WO2022118888A1 - Resin composition, method for producing resin composition, and resin - Google Patents

Resin composition, method for producing resin composition, and resin Download PDF

Info

Publication number
WO2022118888A1
WO2022118888A1 PCT/JP2021/044105 JP2021044105W WO2022118888A1 WO 2022118888 A1 WO2022118888 A1 WO 2022118888A1 JP 2021044105 W JP2021044105 W JP 2021044105W WO 2022118888 A1 WO2022118888 A1 WO 2022118888A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocellulose
thermoplastic resin
resin
mixture
resin composition
Prior art date
Application number
PCT/JP2021/044105
Other languages
French (fr)
Japanese (ja)
Inventor
勇悟 宮田
彰宏 後藤
じゆん ▲高▼田
駿 中野
速人 ▲吉▼川
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2022566959A priority Critical patent/JPWO2022118888A1/ja
Publication of WO2022118888A1 publication Critical patent/WO2022118888A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the present invention relates to a resin composition, a method for producing a resin composition, and a resin.
  • Patent Document 1 proposes a method for producing a composite, which comprises copolymerizing an ethylenically unsaturated monomer in a cellulose nanofiber dispersion. According to this production method, a composite of cellulose nanofibers and a resin (a copolymer of ethylene unsaturated monomer) in which cellulose nanofibers are uniformly dispersed in rubber or a resin and exhibits high strength is produced. It is said that it can be done.
  • Patent Document 2 proposes a composite resin composition obtained by polymerizing the polymerizable compound in a dispersion liquid in which a polymerizable compound and cellulose nanofibers are dispersed in a solvent. This composite resin composition is said to have high dispersibility in the resin of cellulose nanofibers.
  • Patent Document 3 discloses an additive for modifying a resin, which is suitably used for producing a cellulose nanofiber composite formation in which cellulose nanofibers are highly dispersed in a resin.
  • This resin modification additive is kneaded with a thermoplastic resin or the like to form a cellulose nanofiber composite formation. That is, the resin modification additive of Patent Document 3 is used as a masterbatch in combination with a resin.
  • Patent Document 4 contains cellulose nanofibers reacted with an amine or a quaternary ammonium salt compound and a polymer of an ethylenically unsaturated monomer as a resin modifier having an excellent resin modifying effect. , Resin modifiers are disclosed.
  • thermoplastic resin As a method for producing a resin composition containing cellulose nanofibers and a thermoplastic resin, for example, using a single-screw or twin-screw extruder, the thermoplastic resin and the cellulose nanofibers, a surface modifier and a protonic organic solvent are used.
  • a method of melt-kneading a mixture, extruding it, and solidifying it to obtain a pellet-shaped molded product is known (see Patent Document 5). Further, in Patent Document 5, (A) 100 parts by mass of a thermoplastic resin, (B) 1 to 200 parts by mass of cellulose nanofibers having an average fiber diameter of 1000 nm or less, and (C) a surface modifier of 0.
  • a resin composition containing 1 to 200 parts by mass and (D) 0.1 to 10000 mass ppm of an aprotonic organic solvent having a boiling point of 100 ° C. or higher is disclosed.
  • This resin composition is said to be excellent in wear resistance and vibration fatigue characteristics in practical use while imparting sufficient mechanical properties and thermal properties to the resin molded body.
  • cellulose nanofibers function as a reinforcing material for resins, but resins containing cellulose nanofibers are required to have excellent strength against various mechanical actions.
  • the resin containing the cellulose nanofibers is required to have, for example, impact resistance and bending strength.
  • Patent Documents 1 and 2 for the purpose of increasing the dispersibility of cellulose nanofibers in a resin and obtaining strength, a polymerizable compound is polymerized in a dispersion liquid of cellulose nanofibers to obtain cellulose nanofibers and a resin. It is disclosed to obtain a complex. However, the use of the complex obtained in Patent Documents 1 and 2 as a masterbatch is not disclosed in the first place, and the obtained complex is not sufficient in impact resistance and bending strength.
  • the resin modification additive of Patent Document 3 is suitably used for producing a cellulose nanofiber composite formation in which cellulose nanofibers are highly dispersed in the resin, and it is said that a reinforced resin can be obtained. It is required to further improve the property and the strength against bending.
  • the resin modifier of Patent Document 4 is excellent in the resin modifying effect, but the impact resistance and the strength against bending are not described, and it is required to further improve these characteristics.
  • the resin composition of Patent Document 5 is said to give sufficient mechanical properties to a resin molded product, but is required to further improve impact resistance and bending strength.
  • a resin composition containing nanocellulose and a thermoplastic resin in which the nanocellulose and the thermoplastic resin form a predetermined form has impact resistance and bending strength.
  • the present inventors have found that a fibrous composite of nanocellulose and a thermoplastic resin having a structure in which a thermoplastic resin is coated with nanocellulose can be produced by a predetermined production method. The present invention has been completed.
  • the present invention is as follows. [1] Contains nanocellulose and thermoplastics The nanocellulose and the thermoplastic resin form a fibrous complex. Resin composition. [2] The amount of carboxy group of the nanocellulose is 0.1 mmol / g or more and 3.0 mmol / g or less. The resin composition according to [1]. [3] The content of the nanocellulose is 50% by mass or more with respect to the total amount of the resin composition. The resin composition according to [1] or [2].
  • the thermoplastic resin contains at least one monomer unit selected from (meth) acrylic monomer, (meth) acrylamide-based monomer, styrene-based monomer, maleimide-based monomer, and nitrile-based monomer as a constituent unit.
  • the thermoplastic resin has a functional group capable of forming a chemical bond with the nanocellulose.
  • the functional group is a base or cation containing a nitrogen atom.
  • the thermoplastic resin is a polymer having a hydrophilic portion and a hydrophobic portion.
  • the thermoplastic resin is a block copolymer having a hydrophilic segment and a hydrophobic segment.
  • a method for producing a resin composition containing nanocellulose and a thermoplastic resin After precipitating at least the solid content containing nanocellulose from the aqueous mixture containing at least nanocellulose and separating the solid content from the liquid phase, an organic solvent is added to the solid content, and the nanocellulose and the thermoplastic resin are added. Step A to prepare the mixture I of and the organic solvent, and A step B of removing some or all of the organic solvent from the mixture I in the absence of substantially the presence of water. Production method. [10]
  • the organic solvent is an organic solvent that dissolves and / or swells the thermoplastic resin. The manufacturing method according to [9].
  • the organic solvent contains at least one selected from an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, and a nitrile solvent.
  • the step A is A step of precipitating nanocellulose by adding a precipitating agent to the aqueous dispersion of nanocellulose and separating it from the liquid phase, and The step of adding a thermoplastic resin and an organic solvent to the separated nanocellulose to obtain the mixture I is included.
  • the production method according to any one of [9] to [11].
  • the step A is A step of precipitating a mixture II of nanocellulose and a thermoplastic resin by adding a precipitating agent to an aqueous mixture of an aqueous dispersion of nanocellulose and a thermoplastic resin, and separating the mixture from the liquid phase.
  • the step of adding an organic solvent to the mixture II of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
  • the precipitating agent is an inorganic salt.
  • the precipitating agent is an organic alkali or cation containing a nitrogen atom in the molecule.
  • the step A is A step of mixing an aqueous dispersion of nanocellulose and a thermoplastic resin, reacting the nanocellulose with the thermoplastic resin to precipitate, and separating the mixture III of the nanocellulose and the thermoplastic resin from the liquid phase.
  • the step of adding an organic solvent to the mixture III of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
  • the separation step is continuously performed.
  • [18] A method for producing a resin composition containing nanocellulose and a thermoplastic resin.
  • Step A to prepare a mixture I of nanocellulose, a thermoplastic resin, and an organic solvent, and Including step B of removing some or all of the organic solvent from the mixture I in the absence of substantially the presence of water.
  • the step A is A step of adding an organic alkali or cation containing a nitrogen atom in the molecule to the aqueous dispersion of nanocellulose and further adding a thermoplastic resin and an organic solvent to separate it from the aqueous phase to obtain the mixture I, or Production including a step of adding a thermoplastic resin and an organic solvent to an aqueous dispersion of nanocellulose, and further adding an organic alkali or cation containing a nitrogen atom in the molecule to separate it from the aqueous phase to obtain the mixture I.
  • the organic solvent is an organic solvent that dissolves and / or swells the thermoplastic resin.
  • the organic solvent contains at least one selected from an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, and a nitrile solvent.
  • [22] A melt containing the resin composition according to any one of [1] to [8] and the resin.
  • the resin composition of the present invention it is possible to obtain a resin having improved bending strength while having impact resistance. Further, according to the present invention, a fibrous composite of nanocellulose and a thermoplastic resin having a structure in which a thermoplastic resin is coated with nanocellulose can be produced, and a method for producing a resin composition containing the composite can be produced. Can be provided.
  • FIG. 1 It is a figure which shows the SEM image obtained by the electron microscope observation of the resin composition of Example 1.
  • FIG. It is a figure which shows the SEM image obtained by the electron microscope observation of the resin composition of the comparative example 1.
  • FIG. 1 shows the SEM image obtained by the electron microscope observation of the resin composition of the comparative example 1.
  • the resin composition of the present invention contains nanocellulose and a thermoplastic resin. Further, the nanocellulose and the thermoplastic resin contained in the resin composition of the present invention form a fibrous complex.
  • the fibrous composite in the present invention is a composite in which the constituent nanocellulose and the thermoplastic resin are shaped like fibers. By coating nanocellulose, which has a fibrous shape, with a thermoplastic resin, a fibrous composite can be formed. Therefore, it is preferable that the thermoplastic resin in the fibrous complex is in a mode of coating nanocellulose. It can be confirmed by observing the resin composition with a microscope that the resin composition of the present invention contains a fibrous complex. For example, it can be confirmed by observing at a magnification of 10,000 to 100,000 using an electron microscope.
  • the resin composition of the present invention contains a fibrous complex.
  • the resin composition of the present invention obtains, for example, a mixture of nanocellulose, a thermoplastic resin and an organic solvent, and removes a part or all of the organic solvent from the obtained mixture in the substantially absence of water. It can be manufactured by the method. Further, the resin composition of the present invention can be produced by the method for producing a resin composition described later.
  • the resin composition of the present invention may be used as a resin by pelletizing or molding as it is. Further, the resin composition of the present invention may be used by mixing the resin composition with the target resin to be blended (hereinafter, also referred to as a raw material resin). In this case, the resin composition of the present invention is also referred to as a resin modifying composition or a resin modifying agent. That is, the resin composition of the present invention includes both the embodiment of using the resin as it is and the embodiment of the composition for modifying the resin.
  • the nanocellulose forms a fibrous form with the thermoplastic resin, so that the nanocellulose is uniformly dispersed in the resin composition.
  • each cellulose fiber is coated with the thermoplastic resin, so that the same amount of the thermoplastic resin is present between the respective nanocelluloses and the nanocelluloses are uniformly dispersed in the composition.
  • Such a highly dispersible resin composition has excellent dispersibility of nanocellulose in the obtained resin, and the ability to modify the resin is enhanced, so that the resin has improved bending strength while having impact resistance. Is considered to be possible.
  • the mechanism of action in which impact resistance and bending strength appear is not limited to the above-mentioned mechanism.
  • the fibrous composite in the present invention is an index in which nanocellulose is uniformly dispersed in the resin composition, but the dispersibility of nanocellulose in the resin composition is also characterized by impact resistance. .. That is, whether or not it is a fibrous complex can also be determined by having a predetermined impact resistance.
  • the resin composition of the present invention preferably has an impact resistance of 2.0 kJ / m 2 or more as measured under the following ⁇ conditions>.
  • One aspect of the present invention is a resin composition containing nanocellulose and a thermoplastic resin having an impact resistance of 2.0 kJ / m 2 or more as measured by the following ⁇ conditions>.
  • the impact resistance is more preferably 3.0 kJ / m 2 or more.
  • the upper limit of the impact resistance is not particularly limited, but may be 100 kJ / m 2 or less, or 50 kJ / m 2 or less.
  • the resin composition of the present invention is added to the ABS resin in an amount of 1 to 5% by mass (in terms of nanocellulose), and the mixture is heated and kneaded using a plast mill.
  • the kneading temperature is 25 ° C., and the kneading is gradually increased so that the final kneading temperature is 160 ° C. and the kneading time is 45 minutes in total.
  • pressurizer and a die pressurize at 160 ° C.
  • the above ⁇ conditions> are specifically as described in the examples.
  • the impact resistance is 2.0 kJ / m 2 or more, preferably 3.0 kJ / m 2 or more, it becomes an index that nanocellulose is uniformly dispersed in the resin composition, and the resin of the present invention is used.
  • the nanocellulose and the thermoplastic resin tend to form a fibrous composite.
  • the content of nanocellulose in the resin composition of the present invention may be usually 10% by mass or more with respect to the total amount of the resin composition.
  • the resin composition of the present invention may be used by blending it with a resin, but in this case, if the proportion of the thermoplastic resin contained in the resin composition becomes high, the performance of the target resin to be blended with the thermoplastic resin, etc. May affect. Therefore, from the viewpoint of suppressing the influence on the performance when the resin composition is blended with the resin, the content of nanocellulose is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably. It is 70% by mass or more.
  • the upper limit of the content of nanocellulose is usually less than 100% by mass, preferably 95% by mass or less, and preferably 90% by mass or less.
  • the nanocellulose in the present invention is a general term for finely divided cellulose, and includes fine cellulose fibers, cellulose nanocrystals, and the like, and also includes modified products thereof (details of the modified products will be described later). Fine cellulose fibers are also referred to as cellulose nanofibers (also referred to as CNF). Further, in the present specification, "miniaturization” is also referred to as nanonization.
  • the nanocellulose in the present invention commercially available nanocellulose can be used, or one obtained by preparing from a cellulosic raw material such as coniferous pulp can also be used. When preparing nanocellulose, it can be prepared by referring to, for example, Cellulose Commun., 14 (2), 62 (2007), and International Publication No. 2018/230354 pamphlet.
  • N- such as 2,2,6,6-tetramethyl-1-piperidin-N-oxy radical (hereinafter referred to as TEMPO) is used. It can be obtained without using an oxyl compound. It has been pointed out that the N-oxyl compound is harmful, and when nanocellulose is produced using this, the N-oxyl compound is contained in the nanocellulose. Therefore, it is preferable that the nanocellulose in the present invention contains substantially no N-oxyl compound.
  • substantially free of N-oxyl compound means that the N-oxyl compound is not used in producing the oxidized cellulose, or the nanocellulose or the oxidized cellulose is completely free of the N-oxyl compound.
  • the content of the N-oxyl compound is 2.0 mass ppm or less with respect to the total amount of nanocellulose or oxidized cellulose, and is preferably 1.0 mass ppm or less. Further, even when the content of the N-oxyl compound is preferably 2.0 mass ppm or less, more preferably 1.0 mass ppm or less as an increase from the cellulosic raw material, "N-oxyl compound is substantially contained. It means "not included”.
  • the residual nitrogen component can be measured by using a trace total nitrogen analyzer, and more specifically, by the method described in Examples.
  • One aspect of nanocellulose in the present invention is preferably derived from oxidized cellulose, which is an oxide of a cellulosic raw material due to hypochloric acid or a salt thereof, and is substantially free of N-oxyl compounds.
  • the above-mentioned oxidized cellulose can be said to be an oxide of a cellulosic raw material. Further, when a cellulosic raw material is oxidized with hypochlorous acid or a salt thereof to obtain oxidized cellulose, the oxidized cellulose can be said to be an oxide of the cellulosic raw material by hypochloric acid or a salt thereof.
  • the carboxy group is introduced into the cellulosic raw material by the above oxidation reaction.
  • the carboxy group in the nanocellulose may be -COOH, may form a salt with a counter cation, or may be modified with another carboxy group or a compound capable of reacting with the salt thereof. Therefore, the nanocellulose contained in the resin composition of the present invention may contain a compound that modifies a countercation, a carboxy group or a salt thereof, and the nanocellulose in the present invention contains a countercation or a carboxy group or a salt thereof. It also includes embodiments that have reacted with the compound to be modified (ie, embodiments of the modified product).
  • the resin composition of the present invention is produced by a production method including a step of modifying nanocellulose with a precipitant or a thermoplastic resin to separate it from a mixture with water. Therefore, it is preferable that the carboxy group in the nanocellulose contained in the resin composition of the present invention forms an interaction with a precipitating agent or a thermoplastic resin and is modified.
  • the resin composition of the present invention obtains a mixture of nanocellulose, a thermoplastic resin and an organic solvent, and partially or entirely of the organic solvent in the substantially absence of water from the obtained mixture. It can be manufactured by the method of removing.
  • an inorganic salt or a precipitating agent such as an organic alkali or a cation containing a nitrogen atom in the molecule may be used.
  • the addition of the precipitating agent can result in the reaction of nanocellulose with a compound that modifies a counter cation or a carboxy group or a salt thereof.
  • the carboxy group of nanocellulose may form an interaction with the thermoplastic resin. Therefore, the nanocellulose may be in a mode of reacting with the thermoplastic resin.
  • the cellulosic raw material in the present invention is not particularly limited as long as it is a material mainly composed of cellulose, and examples thereof include pulp, natural cellulose, regenerated cellulose, and fine cellulose depolymerized by mechanically treating the cellulosic raw material. Be done.
  • the cellulose-based raw material a commercially available product such as crystalline cellulose made from pulp can be used as it is.
  • unused biomass containing a large amount of cellulose components such as okara and soybean skin may be used as a raw material.
  • the cellulosic raw material may be treated with an alkali having an appropriate concentration for the purpose of facilitating the penetration of the oxidizing agent used in the next step into the raw material pulp.
  • the main component of the plant is cellulose, and a bundle of cellulose molecules is called a cellulose microfibril.
  • Cellulose in the cellulosic raw material used in the present invention is also contained in the form of cellulosic microfibrils.
  • One aspect of the method for producing nanocellulose in the present invention is a step of oxidizing a cellulosic raw material to produce oxidized cellulose using hypochlorous acid having an effective chlorine concentration of 7 to 43% by mass or a salt thereof. It is a manufacturing method including a step of defibrating cellulose oxide to make it finer.
  • the effective chlorine concentration in hypochlorous acid as an oxidizing agent or a salt thereof is preferably 14% by mass or more and 43% by mass or less, and more preferably 18% by mass or more and 43% by mass or less.
  • the effective chlorine concentration is 7% by mass or more, the reaction proceeds sufficiently and the oxidized cellulose tends to be efficiently obtained.
  • the effective chlorine concentration is 43% by mass or less, the self-decomposition tends to be suppressed and the handling tends to be easy.
  • hypochlorous acid is a weak acid that exists as an aqueous solution
  • hypochlorite is a compound in which hydrogen of hypochlorous acid is replaced with another cation.
  • Hypochlorite can exist as a solid with water of crystallization, but it has deliquescent properties and is a very unstable substance, and is generally treated as an aqueous solution.
  • sodium hypochlorite which is a hypochlorite, is present only in the solution, the amount of effective chlorine in the solution is measured, not the concentration of sodium hypochlorite.
  • the effective chlorine of sodium hypochlorite is sodium hypochlorite (NaClO) because the oxidizing power of the divalent oxygen atom generated by the decomposition of sodium hypochlorite corresponds to the diatomic equivalent of monovalent chlorine.
  • NaClO sodium hypochlorite
  • acetic acid two atoms of unbound chlorine (Cl 2 )
  • effective chlorine 2 ⁇ (chlorine in NaClO)
  • the sample is precisely weighed, water, potassium iodide, and acetic acid are added and left to stand, and the liberated iodine is titrated with a sodium thiosulfate solution using an aqueous starch solution as an indicator.
  • hypochlorous acid or a salt thereof examples include hypochlorous acid water, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, ammonium hypochlorite and the like. Of these, sodium hypochlorite is preferable from the viewpoint of ease of handling.
  • sodium hypochlorite is preferable from the viewpoint of ease of handling.
  • one method for producing nanocellulose used in the present invention will be described by taking sodium hypochlorite as an example of hypochlorous acid or a salt thereof.
  • a step of producing oxidized cellulose by oxidizing a cellulosic raw material using an aqueous sodium hypochlorite solution having an effective chlorine concentration of 7% by mass or more and 43% by mass or less As a method of adjusting the effective chlorine concentration of the sodium hypochlorite aqueous solution to 7% by mass or more and 43% by mass or less, a method of concentrating the sodium hypochlorite aqueous solution having an effective chlorine concentration lower than 7% by mass, and an effective chlorine concentration are There is a method of adjusting the sodium hypochlorite pentahydrate crystal having an amount of about 43% by mass as it is or by diluting it with water. Among these, adjusting to the effective chlorine concentration as an oxidizing agent by using sodium hypochlorite pentahydrate has less self-decomposition, that is, the decrease in the effective chlorine concentration is small, and the adjustment is easy. preferable.
  • the amount of the sodium hypochlorite aqueous solution having an effective chlorine concentration of 7% by mass or more and 43% by mass as an oxidizing agent can be selected within the range in which the oxidation reaction is promoted.
  • the method for mixing the cellulosic raw material and the sodium hypochlorite aqueous solution is not particularly limited, but from the viewpoint of ease of operation, it is preferable to add the cellulosic raw material to the sodium hypochlorite aqueous solution and mix them.
  • the reaction temperature in the oxidation reaction is preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 35 ° C. or lower.
  • the pH of the reaction system is preferably maintained at 7 or more and 14 or less, and more preferably 10 or more and 14 or less.
  • An alkaline agent such as sodium hydroxide and an acid such as hydrochloric acid can be added to adjust the pH.
  • the reaction time of the oxidation reaction can be set according to the degree of progress of oxidation, but for example, it is preferable to carry out the reaction for about 15 minutes or more and 6 hours or less.
  • a carboxy group is introduced into the cellulosic raw material to produce oxidized cellulose.
  • the amount of carboxy group of the oxidized cellulose is not particularly limited, but the amount of carboxy group per 1 g of oxidized cellulose is preferably 0.1 mmol / g or more and 3.0 mmol / g or less, and 0.2 mmol / g or more and 1.0 mmol. It is more preferably / g or less. Further, the oxidation reaction may be carried out in two stages. Further, it is preferable that the amount of carboxy group is the same for nanocellulose.
  • the amount of carboxy group of nanocellulose When the amount of carboxy group of nanocellulose is 0.1 mmol / g or more, it tends to be able to sufficiently interact with the thermoplastic resin and to form a fibrous complex. Further, since the amount of carboxy group of nanocellulose is 3.0 mmol / g or less, the viscosity of nanocellulose is suitable for mixing with a thermoplastic resin, and the workability of blending with a thermoplastic resin tends to be excellent. ..
  • Step of defibrating and refining cellulose oxide The nanocellulose used in the present invention is produced by defibrating and refining the cellulose oxide obtained in the above step as necessary.
  • the method of defibrating may be limited to weak stirring with a stirrer or the like in a solvent, or mechanical defibration may be performed. Mechanical defibration makes it possible to shorten the defibration time.
  • the method of mechanical defibration is not particularly limited, but can be appropriately selected depending on the intended purpose after thoroughly washing the oxidized cellulose with a solvent, for example, a screw type mixer, a paddle mixer, a disper type mixer, etc.
  • Turbine type mixer homomixer under high speed rotation, high pressure homogenizer, ultra-high pressure homogenizer, double cylindrical homogenizer, ultrasonic homogenizer, water flow counter-collision type disperser, beater, disc type refiner, conical type refiner, double disc type refiner , Grinders, and known mixing / stirring devices such as uniaxial or multiaxial kneaders, and by treating them alone or in combination of two or more in a solvent, the oxidized cellulose is refined to obtain nanocellulose. Can be manufactured.
  • the solvent used for the defibration treatment is not particularly limited and may be appropriately selected depending on the intended purpose. Water, alcohols, ethers, ketones, N, N-dimethylformamide, N, N-dimethylacetamide. , And dimethylsulfoxide and the like. These may be used alone or in combination of two or more.
  • Examples of the alcohols include methanol, ethanol, isopropanol, isobutanol, sec-butyl alcohol, tert-butyl alcohol, methyl cellosolve, ethylene glycol, glycerin and the like.
  • Examples of the ethers include ethylene glycol dimethyl ether, 1,4-dioxane, and tetrahydrofuran.
  • Examples of the ketones include acetone, methyl ethyl ketone and the like.
  • an organic solvent as the solvent, it becomes easy to isolate the oxidized cellulose obtained in the above step and the nanocellulose obtained by defibrating it. Further, since nanocellulose dispersed in an organic solvent can be obtained, it becomes easy to mix with a resin that dissolves in the organic solvent, a resin raw material monomer, or the like.
  • the average fiber length of nanocellulose is usually in the range of 100 nm or more and 900 nm or less.
  • the nanocellulose is coated with the thermoplastic resin, and the nanocellulose and the thermoplastic resin tend to easily form a fibrous composite.
  • the average fiber length of nanocellulose is preferably 100 nm or more and 700 nm or less, and more preferably 100 nm or more and 400 nm or less.
  • the average fiber length is 100 nm or more and 700 nm or less, appropriate fluidity can be obtained for nanocellulose, and there is a tendency that the nanocellulose can be uniformly blended with the thermoplastic resin.
  • the average fiber width of nanocellulose is usually in the range of 1 nm or more and 10 nm or less.
  • the nanocellulose is coated with the thermoplastic resin, and the nanocellulose and the thermoplastic resin tend to easily form a fibrous composite.
  • the average fiber width of nanocellulose is preferably 2 nm or more and 10 nm or less, and more preferably 2.5 nm or more and 6 nm or less.
  • the average fiber width is 2 nm or more and 10 nm or less, appropriate fluidity can be obtained for nanocellulose, and there is a tendency that the nanocellulose can be uniformly blended with the thermoplastic resin.
  • the aspect ratio (average fiber length / average fiber width) represented by the ratio of the average fiber width to the average fiber length is preferably 20 or more and 200 or less.
  • the aspect ratio is 20 or more and 200 or less, the nanocellulose is coated with the thermoplastic resin, and the nanocellulose and the thermoplastic resin tend to easily form a fibrous composite.
  • the aspect ratio is more preferably 190 or less, still more preferably 180 or less.
  • the aspect ratio is more preferably 30 or more, still more preferably 40 or more.
  • the conditions in the step of obtaining the above-mentioned oxidized cellulose or the step of defibrating the fiber to make it finer are adjusted.
  • the conditions in the step of obtaining the above-mentioned oxidized cellulose or the step of defibrating the fiber to make it finer are adjusted.
  • the average fiber width and average fiber length nanocellulose and water were mixed so that the concentration of nanocellulose was approximately 1 to 10 ppm, and a sufficiently diluted cellulose aqueous dispersion was naturally dried on a mica substrate.
  • the shape of nanocellulose was observed using a scanning probe microscope, and an arbitrary number of fibers were randomly selected from the obtained images.
  • the image processing conditions are arbitrary, but the calculated values may differ depending on the image processing conditions even for the same image.
  • the range of the difference in values depending on the image processing conditions is preferably within the range of ⁇ 100 nm for the average fiber length.
  • the range of the difference in values depending on the conditions is preferably within the range of ⁇ 10 nm for the average fiber width.
  • nanocellulose in one aspect of nanocellulose in the present invention, nanocellulose whose zeta potential and light transmittance satisfy the values described below may be used.
  • the zeta potential may be ⁇ 30 mV or less.
  • the zeta potential is -30 mV or less (that is, the absolute value is 30 mV or more)
  • repulsion between microfibrils is sufficiently obtained, and nanocellulose having a high surface charge density is likely to be generated.
  • the dispersion stability of nanocellulose is improved, and the viscosity stability and handleability of the slurry tend to be excellent.
  • the lower limit of the zeta potential is not particularly limited.
  • the zeta potential is -100 mV or more (that is, the absolute value is 100 mV or less)
  • oxidative cleavage in the fiber direction tends to be suppressed, so that nanocellulose having a uniform size tends to be obtained. ..
  • the zeta potential is a value measured under the conditions of pH 8.0 and 20 ° C. for a cellulose aqueous dispersion in which nanocellulose and water are mixed and the concentration of nanocellulose is 0.1% by mass. be.
  • the zeta potential can be measured according to the following conditions. Pure water is added to the aqueous dispersion of nanocellulose to dilute it so that the concentration of nanocellulose becomes 0.1%. Add 0.05 mol / L sodium hydroxide aqueous solution to the diluted nanocellulose aqueous dispersion to adjust the pH to about 8.0, and adjust the zeta potential with a zeta potential meter (ELSZ-1000) manufactured by Otsuka Electronics Co., Ltd. Measure at 20 ° C.
  • ELSZ-1000 zeta potential meter
  • the light transmittance in the nanocellulose mixed solution mixed with water to a solid content concentration of 0.1% by mass may be 95% or more.
  • the light transmittance is more preferably 96% or more, further preferably 97% or more, still more preferably 99% or more.
  • the light transmittance is a value measured by a spectrophotometer at a wavelength of 660 nm.
  • the light transmittance can be measured according to the following conditions.
  • An aqueous dispersion of nanocellulose is placed in a 10 mm thick quartz cell, and the light transmittance at a wavelength of 660 nm is measured with a spectrophotometer (JASCO V-550).
  • one aspect of nanocellulose in the present invention can be obtained by oxidizing with hypochlorous acid or a salt thereof to obtain oxidized cellulose and then defibrating it.
  • the degree of polymerization of the oxidized cellulose is not particularly limited, but is usually 600 or less. When the degree of polymerization of cellulose oxide exceeds 600, it tends to require a large amount of energy for defibration, it is not possible to exhibit sufficient defibration properties, and it tends to cause a decrease in dispersibility.
  • the degree of polymerization of cellulose oxide exceeds 600, the amount of oxidized cellulose which is insufficiently defibrated increases, so that when the finely divided nanocellulose is dispersed in a dispersion medium, light scattering and the like increase. Transparency may decrease. Furthermore, the size of the obtained nanocellulose varies, and the quality tends to be non-uniform. Therefore, the viscosity of the slurry containing nanocellulose (hereinafter, also referred to as “nanocellulose-containing slurry”) may increase, and the handleability of the slurry may decrease. From the viewpoint of easy friability, the lower limit of the degree of polymerization of cellulose oxide is not particularly set.
  • the degree of polymerization of oxidized cellulose is less than 50, the proportion of particulate cellulose tends to increase rather than fibrous.
  • the degree of polymerization of cellulose oxide may be in the range of 50 or more and 600 or less.
  • the degree of polymerization of cellulose oxide can be adjusted by changing the reaction time, reaction temperature, pH, and the effective chlorine concentration of hypochlorous acid or a salt thereof during the oxidation reaction. Specifically, since the degree of polymerization tends to decrease as the degree of oxidation increases, for example, a method of increasing the reaction time and / or the reaction temperature of oxidation can be mentioned in order to reduce the degree of polymerization. As another method, the degree of polymerization of cellulose oxide can be adjusted by the stirring conditions of the reaction system at the time of the oxidation reaction. For example, under conditions in which the reaction system is sufficiently homogenized using a stirring blade or the like, the oxidation reaction proceeds smoothly and the degree of polymerization tends to decrease.
  • the degree of polymerization of cellulose oxide tends to vary depending on the selection of the raw material cellulose. Therefore, the degree of polymerization of oxidized cellulose can be adjusted by selecting a cellulosic raw material.
  • the degree of polymerization of cellulose oxide is the average degree of polymerization (viscosity average degree of polymerization) measured by the viscosity method.
  • the degree of polymerization of cellulose oxide can be measured according to the following conditions.
  • Cellulose oxide is added to an aqueous solution of sodium borohydride adjusted to pH 10, and a reduction treatment is carried out at 25 ° C. for 5 hours.
  • the amount of sodium borohydride is 0.1 g with respect to 1 g of cellulose oxide.
  • solid-liquid separation and washing with water were performed by suction filtration, and the obtained oxidized cellulose was freeze-dried. 0.04 g of dried cellulose oxide is added to 10 mL of pure water, and the mixture is stirred for 2 minutes, and then 10 mL of a 1 M copper ethylenediamine solution is added to dissolve the mixture.
  • the cellulose oxide is a nanocellulose aqueous dispersion obtained by defibrating an aqueous dispersion having a concentration of 0.1% by mass of the oxidized cellulose with a rotation / revolution stirrer at a revolution speed of 2000 rpm and a rotation speed of 800 rpm for 10 minutes.
  • the light transmittance of the above is usually 60% or more.
  • the light transmittance of the nanocellulose water dispersion obtained by defibrating the water dispersion having a concentration of 0.1% by mass of the cellulose oxide with a vortex mixer at a rotation speed of 3000 rpm for 10 minutes has a high transmittance. Usually 60% or more.
  • the light transmittance is a value measured by a spectrophotometer at a wavelength of 660 nm. The specific measurement method is as described in (Light transmittance).
  • One aspect of the oxidized cellulose used in the present invention preferably has a structure in which at least two of the hydroxyl groups of the glucopyranose ring constituting the cellulose are oxidized, and more specifically, the second aspect of the glucopyranose ring. It is preferable to have a structure in which the hydroxyl groups at the positions and 3 positions are oxidized and a carboxy group is introduced. Further, it is preferable that the hydroxyl group at the 6-position of the glucopyranose ring in the nanocellulose or oxidized cellulose is not oxidized and remains as a hydroxyl group.
  • Such oxidized cellulose can be obtained, for example, by oxidizing a cellulosic raw material with hypochlorous acid or a salt thereof without using an N-oxyl compound.
  • the position of the carboxy group in the glucopyranose ring of cellulose oxide can be analyzed by the solid 13 C-NMR spectrum.
  • the position of the carboxy group in the glucopyranose ring can be analyzed by comparing the solution NMR spectrum using rayon oxide as a model molecule and the solid 13 C-NMR spectrum of cellulose oxide.
  • Rayon has the same chemical structure as cellulose, and its oxide (rayon oxide) is water-soluble.
  • rayon oxide By dissolving rayon oxide in heavy water and performing one-dimensional 13 C-NMR measurement of the solution, a peak of carbon attributed to the carboxy group is observed at 165 to 185 ppm.
  • the oxidized cellulose or nanocellulose used in the present invention obtained by oxidizing the raw material cellulose with hypochlorous acid or a salt thereof, two signals appear in this chemical shift range. Further, by solution two-dimensional NMR measurement, it can be determined that the carboxy group is introduced at the 2-position and the 3-position.
  • the carboxy group is introduced at the 2-position and the 3-position by evaluating the spread of the peak appearing at 165 to 185 ppm. That is, two peak area values obtained by vertically dividing the area value at the peak top after obtaining the total area value by drawing a baseline on the peak in the range of 165 ppm to 185 ppm in the solid 13 C-NMR spectrum. A ratio (large area value / small area value) is obtained, and if the ratio of the peak area values is 1.2 or more, it can be said that the peak is broad.
  • the presence or absence of the broad peak can be determined by the ratio of the baseline length L in the range of 165 ppm to 185 ppm and the perpendicular length L'from the peak top to the baseline. That is, if the ratio L'/ L is 0.1 or more, it can be determined that a broad peak exists.
  • the ratio L'/ L may be 0.2 or more, 0.3 or more, 0.4 or more, or 0.5 or more.
  • the upper limit of the ratio L'/ L is not particularly limited, but usually it may be 3.0 or less, 2.0 or less, or 1.0 or less.
  • the structure of the glucopyranose ring can also be determined by analysis according to the method described in Sustainable Chem. Eng. 2020, 8, 48, 17800? 17806.
  • Nanocellulose in the present invention is a collection of fibers in units of one.
  • the nanocellulose in the present invention contains carboxylated nanocellulose, it suffices to contain at least one carboxylated nanocellulose, and it is preferable that the carboxylated nanocellulose is the main component.
  • the main component of the carboxylated nanocellulose is that the ratio of the carboxylated nanocellulose to the total amount of nanocellulose exceeds 50% by mass, preferably exceeds 70% by mass, and more preferably 80% by mass. Refers to being in excess.
  • the upper limit of the above ratio is 100% by mass, but it may be 98% by mass or 95% by mass.
  • the nanocellulose in the present invention is blended with a thermoplastic resin, in which case the nanocellulose may contain a dispersion medium.
  • the dispersion medium for nanocellulose in the present invention is not particularly limited as long as it disperses nanocellulose.
  • examples of the dispersion medium include water, alcohols, ethers, ketones, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and the like. These may be used alone or in combination of two or more. Specific examples of these dispersion media include the same examples as the solvent used for the defibration treatment.
  • the resin composition of the present invention may include a step of adding an amine or a quaternary ammonium as necessary in the production method thereof and precipitating the resin composition. This modifies at least a portion of the nanocellulose with amines or quaternary ammoniums. Further, at least a part of the nanocellulose may be modified with the amine or the quaternary ammonium by using the nanocellulose previously reacted with the amine or the quaternary ammonium in the production of the resin composition of the present invention. .. Therefore, one of the preferred embodiments of the resin composition of the present invention comprises nanocellulose in which at least a portion of the nanocellulose has been modified with an amine or quaternary ammonium.
  • reaction of the amine or quaternary ammonium salt compound with the carboxy group on the surface of the nanocellulose modifies the nanocellulose, improves the hydrophobicity of the nanocellulose, and improves the affinity for ethylene unsaturated monomers and resins. Be done.
  • the amine that modifies nanocellulose is not particularly limited and may be primary, secondary, or tertiary.
  • the number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon number) The number) is not particularly limited and may be selected from 1 to 100 carbon atoms.
  • an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used. From the viewpoint of imparting sufficient hydrophobicity to nanocellulose, the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
  • the quaternary ammonium salt compound that modifies nanocellulose is not particularly limited.
  • the quaternary ammonium salt compound includes a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary ammonium bromide such as tetrabutylammonium bromide.
  • a quaternary ammonium iodide such as tetrabutylammonium iodide can be considered.
  • the thermoplastic resin in the present invention is a polymer having a property of softening when it reaches the glass transition temperature or the melting point.
  • the thermoplastic resin used in the present invention may be appropriately selected depending on the intended use of the resin, the type of the resin to be blended with the resin composition, and the like, and is not particularly limited.
  • Examples of the thermoplastic resin include a resin containing an ethylenically unsaturated monomer or the like as a monomer unit.
  • the ethylenically unsaturated monomer refers to a compound containing an ethylene group and polymerizing via the ethylene group to form a bond.
  • the monomer constituting the thermoplastic resin examples include (meth) acrylic acid; (meth) acrylic monomer such as alkyl (meth) acrylate and alkylene glycol (meth) acrylate; and nitrile-based monomer such as (meth) acrylonitrile; halogen.
  • (meth) acrylic monomers, (meth) acrylamide monomers, styrene monomers, maleimide monomers, and nitrile monomers are preferable. These may be contained alone or in combination of two or more.
  • alkyl (meth) acrylate examples include those having an alkyl portion having 1 to 10 carbon atoms.
  • the alkyl moiety may be linear, branched or cyclic, and may be unsubstituted or having a substituent.
  • the thermoplastic resin preferably has a functional group capable of forming a chemical bond with nanocellulose.
  • the functional group is not particularly limited, and examples thereof include a carboxy group, a hydroxyl group, an epoxy group, an amino group, an amide group, and a cyano group. Having these functional groups enhances the affinity for nanocellulose.
  • the proportion of the ethylenically unsaturated monomer having a functional group is preferably 5 mol% or less, more preferably 3 mol% or less, and 1 mol% or less of the total ethylenically unsaturated monomer. It is more preferable to have.
  • the functional group may be a base or a cation containing a nitrogen atom.
  • an aqueous dispersion of nanocellulose and a thermoplastic resin are mixed, and the nanocellulose and the thermoplastic resin are reacted to precipitate the nanocellulose.
  • a method including a step of taking out a mixture of the thermoplastic resin and the thermoplastic resin can be mentioned. According to this method, a mixture of nanocellulose and a thermoplastic resin can be obtained without using a precipitating agent, and a fibrous complex can be formed from the mixture.
  • an amine can be preferably mentioned.
  • the amine is not particularly limited and may be primary, secondary, or tertiary.
  • the number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon number) The number) is not particularly limited and may be selected from 1 to 100 carbon atoms.
  • an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used.
  • the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
  • quaternary ammonium can be preferably mentioned.
  • the quaternary ammonium salt compound is not particularly limited, and is, for example, a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary such as tetrabutylammonium bromide. Examples thereof include quaternary ammonium iodide such as ammonium bromide and tetrabutylammonium iodide.
  • thermoplastic resin is a polymer having a hydrophilic part and a hydrophobic part.
  • the hydrophilic portion refers to a portion composed of a hydrophilic monomer
  • the hydrophobic portion refers to a portion composed of a hydrophobic monomer.
  • the polymer having a hydrophilic portion and a hydrophobic portion is a copolymer composed of a portion composed of a hydrophilic monomer and a portion composed of a hydrophobic monomer.
  • the type of the copolymer is not limited, and may be, for example, any type such as a random copolymer, a block copolymer, and a graft copolymer.
  • hydrophobic monomer examples include (meth) acrylic acid alkyl ester compounds such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; styrene.
  • Aromatic vinyl compounds such as ⁇ -methylstyrene, vinyltoluene and vinylxylene; substituted maleimide-based monomers such as phenylmaleimide; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, t.
  • -Alkyl vinyl ethers having an alkyl group having 1 to 10 carbon atoms such as butyl vinyl ether, n-hexyl vinyl ether, 2-ethylhexyl vinyl ether, n-octyl vinyl ether, n-nonyl vinyl ether and n-decyl vinyl ether; vinyl formate, vinyl acetate, etc.
  • Vinyl ester compounds such as vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl piperiate and vinyl versaticate; ⁇ -olefins such as ethylene, propylene and butylene; etc. Can be mentioned.
  • hydrophilic monomer examples include unsaturated acids such as (meth) acrylic acid, crotonic acid, maleic acid, itaconic acid and fumaric acid, and salts thereof; unsaturated acid anhydrides such as maleic anhydride; 2-acrylamide.
  • Sulphonic acid group-containing monomers such as -2-methylpropanesulfonic acid and salts thereof; (meth) acrylic monomers such as 2-hydroxyethyl (meth) acrylate and alkylene glycol (meth) acrylate; (meth) acrylamide, (Meta) acrylamide-based monomers such as meta) acryloylmorpholin; methyl (meth) acrylamide, ethyl (meth) acrylamide, n-propyl (meth) acrylamide, isopropyl (meth) acrylamide, n-butyl (meth) acrylamide and 2-ethylhexyl N-alkyl (meth) acrylamide compounds such as (meth) acrylamide; (di) such as methylaminopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, ethylaminopropyl (meth) acrylamide and diethylaminopropy
  • Alkylaminoalkylamide compounds (di) alkylaminoalkyl (meth) acrylate compounds such as methylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, ethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate; (Di) Alkylaminoalkyl (meth) acrylamide compounds such as dimethylaminopropylacrylamide; N-vinyllactam compounds such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam; Maleimide-based monomers such as maleimide; Vinyl alcohols; etc. Can be mentioned.
  • alkylaminoalkyl (meth) acrylate compounds such as methylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, ethylamino
  • thermoplastic resin is a block copolymer having a hydrophilic segment and a hydrophobic segment.
  • hydrophilic segment refers to one set composed of hydrophilic monomers in the block copolymer
  • hydrophobic segment refers to one set composed of hydrophobic monomers in the block copolymer. ..
  • the weight average molecular weight of the thermoplastic resin is not particularly limited. For example, it may be 50 to 3 million. When the weight average molecular weight is 5000 or more, the decrease in the strength of the resin is suppressed, and when the weight average molecular weight of the particles is 3 million or less, the particles are easily melted in the resin and a sufficient modification effect tends to be obtained.
  • the weight average molecular weight of the thermoplastic resin is preferably 10 to 2 million, more preferably 50 to 1 million.
  • the weight average molecular weight can be measured by a commercially available GPC (gel permeation chromatography), and in detail, it is measured by the method described in Examples.
  • the method for producing the thermoplastic resin is not particularly limited.
  • a method for producing a thermoplastic resin for example, a method of emulsion polymerization, suspension polymerization or pickering emulsion polymerization of a monomer constituting the thermoplastic resin in the presence or absence of nanocellulose can be mentioned.
  • the method is to disperse the nanocellulose and the monomer in a solvent such as water and heat the monomer with the polymerization initiator added.
  • a solvent such as water
  • the polymerization initiator used for the polymerization a general polymerization initiator such as a persulfate, an organic peroxide, or an azo compound can be used, but the persulfate is excellent in terms of polymerization reaction rate and productivity.
  • ammonium persulfate is more preferable because the obtained resin has excellent water resistance.
  • persulfate examples include ammonium persulfate, potassium persulfate, sodium persulfate and the like.
  • organic peroxides include t-butyl hydroperoxide, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-i-propylperoxydicarbonato, and di-2-ethylhexylperoxydicarbonato.
  • Examples of the azo compound include 2,2'-azobis-2,4-dimethylvaleronitrile, 2,2'-azobis-i-butylnitrile, and 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile. And so on.
  • persulfate or peroxide may be used as a redox-based polymerization initiator in combination with the reducing agent sodium bisulfite or sodium ascorbate.
  • the temperature during the polymerization reaction is not particularly limited. For example, it is preferably in the range of 30 ° C to 180 ° C, and more preferably in the range of 50 ° C to 150 ° C.
  • the ratio of nanocellulose to the ethylenically unsaturated monomer is not particularly limited.
  • the amount of the ethylenically unsaturated monomer with respect to 100 parts by mass of nanocellulose may be 5 parts by mass to 1000 parts by mass, or 10 parts by mass to 100 parts by mass.
  • the solvent used in the polymerization reaction may or may not be removed. Further, the thermoplastic resin obtained by the above method may be used by being dispersed in another solvent after removing the solvent used in the polymerization reaction.
  • the method for producing a resin composition of the present invention is a method for producing a resin composition containing nanocellulose and a thermoplastic resin.
  • a solid content containing at least nanocellulose is precipitated from an aqueous mixture containing at least nanocellulose, and an organic solvent is added to the solid content through an operation of separating the solid content and the liquid phase.
  • it includes a step of removing the whole (also referred to as step B).
  • substantially in the absence of water refers to the reduced content of water in Mixture I.
  • Mixture I may contain water to the extent that it does not affect the acquisition of the resin composition.
  • the content of water in the mixture I in step B in "substantially absent of water” may be 5% by weight or less, or 3% by weight or less, based on the total amount of the mixture I in step B. It may be 1 mass% or less.
  • a mixture I of nanocellulose, a thermoplastic resin and an organic solvent is prepared.
  • the details of the embodiments of the nanocellulose and the thermoplastic resin contained in the resin composition in the production method of the present invention are as described in the above-mentioned ⁇ nanocellulose> and ⁇ thermoplastic resin>.
  • the organic solvent referred to here is preferably an organic solvent that dissolves and / or swells the thermoplastic resin. Examples of the organic solvent include alcohol solvents, ketone solvents, ester solvents, ether solvents, nitrile solvents and the like. These may be used alone or in combination of two or more.
  • Examples of the alcohol solvent include methanol, ethanol, isopropanol, isobutanol, sec-butyl alcohol, tert-butyl alcohol, methyl cellosolve, ethylene glycol, glycerin and the like.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone and the like.
  • Examples of the ester solvent include isoamyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like.
  • Examples of the ether solvent include ethylene glycol dimethyl ether, 1,4-dioxane, and tetrahydrofuran (also referred to as THF).
  • Examples of the nitrile solvent include acetonitrile, benzonitrile, propionitrile, butyronitrile, adiponitrile and the like.
  • step A in the production method of the present invention conditions such as the blending order of these components are not limited as long as a mixture I of nanocellulose, a thermoplastic resin and an organic solvent can be obtained.
  • Examples of the embodiment of the step A include, but are not limited to, steps A-1 to A-3 described later.
  • Step A-1 One of the aspects of step A (also referred to as step A-1) is a step of precipitating nanocellulose by adding a precipitating agent to the aqueous dispersion of nanocellulose and separating it from the liquid phase, and a step of separating the nanocellulose from the liquid phase.
  • the step of adding a thermoplastic resin and an organic solvent to the separated nanocellulose to obtain the mixture I is included.
  • the aqueous dispersion of nanocellulose is also referred to as an aqueous mixture. Therefore, the water mixture is the aqueous dispersion of nanocellulose itself.
  • Step A-2 One aspect of step A (also referred to as step A-2) is a mixture of nanocellulose and a thermoplastic resin II by adding a precipitant to an aqueous mixture of an aqueous dispersion of nanocellulose and a thermoplastic resin. The process of precipitating and separating from the liquid phase, and The step of adding an organic solvent to the mixture II of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
  • Step A-3 In one of the embodiments of step A (also referred to as step A-3), an aqueous dispersion of nanocellulose and a thermoplastic resin are mixed, and the nanocellulose and the thermoplastic resin are reacted to precipitate the nanocellulose.
  • the step of separating the mixture III with the thermoplastic resin from the liquid phase, The step of adding an organic solvent to the mixture III of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
  • the water mixture in the present specification means a composition containing water as a constituent component.
  • separating from the liquid phase is synonymous with “removing from the water mixture”, and by separating the liquid phase containing at least a part of water contained in the water mixture from the solid component.
  • the nanocellulose, the mixture II, and the mixture III in the step A correspond to solid components.
  • the nanocellulose, the mixture II, and the mixture III in the step A may not have the liquid phase completely removed, or may contain a part of the liquid phase. Separation of the liquid phase and the solid component can be performed, for example, by filtration.
  • the solid component collected by filtration may be washed with an organic solvent.
  • the precipitant in steps A-1 and A-2 refers to a component having an action of precipitating nanocellulose, a thermoplastic resin, or a mixture of nanocellulose and a thermoplastic resin.
  • a component forming a salt with a carboxy group can be preferably mentioned.
  • the nanocellulose and the thermoplastic resin interact with each other to precipitate them without using a precipitating agent, and separate them from the aqueous mixture as a mixture III of the nanocellulose and the thermoplastic resin. Can be done.
  • the precipitant examples include an inorganic salt, an organic alkali or a cation containing a nitrogen atom in the molecule, and the like.
  • the inorganic salt examples include sodium chloride, magnesium chloride and the like.
  • the organic alkali containing a nitrogen atom in the molecule include primary, secondary, and tertiary amines.
  • Specific examples of the cation include a quaternary ammonium salt compound.
  • the number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon number) The number) is not particularly limited and may be selected from 1 to 100 carbon atoms.
  • an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used. From the viewpoint of imparting sufficient hydrophobicity to nanocellulose, the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
  • the quaternary ammonium salt compound includes a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary ammonium bromide such as tetrabutylammonium bromide.
  • a quaternary ammonium iodide such as tetrabutylammonium iodide can be considered.
  • the separation step in the step A of the present invention is continuously performed.
  • the continuous step of separation means that the operation is performed without interruption by simultaneously adding the constituent components and recovering the solid component.
  • step A-1 it means that the aqueous dispersion of nanocellulose and the precipitating agent are continuously supplied and the nanocellulose is continuously recovered.
  • step A-2 it means that the aqueous dispersion of nanocellulose, the thermoplastic resin, and the precipitating agent are continuously supplied, and the mixture II is continuously recovered.
  • step A-3 it means that the aqueous dispersion of nanocellulose and the thermoplastic resin are continuously supplied and the mixture III is continuously recovered.
  • Step A-4 In step A in the production method of the present invention, a method of omitting the operation of separating the solid content and the liquid phase may be used in order to obtain the mixture I of nanocellulose, the thermoplastic resin and the organic solvent. That is, one of the aspects of step A of the production method of the present invention (also referred to as step A-4) is step A for preparing a mixture I of nanocellulose, a thermoplastic resin, and an organic solvent, which is the step A.
  • a step of adding an organic alkali or cation containing a nitrogen atom in the molecule to the aqueous dispersion of nanocellulose and further adding a thermoplastic resin and an organic solvent to separate it from the aqueous phase to obtain the mixture I or It comprises a step of adding a thermoplastic resin and an organic solvent to an aqueous dispersion of nanocellulose, and further adding an organic alkali or cation containing a nitrogen atom in the molecule to separate it from the aqueous phase to obtain the mixture I.
  • the thermoplastic resin and the organic solvent may be added separately, or may be added as a mixture of the thermoplastic resin and the organic solvent. When the thermoplastic resin and the organic solvent are added separately, the order of addition thereof is arbitrary.
  • a step B of removing a part or all of the organic solvent from the mixture I in the substantially absence of water is performed.
  • the removal of the organic solvent can be performed, for example, by distilling off the solvent under reduced pressure.
  • the reduced pressure conditions may be appropriately adjusted depending on the physical characteristics of the organic solvent, and may be usually performed under reduced pressure in the range of 0 Torr or more and 30 Torr or less.
  • the organic solvent may be removed while heating.
  • the temperature at the time of depressurization may be appropriately adjusted depending on the physical characteristics of the organic solvent, but is usually 10 ° C. or higher and 100 ° C. or lower.
  • the removal of the organic solvent may be performed by using a part of the organic solvent or removing all the organic solvents.
  • the content of the organic solvent contained in the obtained resin composition is not particularly limited, but is usually in the range of 0% by mass or more and 100% by mass or less, and in the range of 0% by mass or more and 80% by mass or less with respect to the total amount of the resin composition. It may be in the range of 0% by mass or more and 70% by mass or less, or may be in the range of 0% by mass or more and 60% by mass or less.
  • One of the present invention is a resin containing the resin composition of the present invention.
  • the resin of the present invention is made from a resin composition.
  • the resin of the present invention may be used as a resin by, for example, melting the resin composition as it is, and the resin composition of the present invention and the resin to be blended with the resin composition (hereinafter, also referred to as a raw material resin). May be produced by mixing.
  • Examples of the method for producing the resin of the present invention include a method in which a raw material resin is mixed with a resin composition as needed and heat-kneaded using an extruder.
  • the resin of the present invention may be molded into a desired shape using a mold or the like.
  • the raw material resin is not particularly limited, and a known resin can be used.
  • the raw material resin include moldable resins such as thermoplastic resins and thermoplastic elastomers.
  • the thermoplastic resin include ABS (acrylonitrile-butadiene-styrene) resin, acrylic resin, polyolefin, polyester, polyurethane, polystyrene, polyamide, polyvinyl chloride, polycarbonate and the like.
  • the thermoplastic elastomer include olefin-based elastomers, styrene-based elastomers, polyamide-based elastomers, polyester-based elastomers, and polyurethane-based elastomers.
  • the raw material resin preferably contains the same components as those contained in the thermoplastic resin, or segments or functional groups having a good affinity with the thermoplastic resin.
  • the same component as the component contained in the thermoplastic resin or a segment having a good affinity has a polymer alloy structure because effects such as shock absorption are imparted. If the affinity with the raw material resin is poor, the dispersibility of the obtained resin may be deteriorated, the appearance of the resin may be deteriorated, and the breaking stress and breaking elongation may be lowered.
  • the amount of the resin composition contained in the resin of the present invention is not particularly limited.
  • the amount of the resin composition with respect to 100 parts by mass of the raw material resin may be 0.1 part by mass to 10 parts by mass.
  • the complex (resin composition) obtained in Examples and Comparative Examples was added to the ABS resin in an amount of 1 to 5% by mass (in terms of nanocellulose).
  • the resin composition and ABS resin pellets were mixed in a cup and then heat-kneaded using a plast mill. Kneading was started at a kneading temperature of 25 ° C. and gradually raised to a final kneading temperature of 160 ° C. and a total kneading time of 45 minutes. Then, it was pressed at 160 ° C. and 10 MPa for 5 minutes using a pressurizer and a die to form a flat plate of the kneaded product.
  • test piece for the bending test a strip-shaped test piece having a width of 10 mm and a length of 40 mm (thickness of 1 mm) was prepared using the obtained flat plate-shaped kneaded product.
  • test piece for the Charpy impact test a strip-shaped test piece having a width of 10 mm and a length of 70 mm (thickness of 3 mm) was prepared using the obtained flat plate-shaped kneaded product.
  • a test piece was prepared using ABS resin to which no resin composition was added.
  • the resin compositions obtained in Examples and Comparative Examples were observed with an electron microscope.
  • As the electron microscope a scanning electron microscope S-4800 manufactured by Hitachi High-Technologies Corporation was used. The magnification of the electron microscope was 45,000 to 50,000 times.
  • the resin composition in which the nanocellulose and the thermoplastic resin formed a fibrous composite and the thermoplastic resin had a structure in which the nanocellulose was coated was designated as ⁇ . .. Other structures are marked with x.
  • thermoplastic resin (Measurement condition) Column: Tosoh TSKgel Supermultipore HZ-M x 3 Tosoh TSKgel Guard volume SuperMP (MZ) -M x 1 Solvent: THF Temperature: 40 ° C Detector: RI Flow velocity: 0.3 mL / min When the thermoplastic resin was obtained in the absence of nanocellulose, it was measured as described above. When a resin composition containing nanocellulose and a thermoplastic resin was obtained by polymerization in the presence of nanocellulose, a solvent was added to the resin composition to dissolve the polymer. Then, it was filtered using a filter of 0.45 ⁇ m, and the obtained liquid was measured by polystyrene conversion.
  • the obtained oxidized cellulose was defibrated with an ultrasonic homogenizer for 10 minutes, t-butanol was added thereto, mixed, and centrifuged. Pure water was added to the obtained t-butanol solution to distill off t-butanol to prepare a dispersion containing 1.3% by mass of nanocellulose-2.
  • Nanocellulose-3 A dispersion containing 1.3% by mass of nanocellulose-3 was prepared in the same manner as nanocellulose-2 except that the effective chlorine concentration of the solution was 30% by mass.
  • Nanocellulose-4 The same as Nanocellulose-2 was prepared except that the effective chlorine concentration of the solution was 43% by mass, and a dispersion containing 1.3% by mass of Nanocellulose-4 was prepared.
  • Table 1 shows the physical characteristics of nanocellulose-1 to nanocellulose-4 (denoted as CNF-1 to CNF-4 in the table).
  • the average fiber length and average fiber width of nanocellulose were measured by the following measuring methods.
  • the obtained nanocellulose dispersion is diluted 1000 to 1,000,000 times with pure water, air-dried on a mica substrate, and AC mode is used using a scanning probe microscope "MFP-3D infinity" manufactured by Oxford Asylum. Then, the shape of nanocellulose was observed.
  • Example 1 To 100 g of a dispersion containing nanocellulose (nanocellulose-1, nanocellulose concentration 1.3% by mass), 0.66 g of styrene, 0.28 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization.
  • the weight average molecular weight Mw of the copolymer was 358,000 (in terms of polystyrene).
  • the SEM image obtained by electron microscope observation of the resin composition of Example 1 is shown in FIG. As shown in FIG. 1, it was confirmed that the resin composition formed a fibrous complex and the thermoplastic resin had a structure coated with nanocellulose.
  • Example 2 To 100 g of a dispersion containing nanocellulose (nanocellulose-2, nanocellulose concentration 1.3% by mass), 3.93 g of styrene, 1.68 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization.
  • Example 3 To 100 g of a dispersion containing nanocellulose (nanocellulose-3, nanocellulose concentration 1.3% by mass), 1.45 g of styrene, 0.62 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, nanocellulose-3 and resin fine particles were precipitated using sodium chloride as a salting out agent. It was filtered and washed with methanol.
  • Example 4 To 100 g of a dispersion containing nanocellulose (nanocellulose-4, nanocellulose concentration 1.3% by mass), 0.92 g of methyl methacrylate and 0.35 g of a 1% by mass ammonium persulfate aqueous solution and 0.03 g of n-octyl thioglycolate were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization.
  • Example 5 0.24 g of methyl methacrylate and 0.35 g of 1% by mass ammonium persulfate aqueous solution and 0.03 g of n-octyl thioglycolate in 100 g of a dispersion containing nanocellulose (nanocellulose-2, nanocellulose concentration 1.3% by mass). added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization.
  • n methoxypolyethylene glycol
  • a dispersion containing nanocellulose nanocellulose-2, nanocellulose concentration 1.3% by mass
  • add 0.59 g of a 25% hexadecyltrimethylammonium hydroxide aqueous solution and stir to obtain nanocellulose. It was precipitated, filtered and washed with methanol. A solution consisting of 0.47 g of polymer P-2 and 11.6 g of acetone was added to this mixture and stirred.
  • the solvent was distilled off under reduced pressure (2 Torr, 50 ° C. ⁇ 7 hr) to obtain a complex of nanocellulose-2 and the block copolymer P-2.
  • Example 9 To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, 1.32 g of BORON MOLECULAR BM1429 as an initiator, and 0.08 g of ABN-E as an initiator are added, and the temperature is 70 ° C. under nitrogen bubbling for 4 hours. It was polymerized by heating and stirring. After a predetermined time, the internal temperature was once lowered to 30 ° C., 9.0 g of acrylamide (powder) was added, and the mixture was again heated and stirred at 70 ° C. for 4 hours for polymerization.
  • a dispersion containing nanocellulose nanocellulose-3, nanocellulose concentration 1.3% by mass
  • a solution consisting of 0.44 g of polymer P-3 and 11.4 g of acetonitrile was added to this mixture and stirred.
  • the solvent was distilled off under reduced pressure (2 Torr, 50 ° C. ⁇ 7 hr) to obtain a complex of nanocellulose-3 and the block copolymer P-3.
  • n methoxypolyethylene glycol
  • DMAPAA N- [3- (dimethylamino) propyl] acrylamide
  • Nanocellulose-2 was used as the nanocellulose and treated in the same manner as in Comparative Example 2 to obtain a composite of nanocellulose-2 and a polystyrene / acrylonitrile copolymer (nanocellulose concentration 70% by mass).
  • Comparative Example 4 Treatment was carried out in the same manner as in Comparative Example 1 except that nanocellulose-3 was used as the nanocellulose to obtain a composite of nanocellulose-3 and a polystyrene / acrylonitrile copolymer (nanocellulose concentration 80% by mass).
  • Table 2 shows the physical characteristics of the complexes of Examples 1 to 11 and Comparative Examples 1 to 4.
  • Table 3 shows the details of the manufacturing methods a to i in Table 2.
  • Table 4 shows the physical characteristics and evaluation results of the test pieces.
  • the bending strength of the test piece of the ABS resin to which the resin composition was not added was 67.6 MPa.
  • the resin composition of the present invention can reinforce the resin and has industrial applicability in the field of reinforced resin.

