WO2022118666A1 - Laminate, fiber-reinforced plastic complex formed from laminate, and method for manufacturing fiber-reinforced plastic complex - Google Patents

Laminate, fiber-reinforced plastic complex formed from laminate, and method for manufacturing fiber-reinforced plastic complex Download PDF

Info

Publication number
WO2022118666A1
WO2022118666A1 PCT/JP2021/042407 JP2021042407W WO2022118666A1 WO 2022118666 A1 WO2022118666 A1 WO 2022118666A1 JP 2021042407 W JP2021042407 W JP 2021042407W WO 2022118666 A1 WO2022118666 A1 WO 2022118666A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
group
carbon atoms
resin
weight
Prior art date
Application number
PCT/JP2021/042407
Other languages
French (fr)
Japanese (ja)
Inventor
幸介 永田
敦 角田
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2022566834A priority Critical patent/JPWO2022118666A1/ja
Publication of WO2022118666A1 publication Critical patent/WO2022118666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a laminate, a fiber-reinforced resin composite composed of the laminate, and a method for producing the fiber-reinforced resin composite. More specifically, it is excellent in rigidity, strength, low specific gravity and appearance, and is suitable for electric / electronic parts, home electric appliances, automobile-related parts, infrastructure-related parts, housing-related parts, etc.
  • the present invention relates to a body and a method for producing a fiber-reinforced resin composite.
  • Fiber reinforced resin composites are used in a wide range of fields such as automobiles, aircraft parts, general industrial materials, etc. due to their light weight and high physical characteristics. Since these complexes are required to have surface appearance quality in addition to mechanical properties, it is necessary to sufficiently impregnate the reinforcing fibers with a resin and reduce voids and the like.
  • thermosetting resin has been used as a matrix resin to sufficiently impregnate the reinforcing fiber with resin.
  • thermoplastic resins are cheaper and have better impact resistance, heat resistance characteristics, and recyclability than thermosetting resins, but they are difficult to impregnate into reinforced fibers, and they are higher in temperature and pressure than thermosetting resins. It has not been widely used yet due to problems such as the need for molding.
  • Polypropylene resin has excellent molding processability and chemical resistance, and has a low specific gravity, so it is widely used industrially in electrical and electronic parts, home appliances, housings, packaging materials, automobile parts, and the like. Furthermore, in recent years, due to the demand for weight reduction of automobiles, it is widely used for automobile applications such as bumpers and interior / exterior parts. Therefore, various studies have been made so far, considering that a fiber-reinforced resin complex using polypropylene resin as a matrix resin can be a material having lightness, rigidity, and strength. However, since polypropylene resin does not have good adhesiveness to carbon fibers, sufficient mechanical properties cannot be obtained simply by laminating both.
  • a composition containing a carbon fiber chopped strand having a fiber length of about 0.1 to 6 mm and a modified polypropylene grafted with an acid anhydride such as maleic anhydride has been proposed in order to improve the adhesiveness of the polypropylene resin.
  • Patent Documents 1 and 2 Further, a sizing agent used for a carbon fiber bundle containing a urethane-modified epoxy resin and an epoxy resin as main components has been proposed (Patent Document 3). Further, in order to improve the adhesiveness between the carbon fiber having a fiber length of about 1 to 6 mm and the polypropylene resin, it has been proposed to use a polypropylene resin containing a carboxylate bonded to a polymer chain (Patent Document 4).
  • modified polyolefins react with functional groups such as carboxylic acid existing on the surface of the chopped strand-shaped carbon fiber during melt-kneading, and chemically bond the polyolefin to the surface of the carbon fiber to form a chopped strand-shaped carbon fiber. It is known to improve adhesion. However, in forming a complex with the sheet-shaped carbon fibers that does not go through melt-kneading, there is a problem that the adhesion to the sheet-shaped carbon fibers is insufficient, and as a result, the mechanical properties are insufficient.
