1)中のAcoreと結合する基(C)として、後述する式(C-1)~(C-4)のいずれかで表される基を2~4個を有していることにより、逆波長分散性が向上し、その結果、形成される光学異方性膜の逆波長分散性が向上したと考えられる。
 以下、本発明の特定化合物について詳細に説明する。
In the present invention, as described above, by using the specific compound, the inverse wavelength dispersibility of the formed optically anisotropic film is improved.
This is not clear in detail, but the present inventors speculate as follows.
That is, as the group (C) to which the specific compound binds to A core in the formula (1) described later, 2 to 2 to the group represented by any of the formulas (C-1) to (C-4) described later. It is considered that the reverse wavelength dispersibility was improved by having four of them, and as a result, the reverse wavelength dispersibility of the formed optically anisotropic film was improved.
Hereinafter, the specific compound of the present invention will be described in detail.
 〔特定化合物〕
 特定化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000010
[Specific compound]
The specific compound is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中のCは、下記式(C-1)~(C-4)のいずれかで表される基を表す。なお、下記式(C-1)~(C-4)中、*は、Acoreとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000011
C in the above formula (1) represents a group represented by any of the following formulas (C-1) to (C-4). In the following formulas (C-1) to (C-4), * represents a binding position with A core .
Figure JPOXMLDOC01-appb-C000011
 <式(C-1)>
 上記式(C-1)中、Mは、-CH=CH-、-N=CH-、-CH=N-、または、-N=N-を表す。これらのうち、-CH=CH-であることが好ましい。
<Equation (C-1)>
In the above formula (C-1), M represents -CH = CH-, -N = CH-, -CH = N-, or -N = N-. Of these, it is preferable that -CH = CH-.
 上記式(C-1)中、Dは、置換基(例えば、上述した置換基Eなど)を有していてもよい下記式(D-1)~(D10)のいずれかで表される基を表す。なお、下記式(D-1)~(D-10)中、*は、Mとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000012
In the above formula (C-1), D is a group represented by any of the following formulas (D-1) to (D10) which may have a substituent (for example, the above-mentioned substituent E or the like). Represents. In the following formulas (D-1) to (D-10), * represents the bonding position with M.
Figure JPOXMLDOC01-appb-C000012
 上記式(D-2)、(D-3)、(D-6)、(D-8)および(D-9)中、Dは、-O-、-S-、または、-NRD1-を表し、RD1は、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルカノイル基、または、置換基(例えば、上述した置換基Eなど)を有していてもよいフェニルを表す。 In the above formulas (D-2), (D-3), (D-6), (D-8) and (D - 9), D1 is -O-, -S-, or -NR D1 . Representing −, RD1 may have a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkanoyl group having 1 to 5 carbon atoms, or a substituent (for example, the above-mentioned substituent E). Represents phenyl.
 上記式(D-10)中、Rd1およびRd2は、それぞれ独立に、置換基(例えば、上述した置換基Eなど)を有していてもよい炭素数1~20のアルキル基を表す。ただし、アルキル基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-SO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-、または、-C≡C-に置換されていてもよい。
 また、Rd1およびRd2は、互いに結合して3~7員環の非芳香族炭化水素環を形成していてもよく、非芳香族炭化水素環は置換基(例えば、上述した置換基Eなど)を有していてもよく、非芳香族炭化水素環を構成する炭素原子はヘテロ原子に置換されていてもよい。
In the above formula (D-10), R d1 and R d2 each independently represent an alkyl group having 1 to 20 carbon atoms which may have a substituent (for example, the above-mentioned substituent E or the like). However, one -CH 2- or two or more non-adjacent -CH 2- constituting the alkyl group independently have -O-, -S-, -CO-, -COO-, and-, respectively. OCO-, -CO-S-, -S-CO-, -SO 2- , -O-CO-O-, -CO-NH-, -NH-CO-, -CH = CH-COO-, -CH It may be replaced with = CH-OCO-, -COO-CH = CH-, -OCO-CH = CH-, -CH = CH-, -CF = CF-, or -C≡C-.
Further, R d1 and R d2 may be bonded to each other to form a non-aromatic hydrocarbon ring having a 3- to 7-membered ring, and the non-aromatic hydrocarbon ring is a substituent (for example, the above-mentioned substituent E). Etc.), and the carbon atom constituting the non-aromatic hydrocarbon ring may be substituted with a heteroatom.
 上記式(D-1)~(D-10)で表される基は、上述したように、置換基(例えば、上述した置換基Eなど)を有していてもよく、具体的には、上記式(D-1)~(D-10)中の環構造を構成する炭素原子に結合している水素原子は、フッ素原子、塩素原子、シアノ基、トリフルオロアセチル基、トリフルオロメチル基、置換基(例えば、上述した置換基Eなど)を有してもよいフェニル基、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基、または、炭素数1~5のアルカノイル基に置換されていてもよい。 As described above, the groups represented by the above formulas (D-1) to (D-10) may have a substituent (for example, the above-mentioned substituent E or the like), and specifically, the group may have a substituent (eg, the above-mentioned substituent E). The hydrogen atom bonded to the carbon atom constituting the ring structure in the above formulas (D-1) to (D-10) is a fluorine atom, a chlorine atom, a cyano group, a trifluoroacetyl group, a trifluoromethyl group, and the like. A phenyl group which may have a substituent (for example, the above-mentioned substituent E), an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or , May be substituted with an alkanoyl group having 1 to 5 carbon atoms.
 また、上記式(D-1)~(D-10)中の環構造を構成する-CH=は、-N=に置換されていてもよい。ただし、上記式(D-1)および(D-5)中の環構造を構成する少なくとも1個の-CH=は、-N=に置換されているものである。 Further, -CH = constituting the ring structure in the above formulas (D-1) to (D-10) may be replaced with -N =. However, at least one -CH = constituting the ring structure in the above formulas (D-1) and (D-5) is replaced with -N =.
 本発明においては、上記式(C-1)中のDは、形成される光吸収異方性膜の逆波長分散性がより良好となる理由から、上記式(D-6)および(D-8)~(D-10)のいずれかで表される基であることが好ましく、特定化合物の液晶性が向上する理由から、上記式(D-6)および(D-10)のいずれかで表される基であることがより好ましい。 In the present invention, D in the above formula (C-1) is the above formula (D-6) and (D-) because the inverse wavelength dispersibility of the formed light absorption anisotropic film becomes better. 8) It is preferable that the group is represented by any of (D-10), and for the reason that the liquid crystal property of the specific compound is improved, any of the above formulas (D-6) and (D-10) can be used. It is more preferably the group represented.
 <式(C-2)>
 上記式(C-2)中、Jは、水素原子、または、アルキル基を表す。
 また、Bは、-C(=X)-B11、または、-CNを表す。ただし、B11は、置換基を表し、Xは、=O、=S、=NR、または、=C(CN)を表し、Rは、置換基を表す。
 また、Bは、水素原子または置換基を表す。
<Equation (C-2)>
In the above formula (C-2), J 1 represents a hydrogen atom or an alkyl group.
Further, B 1 represents -C (= X 1 ) -B 11 or -CN. However, B 11 represents a substituent, X 1 represents = O, = S, = NR, or = C (CN) 2 , and R represents a substituent.
Further, B 2 represents a hydrogen atom or a substituent.
 上記式(C-2)中のJとしては、水素原子、または、炭素数1~3のアルキル基であることが好ましく、水素原子、メチル基、エチル基、プロピル基、または、イソプロピル基であることがより好ましく、水素原子、または、メチル基であることが更に好ましい。 J 1 in the above formula (C-2) is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and is preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group. It is more preferable to have a hydrogen atom or a methyl group.
 上記式(C-2)中のBの一態様である置換基、および、上記式(C-2)中のBの一態様である「-C(=X)-B11」中のB11が表す置換基としては、例えば、以下のものを挙げることができる。
 炭素数1~18(好ましくは炭素数1~8)の置換もしくは無置換の直鎖状、分岐鎖状または環状のアルキル基(例、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t-ブチル、シクロヘキシル、メトキシエチル、エトキシカルボニルエチル、シアノエチル、ジエチルアミノエチル、ヒドロキシエチル、クロロエチル、アセトキシエチル、トリフルオロメチル等);
 炭素数2~18(好ましくは炭素数2~8)のアルケニル基(例、ビニル等);炭素数2~18(好ましくは炭素数2~8)のアルキニル基(例、エチニル等);
 炭素数6~18(好ましくは炭素数6~10)の置換もしくは無置換のアリール基(例、フェニル、4-メチルフェノル、4-メトキシフェニル、4-カルボキシフェニル、3,5-ジカルボキシフェニル等);
 炭素数7~18(好ましくは炭素数7~12)の置換もしくは無置換のアラルキル基(例、ベンジル、カルボキシベンジル等);
 炭素数2~18(好ましくは炭素数2~8)の置換もしくは無置換のアシル基(例、アセチル、プロピオニル、ブタノイル、クロロアセチル等);
 炭素数1~18(好ましくは炭素数1~8)の置換もしくは無置換のアルキルまたはアリールスルホニル基(例、メタンスルホニル、p-トルエンスルホニル等);
 炭素数1~18(好ましくは炭素数1~8)のアルキルスルフィニル基(例、メタンスルフィニル、エタンスルフィニル、オクタンスルフィニル等);炭素数2~18(好ましくは炭素数2~8)のアルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル等);
 炭素数7~18(好ましくは炭素数7~12)のアリールオキシカルボニル基(例、フェノキシカルボニル、4-メチルフェノキシカルボニル、4-メトキシフェニルカルボニル等);
 炭素数1~18(好ましくは炭素数1~8)の置換もしくは無置換のアルコキシ基(例、メトキシ、エトキシ、n-ブトキシ、メトキシエトキシ等);炭素数6~18(好ましくは炭素数6~10)の置換もしくは無置換のアリールオキシ基(例、フェノキシ、4-メトキシフェノキシ等);
 炭素数1~18(好ましくは炭素数1~8)のアルキルチオ基(例、メチルチオ、エチルチオ等);
 炭素数6~10(好ましくは炭素数1~8)のアリールチオ基(例、フェニルチオ等);
 炭素数2~18(好ましくは炭素数2~8)の置換もしくは無置換のアシルオキシ基(例、アセトキシ、エチルカルボニルオキシ、シクロヘキシルカルボニルキシ、ベンゾイルオキシ、クロロアセチルオキシ等);
 炭素数1~18(好ましくは炭素数1~8)の置換もしくは無置換のスルホニルオキシ基(例、メタンスルホニルオキシ等);
 炭素数2~18(好ましくは炭素数2~8)の置換もしくは無置換のカルバモイルオキシ基(例、メチルカルバモイルオキシ、ジエチルカルバモイルオキシ等);
 無置換のアミノ基、もしくは炭素数1~18(好ましくは炭素数1~8)の置換アミノ基(例、メチルアミノ、ジメチルアミノ、ジエチルアミノ、アニリノ、メトキシフェニルアミノ、クロロフェニルアミノ、ピリジルアミノ、メトキシカルボニルアミノ、n-ブトキシカルボニルアミノ、フェノキシカルボニルアミノ、メチルカルバモイルアミノ、フェニルカルバモイルアミノ、エチルチオカルバモイルアミノ、メチルスルファモイルアミノ、フェニルスルファモイルアミノ、アセチルアミノ、エチルカルボニルアミノ、エチルチオカルボニルアミノ、シクロヘキシルカルボニルアミノ、ベンゾイルアミノ、クロロアセチルアミノ、メタンスルホニルアミノ、ベンゼンスルホニルアミノ等);
 炭素数1~18(好ましくは炭素数1~8)のアミド基(例、アセトアミド、アセチルメチルアミド、アセチルオクチルアミド等);
 炭素数1~18(好ましくは炭素数1~8)の置換もしくは無置換のウレイド基(例、無置換のウレイド、メチルウレイド、エチルウレイド、ジメチルウレイド等);
 炭素数1~18(好ましくは炭素数1~8)の置換もしくは無置換のカルバモイル基(例、無置換のカルバモイル、メチルカルバモイル、エチルカルバモイル、n-ブチルカルバモイル、t-ブチルカルバモイル、ジメチルカルバモイル、モルホリノカルバモイル、ピロリジノカルバモイル等);
 無置換のスルファモイル基もしくは炭素数1~18(好ましくは炭素数1~8)の置換スルファモイル基(例、メチルスルファモイル、フェニルスルファモイル等);
 ハロゲン原子(例、フッ素、塩素、臭素等);水酸基;ニトロ基;シアノ基;カルボキシル基;
 ヘテロ環基(例、オキサゾール環、ベンゾオキサゾール環、チアゾール環、ベンゾチアゾール環、イミダゾール環、ベンゾイミダゾール環、インドレニン環、ピリジン環、モルホリン環、ピペリジン環、ピロリジン環、スルホラン環、フラン環、チオフェン環、ピラゾール環、ピロール環、クロマン環、及びクマリン環など)。
In the substituent which is one aspect of B 2 in the above formula (C-2) and "-C (= X 1 ) -B 11 " which is one aspect of B 1 in the above formula (C-2). As the substituent represented by B 11 of the above, for example, the following can be mentioned.
Substituent or unsubstituted linear, branched or cyclic alkyl groups with 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec. -Butyl, t-butyl, cyclohexyl, methoxyethyl, ethoxycarbonylethyl, cyanoethyl, diethylaminoethyl, hydroxyethyl, chloroethyl, acetoxyethyl, trifluoromethyl, etc.);
An alkenyl group having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms) (eg, vinyl, etc.); an alkynyl group having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms) (eg, ethynyl, etc.);
Substituent or unsubstituted aryl group having 6 to 18 carbon atoms (preferably 6 to 10 carbon atoms) (eg, phenyl, 4-methylphenol, 4-methoxyphenyl, 4-carboxyphenyl, 3,5-dicarboxyphenyl, etc.) ;
Substituted or unsubstituted aralkyl groups having 7 to 18 carbon atoms (preferably 7 to 12 carbon atoms) (eg, benzyl, carboxybenzyl, etc.);
Substituent or unsubstituted acyl groups having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms) (eg, acetyl, propionyl, butanoyl, chloroacetyl, etc.);
Substituent or unsubstituted alkyl or arylsulfonyl groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methanesulfonyl, p-toluenesulfonyl, etc.);
Alkoxycarbonyl group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methanesulfinyl, ethanesulfinyl, octansulfinyl, etc.); alkoxycarbonyl group having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms). (Eg, methoxycarbonyl, ethoxycarbonyl, etc.);
Aryloxycarbonyl groups having 7 to 18 carbon atoms (preferably 7 to 12 carbon atoms) (eg, phenoxycarbonyl, 4-methylphenoxycarbonyl, 4-methoxyphenylcarbonyl, etc.);
Substituent or unsubstituted alkoxy group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methoxy, ethoxy, n-butoxy, methoxyethoxy, etc.); 6 to 18 carbon atoms (preferably 6 to 6 carbon atoms). 10) Substituted or unsubstituted aryloxy group (eg, phenoxy, 4-methoxyphenoxy, etc.);
Alkylthio groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methylthio, ethylthio, etc.);
An arylthio group having 6 to 10 carbon atoms (preferably 1 to 8 carbon atoms) (eg, phenylthio, etc.);
Substituent or unsubstituted acyloxy groups having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms) (eg, acetoxy, ethylcarbonyloxy, cyclohexylcarbonylxy, benzoyloxy, chloroacetyloxy, etc.);
Substituted or unsubstituted sulfonyloxy groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methanesulfonyloxy, etc.);
Substituted or unsubstituted carbamoyloxy groups having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms) (eg, methylcarbamoyloxy, diethylcarbamoyloxy, etc.);
An unsubstituted amino group or a substituted amino group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methylamino, dimethylamino, diethylamino, anirino, methoxyphenylamino, chlorophenylamino, pyridylamino, methoxycarbonylamino) , N-butoxycarbonylamino, phenoxycarbonylamino, methylcarbamoylamino, phenylcarbamoylamino, ethylthiocarbamoylamino, methylsulfamoylamino, phenylsulfamoylamino, acetylamino, ethylcarbonylamino, ethylthiocarbonylamino, cyclohexylcarbonyl Amino, benzoylamino, chloroacetylamino, methanesulfonylamino, benzenesulfonylamino, etc.);
Amide groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, acetamide, acetylmethylamide, acetyloctylamide, etc.);
Substituent or unsubstituted ureido groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, unsubstituted ureido, methyl ureido, ethyl ureido, dimethyl ureido, etc.);
Substituent or unsubstituted carbamoyl groups having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, unsubstituted carbamoyl, methylcarbamoyl, ethylcarbamoyl, n-butylcarbamoyl, t-butylcarbamoyl, dimethylcarbamoyl, morpholino) Carbamoyl, pyrrolidinocarbamoyl, etc.);
An unsubstituted sulfamoyl group or a substituted sulfamoyl group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (eg, methyl sulfamoyl, phenyl sulfamoyl, etc.);
Halogen atom (eg fluorine, chlorine, bromine, etc.); hydroxyl group; nitro group; cyano group; carboxyl group;
Heterocyclic groups (eg, oxazole ring, benzoxazole ring, thiazole ring, benzothiazole ring, imidazole ring, benzoimidazole ring, indorenine ring, pyridine ring, morpholin ring, piperidine ring, pyrrolidine ring, sulfolan ring, furan ring, thiophene) Rings, pyrazole rings, pyrrole rings, chroman rings, and coumarin rings, etc.).
 これらのうち、Bの一態様が表す置換基としては、ハメットの置換基定数(σp)値が0.2以上のものであることが好ましい。ハメットの置換基定数は、例えば、Chem.Rev.91,165(1991)に記載されている。特に好ましい置換基は、シアノ基、ニトロ基、アルコキシカルボニル基、アシル基、カルバモイル基、スルファモイル基、アルキルスルホニル基及びアリールスルホニル基である。 Of these, as the substituent represented by one aspect of B2, it is preferable that the Hammett substituent constant (σp) value is 0.2 or more. Hammett's substituent constants are, for example, Chem. Rev. 91,165 (1991). Particularly preferred substituents are a cyano group, a nitro group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, an alkylsulfonyl group and an arylsulfonyl group.
 また、B11で表される置換基としては、アルキル基、アリール基、アルコキシ基、または、アミノ基であることが好ましい。 The substituent represented by B 11 is preferably an alkyl group, an aryl group, an alkoxy group, or an amino group.
 上記式(C-2)中のBの一態様である「-C(=X)-B11」中のXは、上述した通り、=O、=S、=NR、または、=C(CN)を表し、Rは、置換基を表す。
 ここで、Rが表す置換基としては、上述したB11およびBが表す置換基として例示したものが挙げられる。なかでも、アリール基であることが好ましく、フェニルであることがより好ましい。
 本発明においては、Xは、=Oであることが好ましい。
As described above, X 1 in "-C (= X 1 ) -B 11 ", which is one aspect of B 1 in the above formula (C-2), is = O, = S, = NR, or =. C (CN) 2 is represented, and R is represented by a substituent.
Here, examples of the substituent represented by R include those exemplified as the substituent represented by B 11 and B 2 described above. Of these, an aryl group is preferable, and a phenyl group is more preferable.
In the present invention, X 1 is preferably = O.
 <式(C-3)>
 上記式(C-3)中、Jは、水素原子、または、アルキル基を表す。
 また、Yは、炭素環または複素環を形成するために必要な原子団を表す。
 また、Gは、共役二重結合鎖を完成するために必要な原子団を表す。
 また、xは、0または1を表す。
 また、Xは、=O、=S、=NR、または、=C(CN)を表し、Rは、置換基を表す。
<Equation (C-3)>
In the above formula (C-3), J 2 represents a hydrogen atom or an alkyl group.
Further, Y 1 represents an atomic group required to form a carbon ring or a heterocycle.
Further, G represents an atomic group required to complete a conjugated double bond chain.
Further, x represents 0 or 1.
Further, X 2 represents = O, = S, = NR, or = C (CN) 2 , and R represents a substituent.
 ここで、上記式(C-3)中のJとしては、上記式(C-2)中のJと同様のものが挙げられる。
 また、上記式(C-3)中のYとしては、主鎖が炭素原子またはヘテロ環を形成する異種原子(例えば、窒素原子、酸素原子または硫黄原子など)から構成される原子団である。すなわち、この原子団の主鎖は、炭素原子または異種原子(例えば、窒素原子、酸素原子または硫黄原子など)から選択される2原子から成る連結基であり、これらの炭素原子または異種原子には、水素原子または置換基が、適切な原子価を維持するように結合している。なお、この原子団の中には二重結合が存在してもよい。
 また、上記式(C-3)中のGによって形成される共役二重結合鎖としては、例えば、-CH=CH-、-CH=CH-CH=CH-、-CH=C(CH)-等を挙げることができる。
 また、上記式(C-3)中のXとしては、上記式(C-2)中のBの一態様である「-C(=X)-B11」中のXと同様のものが挙げられる。
Here, as J 2 in the above formula (C-3), the same as J 1 in the above formula (C-2) can be mentioned.
Further, Y1 in the above formula (C - 3) is an atomic group composed of heteroatoms (for example, nitrogen atom, oxygen atom or sulfur atom) in which the main chain forms a carbon atom or a heterocycle. .. That is, the main chain of this atomic group is a connecting group consisting of two atoms selected from carbon atoms or different atoms (for example, nitrogen atom, oxygen atom or sulfur atom), and these carbon atoms or different atoms have , Hydrogen atom or substituent is bonded so as to maintain an appropriate valence. A double bond may exist in this atomic group.
Further, as the conjugated double bond chain formed by G in the above formula (C-3), for example, -CH = CH-, -CH = CH-CH = CH-, -CH = C (CH 3 ). -Can be mentioned.
Further, the X 2 in the above formula (C-3) is the same as the X 1 in "-C (= X 1 ) -B 11 " which is one aspect of B 1 in the above formula (C-2). Can be mentioned.
 上記式(C-3)中、Yと、-C(=C)-(G)x-C(=X)-〔以下、便宜的に「W」と略す。)とで構成される環構造が、4~7員環の炭素環または複素環であることが好ましく、5員環または6員環の炭素環または複素環であることがより好ましい。特に、化合物の合成が容易となり、形成される光学異方性膜の逆波長分散性がより良好となる理由から、xが0を表し、XがOまたはSを表し、かつ、YとWとで構成される環構造が、5員環または6員環の炭素環または複素環であることが更に好ましい。
 これらの炭素環または複素環は、置換基を有していてもよく、更に他の4~7員環と縮合環を形成していてもよい。
 置換基としては、例えば、上述したB11およびBが表す置換基として例示したものが挙げられる。
 また、複素環を形成するヘテロ原子としては、B、N、O、S、Se、および、Teが好ましく、N、OおよびSがより好ましい。
In the above formula (C-3), Y 1 and -C (= C)-(G) x-C (= X 2 )-[hereinafter, abbreviated as "W 1 " for convenience. ), The ring structure composed of) is preferably a 4- to 7-membered ring or a heterocycle, and more preferably a 5-membered or 6-membered ring. In particular, x represents 0, X 2 represents O or S, and Y 1 because the synthesis of the compound becomes easy and the inverse wavelength dispersibility of the formed optically anisotropic film becomes better. It is more preferable that the ring structure composed of W 1 is a 5-membered ring or a 6-membered ring carbocyclic ring or a heterocyclic ring.
These carbocycles or heterocycles may have a substituent and may further form a fused ring with another 4- to 7-membered ring.
Examples of the substituent include those exemplified as the substituent represented by the above-mentioned B 11 and B 2 .
Further, as the heteroatom forming the heterocycle, B, N, O, S, Se, and Te are preferable, and N, O, and S are more preferable.
 YとWとで構成される炭素環としては、例えば、以下のものが挙げられる。なお、例示中、RaおよびRbは、それぞれ独立に、水素原子または置換基を表す。 Examples of the carbon ring composed of Y 1 and W 1 include the following. In the illustration, Ra and Rb independently represent a hydrogen atom or a substituent.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 これらの炭素環のうち、上記式A-1、A-2、A-4、A-6およびA-7で示される炭素環であることが好ましく、上記式A-1およびA-2で示される炭素環であることがより好ましい。 Of these carbon rings, the carbon rings represented by the above formulas A-1, A-2, A-4, A-6 and A-7 are preferable, and they are represented by the above formulas A-1 and A-2. It is more preferable that the carbon ring is used.
 YとWとで構成される複素環としては、例えば、以下のものが挙げられる。なお、例示中、Ra、RbおよびRcは、それぞれ独立に、水素原子または置換基を表す。 Examples of the heterocycle composed of Y 1 and W 1 include the following. In the illustration, Ra, Rb and Rc independently represent a hydrogen atom or a substituent.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 これらの複素環のうち、上記式A-1、A-8、A-9、A-10、A-12、A-13、A-14、A-16、A-17、A-20、A-21、A-22、A-31、A-34、A-36、A-45およびA-55で示される複素環であることが好ましく、上記式A-1、A-8、A-13、A-14、A-16、A-17、A-20、A-21、A-22、A-31、A-34およびA-55で示される複素環であることがより好ましい。 Of these heterocycles, the above formulas A-1, A-8, A-9, A-10, A-12, A-13, A-14, A-16, A-17, A-20, A It is preferably a heterocycle represented by -21, A-22, A-31, A-34, A-36, A-45 and A-55, and the above formulas A-1, A-8 and A-13 are preferable. , A-14, A-16, A-17, A-20, A-21, A-22, A-31, A-34 and A-55 are more preferred.
 Ra、RbおよびRcで表される置換基としては、上述したB11およびBが表す置換基として例示したものが挙げられる。特に、窒素原子に置換する場合は、例えば、アルキル基、フェニル基、下記式(R-2)で表される基などが挙げられる。炭素原子に置換する場合は、アルキル基、アルキル基を構成する-CH-の1個以上が-O-、-S-、-NH-もしくは-CO-に置換された基、アルケニル基、アルキニル基、アリール基、シアノ基、ニトロ基、下記式(R-2)で表される基などが挙げられる。
 式(R-2):-L10-Rsp10-Z10
 ここで、上記式(R-2)中、
 L10は、-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-、または、単結合を表す。
 Rsp10は、炭素数1~20のアルキレン基、または、単結合を表す。ただし、上記アルキレン基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、または、-C≡C-に置換されていてもよい。
 Z10は、重合性基を表す。
Examples of the substituent represented by Ra, Rb and Rc include those exemplified as the substituent represented by B 11 and B 2 described above. In particular, when substituting with a nitrogen atom, for example, an alkyl group, a phenyl group, a group represented by the following formula (R-2) and the like can be mentioned. When substituting with a carbon atom, an alkyl group, a group in which one or more of -CH 2- constituting the alkyl group is substituted with -O-, -S-, -NH- or -CO-, an alkenyl group, an alkynyl Examples thereof include a group, an aryl group, a cyano group, a nitro group, and a group represented by the following formula (R-2).
Equation (R-2): -L 10 -R sp10 -Z 10
Here, in the above formula (R-2),
L 10 is -O-, -S-, -OCH 2- , -CH 2 O-, -CH 2 CH 2- , -CO-, -COO-, -OCO-, -CO-S-, -S. -CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -OCO-NH-, -NH-COO-, -NH-CO-NH-, -NH-O-, -O-NH-, -SCH 2- , -CH 2 S-, -CF 2 O-, -OCF 2- , -CF 2 S-, -SCF 2- , -CH = CH-COO-, -CH = CH-OCO-, -COO-CH = CH-, -OCO-CH = CH-, -COO-CH 2 CH 2- , -OCO-CH 2 CH 2- , -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, -COO-CH 2- , -OCO-CH 2- , -CH 2 -COO-, -CH 2 -OCO-, -CH = CH-, -N = N-, -CH = Represents N-, -N = CH-, -CH = N-N = CH-, -CF = CF-, -C≡C-, or a single bond.
R sp10 represents an alkylene group having 1 to 20 carbon atoms or a single bond. However, one -CH 2- or two or more non-adjacent -CH 2- constituting the above-mentioned alkylene group independently have -O-, -COO-, -OCO-, and -OCO-O, respectively. -, -CO-NH-, -NH-CO-, -CH = CH-, or -C≡C- may be substituted.
Z 10 represents a polymerizable group.
 また、Ra、RbおよびRcはそれぞれ互いに連結して炭素環または複素環を形成してもよい。
 炭素環としては、例えば、シクロヘキシル環、シクロペンチル環、シクロヘキセン環、および、ベンゼン環などの飽和または不飽和の4~7員の炭素環を挙げることができる。
 また複素環としては、例えば、ピペリジン環、ピペラジン環、モルホリン環、テトラヒドロフラン環、フラン環、チオフェン環、ピリジン環、および、ピラジン環などの飽和または不飽和の4~7員の複素環を挙げることができる。
 これらの炭素環または複素環は、更に置換基を有していてもよい。置換基としては、上述したB11およびBが表す置換基として例示したものが挙げられる。
Further, Ra, Rb and Rc may be linked to each other to form a carbon ring or a heterocycle.
Examples of the carbon ring include a saturated or unsaturated 4- to 7-membered carbon ring such as a cyclohexyl ring, a cyclopentyl ring, a cyclohexene ring, and a benzene ring.
Examples of the heterocycle include saturated or unsaturated 4- to 7-membered heterocycles such as a piperidine ring, a piperazine ring, a morpholine ring, a tetrahydrofuran ring, a furan ring, a thiophene ring, a pyridine ring, and a pyrazine ring. Can be done.
These carbocycles or heterocycles may further have substituents. Examples of the substituent include those exemplified as the substituent represented by the above-mentioned B 11 and B 2 .
 <式(C-4)>
 上記式(C-4)中、R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。
 また、Xは、O、S、または、NRを表し、Rは、水素原子または置換基を表す。
 また、Jは、水素原子、または、アルキル基を表す。
<Equation (C-4)>
In the above formula (C-4), R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or a substituent, respectively.
Further, X 3 represents O, S, or NR 5 , and R 5 represents a hydrogen atom or a substituent.
Further, J 3 represents a hydrogen atom or an alkyl group.
 ここで、上記式(C-4)中のR、R、R、RおよびRの一態様である置換基としては、上述したRa、RbおよびRcの一態様が表す置換基として例示したものが挙げられ、その好ましい範囲も同一である。
 また、上記式(C-4)中のXとしては、形成される光学異方性膜の逆波長分散性がより良好となる理由から、OまたはSであることが好ましく、Oであることが更に好ましい。
 また、上記式(C-4)中のJとしては、上記式(C-3)中のJと同様のものが挙げられる。
Here, as the substituent which is one aspect of R 1 , R 2 , R 3 , R 4 and R 5 in the above formula (C-4), the substituent represented by the above-mentioned Ra, Rb and Rc. The above-mentioned examples are given, and the preferable range thereof is also the same.
Further, the X 3 in the above formula (C-4) is preferably O or S, and is preferably O, for the reason that the inverse wavelength dispersibility of the formed optically anisotropic film becomes better. Is more preferable.
Moreover, as J 3 in the said formula (C-4), the same thing as J 2 in the said formula (C-3) can be mentioned.
 本発明においては、形成される光学異方性膜の逆波長分散性がより良好となる理由から、上記式(C-4)中のXがOを表し、RおよびRがアルキル基を表し、RおよびRが水素原子を表すことが好ましい。 In the present invention, X 3 in the above formula (C-4) represents O, and R 1 and R 2 are alkyl groups for the reason that the inverse wavelength dispersibility of the formed optically anisotropic film becomes better. It is preferable that R 3 and R 4 represent a hydrogen atom.
 上記式(1)中のnは、2~4の整数を表し、複数のCはそれぞれ同一であっても異なっていてもよい。
 本発明においては、形成される光学異方性膜の逆波長分散性がより良好となる理由から、上記式(1)中のnは、2または4であることが好ましく、2であることがより好ましい。
N in the above equation (1) represents an integer of 2 to 4, and the plurality of Cs may be the same or different.
In the present invention, n in the above formula (1) is preferably 2 or 4, and preferably 2 for the reason that the inverse wavelength dispersibility of the formed optically anisotropic film is better. More preferred.
 上記式(1)中のAcoreは、置換基(例えば、上述した置換基Eなど)を有していてもよい、単環、縮合環または環集合芳香族基である炭素数4~18のn+2価の基を表す。
 単環芳香族基を構成する単環の芳香族炭化水素環としては、ベンゼン環が挙げられ、単環芳香族基を構成する単環の芳香族複素環としては、フラン環、ピリジン環、ピリミジン環、ピラジン環等が挙げられる。
 縮合環芳香族基を構成する縮合環の芳香族炭化水素環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられ、縮合環芳香族基を構成する縮合環の芳香族複素環としては、キノリン環、アクリジン環、フェナントリジン環等が挙げられる。
 環集合とは、2環が共有原子を持たず、結合を介して連結している構造をいい、環集合芳香族基を構成する構造としては、単環および縮合環の芳香族炭化水素環ならびに単環および縮合環の芳香族複素環からなる群から選択される少なくとも2種の環が直接連結している構造が挙げられる。炭素原子数4~18の環集合芳香族基を構成する構造としては、例えば、ビフェニル、2-フェニルナフタレン、1-フェニルナフタレン等が挙げられる。
 これらのうち、ベンゼン環、ナフタレン環、ビフェニルであることが好ましく、複屈折性を向上させる点から、ビフェニルであることが特に好ましい。
A core in the above formula (1) may have a substituent (for example, the above-mentioned substituent E or the like), and is a monocyclic, condensed ring or ring-aggregated aromatic group having 4 to 18 carbon atoms. Represents an n + divalent group.
Examples of the monocyclic aromatic hydrocarbon ring constituting the monocyclic aromatic group include a benzene ring, and examples of the monocyclic aromatic heterocycle constituting the monocyclic aromatic group include a furan ring, a pyridine ring, and a pyrimidine. Rings, pyrazine rings and the like can be mentioned.
Examples of the aromatic hydrocarbon ring of the fused ring constituting the fused ring aromatic group include a naphthalene ring, an anthracene ring, and a phenanthrene ring, and examples of the aromatic heterocycle of the fused ring constituting the fused ring aromatic group include a naphthalene ring, an anthracene ring, and a phenanthrene ring. Examples thereof include a quinoline ring, an acridine ring, and a phenanthridine ring.
The ring assembly refers to a structure in which two rings do not have a covalent atom and are connected via a bond, and examples of the structure constituting the ring-aggregated aromatic group include aromatic hydrocarbon rings of monocyclic and fused rings. Examples thereof include structures in which at least two rings selected from the group consisting of aromatic heterocycles of monocyclic and fused rings are directly linked. Examples of the structure constituting the ring-assembled aromatic group having 4 to 18 carbon atoms include biphenyl, 2-phenylnaphthalene, 1-phenylnaphthalene and the like.
Of these, a benzene ring, a naphthalene ring, and biphenyl are preferable, and biphenyl is particularly preferable from the viewpoint of improving birefringence.
 本発明においては、化合物の合成が容易となる理由から、上記式(1)中の下記式(1-1)で表される部分構造が、下記式(1-1a)または下記式(1-1b)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
In the present invention, for the reason that the synthesis of the compound becomes easy, the partial structure represented by the following formula (1-1) in the above formula (1) is the following formula (1-1a) or the following formula (1-). The structure represented by 1b) is preferable.
Figure JPOXMLDOC01-appb-C000021
 上記式(1-1)、(1-1a)および(1-1b)中、*は、結合位置を表し、C、nおよびAcoreは、上記式(1)中のC、nおよびAcoreと同様である。
 また、上記式(1-1b)中、n1およびn2は、それぞれ独立に、0~2の整数を表す。ただし、n1およびn2の合計は、2~4の整数を表す。
In the above formulas (1-1), (1-1a) and (1-1b), * represents a binding position, and C, n and A core are C, n and A core in the above formula (1). Is similar to.
Further, in the above equation (1-1b), n1 and n2 each independently represent an integer of 0 to 2. However, the sum of n1 and n2 represents an integer of 2 to 4.
 上記式(1-1)で表される化合物としては、具体的には、例えば、下記式で表される化合物が挙げられる。なお、下記式中、*は、結合位置を表し、複数のCは、それぞれ同一であっても異なっていてもよく、C以外の置換基(例えば、上述した置換基Eなど)を有していてもよい。
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-I000023
Specific examples of the compound represented by the above formula (1-1) include compounds represented by the following formula. In the following formula, * represents a bonding position, and each of the plurality of Cs may be the same or different, and has a substituent other than C (for example, the above-mentioned substituent E). You may.
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-I000023
 上記式(1)中のL、L、LおよびLは、それぞれ独立に、単結合、または、-CO-、-O-、-S-、-C(=S)-、-CR1112-、-CR13=CR14-、-C≡C-、-NR15-、-N=CR16-、-N=N-、もしくは、これらの2つ以上の組み合わせからなる2価の連結基を表し、R11~R16は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~12のアルキル基を表す。
 なお、上記式(1)中のm1が2~4の整数を表す場合、複数のLはそれぞれ同一であっても異なっていてもよく、m2が2~4の整数を表す場合、複数のLはそれぞれ同一であっても異なっていてもよい。
L 1 , L 2 , L 3 and L 4 in the above formula (1) are independently single-bonded or -CO-, -O-, -S-, -C (= S)-,-, respectively. CR 11 R 12- , -CR 13 = CR 14- , -C≡C-, -NR 15- , -N = CR 16- , -N = N-, or a combination of two or more of these 2 Representing a valent linking group, R 11 to R 16 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 12 carbon atoms.
When m1 in the above equation (1) represents an integer of 2 to 4, the plurality of L3s may be the same or different, and when m2 represents an integer of 2 to 4, a plurality of L3s may be the same or different. L 4 may be the same or different from each other.
 LおよびLとしては、配向性、原料の入手容易さ、および、合成の容易さの観点から、単結合、または、-CO-、-O-、-CO-O-、-C(=S)O-、-CR1112-、-CR1112-CR1112-、-O-CR1112-、-CR1112-O-CR1112-、-CO-O-CR1112-、-O-CO-CR1112-、-CR1112-O-CO-CR1112-、-CR1112-CO-O-CR1112-、-NR15-CR1112-、および、-CO-NR15-を表すことが好ましい。
 また、LおよびLとしては、単結合、または、-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-O-CHCHCH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、および、-C≡C-を表すことが好ましい。
As L 1 and L 2 , from the viewpoint of orientation, availability of raw materials, and ease of synthesis, single bond or -CO-, -O-, -CO-O-, -C (=) S) O-, -CR 11 R 12- , -CR 11 R 12 -CR 11 R 12-, -O-CR 11 R 12-, -CR 11 R 12 -O - CR 11 R 12- , -CO- O-CR 11 R 12- , -O-CO-CR 11 R 12- , -CR 11 R 12 -O-CO-CR 11 R 12- , -CR 11 R 12 -CO-O-CR 11 R 12- , -NR 15 -CR 11 R 12- , and -CO-NR 15 -preferably.
Further, as L 1 and L 2 , a single bond, or -O-, -S-, -OCH 2- , -CH 2 O-, -CH 2 CH 2- , -CO-, -COO-,- OCO-, -CO-S-, -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -OCO-NH-, -NH-COO-, -NH- CO-NH-, -NH-O-, -O-NH-, -SCH 2- , -CH 2 S-, -CF 2 O-, -OCF 2- , -CF 2 S-, -SCF 2- , -CH = CH-COO-, -CH = CH-OCO-, -COO-CH = CH-, -OCO-CH = CH-, -COO-CH 2 CH 2- , -OCO-CH 2 CH 2- , -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, -COO-CH 2- , -OCO-CH 2- , -CH 2 -COO-, -CH 2 -OCO-, -O-CH 2 CH 2 CH 2 -OCO-, -CH = CH-, -N = N-, -CH = N-, -N = CH-, -CH = N-N = CH-, -CF = CF-, and , -C≡C- is preferably represented.
 LおよびLとしては、原料の入手容易さ、および、合成の容易さの観点から、-O-、-S-、-OCH-、-CHO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCOCH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、または、単結合を表すことが好ましく、-O-、-OCH-、-CHO-、-COO-、-OCO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、または、単結合を表すことがより好ましい。 As L 3 and L 4 , from the viewpoint of easy availability of raw materials and ease of synthesis, -O-, -S-, -OCH 2- , -CH 2 O-, -COO-, -OCO- , -CO-S-, -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -CH = CH-COO-, -CH = CH-OCO-,- COO-CH = CH-, -OCOCH = CH-, -COO-CH 2 CH 2- , -OCO-CH 2 CH 2- , -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, or , -O-, -OCH 2- , -CH 2 O-, -COO-, -OCO-, -CH = CH-COO-, -CH = CH-OCO-, -COO -CH = CH-, -OCO-CH = CH-, -COO-CH 2 CH 2- , -OCO-CH 2 CH 2- , -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, Alternatively, it is more preferable to represent a single bond.
 上記式(1)中のAおよびAは、それぞれ独立に、置換基(例えば、上述した置換基Eなど)を有していてもよい、シクロヘキサン-1,4-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、または、1,3-ジオキサン-2,5-ジイル基を表す。 A 1 and A 2 in the above formula (1) may independently have a substituent (for example, the above-mentioned substituent E or the like), cyclohexane-1,4-diyl group, cyclopentane-. 1,3-Diyl group, cycloheptane-1,3-diyl group, cycloheptane-1,4-diyl group, decahydronaphthalene-2,6-diyl group, or 1,3-dioxane-2,5- Represents a diyl group.
 これらの中でも、AおよびAは、形成される光吸収異方性膜の逆波長分散性をより向上させ、重合性組成物の配向性を向上させることが容易になる理由から、置換基(例えば、上述した置換基Eなど)を有していてもよい、シクロヘキサン-1,4-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘプタン-1,3-ジイル基、または、シクロヘプタン-1,4-ジイル基であることが好ましく、置換基(例えば、上述した置換基Eなど)を有していてもよい、トランス-シクロヘキサン-1,4-ジイル基であることがより好ましい。 Among these, A 1 and A 2 are substituents because it makes it easier to improve the reverse wavelength dispersibility of the formed light absorption anisotropic film and improve the orientation of the polymerizable composition. Cyclohexane-1,4-diyl group, cyclopentane-1,3-diyl group, cycloheptane-1,3-diyl group, or cyclo, which may have (eg, the substituent E described above). It is preferably a heptane-1,4-diyl group, more preferably a trans-cyclohexane-1,4-diyl group which may have a substituent (eg, the above-mentioned substituent E, etc.). ..
 上記式(1)中のAおよびAは、それぞれ独立に、置換基(例えば、上述した置換基Eなど)を有していてもよい、シクロヘキサン-1,4-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基、ベンゼン-1,4-ジイル基(1,4-フェニレン基)、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-2,7-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、または、1,3-ジオキサン-2,5-ジイル基を表す。
 なお、上記式(1)中のm1が2~4の整数を表す場合、複数のAはそれぞれ同一であっても異なっていてもよく、m2が2~4の整数を表す場合、複数のAはそれぞれ同一であっても異なっていてもよい。
A 3 and A 4 in the above formula (1) may independently have a substituent (for example, the above-mentioned substituent E, etc.), cyclohexane-1,4-diyl group, cyclopentane-. 1,3-Diyl group, cycloheptane-1,3-diyl group, cycloheptane-1,4-diyl group, benzene-1,4-diyl group (1,4-phenylene group), pyridine-2,5- Diyl group, pyrimidin-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-2,7-diyl group, naphthalene-1,4-diyl group, tetrahydronaphthalene-2,6-diyl group, deca Represents a hydronaphthalene-2,6-diyl group or a 1,3-dioxane-2,5-diyl group.
When m1 in the above equation (1) represents an integer of 2 to 4 , the plurality of A3s may be the same or different, and when m2 represents an integer of 2 to 4, a plurality of A3s may be the same or different. A4 may be the same or different from each other.
 上記式(1)中のAおよびAは、形成される光吸収異方性膜の逆波長分散性をより向上させ、重合性組成物の配向性を向上させることが容易になる理由から、ベンゼン-1,4-ジイル基、シクロヘキサン-1,4-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、または、1,3-ジオキサン-2,5-ジイル基であることが好ましい。
 これらのうち、形成される光吸収異方性膜の逆波長分散性を更に向上させ、重合性組成物の配向性をより向上させることが容易になる理由から、ベンゼン-1,4-ジイル基、ナフタレン-2,6-ジイル基、または、シクロヘキサン-1,4-ジイル基であることが好ましく、ベンゼン-1,4-ジイル基、または、シクロヘキサン-1,4-ジイル基であることがより好ましく、ベンゼン-1,4-ジイル基であることが更に好ましい。
The reason that A 3 and A 4 in the above formula (1) further improve the reverse wavelength dispersibility of the formed light absorption anisotropic film and facilitate the improvement of the orientation of the polymerizable composition. , Benzene-1,4-diyl group, cyclohexane-1,4-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-1, It is preferably a 4-diyl group, a tetrahydronaphthalene-2,6-diyl group, a decahydronaphthalene-2,6-diyl group, or a 1,3-dioxane-2,5-diyl group.
Of these, the benzene-1,4-diyl group is easy to further improve the inverse wavelength dispersibility of the formed light absorption anisotropic film and further improve the orientation of the polymerizable composition. , Naphthalene-2,6-diyl group or cyclohexane-1,4-diyl group is preferable, and benzene-1,4-diyl group or cyclohexane-1,4-diyl group is more preferable. It is preferably a benzene-1,4-diyl group, and more preferably a benzene-1,4-diyl group.
 上記式(1)中のmおよびmは、それぞれ独立に、0~4の整数を表す。ただし、m1が2~4の整数を表す場合、複数のLおよびAはそれぞれ同一であっても異なっていてもよく、m2が2~4の整数を表す場合、複数のLおよびAはそれぞれ同一であっても異なっていてもよい。
 本発明においては、逆波長分散性および配向性を重視する場合には、mおよびmの一方または両方が0~3の整数であることが好ましく、mおよびmの両方が0~2の整数であることがより好ましく、mおよびmの両方が0または1であることが更に好ましい。
In the above equation (1), m 1 and m 2 each independently represent an integer of 0 to 4. However, when m1 represents an integer of 2 to 4 , the plurality of L3 and A3 may be the same or different, respectively, and when m2 represents an integer of 2 to 4 , a plurality of L4 and A may be present. 4 may be the same or different from each other.
In the present invention, when emphasis is placed on reverse wavelength dispersibility and orientation, it is preferable that one or both of m 1 and m 2 are integers of 0 to 3, and both m 1 and m 2 are 0 to 3. It is more preferably an integer of 2, and even more preferably both m 1 and m 2 are 0 or 1.
 上記式(1)中のRおよびRは、それぞれ独立に、下記式(R-1)で表される基を表す。
 式(R-1):-L-Rsp1-Z
 式(R-1)中、Lは、-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-OC-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COOCHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-、または、単結合を表す。
R 1 and R 2 in the above formula (1) independently represent a group represented by the following formula (R-1).
Equation (R-1): -L 5 -R sp1 -Z 1
In formula (R-1), L 5 is -O-, -S-, -OCH 2- , -CH 2 O-, -CH 2 CH 2- , -CO-, -COO-, -OCO-, -CO-S-, -S-CO-, -OC-O-, -CO-NH-, -NH-CO-, -OCO-NH-, -NH-COO-, -NH-CO-NH-, -NH-O-, -O-NH-, -SCH 2- , -CH 2 S-, -CF 2 O-, -OCF 2- , -CF 2 S-, -SCF 2- , -CH = CH- COO-, -CH = CH-OCO-, -COO-CH = CH-, -OCO-CH = CH-, -COOCH 2 CH 2- , -OCO-CH 2 CH 2- , -CH 2 CH 2 -COO -, -CH 2 CH 2 -OCO-, -COO-CH 2- , -OCO-CH 2- , -CH 2 -COO-, -CH 2 -OCO-, -CH = CH-, -N = N- , -CH = N-, -N = CH-, -CH = NN = CH-, -CF = CF-, -C≡C-, or a single bond.
 上記式(R-1)中、Lとしては、原料の入手容易さ及び合成の容易さの観点から、各々独立して-O-、-S-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CHCH-COO-、-CHCH-OCO-、または、単結合を表すことが好ましく、-O-、-COO-、-OCO-、-O-CO-O-、または、単結合を表すことがより好ましい。 In the above formula (R-1), L5 is independently -O-, -S-, -COO-, -OCO- , and -CO from the viewpoint of easy availability of raw materials and easy synthesis. -S-, -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -CH 2 CH 2 -COO-, -CH 2 CH 2 -OCO-, or It preferably represents a single bond, more preferably -O-, -COO-, -OCO-, -O-CO-O-, or a single bond.
 上記式(R-1)中、Rsp1は、炭素数1~20のアルキレン基、または、単結合を表す。ただし、アルキレン基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、または、-C≡C-に置換されていてもよい。 In the above formula (R-1), R sp1 represents an alkylene group having 1 to 20 carbon atoms or a single bond. However, one -CH 2- or two or more non-adjacent -CH 2- constituting the alkylene group independently have -O-, -COO-, -OCO-, and -OCO-O-, respectively. , -CO-NH-, -NH-CO-, -CH = CH-, or -C≡C- may be substituted.
 上記式(R-1)中のRsp1としては、原料の入手容易さ及び合成の容易さの観点から、炭素数2~12のアルキレン基または単結合を表すことが好ましく、炭素数2~10のアルキレン基または単結合を表すことがより好ましく、炭素数2~8のアルキレン基を表すことが更に好ましく、炭素数4~8のアルキレン基を表すことが特に好ましい。ただし、これらのアルキレン基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、または、-C≡C-に置換されていてもよい。 The R sp1 in the above formula (R-1) preferably represents an alkylene group having 2 to 12 carbon atoms or a single bond, and has 2 to 10 carbon atoms, from the viewpoint of easy availability of raw materials and ease of synthesis. It is more preferable to represent an alkylene group or a single bond of the above, further preferably to represent an alkylene group having 2 to 8 carbon atoms, and particularly preferably to represent an alkylene group having 4 to 8 carbon atoms. However, one -CH 2- or two or more non-adjacent -CH 2- constituting these alkylene groups are independently -O-, -COO-, -OCO-, and -OCO-, respectively. It may be substituted with O-, -CO-NH-, -NH-CO-, -CH = CH-, or -C≡C-.
 上記式(R-1)中のRsp1としては、下記表1に示す基が挙げられる。 Examples of R sp1 in the above formula (R-1) include the groups shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 上記式(R-1)中、Zは水素原子、または、重合性基を表す。
 重合性基は、特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイルオキシ基またはメタクリロイルオキシ基を挙げることができる。この場合、重合速度はアクリロイルオキシ基が一般的に速いことが知られており、生産性向上の観点からアクリロイルオキシ基が好ましいが、メタクリロイルオキシ基も重合性基として同様に使用することができる。
 カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基、または、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、または、ビニルオキシ基が特に好ましい。
 特に好ましい重合性基の例としては、下記式(P-1)~(P-20)のいずれかで表される重合性基が挙げられる。なお、下記式中、*は、Rsp1との結合位置を示す。
In the above formula (R-1), Z 1 represents a hydrogen atom or a polymerizable group.
The polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
As the radically polymerizable group, a generally known radically polymerizable group can be used, and suitable examples thereof include an acryloyloxy group and a methacryloyloxy group. In this case, it is known that the acryloyloxy group is generally faster in terms of the polymerization rate, and the acryloyloxy group is preferable from the viewpoint of improving productivity, but the methacryloyloxy group can also be used as the polymerizable group in the same manner.
As the cationically polymerizable group, a generally known cationically polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiroorthoester group, and , Vinyloxy group and the like. Of these, an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is particularly preferable.
Examples of particularly preferable polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20). In the following formula, * indicates the binding position with R sp1 .
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 これらの重合性基のうち、重合方法として紫外線重合を行う場合には、上記式(P-1)、式(P-2)、式(P-5)、式(P-7)、式(P-8)、式(P-11)および式(P-12)のいずれかで表される重合性基が好ましく、上記式(P-1)、式(P-2)、式(P-5)および式(P-12)のいずれかで表される重合性基がより好ましく、上記式(P-1)または式(P-2)で表される重合性基が更に好ましく、上記式(P-1)で表される重合性基が特に好ましい。
 なお、上記式(1)中のZ以外に、-L-RspE-Zが存在し、Zが重合性官能基を表す場合には、Zは水素原子であることも好ましい形態である。
Among these polymerizable groups, when UV polymerization is performed as a polymerization method, the above formula (P-1), formula (P-2), formula (P-5), formula (P-7), formula (P-7), The polymerizable group represented by any of P-8), the formula (P-11) and the formula (P-12) is preferable, and the above formula (P-1), the formula (P-2) and the formula (P-) are preferable. The polymerizable group represented by any of 5) and the formula (P-12) is more preferable, and the polymerizable group represented by the above formula (P-1) or the above formula (P-2) is further preferable. The polymerizable group represented by (P-1) is particularly preferable.
In addition to Z 1 in the above formula (1), when -LE -R spE - ZE is present and ZE represents a polymerizable functional group, it is also preferable that Z 1 is a hydrogen atom. It is a form.
 上記式(R-1)で表される-L-Rsp1-Zとしては、下記表2~表4に記載する例が挙げられる。なお、下記表3および表4中、Zの欄に記載する番号は、上記式(P-1)~(P-20)で表される重合性基の番号である。 Examples of -L 5 -R sp1 -Z 1 represented by the above formula (R-1) include the examples shown in Tables 2 to 4 below. In Tables 3 and 4 below, the numbers listed in the column of Z 1 are the numbers of the polymerizable groups represented by the above formulas (P-1) to (P-20).
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 特定化合物としては、具体的には、例えば、下記式(1)~(136)で表される化合物が好適に挙げられ、具体的には、下記式(1)~(136)中のK(側鎖構造)として、下記表5~表11に示す側鎖構造を有する化合物がそれぞれ挙げられる。
 なお、下記表5~表11中、Kの側鎖構造に示される「*」は、芳香環との結合位置を表す。
 また、下記表5中のK-1-12などで表される側鎖構造において、それぞれアクリロイルオキシ基およびメタクリロイル基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、メチル基の位置が異なる位置異性体の混合物を表す。
 また、下記式(1)~(105)では、
 上記式(C-1)中のMが表す、-CH=CH-、-N=CH-、-CH=N-、または、-N=N-における、(E)/(Z)異性体;
 上記式(C-2)に含まれる下記構造;
Figure JPOXMLDOC01-appb-C000029
 上記式(C-3)に含まれる下記構造;
Figure JPOXMLDOC01-appb-C000030
 を区別せずに記載しているが、これらは、2種の回転異性体のいずれであってもよく、混合物であってもよい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-I000040

Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-I000044

Figure JPOXMLDOC01-appb-I000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050

Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-C000052

Figure JPOXMLDOC01-appb-I000053

Figure JPOXMLDOC01-appb-I000054

Figure JPOXMLDOC01-appb-I000055
Specific examples of the specific compound include compounds represented by the following formulas (1) to (136), and specifically, K (specifically, K (1) to (136) in the following formulas (1) to (136). Examples of the side chain structure) include compounds having the side chain structures shown in Tables 5 to 11 below.
In Tables 5 to 11 below, "*" shown in the side chain structure of K represents the bonding position with the aromatic ring.
Further, in the side chain structure represented by K-1-12 or the like in Table 5 below, the group adjacent to the acryloyloxy group and the methacryloyl group, respectively, represents a propylene group (a group in which a methyl group is replaced with an ethylene group). , Represents a mixture of positional isomers with different positions of methyl groups.
Further, in the following equations (1) to (105),
The (E) / (Z) isomer in -CH = CH-, -N = CH-, -CH = N-, or -N = N- represented by M in the above formula (C-1);
The following structure included in the above formula (C-2);
Figure JPOXMLDOC01-appb-C000029
The following structure included in the above formula (C-3);
Figure JPOXMLDOC01-appb-C000030
Although described without distinction, these may be either of the two rotational isomers or may be a mixture.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-I000040

Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-I000044

Figure JPOXMLDOC01-appb-I000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050

Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-C000052

Figure JPOXMLDOC01-appb-I000053

Figure JPOXMLDOC01-appb-I000054

Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 特定化合物としては、上述した通り、上記式(1)~(105)中のK(側鎖構造)として、上記表5~表11に示す側鎖構造を有する化合物がそれぞれ挙げられるが、なかでも、下記表12~表15に示す化合物が好適に挙げられる。 As the specific compound, as described above, as K (side chain structure) in the above formulas (1) to (105), compounds having the side chain structures shown in Tables 5 to 11 above can be mentioned, respectively. , The compounds shown in Tables 12 to 15 below are preferably mentioned.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 特に、特定化合物としては、以下に示す化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-I000076

Figure JPOXMLDOC01-appb-I000077

Figure JPOXMLDOC01-appb-I000078

Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080

Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082

Figure JPOXMLDOC01-appb-I000083
In particular, as the specific compound, the following compounds are preferably mentioned.
Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-I000076