Abstract

The present invention provides a resin composition which comprises nanocellulose and a thermoplastic resin, the nanocellulose and the thermoplastic resin having formed a fibrous composite. The present invention provides a method for producing a resin composition comprising nanocellulose and a thermoplastic resin, the method comprising: step A in which a solid matter at least containing nanocellulose is sedimented from an aqueous mixture at least containing the nanocellulose, the solid matter is separated from the liquid phase, and an organic solvent is added to the solid matter to prepare a mixture I of the nanocellulose, the thermoplastic resin, and the organic solvent; and step B in which some or all of the organic solvent is removed from the mixture I substantially in the absence of water.

Description

樹脂組成物、樹脂組成物の製造方法、及び樹脂Resin composition, method for producing resin composition, and resin
 本発明は、樹脂組成物、樹脂組成物の製造方法、及び樹脂に関する。 The present invention relates to a resin composition, a method for producing a resin composition, and a resin.
 従来、熱可塑性樹脂の補強材としては、炭素繊維やガラス繊維等が使用されている。近年、炭素繊維やガラス繊維等の補強材に加え、植物繊維を補強材として使用する研究が進められている。植物繊維は、人工的に合成するのではなく、植物由来の繊維をほぐして使用される。植物繊維は、燃焼の際に灰分として残らないため、焼却炉内の灰分の処理や、埋立て処理等の問題が生じない。このため近年、植物繊維を補強材として利用する研究が進められており、特に植物繊維をナノレベルにまで解繊したセルロースナノファイバーの利用が盛んに研究されている。 Conventionally, carbon fiber, glass fiber, etc. have been used as the reinforcing material for the thermoplastic resin. In recent years, research on the use of plant fiber as a reinforcing material in addition to reinforcing materials such as carbon fiber and glass fiber has been promoted. Plant fibers are not artificially synthesized, but are used by loosening plant-derived fibers. Since the plant fiber does not remain as ash during combustion, there are no problems such as ash treatment in the incinerator and landfill treatment. For this reason, in recent years, research on the use of plant fibers as a reinforcing material has been promoted, and in particular, the use of cellulose nanofibers obtained by defibrating plant fibers to the nano level has been actively studied.
 セルロースナノファイバーは親水性の官能基を多数有するため樹脂との親和性が低く、そのまま樹脂と混錬しても十分な補強効果が得られないという問題がある。
 上記問題の解決のため、例えば、特許文献1には、セルロースナノファイバー分散液中で、エチレン性不飽和単量体を共重合させることを特徴とする複合体の製造方法が提案されている。この製造方法によると、セルロースナノファイバーが、ゴムや樹脂中に均一に分散し、高い強度を発現する、セルロースナノファイバーと樹脂(エチレン不飽和単量体の共重合体)との複合体が製造できるとされている。また、特許文献2には、重合性化合物とセルロースナノファイバーとを溶媒に分散させた分散液中で、前記重合性化合物を重合させることにより得られる、複合樹脂組成物が提案されている。この複合樹脂組成物は、セルロースナノファイバーの樹脂中での分散性が高いとされている。
Since cellulose nanofibers have a large number of hydrophilic functional groups, they have a low affinity with the resin, and there is a problem that a sufficient reinforcing effect cannot be obtained even if they are kneaded with the resin as they are.
In order to solve the above problems, for example, Patent Document 1 proposes a method for producing a composite, which comprises copolymerizing an ethylenically unsaturated monomer in a cellulose nanofiber dispersion. According to this production method, a composite of cellulose nanofibers and a resin (a copolymer of ethylene unsaturated monomer) in which cellulose nanofibers are uniformly dispersed in rubber or a resin and exhibits high strength is produced. It is said that it can be done. Further, Patent Document 2 proposes a composite resin composition obtained by polymerizing the polymerizable compound in a dispersion liquid in which a polymerizable compound and cellulose nanofibers are dispersed in a solvent. This composite resin composition is said to have high dispersibility in the resin of cellulose nanofibers.
 また、特許文献3には、セルロースナノファイバーが樹脂中に高度に分散したセルロースナノファイバー複合形成体の製造に好適に用いられる樹脂改質用添加剤が開示されている。この樹脂改質用添加剤は、熱可塑性樹脂等と混錬し、セルロースナノファイバー複合形成体にされる。すなわち、特許文献3の樹脂改質用添加剤は、マスターバッチとして、樹脂と配合して使用される。 Further, Patent Document 3 discloses an additive for modifying a resin, which is suitably used for producing a cellulose nanofiber composite formation in which cellulose nanofibers are highly dispersed in a resin. This resin modification additive is kneaded with a thermoplastic resin or the like to form a cellulose nanofiber composite formation. That is, the resin modification additive of Patent Document 3 is used as a masterbatch in combination with a resin.
 さらに、特許文献4には、樹脂の改質効果に優れる樹脂改質剤として、アミン又は四級アンモニウム塩化合物と反応させたセルロースナノファイバーと、エチレン性不飽和単量体の重合体とを含む、樹脂改質剤が開示されている。 Further, Patent Document 4 contains cellulose nanofibers reacted with an amine or a quaternary ammonium salt compound and a polymer of an ethylenically unsaturated monomer as a resin modifier having an excellent resin modifying effect. , Resin modifiers are disclosed.
 セルロースナノファイバーと熱可塑性樹脂を含む樹脂組成物の製造方法として、例えば、単軸又は二軸押出機を用いて、熱可塑性樹脂と、セルロースナノファイバー、表面改質剤及びプロトン性有機溶媒との混合物を溶融混練し、押出し、固化させ、ペレット状成形体として得る方法が知られている(特許文献5参照)。また、特許文献5には、(A)熱可塑性樹脂を100質量部、(B)平均繊維径が1000nm以下であるセルロースナノファイバーを1~200質量部、(C)表面改質剤を0.1~200質量部、及び(D)沸点が100℃以上の非プロトン性有機溶媒を0.1~10000質量ppm含む、樹脂組成物が開示されている。この樹脂組成物は、樹脂成形体に充分な機械的特性と熱特性を与えつつ、実用途における耐摩耗性及び振動疲労特性に優れるとされている。 As a method for producing a resin composition containing cellulose nanofibers and a thermoplastic resin, for example, using a single-screw or twin-screw extruder, the thermoplastic resin and the cellulose nanofibers, a surface modifier and a protonic organic solvent are used. A method of melt-kneading a mixture, extruding it, and solidifying it to obtain a pellet-shaped molded product is known (see Patent Document 5). Further, in Patent Document 5, (A) 100 parts by mass of a thermoplastic resin, (B) 1 to 200 parts by mass of cellulose nanofibers having an average fiber diameter of 1000 nm or less, and (C) a surface modifier of 0. A resin composition containing 1 to 200 parts by mass and (D) 0.1 to 10000 mass ppm of an aprotonic organic solvent having a boiling point of 100 ° C. or higher is disclosed. This resin composition is said to be excellent in wear resistance and vibration fatigue characteristics in practical use while imparting sufficient mechanical properties and thermal properties to the resin molded body.
特開2016-155897号公報Japanese Unexamined Patent Publication No. 2016-155897 特開2014-105217号公報Japanese Unexamined Patent Publication No. 2014-105217 特開2013-014741号公報Japanese Unexamined Patent Publication No. 2013-014741 国際公開第2020/184177号International Publication No. 2020/184177 特開2020-007492号公報Japanese Unexamined Patent Publication No. 2020-007492
 上述したようにセルロースナノファイバーは樹脂の補強材として機能するが、セルロースナノファイバーを含む樹脂には様々な力学作用に対する強度に優れることが求められる。セルロースナノファイバーを含む樹脂には、例えば、耐衝撃性、及び、曲げに対する強度を備えることが求められる。 As described above, cellulose nanofibers function as a reinforcing material for resins, but resins containing cellulose nanofibers are required to have excellent strength against various mechanical actions. The resin containing the cellulose nanofibers is required to have, for example, impact resistance and bending strength.
 特許文献1及び2には、樹脂中でセルロースナノファイバーの分散性を高め強度を得ることを目的に、セルロースナノファイバーの分散液中で、重合性化合物を重合してセルロースナノファイバーと樹脂との複合体を得ることが開示されている。しかしながら、特許文献1及び2において得られる複合体をマスターバッチとして使用することはそもそも開示されておらず、得られる複合体は、耐衝撃性、及び、曲げに対する強度は十分ではない。 In Patent Documents 1 and 2, for the purpose of increasing the dispersibility of cellulose nanofibers in a resin and obtaining strength, a polymerizable compound is polymerized in a dispersion liquid of cellulose nanofibers to obtain cellulose nanofibers and a resin. It is disclosed to obtain a complex. However, the use of the complex obtained in Patent Documents 1 and 2 as a masterbatch is not disclosed in the first place, and the obtained complex is not sufficient in impact resistance and bending strength.
 特許文献3の樹脂改質用添加剤は、セルロースナノファイバーが樹脂中に高度に分散したセルロースナノファイバー複合形成体の製造に好適に用いられ、強化樹脂を得られるとされているが、耐衝撃性、及び、曲げに対する強度を一層向上することが求められる。特許文献4の樹脂改質剤は、樹脂改質効果に優れるが、耐衝撃性、及び、曲げに対する強度については述べられておらず、これらの特性を一層向上することが求められる。特許文献5の樹脂組成物は、樹脂成形体に充分な機械的特性を与えるとされるが、耐衝撃性、及び、曲げに対する強度をさらに向上することが求められる。 The resin modification additive of Patent Document 3 is suitably used for producing a cellulose nanofiber composite formation in which cellulose nanofibers are highly dispersed in the resin, and it is said that a reinforced resin can be obtained. It is required to further improve the property and the strength against bending. The resin modifier of Patent Document 4 is excellent in the resin modifying effect, but the impact resistance and the strength against bending are not described, and it is required to further improve these characteristics. The resin composition of Patent Document 5 is said to give sufficient mechanical properties to a resin molded product, but is required to further improve impact resistance and bending strength.
 そこで本発明は、耐衝撃性を有しながら、曲げ強度が向上した樹脂を得ることのできる樹脂組成物を提供することを課題とする。 Therefore, it is an object of the present invention to provide a resin composition capable of obtaining a resin having improved bending strength while having impact resistance.
 本発明者らは鋭意検討した結果、ナノセルロース及び熱可塑性樹脂を含み、当該ナノセルロースと熱可塑性樹脂とが所定の形態を形成した樹脂組成物は、耐衝撃性を有しながら、曲げ強度が向上した樹脂を提供することを見いだし、本発明を完成するに至った。
 また、本発明者らは鋭意検討した結果、所定の製造方法によって、熱可塑性樹脂がナノセルロースを被覆した構造を有する、ナノセルロースと熱可塑性樹脂との繊維状の複合体を製造できることを見いだし、本発明を完成するに至った。
As a result of diligent studies by the present inventors, a resin composition containing nanocellulose and a thermoplastic resin in which the nanocellulose and the thermoplastic resin form a predetermined form has impact resistance and bending strength. We have found that we can provide an improved resin, and have completed the present invention.
Further, as a result of diligent studies, the present inventors have found that a fibrous composite of nanocellulose and a thermoplastic resin having a structure in which a thermoplastic resin is coated with nanocellulose can be produced by a predetermined production method. The present invention has been completed.
 すなわち、本発明は以下のとおりである。
[1]
 ナノセルロース及び熱可塑性樹脂を含み、
 前記ナノセルロースと前記熱可塑性樹脂とが、繊維状の複合体を形成する、
樹脂組成物。
[2]
 前記ナノセルロースのカルボキシ基量が、0.1mmol/g以上3.0mmol/g以下である、
[1]に記載の樹脂組成物。
[3]
 前記ナノセルロースの含有量が、樹脂組成物全量に対し50質量%以上である、
[1]又は[2]に記載の樹脂組成物。
[4]
 前記熱可塑性樹脂が、(メタ)アクリル系モノマー、(メタ)アクリルアミド系モノマー、スチレン系モノマー、マレイミド系モノマー、ニトリル系モノマーから選択される少なくとも1種のモノマー単位を構成単位として含む、
[1]~[3]のいずれかに記載の樹脂組成物。
[5]
 前記熱可塑性樹脂が、前記ナノセルロースと化学結合を形成可能な官能基を有する、
[1]~[4]のいずれかに記載の樹脂組成物。
[6]
 前記官能基が、窒素原子を含む塩基又はカチオンである、
[5]に記載の樹脂組成物。
[7]
 前記熱可塑性樹脂が、親水部と疎水部とを有する重合体である、
[1]~[6]のいずれかに記載の樹脂組成物。
[8]
 前記熱可塑性樹脂が、親水セグメントと疎水セグメントとを有するブロック共重合体である、
[1]~[7]のいずれかに記載の樹脂組成物。
That is, the present invention is as follows.
[1]
Contains nanocellulose and thermoplastics
The nanocellulose and the thermoplastic resin form a fibrous complex.
Resin composition.
[2]
The amount of carboxy group of the nanocellulose is 0.1 mmol / g or more and 3.0 mmol / g or less.
The resin composition according to [1].
[3]
The content of the nanocellulose is 50% by mass or more with respect to the total amount of the resin composition.
The resin composition according to [1] or [2].
[4]
The thermoplastic resin contains at least one monomer unit selected from (meth) acrylic monomer, (meth) acrylamide-based monomer, styrene-based monomer, maleimide-based monomer, and nitrile-based monomer as a constituent unit.
The resin composition according to any one of [1] to [3].
[5]
The thermoplastic resin has a functional group capable of forming a chemical bond with the nanocellulose.
The resin composition according to any one of [1] to [4].
[6]
The functional group is a base or cation containing a nitrogen atom.
The resin composition according to [5].
[7]
The thermoplastic resin is a polymer having a hydrophilic portion and a hydrophobic portion.
The resin composition according to any one of [1] to [6].
[8]
The thermoplastic resin is a block copolymer having a hydrophilic segment and a hydrophobic segment.
The resin composition according to any one of [1] to [7].
[9]
 ナノセルロース及び熱可塑性樹脂を含む樹脂組成物の製造方法であって、
 少なくともナノセルロースを含む水混合物から、少なくともナノセルロースを含む固形分を沈殿させ、前記固形分と液相とを分離する操作を経て、前記固形分に有機溶媒を添加し、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを準備する工程A、及び、
 前記混合物Iから、水の実質的な非存在下で有機溶媒の一部又は全部を除去する工程Bを含む、
製造方法。
[10]
 前記有機溶媒が、熱可塑性樹脂を溶解及び/又は膨潤する有機溶媒である、
[9]に記載の製造方法。
[11]
 前記有機溶媒が、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒から選ばれる少なくとも1種を含む、
[9]又は[10]に記載の製造方法。
[12]
 前記工程Aが、
 ナノセルロースの水分散液に沈殿剤を加えることにより、ナノセルロースを沈殿させ、液相と分離する工程、及び、
 分離したナノセルロースに、熱可塑性樹脂及び有機溶媒を添加し、前記混合物Iを得る工程、を含む、
[9]~[11]のいずれかに記載の製造方法。
[13]
 前記工程Aが、
 ナノセルロースの水分散液と熱可塑性樹脂との水混合物に沈殿剤を加えることにより、ナノセルロースと熱可塑性樹脂との混合物IIを沈殿させ、液相と分離する工程、
 分離したナノセルロースと熱可塑性樹脂との混合物IIに、有機溶媒を添加し、前記混合物Iを得る工程、を含む、
[9]~[11]のいずれかに記載の製造方法。
[14]
 前記沈殿剤が、無機塩である、
[12]又は[13]に記載の製造方法。
[15]
 前記沈殿剤が、分子内に窒素原子を含む有機アルカリ又はカチオンである、
[12]又は[13]に記載の製造方法。
[16]
 前記工程Aが、
 ナノセルロースの水分散液と熱可塑性樹脂とを混合し、ナノセルロースと熱可塑性樹脂とを反応させて析出せしめ、ナノセルロースと熱可塑性樹脂との混合物IIIを液相と分離する工程、
 分離したナノセルロースと熱可塑性樹脂との混合物IIIに、有機溶媒を添加し、前記混合物Iを得る工程、を含む、
[9]~[11]のいずれかに記載の製造方法。
[17]
 前記分離する工程が、連続的に行われる、
[12]~[16]のいずれかに記載の製造方法。
[18]
 ナノセルロース及び熱可塑性樹脂を含む樹脂組成物の製造方法であって、
 ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを準備する工程A、及び、
 前記混合物Iから、水の実質的な非存在下で有機溶媒の一部又は全部を除去する工程Bを含み、
 前記工程Aが、
 ナノセルロースの水分散液に、分子内に窒素原子を含む有機アルカリ又はカチオンを加え、さらに熱可塑性樹脂及び有機溶媒を加えることにより水相と分離せしめ、前記混合物Iを得る工程、又は、
 ナノセルロースの水分散液に、熱可塑性樹脂及び有機溶媒を加え、さらに分子内に窒素原子を含む有機アルカリ又はカチオンを加えることにより水相と分離せしめ、前記混合物Iを得る工程、を含む、製造方法。
[19]
 前記有機溶媒が、熱可塑性樹脂を溶解及び/又は膨潤する有機溶媒である、
[18]に記載の製造方法。
[20]
 前記有機溶媒が、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒から選ばれる少なくとも1種を含む、
[18]又は[19]に記載の製造方法。
[21]
 [1]~[8]のいずれかに記載の樹脂組成物を含む、樹脂。
[22]
 [1]~[8]のいずれかに記載の樹脂組成物と樹脂との溶融物を含む、
[21]に記載の樹脂。
[23]
 ペレット状である、
[21]又は[22]に記載の樹脂。
[24]
 ペレット状の樹脂の製造方法であって、
 [1]~[8]のいずれかに記載の樹脂組成物と、必要に応じて樹脂を配合し、溶融混錬する工程、及び、
 前記溶融混錬の後、ペレット化する工程を含む、製造方法。
[9]
A method for producing a resin composition containing nanocellulose and a thermoplastic resin.
After precipitating at least the solid content containing nanocellulose from the aqueous mixture containing at least nanocellulose and separating the solid content from the liquid phase, an organic solvent is added to the solid content, and the nanocellulose and the thermoplastic resin are added. Step A to prepare the mixture I of and the organic solvent, and
A step B of removing some or all of the organic solvent from the mixture I in the absence of substantially the presence of water.
Production method.
[10]
The organic solvent is an organic solvent that dissolves and / or swells the thermoplastic resin.
The manufacturing method according to [9].
[11]
The organic solvent contains at least one selected from an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, and a nitrile solvent.
The production method according to [9] or [10].
[12]
The step A is
A step of precipitating nanocellulose by adding a precipitating agent to the aqueous dispersion of nanocellulose and separating it from the liquid phase, and
The step of adding a thermoplastic resin and an organic solvent to the separated nanocellulose to obtain the mixture I is included.
The production method according to any one of [9] to [11].
[13]
The step A is
A step of precipitating a mixture II of nanocellulose and a thermoplastic resin by adding a precipitating agent to an aqueous mixture of an aqueous dispersion of nanocellulose and a thermoplastic resin, and separating the mixture from the liquid phase.
The step of adding an organic solvent to the mixture II of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
The production method according to any one of [9] to [11].
[14]
The precipitating agent is an inorganic salt.
The production method according to [12] or [13].
[15]
The precipitating agent is an organic alkali or cation containing a nitrogen atom in the molecule.
The production method according to [12] or [13].
[16]
The step A is
A step of mixing an aqueous dispersion of nanocellulose and a thermoplastic resin, reacting the nanocellulose with the thermoplastic resin to precipitate, and separating the mixture III of the nanocellulose and the thermoplastic resin from the liquid phase.
The step of adding an organic solvent to the mixture III of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
The production method according to any one of [9] to [11].
[17]
The separation step is continuously performed.
The production method according to any one of [12] to [16].
[18]
A method for producing a resin composition containing nanocellulose and a thermoplastic resin.
Step A to prepare a mixture I of nanocellulose, a thermoplastic resin, and an organic solvent, and
Including step B of removing some or all of the organic solvent from the mixture I in the absence of substantially the presence of water.
The step A is
A step of adding an organic alkali or cation containing a nitrogen atom in the molecule to the aqueous dispersion of nanocellulose and further adding a thermoplastic resin and an organic solvent to separate it from the aqueous phase to obtain the mixture I, or
Production including a step of adding a thermoplastic resin and an organic solvent to an aqueous dispersion of nanocellulose, and further adding an organic alkali or cation containing a nitrogen atom in the molecule to separate it from the aqueous phase to obtain the mixture I. Method.
[19]
The organic solvent is an organic solvent that dissolves and / or swells the thermoplastic resin.
The manufacturing method according to [18].
[20]
The organic solvent contains at least one selected from an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, and a nitrile solvent.
The production method according to [18] or [19].
[21]
A resin containing the resin composition according to any one of [1] to [8].
[22]
A melt containing the resin composition according to any one of [1] to [8] and the resin.
The resin according to [21].
[23]
Pellet-like,
The resin according to [21] or [22].
[24]
It is a method for manufacturing pellet-shaped resin.
A step of blending the resin composition according to any one of [1] to [8] and a resin, if necessary, and melt-kneading them, and
A manufacturing method comprising a step of pelletizing after the melt kneading.
 本発明の樹脂組成物によれば、耐衝撃性を有しながら、曲げ強度が向上した樹脂を得ることができる。また、本発明によれば、熱可塑性樹脂がナノセルロースを被覆した構造を有する、ナノセルロースと熱可塑性樹脂との繊維状の複合体を製造でき、当該複合体を含む樹脂組成物の製造方法を提供することができる。 According to the resin composition of the present invention, it is possible to obtain a resin having improved bending strength while having impact resistance. Further, according to the present invention, a fibrous composite of nanocellulose and a thermoplastic resin having a structure in which a thermoplastic resin is coated with nanocellulose can be produced, and a method for producing a resin composition containing the composite can be produced. Can be provided.
実施例1の樹脂組成物の電子顕微鏡観察により得られたSEM画像を示す図である。It is a figure which shows the SEM image obtained by the electron microscope observation of the resin composition of Example 1. FIG. 比較例1の樹脂組成物の電子顕微鏡観察により得られたSEM画像を示す図である。It is a figure which shows the SEM image obtained by the electron microscope observation of the resin composition of the comparative example 1. FIG.
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものでなく、要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments for carrying out the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist.
[樹脂組成物]
 本発明の樹脂組成物は、ナノセルロース及び熱可塑性樹脂を含む。また、本発明の樹脂組成物に含まれるナノセルロースと熱可塑性樹脂とは、繊維状の複合体を形成する。
 本発明における繊維状の複合体とは、構成するナノセルロース及び熱可塑性樹脂が繊維のような形状をなす複合体である。繊維状の形状であるナノセルロースを熱可塑性樹脂が被覆することにより、繊維状の複合体をなすことができる。したがって、上記繊維状の複合体における熱可塑性樹脂は、ナノセルロースを被覆する態様であることが好ましい。
 本発明の樹脂組成物が繊維状の複合体を含むことは、顕微鏡を用いて樹脂組成物を観察することにより確認することができる。例えば、電子顕微鏡を用いて、倍率10,000~100,000にて観察することにより確認することができる。本発明の樹脂組成物が繊維状の複合体を含むことは、具体的には、実施例に記載の方法により確認することができる。
 本発明の樹脂組成物は、例えば、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物を得て、得られた混合物より水の実質的な非存在下で有機溶媒の一部又は全部を除去する方法により製造することができる。また、本発明の樹脂組成物は、後述する樹脂組成物の製造方法により製造することができる。
[Resin composition]
The resin composition of the present invention contains nanocellulose and a thermoplastic resin. Further, the nanocellulose and the thermoplastic resin contained in the resin composition of the present invention form a fibrous complex.
The fibrous composite in the present invention is a composite in which the constituent nanocellulose and the thermoplastic resin are shaped like fibers. By coating nanocellulose, which has a fibrous shape, with a thermoplastic resin, a fibrous composite can be formed. Therefore, it is preferable that the thermoplastic resin in the fibrous complex is in a mode of coating nanocellulose.
It can be confirmed by observing the resin composition with a microscope that the resin composition of the present invention contains a fibrous complex. For example, it can be confirmed by observing at a magnification of 10,000 to 100,000 using an electron microscope. Specifically, it can be confirmed by the method described in Examples that the resin composition of the present invention contains a fibrous complex.
The resin composition of the present invention obtains, for example, a mixture of nanocellulose, a thermoplastic resin and an organic solvent, and removes a part or all of the organic solvent from the obtained mixture in the substantially absence of water. It can be manufactured by the method. Further, the resin composition of the present invention can be produced by the method for producing a resin composition described later.
 本発明の樹脂組成物は、そのままペレット化や成形する等して樹脂として使用してもよい。
 また、本発明の樹脂組成物は、当該樹脂組成物と配合する対象の樹脂(以下、原料樹脂ともいう)とを混合して使用してもよい。この場合、本発明の樹脂組成物は、樹脂改質用組成物、あるいは樹脂改質剤ともいう。すなわち、本発明の樹脂組成物は、そのまま樹脂とする態様も、樹脂改質用組成物の態様も包含する。
The resin composition of the present invention may be used as a resin by pelletizing or molding as it is.
Further, the resin composition of the present invention may be used by mixing the resin composition with the target resin to be blended (hereinafter, also referred to as a raw material resin). In this case, the resin composition of the present invention is also referred to as a resin modifying composition or a resin modifying agent. That is, the resin composition of the present invention includes both the embodiment of using the resin as it is and the embodiment of the composition for modifying the resin.
 本発明の樹脂組成物は、ナノセルロースが熱可塑性樹脂と繊維状の形態をなすことにより、当該樹脂組成物中においてナノセルロースが均一に分散した状態となる。これは、各々のセルロースファイバーが熱可塑性樹脂に被覆されることで、各々のナノセルロース間に同程度の量の熱可塑性樹脂が存在し、ナノセルロースが組成物中で均一に分散するように存在するためである。このような分散性が高い樹脂組成物は、得られる樹脂中でナノセルロースの分散性に優れ、樹脂を改質する性能が高まることで、耐衝撃性を有しながら、曲げ強度が向上した樹脂を得ることができると考えられる。耐衝撃性や曲げ強度が表れる作用機序は上述した機序に限定されない。 In the resin composition of the present invention, the nanocellulose forms a fibrous form with the thermoplastic resin, so that the nanocellulose is uniformly dispersed in the resin composition. This is because each cellulose fiber is coated with the thermoplastic resin, so that the same amount of the thermoplastic resin is present between the respective nanocelluloses and the nanocelluloses are uniformly dispersed in the composition. To do. Such a highly dispersible resin composition has excellent dispersibility of nanocellulose in the obtained resin, and the ability to modify the resin is enhanced, so that the resin has improved bending strength while having impact resistance. Is considered to be possible. The mechanism of action in which impact resistance and bending strength appear is not limited to the above-mentioned mechanism.
 本発明における繊維状の複合体は、樹脂組成物中においてナノセルロースが均一に分散した状態をなす指標であるが、ナノセルロースの樹脂組成物中における分散性は、耐衝撃性によっても特徴づけられる。すなわち、繊維状の複合体であるか否かは、所定の耐衝撃性を有することによっても判別することができる。本発明の樹脂組成物は、具体的には、以下の<条件>により測定した耐衝撃性が、2.0kJ/m2以上であることが好ましい。本発明の一態様は、ナノセルロース及び熱可塑性樹脂を含み、以下の<条件>により測定した耐衝撃性が、2.0kJ/m2以上である、樹脂組成物である。耐衝撃性は、より好ましくは3.0kJ/m2以上である。耐衝撃性の上限値は、特に制限されないが、100kJ/m2以下であってもよく、50kJ/m2以下であってもよい。
<条件>
(試験片の作製)
 本発明の樹脂組成物をABS樹脂に全体の1~5質量%(ナノセルロース換算)となる量で添加し、プラストミルを用いて加熱混練する。混練温度は25℃から混錬を開始し、徐々に昇温して最終的な混錬温度は160℃、混練時間は合計で45分間とする。その後、加圧機と金型を用いて160℃、10MPaで5分間加圧し、混練物を平板状とする。得られた平板状の混練物を用いて幅:10mm×長さ:70mm(厚さ3mm)の短冊形状の試験片を作製する。
(耐衝撃性の測定)
 試験片を用いてJIS K 7111-1:2012に規定するシャルピー衝撃試験(ノッチ先端半径:rN=0.25mm)を行い、衝撃強度(kJ/m2)を測定する。
The fibrous composite in the present invention is an index in which nanocellulose is uniformly dispersed in the resin composition, but the dispersibility of nanocellulose in the resin composition is also characterized by impact resistance. .. That is, whether or not it is a fibrous complex can also be determined by having a predetermined impact resistance. Specifically, the resin composition of the present invention preferably has an impact resistance of 2.0 kJ / m 2 or more as measured under the following <conditions>. One aspect of the present invention is a resin composition containing nanocellulose and a thermoplastic resin having an impact resistance of 2.0 kJ / m 2 or more as measured by the following <conditions>. The impact resistance is more preferably 3.0 kJ / m 2 or more. The upper limit of the impact resistance is not particularly limited, but may be 100 kJ / m 2 or less, or 50 kJ / m 2 or less.
<Conditions>
(Preparation of test piece)
The resin composition of the present invention is added to the ABS resin in an amount of 1 to 5% by mass (in terms of nanocellulose), and the mixture is heated and kneaded using a plast mill. The kneading temperature is 25 ° C., and the kneading is gradually increased so that the final kneading temperature is 160 ° C. and the kneading time is 45 minutes in total. Then, using a pressurizer and a die, pressurize at 160 ° C. and 10 MPa for 5 minutes to form a flat plate of the kneaded product. Using the obtained flat plate-shaped kneaded product, a strip-shaped test piece having a width of 10 mm and a length of 70 mm (thickness of 3 mm) is produced.
(Measurement of impact resistance)
The Charpy impact test (notch tip radius: rN = 0.25 mm) specified in JIS K 711-1: 2012 is performed using the test piece, and the impact strength (kJ / m 2 ) is measured.
 上記<条件>は、具体的には実施例に記載のとおりである。
 耐衝撃性が2.0kJ/m2以上、好ましくは3.0kJ/m2以上であることにより、樹脂組成物中においてナノセルロースが均一に分散した状態であることの指標となり、本発明の樹脂組成物において、ナノセルロースと前記熱可塑性樹脂とが繊維状の複合体を形成する傾向にある。
The above <conditions> are specifically as described in the examples.
When the impact resistance is 2.0 kJ / m 2 or more, preferably 3.0 kJ / m 2 or more, it becomes an index that nanocellulose is uniformly dispersed in the resin composition, and the resin of the present invention is used. In the composition, the nanocellulose and the thermoplastic resin tend to form a fibrous composite.
 本発明の樹脂組成物におけるナノセルロースの含有量は、樹脂組成物全量に対して、通常10質量%以上であればよい。
 本発明の樹脂組成物は樹脂に配合して用いる場合もあるが、この場合において樹脂組成物に含まれる熱可塑性樹脂が占める割合が高くなると、当該熱可塑性樹脂が配合する対象の樹脂の性能等に影響を及ぼす恐れがある。したがって、樹脂組成物を樹脂に配合した際の性能への影響を抑える観点から、ナノセルロースの含有量は、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。ナノセルロースの含有量の上限値は、通常100質量%未満であり、好ましくは95質量%以下であり、好ましくは90質量%以下である。
The content of nanocellulose in the resin composition of the present invention may be usually 10% by mass or more with respect to the total amount of the resin composition.
The resin composition of the present invention may be used by blending it with a resin, but in this case, if the proportion of the thermoplastic resin contained in the resin composition becomes high, the performance of the target resin to be blended with the thermoplastic resin, etc. May affect. Therefore, from the viewpoint of suppressing the influence on the performance when the resin composition is blended with the resin, the content of nanocellulose is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably. It is 70% by mass or more. The upper limit of the content of nanocellulose is usually less than 100% by mass, preferably 95% by mass or less, and preferably 90% by mass or less.
<ナノセルロース>
 本発明におけるナノセルロースは、セルロースを微細化したものの総称を表し、微細セルロース繊維やセルロースナノクリスタル等を含み、また、これらの変性体も包含する(変性体の詳細は後述する)。微細セルロース繊維は、セルロースナノファイバー(CNFとも記載する)ともいう。また、本明細書において「微細化」は、ナノ化ともいう。