  • Patent Document 6 Further, it is known that the adhesiveness is improved by adding the polycarbonate resin to the polypropylene resin.
  • Patent Document 6 in order to replace products in which metals and thermosetting CFRP are used and expand their applications, further strength, rigidity and high appearance are required.
  • An object of the present invention is to solve the above problems and to obtain a laminate having excellent adhesion between a thermoplastic resin and a reinforcing fiber and having excellent rigidity, strength and appearance, and a fiber reinforced resin composite composed of the laminate.
  • thermoplastic resin sheet made of a polypropylene resin composition composed of a polypropylene resin, a polycarbonate resin and a modified polyolefin resin is not formed when laminated with a reinforcing fiber sheet.
  • a fiber-reinforced resin composite having excellent rigidity, strength and appearance without causing layered peeling or significant deterioration of physical properties due to compatibility, and have reached the present invention.
  • thermoplastic resin sheet is (A) 1 to 99 parts by weight of a polypropylene resin (A component) and (B).
  • One of the more preferable embodiments of the present invention is the above-mentioned configuration (1) in which (2) the B component is a polycarbonate resin containing 1 to 100 mol% of the carbonate constituent units represented by the following formula [1] in the total carbonate constituent units. ).
  • R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms, respectively.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon atoms, respectively.
  • alkoxy group with 1 to 10 carbon atoms alkoxy group with 1 to 10 carbon atoms, cycloalkyl group with 6 to 20 carbon atoms, cycloalkoxy group with 6 to 20 carbon atoms, alkenyl group with 2 to 10 carbon atoms, 6 to 14 carbon atoms
  • R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, or substituted or unsubstituted groups having 6 to 12 carbon atoms, respectively. If there are a plurality of aryl groups, they may be the same or different, c is an integer of 1 to 10, d is an integer of 4 to 7, e is a natural number, and f is 0 or a natural number.
  • One of the more preferable embodiments of the present invention is the laminate according to the above configuration (1) or (2), wherein the component (3) C is maleic anhydride-modified polypropylene.
  • One of the more preferable embodiments of the present invention is a resin in which (4) the resin composition constituting the thermoplastic resin sheet further comprises (D) a styrene-based thermoplastic elastomer (component D) as a component A and a component B.
  • the (5) reinforcing fiber sheet is any one of a woven or knitted fabric, a non-woven fabric, and a unidirectional sheet. It is a laminated body.
  • One of the more preferable embodiments of the present invention is the above-mentioned configurations (1) to (5), wherein the fibers constituting the reinforcing fiber sheet (6) are at least one fiber selected from the group consisting of carbon fibers and glass fibers. ) Is the laminated body described in any one of.
  • One of the more preferable embodiments of the present invention is (7) the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy in the fiber constituting the reinforcing fiber sheet.
  • the laminate according to the above configuration (6) which is a carbon fiber having a surface oxygen concentration (O / C) of 0.15 or more, which is the ratio of the above.
  • thermoplastic resin sheet is made of a mesh-like hollow fiber.
  • One of the more preferable embodiments of the present invention is (9) a fiber-reinforced resin complex composed of the laminate according to any one of the above configurations (1) to (8).
  • One of the more preferable embodiments of the present invention is to reinforce (10) the laminate according to any one of the above configurations (1) to (8) at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet.
  • This is a method for producing a fiber-reinforced resin composite, which comprises pressure-treating at a temperature lower than the heat-resistant temperature of the reinforcing fibers constituting the fiber sheet.
  • the laminate of the present invention is a material having high flexibility and excellent followability to molds and the like.
  • the fiber reinforced resin composite obtained by heat-pressurizing this laminate has excellent strength, rigidity and appearance, and is excellent in electric / electronic parts, household electrical appliances, automobile-related parts, infrastructure-related parts, and housing-related parts. It is useful for such purposes, and its industrial effect is exceptional.
  • FIG. 1 It is a schematic diagram of the sectional view of the hollow fiber used in this invention.