Figure JPOXMLDOC01-appb-I000077

Figure JPOXMLDOC01-appb-I000078

Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080

Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082

Figure JPOXMLDOC01-appb-I000083
 特定化合物は、公知の方法により製造することが可能であり、例えば以下の方法で製造することができる。 The specific compound can be produced by a known method, for example, by the following method.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 例えば、Acoreがビフェニルであり、Lが-C(=O)O-であり、Lが-OC(=O)-である場合には、ビフェノール誘導体A-1と活性メチレン化合物A-2を脱水して縮合体A-3を合成したのち、シクロヘキシルカルボン酸誘導体A-4を用いてエステル化することで製造できる。
 エステル化反応の方法としては、例えば、カルボン酸誘導体A-4を塩化チオニルやオキザリルクロリドなどによって酸クロリド化する方法、メシルクロリドなどと塩基を作用させて混合酸無水物化したのち、縮合体A-3を塩基の存在下で作用させる方法などが挙げられる。または、縮合体A-3とカルボン酸誘導体A-4をカルボジイミドなどの縮合剤を用いて直接エステル化する方法が挙げられる。
For example, when A core is biphenyl, L 1 is -C (= O) O-, and L 2 is -OC (= O)-, the biphenol derivative A-1 and the active methylene compound A- It can be produced by dehydrating 2 to synthesize a condensate A-3 and then esterifying it with a cyclohexylcarboxylic acid derivative A-4.
As a method of esterification reaction, for example, a method of acid chlorideizing a carboxylic acid derivative A-4 with thionyl chloride or oxalyl chloride, a method of reacting a base with femaleyl lolide or the like to form a mixed acid anhydride, and then a condensate A. Examples thereof include a method of allowing -3 to act in the presence of a base. Alternatively, a method of directly esterifying the condensate A-3 and the carboxylic acid derivative A-4 using a condensing agent such as carbodiimide can be mentioned.
 ビフェノール誘導体A-1の製造方法としては、例えば、Jが水素原子の場合は、ビフェノールに対するダフ反応やフィルスマイヤ-反応で製造できる。 As a method for producing the biphenol derivative A-1, for example, when J 1 is a hydrogen atom, it can be produced by a duff reaction with a biphenol or a Philsmayer reaction.
 上記式(1)で示される特定化合物は、上記式(1)中のCで表される基を2~4個有しているため、配向すると大きな逆波長分散性を示す。そのため、上記式(1)で示される特定化合物を利用して光学異方性膜を作製することによって、異方性膜の波長分散性を所望の範囲に調整することができる。特に上記式(1)で示される特定化合物を用いて水平配向を形成し、これを固定したポジティブAプレートとすることにより、広帯域のλ/4波長板を得ることができる。 Since the specific compound represented by the above formula (1) has 2 to 4 groups represented by C in the above formula (1), it exhibits a large reverse wavelength dispersibility when oriented. Therefore, the wavelength dispersibility of the anisotropic film can be adjusted to a desired range by producing an optically anisotropic film using the specific compound represented by the above formula (1). In particular, a wide-band λ / 4 wave plate can be obtained by forming a horizontal orientation using the specific compound represented by the above formula (1) and forming it into a fixed positive A plate.
 また、上記式(1)で示される特定化合物は、Acoreに複屈折性の大きいビフェニル基の導入が可能になり、逆波長分散性を損なうことなく複屈折性が向上できる。これに由来して、上記式(1)で示される特定化合物を含む重合性組成物を用いて作製される光学異方性膜は、薄膜化が可能となる。従って、上記重合性組成物を利用して形成された光学異方性膜は、例えば、光学素子の構成要素である位相差板、偏光素子、選択反射膜、カラーフィルタ、反射防止膜、視野角補償膜、ホログラフィー、配向膜等、種々の用途に利用することができる。 Further, in the specific compound represented by the above formula (1), a biphenyl group having a large birefringence can be introduced into the A core , and the birefringence can be improved without impairing the reverse wavelength dispersibility. Derived from this, the optically anisotropic film produced by using the polymerizable composition containing the specific compound represented by the above formula (1) can be thinned. Therefore, the optically anisotropic film formed by using the above-mentioned polymerizable composition is, for example, a retardation plate, a polarizing element, a selective reflection film, a color filter, an antireflection film, and a viewing angle, which are constituent elements of the optical element. It can be used for various purposes such as compensation film, holography, and alignment film.
[重合性組成物]
 本発明の重合性組成物は、上述した本発明の化合物(特定化合物)を含有する重合性組成物である。
 本発明の重合性組成物は、上述した特定化合物の他に、重合性化合物、配向制御剤、任意の溶剤、添加剤等を含むことができる。特定化合物は、重合性組成物の全固形分質量の30~98質量%が好ましく、40~95質量%がより好ましい。
[Polymerizable composition]
The polymerizable composition of the present invention is a polymerizable composition containing the above-mentioned compound (specific compound) of the present invention.
The polymerizable composition of the present invention may contain a polymerizable compound, an orientation control agent, an arbitrary solvent, an additive and the like, in addition to the above-mentioned specific compound. The specific compound is preferably 30 to 98% by mass, more preferably 40 to 95% by mass, based on the total solid content mass of the polymerizable composition.
 〔重合性化合物〕
 重合性化合物は、液晶性の有無を問わないが、上述した特定化合物が液晶性を有していない場合は、重合性化合物の少なくとも1種は液晶性を有していることが好ましい。
 重合性化合物の添加により、重合性組成物の相転移温度や結晶性等の諸物性を制御することができる。
 また、重合性化合物は、上述した特定化合物と混合して重合性組成物として扱うため、上述した特定化合物と相溶性が高いことが好ましい。
 以下に、好適な重合性化合物について説明する。
[Polymerizable compound]
The polymerizable compound may or may not have liquid crystallinity, but when the above-mentioned specific compound does not have liquid crystallinity, it is preferable that at least one of the polymerizable compounds has liquid crystallinity.
By adding the polymerizable compound, various physical properties such as the phase transition temperature and crystallinity of the polymerizable composition can be controlled.
Further, since the polymerizable compound is mixed with the above-mentioned specific compound and treated as a polymerizable composition, it is preferable that the polymerizable compound has high compatibility with the above-mentioned specific compound.
Hereinafter, suitable polymerizable compounds will be described.
 <非液晶性多官能重合性化合物>
 重合性化合物としては、例えば、非液晶性多官能重合性化合物が好適に挙げられる。
 非液晶性多官能重合性化合物を重合性組成物中に添加することにより、上述した特定化合物が重合性基を有していない場合であっても、重合硬化によりバインダとして機能して特定化合物の配向状態を固定することができる。さらに、スメクチック相とする場合には、層間が非液晶性の多官能重合性化合物で連結されることになるため、層間の近接を抑止することができる。
 このような非液晶性多官能重合性化合物としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。
<Non-liquid crystal polyfunctional polymerizable compound>
As the polymerizable compound, for example, a non-liquid crystal polyfunctional polymerizable compound is preferably mentioned.
By adding a non-liquid polyfunctional polymerizable compound to the polymerizable composition, even when the above-mentioned specific compound does not have a polymerizable group, it functions as a binder by polymerization curing to obtain the specific compound. The orientation state can be fixed. Further, in the case of a smectic phase, the layers are linked by a non-liquid crystal polyfunctional polymerizable compound, so that the proximity between the layers can be suppressed.
Examples of such non-liquid polyfunctional polymerizable compounds include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth). ) Acrylate, Pentaerythritol Tri (meth) Acrylate, Trimethylol Propantri (Meta) Acrylate, Trimethylol Ethantri (Meta) Acrylate, Dipentaerythritol Tetra (Meta) Acrylate, Dipentaerythritol Penta (Meta) Acrylate, Dipentaerythritol Hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and derivatives thereof (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl). Esters, 1,4-divinylcyclohexanone), vinylsulfone (eg, divinylsulfone), acrylamide (eg, methylenebisacrylamide), methacrylicamide and the like can be mentioned.
 重合性組成物中における非液晶性多官能重合性化合物の含有量は、固形分濃度で0.1~40質量%であることが好ましく、0.1~30質量%であることがより好ましく、0.1~20質量%であることが特に好ましく、又は、1~20質量%であることが好ましく、5~20質量%であることがより好ましく、10~20質量%であることが特に好ましい。 The content of the non-liquid polyfunctional polymerizable compound in the polymerizable composition is preferably 0.1 to 40% by mass, more preferably 0.1 to 30% by mass in terms of solid content concentration. It is particularly preferably 0.1 to 20% by mass, preferably 1 to 20% by mass, more preferably 5 to 20% by mass, and particularly preferably 10 to 20% by mass. ..
 <液晶性重合性化合物>
 重合性化合物としては、例えば、重合性基を有する液晶化合物(液晶性重合性化合物)が好適に挙げられる。
 一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプに分類できる。更にそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。
 本発明においては、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物を用いるのが好ましく、棒状液晶化合物を用いるのがより好ましい。
<Liquid crystal polymerizable compound>
As the polymerizable compound, for example, a liquid crystal compound having a polymerizable group (liquid crystal polymerizable compound) is preferably mentioned.
Generally, liquid crystal compounds can be classified into rod-shaped type and disk-shaped type according to their shape. Furthermore, there are small molecule and high molecular types, respectively. A polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
In the present invention, any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and it is more preferable to use a rod-shaped liquid crystal compound.
 本発明においては、上述の液晶化合物の固定化のために、重合性基を有する液晶化合物を用いるが、液晶化合物が1分子中に重合性基を2以上有することが更に好ましい。なお、液晶化合物が2種類以上の混合物の場合には、少なくとも1種類の液晶化合物が1分子中に2以上の重合性基を有していることが好ましい。なお、液晶化合物が重合によって固定された後においては、もはや液晶性を示す必要はない。 In the present invention, a liquid crystal compound having a polymerizable group is used for immobilization of the above-mentioned liquid crystal compound, but it is more preferable that the liquid crystal compound has two or more polymerizable groups in one molecule. When the liquid crystal compound is a mixture of two or more kinds, it is preferable that at least one kind of liquid crystal compound has two or more polymerizable groups in one molecule. After the liquid crystal compound is fixed by polymerization, it is no longer necessary to exhibit liquid crystallinity.
 また、重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。 Further, the type of the polymerizable group is not particularly limited, a functional group capable of an addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group and the like are preferably mentioned, and a (meth) acryloyl group is more preferable.
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]や特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができるが、これらに限定されない。 As the rod-shaped liquid crystal compound, for example, those described in claim 1 of JP-A No. 11-513019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used, and discotics can be used. As the liquid crystal compound, for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 can be preferably used. However, it is not limited to these.
 また、本発明においては、上記液晶化合物として、逆波長分散性の液晶化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 また、逆波長分散性の液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、段落番号[0067]~[0073]に記載の化合物)、特開2016-053709号公報に記載の一般式(II)で表される化合物(特に、段落番号[0036]~[0043]に記載の化合物)、および、特開2016-081035公報に記載の一般式(1)で表される化合物(特に、段落番号[0043]~[0055]に記載の化合物)等が挙げられる。
Further, in the present invention, a liquid crystal compound having a reverse wavelength dispersibility can be used as the liquid crystal compound.
Here, as the liquid crystal compound having "reverse wavelength dispersibility" in the present specification, the in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced by using the liquid crystal compound is measured. In this case, it means that the Re value becomes equal or higher as the measurement wavelength becomes larger.
Further, the reverse wavelength dispersible liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersible film as described above, and is, for example, the general formula (1) described in JP-A-2010-084032. (In particular, the compound represented by paragraph numbers [0067] to [0073]) and the compound represented by the general formula (II) described in JP-A-2016-053709 (particularly, paragraph number [0036]. ] To [0043], and the compound represented by the general formula (1) described in JP-A-2016-081035 (particularly, the compound described in paragraph numbers [0043] to [0055]) and the like. Can be mentioned.
 〔重合開始剤〕
 本発明の重合性組成物は、重合開始剤を含有することが好ましい。
 重合開始剤は特に限定されず、重合反応の形式に応じて、熱重合開始剤および光重合開始剤が挙げられる。
 重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。
 光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、オキサジアゾール化合物(米国特許第4212970号明細書記載)、および、アシルフォスフィンオキシド化合物(特公昭63-040799号公報、特公平5-029234号公報、特開平10-095788号公報、および、特開平10-029997号公報記載)が挙げられる。
 また、重合開始剤としては、オキシム型の重合開始剤も好適に用いることができ、その具体例としては、国際公開第2019/017445号の段落[0045]~[0049]に記載された重合開始剤が挙げられる。
 重合性組成物中における、光重合開始剤の含有量は、上述した特定化合物(ただし、重合性基を有する場合に限る)および重合性化合物を合わせた全重合性化合物に対して、固形分濃度で0.01~20質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。
[Polymer initiator]
The polymerizable composition of the present invention preferably contains a polymerization initiator.
The polymerization initiator is not particularly limited, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator depending on the type of the polymerization reaction.
As the polymerization initiator, a photopolymerization initiator capable of initiating a polymerization reaction by irradiation with ultraviolet rays is preferable.
Examples of the photopolymerization initiator include α-carbonyl compounds (described in US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (described in US Pat. No. 2,448,828), and α-hydrogen-substituted fragrances. Group acidloin compounds (described in US Pat. No. 2,725,512), polynuclear quinone compounds (described in US Pat. Nos. 3,416127 and 2951758), combinations of triarylimidazole dimers and p-aminophenyl ketone (US patent). 3549365 (described in US Pat. No. 3,549,67), aclysine and phenazine compounds (Japanese Patent Laid-Open No. 60-105667, US Pat. No. 4,239,850), oxadiazole compounds (described in US Pat. No. 4,212,970), and acyl. Examples thereof include phosphine oxide compounds (described in Japanese Patent Publication No. 63-040799, Japanese Patent Application Laid-Open No. 5-209234, Japanese Patent Application Laid-Open No. 10-095788, and Japanese Patent Application Laid-Open No. 10-029997).
Further, as the polymerization initiator, an oxime-type polymerization initiator can also be preferably used, and specific examples thereof are described in paragraphs [0045] to [0049] of International Publication No. 2019/017445. Agents are mentioned.
The content of the photopolymerization initiator in the polymerizable composition is the solid content concentration with respect to the total polymerizable compound including the above-mentioned specific compound (provided that it has a polymerizable group) and the polymerizable compound. It is preferably 0.01 to 20% by mass, and more preferably 0.5 to 5% by mass.
 〔配向制御剤〕
 重合性組成物には、必要に応じて、配向制御剤を含有することができる。
 配向制御剤としては、例えば、低分子の配向制御剤や高分子の配向制御剤を用いることができる。低分子の配向制御剤としては、例えば、特開2002-20363号公報の段落0009~0083、特開2006-106662号公報の段落0111~0120や、特開2012-211306公報の段落0021-0029の記載を参酌することができ、この内容は本願明細書に組み込まれる。また、高分子の配向制御剤としては、例えば、特開2004-198511号公報の段落0021~0057の記載や、特開2006-106662号公報の段落0121~0167を参酌することができ、この内容は本願明細書に組み込まれる。
 配向制御剤の使用量は、重合性組成物中における固形分の0.01~10質量%であることが好ましく、0.05~5質量%であることがさらに好ましい。配向制御剤を用いることにより、例えば、本発明の特定化合物を膜の表面と並行に配向した水平配向状態とすることができる。
[Orientation control agent]
The polymerizable composition may contain an orientation control agent, if necessary.
As the orientation control agent, for example, a small molecule orientation control agent or a polymer orientation control agent can be used. Examples of the small molecule orientation control agent include paragraphs 0009 to 0083 of JP-A-2002-20363, paragraphs 0111 to 0120 of JP-A-2006-106662, and paragraphs 0021-0029 of JP-A-2012-211306. The description can be taken into account and this content is incorporated herein by reference. Further, as the polymer orientation control agent, for example, the description in paragraphs 0021 to 0057 of JP-A-2004-198511 and paragraphs 0121 to 0167 of JP-A-2006-106662 can be referred to, and the contents thereof. Is incorporated herein by reference.
The amount of the orientation control agent used is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the solid content in the polymerizable composition. By using the orientation control agent, for example, the specific compound of the present invention can be in a horizontally oriented state aligned in parallel with the surface of the film.
 〔添加剤〕
 上記以外に、重合性組成物に含有することができる添加剤の例としては、表面性状や表面形状を制御するための界面活性剤、液晶化合物の傾斜角を制御するための添加剤(配向助剤)、配向温度を低下させる添加剤(可塑剤)、その他機能性を付与するための薬剤等が挙げられ、適宜用いることができる。
〔Additive〕
In addition to the above, examples of additives that can be contained in the polymerizable composition include surfactants for controlling the surface texture and surface shape, and additives for controlling the inclination angle of the liquid crystal compound (orientation assistance). Agents), additives (plasticizers) that lower the orientation temperature, other agents that impart functionality, and the like, and can be used as appropriate.
 〔溶剤〕
 光学異方性膜の展開時の製造適性を改良するために、重合性組成物には、粘度調整等を目的として溶剤を加えることができる。用いることのできる溶剤としては製造適性を落とさない限り、特に限定はされないが、ケトン、エステル、エーテル、アルコール、アルカン、トルエン、クロロホルム、メチレンクロライドからなる群の少なくとも1種から選択されることが好ましく、ケトン、エステル、エーテル、アルコール、アルカンからなる群の少なくとも1種から選択されることがより好ましく、ケトン、エステル、エーテル、アルコール、からなる群の少なくとも1種から選択されることが特に好ましい。
 溶剤の使用量は、重合性組成物中の濃度として一般的には50~90質量%であるが、特に限定されない。
〔solvent〕
In order to improve the manufacturing aptitude of the optically anisotropic film at the time of development, a solvent can be added to the polymerizable composition for the purpose of adjusting the viscosity or the like. The solvent that can be used is not particularly limited as long as it does not reduce the manufacturing suitability, but it is preferably selected from at least one of the group consisting of ketones, esters, ethers, alcohols, alkanes, toluenes, chloroforms and methylene chlorides. It is more preferable to be selected from at least one of the group consisting of ketones, esters, ethers, alcohols and alkanes, and it is particularly preferable to be selected from at least one of the groups consisting of ketones, esters, ethers and alcohols.
The amount of the solvent used is generally 50 to 90% by mass as the concentration in the polymerizable composition, but is not particularly limited.
[光学異方性膜]
 本発明の光学異方性膜は、上述した本発明の重合性組成物を重合して得られる光学異方性膜である。
 また、本発明の光学異方性膜は、上述した本発明の化合物を用いているため、逆波長分散性に優れた光学異方性膜となる。具体的には、本発明の光学異方性膜は、下記式(III)を満たす光学異方性膜であり、下記式(IV)を満たす光学異方性膜であることが好ましい。
 0.50<Re(450)/Re(550)<0.95 ・・・(III)
 0.50<Re(450)/Re(550)<0.90 ・・・(IV)
 ここで、上記式(III)および(IV)中、Re(450)は、光学異方性膜の波長450nmにおける面内レターデーションを表し、Re(550)は、光学異方性膜の波長550nmにおける面内レターデーションを表す。なお、本明細書において、レターデーションの測定波長を明記していない場合は、測定波長は550nmとする。
 また、面内レターデーションの値は、AxoScan OPMF-1(オプトサイエンス社製)を用い、測定波長の光を用いて測定した値をいう。
 具体的には、AxoScan OPMF-1にて、平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
[Optically anisotropic film]
The optically anisotropic film of the present invention is an optically anisotropic film obtained by polymerizing the above-mentioned polymerizable composition of the present invention.
Further, since the optically anisotropic film of the present invention uses the above-mentioned compound of the present invention, it is an optically anisotropic film having excellent anti-wavelength dispersibility. Specifically, the optically anisotropic film of the present invention is preferably an optically anisotropic film satisfying the following formula (III), and is preferably an optically anisotropic film satisfying the following formula (IV).
0.50 <Re (450) / Re (550) <0.95 ... (III)
0.50 <Re (450) / Re (550) <0.90 ... (IV)
Here, in the above formulas (III) and (IV), Re (450) represents the in-plane retardation of the optically anisotropic film at a wavelength of 450 nm, and Re (550) represents the wavelength of the optically anisotropic film at a wavelength of 550 nm. Represents the in-plane lettering in. If the measurement wavelength of the retardation is not specified in the present specification, the measurement wavelength is 550 nm.
The in-plane retardation value is a value measured using light of a measurement wavelength using AxoScan OPMF-1 (manufactured by Optoscience).
Specifically, by inputting the average refractive index ((Nx + Ny + Nz) / 3) and the film thickness (d (μm)) in AxoScan OPMF-1.
Slow phase axial direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((nx + ny) /2-nz) × d
Is calculated.
Although R0 (λ) is displayed as a numerical value calculated by AxoScan OPMF-1, it means Re (λ).
 本発明の光学異方性膜は、ポジティブAプレートまたはポジティブCプレートであることが好ましく、ポジティブAプレートであることがより好ましい。 The optically anisotropic film of the present invention is preferably a positive A plate or a positive C plate, and more preferably a positive A plate.
 ここで、ポジティブAプレート(正のAプレート)とポジティブCプレート(正のCプレート)は以下のように定義される。
 フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ポジティブCプレートは式(C1)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ポジティブCプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(C1)  nz>nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。
 「実質的に同一」とは、ポジティブAプレートでは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。また、ポジティブCプレートでは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
Here, the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
The refractive index in the slow phase axial direction (the direction in which the refractive index in the plane is maximized) in the film plane is nx, the refractive index in the direction orthogonal to the slow phase axis in the plane in the plane is ny, and the refraction in the thickness direction. When the rate is nz, the positive A plate satisfies the relation of the formula (A1), and the positive C plate satisfies the relation of the formula (C1). The positive A plate shows a positive value for Rth, and the positive C plate shows a negative value for Rth.
Equation (A1) nx> ny≈nz
Equation (C1) nz> nx≈ny
In addition, the above-mentioned "≈" includes not only the case where both are completely the same but also the case where both are substantially the same.
“Substantially the same” means that in a positive A plate, for example, (ny-nz) × d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. It is included in "ny≈nz", and when (nx-nz) xd is -10 to 10 nm, preferably -5 to 5 nm, it is also included in "nx≈nz". Further, in the positive C plate, for example, when (nx-ny) × d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm, it is also included in “nx≈ny”.
 本発明の光学異方性膜がポジティブAプレートである場合、λ/4波長板として機能する観点から、Re(550)が100~180nmであることが好ましく、120~160nmであることがより好ましく、130~150nmであることが更に好ましく、130~140nmであること特に好ましい。
 ここで、「λ/4波長板」とは、λ/4機能を有する波長板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する課長板である。
When the optically anisotropic film of the present invention is a positive A plate, Re (550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, from the viewpoint of functioning as a λ / 4 wave plate. , 130 to 150 nm is more preferable, and 130 to 140 nm is particularly preferable.
Here, the "λ / 4 wave plate" is a wave plate having a λ / 4 function, and specifically, a linear polarization of a specific wavelength is converted into circular polarization (or a circular polarization is converted into linear polarization). It is a section manager board that has the function of
 〔光学異方性膜の作製方法〕
 本発明の光学異方性膜の作製方法は特に限定されず、例えば、上述した本発明の重合性組成物を展開し、加熱して上述した特定化合物の分子の長軸を配向させた後、重合性組成物を硬化させる方法などが挙げられる。
[Method for producing optically anisotropic film]
The method for producing the optically anisotropic film of the present invention is not particularly limited. For example, after developing the above-mentioned polymerizable composition of the present invention and heating it to orient the major axis of the molecule of the above-mentioned specific compound, the present invention is used. Examples thereof include a method of curing the polymerizable composition.
 また、本発明の光学異方性膜の作製方法においては、上述した本発明の重合性組成物の配向温度よりもガラス転移温度が高い支持体上に、重合性組成物を展開することが好ましい。 Further, in the method for producing an optically anisotropic film of the present invention, it is preferable to develop the polymerizable composition on a support having a glass transition temperature higher than the orientation temperature of the polymerizable composition of the present invention described above. ..
 なお、本発明の光学異方性膜の作製には、一般的な液晶化合物を用いて光学異方性膜を作製する方法と同様の方法を適用することができる。
 一般的な液晶化合物を用いて光学異方性膜を作製する方法としては、例えば、液晶化合物を含む組成物を空隙等に封入して熱、電界、圧力等で配向状態等を操作する方法、また、液晶化合物を含む重合性組成物を塗布液として支持体等に展開して配向処理を施した後、配向状態を固定するために液晶化合物そのもの、または組成物中の重合性成分を重合硬化させる方法が挙げられる。
In addition, the same method as the method for producing an optically anisotropic film using a general liquid crystal compound can be applied to the fabrication of the optically anisotropic film of the present invention.