 本発明におけるナノセルロースは、市販のナノセルロースを用いることもでき、セルロース系原料の針葉樹パルプ等から調製することにより得られたものを用いることもできる。ナノセルロースを調製する場合、例えば、Cellulose Commun., 14(2), 62(2007)、及び、国際公開2018/230354号パンフレットなどを参照して調製することができる。
<Nanocellulose>
The nanocellulose in the present invention is a general term for finely divided cellulose, and includes fine cellulose fibers, cellulose nanocrystals, and the like, and also includes modified products thereof (details of the modified products will be described later). Fine cellulose fibers are also referred to as cellulose nanofibers (also referred to as CNF). Further, in the present specification, "miniaturization" is also referred to as nanonization.
As the nanocellulose in the present invention, commercially available nanocellulose can be used, or one obtained by preparing from a cellulosic raw material such as coniferous pulp can also be used. When preparing nanocellulose, it can be prepared by referring to, for example, Cellulose Commun., 14 (2), 62 (2007), and International Publication No. 2018/230354 pamphlet.
 本発明におけるナノセルロースは、次亜塩素酸又はその塩を用いて製造する場合、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOという)等のN-オキシル化合物を用いずとも取得することができる。N-オキシル化合物は有害性が指摘されており、これを用いてナノセルロースを作製すると、ナノセルロース中にN-オキシル化合物が含まれてしまう。したがって、本発明におけるナノセルロースは、N-オキシル化合物を実質的に含まないことが好ましい。
 本明細書において、N-オキシル化合物を実質的に含まないとは、酸化セルロースを製造する際にN-オキシル化合物を用いていないか、ナノセルロース又は酸化セルロース中にN-オキシル化合物を全く含まないか、又はN-オキシル化合物の含有量がナノセルロース又は酸化セルロースの総量に対して、2.0質量ppm以下であることを意味し、好ましくは1.0質量ppm以下である。また、N-オキシル化合物の含有量が、セルロース系原料からの増加分として、好ましくは2.0質量ppm以下、より好ましくは1.0質量ppm以下である場合も、「N-オキシル化合物を実質的に含まない」ことを意味する。
 残留窒素成分は、微量全窒素分析装置を用いることにより測定することができ、より詳細には実施例に記載の方法により測定することができる。
 本発明におけるナノセルロースの一態様は、次亜塩素酸又はその塩によるセルロース系原料の酸化物である酸化セルロースに由来し、かつ、N-オキシル化合物を実質的に含まないことが好ましい。
When the nanocellulose in the present invention is produced using hypochlorous acid or a salt thereof, N- such as 2,2,6,6-tetramethyl-1-piperidin-N-oxy radical (hereinafter referred to as TEMPO) is used. It can be obtained without using an oxyl compound. It has been pointed out that the N-oxyl compound is harmful, and when nanocellulose is produced using this, the N-oxyl compound is contained in the nanocellulose. Therefore, it is preferable that the nanocellulose in the present invention contains substantially no N-oxyl compound.
In the present specification, "substantially free of N-oxyl compound" means that the N-oxyl compound is not used in producing the oxidized cellulose, or the nanocellulose or the oxidized cellulose is completely free of the N-oxyl compound. Or, it means that the content of the N-oxyl compound is 2.0 mass ppm or less with respect to the total amount of nanocellulose or oxidized cellulose, and is preferably 1.0 mass ppm or less. Further, even when the content of the N-oxyl compound is preferably 2.0 mass ppm or less, more preferably 1.0 mass ppm or less as an increase from the cellulosic raw material, "N-oxyl compound is substantially contained. It means "not included".
The residual nitrogen component can be measured by using a trace total nitrogen analyzer, and more specifically, by the method described in Examples.
One aspect of nanocellulose in the present invention is preferably derived from oxidized cellulose, which is an oxide of a cellulosic raw material due to hypochloric acid or a salt thereof, and is substantially free of N-oxyl compounds.
 上記酸化セルロースは、セルロース系原料の酸化物ともいえる。また、セルロース系原料を次亜塩素酸又はその塩で酸化して酸化セルロースを得る場合、該酸化セルロースは、次亜塩素酸又はその塩によるセルロース系原料の酸化物ともいえる。 The above-mentioned oxidized cellulose can be said to be an oxide of a cellulosic raw material. Further, when a cellulosic raw material is oxidized with hypochlorous acid or a salt thereof to obtain oxidized cellulose, the oxidized cellulose can be said to be an oxide of the cellulosic raw material by hypochloric acid or a salt thereof.
 上記酸化反応によってセルロース系原料にカルボキシ基が導入される。ナノセルロース中のカルボキシ基は、-COOHとなっていてもよく、カウンターカチオンと塩を形成していてもよく、その他カルボキシ基又はその塩と反応できる化合物によって修飾されていてもよい。したがって、本発明の樹脂組成物に含まれるナノセルロースは、カウンターカチオン、カルボキシ基又はその塩を修飾する化合物を含んでいてもよく、本発明におけるナノセルロースは、カウンターカチオンあるいはカルボキシ基又はその塩を修飾する化合物と反応した態様(すなわち、変性体の態様)も包含する。本発明の樹脂組成物は、後述のとおり、沈殿剤や熱可塑性樹脂によってナノセルロースを修飾することによって水との混合物より分離する工程を含む製造方法によって製造される。したがって、本発明の樹脂組成物に含まれるナノセルロース中のカルボキシ基は、沈殿剤や熱可塑性樹脂と相互作用を形成し、修飾されていることが好ましい。 The carboxy group is introduced into the cellulosic raw material by the above oxidation reaction. The carboxy group in the nanocellulose may be -COOH, may form a salt with a counter cation, or may be modified with another carboxy group or a compound capable of reacting with the salt thereof. Therefore, the nanocellulose contained in the resin composition of the present invention may contain a compound that modifies a countercation, a carboxy group or a salt thereof, and the nanocellulose in the present invention contains a countercation or a carboxy group or a salt thereof. It also includes embodiments that have reacted with the compound to be modified (ie, embodiments of the modified product). As will be described later, the resin composition of the present invention is produced by a production method including a step of modifying nanocellulose with a precipitant or a thermoplastic resin to separate it from a mixture with water. Therefore, it is preferable that the carboxy group in the nanocellulose contained in the resin composition of the present invention forms an interaction with a precipitating agent or a thermoplastic resin and is modified.
 本発明の樹脂組成物は、上述のとおり、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物を得て、得られた混合物より水の実質的な非存在下で有機溶媒の一部又は全部を除去する方法により製造することができる。このナノセルロースと熱可塑性樹脂と有機溶媒との混合物を得る過程において、無機塩や、分子内に窒素原子を含む有機アルカリ又はカチオンといった沈殿剤が用いられることがある。沈殿剤の添加によって、ナノセルロースが、カウンターカチオンあるいはカルボキシ基又はその塩を修飾する化合物と反応した態様となりうる。
 また、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物を得る過程において、ナノセルロースのカルボキシ基が熱可塑性樹脂と相互作用を形成することもある。そのため、ナノセルロースが、熱可塑性樹脂と反応した態様ともなりうる。
As described above, the resin composition of the present invention obtains a mixture of nanocellulose, a thermoplastic resin and an organic solvent, and partially or entirely of the organic solvent in the substantially absence of water from the obtained mixture. It can be manufactured by the method of removing. In the process of obtaining a mixture of the nanocellulose, the thermoplastic resin and the organic solvent, an inorganic salt or a precipitating agent such as an organic alkali or a cation containing a nitrogen atom in the molecule may be used. The addition of the precipitating agent can result in the reaction of nanocellulose with a compound that modifies a counter cation or a carboxy group or a salt thereof.
Further, in the process of obtaining a mixture of nanocellulose, a thermoplastic resin and an organic solvent, the carboxy group of nanocellulose may form an interaction with the thermoplastic resin. Therefore, the nanocellulose may be in a mode of reacting with the thermoplastic resin.
 本発明におけるセルロース系原料とは、セルロースを主体とした材料であれば特に限定はなく、例えば、パルプ、天然セルロース、再生セルロースおよびセルロース原料を機械的処理することで解重合した微細セルロース等が挙げられる。なお、セルロース系原料として、パルプを原料とする結晶セルロース等の市販品をそのまま使用することができる。その他、おからや大豆皮等、セルロース成分を多量に含む未利用バイオマスを原料としてもよい。また、次の工程で使用する酸化剤を原料パルプの中に浸透しやすくする目的でセルロース系原料を適度な濃度のアルカリで処理してもよい。
 なお、植物の主成分はセルロースであり、セルロース分子が束になったものがセルロースミクロフィブリルと称される。本発明に用いるセルロース系原料中のセルロースもまた、セルロースミクロフィブリルの形態で含まれている。
The cellulosic raw material in the present invention is not particularly limited as long as it is a material mainly composed of cellulose, and examples thereof include pulp, natural cellulose, regenerated cellulose, and fine cellulose depolymerized by mechanically treating the cellulosic raw material. Be done. As the cellulose-based raw material, a commercially available product such as crystalline cellulose made from pulp can be used as it is. In addition, unused biomass containing a large amount of cellulose components such as okara and soybean skin may be used as a raw material. Further, the cellulosic raw material may be treated with an alkali having an appropriate concentration for the purpose of facilitating the penetration of the oxidizing agent used in the next step into the raw material pulp.
The main component of the plant is cellulose, and a bundle of cellulose molecules is called a cellulose microfibril. Cellulose in the cellulosic raw material used in the present invention is also contained in the form of cellulosic microfibrils.
 本発明におけるナノセルロースの製造方法の一態様は、有効塩素濃度が7~43質量%の次亜塩素酸又はその塩を用いて、セルロース系原料を酸化させて酸化セルロースを製造する工程と、該酸化セルロースを解繊処理して微細化させる工程とを有する製造方法である。酸化剤である次亜塩素酸又はその塩中の有効塩素濃度は14質量%以上43質量%以下であることが好ましく、18質量%以上43質量%以下であることがさらに好ましい。有効塩素濃度が7質量%以上であることにより、十分に反応が進行し、酸化セルロースを効率的に得られる傾向にある。有効塩素濃度が43質量%以下であることにより、自己分解が進行することを抑え、取り扱いを容易にする傾向にある。 One aspect of the method for producing nanocellulose in the present invention is a step of oxidizing a cellulosic raw material to produce oxidized cellulose using hypochlorous acid having an effective chlorine concentration of 7 to 43% by mass or a salt thereof. It is a manufacturing method including a step of defibrating cellulose oxide to make it finer. The effective chlorine concentration in hypochlorous acid as an oxidizing agent or a salt thereof is preferably 14% by mass or more and 43% by mass or less, and more preferably 18% by mass or more and 43% by mass or less. When the effective chlorine concentration is 7% by mass or more, the reaction proceeds sufficiently and the oxidized cellulose tends to be efficiently obtained. When the effective chlorine concentration is 43% by mass or less, the self-decomposition tends to be suppressed and the handling tends to be easy.
 次亜塩素酸又はその塩における有効塩素濃度はよく知られた概念であり、以下のように定義される。
 次亜塩素酸は水溶液として存在する弱酸であり、次亜塩素酸塩は、次亜塩素酸の水素が他の陽イオンに置換された化合物である。次亜塩素酸塩は結晶水をもった固体として存在することはできるが、潮解性をもち、非常に不安定な物質であり、一般に水溶液として取り扱う。
 例えば、次亜塩素酸塩である次亜塩素酸ナトリウムは溶液中にしか存在しないため、次亜塩素酸ナトリウムの濃度ではなく、溶液中の有効塩素量を測定する。
 次亜塩素酸ナトリウムの有効塩素とは、次亜塩素酸ナトリウムの分解により生成する2価の酸素原子の酸化力が1価の塩素の2原子当量に相当するため、次亜塩素酸ナトリウム(NaClO)の結合塩素原子は、非結合塩素(Cl2)の2原子と同じ酸化力を持っていて、有効塩素=2×(NaClO中の塩素)となる。
 具体的な有効塩素濃度の測定は、試料を精秤し、水、ヨウ化カリウム、酢酸を加えて放置し、遊離したヨウ素についてデンプン水溶液を指示薬としてチオ硫酸ナトリウム溶液で滴定し測定する。
The effective chlorine concentration in hypochlorous acid or its salt is a well-known concept and is defined as follows.
Hypochlorous acid is a weak acid that exists as an aqueous solution, and hypochlorite is a compound in which hydrogen of hypochlorous acid is replaced with another cation. Hypochlorite can exist as a solid with water of crystallization, but it has deliquescent properties and is a very unstable substance, and is generally treated as an aqueous solution.
For example, since sodium hypochlorite, which is a hypochlorite, is present only in the solution, the amount of effective chlorine in the solution is measured, not the concentration of sodium hypochlorite.
The effective chlorine of sodium hypochlorite is sodium hypochlorite (NaClO) because the oxidizing power of the divalent oxygen atom generated by the decomposition of sodium hypochlorite corresponds to the diatomic equivalent of monovalent chlorine. ) Has the same oxidizing power as the two atoms of unbound chlorine (Cl 2 ), and effective chlorine = 2 × (chlorine in NaClO).
To measure the specific effective chlorine concentration, the sample is precisely weighed, water, potassium iodide, and acetic acid are added and left to stand, and the liberated iodine is titrated with a sodium thiosulfate solution using an aqueous starch solution as an indicator.
 次亜塩素酸又はその塩としては、例えば、次亜塩素酸水、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、及び次亜塩素酸アンモニウム等が挙げられる。これらの中でも、取り扱いやすさの観点から、次亜塩素酸ナトリウムが好ましい。
 以下、次亜塩素酸又はその塩として次亜塩素酸ナトリウムを例にして、本発明に用いられるナノセルロースの一つの製造方法を説明する。
Examples of hypochlorous acid or a salt thereof include hypochlorous acid water, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, ammonium hypochlorite and the like. Of these, sodium hypochlorite is preferable from the viewpoint of ease of handling.
Hereinafter, one method for producing nanocellulose used in the present invention will be described by taking sodium hypochlorite as an example of hypochlorous acid or a salt thereof.
(1)有効塩素濃度が7質量%以上43質量%以下の次亜塩素酸ナトリウム水溶液を用いて、セルロース系原料を酸化させて酸化セルロースを製造する工程。
 次亜塩素酸ナトリウム水溶液の有効塩素濃度を7質量%以上43質量%以下に調整する方法としては、有効塩素濃度が7質量%より低い次亜塩素酸ナトリウム水溶液を濃縮する方法、有効塩素濃度が約43質量%である次亜塩素酸ナトリウム5水和物結晶をそのまま、又は水で希釈して調整する方法がある。これらの中でも、次亜塩素酸ナトリウム5水和物を用いて、酸化剤としての有効塩素濃度に調整することが、自己分解が少なく、すなわち有効塩素濃度の低下が少なく、調整が簡便であるため好ましい。
(1) A step of producing oxidized cellulose by oxidizing a cellulosic raw material using an aqueous sodium hypochlorite solution having an effective chlorine concentration of 7% by mass or more and 43% by mass or less.
As a method of adjusting the effective chlorine concentration of the sodium hypochlorite aqueous solution to 7% by mass or more and 43% by mass or less, a method of concentrating the sodium hypochlorite aqueous solution having an effective chlorine concentration lower than 7% by mass, and an effective chlorine concentration are There is a method of adjusting the sodium hypochlorite pentahydrate crystal having an amount of about 43% by mass as it is or by diluting it with water. Among these, adjusting to the effective chlorine concentration as an oxidizing agent by using sodium hypochlorite pentahydrate has less self-decomposition, that is, the decrease in the effective chlorine concentration is small, and the adjustment is easy. preferable.
 酸化剤である有効塩素濃度が7質量%以上43質量%の次亜塩素酸ナトリウム水溶液の使用量は、酸化反応が促進する範囲で選択できる。
 セルロース系原料と次亜塩素酸ナトリウム水溶液の混合方法は特に限定はないが、操作の容易さの観点から、次亜塩素酸ナトリウム水溶液にセルロース系原料を加えて混合させることが好ましい。
The amount of the sodium hypochlorite aqueous solution having an effective chlorine concentration of 7% by mass or more and 43% by mass as an oxidizing agent can be selected within the range in which the oxidation reaction is promoted.
The method for mixing the cellulosic raw material and the sodium hypochlorite aqueous solution is not particularly limited, but from the viewpoint of ease of operation, it is preferable to add the cellulosic raw material to the sodium hypochlorite aqueous solution and mix them.
 前記酸化反応における反応温度は、15℃以上40℃以下であることが好ましく、20℃以上35℃以下であることがより好ましい。酸化反応を効率よく進めるために、反応系のpHを7以上14以下に維持することが好ましく、10以上14以下に維持することがより好ましい。pHを調整するために水酸化ナトリウム等のアルカリ剤、塩酸等の酸を添加することができる。
 酸化反応の反応時間は、酸化の進行の程度に従って設定することができるが、例えば、15分以上6時間以下程度反応させることが好ましい。
The reaction temperature in the oxidation reaction is preferably 15 ° C. or higher and 40 ° C. or lower, and more preferably 20 ° C. or higher and 35 ° C. or lower. In order to efficiently proceed with the oxidation reaction, the pH of the reaction system is preferably maintained at 7 or more and 14 or less, and more preferably 10 or more and 14 or less. An alkaline agent such as sodium hydroxide and an acid such as hydrochloric acid can be added to adjust the pH.
The reaction time of the oxidation reaction can be set according to the degree of progress of oxidation, but for example, it is preferable to carry out the reaction for about 15 minutes or more and 6 hours or less.
 前記酸化反応では、セルロース系原料にカルボキシ基が導入され酸化セルロースが生成する。該酸化セルロースのカルボキシ基量は特に限定されないが、酸化セルロース1g当たりのカルボキシ基量が、0.1mmol/g以上3.0mmol/g以下であることが好ましく、0.2mmol/g以上1.0mmol/g以下であることがより好ましい。また、前記酸化反応は、2段階に分けて実施してもよい。
 また、ナノセルロースにおいても同様のカルボキシ基量であることが好ましい。ナノセルロースのカルボキシ基量が0.1mmol/g以上であることにより、熱可塑性樹脂と十分に相互作用を形成でき、繊維状の複合体を形成できる傾向にある。また、ナノセルロースのカルボキシ基量が3.0mmol/g以下であることにより、熱可塑性樹脂と混ぜ合わせるのに適切なナノセルロースの粘度となり、熱可塑性樹脂との配合の作業性に優れる傾向にある。
In the oxidation reaction, a carboxy group is introduced into the cellulosic raw material to produce oxidized cellulose. The amount of carboxy group of the oxidized cellulose is not particularly limited, but the amount of carboxy group per 1 g of oxidized cellulose is preferably 0.1 mmol / g or more and 3.0 mmol / g or less, and 0.2 mmol / g or more and 1.0 mmol. It is more preferably / g or less. Further, the oxidation reaction may be carried out in two stages.
Further, it is preferable that the amount of carboxy group is the same for nanocellulose. When the amount of carboxy group of nanocellulose is 0.1 mmol / g or more, it tends to be able to sufficiently interact with the thermoplastic resin and to form a fibrous complex. Further, since the amount of carboxy group of nanocellulose is 3.0 mmol / g or less, the viscosity of nanocellulose is suitable for mixing with a thermoplastic resin, and the workability of blending with a thermoplastic resin tends to be excellent. ..
 酸化セルロース中のカルボキシ基量は、次の方法で測定することができる。酸化セルロースの0.5質量%スラリーに純水を加えて60mlに調製し、0.1M塩酸水溶液を加えて、pH2.5にした後、0.05Nの水酸化ナトリウム水溶液を滴下して、pHが11になるまで電気伝導度を測定し、電気伝導度の変化が穏やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下記式を用いて算出する。
カルボキシ基量(mmol/g酸化セルロース)=a(ml)×0.05/酸化セルロース質量(g)
The amount of carboxy group in cellulose oxide can be measured by the following method. Pure water is added to a 0.5 mass% slurry of cellulose oxide to prepare 60 ml, a 0.1 M aqueous solution of hydrochloric acid is added to adjust the pH to 2.5, and then a 0.05 N aqueous solution of sodium hydroxide is added dropwise to make the pH. The electric conductivity is measured until becomes 11, and it is calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of a weak acid in which the change in the electric conductivity is moderate, using the following formula.
Amount of carboxy group (mmol / g cellulose oxide) = a (ml) x 0.05 / mass of cellulose oxide (g)
(2)酸化セルロースを解繊処理して微細化させる工程
 本発明において用いられるナノセルロースは、前記工程で得られた酸化セルロースを必要に応じて解繊して微細化することにより製造する。解繊する方法は、溶媒中でスターラー等の弱い攪拌にとどめてもよく、機械的解繊を行ってもよい。機械的解繊により解繊時間の短縮が可能になる。
(2) Step of defibrating and refining cellulose oxide The nanocellulose used in the present invention is produced by defibrating and refining the cellulose oxide obtained in the above step as necessary. The method of defibrating may be limited to weak stirring with a stirrer or the like in a solvent, or mechanical defibration may be performed. Mechanical defibration makes it possible to shorten the defibration time.
 機械的解繊の方法は、特に限定されないが、例えば、酸化セルロースを十分に溶媒で洗浄した後、目的に応じて適宜選択することができ、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、二重円筒型ホモジナイザー、超音波ホモジナイザー、水流対抗衝突型分散機、ビーター、ディスク型リファイナー、コニカル型リファイナー、ダブルディスク型リファイナー、グラインダー、及び一軸又は多軸混錬機等の公知の混合・攪拌装置が挙げられ、これらを単独又は2種類以上組合せて溶媒中で処理することで、酸化セルロースを微細化して、ナノセルロースを製造することができる。 The method of mechanical defibration is not particularly limited, but can be appropriately selected depending on the intended purpose after thoroughly washing the oxidized cellulose with a solvent, for example, a screw type mixer, a paddle mixer, a disper type mixer, etc. Turbine type mixer, homomixer under high speed rotation, high pressure homogenizer, ultra-high pressure homogenizer, double cylindrical homogenizer, ultrasonic homogenizer, water flow counter-collision type disperser, beater, disc type refiner, conical type refiner, double disc type refiner , Grinders, and known mixing / stirring devices such as uniaxial or multiaxial kneaders, and by treating them alone or in combination of two or more in a solvent, the oxidized cellulose is refined to obtain nanocellulose. Can be manufactured.
 解繊処理に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、水、アルコール類、エーテル類、ケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びジメチルスルホキサイドなどが挙げられる。これらを単独で使用してもよく、2種類以上を併用してもよい。 The solvent used for the defibration treatment is not particularly limited and may be appropriately selected depending on the intended purpose. Water, alcohols, ethers, ketones, N, N-dimethylformamide, N, N-dimethylacetamide. , And dimethylsulfoxide and the like. These may be used alone or in combination of two or more.
 前記アルコール類としては、例えば、メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブチルアルコール、tert-ブチルアルコール、メチルセロソルブ、エチレングリコール、及びグリセリン等が挙げられる。
 前記エーテル類としては、エチレングリコールジメチルエーテル、1,4-ジオキサン、及びテトラヒドロフラン等が挙げられる。
 前記ケトン類としては、アセトン及びメチルエチルケトン等が挙げられる。
Examples of the alcohols include methanol, ethanol, isopropanol, isobutanol, sec-butyl alcohol, tert-butyl alcohol, methyl cellosolve, ethylene glycol, glycerin and the like.
Examples of the ethers include ethylene glycol dimethyl ether, 1,4-dioxane, and tetrahydrofuran.
Examples of the ketones include acetone, methyl ethyl ketone and the like.
 溶媒として有機溶剤を選択することにより、前記工程で得られた酸化セルロース及びそれを解繊して得られたナノセルロースの単離が容易となる。また、有機溶剤中に分散したナノセルロースが得られるため、有機溶剤に溶解する樹脂やその樹脂原料モノマー等との混合が容易となる。 By selecting an organic solvent as the solvent, it becomes easy to isolate the oxidized cellulose obtained in the above step and the nanocellulose obtained by defibrating it. Further, since nanocellulose dispersed in an organic solvent can be obtained, it becomes easy to mix with a resin that dissolves in the organic solvent, a resin raw material monomer, or the like.
 ナノセルロースの平均繊維長は、通常100nm以上900nm以下の範囲である。平均繊維長が100nm以上900nm以下の範囲であることにより、ナノセルロースを熱可塑性樹脂が被覆して、ナノセルロースと熱可塑性樹脂とが繊維状の複合体を容易に形成する傾向にある。また、ナノセルロースの平均繊維長は、100nm以上700nm以下であることが好ましく、100nm以上400nm以下であることがより好ましい。平均繊維長が100nm以上700nm以下であることにより、ナノセルロースに適度な流動性が得られ、均一に熱可塑性樹脂との配合ができる傾向にある。 The average fiber length of nanocellulose is usually in the range of 100 nm or more and 900 nm or less. When the average fiber length is in the range of 100 nm or more and 900 nm or less, the nanocellulose is coated with the thermoplastic resin, and the nanocellulose and the thermoplastic resin tend to easily form a fibrous composite. The average fiber length of nanocellulose is preferably 100 nm or more and 700 nm or less, and more preferably 100 nm or more and 400 nm or less. When the average fiber length is 100 nm or more and 700 nm or less, appropriate fluidity can be obtained for nanocellulose, and there is a tendency that the nanocellulose can be uniformly blended with the thermoplastic resin.
 ナノセルロースの平均繊維幅は、通常1nm以上10nm以下の範囲である。平均繊維幅が1nm以上10nm以下の範囲であることにより、ナノセルロースを熱可塑性樹脂が被覆して、ナノセルロースと熱可塑性樹脂とが繊維状の複合体を容易に形成する傾向にある。また、ナノセルロースの平均繊維幅は、2nm以上10nm以下であることが好ましく、2.5nm以上6nm以下であることがより好ましい。平均繊維幅が2nm以上10nm以下であることにより、ナノセルロースに適度な流動性が得られ、均一に熱可塑性樹脂との配合ができる傾向にある。 The average fiber width of nanocellulose is usually in the range of 1 nm or more and 10 nm or less. When the average fiber width is in the range of 1 nm or more and 10 nm or less, the nanocellulose is coated with the thermoplastic resin, and the nanocellulose and the thermoplastic resin tend to easily form a fibrous composite. The average fiber width of nanocellulose is preferably 2 nm or more and 10 nm or less, and more preferably 2.5 nm or more and 6 nm or less. When the average fiber width is 2 nm or more and 10 nm or less, appropriate fluidity can be obtained for nanocellulose, and there is a tendency that the nanocellulose can be uniformly blended with the thermoplastic resin.
 本発明におけるナノセルロースにおいて、平均繊維幅と平均繊維長との比で表されるアスペクト比(平均繊維長/平均繊維幅)は、20以上200以下であることが好ましい。アスペクト比が20以上200以下であることにより、ナノセルロースを熱可塑性樹脂が被覆して、ナノセルロースと熱可塑性樹脂とが繊維状の複合体を容易に形成する傾向にある。アスペクト比は、より好ましくは190以下であり、さらに好ましくは180以下である。アスペクト比は、より好ましくは30以上であり、さらに好ましくは40以上である。 In the nanocellulose in the present invention, the aspect ratio (average fiber length / average fiber width) represented by the ratio of the average fiber width to the average fiber length is preferably 20 or more and 200 or less. When the aspect ratio is 20 or more and 200 or less, the nanocellulose is coated with the thermoplastic resin, and the nanocellulose and the thermoplastic resin tend to easily form a fibrous composite. The aspect ratio is more preferably 190 or less, still more preferably 180 or less. The aspect ratio is more preferably 30 or more, still more preferably 40 or more.
 ナノセルロースの平均繊維長及び平均繊維幅を上記の範囲に調整する方法としては、例えば、上述した酸化セルロースを得る工程、あるいは、解繊処理して微細化させる工程における条件を調整すること等が挙げられる。 As a method of adjusting the average fiber length and the average fiber width of the nanocellulose within the above range, for example, the conditions in the step of obtaining the above-mentioned oxidized cellulose or the step of defibrating the fiber to make it finer are adjusted. Can be mentioned.
 なお、平均繊維幅及び平均繊維長は、ナノセルロースの濃度が概ね1~10ppmとなるようにナノセルロースと水とを混合し、十分希釈したセルロース水分散体をマイカ基材上で自然乾燥させ、走査型プローブ顕微鏡を用いてナノセルロースの形状観察を行い、得られた像より任意の本数の繊維を無作為に選択し、形状像の断面高さ=繊維幅とし、周囲長÷2=繊維長とすることにより算出した値である。このとき画像処理の条件は任意であるが、画像処理の条件によって同一画像であっても算出される値に差が生じる場合がある。画像処理の条件による値の差の範囲は、平均繊維長については±100nmの範囲内であることが好ましい。条件による値の差の範囲は、平均繊維幅については±10nmの範囲内であることが好ましい。より詳細な測定方法は、後述の実施例に記載の方法に従う。 For the average fiber width and average fiber length, nanocellulose and water were mixed so that the concentration of nanocellulose was approximately 1 to 10 ppm, and a sufficiently diluted cellulose aqueous dispersion was naturally dried on a mica substrate. The shape of nanocellulose was observed using a scanning probe microscope, and an arbitrary number of fibers were randomly selected from the obtained images. The cross-sectional height of the shape image = fiber width, and the peripheral length ÷ 2 = fiber length. It is a value calculated by. At this time, the image processing conditions are arbitrary, but the calculated values may differ depending on the image processing conditions even for the same image. The range of the difference in values depending on the image processing conditions is preferably within the range of ± 100 nm for the average fiber length. The range of the difference in values depending on the conditions is preferably within the range of ± 10 nm for the average fiber width. A more detailed measurement method follows the method described in Examples described later.
 本発明におけるナノセルロースの一態様において、ゼータ電位、及び、光透過率が後述の値を満たすナノセルロースを用いてもよい。 In one aspect of nanocellulose in the present invention, nanocellulose whose zeta potential and light transmittance satisfy the values described below may be used.
(ゼータ電位)
 本発明に用いるナノセルロースの一態様において、ゼータ電位は-30mV以下であってもよい。ゼータ電位が-30mV以下(すなわち、絶対値が30mV以上)であると、ミクロフィブリル同士の反発が十分に得られ、表面電荷密度が高いナノセルロースが生じやすくなる。これにより、ナノセルロースの分散安定性が向上し、スラリーとしたときの粘度安定性やハンドリング性に優れる傾向にある。分散安定性の観点からは、ゼータ電位の下限は特に制限されない。ただし、ゼータ電位が-100mV以上(すなわち、絶対値が100mV以下)の場合には、繊維方向の酸化切断が抑制される傾向にあるため、均一なサイズのナノセルロースを得ることができる傾向にある。
(Zeta potential)
In one aspect of nanocellulose used in the present invention, the zeta potential may be −30 mV or less. When the zeta potential is -30 mV or less (that is, the absolute value is 30 mV or more), repulsion between microfibrils is sufficiently obtained, and nanocellulose having a high surface charge density is likely to be generated. As a result, the dispersion stability of nanocellulose is improved, and the viscosity stability and handleability of the slurry tend to be excellent. From the viewpoint of dispersion stability, the lower limit of the zeta potential is not particularly limited. However, when the zeta potential is -100 mV or more (that is, the absolute value is 100 mV or less), oxidative cleavage in the fiber direction tends to be suppressed, so that nanocellulose having a uniform size tends to be obtained. ..
 なお、本明細書においてゼータ電位は、ナノセルロースと水とを混合してナノセルロースの濃度を0.1質量%としたセルロース水分散体につき、pH8.0、20℃の条件で測定した値である。
 具体的には、ゼータ電位は以下の条件にしたがい測定することができる。
 ナノセルロースの水分散体に純水を加えて、ナノセルロースの濃度が0.1%になるように希釈する。希釈後のナノセルロースの水分散体に、0.05mol/Lの水酸化ナトリウム水溶液を加えて約pH8.0に調整して、大塚電子社製ゼータ電位計(ELSZ-1000)によりゼータ電位を約20℃で測定する。
In the present specification, the zeta potential is a value measured under the conditions of pH 8.0 and 20 ° C. for a cellulose aqueous dispersion in which nanocellulose and water are mixed and the concentration of nanocellulose is 0.1% by mass. be.
Specifically, the zeta potential can be measured according to the following conditions.
Pure water is added to the aqueous dispersion of nanocellulose to dilute it so that the concentration of nanocellulose becomes 0.1%. Add 0.05 mol / L sodium hydroxide aqueous solution to the diluted nanocellulose aqueous dispersion to adjust the pH to about 8.0, and adjust the zeta potential with a zeta potential meter (ELSZ-1000) manufactured by Otsuka Electronics Co., Ltd. Measure at 20 ° C.