  • a cross-sectional view of the hollow fiber used in the present invention is taken with an electron microscope.
  • the polypropylene resin used as the component A of the polypropylene resin composition constituting the thermoplastic resin sheet in the present invention is a polymer of propylene, but in the present invention, a copolymer with other monomers is also included.
  • An example of the polypropylene resin of the present invention is a homopolypropylene resin.
  • a block copolymer of propylene and ethylene a block copolymer of propylene and an ⁇ -olefin having 4 to 10 carbon atoms (also referred to as “block polypropylene”), a random copolymer of propylene and ethylene, and propylene. It contains a random copolymer (also referred to as "random polypropylene") of ⁇ -olefin having 4 to 10 carbon atoms.
  • “block polypropylene” and “random polypropylene” are collectively referred to as "polypropylene copolymer”.
  • one or more of the above-mentioned homopolypropylene resin, block polypropylene, and random polypropylene may be used as the polypropylene resin, and homopolypropylene and block polypropylene are preferable.
  • the polypropylene resin does not contain the modified polypropylene resin which is the C component.
  • Examples of ⁇ -olefins having 4 to 10 carbon atoms used in polypropylene copolymers include 1-butene, 1-pentene, isobutylene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1. -Butene, 1-heptene, 3-methyl-1-hexene are included.
  • the ethylene content in the polypropylene copolymer is preferably 5% by weight or less in all the monomers.
  • the content of the ⁇ -olefin having 4 to 10 carbon atoms in the polypropylene copolymer is preferably 20% by weight or less in the total monomer.
  • the polypropylene copolymer is preferably a copolymer of propylene and ethylene, or a copolymer of propylene and 1-butene, and particularly preferably a copolymer of propylene and ethylene.
  • the melt flow rate (230 ° C., 2.16 kg) of the polypropylene resin in the present invention is preferably 0.1 to 5 g / 10 min, more preferably 0.2 to 4 g / 10 min, and 0.3 to 0.3 to. It is particularly preferable that it is 3 g / 10 min. If the melt flow rate of the polypropylene resin is less than 0.1 g / 10 min, the moldability is poor due to the high viscosity, and if it exceeds 5 g / 10 min, sufficient toughness may not be exhibited.
  • the melt flow rate is also called "MFR". MFR was measured according to ISO1133.
  • B component polycarbonate resin
  • the polycarbonate resin used as the B component of the resin composition constituting the thermoplastic resin sheet include those obtained by reacting a dihydroxy compound and a carbonate precursor by an interfacial polycondensation method or a melt transesterification method. ..
  • those obtained by polymerizing a carbonate prepolymer by a solid phase transesterification method or those obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method can be mentioned.
  • the dihydroxy component used here may be any as long as it is usually used as the dihydroxy component of aromatic polycarbonate, and may be bisphenols or aliphatic diols.
  • bisphenols bisphenols represented by the following formula [3] are preferably used.
  • R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 carbon atoms.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon.
  • R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are each independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms. Alternatively, it is an unsubstituted aryl group, and if there are a plurality of them, they may be the same or different, c is an integer of 1 to 10, d is an integer of 4 to 7, e is a natural number, and f is a natural number.
  • bisphenols include, for example, 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl).
  • aliphatic diols examples include 2,2-bis- (4-hydroxycyclohexyl) -propane, 1,14-tetradecanediol, octaethyleneglycol, 1,16-hexadecanediol, and 4,4'-bis (2-).
  • aromatic bisphenols are preferable, and among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4).
  • -Hydroxy-3-methylphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane
  • 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane 4,4'-sulfonyl Diphenol
  • 2,2'-dimethyl-4,4'-sulfonyldiphenol 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • 1,3-bis ⁇ 2- (4-hydroxyphenyl) Propyl ⁇ benzene and 1,4-bis ⁇ 2- (4-hydroxyphenyl) propyl ⁇ benzene are preferred.