As a method for producing an optically anisotropic film using a general liquid crystal compound, for example, a method in which a composition containing a liquid crystal compound is enclosed in a void or the like and the orientation state or the like is manipulated by heat, electric field, pressure or the like. Further, after the polymerizable composition containing the liquid crystal compound is developed as a coating liquid on a support or the like and subjected to alignment treatment, the liquid crystal compound itself or the polymerizable component in the composition is polymerized and cured in order to fix the alignment state. There is a way to make it.
 以下に、上述した本発明の重合性組成物を展開し、加熱して上述した特定化合物の分子の長軸を配向させた後、重合性組成物を硬化することにより、配向状態を固定化して光学異方性膜とする製造方法について説明する。 Hereinafter, the above-mentioned polymerizable composition of the present invention is developed and heated to orient the major axis of the molecule of the above-mentioned specific compound, and then the polymerizable composition is cured to fix the orientation state. A method for producing an optically anisotropic film will be described.
 <重合性組成物の展開>
 本発明の光学異方性膜の作製方法では、上記重合性組成物を展開し、加熱して上記本発明の特定化合物の分子の長軸を配向させた後、重合性組成物を硬化することにより、配向状態を固定化して光学異方性膜とする。
 重合性組成物の展開方法としては特に制限されないが、支持体上に重合性組成物を塗布(流延を含む)することにより実施することが好ましい。かかる方法において、用いる支持体は特に限定されないが、支持体上に展開された重合性組成物中の液晶化合物が配向状態を得るためには、配向させる工程で、本発明の特定化合物が配向状態を得るために必要な相転移温度、すなわち、配向温度以上となるように加熱するため、支持体も等しく熱せられることから、支持体としては、ガラス転移温度が本発明の液晶化合物の配向温度より高い支持体であることが好ましい。ガラス転移温度が配向温度より高い支持体であれば、配向時の加熱により、支持体が熱変形することを防ぐことができる。
<Development of polymerizable composition>
In the method for producing an optically anisotropic film of the present invention, the polymerizable composition is developed, heated to orient the major axis of the molecule of the specific compound of the present invention, and then cured. The orientation state is fixed to obtain an optically anisotropic film.
The method for developing the polymerizable composition is not particularly limited, but it is preferably carried out by applying (including casting) the polymerizable composition on the support. In such a method, the support used is not particularly limited, but in order to obtain the oriented state of the liquid crystal compound in the polymerizable composition developed on the support, the specific compound of the present invention is in the oriented state in the alignment step. Since the support is heated equally because it is heated to be equal to or higher than the phase transition temperature required for obtaining, that is, the orientation temperature, the glass transition temperature of the support is higher than the orientation temperature of the liquid crystal compound of the present invention. A high support is preferred. If the support has a glass transition temperature higher than the orientation temperature, it is possible to prevent the support from being thermally deformed by heating at the time of orientation.
 光学異方性膜を形成後、剥離して用いる仮支持体とする場合は、支持体には、剥離しやすい表面性状の材質を用いてもよい。かかる支持体としては、ガラスや易接着処理をしていないポリエステルフィルムなどを用いることができる。
 また、支持体上に光学異方性膜を形成したのち、そのまま後記する積層体として用いるような場合は、支持体としては、セルロース、環状オレフィン、アクリル、ポリカーボネート、ポリエステル、ポリビニルアルコールなど光学フィルム基板や、液晶セル基板や偏光子を好ましく用いることができる。
When the temporary support is to be peeled off after forming the optically anisotropic film, a material having a surface texture that is easily peeled off may be used for the support. As such a support, glass, a polyester film which has not been subjected to an easy-adhesion treatment, or the like can be used.
When an optically anisotropic film is formed on the support and then used as it is as a laminate to be described later, the support may be an optical film substrate such as cellulose, cyclic olefin, acrylic, polycarbonate, polyester, or polyvinyl alcohol. Alternatively, a liquid crystal cell substrate or a polarizing element can be preferably used.
 <液晶化合物分子の配向>
 本発明の光学異方性膜の作製方法では、支持体上等に展開された重合性組成物を、重合性組成物中の本発明の特定化合物の分子の長軸を所望の配向状態にする。ここで、配向状態とは、一般にネマチック相、スメクティック相といった液晶相の種類、及び、ツイスト配向、ハイブリッド配向、水平配向、垂直配向といった、表示にあたって必要な液晶分子の配向の双方が含まれる。前者は、一般に温度または圧力の変化による相転移により制御し、後者は、一般に、配向処理により制御される。
<Orientation of liquid crystal compound molecules>
In the method for producing an optically anisotropic film of the present invention, the polymerizable composition developed on a support or the like is brought into a desired orientation state with the major axis of the molecule of the specific compound of the present invention in the polymerizable composition. .. Here, the orientation state generally includes both types of liquid crystal phases such as nematic phase and smectic phase, and orientation of liquid crystal molecules necessary for display such as twist orientation, hybrid orientation, horizontal orientation, and vertical orientation. The former is generally controlled by a phase transition due to changes in temperature or pressure, and the latter is generally controlled by an orientation process.
 (配向処理)
 配向処理の方法としては、例えば、配向膜を利用して、液晶化合物を所望の方向に配向させる方法が一般的である。配向膜としては、ポリマー等の有機化合物からなるラビング処理膜や無機化合物の斜方蒸着膜、マイクログルーブを有する膜、あるいはω-トリコサン酸やジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチルの如き有機化合物のラングミュア・ブロジェット法によるLB膜を累積させた膜などがあげられるが、重合性組成物を展開させる積層工程を考えた場合は、ポリマー層の表面をラビング処理して形成されたものや、ポリマー層の表面を光配向処理して形成された光配向膜などが好ましい。なお、これらの配向膜の耐熱性については支持体で述べた特性と同じである。
(Orientation processing)
As a method of alignment treatment, for example, a method of orienting a liquid crystal compound in a desired direction by using an alignment film is common. As the alignment film, a rubbing-treated film made of an organic compound such as a polymer, an oblique vapor-deposited film of an inorganic compound, a film having microgrooves, or an organic compound such as ω-tricosanoic acid, dioctadecylmethylammonium chloride, or methyl stearylate. Examples include a film obtained by accumulating LB films by the Langmuir-Blogget method. However, when considering a laminating process for developing a polymerizable composition, a polymer layer formed by rubbing the surface of the polymer layer or a polymer is used. A photo-alignment film formed by photo-alignment treatment of the surface of the layer is preferable. The heat resistance of these alignment films is the same as that described for the support.
 ラビング処理は、ポリマー層の表面を紙や布で一定方向に数回こすることにより実施される。配向層に使用するポリマーの種類は、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-97377号公報、特開2005-99228号公報、及び特開2005-128503号公報記載の直交配向膜等を好ましく使用することができる。なお、本発明で言う直交配向膜とは、本発明の特定化合物の分子の長軸を、直交配向膜のラビング方向と実質的に直交するように配向させる配向膜を意味する。配向層の厚さは配向機能を提供できれば厚い必要はなく、0.01~5μmであることが好ましく、0.05~2μmであることがさらに好ましい。
 また、光配向性の素材に偏光又は非偏光を照射して配向膜とした、いわゆる光配向膜も用いることもできる。即ち、支持体上に、光配光材料を塗布して光配向膜を作製してもよい。偏光の照射は、光配向膜に対して、垂直方向又は斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
The rubbing treatment is carried out by rubbing the surface of the polymer layer with paper or cloth several times in a certain direction. The types of polymers used for the alignment layer are polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and JP-A-2005-99228. The orthogonal alignment film or the like described in JP-A-2005-128503 can be preferably used. The orthogonal alignment film referred to in the present invention means an alignment film in which the major axis of the molecule of the specific compound of the present invention is oriented substantially orthogonal to the rubbing direction of the orthogonal alignment film. The thickness of the alignment layer does not have to be thick as long as it can provide the alignment function, and is preferably 0.01 to 5 μm, more preferably 0.05 to 2 μm.
Further, a so-called photo-alignment film, which is obtained by irradiating a photo-alignment material with polarized light or non-polarization to form an alignment film, can also be used. That is, a light distribution material may be applied onto the support to form a photoalignment film. Irradiation of polarized light can be performed from a vertical direction or an oblique direction with respect to the photoalignment film, and irradiation of non-polarization can be performed from an oblique direction with respect to the photoalignment film.
 本発明に利用可能な光配向膜に用いられる光配向材料としては、多数の文献等に記載がある。本発明の光配向膜では、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミド及び/又はアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、特許第4162850号に記載の光架橋性ポリイミド、ポリアミド、又はエステル、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、WO2010/150748号公報、特開2013-177561号公報、特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物、クマリン化合物が好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、エステル、シンナメート化合物、カルコン化合物である。 The photo-alignment material used for the photo-alignment film that can be used in the present invention is described in many documents and the like. In the photoalignment film of the present invention, for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, JP-A-2007-121721, The azo compounds described in JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, Patent No. 3883848, and Patent No. 4151746, JP-A-2002. Aromatic ester compounds described in JP-A-229039, maleimide and / or alkenyl-substituted nadiimide compounds having photoorientation units described in JP-A-2002-265541 and JP-A-2002-317513, Patent No. 4205195, Photocrossable silane derivative described in Japanese Patent No. 4205198, JP-A-2003-520878, JP-A-2004-522220, Photocrossable polyimide, polyamide, or ester described in Japanese Patent No. 4162850, JP-A-9- The photodimerizable compound described in JP-A-118717, JP-A No. 10-506420, JP-A-2003-505561, WO2010 / 150748, JP-A-2013-177561, and JP-A-2014-12823. In particular, a cinnamate compound, a chalcone compound, and a coumarin compound are mentioned as preferable examples. Particularly preferred are an azo compound, a photocrosslinkable polyimide, a polyamide, an ester, a cinnamate compound, and a chalcone compound.
 また、配向膜の素材を選択することで、光学異方性膜形成用仮支持体から剥離したり、光学異方性膜のみ剥離させることができ、転写つまり剥離した光学異方性膜を貼合することで数μmの薄い光学異方性膜を提供することができる。さらに、直線偏光子に直接ラビング配向膜や光配向膜を塗布積層し、ラビング又は光配向処理して配向機能を付与する態様も好ましい。即ち、本発明の積層体は、直線偏光子を有し、上記直線偏光子の表面上に光配向膜又はラビング配向膜を有する積層体でもよい。 In addition, by selecting the material of the alignment film, it can be peeled off from the temporary support for forming the optically anisotropic film, or only the optically anisotropic film can be peeled off, and transfer, that is, the peeled optically anisotropic film is attached. By combining them, it is possible to provide a thin optically anisotropic film having a thickness of several μm. Further, it is also preferable that a rubbing alignment film or a photo-alignment film is directly applied and laminated on the linear polarizing element, and the rubbing or photo-alignment treatment is performed to impart an alignment function. That is, the laminate of the present invention may be a laminate having a linear polarizing element and having a light alignment film or a rubbing alignment film on the surface of the linear polarizing element.
 上記式(1)で表される本発明の特定化合物を水平配向させて得る光学異方性膜では、プレ傾斜角が低いほうが好ましい。光配向膜を配向膜として使用し、IPS方式に適用することで、正面の光漏れが低減された高いコントラストと、斜めの色味変化が低減された、良好な視野角依存性の両立が可能となるため、光配向膜を配向膜として使用する態様が好ましい。光配向膜では、光配向膜に対して、垂直方向又は斜め方向から偏光照射する工程、または、斜め方向から非偏光照射する工程により配向規制力を付与する態様が好ましい。斜め方向から照射する場合の斜め方向とは、光配向膜に対して、5度~45度の角度の方向が好ましく、10度~30度の角度の方向がより好ましい。照射強度としては、好ましくは200~2000mJ/cmの紫外線を照射すればよい。 In the optically anisotropic film obtained by horizontally orienting the specific compound of the present invention represented by the above formula (1), it is preferable that the pre-tilt angle is low. By using a photo-alignment film as an alignment film and applying it to the IPS method, it is possible to achieve both high contrast with reduced frontal light leakage and good viewing angle dependence with reduced oblique color change. Therefore, it is preferable to use the photoalignment film as the alignment film. In the photoalignment film, it is preferable to apply an orientation restricting force to the photoalignment film by a step of irradiating the photoalignment film with polarization from a vertical direction or an oblique direction or a step of irradiating the photoalignment film with unpolarized light from an oblique direction. When irradiating from an oblique direction, the oblique direction is preferably a direction at an angle of 5 to 45 degrees with respect to the photoalignment film, and more preferably a direction at an angle of 10 to 30 degrees. As the irradiation intensity, it is preferable to irradiate ultraviolet rays of 200 to 2000 mJ / cm 2 .
 なお、上記式(1)で表される本発明の特定化合物を垂直配向させて得る光学異方性膜では、垂直配向膜や、垂直配向剤を用いて所望の配向状態を得ることができる。垂直配向膜については特開2002-294240号公報の段落[0081]~[0082]、垂直配向剤については特開2006-106662号公報の段落[0083]~[0084]などを参照することができる。 In the optically anisotropic film obtained by vertically aligning the specific compound of the present invention represented by the above formula (1), a desired alignment state can be obtained by using a vertical alignment film or a vertical alignment agent. For the vertical alignment film, reference can be made to paragraphs [0083] to [2002] of JP-A-2002-294240, and for the vertical alignment agent, paragraphs [0083] to [0083] of JP-A-2006-106662 can be referred to. ..
(相転移の制御)
 既に述べたように、液晶化合物の液晶相は、一般に温度または圧力の変化により転移させることができる。リオトロピック性をもつ液晶の場合には、溶媒量によっても転移させることができる。本発明では、サーモトロピック性をもつ液晶がその後の配向状態を固定する操作を考慮して温度変化により相転移させることが好ましい。
 以降は水平配向のスメクチック相の状態を固定する場合を例にとって説明する。
(Control of phase transition)
As already mentioned, the liquid crystal phase of a liquid crystal compound can generally be transferred by changes in temperature or pressure. In the case of a liquid crystal having a lyotropic property, it can be transferred by the amount of the solvent. In the present invention, it is preferable that the liquid crystal having a thermotropic property undergoes a phase transition by a temperature change in consideration of the subsequent operation of fixing the orientation state.
Hereinafter, the case of fixing the state of the horizontally oriented smectic phase will be described as an example.
 液晶化合物がネマチック相を発現する温度領域は、液晶化合物がより秩序度の高いスメクチック相を発現する温度領域よりも高いことが一般的である。従って、液晶化合物がネマチック相を発現する温度領域まで液晶化合物を加熱し、次に、加熱温度を液晶化合物がスメクチック相を発現する温度領域まで低下させることにより、液晶化合物をネマチック相からスメクチック相に転移させることが好ましい。 The temperature range in which the liquid crystal compound expresses the nematic phase is generally higher than the temperature range in which the liquid crystal compound expresses the smectic phase with higher order. Therefore, the liquid crystal compound is changed from the nematic phase to the smectic phase by heating the liquid crystal compound to the temperature range in which the liquid crystal compound expresses the nematic phase and then lowering the heating temperature to the temperature range in which the liquid crystal compound expresses the smectic phase. It is preferable to transfer.
 本発明の重合性組成物の、スメクチック相からネマチック相に転移する温度は、160℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることが特に好ましい。上記のスメクチック相からネマチック相に転移する温度の下限値は特に限定されないが一般的には、20℃以上である。
 相転移温度は、低いほど支持体や配向層に用いる素材の耐熱性の観点での選択肢が広がるので好ましい。
The temperature at which the polymerizable composition of the present invention changes from the smectic phase to the nematic phase is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 140 ° C. or lower. The lower limit of the temperature for transitioning from the smectic phase to the nematic phase is not particularly limited, but is generally 20 ° C. or higher.
The lower the phase transition temperature is, the more options are available from the viewpoint of heat resistance of the material used for the support and the alignment layer, which is preferable.
 ここで、化合物のスメクチック相からネマチック相に転移する温度は、組成物の偏光顕微鏡観察により、容易に測定することができる。例えば、ネマチック相では、ネマチック相特有のシュリーレンテクスチャーが観測されるが、スメクチックA相では、フォーカルコニックファンテクスチャーに転移するため、温度を昇温または降温させながら、偏光顕微鏡でテクスチャーを観察することにより測定することができる。 Here, the temperature at which the compound changes from the smectic phase to the nematic phase can be easily measured by observing the composition with a polarizing microscope. For example, in the nematic phase, the Schlieren texture peculiar to the nematic phase is observed, but in the smectic A phase, it shifts to the focal conic fan texture, so by observing the texture with a polarizing microscope while raising or lowering the temperature. Can be measured.
 重合性組成物がネマチック相を発現する温度領域では、重合性組成物がモノドメインを形成するまで一定時間加熱する必要がある。加熱時間は、10秒間~20分間が好ましく、10秒間~10分間がさらに好ましく、10秒間~5分間が最も好ましい。
 重合性組成物がスメクチック相を発現する温度領域では、重合性組成物がスメクチック相を発現するまで一定時間加熱する必要がある。加熱時間は、10秒間~20分間が好ましく、10秒間~10分間がさらに好ましく、10秒間~5分間が最も好ましい。
In the temperature range where the polymerizable composition develops a nematic phase, it is necessary to heat for a certain period of time until the polymerizable composition forms a monodomain. The heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
In the temperature range where the polymerizable composition expresses the smectic phase, it is necessary to heat the polymerizable composition for a certain period of time until the polymerizable composition develops the smectic phase. The heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
 また、本発明の重合性組成物として、ネマチック相と同時に、より高次のスメクチック相も発現する重合性組成物を用いることにより、ネマチック相も通常のネマチック相とは異なり、光散乱成分が少なく、高いコントラストが実現できるネマチック相とできる。 Further, by using a polymerizable composition that expresses a higher-order smectic phase at the same time as the nematic phase as the polymerizable composition of the present invention, the nematic phase also has less light scattering components unlike the normal nematic phase. , It can be a nematic phase that can realize high contrast.
 したがって、本発明では、重合性組成物がネマチック相を発現する温度領域で加熱し、この温度領域でモノドメインを形成させた後、固定化することも好ましい態様である。かかる態様で作製された光学異方性膜は、通常のネマチック相しか発現しない重合性組成物から作製された光学異方性膜より格段に高いコントラストが得られることを発見した。
 重合性組成物がネマチック相を発現する温度領域では、重合性組成物がモノドメインを形成するまで一定時間加熱する必要がある。加熱時間は、10秒間~20分間が好ましく、10秒間~10分間がさらに好ましく、10秒間~5分間が最も好ましい。
Therefore, in the present invention, it is also a preferred embodiment to heat the polymerizable composition in a temperature range in which the nematic phase is expressed to form a monodomain in this temperature range, and then to immobilize the composition. It has been discovered that the optically anisotropic film produced in such an embodiment has a significantly higher contrast than the optically anisotropic film produced from a polymerizable composition that expresses only a normal nematic phase.
In the temperature range where the polymerizable composition develops a nematic phase, it is necessary to heat for a certain period of time until the polymerizable composition forms a monodomain. The heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
 また、温度が上昇するのに応じて、スメクチック相→ネマチック相→等方相の順に転移する組成物を用いる場合は、一旦、上記重合性組成物を、ネマチック相-等方相の相転移温度以上に加熱して、その後、所定の速度で、スメクチック相―ネマチック相の相転移温度またはスメクチック相―等方相の相転移温度以下に徐々に温度を低下することで、ネマチック相を経て、スメクチック相へ転移させることができる。低下後の温度は、スメクチック相-ネマチック相の相転移温度またはスメクチック相―等方相の相転移温度より10℃以上低いのが好ましい。冷却速度は1~100℃/分の範囲内で行うことが好ましく、5~50℃/分の範囲内であることが好ましい。冷却速度が速すぎると配向欠陥を生じてしまい、遅すぎると製造時間がかかる。 In addition, when using a composition that undergoes a transition in the order of smectic phase → nematic phase → isotropic phase as the temperature rises, the above polymerizable composition is once subjected to the phase transition temperature of the nematic phase-isotropic phase. After heating above, the temperature is gradually lowered below the phase transition temperature of the smectic phase-nematic phase or the phase transition temperature of the smectic phase-isotropic phase at a predetermined rate, thereby passing through the nematic phase and then smectic. It can be transferred to the phase. The temperature after the decrease is preferably 10 ° C. or more lower than the phase transition temperature of the smectic phase-nematic phase or the phase transition temperature of the smectic phase-isotropic phase. The cooling rate is preferably in the range of 1 to 100 ° C./min, and preferably in the range of 5 to 50 ° C./min. If the cooling rate is too fast, orientation defects will occur, and if it is too slow, manufacturing time will be long.
 また、本発明ではスメクチック相の1次構造を適度に離間させた状態で、液晶化合物分子を傾斜させて光学異方性膜の傾斜角を制御することもできる。
 液晶化合物の傾斜角を制御する手段としては、ラビング条件を制御した配向膜によりプレ傾斜角を付与する方法、および液晶層に傾斜角制御剤を添加することにより支持体側あるいは空気界面側の極角を制御する方法があり、併用することが好ましい。
 傾斜角制御剤は、一例としてフルオロ脂肪族基含有モノマーの共重合体をもちいることができ、芳香族縮合環官能基との共重合体、あるいはカルボキシル基、スルホ基またはホスホノキシ基もしくはその塩を含むモノマーとの共重合体を用いることが好ましい。また、複数の傾斜角制御剤を用いることにより、さらに精密かつ安定に制御可能となる。このような傾斜角制御剤としては、特開2008-257205号公報の段落0022~0063、特開2006-91732号公報の段落0017~0124の記載を参酌できる。
Further, in the present invention, the tilt angle of the optically anisotropic film can be controlled by tilting the liquid crystal compound molecule in a state where the primary structure of the smectic phase is appropriately separated.
As means for controlling the tilt angle of the liquid crystal compound, a method of imparting a pre-tilt angle by an alignment film whose rubbing conditions are controlled, and a polar angle on the support side or the air interface side by adding a tilt angle control agent to the liquid crystal layer. There is a method of controlling the above, and it is preferable to use them together.
The tilt angle control agent can use, for example, a copolymer of a fluoroaliphatic group-containing monomer, a polymer with an aromatic fused ring functional group, or a carboxyl group, a sulfo group, a phosphonoxy group, or a salt thereof. It is preferable to use a copolymer with the containing monomer. Further, by using a plurality of tilt angle control agents, more precise and stable control becomes possible. As such an inclination angle control agent, the description in paragraphs 0022 to 0063 of JP-A-2008-257205 and paragraphs 0017 to 0124 of JP-A-2006-91732 can be referred to.
 <配向状態の固定>
 配向状態の固定は、熱重合や活性エネルギー線による重合で行うことができ、その重合に適した重合性基や重合開始剤を適宜選択することで行うことができる。製造適性等を考慮すると紫外線照射による重合反応を好ましく用いることができる。紫外線の照射量が少ないと、未重合の重合性液晶や他の重合性化合物が残存し、光学特性の温度変化や、経時劣化の起きる原因となる。
 そのため、残存する重合性化合物の割合が5%以下になる様に照射条件を決めることが好ましく、その照射条件は重合性組成物の処方や光学異方性膜の膜厚にもよるが目安として200mJ/cm以上の照射量で行われることが好ましい。
<Fixing the orientation state>
The orientation state can be fixed by thermal polymerization or polymerization by an active energy ray, and can be carried out by appropriately selecting a polymerizable group or a polymerization initiator suitable for the polymerization. In consideration of manufacturing aptitude and the like, a polymerization reaction by irradiation with ultraviolet rays can be preferably used. When the irradiation amount of ultraviolet rays is small, unpolymerized polymerizable liquid crystal and other polymerizable compounds remain, which causes temperature changes in optical characteristics and deterioration over time.
Therefore, it is preferable to determine the irradiation conditions so that the ratio of the remaining polymerizable compound is 5% or less, and the irradiation conditions depend on the formulation of the polymerizable composition and the film thickness of the optically anisotropic film, but as a guide. It is preferable to carry out the irradiation at an irradiation amount of 200 mJ / cm 2 or more.
[光学フィルム]
 本発明の光学フィルムは、本発明の光学異方性膜を有する光学フィルムである。
 図1A、図1Bおよび図1C(以下、これらの図面を特に区別を要しない場合は「図1」と略す。)は、それぞれ本発明の光学フィルムの一例を示す模式的な断面図である。
 なお、図1は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致せず、図1に示す支持体、配向膜およびハードコート層は、いずれも任意の構成部材である。
 図1に示す光学フィルム10は、支持体16と、配向膜14と、光学異方性膜12とをこの順で有する。
 また、光学フィルム10は、図1Bに示すように、支持体16の配向膜14が設けられた側とは反対側にハードコート層18を有していてもよく、図1Cに示すように、光学異方性膜12の配向膜14が設けられた側とは反対側にハードコート層18を有していてもよい。
 以下、本発明の光学フィルムに用いられる種々の部材について詳細に説明する。
[Optical film]
The optical film of the present invention is an optical film having the optically anisotropic film of the present invention.
1A, 1B and 1C (hereinafter, these drawings are abbreviated as "FIG. 1" when no particular distinction is required) are schematic cross-sectional views showing an example of the optical film of the present invention, respectively.
Note that FIG. 1 is a schematic diagram, and the thickness relationship and positional relationship of each layer do not always match the actual ones, and the support, alignment film, and hardcoat layer shown in FIG. 1 all have an arbitrary configuration. It is a member.
The optical film 10 shown in FIG. 1 has a support 16, an alignment film 14, and an optically anisotropic film 12 in this order.
Further, as shown in FIG. 1B, the optical film 10 may have the hard coat layer 18 on the side opposite to the side where the alignment film 14 of the support 16 is provided, and as shown in FIG. 1C, the optical film 10 may have a hard coat layer 18. The hard coat layer 18 may be provided on the side of the optically anisotropic film 12 opposite to the side on which the alignment film 14 is provided.
Hereinafter, various members used in the optical film of the present invention will be described in detail.
 〔光学異方性膜〕