(光透過率)
 本発明に用いるナノセルロースの一態様において、水と混合して固形分濃度0.1質量%としたナノセルロース混合液における光透過率が95%以上であってもよい。当該光透過率は、より好ましくは96%以上であり、更に好ましくは97%以上であり、より更に好ましくは99%以上である。
 なお、光透過率は、分光光度計により測定した波長660nmでの値である。
(Light transmittance)
In one aspect of nanocellulose used in the present invention, the light transmittance in the nanocellulose mixed solution mixed with water to a solid content concentration of 0.1% by mass may be 95% or more. The light transmittance is more preferably 96% or more, further preferably 97% or more, still more preferably 99% or more.
The light transmittance is a value measured by a spectrophotometer at a wavelength of 660 nm.
 具体的には、光透過率は以下の条件にしたがい測定することができる。
 ナノセルロースの水分散体を10mm厚の石英セルに入れて、分光光度計(JASCO V-550)により波長660nmの光透過率を測定する。
Specifically, the light transmittance can be measured according to the following conditions.
An aqueous dispersion of nanocellulose is placed in a 10 mm thick quartz cell, and the light transmittance at a wavelength of 660 nm is measured with a spectrophotometer (JASCO V-550).
 本発明におけるナノセルロースの一態様は、上述のとおり、次亜塩素酸又はその塩等を用いて酸化し酸化セルロースを得たのちに解繊することによって得ることができる。
 ここで、酸化セルロースの重合度は、特に制限されるものではないが、通常600以下であればよい。酸化セルロースの重合度が600を超えると、解繊に大きなエネルギーを要する傾向にあり、十分な易解繊性を発現することができず、分散性の低下を招来する傾向にある。また、酸化セルロースの重合度が600を超えると、解繊が不十分な酸化セルロースが多くなるため、これを微細化したナノセルロースを分散媒中に分散させた場合に光散乱等が多くなり、透明度が低下することがある。またさらに、得られるナノセルロースの大きさにばらつきが生じ、品質が不均一となる傾向がある。このため、ナノセルロースを含むスラリー(以下、「ナノセルロース含有スラリー」ともいう)の粘度が高くなり、またスラリーのハンドリング性が低下する場合がある。易解繊性の観点からは、酸化セルロースの重合度の下限は特に設定されない。ただし、酸化セルロースの重合度が50未満であると、繊維状というより粒子状のセルロースの割合が多くなる傾向にある。上記の観点から、酸化セルロースの重合度は、50以上600以下の範囲であればよい。
As described above, one aspect of nanocellulose in the present invention can be obtained by oxidizing with hypochlorous acid or a salt thereof to obtain oxidized cellulose and then defibrating it.
Here, the degree of polymerization of the oxidized cellulose is not particularly limited, but is usually 600 or less. When the degree of polymerization of cellulose oxide exceeds 600, it tends to require a large amount of energy for defibration, it is not possible to exhibit sufficient defibration properties, and it tends to cause a decrease in dispersibility. Further, when the degree of polymerization of cellulose oxide exceeds 600, the amount of oxidized cellulose which is insufficiently defibrated increases, so that when the finely divided nanocellulose is dispersed in a dispersion medium, light scattering and the like increase. Transparency may decrease. Furthermore, the size of the obtained nanocellulose varies, and the quality tends to be non-uniform. Therefore, the viscosity of the slurry containing nanocellulose (hereinafter, also referred to as “nanocellulose-containing slurry”) may increase, and the handleability of the slurry may decrease. From the viewpoint of easy friability, the lower limit of the degree of polymerization of cellulose oxide is not particularly set. However, when the degree of polymerization of oxidized cellulose is less than 50, the proportion of particulate cellulose tends to increase rather than fibrous. From the above viewpoint, the degree of polymerization of cellulose oxide may be in the range of 50 or more and 600 or less.
 なお、酸化セルロースの重合度は、酸化反応の際の反応時間、反応温度、pH、及び次亜塩素酸又はその塩の有効塩素濃度等を変更することにより調整することができる。具体的には、酸化度を高めると重合度が低下する傾向があることから、重合度を小さくするには、例えば酸化の反応時間及び/又は反応温度を大きくする方法が挙げられる。他の方法として、酸化セルロースの重合度は、酸化反応時の反応系の攪拌条件によって調整することができる。例えば、攪拌翼等を用いて反応系を十分に均一化した条件下であれば、酸化反応が円滑に進行し、重合度が低下する傾向がある。一方、スターラーによる攪拌等のように反応系の攪拌が不十分となりやすい条件下では、反応が不均一になりやすく、酸化セルロースの重合度を十分に低減することが難しい。また、酸化セルロースの重合度は、原料セルロースの選択によっても変動する傾向がある。このため、セルロース系原料の選択によって酸化セルロースの重合度を調整することもできる。なお、本明細書において、酸化セルロースの重合度は、粘度法により測定された平均重合度(粘度平均重合度)である。 The degree of polymerization of cellulose oxide can be adjusted by changing the reaction time, reaction temperature, pH, and the effective chlorine concentration of hypochlorous acid or a salt thereof during the oxidation reaction. Specifically, since the degree of polymerization tends to decrease as the degree of oxidation increases, for example, a method of increasing the reaction time and / or the reaction temperature of oxidation can be mentioned in order to reduce the degree of polymerization. As another method, the degree of polymerization of cellulose oxide can be adjusted by the stirring conditions of the reaction system at the time of the oxidation reaction. For example, under conditions in which the reaction system is sufficiently homogenized using a stirring blade or the like, the oxidation reaction proceeds smoothly and the degree of polymerization tends to decrease. On the other hand, under conditions such as stirring with a stirrer where stirring of the reaction system tends to be insufficient, the reaction tends to be non-uniform, and it is difficult to sufficiently reduce the degree of polymerization of cellulose oxide. In addition, the degree of polymerization of cellulose oxide tends to vary depending on the selection of the raw material cellulose. Therefore, the degree of polymerization of oxidized cellulose can be adjusted by selecting a cellulosic raw material. In the present specification, the degree of polymerization of cellulose oxide is the average degree of polymerization (viscosity average degree of polymerization) measured by the viscosity method.
 具体的には、酸化セルロースの重合度は以下の条件にしたがい測定することができる。
 pH10に調整した水素化ホウ素ナトリウム水溶液に酸化セルロースを加え、25℃で5時間、還元処理を行う。水素化ホウ素ナトリウム量は、酸化セルロース1gに対して0.1gとする。還元処理後、吸引ろ過にて固液分離、水洗を行い、得られた酸化セルロースを凍結乾燥させた。純水10mLに乾燥させた酸化セルロース0.04gを加えて2分間撹拌した後、1M銅エチレンジアミン溶液10mLを加えて溶解させる。その後、キャピラリー型粘度計にて25℃でブランク溶液の流下時間とセルロース溶液の流下時間測定する。ブランク溶液の流下時間(t0)とセルロース溶液の流下時間(t)、酸化セルロースの濃度(c[g/ml])から次式のように相対粘度(ηr)、比粘度(ηsp)、固有粘度([η])を順次求め、粘度測の式から酸化セルロースの重合度(DP)を計算する。
 ηr=η/η0=t/t0
 ηsp=ηr-1
 [η]=ηsp/(100×c(1+0.28ηsp))
 DP=175×[η]
Specifically, the degree of polymerization of cellulose oxide can be measured according to the following conditions.
Cellulose oxide is added to an aqueous solution of sodium borohydride adjusted to pH 10, and a reduction treatment is carried out at 25 ° C. for 5 hours. The amount of sodium borohydride is 0.1 g with respect to 1 g of cellulose oxide. After the reduction treatment, solid-liquid separation and washing with water were performed by suction filtration, and the obtained oxidized cellulose was freeze-dried. 0.04 g of dried cellulose oxide is added to 10 mL of pure water, and the mixture is stirred for 2 minutes, and then 10 mL of a 1 M copper ethylenediamine solution is added to dissolve the mixture. Then, the flow time of the blank solution and the flow time of the cellulose solution are measured at 25 ° C. with a capillary viscometer. From the flow time (t0) of the blank solution, the flow time (t) of the cellulose solution, and the concentration of oxidized cellulose (c [g / ml]), the relative viscosity (ηr), the specific viscosity (ηsp), and the intrinsic viscosity are as shown in the following equations. ([Η]) is sequentially obtained, and the degree of polymerization (DP) of cellulose oxide is calculated from the formula for measuring viscosity.
ηr = η / η0 = t / t0
ηsp = ηr-1
[Η] = ηsp / (100 × c (1 + 0.28ηsp))
DP = 175 × [η]
(酸化セルロースに係る光透過率)
 酸化セルロースは、当該酸化セルロースの濃度0.1質量%水分散液を自転公転撹拌機にて公転速度2000rpm、自転速度800rpmで10分間の条件で解繊処理することにより得られるナノセルロース水分散液の光透過率が、通常60%以上である。酸化セルロースは、当該酸化セルロースの濃度0.1質量%水分散液をボルテックスミキサーにて回転数3000rpmで10分間の条件で解繊処理することにより得られるナノセルロース水分散液の光透過率が、通常60%以上である。
 なお、光透過率は、分光光度計により測定した波長660nmでの値である。具体的な測定方法は、(光透過率)のとおりである。
(Light transmittance related to cellulose oxide)
The cellulose oxide is a nanocellulose aqueous dispersion obtained by defibrating an aqueous dispersion having a concentration of 0.1% by mass of the oxidized cellulose with a rotation / revolution stirrer at a revolution speed of 2000 rpm and a rotation speed of 800 rpm for 10 minutes. The light transmittance of the above is usually 60% or more. The light transmittance of the nanocellulose water dispersion obtained by defibrating the water dispersion having a concentration of 0.1% by mass of the cellulose oxide with a vortex mixer at a rotation speed of 3000 rpm for 10 minutes has a high transmittance. Usually 60% or more.
The light transmittance is a value measured by a spectrophotometer at a wavelength of 660 nm. The specific measurement method is as described in (Light transmittance).
 本発明に用いる酸化セルロースの一態様は、好適には、セルロースを構成するグルコピラノース環の水酸基のうち少なくとも2個が酸化された構造を有し、より具体的には、グルコピラノース環の第2位及び第3位の水酸基が酸化されてカルボキシ基が導入された構造を有することが好ましい。また、上記ナノセルロースあるいは酸化セルロースにおけるグルコピラノース環の第6位の水酸基は酸化されず、水酸基のままであることが好ましい。このような酸化セルロースは、例えば、N-オキシル化合物を用いることなく、次亜塩素酸又はその塩によってセルロース系原料の酸化を行うことにより得ることができる。なお、酸化セルロースが有するグルコピラノース環におけるカルボキシ基の位置は、固体13C-NMRスペクトルにより解析することができる。
 なお、グルコピラノース環におけるカルボキシ基の位置はモデル分子として酸化レーヨンを用いた溶液NMRスペクトルと酸化セルロースの固体13C-NMRスペクトルの比較により解析することができる。
One aspect of the oxidized cellulose used in the present invention preferably has a structure in which at least two of the hydroxyl groups of the glucopyranose ring constituting the cellulose are oxidized, and more specifically, the second aspect of the glucopyranose ring. It is preferable to have a structure in which the hydroxyl groups at the positions and 3 positions are oxidized and a carboxy group is introduced. Further, it is preferable that the hydroxyl group at the 6-position of the glucopyranose ring in the nanocellulose or oxidized cellulose is not oxidized and remains as a hydroxyl group. Such oxidized cellulose can be obtained, for example, by oxidizing a cellulosic raw material with hypochlorous acid or a salt thereof without using an N-oxyl compound. The position of the carboxy group in the glucopyranose ring of cellulose oxide can be analyzed by the solid 13 C-NMR spectrum.
The position of the carboxy group in the glucopyranose ring can be analyzed by comparing the solution NMR spectrum using rayon oxide as a model molecule and the solid 13 C-NMR spectrum of cellulose oxide.
 レーヨンはセルロースと同一の化学構造を持ち、その酸化物(酸化レーヨン)は水溶性である。酸化レーヨンを重水に溶かして溶液一次元13C-NMR測定を行うことで165~185ppmにカルボキシ基に帰属される炭素のピークが観察される。本発明で用いる、原料セルロースを次亜塩素酸又はその塩で酸化して得られた酸化セルロースあるいはナノセルロースの一態様では、このケミカルシフト範囲に2本のシグナルが出現する。さらに、溶液二次元NMR測定によって、カルボキシ基は2位と3位に導入されたものと決定することができる。 Rayon has the same chemical structure as cellulose, and its oxide (rayon oxide) is water-soluble. By dissolving rayon oxide in heavy water and performing one-dimensional 13 C-NMR measurement of the solution, a peak of carbon attributed to the carboxy group is observed at 165 to 185 ppm. In one embodiment of the oxidized cellulose or nanocellulose used in the present invention obtained by oxidizing the raw material cellulose with hypochlorous acid or a salt thereof, two signals appear in this chemical shift range. Further, by solution two-dimensional NMR measurement, it can be determined that the carboxy group is introduced at the 2-position and the 3-position.
 原料セルロースを次亜塩素酸又はその塩で酸化して得られる酸化セルロースあるいはナノセルロースの固体13C-NMRでは、カルボキシ基の導入量が多い場合は165~185ppmに2本のシグナルが出現し、カルボキシ基導入量が少ない場合には非常にブロードなシグナルが出現しうる。酸化レーヨンの結果からわかるように、2位と3位に導入されたカルボキシ基炭素のシグナルは近接しており、分解能の低い固体13C-NMRでは2本のシグナルの分離が不十分となる。よって、カルボキシ基導入量が少ない場合にはブロードなシグナルとして観察される。つまり、固体13C-NMRスペクトルでは、165~185ppmに出現するピークの広がりを評価することで2位と3位にカルボキシ基が導入されていることを確認できる。
 すなわち、固体13C-NMRスペクトルにおける165ppm~185ppmの範囲のピークにベースラインを引いて、全体の面積値を求めた後、ピークトップで面積値を垂直分割して得られる2つのピーク面積値の比率(大きな面積値/小さな面積値)を求め、該ピーク面積値の比率が1.2以上であればブロードなピークであるといえる。
 また、上記ブロードなピークの有無は、165ppm~185ppmの範囲のベースラインの長さLと、上記ピークトップからベースラインへの垂線の長さL’との比によって判断することができる。すなわち、比L’/Lが0.1以上であれば、ブロードなピークが存在すると判断できる。上記比L’/Lは、0.2以上であってもよく、0.3以上であってもよく、0.4以上であってもよく、0.5以上であってもよい。比L’/Lの上限値は特に制限されないが、通常3.0以下あればよく、2.0以下であってもよく、1.0以下であってもよい。
 また、上記グルコピラノース環の構造は、Sustainable Chem. Eng. 2020, 8, 48, 17800?17806に記載の方法に準じて解析することにより決定することもできる。
In the solid 13 C-NMR of oxidized cellulose or nanocellulose obtained by oxidizing the raw material cellulose with hypochlorous acid or a salt thereof, two signals appear at 165 to 185 ppm when the amount of carboxy group introduced is large. A very broad signal can appear when the amount of carboxy group introduced is small. As can be seen from the results of rayon oxide, the signals of the carboxy group carbons introduced at the 2- and 3-positions are close to each other, and the separation of the two signals is insufficient in the low-resolution solid 13 C-NMR. Therefore, when the amount of carboxy group introduced is small, it is observed as a broad signal. That is, in the solid 13 C-NMR spectrum, it can be confirmed that the carboxy group is introduced at the 2-position and the 3-position by evaluating the spread of the peak appearing at 165 to 185 ppm.
That is, two peak area values obtained by vertically dividing the area value at the peak top after obtaining the total area value by drawing a baseline on the peak in the range of 165 ppm to 185 ppm in the solid 13 C-NMR spectrum. A ratio (large area value / small area value) is obtained, and if the ratio of the peak area values is 1.2 or more, it can be said that the peak is broad.
The presence or absence of the broad peak can be determined by the ratio of the baseline length L in the range of 165 ppm to 185 ppm and the perpendicular length L'from the peak top to the baseline. That is, if the ratio L'/ L is 0.1 or more, it can be determined that a broad peak exists. The ratio L'/ L may be 0.2 or more, 0.3 or more, 0.4 or more, or 0.5 or more. The upper limit of the ratio L'/ L is not particularly limited, but usually it may be 3.0 or less, 2.0 or less, or 1.0 or less.
The structure of the glucopyranose ring can also be determined by analysis according to the method described in Sustainable Chem. Eng. 2020, 8, 48, 17800? 17806.
 本発明におけるナノセルロースは、1本単位の繊維の集合である。本発明におけるナノセルロースがカルボキシル化ナノセルロースを含む場合、少なくとも1本のカルボキシル化されたナノセルロースを含んでいればよく、カルボキシル化されたナノセルロースが主成分であることが好ましい。ここでカルボキシル化ナノセルロースが主成分であるとは、ナノセルロース全量に占めるカルボキシル化ナノセルロースの割合が50質量%超過であること、好ましくは70質量%超過であること、より好ましくは80質量%超過であることを指す。上記割合の上限は100質量%であるが、98質量%であってもよく、95質量%であってもよい。 Nanocellulose in the present invention is a collection of fibers in units of one. When the nanocellulose in the present invention contains carboxylated nanocellulose, it suffices to contain at least one carboxylated nanocellulose, and it is preferable that the carboxylated nanocellulose is the main component. Here, the main component of the carboxylated nanocellulose is that the ratio of the carboxylated nanocellulose to the total amount of nanocellulose exceeds 50% by mass, preferably exceeds 70% by mass, and more preferably 80% by mass. Refers to being in excess. The upper limit of the above ratio is 100% by mass, but it may be 98% by mass or 95% by mass.
 本発明におけるナノセルロースは、熱可塑性樹脂と配合されるが、その際ナノセルロースは、分散媒を含んでいてもよい。本発明におけるナノセルロースの分散媒としては、ナノセルロースを分散させるものであれば特に制限されない。
 分散媒としては、例えば、水、アルコール類、エーテル類、ケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びジメチルスルホキサイド等が挙げられる。これらを単独で使用してもよいし、2種類以上を併用してもよい。これらの分散媒の具体例は、前記解繊処理に使用する溶媒と同様の例示を挙げることができる。
The nanocellulose in the present invention is blended with a thermoplastic resin, in which case the nanocellulose may contain a dispersion medium. The dispersion medium for nanocellulose in the present invention is not particularly limited as long as it disperses nanocellulose.
Examples of the dispersion medium include water, alcohols, ethers, ketones, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and the like. These may be used alone or in combination of two or more. Specific examples of these dispersion media include the same examples as the solvent used for the defibration treatment.
 本発明の樹脂組成物は、後述するように、その製造方法において必要に応じてアミン又は四級アンモニウムを添加して沈殿させる工程を含んでいてもよい。これによりナノセルロースの少なくとも一部がアミン又は四級アンモニウムにより変性される。また、本発明の樹脂組成物の製造の際に、あらかじめアミン又は四級アンモニウムと反応させたナノセルロースを用いることにより、ナノセルロースの少なくとも一部がアミン又は四級アンモニウムにより変性されていてもよい。
 したがって、本発明の樹脂組成物の好ましい態様の一つは、ナノセルロースの少なくとも一部がアミン又は四級アンモニウムにより変性されたナノセルロースを含む。
As will be described later, the resin composition of the present invention may include a step of adding an amine or a quaternary ammonium as necessary in the production method thereof and precipitating the resin composition. This modifies at least a portion of the nanocellulose with amines or quaternary ammoniums. Further, at least a part of the nanocellulose may be modified with the amine or the quaternary ammonium by using the nanocellulose previously reacted with the amine or the quaternary ammonium in the production of the resin composition of the present invention. ..
Therefore, one of the preferred embodiments of the resin composition of the present invention comprises nanocellulose in which at least a portion of the nanocellulose has been modified with an amine or quaternary ammonium.
 アミン又は四級アンモニウム塩化合物がナノセルロースの表面のカルボキシ基と反応することでナノセルロースが変性され、ナノセルロースの疎水性が向上し、エチレン不飽和単量体及び樹脂に対する親和性が向上すると考えられる。 It is considered that the reaction of the amine or quaternary ammonium salt compound with the carboxy group on the surface of the nanocellulose modifies the nanocellulose, improves the hydrophobicity of the nanocellulose, and improves the affinity for ethylene unsaturated monomers and resins. Be done.
 ナノセルロースを変性するアミンは特に制限されず、一級、二級、及び三級のいずれであってもよい。アミン又は四級アンモニウム塩化合物の窒素原子に結合している炭化水素基又は芳香族基の炭素数(窒素原子に炭化水素基又は芳香族基が2つ以上結合している場合は、その合計炭素数)は特に制限されず、炭素数1~100の間から選択してもよい。アミンとしては、エチレンオキサイド/プロピレンオキサイド(EO/PO)共重合部等のポリアルキレンオキサイド構造を有するものを用いてもよい。ナノセルロースに充分な疎水性を付与する観点からは、炭素数は3以上であることが好ましく、5以上であることがより好ましい。 The amine that modifies nanocellulose is not particularly limited and may be primary, secondary, or tertiary. The number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon number) The number) is not particularly limited and may be selected from 1 to 100 carbon atoms. As the amine, an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used. From the viewpoint of imparting sufficient hydrophobicity to nanocellulose, the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
 ナノセルロースを変性する四級アンモニウム塩化合物は特に制限されない。四級アンモニウム塩化合物として具体的には、テトラブチルアンモニウム水酸化物等の四級アンモニウム水酸化物、テトラブチルアンモニウム塩化物等の四級アンモニウム塩化物、テトラブチルアンモニウム臭化物等の四級アンモニウム臭化物、テトラブチルアンモニウムヨウ化物等の四級アンモニウムヨウ化物等が考えられる。 The quaternary ammonium salt compound that modifies nanocellulose is not particularly limited. Specifically, the quaternary ammonium salt compound includes a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary ammonium bromide such as tetrabutylammonium bromide. A quaternary ammonium iodide such as tetrabutylammonium iodide can be considered.
<熱可塑性樹脂>
 本発明における熱可塑性樹脂とは、ガラス転移温度又は融点に達すると軟化する性質を有する高分子である。本発明に用いられる熱可塑性樹脂は、樹脂の用途や樹脂組成物を配合する対象の樹脂の種類等に応じて適宜選択すればよく、特に制限されない。熱可塑性樹脂としては、例えば、エチレン性不飽和単量体等をモノマー単位として含む樹脂を挙げることができる。エチレン性不飽和単量体とは、エチレン基を含み、該エチレン基を介して重合して結合を形成する化合物を指す。
<Thermoplastic resin>
The thermoplastic resin in the present invention is a polymer having a property of softening when it reaches the glass transition temperature or the melting point. The thermoplastic resin used in the present invention may be appropriately selected depending on the intended use of the resin, the type of the resin to be blended with the resin composition, and the like, and is not particularly limited. Examples of the thermoplastic resin include a resin containing an ethylenically unsaturated monomer or the like as a monomer unit. The ethylenically unsaturated monomer refers to a compound containing an ethylene group and polymerizing via the ethylene group to form a bond.
 熱可塑性樹脂を構成するモノマーとしては、例えば、(メタ)アクリル酸;アルキル(メタ)アクリレート、アルキレングリコール(メタ)アクリレート等の(メタ)アクリル系モノマー;(メタ)アクリロニトリル等のニトリル系モノマー;ハロゲン化ビニル;マレイン酸イミド、フェニルマレイミド等のマレイミド系モノマー;(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー;スチレン、α-メチルスチレン等のスチレン系モノマー;酢酸ビニル;等が挙げられる。これらの中でも、(メタ)アクリル系モノマー、(メタ)アクリルアミド系モノマー、スチレン系モノマー、マレイミド系モノマー、ニトリル系モノマーが好ましい。これらは1種単独で含んでいてもよく、2種以上を組み合わせて含んでいてもよい。 Examples of the monomer constituting the thermoplastic resin include (meth) acrylic acid; (meth) acrylic monomer such as alkyl (meth) acrylate and alkylene glycol (meth) acrylate; and nitrile-based monomer such as (meth) acrylonitrile; halogen. Vinyl carbonate; maleimide-based monomers such as imide maleate and phenylmaleimide; (meth) acrylamide-based monomers such as (meth) acrylamide; styrene-based monomers such as styrene and α-methylstyrene; vinyl acetate; and the like. Among these, (meth) acrylic monomers, (meth) acrylamide monomers, styrene monomers, maleimide monomers, and nitrile monomers are preferable. These may be contained alone or in combination of two or more.
 アルキル(メタ)アクリレートとしては、アルキル部分の炭素数が1~10のものが挙げられる。アルキル部分は直鎖状、分岐状、環状のいずれであってもよく、無置換であっても置換基を有していてもよい。 Examples of the alkyl (meth) acrylate include those having an alkyl portion having 1 to 10 carbon atoms. The alkyl moiety may be linear, branched or cyclic, and may be unsubstituted or having a substituent.
 熱可塑性樹脂は、ナノセルロースと化学結合を形成可能な官能基を有することが好ましい。官能基としては、特に制限されず、例えば、カルボキシ基、水酸基、エポキシ基、アミノ基、アミド基、シアノ基等を挙げることができる。これらの官能基を有することでナノセルロースに対する親和性が高められる。官能基を有するエチレン性不飽和単量体の割合は、エチレン性不飽和単量体全体の5モル%以下であることが好ましく、3モル%以下であることがより好ましく、1モル%以下であることがさらに好ましい。 The thermoplastic resin preferably has a functional group capable of forming a chemical bond with nanocellulose. The functional group is not particularly limited, and examples thereof include a carboxy group, a hydroxyl group, an epoxy group, an amino group, an amide group, and a cyano group. Having these functional groups enhances the affinity for nanocellulose. The proportion of the ethylenically unsaturated monomer having a functional group is preferably 5 mol% or less, more preferably 3 mol% or less, and 1 mol% or less of the total ethylenically unsaturated monomer. It is more preferable to have.
 熱可塑性樹脂がナノセルロースと化学結合を形成可能な官能基を有する場合、官能基としては、窒素原子を含む塩基又はカチオンであってもよい。後述するように、本発明の樹脂組成物の製造方法の一つとして、ナノセルロースの水分散液と熱可塑性樹脂とを混合し、ナノセルロースと熱可塑性樹脂とを反応させて析出せしめ、ナノセルロースと熱可塑性樹脂との混合物を取り出す工程を含む方法が挙げられる。この方法によれば沈殿剤を用いることなく、ナノセルロースと熱可塑性樹脂との混合物を得て、当該混合物より繊維状の複合体を形成することができる。 When the thermoplastic resin has a functional group capable of forming a chemical bond with nanocellulose, the functional group may be a base or a cation containing a nitrogen atom. As will be described later, as one of the methods for producing the resin composition of the present invention, an aqueous dispersion of nanocellulose and a thermoplastic resin are mixed, and the nanocellulose and the thermoplastic resin are reacted to precipitate the nanocellulose. A method including a step of taking out a mixture of the thermoplastic resin and the thermoplastic resin can be mentioned. According to this method, a mixture of nanocellulose and a thermoplastic resin can be obtained without using a precipitating agent, and a fibrous complex can be formed from the mixture.
 窒素原子を含む塩基としては、アミンを好適に挙げることができる。アミンは特に制限されず、一級、二級、及び三級のいずれであってもよい。アミン又は四級アンモニウム塩化合物の窒素原子に結合している炭化水素基又は芳香族基の炭素数(窒素原子に炭化水素基又は芳香族基が2つ以上結合している場合は、その合計炭素数)は特に制限されず、炭素数1~100の間から選択してもよい。アミンとしては、エチレンオキサイド/プロピレンオキサイド(EO/PO)共重合部等のポリアルキレンオキサイド構造を有するものを用いてもよい。ナノセルロースに充分な疎水性を付与する観点からは、炭素数は3以上であることが好ましく、5以上であることがより好ましい。
 窒素原子を含むカチオンとしては、四級アンモニウムを好適に挙げることができる。四級アンモニウム塩化合物は、特に制限されず、例えば、テトラブチルアンモニウム水酸化物等の四級アンモニウム水酸化物、テトラブチルアンモニウム塩化物等の四級アンモニウム塩化物、テトラブチルアンモニウム臭化物等の四級アンモニウム臭化物、テトラブチルアンモニウムヨウ化物等の四級アンモニウムヨウ化物等を挙げることができる。
As the base containing a nitrogen atom, an amine can be preferably mentioned. The amine is not particularly limited and may be primary, secondary, or tertiary. The number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon number) The number) is not particularly limited and may be selected from 1 to 100 carbon atoms. As the amine, an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used. From the viewpoint of imparting sufficient hydrophobicity to nanocellulose, the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
As the cation containing a nitrogen atom, quaternary ammonium can be preferably mentioned. The quaternary ammonium salt compound is not particularly limited, and is, for example, a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary such as tetrabutylammonium bromide. Examples thereof include quaternary ammonium iodide such as ammonium bromide and tetrabutylammonium iodide.
 熱可塑性樹脂の好適な態様の一つは、親水部と疎水部とを有する重合体である。ここで、親水部とは、親水性のモノマーから構成される部分を指し、疎水部とは、疎水性のモノマーから構成される部分を指す。親水部と疎水部とを有する重合体は、親水性のモノマーから構成される部分と、疎水性のモノマーから構成される部分とから構成される共重合体である。当該共重合体は、その共重合の形式に制限はなく、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれの形式であってもよい。
 上記疎水性モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル及び(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;スチレン、α-メチルスチレン、ビニルトルエン及びビニルキシレン等の芳香族ビニル化合物;フェニルマレイミド等の置換マレイミド系モノマー;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、t-ブチルビニルエーテル、n-ヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル、n-オクチルビニルエーテル、n-ノニルビニルエーテル及びn-デシルビニルエーテル等の炭素数1~10のアルキル基を有するアルキルビニルエーテル類;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピパリン酸ビニル及びバーサチック酸ビニル等のビニルエステル化合物;エチレン、プロピレン、ブチレン等のα-オレフィン類;等が挙げられる。
 上記親水性モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、イタコン酸及びフマル酸等の不飽和酸並びにこれらの塩類;無水マレイン酸等の不飽和酸無水物;2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩類等のスルホン酸基含有単量体;2-ヒドロキシエチル(メタ)アクリレート、アルキレングリコール(メタ)アクリレート等の(メタ)アクリル系モノマー;(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の(メタ)アクリルアミド系モノマー;メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、n-プロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、n-ブチル(メタ)アクリルアミド及び2-エチルヘキシル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;メチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、エチルアミノプロピル(メタ)アクリルアミド及びジエチルアミノプロピル(メタ)アクリルアミド等の(ジ)アルキルアミノアルキルアミド化合物;メチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、エチルアミノエチル(メタ)アクリレート及びジエチルアミノエチル(メタ)アクリレート等の(ジ)アルキルアミノアルキル(メタ)アクリレート化合物;ジメチルアミノプロピルアクリルアミド等の(ジ)アルキルアミノアルキル(メタ)アクリルアミド化合物;N-ビニルピロリドン、N-ビニル-ε-カプロラクタム等のN-ビニルラクタム化合物;マレイミド等のマレイミド系モノマー;ビニルアルコール;等が挙げられる。
One of the preferred embodiments of the thermoplastic resin is a polymer having a hydrophilic part and a hydrophobic part. Here, the hydrophilic portion refers to a portion composed of a hydrophilic monomer, and the hydrophobic portion refers to a portion composed of a hydrophobic monomer. The polymer having a hydrophilic portion and a hydrophobic portion is a copolymer composed of a portion composed of a hydrophilic monomer and a portion composed of a hydrophobic monomer. The type of the copolymer is not limited, and may be, for example, any type such as a random copolymer, a block copolymer, and a graft copolymer.
Examples of the hydrophobic monomer include (meth) acrylic acid alkyl ester compounds such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; styrene. Aromatic vinyl compounds such as α-methylstyrene, vinyltoluene and vinylxylene; substituted maleimide-based monomers such as phenylmaleimide; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, t. -Alkyl vinyl ethers having an alkyl group having 1 to 10 carbon atoms such as butyl vinyl ether, n-hexyl vinyl ether, 2-ethylhexyl vinyl ether, n-octyl vinyl ether, n-nonyl vinyl ether and n-decyl vinyl ether; vinyl formate, vinyl acetate, etc. Vinyl ester compounds such as vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl piperiate and vinyl versaticate; α-olefins such as ethylene, propylene and butylene; etc. Can be mentioned.