  • 2,2-bis (4-hydroxyphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-sulfonyldiphenol and 9,9-bis (4-hydroxy-3-).
  • Methylphenyl) fluorene is preferred.
  • 2,2-bis (4-hydroxyphenyl) propane which has excellent strength and good durability, is most suitable.
  • these may be used individually or in combination of 2 or more types.
  • the polycarbonate resin used as the B component of the present invention may be a branched polycarbonate resin by using a branching agent in combination with the above dihydroxy compound.
  • Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglucolcin, fluoroglucolside, 4,6-dimethyl-2,4,6-tris (4-hydrochidiphenyl) heptene-2,2.
  • tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene and the like can be mentioned.
  • examples thereof include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and acid chlorides thereof.
  • 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable. Hydroxyphenyl) ethane is preferred.
  • polycarbonate resins are produced by a reaction method known per se for producing an ordinary aromatic polycarbonate resin, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester.
  • a reaction method known per se for producing an ordinary aromatic polycarbonate resin for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester.
  • a carbonate precursor such as phosgene or carbonic acid diester.
  • the reaction is usually carried out in the presence of an acid binder and a solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • the solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction.
  • the reaction temperature is usually 0 to 40 ° C., and the reaction time is several minutes to 5 hours.
  • the transesterification reaction using a carbonic acid diester as a carbonic acid precursor is carried out by a method of distilling off the produced alcohol or phenol by stirring a predetermined ratio of aromatic dihydroxy components with the carbonic acid diester while heating them in an inert gas atmosphere. ..
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C.
  • the reaction is completed by distilling off the produced alcohols or phenols under reduced pressure from the initial stage. It is also possible to use catalysts normally used in transesterification reactions to accelerate the reaction.
  • Examples of the carbonic acid diester used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like. Of these, diphenyl carbonate is particularly preferable.
  • a terminal inhibitor may be used in the polymerization reaction.
  • the terminal terminator is used for molecular weight regulation, and the obtained polycarbonate resin has a closed end, so that it is superior in thermal stability as compared with the non-termination agent.
  • monofunctional phenols represented by the following general formulas [4] to [6] can be shown.
  • A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the number of carbon atoms in the alkyl moiety is 1 to 9), a phenyl group, or a phenylalkyl group (the number of carbon atoms in the alkyl moiety is 1 to 9).
  • R is an integer of 1 to 5, preferably 1 to 3.
  • Y is -RO-, -R-CO-O- or -RO-CO-, where R is a single bond or 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms. It represents a divalent aliphatic hydrocarbon group, and n represents an integer of 10 to 50.
  • R is a single bond or 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms. It represents a divalent aliphatic hydrocarbon group, and n represents an integer of 10 to 50.
  • Specific examples of the monofunctional phenols represented by the above general formula [4] include, for example, phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenyl. Examples include phenol and isooctylphenol.
  • the monofunctional phenols represented by the above general formulas [5] to [6] are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent, and these are used to end the polycarbonate resin. When sealed, they not only function as a terminal terminator or a molecular weight modifier, but also improve the melt fluidity of the resin, facilitate the molding process, and have the effect of lowering the water absorption rate of the resin, which is preferable. used.
  • substituted phenols of the above general formula [5] those having n of 10 to 30, particularly 10 to 26 are preferable. Specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, and triacylphenol.
  • substituted phenols of the above general formula [6] compounds in which Y is —R—CO—O— and R is a single bond are preferable, and n is 10 to 30, particularly 10 to 26. Suitable. Specific examples thereof include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eikosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate.
  • monofunctional phenols represented by the above general formula [4] are preferable, alkyl-substituted or phenylalkyl-substituted phenols are more preferable, and p-tert-butylphenol and p are particularly preferable.