 本発明の光学フィルムが有する光学異方性膜は、上述した本発明の光学異方性膜である。
 本発明の光学フィルムにおいては、上記光学異方性膜の厚みについては特に限定されないが、0.1~10μmであるのが好ましく、0.5~5μmであるのがより好ましい。
[Optically anisotropic film]
The optically anisotropic film of the optical film of the present invention is the above-mentioned optically anisotropic film of the present invention.
In the optical film of the present invention, the thickness of the optically anisotropic film is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm.
 〔支持体〕
 本発明の光学フィルムは、上述したように、光学異方性膜を形成するための基材として支持体を有していてもよい。
 このような支持体は、透明であるのが好ましく、具体的には、光透過率が80%以上であるのが好ましい。
[Support]
As described above, the optical film of the present invention may have a support as a base material for forming an optically anisotropic film.
Such a support is preferably transparent, and specifically, the light transmittance is preferably 80% or more.
 このような支持体としては、例えば、ガラス基板やポリマーフィルムが挙げられ、ポリマーフィルムの材料としては、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体等のアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー;ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー;、塩化ビニル系ポリマー;ナイロン、芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 また、後述する偏光子がこのような支持体を兼ねる態様であってもよい。
Examples of such a support include a glass substrate and a polymer film, and examples of the polymer film material include a cellulose-based polymer; an acrylic-based polymer having an acrylic acid ester polymer such as polymethylmethacrylate and a lactone ring-containing polymer. Polymers; thermoplastic norbornene polymers; polycarbonate polymers; polyester polymers such as polyethylene terephthalate and polyethylene naphthalate; styrene polymers such as polystyrene and acrylonitrile / styrene copolymers (AS resin); polyethylene, polypropylene, ethylene / propylene Polyolefin-based polymers such as polymers; Vinyl chloride-based polymers; Amido-based polymers such as nylon and aromatic polyamides; Imid-based polymers; Examples thereof include vinylidene chloride-based polymers; vinyl alcohol-based polymers; vinyl butyral-based polymers; allylate-based polymers; polyoxymethylene-based polymers; epoxy-based polymers; or polymers in which these polymers are mixed.
Further, the stator described later may also serve as such a support.
 本発明においては、上記支持体の厚みについては特に限定されないが、5~60μmであるのが好ましく、5~30μmであるのがより好ましい。 In the present invention, the thickness of the support is not particularly limited, but is preferably 5 to 60 μm, more preferably 5 to 30 μm.
 〔配向膜〕
 本発明の光学フィルムは、上述した任意の支持体を有する場合、支持体と光学異方性膜との間に、配向膜を有しているのが好ましい。なお、上述した支持体が配向膜を兼ねる態様であってもよい。
[Alignment film]
When the optical film of the present invention has any of the above-mentioned supports, it is preferable that the optical film has an alignment film between the support and the optically anisotropic film. The support described above may also serve as an alignment film.
 配向膜は、一般的にはポリマーを主成分とする。配向膜用ポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。
 本発明において利用されるポリマー材料は、ポリビニルアルコール又はポリイミド、及びその誘導体が好ましい。特に変性又は未変性のポリビニルアルコールが好ましい。
 本発明に使用可能な配向膜については、例えば、国際公開第01/88574号の43頁24行~49頁8行に記載された配向膜;特許第3907735号公報の段落[0071]~[0095]に記載の変性ポリビニルアルコール;特開2012-155308号公報に記載された液晶配向剤により形成される液晶配向膜;等が挙げられる。
The alignment film is generally composed of a polymer as a main component. The polymer material for an alignment film has been described in a large number of documents, and a large number of commercially available products are available.
The polymer material used in the present invention is preferably polyvinyl alcohol or polyimide, and its derivatives. Particularly modified or unmodified polyvinyl alcohol is preferable.
For the alignment film that can be used in the present invention, for example, the alignment film described in International Publication No. 01/88574, page 43, lines 24 to 49, line 8; paragraphs [0071] to [00905] of Japanese Patent No. 3907735. ]. The modified polyvinyl alcohol described in [Japanese Patent Laid-Open No. 2012-155308; the liquid crystal alignment film formed by the liquid crystal alignment agent described in JP-A-2012-155308;
 本発明においては、配向膜の形成時に配向膜表面に接触しないことで面状悪化を防ぐことが可能となる理由から、配向膜としては光配向膜を利用することも好ましい。
 光配向膜としては特に限定はされないが、国際公開第2005/096041号の段落[0024]~[0043]に記載されたポリアミド化合物やポリイミド化合物などのポリマー材料;特開2012-155308号公報に記載された光配向性基を有する液晶配向剤により形成される液晶配向膜;Rolic Technologies社製の商品名LPP-JP265CPなどを用いることができる。
In the present invention, it is also preferable to use a photoalignment film as the alignment film because it is possible to prevent surface deterioration by not contacting the surface of the alignment film when the alignment film is formed.
The photoalignment film is not particularly limited, but is a polymer material such as a polyamide compound or a polyimide compound described in paragraphs [0024] to [0043] of International Publication No. 2005/096041; A liquid crystal alignment film formed by a liquid crystal alignment agent having a photo-oriented group; a trade name LPP-JP265CP manufactured by Polyimide Technologies, etc. can be used.
 また、本発明においては、上記配向膜の厚さは特に限定されないが、支持体に存在しうる表面凹凸を緩和して均一な膜厚の光学異方性膜を形成するという観点から、0.01~10μmであることが好ましく、0.01~1μmであることがより好ましく、0.01~0.5μmであることがさらに好ましい。 Further, in the present invention, the thickness of the alignment film is not particularly limited, but from the viewpoint of alleviating the surface irregularities that may exist on the support and forming an optically anisotropic film having a uniform film thickness, 0. It is preferably 01 to 10 μm, more preferably 0.01 to 1 μm, and even more preferably 0.01 to 0.5 μm.
 〔ハードコート層〕
 本発明の光学フィルムは、フィルムの物理的強度を付与するために、ハードコート層を有しているのが好ましい。具体的には、支持体の配向膜が設けられた側とは反対側にハードコート層を有していてもよく(図1B参照)、光学異方性膜の配向膜が設けられた側とは反対側にハードコート層を有していてもよい(図1C参照)。
 ハードコート層としては特開2009-98658号公報の段落[0190]~[0196]に記載のものを使用することができる。
[Hard coat layer]
The optical film of the present invention preferably has a hardcoat layer in order to impart physical strength to the film. Specifically, the hardcourt layer may be provided on the side opposite to the side where the alignment film of the support is provided (see FIG. 1B), and the side where the alignment film of the optically anisotropic film is provided. May have a hardcourt layer on the opposite side (see FIG. 1C).
As the hard coat layer, those described in paragraphs [0190] to [0196] of JP-A-2009-98658 can be used.
 〔他の光学異方性膜〕
 本発明の光学フィルムは、本発明の光学異方性膜とは別に、他の光学異方性膜を有していてもよい。
 すなわち、本発明の光学フィルムは、本発明の光学異方性膜と他の光学異方性膜との積層構造を有していてもよい。
 このような他の光学異方性膜は、上述した特定化合物を配合せず、上述した逆波長分散性液晶化合物または他の重合性化合物(特に、液晶化合物)を用いて得られる光学異方性膜であれば特に限定されない。
 ここで、一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプに分類できる。さらにそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)を用いるのが好ましい。2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、または棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。上述の液晶化合物の固定化のために、重合性基を有する棒状液晶化合物または円盤状液晶化合物を用いて形成することがより好ましく、液晶化合物が1分子中に重合性基を2以上有することがさらに好ましい。液晶化合物が二種類以上の混合物の場合には、少なくとも1種類の液晶化合物が1分子中に2以上の重合性基を有していることが好ましい。
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]や特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができるが、これらに限定されない。
[Other optically anisotropic membranes]
The optical film of the present invention may have another optically anisotropic film in addition to the optically anisotropic film of the present invention.
That is, the optical film of the present invention may have a laminated structure of the optically anisotropic film of the present invention and another optically anisotropic film.
Such other optically anisotropic films are optically anisotropic obtained by using the above-mentioned inverse wavelength dispersible liquid crystal compound or other polymerizable compound (particularly, liquid crystal compound) without blending the above-mentioned specific compound. If it is a film, it is not particularly limited.
Here, in general, liquid crystal compounds can be classified into a rod-shaped type and a disk-shaped type according to their shapes. In addition, there are small molecule and high molecular types, respectively. A polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound (disk-shaped liquid crystal compound). Two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of disk-shaped liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a disk-shaped liquid crystal compound may be used. For the immobilization of the above-mentioned liquid crystal compound, it is more preferable to form a rod-shaped liquid crystal compound having a polymerizable group or a disk-shaped liquid crystal compound, and the liquid crystal compound may have two or more polymerizable groups in one molecule. More preferred. When the liquid crystal compound is a mixture of two or more kinds, it is preferable that at least one kind of liquid crystal compound has two or more polymerizable groups in one molecule.
As the rod-shaped liquid crystal compound, for example, those described in claim 1 of JP-A No. 11-513019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used, and discotics can be used. As the liquid crystal compound, for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 can be preferably used. However, it is not limited to these.
 〔紫外線吸収剤〕
 本発明の光学フィルムは、外光(特に紫外線)の影響を考慮して、紫外線(UV)吸収剤を含むことが好ましい。
 紫外線吸収剤は、本発明の光学異方性膜に含有されてしてもよいし、本発明の光学フィルムを構成する光学異方性膜以外の部材に含有されていてもよい。光学異方性膜以外の部材としては、例えば、支持体が好適に挙げられる。
 紫外線吸収剤としては、紫外線吸収性を発現できる従来公知のものがいずれも使用できる。このような紫外線吸収剤のうち、紫外線吸収性が高く、画像表示装置で用いられる紫外線吸収能(紫外線カット能)を得る観点から、ベンゾトリアゾール系またはヒドロキシフェニルトリアジン系の紫外線吸収剤を用いることが好ましい。
 また、紫外線の吸収幅を広くするために、最大吸収波長の異なる紫外線吸収剤を2種以上併用することができる。
 紫外線吸収剤としては、具体的には、例えば、特開2012-18395公報の[0258]~[0259]段落に記載された化合物、特開2007-72163号公報の[0055]~[0105]段落に記載された化合物などが挙げられる。
 また、市販品として、Tinuvin400、Tinuvin405、Tinuvin460、Tinuvin477、Tinuvin479、および、Tinuvin1577(いずれもBASF社製)等を用いることができる。
[UV absorber]
The optical film of the present invention preferably contains an ultraviolet (UV) absorber in consideration of the influence of external light (particularly ultraviolet light).
The ultraviolet absorber may be contained in the optically anisotropic film of the present invention, or may be contained in a member other than the optically anisotropic film constituting the optical film of the present invention. As the member other than the optically anisotropic film, for example, a support is preferably mentioned.
As the ultraviolet absorber, any conventionally known agent capable of exhibiting ultraviolet absorption can be used. Among such ultraviolet absorbers, a benzotriazole-based or hydroxyphenyltriazine-based ultraviolet absorber may be used from the viewpoint of obtaining the ultraviolet absorbing ability (ultraviolet blocking ability) used in an image display device because of its high ultraviolet absorbing property. preferable.
Further, in order to widen the absorption range of ultraviolet rays, two or more kinds of ultraviolet absorbers having different maximum absorption wavelengths can be used in combination.
Specific examples of the ultraviolet absorber include the compounds described in paragraphs [0258] to [0259] of JP2012-18395, paragraphs [0055] to [0105] of JP2007-72163. Examples thereof include the compounds described in.
Further, as commercially available products, Tinuvin 400, Tinuvin 405, Tinuvin 460, Tinuvin 477, Tinuvin 479, Tinuvin 1577 (all manufactured by BASF) and the like can be used.
[偏光板]
 本発明の偏光板は、上述した本発明の光学フィルムと、偏光子とを有するものである。
 また、本発明の偏光板は、上述した本発明の光学異方性膜がλ/4波長板(ポジティブAプレート)である場合、円偏光板として用いることができる。
 また、本発明の偏光板は、上述した本発明の光学異方性膜がλ/4波長板(ポジティブAプレート)である場合、λ/4波長板の遅相軸と後述する偏光子の吸収軸とのなす角が30~60°であることが好ましく、40~50°であることがより好ましく、42~48°であることが更に好ましく、45°であることが特に好ましい。
 ここで、λ/4波長板の「遅相軸」は、λ/4波長板の面内において屈折率が最大となる方向を意味し、偏光子の「吸収軸」は、吸光度の最も高い方向を意味する。
[Polarizer]
The polarizing plate of the present invention has the above-mentioned optical film of the present invention and a polarizing element.
Further, the polarizing plate of the present invention can be used as a circular polarizing plate when the above-mentioned optically anisotropic film of the present invention is a λ / 4 wave plate (positive A plate).
Further, in the polarizing plate of the present invention, when the above-mentioned optically anisotropic film of the present invention is a λ / 4 wave plate (positive A plate), the slow axis of the λ / 4 wave plate and absorption of a splitter described later are absorbed. The angle formed with the shaft is preferably 30 to 60 °, more preferably 40 to 50 °, further preferably 42 to 48 °, and particularly preferably 45 °.
Here, the "slow-phase axis" of the λ / 4 wave plate means the direction in which the refractive index becomes maximum in the plane of the λ / 4 wave plate, and the "absorption axis" of the substituent means the direction in which the absorbance is highest. Means.
 〔偏光子〕
 本発明の偏光板が有する偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の吸収型偏光子および反射型偏光子を利用することができる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第4691205号公報、特許第4751481号公報、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子などが用いられる。
 なかでも、密着性がより優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー、特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子であることが好ましい。
[Polarizer]
The polarizing plate of the polarizing plate of the present invention is not particularly limited as long as it is a member having a function of converting light into a specific linear polarization, and conventionally known absorption-type and reflection-type splitters can be used. ..
As the absorption type polarizing element, an iodine-based polarizing element, a dye-based polarizing element using a dichroic dye, a polyene-based polarizing element, and the like are used. Iodine-based splitters and dye-based splitters include coated and stretched splitters, both of which can be applied, but polarized light produced by adsorbing iodine or a dichroic dye on polyvinyl alcohol and stretching it. Children are preferred.
Further, as a method for obtaining a polarizing element by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a substrate, Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 4691205, and Patent No. 5048120, Patent No. Japanese Patent No. 4751481 and Japanese Patent No. 4751486 can be mentioned, and known techniques relating to these substituents can also be preferably used.
As the reflective classifier, a splitter in which thin films having different birefringences are laminated, a wire grid type splitter, a carboxylator in which a cholesteric liquid crystal having a selective reflection region and a 1/4 wave plate are combined, and the like are used.
Among them, at least one selected from the group consisting of a polyvinyl alcohol-based resin (a polymer containing -CH2 -CHOH- as a repeating unit, particularly a polyvinyl alcohol and an ethylene-vinyl alcohol copolymer) in that the adhesion is more excellent. It is preferable that the polymer contains one).
 本発明においては、偏光子の厚みは特に限定されないが、1μm~60μmであるのが好ましく、2μm~30μmであるのがより好ましく、3μm~15μmであるのが更に好ましい。 In the present invention, the thickness of the polarizing element is not particularly limited, but is preferably 1 μm to 60 μm, more preferably 2 μm to 30 μm, and even more preferably 3 μm to 15 μm.
 〔粘着剤層〕
 本発明の偏光板は、本発明の光学フィルムにおける光学異方性膜と、偏光子との間に、粘着剤層が配置されていてもよい。
 光学異方性膜と偏光子との積層のために用いられる粘着剤層としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。本発明に用いることのできる粘着剤としては、例えば、ポリビニルアルコール系粘着剤が挙げられるが、これに限定されない。
[Adhesive layer]
In the polarizing plate of the present invention, an adhesive layer may be arranged between the optically anisotropic film in the optical film of the present invention and the polarizing element.
The pressure-sensitive adhesive layer used for laminating the optically anisotropic film and the stator is, for example, the ratio of the storage elastic modulus G'and the loss elastic modulus G'measured by a dynamic viscoelasticity measuring device (tan δ =). G "/ G') represents a substance having a value of 0.001 to 1.5, and includes so-called adhesives, substances that easily creep, and the like. Examples of the pressure-sensitive adhesive that can be used in the present invention include, but are not limited to, polyvinyl alcohol-based pressure-sensitive adhesives.
[画像表示装置]
 本発明の画像表示装置は、本発明の光学フィルムまたは本発明の偏光板を有する、画像表示装置である。
 本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、プラズマディスプレイパネル等が挙げられる。
 これらのうち、液晶セル、有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
[Image display device]
The image display device of the present invention is an image display device having the optical film of the present invention or the polarizing plate of the present invention.
The display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel.
Of these, a liquid crystal cell and an organic EL display panel are preferable, and a liquid crystal cell is more preferable. That is, the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element and an organic EL display device using an organic EL display panel as a display element, and the liquid crystal display device is preferable. More preferred.
 〔液晶表示装置〕
 本発明の画像表示装置の一例である液晶表示装置は、上述した本発明の偏光板と、液晶セルとを有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として本発明の偏光板を用いるのが好ましく、フロント側およびリア側の偏光板として本発明の偏光板を用いるのがより好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
[Liquid crystal display device]
The liquid crystal display device, which is an example of the image display device of the present invention, is a liquid crystal display device having the above-mentioned polarizing plate of the present invention and a liquid crystal cell.
In the present invention, among the polarizing plates provided on both sides of the liquid crystal cell, it is preferable to use the polarizing plate of the present invention as the polarizing plate on the front side, and the polarizing plate of the present invention as the polarizing plate on the front side and the rear side. Is more preferable to use.
The liquid crystal cells constituting the liquid crystal display device will be described in detail below.
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、FFS(Fringe-Field-Switching)モード、または、TN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)及び(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、及びPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、及び特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
<LCD cell>
The liquid crystal cell used in the liquid crystal display device is a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe-Field-Switching) mode, or a TN (Fringe-Field-Switching) mode. Twisted Nematic) mode is preferred, but is not limited to these.
In the liquid crystal cell in the TN mode, the rod-shaped liquid crystal molecules are substantially horizontally oriented when no voltage is applied, and are further twisted to 60 to 120 °. The TN mode liquid crystal cell is most often used as a color TFT liquid crystal display device, and has been described in many documents.
In the VA mode liquid crystal cell, the rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied. In the VA mode liquid crystal cell, (1) a VA mode liquid crystal cell in a narrow sense (1) in which rod-shaped liquid crystal molecules are oriented substantially vertically when no voltage is applied and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. 2-). 176625 (described in Japanese Patent Publication No. 176625), and (2) a liquid crystal cell (SID97, Voltage of technique. Papers (Proceedings) 28 (1997) 845 in which the VA mode is multi-domainized for expanding the viewing angle. ), (3) Liquid crystal cells in a mode (n-ASM mode) in which rod-shaped liquid crystal molecules are substantially vertically oriented when no voltage is applied and twisted and multi-domain oriented when a voltage is applied. (1998)) and (4) SURVIVAL mode liquid crystal cell (announced at LCD International 98). Further, it may be any of PVA (Patternized Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Stained Alignment). Details of these modes are described in Japanese Patent Application Laid-Open No. 2006-215326 and Japanese Patent Application Laid-Open No. 2008-538819.
In the IPS mode liquid crystal cell, the rod-shaped liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond in a plane by applying an electric field parallel to the substrate surface. In the IPS mode, the display is black when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are orthogonal to each other. Methods for reducing leakage light when displaying black in an oblique direction and improving the viewing angle by using an optical compensation sheet are described in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. It is disclosed in JP-A-11-133408, JP-A-11-305217, JP-A-10-307291, and the like.
 〔有機EL表示装置〕
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、偏光子と、本発明の光学異方性膜からなるλ/4板(ポジティブAプレート)と、有機EL表示パネルとをこの順で有する態様が好適に挙げられる。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
[Organic EL display device]
The organic EL display device, which is an example of the image display device of the present invention, includes, for example, a λ / 4 plate (positive A plate) made of a polarizing element, an optically anisotropic film of the present invention, and an organic EL from the viewing side. A mode having a display panel in this order is preferably mentioned.
Further, the organic EL display panel is a display panel configured by using an organic EL element formed by sandwiching an organic light emitting layer (organic electroluminescence layer) between electrodes (between a cathode and an anode). The configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
[合成例] [Composite example]
 〔側鎖の合成〕
Figure JPOXMLDOC01-appb-C000085
[Side chain synthesis]
Figure JPOXMLDOC01-appb-C000085
 上記式(CA-1)で表されるカルボン酸(CA-1)の合成は、国際公開第2019/017444号公報の[0092]~[0093]段落に記載された方法で行った。
 カルボン酸(CA-2)の合成は、特開2019-73496号公報の[0227]段落に記載された方法で行った。
 上記式(CA-3)で表されるカルボン酸(CA-3)の合成は、特開2016-081035号公報の[0108]~[0109]段落を参考に、[0122]~[0125]段落に記載された方法で行った。
 上記式(CA-4)で表されるカルボン酸(CA-4)は、国際公開第2019/017444号公報の[0092]~[0093]段落に記載された方法を参考に、4-メチルスルホニルオキシブチルアクリレートを、2-メチルスルホニルオキシエチルメタクリレートに変更した以外は同様の方法で合成した。
 上記式(CA-5)で表されるカルボン酸(CA-5)は、国際公開第2019/017444号公報の[0092]~[0093]段落に記載された方法を参考に、4,4’-ジシクロヘキサンジカルボン酸を、1,4-trans-シクロヘキサンジカルボン酸に変更した以外は同様の方法で合成した。
The synthesis of the carboxylic acid (CA-1) represented by the above formula (CA-1) was carried out by the method described in paragraphs [0092] to [00903] of International Publication No. 2019/017444.
The synthesis of the carboxylic acid (CA-2) was carried out by the method described in paragraph [0227] of JP-A-2019-73496A.
The synthesis of the carboxylic acid (CA-3) represented by the above formula (CA-3) is carried out in paragraphs [0122] to [0125] with reference to paragraphs [0108] to [0109] of JP-A-2016-081035. It was done by the method described in.
The carboxylic acid (CA-4) represented by the above formula (CA-4) is 4-methylsulfonyl with reference to the method described in paragraphs [0092] to [093] of International Publication No. 2019/017444. Oxybutyl acrylate was synthesized in the same manner except that it was changed to 2-methylsulfonyloxyethyl methacrylate.
The carboxylic acid (CA-5) represented by the above formula (CA-5) can be obtained in 4,4'with reference to the methods described in paragraphs [0092] to [00903] of International Publication No. 2019/017444. -Dicyclohexanedicarboxylic acid was synthesized in the same manner except that it was changed to 1,4-trans-cyclohexanedicarboxylic acid.
 〔コアの合成〕
Figure JPOXMLDOC01-appb-C000086
[Synthesis of core]
Figure JPOXMLDOC01-appb-C000086
 <中間体(S-1-b)の合成>
 上記スキーム中の中間体(S-1-b)の合成は、4、4’-ヒドロキシビフェニル(S-1-a)を原料として用い、特開2019-73496号公報の[0226]段落に記載された方法で行った。
<Synthesis of intermediate (S-1-b)>
The synthesis of the intermediate (S-1-b) in the above scheme uses 4,4'-hydroxybiphenyl (S-1-a) as a raw material and is described in paragraph [0226] of JP-A-2019-73496. Got the way it was done.
 <中間体(S-1-d)の合成>
 1,3-ジメチルー2-チオヒダントイン(S-1-c)155mg(0.997mmol)、中間体(S-1-b)115mg(0.475mmol)、トルエン50mLを室温にて混合し、ピペリジン140μL(1.42mmol)を添加したのちに、3時間加熱還流した。その後、室温まで冷却したのちに、析出した固体をろ取し、トルエンで洗浄することで、中間体(S-1-d)を210mg(0.425mmol)得た。
<Synthesis of intermediate (S-1-d)>
Mix 1,3-dimethyl-2-thiohydantoin (S-1-c) 155 mg (0.997 mmol), intermediate (S-1-b) 115 mg (0.475 mmol), and toluene 50 mL at room temperature, and mix 140 μL of piperidine. After adding (1.42 mmol), the mixture was heated under reflux for 3 hours. Then, after cooling to room temperature, the precipitated solid was collected by filtration and washed with toluene to obtain 210 mg (0.425 mmol) of the intermediate (S-1-d).