Examples of the hydrophilic monomer include unsaturated acids such as (meth) acrylic acid, crotonic acid, maleic acid, itaconic acid and fumaric acid, and salts thereof; unsaturated acid anhydrides such as maleic anhydride; 2-acrylamide. Sulphonic acid group-containing monomers such as -2-methylpropanesulfonic acid and salts thereof; (meth) acrylic monomers such as 2-hydroxyethyl (meth) acrylate and alkylene glycol (meth) acrylate; (meth) acrylamide, ( (Meta) acrylamide-based monomers such as meta) acryloylmorpholin; methyl (meth) acrylamide, ethyl (meth) acrylamide, n-propyl (meth) acrylamide, isopropyl (meth) acrylamide, n-butyl (meth) acrylamide and 2-ethylhexyl N-alkyl (meth) acrylamide compounds such as (meth) acrylamide; (di) such as methylaminopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, ethylaminopropyl (meth) acrylamide and diethylaminopropyl (meth) acrylamide. Alkylaminoalkylamide compounds; (di) alkylaminoalkyl (meth) acrylate compounds such as methylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, ethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate; (Di) Alkylaminoalkyl (meth) acrylamide compounds such as dimethylaminopropylacrylamide; N-vinyllactam compounds such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam; Maleimide-based monomers such as maleimide; Vinyl alcohols; etc. Can be mentioned.
 熱可塑性樹脂の好適な態様の一つは、親水セグメントと疎水セグメントとを有するブロック共重合体である。ここで、親水セグメントとは、ブロック共重合体における親水性のモノマーから構成される一つの集合を指し、疎水セグメントとは、ブロック共重合体における疎水性のモノマーから構成される一つの集合を指す。 One of the preferred embodiments of the thermoplastic resin is a block copolymer having a hydrophilic segment and a hydrophobic segment. Here, the hydrophilic segment refers to one set composed of hydrophilic monomers in the block copolymer, and the hydrophobic segment refers to one set composed of hydrophobic monomers in the block copolymer. ..
 熱可塑性樹脂の重量平均分子量は、特に制限されない。例えば、5000~300万であってもよい。重量平均分子量が5000以上であると樹脂の強度低下が抑制され、粒子の重量平均分子量が300万以下であると粒子が樹脂中で溶融しやすく充分な改質効果が得られる傾向にある。
 熱可塑性樹脂の重量平均分子量は、好ましくは1000~200万、より好ましくは5000~100万である。
 重量平均分子量は、市販のGPC(ゲルパーミエーションクロマトグラフィー)により測定することができ、詳細には実施例に記載した方法で測定される。
The weight average molecular weight of the thermoplastic resin is not particularly limited. For example, it may be 50 to 3 million. When the weight average molecular weight is 5000 or more, the decrease in the strength of the resin is suppressed, and when the weight average molecular weight of the particles is 3 million or less, the particles are easily melted in the resin and a sufficient modification effect tends to be obtained.
The weight average molecular weight of the thermoplastic resin is preferably 10 to 2 million, more preferably 50 to 1 million.
The weight average molecular weight can be measured by a commercially available GPC (gel permeation chromatography), and in detail, it is measured by the method described in Examples.
 熱可塑性樹脂の製造方法としては、特に制限されない。熱可塑性樹脂の製造方法として、例えば、ナノセルロースの存在下又は非存在下で熱可塑性樹脂を構成するモノマーを、乳化重合、懸濁重合又はピッカリングエマルション重合させる方法を挙げることができる。 The method for producing the thermoplastic resin is not particularly limited. As a method for producing a thermoplastic resin, for example, a method of emulsion polymerization, suspension polymerization or pickering emulsion polymerization of a monomer constituting the thermoplastic resin in the presence or absence of nanocellulose can be mentioned.
 ナノセルロースの存在下でモノマーを乳化重合又は懸濁重合により重合させる場合、その方法としては、水等の溶媒中にナノセルロースとモノマーを分散させ、重合開始剤を添加した状態で加熱する方法が挙げられる。 When the monomer is polymerized by emulsion polymerization or suspension polymerization in the presence of nanocellulose, the method is to disperse the nanocellulose and the monomer in a solvent such as water and heat the monomer with the polymerization initiator added. Can be mentioned.
 重合に用いる重合開始剤としては、過硫酸塩、有機過酸化物、アゾ化合物等の一般的な重合開始剤を使用することができるが、重合反応率及び生産性に優れる点で過硫酸塩が好ましく、得られた樹脂が耐水性に優れる点で過硫酸アンモニウムがより好ましい。 As the polymerization initiator used for the polymerization, a general polymerization initiator such as a persulfate, an organic peroxide, or an azo compound can be used, but the persulfate is excellent in terms of polymerization reaction rate and productivity. Preferably, ammonium persulfate is more preferable because the obtained resin has excellent water resistance.
 過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等が挙げられる。有機過酸化物としては、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド、カプロイルペルオキシド、ジ-i-プロピルペルオキシジカルボナト、ジ-2-エチルヘキシルペルオキシジカルボナト、t-ブチルペルオキシビバラト、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-アミルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-オクチルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-α-クミルペルオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)ブタン、2,2-ビス(4,4-ジ-t-オクチルペルオキシシクロヘキシル)ブタン等が挙げられる。 Examples of the persulfate include ammonium persulfate, potassium persulfate, sodium persulfate and the like. Examples of organic peroxides include t-butyl hydroperoxide, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, di-i-propylperoxydicarbonato, and di-2-ethylhexylperoxydicarbonato. , T-Butyl Peroxy Vibalato, 2,2-Bis (4,4-di-t-Butyl Peroxycyclohexyl) Propane, 2,2-Bis (4,4-di-t-Amilperoxycyclohexyl) Propane, 2, 2-bis (4,4-di-t-octylperoxycyclohexyl) propane, 2,2-bis (4,4-di-α-cumylperoxycyclohexyl) propane, 2,2-bis (4,4-di) Examples thereof include -t-butylperoxycyclohexyl) butane and 2,2-bis (4,4-di-t-octylperoxycyclohexyl) butane.
 アゾ化合物としては、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス-i-ブチルニトリル、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル等が挙げられる。 Examples of the azo compound include 2,2'-azobis-2,4-dimethylvaleronitrile, 2,2'-azobis-i-butylnitrile, and 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile. And so on.
 上記の過硫酸塩や過酸化物は、還元剤である亜硫酸水素ナトリウムやアスコルビン酸ナトリウムと組み合わせて、レドックス系重合開始剤としてもよい。 The above-mentioned persulfate or peroxide may be used as a redox-based polymerization initiator in combination with the reducing agent sodium bisulfite or sodium ascorbate.
 重合反応時の温度は、特に制限されない。例えば、30℃~180℃の範囲であることが好ましく、50℃~150℃の範囲であることがより好ましい。 The temperature during the polymerization reaction is not particularly limited. For example, it is preferably in the range of 30 ° C to 180 ° C, and more preferably in the range of 50 ° C to 150 ° C.
 ナノセルロースの存在下でモノマーを重合させる場合、ナノセルロースとエチレン性不飽和単量体との割合は、特に制限されない。例えば、ナノセルロース100質量部に対するエチレン性不飽和単量体の量を5質量部~1000質量部としてもよく、10質量部~100質量部としてもよい。 When the monomer is polymerized in the presence of nanocellulose, the ratio of nanocellulose to the ethylenically unsaturated monomer is not particularly limited. For example, the amount of the ethylenically unsaturated monomer with respect to 100 parts by mass of nanocellulose may be 5 parts by mass to 1000 parts by mass, or 10 parts by mass to 100 parts by mass.
 重合反応に使用した溶媒は除去してもよく、除去しなくてもよい。また、上記方法で得られた熱可塑性樹脂は重合反応に使用した溶媒を除去した後に別の溶媒に分散させて用いてもよい。 The solvent used in the polymerization reaction may or may not be removed. Further, the thermoplastic resin obtained by the above method may be used by being dispersed in another solvent after removing the solvent used in the polymerization reaction.
[樹脂組成物の製造方法]
 本発明の樹脂組成物の製造方法は、ナノセルロース及び熱可塑性樹脂を含む樹脂組成物の製造方法である。本発明の製造方法は、少なくともナノセルロースを含む水混合物から少なくともナノセルロースを含む固形分を沈殿させ、前記固形分と液相とを分離する操作を経て、前記固形分に有機溶媒を添加し、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物(混合物Iともいう)を準備する工程(工程Aともいう)、及び、前記混合物Iから、水の実質的な非存在下で有機溶媒の一部又は全部を除去する工程(工程Bともいう)を含む。
 本明細書において、「水の実質的な非存在下」とは、混合物Iにおける水の含有量が抑えられていることを指す。混合物Iは、樹脂組成物を得るのに影響しない範囲で水を含んでいてもよい。「水の実質的な非存在下」での工程Bにおける混合物I中の水の含有量は、工程Bにおける混合物I全量に対し、5質量%以下であってもよく、3質量%以下であってもよく、1質量%以下であってもよい。
[Manufacturing method of resin composition]
The method for producing a resin composition of the present invention is a method for producing a resin composition containing nanocellulose and a thermoplastic resin. In the production method of the present invention, a solid content containing at least nanocellulose is precipitated from an aqueous mixture containing at least nanocellulose, and an organic solvent is added to the solid content through an operation of separating the solid content and the liquid phase. A step (also referred to as step A) of preparing a mixture (also referred to as mixture I) of nanocellulose, a thermoplastic resin and an organic solvent, and a part of the organic solvent from the mixture I in the absence of substantially water. Alternatively, it includes a step of removing the whole (also referred to as step B).
As used herein, "substantially in the absence of water" refers to the reduced content of water in Mixture I. Mixture I may contain water to the extent that it does not affect the acquisition of the resin composition. The content of water in the mixture I in step B in "substantially absent of water" may be 5% by weight or less, or 3% by weight or less, based on the total amount of the mixture I in step B. It may be 1 mass% or less.
 本発明の製造方法は、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを準備する。
 本発明の製造方法における樹脂組成物が含むナノセルロース及び熱可塑性樹脂の実施態様の詳細は、前記<ナノセルロース>と<熱可塑性樹脂>にて述べたとおりである。
 ここでいう有機溶媒は、熱可塑性樹脂を溶解及び/又は膨潤する有機溶媒であることが好ましい。有機溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒等を挙げることができる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the production method of the present invention, a mixture I of nanocellulose, a thermoplastic resin and an organic solvent is prepared.
The details of the embodiments of the nanocellulose and the thermoplastic resin contained in the resin composition in the production method of the present invention are as described in the above-mentioned <nanocellulose> and <thermoplastic resin>.
The organic solvent referred to here is preferably an organic solvent that dissolves and / or swells the thermoplastic resin. Examples of the organic solvent include alcohol solvents, ketone solvents, ester solvents, ether solvents, nitrile solvents and the like. These may be used alone or in combination of two or more.
 アルコール系溶媒としては、例えば、メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブチルアルコール、tert-ブチルアルコール、メチルセロソルブ、エチレングリコール、及びグリセリン等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン及びメチルエチルケトン等が挙げられる。
 エステル系溶媒としては、例えば、酢酸イソアミル、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。
 エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、1,4-ジオキサン、及びテトラヒドロフラン(THFとも記載する)等が挙げられる。
 ニトリル系溶媒としては、例えば、アセトニトリル、ベンゾニトリル、プロピオニトリル、ブチロニトリル、及びアジポニトリル等が挙げられる。
Examples of the alcohol solvent include methanol, ethanol, isopropanol, isobutanol, sec-butyl alcohol, tert-butyl alcohol, methyl cellosolve, ethylene glycol, glycerin and the like.
Examples of the ketone solvent include acetone, methyl ethyl ketone and the like.
Examples of the ester solvent include isoamyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like.
Examples of the ether solvent include ethylene glycol dimethyl ether, 1,4-dioxane, and tetrahydrofuran (also referred to as THF).
Examples of the nitrile solvent include acetonitrile, benzonitrile, propionitrile, butyronitrile, adiponitrile and the like.
 本発明の製造方法にける工程Aは、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを得られれば、これら成分の配合順序等の条件は制限されない。工程Aの態様として、例えば、後述する工程A-1~A-3を挙げることができるが、これらに限定されない。 In step A in the production method of the present invention, conditions such as the blending order of these components are not limited as long as a mixture I of nanocellulose, a thermoplastic resin and an organic solvent can be obtained. Examples of the embodiment of the step A include, but are not limited to, steps A-1 to A-3 described later.
(工程A-1)
 工程Aの態様の一つ(工程A-1とも記載する)は、ナノセルロースの水分散液に沈殿剤を加えることにより、ナノセルロースを沈殿させ、液相と分離する工程、及び、
 分離したナノセルロースに、熱可塑性樹脂及び有機溶媒を添加し、前記混合物Iを得る工程、を含む。
 ナノセルロースの水分散液は、水混合物ともいう。したがって、上記水混合物とは、ナノセルロースの水分散液そのものである。
(Step A-1)
One of the aspects of step A (also referred to as step A-1) is a step of precipitating nanocellulose by adding a precipitating agent to the aqueous dispersion of nanocellulose and separating it from the liquid phase, and a step of separating the nanocellulose from the liquid phase.
The step of adding a thermoplastic resin and an organic solvent to the separated nanocellulose to obtain the mixture I is included.
The aqueous dispersion of nanocellulose is also referred to as an aqueous mixture. Therefore, the water mixture is the aqueous dispersion of nanocellulose itself.
(工程A-2)
 工程Aの態様の一つ(工程A-2とも記載する)は、ナノセルロースの水分散液と熱可塑性樹脂との水混合物に沈殿剤を加えることにより、ナノセルロースと熱可塑性樹脂との混合物IIを沈殿させ、液相と分離する工程、及び、
 分離したナノセルロースと熱可塑性樹脂との混合物IIに、有機溶媒を添加し、前記混合物Iを得る工程、を含む。
(Step A-2)
One aspect of step A (also referred to as step A-2) is a mixture of nanocellulose and a thermoplastic resin II by adding a precipitant to an aqueous mixture of an aqueous dispersion of nanocellulose and a thermoplastic resin. The process of precipitating and separating from the liquid phase, and
The step of adding an organic solvent to the mixture II of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
(工程A-3)
 工程Aの態様の一つ(工程A-3とも記載する)は、ナノセルロースの水分散液と熱可塑性樹脂とを混合し、ナノセルロースと熱可塑性樹脂とを反応させて析出せしめ、ナノセルロースと熱可塑性樹脂との混合物IIIを液相と分離する工程、
 分離したナノセルロースと熱可塑性樹脂との混合物IIIに、有機溶媒を添加し、前記混合物Iを得る工程、を含む。
(Step A-3)
In one of the embodiments of step A (also referred to as step A-3), an aqueous dispersion of nanocellulose and a thermoplastic resin are mixed, and the nanocellulose and the thermoplastic resin are reacted to precipitate the nanocellulose. The step of separating the mixture III with the thermoplastic resin from the liquid phase,
The step of adding an organic solvent to the mixture III of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
 本明細書における水混合物とは、構成成分として水を含む組成物を意味する。本明細書において、「液相と分離する」とは、「水混合物から取り出す」と同義であり、水混合物に含まれる少なくとも一部の水を含む液相と固形成分とを分離することにより、固形成分を取り出すことを指す。工程Aにおける、ナノセルロース、混合物II、及び混合物IIIは、固形成分に相当する。工程Aにおける、ナノセルロース、混合物II、及び混合物IIIは、完全に液相が取り除かれていなくてもよく、液相の一部を含んでいてもよい。液相と固形成分との分離は、例えば、濾過により行うことができる。濾過で集められた固形成分は、有機溶媒により洗浄してもよい。 The water mixture in the present specification means a composition containing water as a constituent component. In the present specification, "separating from the liquid phase" is synonymous with "removing from the water mixture", and by separating the liquid phase containing at least a part of water contained in the water mixture from the solid component. Refers to taking out solid components. The nanocellulose, the mixture II, and the mixture III in the step A correspond to solid components. The nanocellulose, the mixture II, and the mixture III in the step A may not have the liquid phase completely removed, or may contain a part of the liquid phase. Separation of the liquid phase and the solid component can be performed, for example, by filtration. The solid component collected by filtration may be washed with an organic solvent.
 工程A-1及び工程A-2における沈殿剤とは、ナノセルロース、あるいは、熱可塑性樹脂、あるいは、ナノセルロースと熱可塑性樹脂との混合物を析出させる作用を有する成分を指す。沈殿剤としては、カルボキシ基と塩を形成する成分を好適に挙げることができる。
 工程A-3においては、沈殿剤を用いずとも、ナノセルロースと熱可塑性樹脂とが相互作用することによってこれらが析出して、ナノセルロースと熱可塑性樹脂との混合物IIIとして水混合物から分離することができる。
The precipitant in steps A-1 and A-2 refers to a component having an action of precipitating nanocellulose, a thermoplastic resin, or a mixture of nanocellulose and a thermoplastic resin. As the precipitating agent, a component forming a salt with a carboxy group can be preferably mentioned.
In step A-3, the nanocellulose and the thermoplastic resin interact with each other to precipitate them without using a precipitating agent, and separate them from the aqueous mixture as a mixture III of the nanocellulose and the thermoplastic resin. Can be done.
 沈殿剤としては、例えば、無機塩、及び、分子内に窒素原子を含む有機アルカリ又はカチオン等を挙げることができる。
 無機塩としては、例えば、塩化ナトリウム、塩化マグネシウム等が挙げられる。
Examples of the precipitant include an inorganic salt, an organic alkali or a cation containing a nitrogen atom in the molecule, and the like.
Examples of the inorganic salt include sodium chloride, magnesium chloride and the like.
 分子内に窒素原子を含む有機アルカリとしては、具体的には、一級、二級、及び三級のいずれかのアミンを挙げることができる。カチオンとしては、具体的には、四級アンモニウム塩化合物を挙げることができる。アミン又は四級アンモニウム塩化合物の窒素原子に結合している炭化水素基又は芳香族基の炭素数(窒素原子に炭化水素基又は芳香族基が2つ以上結合している場合は、その合計炭素数)は特に制限されず、炭素数1~100の間から選択してもよい。アミンとしては、エチレンオキサイド/プロピレンオキサイド(EO/PO)共重合部等のポリアルキレンオキサイド構造を有するものを用いてもよい。ナノセルロースに充分な疎水性を付与する観点からは、炭素数は3以上であることが好ましく、5以上であることがより好ましい。 Specific examples of the organic alkali containing a nitrogen atom in the molecule include primary, secondary, and tertiary amines. Specific examples of the cation include a quaternary ammonium salt compound. The number of carbon atoms of the hydrocarbon group or aromatic group bonded to the nitrogen atom of the amine or quaternary ammonium salt compound (if two or more hydrocarbon groups or aromatic groups are bonded to the nitrogen atom, the total carbon number) The number) is not particularly limited and may be selected from 1 to 100 carbon atoms. As the amine, an amine having a polyalkylene oxide structure such as an ethylene oxide / propylene oxide (EO / PO) copolymer may be used. From the viewpoint of imparting sufficient hydrophobicity to nanocellulose, the number of carbon atoms is preferably 3 or more, and more preferably 5 or more.
 四級アンモニウム塩化合物として具体的には、テトラブチルアンモニウム水酸化物等の四級アンモニウム水酸化物、テトラブチルアンモニウム塩化物等の四級アンモニウム塩化物、テトラブチルアンモニウム臭化物等の四級アンモニウム臭化物、テトラブチルアンモニウムヨウ化物等の四級アンモニウムヨウ化物等が考えられる。 Specifically, the quaternary ammonium salt compound includes a quaternary ammonium hydroxide such as tetrabutylammonium hydroxide, a quaternary ammonium chloride such as tetrabutylammonium chloride, and a quaternary ammonium bromide such as tetrabutylammonium bromide. A quaternary ammonium iodide such as tetrabutylammonium iodide can be considered.
 本発明の工程Aにおける、分離する工程は、連続的に行われることが好ましい。分離する工程が連続的に行われるとは、構成成分の投入及び固体分の回収をすべて同時に行うことによって操作に途切れがなく行われることを意味する。具体的には、工程A-1においては、ナノセルロースの水分散液及び沈殿剤をそれぞれ連続的に供給し、ナノセルロースを連続的に回収することを指す。工程A-2においては、ナノセルロースの水分散液、熱可塑性樹脂、及び沈殿剤をそれぞれ連続的に供給し、混合物IIを連続的に回収することを指す。工程A-3においては、ナノセルロースの水分散液及び熱可塑性樹脂をそれぞれ連続的に供給し、混合物IIIを連続的に回収することを指す。 It is preferable that the separation step in the step A of the present invention is continuously performed. The continuous step of separation means that the operation is performed without interruption by simultaneously adding the constituent components and recovering the solid component. Specifically, in step A-1, it means that the aqueous dispersion of nanocellulose and the precipitating agent are continuously supplied and the nanocellulose is continuously recovered. In step A-2, it means that the aqueous dispersion of nanocellulose, the thermoplastic resin, and the precipitating agent are continuously supplied, and the mixture II is continuously recovered. In step A-3, it means that the aqueous dispersion of nanocellulose and the thermoplastic resin are continuously supplied and the mixture III is continuously recovered.
(工程A-4)
 本発明の製造方法における工程Aは、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを得るのに、固形分と液相とを分離する操作を省略する方法を用いてもよい。
 すなわち、本発明の製造方法の工程Aの態様の一つ(工程A-4ともいう)は、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを準備する工程Aであって、上記工程Aが、
 ナノセルロースの水分散液に、分子内に窒素原子を含む有機アルカリ又はカチオンを加え、さらに熱可塑性樹脂及び有機溶媒を加えることにより水相と分離せしめ、前記混合物Iを得る工程、又は、
 ナノセルロースの水分散液に、熱可塑性樹脂及び有機溶媒を加え、さらに分子内に窒素原子を含む有機アルカリ又はカチオンを加えることにより水相と分離せしめ、前記混合物Iを得る工程、を含む。
 上記熱可塑性樹脂及び有機溶媒は、それぞれ別々に加えてもよく、熱可塑性樹脂と有機溶媒との混合物として加えてもよい。また、上記熱可塑性樹脂及び有機溶媒をそれぞれ別々に加える場合、これらの添加順序は任意である。
(Step A-4)
In step A in the production method of the present invention, a method of omitting the operation of separating the solid content and the liquid phase may be used in order to obtain the mixture I of nanocellulose, the thermoplastic resin and the organic solvent.
That is, one of the aspects of step A of the production method of the present invention (also referred to as step A-4) is step A for preparing a mixture I of nanocellulose, a thermoplastic resin, and an organic solvent, which is the step A. but,
A step of adding an organic alkali or cation containing a nitrogen atom in the molecule to the aqueous dispersion of nanocellulose and further adding a thermoplastic resin and an organic solvent to separate it from the aqueous phase to obtain the mixture I, or
It comprises a step of adding a thermoplastic resin and an organic solvent to an aqueous dispersion of nanocellulose, and further adding an organic alkali or cation containing a nitrogen atom in the molecule to separate it from the aqueous phase to obtain the mixture I.
The thermoplastic resin and the organic solvent may be added separately, or may be added as a mixture of the thermoplastic resin and the organic solvent. When the thermoplastic resin and the organic solvent are added separately, the order of addition thereof is arbitrary.
 本発明の製造方法では、前記工程Aの後、前記混合物Iから、水の実質的な非存在下で有機溶媒の一部又は全部を除去する工程Bを行う。有機溶媒の除去は、例えば、減圧下で溶媒を留去することにより行うことができる。
 減圧条件は、有機溶媒の物性により適宜調整すればよく、通常0Torr以上30Torr以下の範囲の減圧下で行えばよい。また、有機溶媒の除去は加熱しながら行ってもよい。減圧の際の温度は有機溶媒の物性により適宜調整すればよいが、通常10℃以上100℃以下である。
In the production method of the present invention, after the step A, a step B of removing a part or all of the organic solvent from the mixture I in the substantially absence of water is performed. The removal of the organic solvent can be performed, for example, by distilling off the solvent under reduced pressure.
The reduced pressure conditions may be appropriately adjusted depending on the physical characteristics of the organic solvent, and may be usually performed under reduced pressure in the range of 0 Torr or more and 30 Torr or less. Further, the organic solvent may be removed while heating. The temperature at the time of depressurization may be appropriately adjusted depending on the physical characteristics of the organic solvent, but is usually 10 ° C. or higher and 100 ° C. or lower.
 有機溶媒の除去は、一部の有機溶媒であってもよく全部の有機溶媒が除かれてもよい。得られる樹脂組成物に含まれる有機溶媒の含有量は、特に限定されないが、樹脂組成物全量に対し通常0質量%以上100質量%以下の範囲であり、0質量%以上80質量%以下の範囲であってもよく、0質量%超過70質量%以下の範囲であってもよく、0質量%以上60質量%以下の範囲であってもよい。 The removal of the organic solvent may be performed by using a part of the organic solvent or removing all the organic solvents. The content of the organic solvent contained in the obtained resin composition is not particularly limited, but is usually in the range of 0% by mass or more and 100% by mass or less, and in the range of 0% by mass or more and 80% by mass or less with respect to the total amount of the resin composition. It may be in the range of 0% by mass or more and 70% by mass or less, or may be in the range of 0% by mass or more and 60% by mass or less.
[樹脂]
 本発明の一つは、本発明の樹脂組成物を含む樹脂である。本発明の樹脂は、樹脂組成物より作製される。本発明の樹脂は、例えば、樹脂組成物をそのまま溶融する等して樹脂としてもよく、本発明の樹脂組成物と、当該樹脂組成物を配合する対象の樹脂(以下、原料樹脂ともいう)とを混合することにより作製してもよい。
 本発明の樹脂の製造方法としては、例えば、樹脂組成物に、必要に応じて原料樹脂を配合し、押出機を用いて加熱混錬する方法を挙げることができる。本発明の樹脂は、金型等を用いて所望の形状に成形してもよい。
[resin]
One of the present invention is a resin containing the resin composition of the present invention. The resin of the present invention is made from a resin composition. The resin of the present invention may be used as a resin by, for example, melting the resin composition as it is, and the resin composition of the present invention and the resin to be blended with the resin composition (hereinafter, also referred to as a raw material resin). May be produced by mixing.
Examples of the method for producing the resin of the present invention include a method in which a raw material resin is mixed with a resin composition as needed and heat-kneaded using an extruder. The resin of the present invention may be molded into a desired shape using a mold or the like.
 原料樹脂としては、特に制限されず、公知の樹脂を用いることができる。
 原料樹脂としては、例えば、熱可塑性樹脂、熱可塑性エラストマー等の成形可能な樹脂が挙げられる。
 熱可塑性樹脂としては、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、アクリル樹脂、ポリオレフィン、ポリエステル、ポリウレタン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート等が挙げられる。
 熱可塑性エラストマーとしては、オレフィン系エラストマー、スチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー等が挙げられる。
The raw material resin is not particularly limited, and a known resin can be used.
Examples of the raw material resin include moldable resins such as thermoplastic resins and thermoplastic elastomers.
Examples of the thermoplastic resin include ABS (acrylonitrile-butadiene-styrene) resin, acrylic resin, polyolefin, polyester, polyurethane, polystyrene, polyamide, polyvinyl chloride, polycarbonate and the like.
Examples of the thermoplastic elastomer include olefin-based elastomers, styrene-based elastomers, polyamide-based elastomers, polyester-based elastomers, and polyurethane-based elastomers.
 原料樹脂は、熱可塑性樹脂に含まれる成分と同一の成分、又は熱可塑性樹脂と親和性の良いセグメント若しくは官能基を含むことが好ましい。特に、熱可塑性樹脂に含まれる成分と同一の成分または親和性の良いセグメントがポリマーアロイ構造となっていると、衝撃吸収性等の効果が付与されることから好ましい。原料樹脂との親和性が悪いと得られた樹脂の分散性が低下して、樹脂の外観が悪化したり、破断応力や破断伸びが低下したりする場合がある。 The raw material resin preferably contains the same components as those contained in the thermoplastic resin, or segments or functional groups having a good affinity with the thermoplastic resin. In particular, it is preferable that the same component as the component contained in the thermoplastic resin or a segment having a good affinity has a polymer alloy structure because effects such as shock absorption are imparted. If the affinity with the raw material resin is poor, the dispersibility of the obtained resin may be deteriorated, the appearance of the resin may be deteriorated, and the breaking stress and breaking elongation may be lowered.
 本発明の樹脂に含まれる樹脂組成物の量は、特に制限されない。本発明の樹脂組成物を樹脂改質用組成物として用いる場合、原料樹脂100質量部に対する樹脂組成物の量を0.1質量部~10質量部とすればよい。 The amount of the resin composition contained in the resin of the present invention is not particularly limited. When the resin composition of the present invention is used as a resin reforming composition, the amount of the resin composition with respect to 100 parts by mass of the raw material resin may be 0.1 part by mass to 10 parts by mass.
 以下、実施例および比較例により、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 各試料の調製及び各種物性の測定は以下のとおり行った。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
Preparation of each sample and measurement of various physical properties were performed as follows.
<樹脂との混錬>
 実施例及び比較例で得た複合体(樹脂組成物)を、ABS樹脂に全体の1~5質量%(ナノセルロース換算)となる量で添加した。具体的には、樹脂組成物とABS樹脂のペレットとをカップ内で混合した後、プラストミルを用いて加熱混練した。混練温度は25℃から混錬を開始し、徐々に昇温して最終的な混錬温度は160℃、混練時間は合計で45分間とした。その後、加圧機と金型を用いて160℃、10MPaで5分間加圧し、混練物を平板状とした。
 曲げ試験用の試験片は、得られた平板状の混練物を用いて幅:10mm×長さ:40mm(厚さ1mm)の短冊形状の試験片を作製した。シャルピー衝撃試験用の試験片は、得られた平板状の混練物を用いて幅:10mm×長さ:70mm(厚さ3mm)の短冊形状の試験片を作製した。
 同様に、樹脂組成物を添加していないABS樹脂を用いて試験片を作製した。
<Kneading with resin>
The complex (resin composition) obtained in Examples and Comparative Examples was added to the ABS resin in an amount of 1 to 5% by mass (in terms of nanocellulose). Specifically, the resin composition and ABS resin pellets were mixed in a cup and then heat-kneaded using a plast mill. Kneading was started at a kneading temperature of 25 ° C. and gradually raised to a final kneading temperature of 160 ° C. and a total kneading time of 45 minutes. Then, it was pressed at 160 ° C. and 10 MPa for 5 minutes using a pressurizer and a die to form a flat plate of the kneaded product.
As the test piece for the bending test, a strip-shaped test piece having a width of 10 mm and a length of 40 mm (thickness of 1 mm) was prepared using the obtained flat plate-shaped kneaded product. As the test piece for the Charpy impact test, a strip-shaped test piece having a width of 10 mm and a length of 70 mm (thickness of 3 mm) was prepared using the obtained flat plate-shaped kneaded product.
Similarly, a test piece was prepared using ABS resin to which no resin composition was added.
<力学評価>
 試験片を用いて3点曲げ試験を行い、弾性率、曲げ強度、曲げひずみまたは破断ひずみを測定した。また、シャルピー衝撃試験にて耐衝撃性を評価した。
<Mechanics evaluation>
A three-point bending test was performed using the test piece to measure elastic modulus, bending strength, bending strain or breaking strain. In addition, the impact resistance was evaluated by the Charpy impact test.
<破断応力の評価>
 試験片を用いてJIS K 7171:2016に規定する曲げ試験(試験速度:5mm/分、支点間距離:30mm)を行い、曲げ弾性率(MPa)、破断応力(MPa)と破断ひずみ(%)を測定した。
<Evaluation of breaking stress>
A bending test (test speed: 5 mm / min, distance between fulcrums: 30 mm) specified in JIS K 7171: 2016 was performed using a test piece, and the flexural modulus (MPa), breaking stress (MPa) and breaking strain (%) were performed. Was measured.