  • -Kumilphenol or 2-phenylphenol It is desirable that the terminal terminator of these monofunctional phenols be introduced into the terminal at least 5 mol%, preferably at least 10 mol% with respect to the total terminal of the obtained polycarbonate resin, and the terminal terminator is used alone. Or a mixture of two or more types may be used.
  • the polycarbonate resin used as the B component of the present invention may be a polyester carbonate obtained by copolymerizing an aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired. good.
  • the viscosity average molecular weight of the polycarbonate resin used as the component B of the present invention is preferably in the range of 13,000 to 25,000, more preferably 13,000 to 21,000, and further preferably in the range of 16,000 to 21,000. More preferably, the range of 16,000 to 20,000 is most preferable. If the molecular weight exceeds 25,000, the melt viscosity may become too high and the moldability may be inferior, and if the molecular weight is less than 13,000, a problem may occur in mechanical strength.
  • the viscosity average molecular weight referred to in the present invention was obtained by first determining the specific viscosity calculated by the following formula from a solution of 0.7 g of polycarbonate resin in 100 ml of methylene chloride using an Ostwald viscometer. The specific viscosity is inserted by the following formula to obtain the viscosity average molecular weight M.
  • the total amount of Cl (chlorine) in the polycarbonate resin used as the component B of the present invention is preferably 0 to 200 ppm, more preferably 0 to 150 ppm. If the total amount of Cl in the polycarbonate resin exceeds 200 ppm, the hue and thermal stability may deteriorate, which is not preferable.
  • the content of the B component is 99 to 1 part by weight, preferably 50 to 5 parts by weight, more preferably 25 to 5 parts by weight, and most preferably 15 to 15 parts by weight in 100 parts by weight of the total of the A component and the B component. 5 parts by weight. If the B component is more than 99 parts by weight, the appearance improvement when the fiber reinforced resin composite is formed is insufficient. Further, when the B component is less than 1 part by weight, the adhesion between the resin and the reinforcing fiber is lowered, the strength of the fiber-reinforced composite is not sufficiently developed, and the appearance is not sufficiently improved.
  • C component modified polyolefin resin
  • the resin composition constituting the thermoplastic resin sheet contains a modified polyolefin resin as a compatibilizer. The modified polyolefin resin improves the interfacial adhesion between the polypropylene resin and the reinforcing fiber, and improves the strength of the fiber-reinforced resin composite.
  • the modified polyolefin resin is preferably an acid-modified polyolefin resin modified with an unsaturated carboxylic acid or a derivative thereof.
  • the modified polyolefin resin include polyethylene resin and polypropylene resin, and polypropylene resin is preferable.
  • the modified polypropylene resin includes a propylene homopolymer, a propylene random copolymer, a propylene block copolymer and the like.
  • a method such as graft modification or copolymerization can be used for the modification of the polyolefin resin.
  • Examples of the unsaturated carboxylic acid used for modifying the polyolefin resin include acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelic acid and the like. Can be mentioned. Derivatives of the unsaturated carboxylic acid include acid anhydrides, esters, amides, imides, metal salts and the like.
  • unsaturated dicarboxylic acids and derivatives thereof are preferable, and maleic anhydride or phthalic anhydride is particularly preferable.
  • the crystallization temperature (Tc) of the modified polypropylene resin is preferably 90 to 125 ° C, more preferably 110 to 120 ° C.
  • the ultimate viscosity is preferably 0.1 to 2.4 dl / g, preferably 0.2 to 1.6 dl / g.
  • the crystallization temperature (Tc) of the modified polyolefin resin can be measured by a differential scanning calorimeter (DSC).
  • the ultimate viscosity of the modified polyolefin resin can be measured in tetralin at 135 ° C.
  • the amount of carboxylic acid added to the modified polyolefin resin is preferably in the range of 0.1 to 14% by weight, more preferably in the range of 0.8 to 8% by weight.
  • the acid addition amount can be determined from the area of the peak of 1670 cm -1 to 1810 cm -1 by measuring the IR spectrum of the acid-modified polyolefin resin.