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 <中間体(S-8-d)の合成>
 3-メチルチアゾリジン-2、4-ジオン(S-8-c)131mg(0.997mmol)、中間体(S-1-b)115mg(0.475mmol)、トルエン50mLを室温にて混合し、ピペリジン140μL(1.42mmol)を添加したのちに、3時間加熱還流した。その後、室温まで冷却したのちに、析出した固体をろ取し、トルエンで洗浄することで、中間体(S-8-d)を189mg(0.404mmol)得た。
<Synthesis of intermediate (S-8-d)>
Mix 3-methylthiazolidine-2,4-dione (S-8-c) 131 mg (0.997 mmol), intermediate (S-1-b) 115 mg (0.475 mmol) and toluene 50 mL at room temperature and piperidine. After adding 140 μL (1.42 mmol), the mixture was heated under reflux for 3 hours. Then, after cooling to room temperature, the precipitated solid was collected by filtration and washed with toluene to obtain 189 mg (0.404 mmol) of the intermediate (S-8-d).
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 <中間体(S-9-d)の合成>
 7,7-ジエチル-1-メチル-6H-ピラゾロ[1,2-a][1,2,4]トリアジン-4,6,8(3H,7H)-トリオン(S-9-c)237mg(0.997mmol)、中間体(S-1-b)115mg(0.475mmol)、トルエン50mLを室温にて混合し、ピペリジン140μL(1.42mmol)を添加したのちに、3時間加熱還流した。その後、室温まで冷却したのちに、析出した固体をろ取し、トルエンで洗浄することで、中間体(S-9-d)を226mg(0.333mmol)得た。
<Synthesis of intermediate (S-9-d)>
7,7-diethyl-1-methyl-6H-pyrazolo [1,2-a] [1,2,4] triazine-4,6,8 (3H, 7H) -trione (S-9-c) 237 mg ( 0.997 mmol), 115 mg (0.475 mmol) of the intermediate (S-1-b), and 50 mL of toluene were mixed at room temperature, 140 μL (1.42 mmol) of piperidine was added, and then the mixture was heated under reflux for 3 hours. Then, after cooling to room temperature, the precipitated solid was collected by filtration and washed with toluene to obtain 226 mg (0.333 mmol) of the intermediate (S-9-d).
 〔化合物S-1の合成〕
 下記式で表される化合物S-1を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000089
[Synthesis of compound S-1]
Compound S-1 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000089
 カルボン酸(CA-1)231mg(0.607mmol)をN,N-ジメチルホルムアミド10mLを室温にて溶解させ、ここに、N,N-ジメチルアミノピリジン50mg(0.404mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド775mg(4.04mmol)を添加し、室温で攪拌し、溶解させた。
 ここに、中間体(S-1-d)100mg(0.202mmol)を添加し、室温にて6時間撹拌した。析出した固体をろ取し、メタノールで洗浄することで、化合物S-1を159mg(0.130mmol)得た。
 得られた化合物S-1のH-NMR(Nuclear Magnetic Resonance)データを以下に示す。
 HNMR(CDCl)δ(ppm)=8.46(d,J=2.0Hz,2H),7.70(dd,J=8.4,2.0Hz,2H),7.18(d,J=8.4Hz,2H),6.45(s,2H),6.41(dd,J=17.2,1.6Hz,2H),6.13(dd,J=17.2,10.4Hz,2H),5.84(dd,J=10.4,1.6Hz,2H),4.19(t,6.0Hz,4H),4.10(t,5.8Hz,4H),3.59(s,6H),3.36(s,6H),2.53-2.50(m,2H),2.26-2.14(m,6H),2.07-1.98(m,4H),1.90-1.73(m,16H),1.48-1.37(m,4H),1.17-1.00(m,16H).
 次いで、化合物S-1の2.9mgをクロロホルム(10mL)に溶解し、さらに1/10に希釈することにより溶液を得た。得られた溶液の紫外可視吸収スペクトル(UV-3100PC、島津製作所製)を測定したところ、吸収極大波長は377nmであった。
231 mg (0.607 mmol) of carboxylic acid (CA-1) was dissolved in 10 mL of N, N-dimethylformamide at room temperature, and N, N-dimethylaminopyridine 50 mg (0.404 mmol), 1- (3- (3-). Dimethylaminopropyl) -3-ethylcarbodiimide (775 mg, 4.04 mmol) was added and stirred at room temperature to dissolve.
To this, 100 mg (0.202 mmol) of the intermediate (S-1-d) was added, and the mixture was stirred at room temperature for 6 hours. The precipitated solid was collected by filtration and washed with methanol to obtain 159 mg (0.130 mmol) of compound S-1.
The 1 H-NMR (Nuclear Magnetic Resonance) data of the obtained compound S-1 is shown below.
1 1 HNMR (CDCl 3 ) δ (ppm) = 8.46 (d, J = 2.0Hz, 2H), 7.70 (dd, J = 8.4, 2.0Hz, 2H), 7.18 (d) , J = 8.4Hz, 2H), 6.45 (s, 2H), 6.41 (dd, J = 17.2, 1.6Hz, 2H), 6.13 (dd, J = 17.2) 10.4Hz, 2H), 5.84 (dd, J = 10.4, 1.6Hz, 2H), 4.19 (t, 6.0Hz, 4H), 4.10 (t, 5.8Hz, 4H) ), 3.59 (s, 6H), 3.36 (s, 6H), 2.53-2.50 (m, 2H), 2.26-2.14 (m, 6H), 2.07- 1.98 (m, 4H), 1.90-1.73 (m, 16H), 1.48-1.37 (m, 4H), 1.17-1.00 (m, 16H).
Then, 2.9 mg of compound S-1 was dissolved in chloroform (10 mL) and further diluted to 1/10 to obtain a solution. When the ultraviolet-visible absorption spectrum (UV-3100PC, manufactured by Shimadzu Corporation) of the obtained solution was measured, the absorption maximum wavelength was 377 nm.
 〔化合物S-2の合成〕
 下記式で表される化合物S-2を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000090
[Synthesis of compound S-2]
Compound S-2 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000090
 <中間体(S-2-d)の合成>
Figure JPOXMLDOC01-appb-C000091
<Synthesis of intermediate (S-2-d)>
Figure JPOXMLDOC01-appb-C000091
 中間体(S-2-b)の合成は、2,5-ジメトキシベンゼン-1,4-ジカルボキシアルデヒドを原料として用い、特開2019-120945号公報の[0242]段落に記載された方法で行った。
 中間体(S-2-d)は、中間体(S-1-b)を中間体(S-2-b)に変更した以外は中間体(S-1-d)の合成法と同様の方法で合成した。
The intermediate (S-2-b) is synthesized by using 2,5-dimethoxybenzene-1,4-dicarboxyaldehyde as a raw material and by the method described in paragraph [0242] of JP-A-2019-120945. gone.
The intermediate (S-2-d) is the same as the method for synthesizing the intermediate (S-1-d) except that the intermediate (S-1-b) is changed to the intermediate (S-2-b). Synthesized by the method.
 <化合物S-2の合成>
 中間体(S-1-d)に変えて中間体(S-2-d)を用いる他は、化合物S-1と同様にして、化合物S-2を合成した。化合物S-1と同様の方法で測定した吸収極大波長は410nmであった。
<Synthesis of compound S-2>
Compound S-2 was synthesized in the same manner as in Compound S-1, except that the intermediate (S-2-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 410 nm.
 〔化合物S-3の合成〕
 下記式で表される化合物S-3を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000092
[Synthesis of compound S-3]
Compound S-3 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000092
 <中間体(S-3-d)の合成>
Figure JPOXMLDOC01-appb-C000093
<Synthesis of intermediate (S-3-d)>
Figure JPOXMLDOC01-appb-C000093
 中間体(S-1-d)の合成における1,3-ジメチルー2-チオヒダントイン(S-1-c)の代わりに、1,3-ジメチルバルビツール酸(S-3-c)を用いることで、中間体(S-3-d)を合成した。 Substituting 1,3-dimethylbarbituric acid (S-3-c) for 1,3-dimethyl-2-thiohydantoin (S-1-c) in the synthesis of intermediate (S-1-d) In, the intermediate (S-3-d) was synthesized.
 <化合物S-3の合成>
 中間体(S-1-d)に変えて中間体(S-3-d)を用いる他は、化合物S-1と同様にして、化合物S-3を合成した。化合物S-1と同様の方法で測定した吸収極大波長は330nmであった。
<Synthesis of compound S-3>
Compound S-3 was synthesized in the same manner as in Compound S-1, except that the intermediate (S-3-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 330 nm.
 〔化合物S-4の合成〕
 下記式で表される化合物S-4を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000094
[Synthesis of compound S-4]
Compound S-4 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000094
 <中間体(S-4-d)の合成>
Figure JPOXMLDOC01-appb-C000095
<Synthesis of intermediate (S-4-d)>
Figure JPOXMLDOC01-appb-C000095
 中間体(S-1-d)の合成における1,3-ジメチルー2-チオヒダントイン(S-1-c)の代わりに、1,3-ジエチル-2-チオバルビツール酸(S-4-c)を用いることで、中間体(S-4-d)を合成した。 Instead of 1,3-dimethyl-2-thiohydantoin (S-1-c) in the synthesis of intermediate (S-1-d), 1,3-diethyl-2-thiobarbituric acid (S-4-c) ) Was used to synthesize an intermediate (S-4-d).
 <化合物S-4の合成>
 中間体(S-1-d)に変えて中間体(S-4-d)を用いる他は、化合物S-1と同様にして、化合物S-4を合成した。化合物S-1と同様の方法で測定した吸収極大波長は365nmであった。
<Synthesis of compound S-4>
Compound S-4 was synthesized in the same manner as in Compound S-1, except that the intermediate (S-4-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 365 nm.
 〔化合物S-5の合成〕
 下記式で表される化合物S-5を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000096
[Synthesis of compound S-5]
Compound S-5 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000096
 <中間体(S-5-d)の合成>
Figure JPOXMLDOC01-appb-C000097
<Synthesis of intermediate (S-5-d)>
Figure JPOXMLDOC01-appb-C000097
 中間体(S-1-d)の合成における1,3-ジメチルー2-チオヒダントイン(S-1-c)の代わりに、3-シアノ-1-エチル-6-ヒドロキシ-4-メチル-2-ピリドン(S-5-c)を用いることで、中間体(S-5-d)を合成した。 Instead of 1,3-dimethyl-2-thiohydantoin (S-1-c) in the synthesis of intermediate (S-1-d), 3-cyano-1-ethyl-6-hydroxy-4-methyl-2- An intermediate (S-5d) was synthesized by using pyridone (S-5-c).
 <化合物S-5の合成>
 中間体(S-1-d)に変えて中間体(S-5-d)を用いる他は、化合物S-1と同様にして、化合物S-5を合成した。化合物S-1と同様の方法で測定した吸収極大波長は355nmであった。
<Synthesis of compound S-5>
Compound S-5 was synthesized in the same manner as in Compound S-1, except that the intermediate (S-5-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 355 nm.
 〔化合物S-6の合成〕
 下記式で表される化合物S-6を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000098
[Synthesis of compound S-6]
Compound S-6 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000098
 <中間体(S-6-d)の合成>
Figure JPOXMLDOC01-appb-C000099
<Synthesis of intermediate (S-6-d)>
Figure JPOXMLDOC01-appb-C000099
 1,3-インダンジオン(S-6-c)64mg(0.43mmol)、中間体(S-1-b)50mg(0.21mmol)、トルエン5mLを室温にて混合し、ピペリジン60μL(0.61mmol)を添加したのちに、3時間加熱還流した。その後、室温まで冷却したのちに、析出した固体をろ取し、トルエンで洗浄することで、中間体(S-6-d)を70mg(0.14mmol)得た。 Mix 1,3-indandione (S-6-c) 64 mg (0.43 mmol), intermediate (S-1-b) 50 mg (0.21 mmol), and toluene 5 mL at room temperature, and mix 60 μL of piperidine (0. After adding 61 mmol), the mixture was heated under reflux for 3 hours. Then, after cooling to room temperature, the precipitated solid was collected by filtration and washed with toluene to obtain 70 mg (0.14 mmol) of the intermediate (S-6-d).
 <化合物S-6の合成>
 カルボン酸(CA-1)82mg(0.21mmol)をN,N-ジメチルホルムアミド4mLを室温にて溶解させ、ここに、N,N-ジメチルアミノピリジン17mg(0.14mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド88mg(0.46mmol)を添加し、室温で攪拌した。ここに、中間体(S-6-d)35mg(0.070mmol)を添加し、室温にて2時間撹拌した。析出した固体をろ取し、メタノールで洗浄することで、化合物S-6を24mg(0.020mmol)得た。化合物S-1と同様の方法で測定した吸収極大波長は341nmであった。
 得られた化合物S-6のH-NMRデータを以下に示す。
 HNMR(CDCl)δ(ppm)=9.37(d,J=2.2Hz,2H),8.10-7.98(m,8H),7.87-7.80(m,4H)7.34(d,J=8.4Hz,2H),6.42(dd,J=17.3,1.4Hz,2H),6.13(dd,J=17.3,10.4Hz,2H),5.84(dd,J=10.4,1.4Hz,2H),4.20(t,6.1Hz,4H),4.11(t,5.9Hz,4H),2.69-2.60(m,2H),2.35-2.19(m,6H),2.07-1.60(m,20H),1.49-1.36(m,4H),1.27-1.00(m,16H)
<Synthesis of compound S-6>
82 mg (0.21 mmol) of carboxylic acid (CA-1) was dissolved in 4 mL of N, N-dimethylformamide at room temperature, and N, N-dimethylaminopyridine 17 mg (0.14 mmol), 1- (3- (3-). 88 mg (0.46 mmol) of dimethylaminopropyl) -3-ethylcarbodiimide was added, and the mixture was stirred at room temperature. To this, 35 mg (0.070 mmol) of the intermediate (S-6-d) was added, and the mixture was stirred at room temperature for 2 hours. The precipitated solid was collected by filtration and washed with methanol to obtain 24 mg (0.020 mmol) of compound S-6. The absorption maximum wavelength measured by the same method as that of compound S-1 was 341 nm.
The 1 H-NMR data of the obtained compound S-6 is shown below.
1 1 HNMR (CDCl 3 ) δ (ppm) = 9.37 (d, J = 2.2Hz, 2H), 8.10-7.98 (m, 8H), 7.87-7.80 (m, 4H) ) 7.34 (d, J = 8.4Hz, 2H), 6.42 (dd, J = 17.3, 1.4Hz, 2H), 6.13 (dd, J = 17.3, 10.4Hz) , 2H), 5.84 (dd, J = 10.4, 1.4Hz, 2H), 4.20 (t, 6.1Hz, 4H), 4.11 (t, 5.9Hz, 4H), 2 .69-2.60 (m, 2H), 2.35-2.19 (m, 6H), 2.07-1.60 (m, 20H), 1.49-1.36 (m, 4H) , 1.27-1.00 (m, 16H)
 〔化合物S-7の合成〕
 下記式で表される化合物S-7を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000100
[Synthesis of compound S-7]
Compound S-7 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000100
 <中間体(S-7-d)の合成>
Figure JPOXMLDOC01-appb-C000101
<Synthesis of intermediate (S-7-d)>
Figure JPOXMLDOC01-appb-C000101
 中間体(S-1-d)のにおける1,3-ジメチルー2-チオヒダントイン(S-1-c)の代わりに、1,2-ジブチル-3,5-ピラゾリジンジオン(S-7-c)を用いることで、中間体(S-7-d)を合成した。 Instead of 1,3-dimethyl-2-thiohydantoin (S-1-c) in the intermediate (S-1-d), 1,2-dibutyl-3,5-pyrazolidinedione (S-7-) By using c), an intermediate (S-7-d) was synthesized.
 <化合物S-7の合成>
 中間体(S-1-d)に変えて中間体(S-7-d)を用い、中間体(CA-1)に変えて中間体(CA-2)を用いる他は、化合物S-1と同様にして、化合物S-7を合成した。化合物S-1と同様の方法で測定した吸収極大波長は322nmであった。
<Synthesis of compound S-7>
Compound S-1 except that the intermediate (S-7-d) is used instead of the intermediate (S-1-d) and the intermediate (CA-2) is used instead of the intermediate (CA-1). Compound S-7 was synthesized in the same manner as above. The absorption maximum wavelength measured by the same method as that of compound S-1 was 322 nm.
 〔化合物S-8の合成〕
 下記式で表される化合物S-8を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000102
[Synthesis of compound S-8]
Compound S-8 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000102
 <中間体(S-8-d)の合成>
Figure JPOXMLDOC01-appb-I000103
<Synthesis of intermediate (S-8-d)>
Figure JPOXMLDOC01-appb-I000103
 3-メチルチアゾリジン-2、4-ジオン(S-8-c)131mg(0.997mmol)、中間体(S-1-b)115mg(0.475mmol)、トルエン50mLを室温にて混合し、ピペリジン140μL(1.42mmol)を添加したのちに、3時間加熱還流した。その後、室温まで冷却したのちに、析出した固体をろ取し、トルエンで洗浄することで、中間体(S-8-d)を189mg(0.404mmol)得た。 Mix 3-methylthiazolidine-2,4-dione (S-8-c) 131 mg (0.997 mmol), intermediate (S-1-b) 115 mg (0.475 mmol) and toluene 50 mL at room temperature and piperidine. After adding 140 μL (1.42 mmol), the mixture was heated under reflux for 3 hours. Then, after cooling to room temperature, the precipitated solid was collected by filtration and washed with toluene to obtain 189 mg (0.404 mmol) of the intermediate (S-8-d).
 <化合物S-8の合成>
 中間体(S-1-d)に変えて中間体(S-8-d)を用いる他は、化合物S-1と同様にして、化合物S-8を合成した。化合物S-1と同様の方法で測定した吸収極大波長は354nmであった。
<Synthesis of compound S-8>
Compound S-8 was synthesized in the same manner as in Compound S-1, except that the intermediate (S-8-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 354 nm.
 〔化合物S-9の合成〕
 下記式で表される化合物S-9を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000104
[Synthesis of compound S-9]
Compound S-9 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 <中間体(S-9-d)の合成>
 7,7-ジエチル-1-メチル-6H-ピラゾロ[1,2-a][1,2,4]トリアジン-4,6,8(3H,7H)-トリオン(S-9-c)237mg(0.997mmol)、中間体(S-1-b)115mg(0.475mmol)、トルエン50mLを室温にて混合し、ピペリジン140μL(1.42mmol)を添加したのちに、3時間加熱還流した。その後、室温まで冷却したのちに、析出した固体をろ取し、トルエンで洗浄することで、中間体(S-9-d)を226mg(0.333mmol)得た。
<Synthesis of intermediate (S-9-d)>
7,7-diethyl-1-methyl-6H-pyrazolo [1,2-a] [1,2,4] triazine-4,6,8 (3H, 7H) -trione (S-9-c) 237 mg ( 0.997 mmol), 115 mg (0.475 mmol) of the intermediate (S-1-b), and 50 mL of toluene were mixed at room temperature, 140 μL (1.42 mmol) of piperidine was added, and then the mixture was heated under reflux for 3 hours. Then, after cooling to room temperature, the precipitated solid was collected by filtration and washed with toluene to obtain 226 mg (0.333 mmol) of the intermediate (S-9-d).
 <化合物S-9の合成>
 中間体(S-1-d)に変えて中間体(S-9-d)を用いる他は、化合物S-1と同様にして、化合物S-9を合成した。化合物S-1と同様の方法で測定した吸収極大波長は341nmであった。
<Synthesis of compound S-9>
Compound S-9 was synthesized in the same manner as in Compound S-1, except that the intermediate (S-9-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 341 nm.
 〔化合物S-10の合成〕
 下記式で表される化合物S-10を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000106
[Synthesis of compound S-10]
Compound S-10 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000106
 <化合物S-10の合成>
 中間体(S-1-d)に変えて下記中間体(S-10-d)を用いる他は、化合物S-1と同様にして、化合物S-10を合成した。化合物S-1と同様の方法で測定した吸収極大波長は322nmであった。
<Synthesis of compound S-10>
Compound S-10 was synthesized in the same manner as in Compound S-1, except that the following intermediate (S-10-d) was used instead of the intermediate (S-1-d). The absorption maximum wavelength measured by the same method as that of compound S-1 was 322 nm.
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 〔化合物S-1-2の合成〕
 下記式で表される化合物S-1-2を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000108
[Synthesis of compound S-1-2]
Compound S-1-2 represented by the following formula was synthesized by the method described below.
Figure JPOXMLDOC01-appb-C000108
 <化合物S-1-2の合成法>
 カルボン酸(CA-1)に変えてカルボン酸(CA-2)を用いる以外は、化合物S-1と同様にして、化合物S-1-2を合成した。
<Synthesis method of compound S-1-2>
Compound S-1-2 was synthesized in the same manner as in Compound S-1, except that the carboxylic acid (CA-2) was used instead of the carboxylic acid (CA-1).
 〔化合物S-1-3~S-1-5の合成〕
 下記式で表される化合物S-1-3~S-1-5を以下に記載する方法で合成した。
Figure JPOXMLDOC01-appb-C000109
[Synthesis of compounds S-1-3 to S-1-5]
The compounds S-1-3 to S-1-5 represented by the following formulas were synthesized by the methods described below.
Figure JPOXMLDOC01-appb-C000109
 <化合物S-1-3~S-1-5の合成>
 カルボン酸(CA-1)に変えてカルボン酸(CA-3)~カルボン酸(CA-5)を用いる以外は、化合物S-1と同様にして、化合物S-1-3~S-1-5を合成した。
<Synthesis of compounds S-1-3 to S-1-5>
Compounds S-1-3 to S-1- are the same as those of compound S-1, except that carboxylic acid (CA-3) to carboxylic acid (CA-5) are used instead of carboxylic acid (CA-1). 5 was synthesized.
[実施例1]
 〔光学フィルムの作製〕
 下記の組成を有する重合性組成物を調製し、ラビング処理されたポリイミド配向膜(日産化学工業(株))製SE-130)付ガラス基板にスピンコートにより塗布した。
 塗膜を180℃で配向処理し、液晶層を形成した。
[Example 1]
[Manufacturing of optical film]
A polymerizable composition having the following composition was prepared and applied to a glass substrate with a rubbing-treated polyimide alignment film (SE-130 manufactured by Nissan Chemical Industries, Ltd.) by spin coating.
The coating film was oriented at 180 ° C. to form a liquid crystal layer.
―――――――――――――――――――――――――――――――――
重合性組成物
―――――――――――――――――――――――――――――――――
・下記重合性液晶化合物II-1          12.00質量部
・下記特定化合物S-1               3.00質量部
・下記含フッ素化合物A               0.12質量部
・クロロホルム                  35.00質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Polymerizable composition ――――――――――――――――――――――――――――――――――
-The following polymerizable liquid crystal compound II-1 12.00 parts by mass-The following specific compound S-1 3.00 parts by mass-The following fluorine-containing compound A 0.12 parts by mass-Chloroform 35.00 parts by mass ―――――― ―――――――――――――――――――――――――――
 重合性液晶化合物II-1
Figure JPOXMLDOC01-appb-C000110
Polymerizable liquid crystal compound II-1
Figure JPOXMLDOC01-appb-C000110
 特定化合物S-1
Figure JPOXMLDOC01-appb-C000111
Specific compound S-1
Figure JPOXMLDOC01-appb-C000111
 含フッ素化合物A
Figure JPOXMLDOC01-appb-C000112
Fluorine-containing compound A
Figure JPOXMLDOC01-appb-C000112
 <レターデーション>
 作製した光学フィルムについて、Axo Scan(OPMF-1、オプトサイエンス社製)を用いて、波長450nmのレターデーション値(Re(450))と、波長550nmのレターデーション値(Re(550))とを測定し、Re(450)/Re(550)を算出したところ、Re(450)は56.2nm、Re(550)は70.3nm、Re(450)/Re(550)=0.80であった。
<Letteration>
With respect to the produced optical film, a retardation value (Re (450)) having a wavelength of 450 nm and a retardation value (Re (550)) having a wavelength of 550 nm were obtained using Axo Scan (OPMF-1, manufactured by Optoscience). When it was measured and Re (450) / Re (550) was calculated, Re (450) was 56.2 nm, Re (550) was 70.3 nm, and Re (450) / Re (550) = 0.80. rice field.
[比較例1]
 特定化合物S-1を下記化合物R-1に変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。なお、化合物R-1は、特開2018-87152号公報の段落[0163]~[0168]に記載の合成方法にしたがって合成した。
 得られた光学フィルムについても、波長450nmのレターデーション値(Re(450))と、波長550nmのレターデーション値(Re(550))とを測定し、Re(450)/Re(550)を算出したところ、Re(450)は51.0nm、Re(550)は52.1nm、Re(450)/Re(550)=0.98であった。
[Comparative Example 1]
An optical film was produced by the same method as in Example 1 except that the specific compound S-1 was changed to the following compound R-1. Compound R-1 was synthesized according to the synthesis method described in paragraphs [0163] to [0168] of JP-A-2018-87152.
For the obtained optical film, the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm are measured, and Re (450) / Re (550) is calculated. As a result, Re (450) was 51.0 nm, Re (550) was 52.1 nm, and Re (450) / Re (550) = 0.98.
 化合物R-1
Figure JPOXMLDOC01-appb-C000113
Compound R-1
Figure JPOXMLDOC01-appb-C000113
 実施例1および比較例1の結果から、特定化合物を配合しない場合は、形成される光学異方性膜の逆波長分散性が劣ることが分かった(比較例1)。
 これに対し、特定化合物を配合した場合は、逆波長分散性に優れた光学異方性膜を形成できることが分かった(実施例1)。
From the results of Example 1 and Comparative Example 1, it was found that the inverse wavelength dispersibility of the formed optically anisotropic film was inferior when the specific compound was not blended (Comparative Example 1).
On the other hand, it was found that when a specific compound was blended, an optically anisotropic film having excellent reverse wavelength dispersibility could be formed (Example 1).
[実施例2~10]
 特定化合物を下記表16に示す化合物に変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。
 また、作製した光学異方性膜についても、波長450nmのレターデーション値(Re(450))と、波長550nmのレターデーション値(Re(550))とを測定し、Re(450)/Re(550)を算出した。波長分散性は下記評価基準に従って評価した。これらの結果を下記表16に示す。
[Examples 2 to 10]
An optical film was produced in the same manner as in Example 1 except that the specific compound was changed to the compound shown in Table 16 below.
Further, with respect to the produced optically anisotropic film, the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm were measured, and Re (450) / Re ( 550) was calculated. The wavelength dispersibility was evaluated according to the following evaluation criteria. These results are shown in Table 16 below.
(波長分散性の評価基準)
 波長分散性 x=Re(450)/Re(550)
 A:     x<0.85
 B:0.85≦x<0.90
 C:0.90≦x<0.95 
 D:0.95≦x
(Evaluation criteria for wavelength dispersibility)
Wavelength dispersibility x = Re (450) / Re (550)
A: x <0.85
B: 0.85 ≤ x <0.90
C: 0.90≤x <0.95
D: 0.95 ≤ x
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
 上記表16に示す結果から、他の特定化合物を配合した場合は、実施例1と同様、逆波長分散性に優れた光学異方性膜を形成できることが分かった(実施例2~10)。 From the results shown in Table 16 above, it was found that when other specific compounds were blended, an optically anisotropic film having excellent reverse wavelength dispersibility could be formed as in Example 1 (Examples 2 to 10).
[実施例11]
 〔光学フィルムの作製〕
 下記の組成を有する重合性組成物(光学異方性膜用塗布液)を調製し、ラビング処理されたポリイミド配向膜(日産化学工業(株))製SE-150)付ガラス基板にスピンコートにより塗布した。塗膜をホットプレート上で加熱、配向処理し、液晶層を形成した後。降温後、1000mJ/cmの紫外線照射による配向固定化を行い、光学異方性膜を形成し、波長分散測定用の光学フィルムを得た。
―――――――――――――――――――――――――――――――――
光学異方性層膜塗布液
―――――――――――――――――――――――――――――――――
・重合性液晶化合物II-1            15.00質量部
・特定化合物S-7                 3.00質量部
・光重合開始剤(イルガキュア819、BASF社製) 0.45質量部
・含フッ素化合物A                   0.12質量部
・クロロホルム                  35.00質量部
―――――――――――――――――――――――――――――――――
[Example 11]
[Manufacturing of optical film]
A polymerizable composition (coating liquid for an optically anisotropic film) having the following composition was prepared, and a glass substrate with a polyimide alignment film (SE-150 manufactured by Nissan Chemical Industry Co., Ltd.) subjected to a rubbing treatment was spin-coated. Applied. After the coating film is heated and oriented on a hot plate to form a liquid crystal layer. After the temperature was lowered, the orientation was fixed by irradiation with ultraviolet rays of 1000 mJ / cm 2 , an optically anisotropic film was formed, and an optical film for wavelength dispersion measurement was obtained.
―――――――――――――――――――――――――――――――――
Optically anisotropic layer film coating liquid ――――――――――――――――――――――――――――――――――
-Polymerizable liquid crystal compound II-1 15.00 parts by mass-Specific compound S-7 3.00 parts by mass-Photopolymerization initiator (Irgacure 819, manufactured by BASF) 0.45 parts by mass-Fluorine-containing compound A 0.12 Parts by mass / chloroform 35.00 parts by mass ――――――――――――――――――――――――――――――――――
 このようにして作製した光学異方性膜について、波長450nmのレターデーション値(Re(450))と、波長550nmのレターデーション値(Re(550))とを測定し、Re(450)/Re(550)を算出した。波長分散性は実施例2~10と同様の評価基準に従って評価し、評価Bであった。このことから、実施例11においても逆波長分散性に優れた光学異方性膜を形成できることが分かった。 With respect to the optically anisotropic film thus produced, the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm were measured, and Re (450) / Re. (550) was calculated. The wavelength dispersibility was evaluated according to the same evaluation criteria as in Examples 2 to 10, and was evaluated as B. From this, it was found that an optically anisotropic film having excellent reverse wavelength dispersibility can be formed also in Example 11.
[実施例12~17]
 特定化合物を下記表15に示す化合物に変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。
 また、作製した光学異方性膜についても、実施例1と同様の方法で、波長450nmのレターデーション値(Re(450))と、波長550nmのレターデーション値(Re(550))とを測定し、Re(450)/Re(550)を算出し、評価した。これらの結果を下記表17に示す。
[Examples 12 to 17]
An optical film was produced in the same manner as in Example 1 except that the specific compound was changed to the compound shown in Table 15 below.
Further, for the produced optically anisotropic film, the retardation value (Re (450)) having a wavelength of 450 nm and the retardation value (Re (550)) having a wavelength of 550 nm were measured by the same method as in Example 1. Then, Re (450) / Re (550) was calculated and evaluated. These results are shown in Table 17 below.
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
 上記表17中、特定化合物S-11、S-12およびS-13の構造を以下に示す。 In Table 17 above, the structures of the specific compounds S-11, S-12 and S-13 are shown below.
 化合物S-11
Figure JPOXMLDOC01-appb-C000116
Compound S-11
Figure JPOXMLDOC01-appb-C000116
 化合物S-12
Figure JPOXMLDOC01-appb-C000117
Compound S-12
Figure JPOXMLDOC01-appb-C000117
 化合物S-13
Figure JPOXMLDOC01-appb-C000118
Compound S-13
Figure JPOXMLDOC01-appb-C000118
 上記表17に示す結果から、特定化合物を配合した場合は、実施例1と同様、逆波長分散性に優れた光学異方性膜を形成できることが分かった(実施例12~17)。 From the results shown in Table 17 above, it was found that when a specific compound was blended, an optically anisotropic film having excellent reverse wavelength dispersibility could be formed as in Example 1 (Examples 12 to 17).
 10 光学フィルム
 12 光学異方性膜
 14 配向膜
 16 支持体
 18 ハードコート層
10 Optical film 12 Optical anisotropic film 14 Alignment film 16 Support 18 Hardcourt layer