<耐衝撃性の評価>
 試験片を用いてJIS K 7111-1:2012に規定するシャルピー衝撃試験(ノッチ先端半径:rN=0.25mm)を行い、衝撃強度(kJ/m2)を測定した。
<Evaluation of impact resistance>
The Charpy impact test (notch tip radius: rN = 0.25 mm) specified in JIS K 711-1: 2012 was performed using the test piece, and the impact strength (kJ / m 2 ) was measured.
<顕微鏡観察>
 実施例及び比較例で得られた樹脂組成物について、電子顕微鏡観察を行った。なお、電子顕微鏡は、(株)日立ハイテクノロジーズ製の走査型電子顕微鏡S-4800を用いた。電子顕微鏡の倍率は45,000~50,000倍であった。
 樹脂組成物の電子顕微鏡観察の結果について、ナノセルロースと熱可塑性樹脂とが繊維状の複合体を形成し、熱可塑性樹脂がナノセルロースを被覆した構造を有していた樹脂組成物を〇とした。それ以外の構造を×とした。
<Microscopic observation>
The resin compositions obtained in Examples and Comparative Examples were observed with an electron microscope. As the electron microscope, a scanning electron microscope S-4800 manufactured by Hitachi High-Technologies Corporation was used. The magnification of the electron microscope was 45,000 to 50,000 times.
Regarding the results of electron microscopic observation of the resin composition, the resin composition in which the nanocellulose and the thermoplastic resin formed a fibrous composite and the thermoplastic resin had a structure in which the nanocellulose was coated was designated as 〇. .. Other structures are marked with x.
<重量平均分子量(Mw)の測定>
 熱可塑性樹脂の重合体の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー、HLC-8220、東ソー製)を用いて測定し、ポリスチレン換算による重量平均分子量(Mw)を得た。なお、GPC測定条件は以下のとおりであった。
(測定条件)
 カラム:東ソー製TSKgel Supermultipore HZ-M×3本
     東ソー製TSKgel Guard column SuperMP(MZ)-M×1本
 溶媒:THF
 温度:40℃
 検出器:RI
 流速:0.3mL/min
 ナノセルロースの非存在下で熱可塑性樹脂を得た場合、上述のとおり測定した。
 ナノセルロースの存在下で重合することによりナノセルロースと熱可塑性樹脂とを含む樹脂組成物を得た場合、当該樹脂組成物に溶媒を加えて重合体を溶解させた。その後、0.45μmのフィルターを用いてろ過し、得られた液に対しポリスチレン換算により測定を行った。
<Measurement of weight average molecular weight (Mw)>
The weight average molecular weight of the polymer of the thermoplastic resin was measured using GPC (gel permeation chromatography, HLC-8220, manufactured by Tosoh), and the weight average molecular weight (Mw) in terms of polystyrene was obtained. The GPC measurement conditions were as follows.
(Measurement condition)
Column: Tosoh TSKgel Supermultipore HZ-M x 3 Tosoh TSKgel Guard volume SuperMP (MZ) -M x 1 Solvent: THF
Temperature: 40 ° C
Detector: RI
Flow velocity: 0.3 mL / min
When the thermoplastic resin was obtained in the absence of nanocellulose, it was measured as described above.
When a resin composition containing nanocellulose and a thermoplastic resin was obtained by polymerization in the presence of nanocellulose, a solvent was added to the resin composition to dissolve the polymer. Then, it was filtered using a filter of 0.45 μm, and the obtained liquid was measured by polystyrene conversion.
<ナノセルロースの作製>
[製造例1:ナノセルロース-1の作製]
 パルプ(セオラスFD-101、旭化成ケミカルズ株式会社、平均粒子径50μm、カルボキシ基量0.03mmol/g)35gを純水2800gに添加し、攪拌した。これにTEMPOを0.44g、臭化ナトリウムを4.4g、次亜塩素酸ナトリウムを10g(有効塩素濃度12質量%)それぞれ添加した。0.5M水酸化ナトリウムでpHを10.5に維持しながら酸化反応を実施し、酸化反応に伴うpH低下がほぼ停止した時点で反応終了とした。得られた酸化セルロースを純水で洗浄後、酸化セルロースの含有量が1質量%となるように純水を加えて超音波ホモジナイザーで解繊処理し、これにt-ブタノール2200gを加えて混合し、遠心分離した。得られたt-ブタノール液に水を加えてt-ブタノールを留去し、1.3質量%のナノセルロース-1を含む分散液を調製した。
<Making nanocellulose>
[Production Example 1: Preparation of Nanocellulose-1]
35 g of pulp (Theoras FD-101, Asahi Kasei Chemicals Co., Ltd., average particle diameter 50 μm, carboxy group amount 0.03 mmol / g) was added to 2800 g of pure water and stirred. To this was added 0.44 g of TEMPO, 4.4 g of sodium bromide, and 10 g of sodium hypochlorite (effective chlorine concentration 12% by mass). The oxidation reaction was carried out with 0.5 M sodium hydroxide while maintaining the pH at 10.5, and the reaction was terminated when the pH decrease accompanying the oxidation reaction almost stopped. After washing the obtained cellulose oxide with pure water, pure water is added so that the content of cellulose oxide becomes 1% by mass, and the defibration treatment is performed with an ultrasonic homogenizer. To this, 2200 g of t-butanol is added and mixed. , Centrifuged. Water was added to the obtained t-butanol solution to distill off t-butanol to prepare a dispersion containing 1.3% by mass of nanocellulose-1.
[製造例2:ナノセルロース-2の作製]
 有効塩素濃度が43質量%である次亜塩素酸Na5水和物結晶(500g)と純水(1035.7g)とを混合して、有効塩素濃度が14質量%である溶液を調製した。この溶液を30℃に加温し、スターラーで攪拌しながら、パルプ(セオラスFD-101)35gを添加し、さらに30℃に維持しながら30分間スターラーで攪拌した後、純水100gを添加した。次いで0.1μm PTFEメンブランフィルターにより吸引濾過し、酸化セルロースを得た。得られた酸化セルロースを超音波ホモジナイザーにて10分間解繊処理し、これにt-ブタノールを加えて混合し、遠心分離した。得られたt-ブタノール液に純水を加えてt-ブタノールを留去し、1.3質量%のナノセルロース-2を含む分散液を調製した。
[Production Example 2: Preparation of Nanocellulose-2]
A sodium hypochlorous acid pentahydrate crystal (500 g) having an effective chlorine concentration of 43% by mass and pure water (1035.7 g) were mixed to prepare a solution having an effective chlorine concentration of 14% by mass. This solution was heated to 30 ° C., 35 g of pulp (Theoras FD-101) was added while stirring with a stirrer, and after further stirring with a stirrer for 30 minutes while maintaining the temperature at 30 ° C., 100 g of pure water was added. Then, suction filtration was performed with a 0.1 μm PTFE membrane filter to obtain oxidized cellulose. The obtained oxidized cellulose was defibrated with an ultrasonic homogenizer for 10 minutes, t-butanol was added thereto, mixed, and centrifuged. Pure water was added to the obtained t-butanol solution to distill off t-butanol to prepare a dispersion containing 1.3% by mass of nanocellulose-2.
[製造例3:ナノセルロース-3の作製]
 溶液の有効塩素濃度を30質量%とした以外はナノセルロース-2と同様とし、1.3質量%のナノセルロース-3を含む分散液を調製した。
[Production Example 3: Preparation of Nanocellulose-3]
A dispersion containing 1.3% by mass of nanocellulose-3 was prepared in the same manner as nanocellulose-2 except that the effective chlorine concentration of the solution was 30% by mass.
[製造例4:ナノセルロース-4の作製]
 溶液の有効塩素濃度を43質量%とした以外はナノセルロース-2と同様とし、1.3質量%のナノセルロース-4を含む分散液を調製した。
 ナノセルロース-1~ナノセルロース-4(表中、CNF-1~CNF-4と記載する)の物性を表1に示した。
[Production Example 4: Preparation of Nanocellulose-4]
The same as Nanocellulose-2 was prepared except that the effective chlorine concentration of the solution was 43% by mass, and a dispersion containing 1.3% by mass of Nanocellulose-4 was prepared.
Table 1 shows the physical characteristics of nanocellulose-1 to nanocellulose-4 (denoted as CNF-1 to CNF-4 in the table).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ナノセルロースの平均繊維長と平均繊維幅は、以下の測定方法により測定した。
 得られたナノセルロース分散液を純水で1000~1000000倍に希釈し、それをマイカ基材上で自然乾燥させ、オックスフォード・アサイラム製 走査型プローブ顕微鏡「MFP-3D infinity」を用いて、ACモードで、ナノセルロースの形状観察を行った。
 繊維長については、得られた画像を画像処理ソフトウェア「ImageJ」を用いて二値化し解析を行った。繊維100本以上について、繊維長=「周囲長」÷2として平均繊維長を求めた。
 繊維幅については、「MFP-3D infinity」に付属されているソフトウェアを用いて、繊維50本以上について、形状像の断面高さ=繊維幅として平均繊維幅を求めた。
The average fiber length and average fiber width of nanocellulose were measured by the following measuring methods.
The obtained nanocellulose dispersion is diluted 1000 to 1,000,000 times with pure water, air-dried on a mica substrate, and AC mode is used using a scanning probe microscope "MFP-3D infinity" manufactured by Oxford Asylum. Then, the shape of nanocellulose was observed.
The fiber length was binarized and analyzed using the image processing software "ImageJ". For 100 or more fibers, the average fiber length was calculated by setting fiber length = "peripheral length" / 2.
Regarding the fiber width, the average fiber width was obtained as the cross-sectional height of the shape image = the fiber width for 50 or more fibers using the software attached to "MFP-3D infinity".
[実施例1]
 ナノセルロース(ナノセルロース-1、ナノセルロース濃度1.3質量%)を含む分散液100gにスチレン 0.66g、アクリロニトリル 0.28g、1質量%の過硫酸アンモニウム水溶液0.35gを加えた。これを超音波で分散した後に窒素雰囲気とし、攪拌しながら70℃で4時間加熱して重合させた。重合終了後、反応液に0.5M塩酸 6.63gを添加して濾過し、さらにモノドデシルアミン 0.43g/メタノール 5g溶液を加えて攪拌し、ナノセルロース-1と樹脂微粒子とを沈殿させた。これを濾過し、メタノールで洗浄した。この混合物にメタノール36gを加えて攪拌し、さらに酢酸イソアミル14.8gを加えて攪拌した。
 減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-1とポリスチレン/アクリロニトリル共重合体との複合体(すなわち、樹脂組成物)を得た。
 なお、共重合体の重量平均分子量Mwは、35.8万(ポリスチレン換算)であった。
 実施例1の樹脂組成物の電子顕微鏡観察により得られたSEM画像を図1に示した。図1に示されるように樹脂組成物が繊維状の複合体を形成し、熱可塑性樹脂がナノセルロースを被覆した構造を有していたことが確認された。
[Example 1]
To 100 g of a dispersion containing nanocellulose (nanocellulose-1, nanocellulose concentration 1.3% by mass), 0.66 g of styrene, 0.28 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, 6.63 g of 0.5 M hydrochloric acid was added to the reaction solution and filtered, and a solution of 0.43 g of monododecylamine / 5 g of methanol was further added and stirred to precipitate nanocellulose-1 and resin fine particles. .. It was filtered and washed with methanol. To this mixture was added 36 g of methanol and stirred, and further 14.8 g of isoamyl acetate was added and stirred.
The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a composite of nanocellulose-1 and a polystyrene / acrylonitrile copolymer (that is, a resin composition).
The weight average molecular weight Mw of the copolymer was 358,000 (in terms of polystyrene).
The SEM image obtained by electron microscope observation of the resin composition of Example 1 is shown in FIG. As shown in FIG. 1, it was confirmed that the resin composition formed a fibrous complex and the thermoplastic resin had a structure coated with nanocellulose.
[実施例2]
 ナノセルロース(ナノセルロース-2、ナノセルロース濃度1.3質量%)を含む分散液100gにスチレン 3.93g、アクリロニトリル 1.68g、1質量%の過硫酸アンモニウム水溶液0.35gを加えた。これを超音波で分散した後に窒素雰囲気とし、攪拌しながら70℃で4時間加熱して重合させた。重合終了後、反応液に0.5M塩酸 1.40gを添加して濾過し、さらに40%テトラブチルアンモニウムヒドロキシド水溶液0.32gを加えて攪拌し、ナノセルロース-2と樹脂微粒子とを沈殿させた。これを濾過し、メタノールで洗浄した。この混合物にMEK 110gを加えて攪拌し、さらに酢酸イソアミル45.8gを加えて攪拌した。
 減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-2とポリスチレン/アクリロニトリル共重合体との複合体を得た。
 なお、共重合体の重量平均分子量Mwは、81.7万(ポリスチレン換算)であった。
[Example 2]
To 100 g of a dispersion containing nanocellulose (nanocellulose-2, nanocellulose concentration 1.3% by mass), 3.93 g of styrene, 1.68 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, 1.40 g of 0.5 M hydrochloric acid is added to the reaction solution and filtered, and 0.32 g of a 40% tetrabutylammonium hydroxide aqueous solution is further added and stirred to precipitate nanocellulose-2 and resin fine particles. rice field. It was filtered and washed with methanol. To this mixture was added 110 g of MEK and stirred, and further 45.8 g of isoamyl acetate was added and stirred.
The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-2 and a polystyrene / acrylonitrile copolymer.
The weight average molecular weight Mw of the copolymer was 817,000 (in terms of polystyrene).
[実施例3]
 ナノセルロース(ナノセルロース-3、ナノセルロース濃度1.3質量%)を含む分散液100gにスチレン 1.45g、アクリロニトリル 0.62g、1質量%の過硫酸アンモニウム水溶液 0.35gを加えた。これを超音波で分散した後に窒素雰囲気とし、攪拌しながら70℃で4時間加熱して重合させた。重合終了後、塩析剤として塩化ナトリウムを用いてナノセルロース-3と樹脂微粒子とを沈殿させた。これを濾過し、メタノールで洗浄した。この混合物にIPA 52gを加えて攪拌し、さらに酢酸イソアミル22.3gを加えて攪拌した。
 減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-3とポリスチレン/アクリロニトリル共重合体との複合体を得た。
 なお、共重合体の重量平均分子量Mwは、51.9万(ポリスチレン換算)であった。
[Example 3]
To 100 g of a dispersion containing nanocellulose (nanocellulose-3, nanocellulose concentration 1.3% by mass), 1.45 g of styrene, 0.62 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, nanocellulose-3 and resin fine particles were precipitated using sodium chloride as a salting out agent. It was filtered and washed with methanol. 52 g of IPA was added to this mixture and stirred, and 22.3 g of isoamyl acetate was further added and stirred.
The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-3 and a polystyrene / acrylonitrile copolymer.
The weight average molecular weight Mw of the copolymer was 519000 (in terms of polystyrene).
[実施例4]
 ナノセルロース(ナノセルロース-4、ナノセルロース濃度1.3質量%)を含む分散液100gにメチルメタクリレート 0.92g、1質量%の過硫酸アンモニウム水溶液0.35g、チオグリコール酸n-オクチル0.03gを加えた。これを超音波で分散した後に窒素雰囲気とし、攪拌しながら70℃で4時間加熱して重合させた。重合終了後、反応液に0.5M塩酸 5.85gを添加して濾過し、さらに25%ヘキサデシルトリメチルアンモニウムヒドロキシド水溶液2.47gを加えて攪拌し、ナノセルロース-4と樹脂微粒子とを沈殿させた。これを濾過し、メタノールで洗浄した。この混合物にメタノール35gを加えて攪拌した。
 減圧下でメタノールを留去(2Torr、50℃×7hr)し、ナノセルロース-4とpMMAとの複合体を得た。
 なお、共重合体の重量平均分子量Mwは、77.6万(ポリスチレン換算)であった。
[Example 4]
To 100 g of a dispersion containing nanocellulose (nanocellulose-4, nanocellulose concentration 1.3% by mass), 0.92 g of methyl methacrylate and 0.35 g of a 1% by mass ammonium persulfate aqueous solution and 0.03 g of n-octyl thioglycolate were added. added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, 5.85 g of 0.5 M hydrochloric acid is added to the reaction solution and filtered, and 2.47 g of a 25% hexadecyltrimethylammonium hydroxide aqueous solution is further added and stirred to precipitate nanocellulose-4 and resin fine particles. I let you. It was filtered and washed with methanol. 35 g of methanol was added to this mixture and the mixture was stirred.
Methanol was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-4 and pMMA.
The weight average molecular weight Mw of the copolymer was 776,000 (in terms of polystyrene).
[実施例5]
 ナノセルロース(ナノセルロース-2、ナノセルロース濃度1.3質量%)を含む分散液100gにメチルメタクリレート 0.24g、1質量%の過硫酸アンモニウム水溶液0.35g、チオグリコール酸n-オクチル0.03gを加えた。これを超音波で分散した後に窒素雰囲気とし、攪拌しながら70℃で4時間加熱して重合させた。重合終了後、反応液に0.5M塩酸 1.40gを添加して濾過し、さらにモノドデシルアミン 0.09g/メタノール 5g溶液を加えて攪拌し、ナノセルロース-2と樹脂微粒子とを沈殿させた。これを濾過し、メタノールで洗浄した、この混合物にメタノール24gを加えて攪拌し、さらに酢酸イソアミル10.2gを加えて攪拌した。
 減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロースとpMMAとの複合体を得た。
 なお、共重合体の重量平均分子量Mwは、45.0万(ポリスチレン換算)であった。
[Example 5]
0.24 g of methyl methacrylate and 0.35 g of 1% by mass ammonium persulfate aqueous solution and 0.03 g of n-octyl thioglycolate in 100 g of a dispersion containing nanocellulose (nanocellulose-2, nanocellulose concentration 1.3% by mass). added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, 1.40 g of 0.5 M hydrochloric acid was added to the reaction solution and filtered, and a solution of 0.09 g of monododecylamine / 5 g of methanol was further added and stirred to precipitate nanocellulose-2 and resin fine particles. .. This was filtered, washed with methanol, 24 g of methanol was added to the mixture and stirred, and 10.2 g of isoamyl acetate was further added and stirred.
The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose and pMMA.
The weight average molecular weight Mw of the copolymer was 450,000 (in terms of polystyrene).
[実施例6]
 アセトニトリル 63.9gにスチレン 9.8g、N-フェニルマレイミド 16.3g、開始剤としてABN-E 0.8gを加え、窒素バブリング下70℃で8時間加熱攪拌して重合させた。次いで乾燥機で溶媒を留去し、重合体P-1(Mw=28000、ポリスチレン換算)を得た。
 別の容器にナノセルロース(ナノセルロース-4、ナノセルロース濃度1.3質量%)を含む分散液100gを入れ、モノドデシルアミン 0.38g/メタノール 5g溶液を加えて攪拌し、ナノセルロース-4を沈殿させた。これを濾過し、メタノールで洗浄した。この混合物に重合体P-1 0.92gとTHF 14.5gからなる溶液を加えて攪拌した。
 減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロースと重合体P-1との複合体を得た。
[Example 6]
To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, and 0.8 g of ABN-E as an initiator were added, and the mixture was polymerized by heating and stirring at 70 ° C. under nitrogen bubbling for 8 hours. Then, the solvent was distilled off with a dryer to obtain a polymer P-1 (Mw = 28,000, in terms of polystyrene).
Put 100 g of a dispersion containing nanocellulose (nanocellulose-4, nanocellulose concentration 1.3% by mass) in another container, add 0.38 g of monododecylamine / 5 g of methanol solution, and stir to add nanocellulose-4. It was precipitated. It was filtered and washed with methanol. A solution consisting of 0.92 g of polymer P-1 and 14.5 g of THF was added to this mixture and stirred.
The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose and the polymer P-1.
[実施例7]
 アセトニトリル 63.9gにスチレン 9.8g、N-フェニルマレイミド 16.3g、RAFT剤としてBORON MOLECULAR社製BM1429 1.32g、開始剤としてABN-E 0.08gを加え、窒素バブリング下70℃で4時間加熱攪拌して重合させた。所定時間後、一旦内温を30℃まで下げ、メトキシポリエチレングリコール(n=9)モノアクリレート 9.0gを加え、再度70℃で4時間加熱攪拌して重合させた。重合終了後、乾燥機で溶媒を留去し、ブロック共重合体P-2(Mw=8000、ポリスチレン換算)を得た。
 別の容器にナノセルロース(ナノセルロース-2、ナノセルロース濃度1.3質量%)を含む分散液100gを入れ、25%ヘキサデシルトリメチルアンモニウムヒドロキシド水溶液0.59gを加えて攪拌し、ナノセルロースを沈殿させ、これを濾過し、メタノールで洗浄した。
 この混合物に重合体P-2 0.47gとアセトン11.6gからなる溶液を加えて攪拌した。減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-2とブロック共重合体P-2との複合体を得た。
[Example 7]
To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, 1.32 g of BORON MOLECULAR BM1429 as an initiator, and 0.08 g of ABN-E as an initiator are added, and the temperature is 70 ° C. under nitrogen bubbling for 4 hours. It was polymerized by heating and stirring. After a predetermined time, the internal temperature was once lowered to 30 ° C., 9.0 g of methoxypolyethylene glycol (n = 9) monoacrylate was added, and the mixture was again heated and stirred at 70 ° C. for 4 hours for polymerization. After completion of the polymerization, the solvent was distilled off with a dryer to obtain a block copolymer P-2 (Mw = 8000, in terms of polystyrene).
Put 100 g of a dispersion containing nanocellulose (nanocellulose-2, nanocellulose concentration 1.3% by mass) in another container, add 0.59 g of a 25% hexadecyltrimethylammonium hydroxide aqueous solution, and stir to obtain nanocellulose. It was precipitated, filtered and washed with methanol.
A solution consisting of 0.47 g of polymer P-2 and 11.6 g of acetone was added to this mixture and stirred. The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-2 and the block copolymer P-2.
[実施例8]
 アセトニトリル 63.9gにスチレン 9.8g、N-フェニルマレイミド 16.3g、RAFT剤としてBORON MOLECULAR社製BM1429 1.32g、開始剤としてABN-E 0.08gを加え、窒素バブリング下70℃で4時間加熱攪拌して重合させた。所定時間後、一旦内温を30℃まで下げ、メトキシポリエチレングリコール(n=9)モノアクリレート 9.0gを加え、再度70℃で4時間加熱攪拌して重合させた。重合終了後、乾燥機で溶媒を留去し、ブロック共重合体P-2(Mw=8000、ポリスチレン換算)を得た。
 別の容器にナノセルロース(ナノセルロース-2、ナノセルロース濃度1.3質量%)を含む分散液100gを入れ、モノドデシルアミン 0.09g/メタノール 5g溶液を加えて攪拌し、ナノセルロースを沈殿させ、これを濾過し、メタノールで洗浄した。
 この混合物に重合体P-2 0.47gと酢酸イソアミル11.6gからなる溶液を加えて攪拌した。加えた酢酸イソアミルのうち50%を減圧下で留去(2Torr、50℃×7hr)し、ナノセルロース-2/ブロック共重合体P-2/酢酸イソアミルの複合体を得た。
[Example 8]
To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, 1.32 g of BORON MOLECULAR BM1429 as an initiator, and 0.08 g of ABN-E as an initiator are added, and the temperature is 70 ° C. under nitrogen bubbling for 4 hours. It was polymerized by heating and stirring. After a predetermined time, the internal temperature was once lowered to 30 ° C., 9.0 g of methoxypolyethylene glycol (n = 9) monoacrylate was added, and the mixture was again heated and stirred at 70 ° C. for 4 hours for polymerization. After completion of the polymerization, the solvent was distilled off with a dryer to obtain a block copolymer P-2 (Mw = 8000, in terms of polystyrene).
Put 100 g of a dispersion containing nanocellulose (nanocellulose-2, nanocellulose concentration 1.3% by mass) in another container, add 0.09 g of monododecylamine / 5 g of methanol solution, and stir to precipitate nanocellulose. , This was filtered and washed with methanol.
A solution consisting of 0.47 g of polymer P-2 and 11.6 g of isoamyl acetate was added to this mixture and stirred. 50% of the added isoamyl acetate was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a composite of nanocellulose-2 / block copolymer P-2 / isoamyl acetate.
[実施例9]
 アセトニトリル 63.9gにスチレン 9.8g、N-フェニルマレイミド 16.3g、RAFT剤としてBORON MOLECULAR社製BM1429 1.32g、開始剤としてABN-E 0.08gを加え、窒素バブリング下70℃で4時間加熱攪拌して重合させた。所定時間後、一旦内温を30℃まで下げ、アクリルアミド(粉末) 9.0gを加え、再度70℃で4時間加熱攪拌して重合させた。重合終了後、乾燥機で溶媒を留去し、ブロック共重合体P-3(Mw=8000、ポリスチレン換算)を得た。
 別の容器にナノセルロース(ナノセルロース-3、ナノセルロース濃度1.3質量%)を含む分散液100gを入れ、モノドデシルアミン 0.12g/メタノール 5g溶液を加えて攪拌し、ナノセルロースを沈殿させ、これを濾過し、メタノールで洗浄した。
 この混合物に重合体P-3 0.44gとアセトニトリル 11.4gからなる溶液を加えて攪拌した。減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-3とブロック共重合体P-3との複合体を得た。
[Example 9]
To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, 1.32 g of BORON MOLECULAR BM1429 as an initiator, and 0.08 g of ABN-E as an initiator are added, and the temperature is 70 ° C. under nitrogen bubbling for 4 hours. It was polymerized by heating and stirring. After a predetermined time, the internal temperature was once lowered to 30 ° C., 9.0 g of acrylamide (powder) was added, and the mixture was again heated and stirred at 70 ° C. for 4 hours for polymerization. After completion of the polymerization, the solvent was distilled off with a dryer to obtain a block copolymer P-3 (Mw = 8000, in terms of polystyrene).
Put 100 g of a dispersion containing nanocellulose (nanocellulose-3, nanocellulose concentration 1.3% by mass) in another container, add 0.12 g of monododecylamine / 5 g of methanol solution, and stir to precipitate nanocellulose. , This was filtered and washed with methanol.
A solution consisting of 0.44 g of polymer P-3 and 11.4 g of acetonitrile was added to this mixture and stirred. The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-3 and the block copolymer P-3.
[実施例10]
 アセトニトリル 63.9gにスチレン 9.8g、N-フェニルマレイミド 16.3g、RAFT剤としてBORON MOLECULAR社製BM1429 1.32g、開始剤としてABN-E 0.08gを加え、窒素バブリング下70℃で4時間加熱攪拌して重合させた。所定時間後、一旦内温を30℃まで下げ、メトキシポリエチレングリコール(n=9)モノアクリレート 9.0gを加え、再度70℃で4時間加熱攪拌して重合させた。重合終了後、乾燥機で溶媒を留去し、ブロック共重合体P-4(Mw=8000、ポリスチレン換算)を得た。
 別の容器にナノセルロース(ナノセルロース-3、ナノセルロース濃度1.3質量%)を含む分散液100gを入れ、40%テトラブチルアンモニウムヒドロキシド0.42gを加えて攪拌し、ナノセルロースを沈殿させ、これを濾過し、メタノールで洗浄した。
 この混合物に重合体P-4 0.21gと酢酸イソアミル 9.9gから成る溶液を加えて攪拌した。減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-3とブロック共重合体P-4との複合体を得た。
[Example 10]
To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, 1.32 g of BORON MOLECULAR BM1429 as an initiator, and 0.08 g of ABN-E as an initiator are added, and the temperature is 70 ° C. under nitrogen bubbling for 4 hours. It was polymerized by heating and stirring. After a predetermined time, the internal temperature was once lowered to 30 ° C., 9.0 g of methoxypolyethylene glycol (n = 9) monoacrylate was added, and the mixture was again heated and stirred at 70 ° C. for 4 hours for polymerization. After completion of the polymerization, the solvent was distilled off with a dryer to obtain a block copolymer P-4 (Mw = 8000, in terms of polystyrene).
In another container, put 100 g of a dispersion containing nanocellulose (nanocellulose-3, nanocellulose concentration 1.3% by mass), add 0.42 g of 40% tetrabutylammonium hydroxide, and stir to precipitate nanocellulose. , This was filtered and washed with methanol.
A solution consisting of 0.21 g of the polymer P-4 and 9.9 g of isoamyl acetate was added to this mixture, and the mixture was stirred. The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-3 and the block copolymer P-4.
[実施例11]
 アセトニトリル 63.9gにスチレン 9.8g、N-フェニルマレイミド 16.3g、RAFT剤としてBORON MOLECULAR社製BM1429 1.32g、開始剤としてABN-E 0.08gを加え、窒素バブリング下70℃で4時間加熱攪拌して重合させた。所定時間後、一旦内温を30℃まで下げ、メトキシポリエチレングリコール(n=9)モノアクリレート 7.8g、N-[3-(ジメチルアミノ)プロピル]アクリルアミド(DMAPAA) 0.78gを加え、再度70℃で4時間加熱攪拌して重合させ、ブロック共重合体P-5(Mw=8000、ポリスチレン換算)のアセトニトリル溶液を得た。この溶液1.58gを超音波照射しながら水10gに乳化した。
 別の容器にナノセルロース(ナノセルロース-4、ナノセルロース濃度1.3質量%)を含む分散液100gを入れ、ブロック共重合体P-5の乳化液を加え、ナノセルロースとP-5の複合体を沈殿させた。これを濾過し、メタノールで洗浄した。
 この混合物にアセトニトリル 12.2gを加えて攪拌した。減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-4とブロック共重合体P-5との複合体を得た。
[Example 11]
To 63.9 g of acetonitrile, 9.8 g of styrene, 16.3 g of N-phenylmaleimide, 1.32 g of BORON MOLECULAR BM1429 as an initiator, and 0.08 g of ABN-E as an initiator are added, and the temperature is 70 ° C. under nitrogen bubbling for 4 hours. It was polymerized by heating and stirring. After a predetermined time, the internal temperature is once lowered to 30 ° C., 7.8 g of methoxypolyethylene glycol (n = 9) monoacrylate and 0.78 g of N- [3- (dimethylamino) propyl] acrylamide (DMAPAA) are added, and 70 again. Polymerization was carried out by heating and stirring at ° C. for 4 hours to obtain an acetonitrile solution of block copolymer P-5 (Mw = 8000, polystyrene equivalent). 1.58 g of this solution was emulsified into 10 g of water while irradiating with ultrasonic waves.
Put 100 g of a dispersion containing nanocellulose (nanocellulose-4, nanocellulose concentration 1.3% by mass) in another container, add the emulsified solution of block copolymer P-5, and combine nanocellulose and P-5. The body was precipitated. It was filtered and washed with methanol.
12.2 g of acetonitrile was added to this mixture and the mixture was stirred. The solvent was distilled off under reduced pressure (2 Torr, 50 ° C. × 7 hr) to obtain a complex of nanocellulose-4 and the block copolymer P-5.
[比較例1]
 ナノセルロース(ナノセルロース-1、ナノセルロース濃度1.3質量%)を含む分散液100gにスチレン 3.34g、アクリロニトリル 1.43g、1質量%の過硫酸アンモニウム水溶液0.35gを加えた。これを超音波で分散した後に窒素雰囲気とし、攪拌しながら70℃で4時間加熱して重合させた。重合終了後、反応液に0.5M塩酸 6.63gを添加し、濾過した。これにモノドデシルアミン 0.43g/メタノール 5g溶液を加えて攪拌し、ナノセルロースと樹脂微粒子とを沈殿させ、これを濾過して減圧下で溶媒を留去(2Torr、50℃×7hr)し、ナノセルロース-1とポリスチレン/アクリロニトリル共重合体との複合体(ナノセルロース濃度20質量%)を得た。
 なお、共重合体の重量平均分子量Mwは、75.5万(ポリスチレン換算)であった。
 比較例1の樹脂組成物の電子顕微鏡観察により得られたSEM画像を図2に示した。図2に示されるように樹脂組成物は繊維状の複合体を形成しなかったことが確認された。
[Comparative Example 1]
To 100 g of a dispersion containing nanocellulose (nanocellulose-1, nanocellulose concentration 1.3% by mass), 3.34 g of styrene, 1.43 g of acrylonitrile, and 0.35 g of a 1% by mass ammonium persulfate aqueous solution were added. After dispersing this with ultrasonic waves, the atmosphere was changed to a nitrogen atmosphere, and the mixture was heated at 70 ° C. for 4 hours with stirring for polymerization. After completion of the polymerization, 6.63 g of 0.5 M hydrochloric acid was added to the reaction solution, and the mixture was filtered. To this, a solution of 0.43 g of monododecylamine / 5 g of methanol was added and stirred to precipitate nanocellulose and resin fine particles, which was filtered to distill off the solvent under reduced pressure (2 Torr, 50 ° C. × 7 hr). A composite of nanocellulose-1 and a polystyrene / acrylonitrile copolymer (nanocellulose concentration 20% by mass) was obtained.
The weight average molecular weight Mw of the copolymer was 755,000 (in terms of polystyrene).
The SEM image obtained by electron microscope observation of the resin composition of Comparative Example 1 is shown in FIG. It was confirmed that the resin composition did not form a fibrous complex as shown in FIG.
[比較例2]
 ナノセルロースとしてナノセルロース-2を用いた以外は比較例1と同様に処理し、ナノセルロース-2とポリスチレン/アクリロニトリル共重合体との複合体(ナノセルロース濃度50質量%)を得た。
[比較例3]
 ナノセルロースとしてナノセルロース-2を用い、比較例2と同様に処理してナノセルロース-2とポリスチレン/アクリロニトリル共重合体との複合体(ナノセルロース濃度70質量%)を得た。
[比較例4]
 ナノセルロースとしてナノセルロース-3を用いた以外は比較例1と同様に処理し、ナノセルロース-3とポリスチレン/アクリロニトリル共重合体との複合体(ナノセルロース濃度80質量%)を得た。
[Comparative Example 2]
Treatment was carried out in the same manner as in Comparative Example 1 except that nanocellulose-2 was used as the nanocellulose to obtain a composite of nanocellulose-2 and a polystyrene / acrylonitrile copolymer (nanocellulose concentration 50% by mass).
[Comparative Example 3]
Nanocellulose-2 was used as the nanocellulose and treated in the same manner as in Comparative Example 2 to obtain a composite of nanocellulose-2 and a polystyrene / acrylonitrile copolymer (nanocellulose concentration 70% by mass).
[Comparative Example 4]
Treatment was carried out in the same manner as in Comparative Example 1 except that nanocellulose-3 was used as the nanocellulose to obtain a composite of nanocellulose-3 and a polystyrene / acrylonitrile copolymer (nanocellulose concentration 80% by mass).
 表2に実施例1~11及び比較例1~4の複合体の物性を示す。 Table 2 shows the physical characteristics of the complexes of Examples 1 to 11 and Comparative Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中の製法a~iの詳細を表3に示す。 Table 3 shows the details of the manufacturing methods a to i in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表4に試験片の物性、評価結果を示す。 Table 4 shows the physical characteristics and evaluation results of the test pieces.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、樹脂組成物を添加していないABS樹脂の試験片の曲げ強度は、67.6MPaであった。 The bending strength of the test piece of the ABS resin to which the resin composition was not added was 67.6 MPa.
 本発明の樹脂組成物は、樹脂を強化することができ、強化樹脂の分野で産業上の利用可能性を有する。 The resin composition of the present invention can reinforce the resin and has industrial applicability in the field of reinforced resin.