  • the content of the modified polyolefin resin is 0.1 to 900 parts by weight, preferably 1 to 500 parts by weight, and more preferably 5 to 300 parts by weight with respect to 100 parts by weight of the total of the components A and B. It is more preferably 50 to 150 parts by weight. If the content of the modified polyolefin resin is less than 0.1 parts by weight, the strength of the fiber reinforced resin composite does not improve, and if it exceeds 900 parts by weight, the sheet processability deteriorates. It is not sufficiently expressed and the appearance is not sufficiently improved.
  • D component: styrene-based thermoplastic elastomer A styrene-based thermoplastic elastomer can be further added to the resin composition constituting the thermoplastic resin sheet. The styrene-based thermoplastic elastomer improves the compatibility between the polypropylene resin and the polycarbonate resin, and improves the strength (bending elastic modulus, bending strength) of the fiber-reinforced resin composite.
  • styrene-based thermoplastic elastomer examples include styrene-ethylene-butylene-styrene block copolymer, styrene-hydrogenated butadiene-styrene triblock copolymer, styrene-isoprene-styrene triblock copolymer, and styrene-hydrogenated isoprene-.
  • Examples thereof include styrene triblock copolymers, styrene-hydrogenated butadiene diblock copolymers, styrene-hydrogenated isoprange block copolymers, styrene-isopresend block copolymers, etc., among which styrene-ethylene-butylene- The styrene block copolymer is most suitable.
  • a block copolymer represented by the following formula (I) or (II) is also preferably used.
  • X in the general formulas (I) and (II) is a styrene polymer block, and in the formula (I), the degree of polymerization may be the same or different at both ends of the molecular chain.
  • Y is at least one selected from an isoprene polymer block, a hydrogenated butadiene polymer block and a hydrogenated isoprene polymer block.
  • n is an integer of 1 or more.
  • the content of the X component in the block copolymer is preferably in the range of 20 to 80% by weight, more preferably 25 to 70% by weight. If this amount is less than 20% by weight, the rigidity of the resin composition tends to decrease. Further, if it exceeds 80% by weight, the molding processability and the impact strength tend to decrease.
  • block copolymers include styrene-hydrogenated butadiene-styrene triblock copolymer, styrene-isoprene-styrene triblock copolymer, styrene-hydrogenated isoprene-styrene triblock copolymer, and the like.
  • Examples thereof include a styrene-hydrogenated butadiene diblock copolymer, a styrene-hydrogenated isoprange block copolymer, and a styrene-isoprerange block copolymer.
  • the weight average molecular weight of the styrene-based thermoplastic elastomer is preferably 250,000 or less, more preferably 220,000 or less, and even more preferably 200,000 or less. If the weight average molecular weight exceeds 250,000, the moldability is lowered and the dispersibility in the polypropylene resin may be deteriorated.
  • the lower limit of the weight average molecular weight is not particularly limited, but is preferably 40,000 or more, and more preferably 50,000 or more.
  • the weight average molecular weight was measured by the following method. That is, the molecular weight is measured in terms of polystyrene by a gel permeation chromatograph, and the weight average molecular weight is calculated.
  • the content of the styrene-based thermoplastic elastomer is preferably 1 to 20 parts by weight, more preferably 3 to 15 parts by weight, still more preferably 5 to 13 parts by weight, most preferably 5 to 13 parts by weight, based on 100 parts by weight of the resin component. It is preferably 5 to 10 parts by weight. If the content of the styrene-based thermoplastic elastomer is less than 1 part by weight, the strength of the fiber-reinforced resin composite does not improve, and if it exceeds 20 parts by weight, gas is generated during molding of the fiber-reinforced resin composite, and the molding processability is improved. It may decrease.
  • additives can be added to the resin composition constituting the thermoplastic resin sheet as long as the effects of the present invention are not impaired.