Claims (13)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     ここで、前記式(1)中、
     Cは、下記式(C-1)~(C-4)のいずれかで表される基を表す。
     nは、2~4の整数を表し、複数のCはそれぞれ同一であっても異なっていてもよい。
     Acoreは、置換基を有していてもよい、単環、縮合環または環集合芳香族基である炭素数4~18のn+2価の基を表す。
     L、L、LおよびLは、それぞれ独立に、単結合、または、-CO-、-O-、-S-、-C(=S)-、-CR1112-、-CR13=CR14-、-C≡C-、-NR15-、-N=CR16-、-N=N-、もしくは、これらの2つ以上の組み合わせからなる2価の連結基を表し、R11~R16は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~12のアルキル基を表す。
     AおよびAは、それぞれ独立に、置換基を有していてもよい、シクロヘキサン-1,4-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基、デカヒドロナフタレン-2,6-ジイル基、または、1,3-ジオキサン-2,5-ジイル基を表す。
     AおよびAは、それぞれ独立に、置換基を有していてもよい、シクロヘキサン-1,4-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基、ベンゼン-1,4-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-2,7-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、または、1,3-ジオキサン-2,5-ジイル基を表す。
     m1およびm2は、それぞれ独立に、0~4の整数を表す。ただし、m1が2~4の整数を表す場合、複数のLおよびAはそれぞれ同一であっても異なっていてもよく、m2が2~4の整数を表す場合、複数のLおよびAはそれぞれ同一であっても異なっていてもよい。
     RおよびRは、それぞれ独立に、下記式(R-1)で表される基を表す。
     式(R-1):-L-Rsp1-Z
     ここで、前記式(R-1)中、
     Lは、単結合、または、-CO-、-O-、-S-、-C(=S)-、-CR1112-、-CR13=CR14-、-C≡C-、-NR15-、-N=CR16-、-N=N-、もしくは、これらの2つ以上の組み合わせからなる2価の連結基を表し、R11~R16は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~12のアルキル基を表す。
     Rsp1は、炭素数1~20のアルキレン基、または、単結合を表す。ただし、前記アルキレン基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、または、-C≡C-に置換されていてもよい。
     Zは、水素原子、または、重合性基を表す。
    Figure JPOXMLDOC01-appb-C000002
     ここで、前記式(C-1)中、
     *は、Acoreとの結合位置を表す。
     Mは、-CH=CH-、-N=CH-、-CH=N-、または、-N=N-を表す。
     Dは、置換基を有していてもよい下記式(D-1)~(D-10)のいずれかで表される基を表す。
    Figure JPOXMLDOC01-appb-C000003
     ここで、前記式(D-1)~(D-10)中、
     *は、Mとの結合位置を表す。
     Dは、-O-、-S-、または、-NRD1-を表し、RD1は、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルカノイル基、または、置換基を有していてもよいフェニルを表す。
     Rd1およびRd2は、それぞれ独立に、置換基を有していてもよい炭素数1~20のアルキル基を表す。ただし、前記アルキル基を構成する1個の-CH-もしくは隣接していない2個以上の-CH-は、それぞれ独立に、-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-SO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-、または、-C≡C-に置換されていてもよい。また、Rd1およびRd2は、互いに結合して3~7員環の非芳香族炭化水素環を形成していてもよく、前記非芳香族炭化水素環は置換基を有していてもよく、前記非芳香族炭化水素環を構成する炭素原子はヘテロ原子に置換されていてもよい。
     前記式(D-1)~(D-10)中の環構造を構成する-CH=は、-N=に置換されていてもよい。ただし、前記式(D-1)および(D-5)中の環構造を構成する少なくとも1個の-CH=は、-N=に置換されているものである。
    Figure JPOXMLDOC01-appb-C000004
     ここで、前記式(C-2)中、
     *は、Acoreとの結合位置を表す。
     Jは、水素原子、または、アルキル基を表す。
     Bは、-C(=X)-B11、または、-CNを表す。ただし、B11は、置換基を表し、Xは、=O、=S、=NR、または、=C(CN)を表し、Rは、置換基を表す。
     Bは、水素原子または置換基を表す。
    Figure JPOXMLDOC01-appb-C000005
     ここで、前記式(C-3)中、
     *は、Acoreとの結合位置を表す。
     Jは、水素原子、または、アルキル基を表す。
     Yは、炭素環または複素環を形成するために必要な原子団を表す。
     Gは、共役二重結合鎖を完成するために必要な原子団を表す。
     xは、0または1を表す。
     Xは、=O、=S、=NR、または、=C(CN)を表し、Rは、置換基を表す。
    Figure JPOXMLDOC01-appb-C000006
     ここで、前記式(C-4)中、
     *は、Acoreとの結合位置を表す。
     R、R、RおよびRは、それぞれ独立に、水素原子または置換基を表す。
     Xは、O、S、または、NRを表し、Rは、水素原子または置換基を表す。
     Jは、水素原子、または、アルキル基を表す。
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Here, in the above formula (1),
    C represents a group represented by any of the following formulas (C-1) to (C-4).
    n represents an integer of 2 to 4, and the plurality of Cs may be the same or different.
    A core represents an n + divalent group having 4 to 18 carbon atoms, which is a monocyclic, condensed ring or ring-aggregated aromatic group which may have a substituent.
    L 1 , L 2 , L 3 and L 4 are independently single-bonded or -CO-, -O-, -S-, -C (= S)-, -CR 11 R 12 -,-, respectively. CR 13 = CR 14- , -C≡C-, -NR 15- , -N = CR 16- , -N = N-, or a divalent linking group consisting of two or more of these. R 11 to R 16 independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 12 carbon atoms.
    A 1 and A 2 may independently have a substituent, cyclohexane-1,4-diyl group, cyclopentane-1,3-diyl group, cycloheptane-1,3-diyl group, respectively. It represents a cycloheptane-1,4-diyl group, a decahydronaphthalene-2,6-diyl group, or a 1,3-dioxane-2,5-diyl group.
    A 3 and A 4 may independently have a substituent, cyclohexane-1,4-diyl group, cyclopentane-1,3-diyl group, cycloheptane-1,3-diyl group, respectively. Cycloheptane-1,4-diyl group, benzene-1,4-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-2, 7-Diyl group, naphthalene-1,4-diyl group, tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, or 1,3-dioxane-2,5-diyl group show.
    m1 and m2 each independently represent an integer of 0 to 4. However, when m1 represents an integer of 2 to 4 , the plurality of L3 and A3 may be the same or different, respectively, and when m2 represents an integer of 2 to 4 , a plurality of L4 and A may be present. 4 may be the same or different from each other.
    R 1 and R 2 each independently represent a group represented by the following formula (R-1).
    Equation (R-1): -L 5 -R sp1 -Z 1
    Here, in the above formula (R-1),
    L 5 is a single bond, or -CO-, -O-, -S-, -C (= S)-, -CR 11 R 12- , -CR 13 = CR 14- , -C≡C-, -NR 15- , -N = CR 16- , -N = N-, or a divalent linking group consisting of two or more of these, and R 11 to R 16 are independent hydrogen atoms. , A fluorine atom, or an alkyl group having 1 to 12 carbon atoms.
    R sp1 represents an alkylene group having 1 to 20 carbon atoms or a single bond. However, one -CH 2- or two or more non-adjacent -CH 2- constituting the alkylene group independently have -O-, -COO-, -OCO-, and -OCO-O, respectively. -, -CO-NH-, -NH-CO-, -CH = CH-, or -C≡C- may be substituted.
    Z 1 represents a hydrogen atom or a polymerizable group.
    Figure JPOXMLDOC01-appb-C000002
    Here, in the above formula (C-1),
    * Represents the binding position with A core .
    M represents -CH = CH-, -N = CH-, -CH = N-, or -N = N-.
    D represents a group represented by any of the following formulas (D-1) to (D-10) which may have a substituent.
    Figure JPOXMLDOC01-appb-C000003
    Here, in the formulas (D-1) to (D-10),
    * Represents the bond position with M.
    D 1 represents -O-, -S-, or -NR D1- , and RD 1 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkanoyl group having 1 to 5 carbon atoms, or a substituent. Represents a phenyl that may have.
    R d1 and R d2 each independently represent an alkyl group having 1 to 20 carbon atoms which may have a substituent. However, one -CH 2- or two or more non-adjacent -CH 2- constituting the alkyl group independently have -O-, -S-, -CO-, -COO-, respectively. -OCO-, -CO-S-, -S-CO-, -SO 2- , -O-CO-O-, -CO-NH-, -NH-CO-, -CH = CH-COO-,- It may be substituted with CH = CH-OCO-, -COO-CH = CH-, -OCO-CH = CH-, -CH = CH-, -CF = CF-, or -C≡C-. Further, R d1 and R d2 may be bonded to each other to form a non-aromatic hydrocarbon ring having a 3- to 7-membered ring, and the non-aromatic hydrocarbon ring may have a substituent. , The carbon atom constituting the non-aromatic hydrocarbon ring may be substituted with a hetero atom.
    -CH = constituting the ring structure in the formulas (D-1) to (D-10) may be replaced with -N =. However, at least one -CH = constituting the ring structure in the formulas (D-1) and (D-5) is replaced with -N =.
    Figure JPOXMLDOC01-appb-C000004
    Here, in the above formula (C-2),
    * Represents the binding position with A core .
    J 1 represents a hydrogen atom or an alkyl group.
    B 1 represents -C (= X 1 ) -B 11 or -CN. However, B 11 represents a substituent, X 1 represents = O, = S, = NR, or = C (CN) 2 , and R represents a substituent.
    B 2 represents a hydrogen atom or a substituent.
    Figure JPOXMLDOC01-appb-C000005
    Here, in the above formula (C-3),
    * Represents the binding position with A core .
    J 2 represents a hydrogen atom or an alkyl group.
    Y 1 represents an atomic group required to form a carbocycle or a heterocycle.
    G represents the atomic group required to complete the conjugated double bond chain.
    x represents 0 or 1.
    X 2 represents = O, = S, = NR, or = C (CN) 2 , and R represents a substituent.
    Figure JPOXMLDOC01-appb-C000006
    Here, in the above formula (C-4),
    * Represents the binding position with A core .
    R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or substituent.
    X 3 represents O, S, or NR 5 , and R 5 represents a hydrogen atom or substituent.
    J 3 represents a hydrogen atom or an alkyl group.
  2.  前記式(1)中のCが、前記式(C-3)で表される基を表し、
     前記式(C-3)中のxが0を表し、XがOまたはSを表し、Yと、-C(=C)-(G)x-C(=X)-とで構成される環構造が、5員環または6員環の炭素環または複素環である、請求項1に記載の化合物。
     ただし、前記炭素環または前記複素環は、置換基を有していてもよく、他の4~7員環と縮合環を形成していてもよい。
    C in the formula (1) represents a group represented by the formula (C-3).
    In the formula (C-3), x represents 0, X 2 represents O or S, and is composed of Y 1 and −C (= C)-(G) x—C (= X 2 ) −. The compound according to claim 1, wherein the ring structure to be formed is a 5-membered ring or a 6-membered ring carbocyclic ring or a heterocyclic ring.
    However, the carbocycle or the heterocycle may have a substituent or may form a fused ring with another 4- to 7-membered ring.
  3.  前記式(1)中のCが、前記式(C-4)で表される基を表し、
     前記式(C-4)中のXがOを表し、RおよびRがアルキル基を表し、RおよびRが水素原子を表す、請求項1に記載の化合物。
    C in the formula (1) represents a group represented by the formula (C-4).
    The compound according to claim 1, wherein X 3 in the formula (C-4) represents O, R 1 and R 2 represent an alkyl group, and R 3 and R 4 represent a hydrogen atom.
  4.  前記式(1)中の下記式(1-1)で表される部分構造が、下記式(1-1a)または下記式(1-1b)で表される構造である、請求項1~3のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
     ここで、前記式(1-1)、(1-1a)および(1-1b)中、*は、結合位置を表し、C、nおよびAcoreは、前記式(1)中のC、nおよびAcoreと同様である。
     また、前記式(1-1b)中、n1およびn2は、それぞれ独立に、0~2の整数を表す。ただし、n1およびn2の合計は、2~4の整数を表す。
    Claims 1 to 3 in which the partial structure represented by the following formula (1-1) in the above formula (1) is a structure represented by the following formula (1-1a) or the following formula (1-1b). The compound according to any one of the above.
    Figure JPOXMLDOC01-appb-C000007
    Here, in the formulas (1-1), (1-1a) and (1-1b), * represents a binding position, and C, n and A core are C, n in the formula (1). And A core .
    Further, in the above equation (1-1b), n1 and n2 each independently represent an integer of 0 to 2. However, the sum of n1 and n2 represents an integer of 2 to 4.
  5.  前記式(1)中のAおよびAが、トランス-シクロヘキサン-1,4-ジイル基を表す、請求項1~4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein A 1 and A 2 in the formula (1) represent a trans-cyclohexane-1,4-diyl group.
  6.  前記式(R-1)中のZが、重合性基を表し、
     前記重合性基が、下記式(P-1)~(P-20)で表される基からなる群から選択されるいずれかの重合性基を表す、請求項1~5のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
     ここで、前記式(P-1)~(P-20)中、*は、前記式(R-1)中のRsp1との結合位置を表す。
    Z 1 in the formula (R-1) represents a polymerizable group.
    Any one of claims 1 to 5, wherein the polymerizable group represents any polymerizable group selected from the group consisting of groups represented by the following formulas (P-1) to (P-20). The compound described in.
    Figure JPOXMLDOC01-appb-C000008
    Here, in the formulas (P-1) to (P-20), * represents a binding position with R sp1 in the formula (R-1).
  7.  前記重合性基が、前記式(P-1)または(P-2)で表される基である、請求項6に記載の化合物。 The compound according to claim 6, wherein the polymerizable group is a group represented by the formula (P-1) or (P-2).
  8.  前記式(1)中のm1およびm2が、それぞれ独立に、0~1の整数を表す、請求項1~7のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 7, wherein m1 and m2 in the formula (1) independently represent an integer of 0 to 1.
  9.  請求項1~8のいずれか1項に記載の化合物を含有する、重合性組成物。 A polymerizable composition containing the compound according to any one of claims 1 to 8.
  10.  請求項9に記載の重合性組成物を重合して得られる光学異方性膜。 An optically anisotropic film obtained by polymerizing the polymerizable composition according to claim 9.
  11.  請求項10に記載の光学異方性膜を有する光学フィルム。 An optical film having the optically anisotropic film according to claim 10.
  12.  請求項11に記載の光学フィルムと、偏光子とを有する、偏光板。 A polarizing plate having the optical film according to claim 11 and a polarizing element.
  13.  請求項11に記載の光学フィルム、または、請求項12に記載の偏光板を有する、画像表示装置。 An image display device having the optical film according to claim 11 or the polarizing plate according to claim 12.
PCT/JP2021/044450 2020-12-04 2021-12-03 Compound, polymerizable composition, optically anisotropic film, optical film, polarizing plate, and image display device WO2022118951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566999A JPWO2022118951A1 (en) 2020-12-04 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020201872 2020-12-04
JP2020-201872 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118951A1 true WO2022118951A1 (en) 2022-06-09