Claims (24)

  1.  ナノセルロース及び熱可塑性樹脂を含み、
     前記ナノセルロースと前記熱可塑性樹脂とが、繊維状の複合体を形成する、
    樹脂組成物。
    Contains nanocellulose and thermoplastics
    The nanocellulose and the thermoplastic resin form a fibrous complex.
    Resin composition.
  2.  前記ナノセルロースのカルボキシ基量が、0.1mmol/g以上3.0mmol/g以下である、
    請求項1に記載の樹脂組成物。
    The amount of carboxy group of the nanocellulose is 0.1 mmol / g or more and 3.0 mmol / g or less.
    The resin composition according to claim 1.
  3.  前記ナノセルロースの含有量が、樹脂組成物全量に対し50質量%以上である、
    請求項1又は2に記載の樹脂組成物。
    The content of the nanocellulose is 50% by mass or more with respect to the total amount of the resin composition.
    The resin composition according to claim 1 or 2.
  4.  前記熱可塑性樹脂が、(メタ)アクリル系モノマー、(メタ)アクリルアミド系モノマー、スチレン系モノマー、マレイミド系モノマー、ニトリル系モノマーから選択される少なくとも1種のモノマー単位を構成単位として含む、
    請求項1~3のいずれか一項に記載の樹脂組成物。
    The thermoplastic resin contains at least one monomer unit selected from (meth) acrylic monomer, (meth) acrylamide-based monomer, styrene-based monomer, maleimide-based monomer, and nitrile-based monomer as a constituent unit.
    The resin composition according to any one of claims 1 to 3.
  5.  前記熱可塑性樹脂が、前記ナノセルロースと化学結合を形成可能な官能基を有する、
    請求項1~4のいずれか一項に記載の樹脂組成物。
    The thermoplastic resin has a functional group capable of forming a chemical bond with the nanocellulose.
    The resin composition according to any one of claims 1 to 4.
  6.  前記官能基が、窒素原子を含む塩基又はカチオンである、
    請求項5に記載の樹脂組成物。
    The functional group is a base or cation containing a nitrogen atom.
    The resin composition according to claim 5.
  7.  前記熱可塑性樹脂が、親水部と疎水部とを有する重合体である、
    請求項1~6のいずれか一項に記載の樹脂組成物。
    The thermoplastic resin is a polymer having a hydrophilic portion and a hydrophobic portion.
    The resin composition according to any one of claims 1 to 6.
  8.  前記熱可塑性樹脂が、親水セグメントと疎水セグメントとを有するブロック共重合体である、
    請求項1~7のいずれか一項に記載の樹脂組成物。
    The thermoplastic resin is a block copolymer having a hydrophilic segment and a hydrophobic segment.
    The resin composition according to any one of claims 1 to 7.
  9.  ナノセルロース及び熱可塑性樹脂を含む樹脂組成物の製造方法であって、
     少なくともナノセルロースを含む水混合物から、少なくともナノセルロースを含む固形分を沈殿させ、前記固形分と液相とを分離する操作を経て、前記固形分に有機溶媒を添加し、ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを準備する工程A、及び、
     前記混合物Iから、水の実質的な非存在下で有機溶媒の一部又は全部を除去する工程Bを含む、
    製造方法。
    A method for producing a resin composition containing nanocellulose and a thermoplastic resin.
    After precipitating at least the solid content containing nanocellulose from the aqueous mixture containing at least nanocellulose and separating the solid content from the liquid phase, an organic solvent is added to the solid content, and the nanocellulose and the thermoplastic resin are added. Step A to prepare the mixture I of and the organic solvent, and
    A step B of removing some or all of the organic solvent from the mixture I in the absence of substantially the presence of water.
    Production method.
  10.  前記有機溶媒が、熱可塑性樹脂を溶解及び/又は膨潤する有機溶媒である、
    請求項9に記載の製造方法。
    The organic solvent is an organic solvent that dissolves and / or swells the thermoplastic resin.
    The manufacturing method according to claim 9.
  11.  前記有機溶媒が、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒から選ばれる少なくとも1種を含む、
    請求項9又は10に記載の製造方法。
    The organic solvent contains at least one selected from an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, and a nitrile solvent.
    The manufacturing method according to claim 9 or 10.
  12.  前記工程Aが、
     ナノセルロースの水分散液に沈殿剤を加えることにより、ナノセルロースを沈殿させ、液相と分離する工程、及び、
     分離したナノセルロースに、熱可塑性樹脂及び有機溶媒を添加し、前記混合物Iを得る工程、を含む、
    請求項9~11のいずれか一項に記載の製造方法。
    The step A is
    A step of precipitating nanocellulose by adding a precipitating agent to the aqueous dispersion of nanocellulose and separating it from the liquid phase, and
    The step of adding a thermoplastic resin and an organic solvent to the separated nanocellulose to obtain the mixture I is included.
    The manufacturing method according to any one of claims 9 to 11.
  13.  前記工程Aが、
     ナノセルロースの水分散液と熱可塑性樹脂との水混合物に沈殿剤を加えることにより、ナノセルロースと熱可塑性樹脂との混合物IIを沈殿させ、液相と分離する工程、
     分離したナノセルロースと熱可塑性樹脂との混合物IIに、有機溶媒を添加し、前記混合物Iを得る工程、を含む、
    請求項9~11のいずれか一項に記載の製造方法。
    The step A is
    A step of precipitating a mixture II of nanocellulose and a thermoplastic resin by adding a precipitating agent to an aqueous mixture of an aqueous dispersion of nanocellulose and a thermoplastic resin, and separating the mixture from the liquid phase.
    The step of adding an organic solvent to the mixture II of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
    The manufacturing method according to any one of claims 9 to 11.
  14.  前記沈殿剤が、無機塩である、
    請求項12又は13に記載の製造方法。
    The precipitating agent is an inorganic salt.
    The manufacturing method according to claim 12 or 13.
  15.  前記沈殿剤が、分子内に窒素原子を含む有機アルカリ又はカチオンである、
    請求項12又は13に記載の製造方法。
    The precipitating agent is an organic alkali or cation containing a nitrogen atom in the molecule.
    The manufacturing method according to claim 12 or 13.
  16.  前記工程Aが、
     ナノセルロースの水分散液と熱可塑性樹脂とを混合し、ナノセルロースと熱可塑性樹脂とを反応させて析出せしめ、ナノセルロースと熱可塑性樹脂との混合物IIIを液相と分離する工程、
     分離したナノセルロースと熱可塑性樹脂との混合物IIIに、有機溶媒を添加し、前記混合物Iを得る工程、を含む、
    請求項9~11のいずれか一項に記載の製造方法。
    The step A is
    A step of mixing an aqueous dispersion of nanocellulose and a thermoplastic resin, reacting the nanocellulose with the thermoplastic resin to precipitate, and separating the mixture III of the nanocellulose and the thermoplastic resin from the liquid phase.
    The step of adding an organic solvent to the mixture III of the separated nanocellulose and the thermoplastic resin to obtain the mixture I is included.
    The manufacturing method according to any one of claims 9 to 11.
  17.  前記分離する工程が、連続的に行われる、
    請求項12~16のいずれか一項に記載の製造方法。
    The separation step is continuously performed.
    The manufacturing method according to any one of claims 12 to 16.
  18.  ナノセルロース及び熱可塑性樹脂を含む樹脂組成物の製造方法であって、
     ナノセルロースと熱可塑性樹脂と有機溶媒との混合物Iを準備する工程A、及び、
     前記混合物Iから、水の実質的な非存在下で有機溶媒の一部又は全部を除去する工程Bを含み、
     前記工程Aが、
     ナノセルロースの水分散液に、分子内に窒素原子を含む有機アルカリ又はカチオンを加え、さらに熱可塑性樹脂及び有機溶媒を加えることにより水相と分離せしめ、前記混合物Iを得る工程、又は、
     ナノセルロースの水分散液に、熱可塑性樹脂及び有機溶媒を加え、さらに分子内に窒素原子を含む有機アルカリ又はカチオンを加えることにより水相と分離せしめ、前記混合物Iを得る工程、を含む、製造方法。
    A method for producing a resin composition containing nanocellulose and a thermoplastic resin.
    Step A to prepare a mixture I of nanocellulose, a thermoplastic resin, and an organic solvent, and
    Including step B of removing some or all of the organic solvent from the mixture I in the absence of substantially the presence of water.
    The step A is
    A step of adding an organic alkali or cation containing a nitrogen atom in the molecule to the aqueous dispersion of nanocellulose and further adding a thermoplastic resin and an organic solvent to separate it from the aqueous phase to obtain the mixture I, or
    Production including a step of adding a thermoplastic resin and an organic solvent to an aqueous dispersion of nanocellulose, and further adding an organic alkali or cation containing a nitrogen atom in the molecule to separate it from the aqueous phase to obtain the mixture I. Method.
  19.  前記有機溶媒が、熱可塑性樹脂を溶解及び/又は膨潤する有機溶媒である、
    請求項18に記載の製造方法。
    The organic solvent is an organic solvent that dissolves and / or swells the thermoplastic resin.
    The manufacturing method according to claim 18.
  20.  前記有機溶媒が、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒から選ばれる少なくとも1種を含む、
    請求項18又は19に記載の製造方法。
    The organic solvent contains at least one selected from an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, and a nitrile solvent.
    The manufacturing method according to claim 18 or 19.
  21.  請求項1~8のいずれか一項に記載の樹脂組成物を含む、樹脂。 A resin containing the resin composition according to any one of claims 1 to 8.
  22.  請求項1~8のいずれか一項に記載の樹脂組成物と樹脂との溶融物を含む、
    請求項21に記載の樹脂。
    A melt containing the resin composition according to any one of claims 1 to 8 and the resin.
    The resin according to claim 21.
  23.  ペレット状である、
    請求項21又は22に記載の樹脂。
    Pellet-like,
    The resin according to claim 21 or 22.
  24.  ペレット状の樹脂の製造方法であって、
     請求項1~8のいずれか一項に記載の樹脂組成物と、必要に応じて樹脂を配合し、溶融混錬する工程、及び、
     前記溶融混錬の後、ペレット化する工程を含む、製造方法。
    It is a method for manufacturing pellet-shaped resin.
    A step of blending the resin composition according to any one of claims 1 to 8 and a resin, if necessary, and melt-kneading the resin composition, and
    A manufacturing method comprising a step of pelletizing after the melt kneading.
PCT/JP2021/044105 2020-12-03 2021-12-01 Resin composition, method for producing resin composition, and resin WO2022118888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566959A JPWO2022118888A1 (en) 2020-12-03 2021-12-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-200967 2020-12-03
JP2020200967 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022118888A1 true WO2022118888A1 (en) 2022-06-09

Family

ID=81853973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044105 WO2022118888A1 (en) 2020-12-03 2021-12-01 Resin composition, method for producing resin composition, and resin

Country Status (2)

Country Link
JP (1) JPWO2022118888A1 (en)
WO (1) WO2022118888A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084281A (en) * 2008-09-30 2010-04-15 Daicel Chem Ind Ltd Fibrous reinforcing agent and its manufacturing process
JP2010242063A (en) * 2009-03-17 2010-10-28 Kuraray Co Ltd Cellulose nanofiber compound polyvinyl alcohol-based polymer composition
JP2012219380A (en) * 2011-04-04 2012-11-12 Kao Corp Fibrous material
WO2014133019A1 (en) * 2013-02-26 2014-09-04 王子ホールディングス株式会社 Composition containing cellulose and dispersant
JP2016029169A (en) * 2014-07-23 2016-03-03 日信工業株式会社 Method for producing thermoplastic resin composition and thermoplastic resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084281A (en) * 2008-09-30 2010-04-15 Daicel Chem Ind Ltd Fibrous reinforcing agent and its manufacturing process
JP2010242063A (en) * 2009-03-17 2010-10-28 Kuraray Co Ltd Cellulose nanofiber compound polyvinyl alcohol-based polymer composition
JP2012219380A (en) * 2011-04-04 2012-11-12 Kao Corp Fibrous material
WO2014133019A1 (en) * 2013-02-26 2014-09-04 王子ホールディングス株式会社 Composition containing cellulose and dispersant
JP2016029169A (en) * 2014-07-23 2016-03-03 日信工業株式会社 Method for producing thermoplastic resin composition and thermoplastic resin composition

Also Published As

Publication number Publication date
JPWO2022118888A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP7343865B2 (en) Manufacturing method of resin modifier, resin modifier and composite material
Wang et al. Novel process for generating cationic lignin based flocculant
JP5834847B2 (en) Method for refining cellulose, cellulose nanofiber, master batch composition and resin composition
JP5188765B2 (en) Fiber-reinforced composite material and method for producing the same
EP3127954B1 (en) Polymer dispersant for cellulose, aqueous dispersion treatment agent containing same, readily dispersible cellulose composition, cellulose dispersion resin composition, and dispersant-containing resin composition for cellulose dispersion
CN110741020A (en) Fine cellulose fiber, method for producing same, slurry, and composite
JP4919136B2 (en) Modified microfibrillated cellulose and resin composite material containing the same
JP2013018851A (en) Cellulose fiber, cellulose fiber-containing polymer, resin composition, and molding
WO2022059705A1 (en) Resin composition, resin composition manufacturing method, and resin
WO2022118888A1 (en) Resin composition, method for producing resin composition, and resin
WO2021075224A1 (en) Production method for cellulose complex, production method for cellulose complex/resin composition, cellulose complex, and cellulose complex/resin composition
WO2022118792A1 (en) Vinyl chloride resin composition and method for manufacturing same, and molded body
Chen et al. Thermoformable and transparent one-component nanocomposites based on surface grafted cellulose nanofiber
JP7231893B2 (en) Oxidized cellulose, nanocellulose and their dispersions
JP2019119984A (en) Manufacturing method of refined hydrophobic modified cellulose fiber
WO2022102703A1 (en) Method for manufacturing nanocellulose-containing composition
JP6954884B2 (en) Cellulose-dispersed resin composition, its production method, and cellulose resin composite material
WO2019088300A1 (en) Manufacturing method for cellulose dispersion block copolymer, manufacturing method for resin composition, and manufacturing method for molded article
JP2022041528A (en) Resin modifier containing surface-modified cellulose nanofiber
WO2022138759A1 (en) Production method for oxidized cellulose and nanocellulose
Thielemans Lignin and carbon nanotube utilization in bio-based composites
JP2022031457A (en) Fine cellulose fiber, method for producing the same, slurry, and composite body
JP2023014761A (en) Master batch composition suitable for fiber-reinforced resin and method for producing fiber-reinforced resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900639

Country of ref document: EP

Kind code of ref document: A1