Family

ID=81853330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044450 WO2022118951A1 (en) 2020-12-04 2021-12-03 Compound, polymerizable composition, optically anisotropic film, optical film, polarizing plate, and image display device

Country Status (2)

Country Link
JP (1) JPWO2022118951A1 (en)
WO (1) WO2022118951A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149754A (en) * 2007-12-20 2009-07-09 Sumitomo Chemical Co Ltd Polymerizable compound and optical film produced by polymerizing the polymerizable compound
WO2014061709A1 (en) * 2012-10-19 2014-04-24 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
JP2014145852A (en) * 2013-01-28 2014-08-14 Konica Minolta Inc Optical film, circularly polarizing plate and image display apparatus
JP2015200877A (en) * 2014-03-31 2015-11-12 富士フイルム株式会社 Liquid crystalline compound and optical film, and production method of optical film
WO2016104317A1 (en) * 2014-12-25 2016-06-30 Dic株式会社 Polymerizable compound and optically anisotropic object
JP2016166344A (en) * 2015-03-02 2016-09-15 Jnc株式会社 Polymerizable liquid crystal composition and optical anisotropic film
JP2017014381A (en) * 2015-06-30 2017-01-19 Jnc株式会社 Polymerizable compound, composition, and polymer of the same
WO2018096873A1 (en) * 2016-11-28 2018-05-31 住友化学株式会社 Polymerizable liquid crystal compound, retardation film, and polarizer and optical display that include retardation film
WO2019074007A1 (en) * 2017-10-13 2019-04-18 大日本印刷株式会社 Polymerizable liquid crystal compound, polymerizable composition, polymer, retardation film and method for producing same, laminate for transfer, optical member and method for producing same, and display device
JP2019120945A (en) * 2017-12-27 2019-07-22 大日本印刷株式会社 Polymerizable liquid crystal compound, polymerizable composition, polymer, phase difference film and method for producing the same, transfer laminate, optical member and method for producing the same, and display device
WO2019160025A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Polymerizable liquid crystal composition, production method for polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2020022422A1 (en) * 2018-07-25 2020-01-30 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
JP6700468B1 (en) * 2019-12-25 2020-05-27 住友化学株式会社 Polymerizable liquid crystal mixture, polymerizable liquid crystal composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149754A (en) * 2007-12-20 2009-07-09 Sumitomo Chemical Co Ltd Polymerizable compound and optical film produced by polymerizing the polymerizable compound
WO2014061709A1 (en) * 2012-10-19 2014-04-24 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
JP2014145852A (en) * 2013-01-28 2014-08-14 Konica Minolta Inc Optical film, circularly polarizing plate and image display apparatus
JP2015200877A (en) * 2014-03-31 2015-11-12 富士フイルム株式会社 Liquid crystalline compound and optical film, and production method of optical film
WO2016104317A1 (en) * 2014-12-25 2016-06-30 Dic株式会社 Polymerizable compound and optically anisotropic object
JP2016166344A (en) * 2015-03-02 2016-09-15 Jnc株式会社 Polymerizable liquid crystal composition and optical anisotropic film
JP2017014381A (en) * 2015-06-30 2017-01-19 Jnc株式会社 Polymerizable compound, composition, and polymer of the same
WO2018096873A1 (en) * 2016-11-28 2018-05-31 住友化学株式会社 Polymerizable liquid crystal compound, retardation film, and polarizer and optical display that include retardation film
WO2019074007A1 (en) * 2017-10-13 2019-04-18 大日本印刷株式会社 Polymerizable liquid crystal compound, polymerizable composition, polymer, retardation film and method for producing same, laminate for transfer, optical member and method for producing same, and display device
JP2019120945A (en) * 2017-12-27 2019-07-22 大日本印刷株式会社 Polymerizable liquid crystal compound, polymerizable composition, polymer, phase difference film and method for producing the same, transfer laminate, optical member and method for producing the same, and display device
WO2019160025A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Polymerizable liquid crystal composition, production method for polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2020022422A1 (en) * 2018-07-25 2020-01-30 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
JP6700468B1 (en) * 2019-12-25 2020-05-27 住友化学株式会社 Polymerizable liquid crystal mixture, polymerizable liquid crystal composition

Also Published As

Publication number Publication date
JPWO2022118951A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP5905419B2 (en) Polymerizable liquid crystal compound, liquid crystal composition, polymer material and method for producing the same, film, polarizing plate and liquid crystal display device
TWI461412B (en) Optical film, phase retardation plate, elliptically polarizing plate, liquid crystal display device and chemical compound
JP5293979B2 (en) Polymerizable binaphthalene derivative
US20070176145A1 (en) Liquid crystal compound comprising two condensed and substituted rings
JP2002129162A (en) Liquid crystal orientation accelerator, liquid crystal composition, optically anisotropic element, optical compensation sheet, and stn-type liquid crystal display
WO2019160014A1 (en) Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
JP2006215221A (en) Polarizing element, liquid crystal panel, liquid crystal television, liquid crystal display device, and method for manufacturing polarizing element
JP5816232B2 (en) Liquid crystal composition, method for producing the same, and film
JP2016004142A (en) Optical film laminate and production method of the same, and liquid crystal display panel containing laminate
JP4802479B2 (en) Polymerizable binaphthalene derivative
JP5786000B2 (en) Polymerizable liquid crystal compound, liquid crystal composition, method for producing polymer material, method for producing the same, and film
JP2013071945A (en) Polymerizable liquid crystal composition and optically anisotropic film
JP5798066B2 (en) Compound, liquid crystal composition, polymer material and film
JP5852469B2 (en) Compound, liquid crystal composition, polymer material and film
WO2022118951A1 (en) Compound, polymerizable composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2022118959A1 (en) Compound, polymerizable composition, optically anisotropic film, optical film, polarizing plate, and image display device
JP5423021B2 (en) Polymerizable liquid crystal compound, composition and polymer
JP4424979B2 (en) Compound, retardation plate, and method for forming optically anisotropic layer
JP7371110B2 (en) Polymerizable liquid crystal compositions, optically anisotropic films, optical films, polarizing plates, and image display devices
JP7340617B2 (en) Polymerizable liquid crystal compositions, compounds, optically anisotropic films, optical films, polarizing plates, and image display devices
JP7285226B2 (en) Polymerizable liquid crystal composition, compound, optically anisotropic film, optical film, polarizing plate, and image display device
JP7335856B2 (en) Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
JP2007039414A (en) Axially asymmetric optically active cyclohexane compound, liquid crystal composition, liquid crystal display element and formed article
WO2023112722A1 (en) Compound, polymerizable composition, optical anisotropic membrane, optical film, polarizing plate, and image display apparatus
JP2022033442A (en) Polymer, polymerizable liquid crystal composition, optical anisotropic film, optical film, polarizing plate and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900700

Country of ref document: EP

Kind code of ref document: A1