  • additives include phosphorus-based heat stabilizers, phenol-based heat stabilizers, sulfur-containing antioxidants, mold release agents, ultraviolet absorbers, hindered amine-based light stabilizers, compatibilizers, flame retardants, dyes and pigments. Be done.
  • phosphorus-based heat stabilizer any of a phosphite compound, a phosphonite compound, and a phosphate compound can be used.
  • phosphite compounds can be used. Specific examples thereof include a phosphite compound represented by the following general formula [7], a phosphite compound represented by the following general formula [8], and a phosphite compound represented by the following general formula [9].
  • R 31 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkaline phenol group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or these. It represents a halo, an alkylthio (alkyl group has 1 to 30 carbon atoms) or a hydroxy substituent, and the three R 31s can be selected either identically or differently from each other, and are cyclic by being derived from divalent phenols. You can also choose the structure. ]
  • R 32 and R 33 are hydrogen atoms, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 30 carbon atoms, respectively.
  • the cycloalkyl group and the aryl group either one which is not substituted with an alkyl group or one substituted with an alkyl group can be selected.
  • R 34 and R 35 are alkyl groups having 12 to 15 carbon atoms.
  • R 34 and R 35 can be selected in either the same case or different from each other.
  • Examples of the phosphonite compound include a phosphonite compound represented by the following general formula [10] and a phosphonite compound represented by the following general formula [11].
  • Ar 1 and Ar 2 are aryl groups having 6 to 20 carbon atoms, alkyl aryl groups having 6 to 20 carbon atoms, or 2- (4-oxyphenyl) propyl substituted aryl groups having 15 to 25 carbon atoms.
  • the four Ar 1s can be selected to be the same as each other or different from each other.
  • the two Ar 2s can be selected to be the same as each other or different from each other.
  • Preferred specific examples of the phosphite compound represented by the above general formula [7] are diphenylisooctylphosphite, 2,2'-methylenebis (4,6-di-tert-butylphenyl) octylphosphite, and diphenylmono. Examples thereof include (tridecylic) phosphite, phenyldiisodecylphosphite, and phenyldi (tridecylic) phosphite.
  • Preferred specific examples of the phosphite compound represented by the above general formula [8] include distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and bis (2). , 6-Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like.
  • distearyl pentaerythritol diphosphite bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphos. You can mention fight.
  • the phosphite compound may be used alone or in combination of two or more.
  • Preferred specific examples of the phosphonite compound represented by the above general formula [10] include tetrakis (2,4-di-iso-propylphenyl) -4,4'-biphenylenediphosphonite and tetrakis (2,4-di).
  • tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite is preferable, and tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is more preferable.
  • the tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferably a mixture of two or more.
  • tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenedi
  • phosphonite and tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite can be used in combination, but preferably three such types. It is a mixture.
  • Preferred specific examples of the phosphonite compound represented by the above general formula [11] include bis (2,4-di-iso-propylphenyl) -4-phenyl-phenylphosphonite and bis (2,4-di-n).
  • This bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite is preferably a mixture of two or more. Specifically, one of bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite. Species or two species can be used in combination. It is preferably a mixture of the two. Further, in the case of a mixture of two kinds, the mixing ratio thereof is preferably in the range of 5: 1 to 4 in terms of weight ratio, and more preferably in the range of 5: 2 to 3.
  • tributyl phosphate trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl
  • phosphate and diisopropyl phosphate It is preferably trimethyl phosphate.
  • more preferable compounds include compounds represented by the following general formulas [12] and [13].
  • R 36 and R 37 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group.
  • R 41 , R 42 , R 43 , R 44 , R 47 , R 48 and R 49 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, cycloalkyl groups, respectively. An aryl group or an aralkyl group is indicated, R 45 indicates a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 46 indicates a hydrogen atom or a methyl group.
  • R 36 and R 37 are preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
  • Specific examples of the compound represented by the formula [12] include tris (dimethylphenyl) phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, and tris (di-n-butyl).
  • Phenyl) Phenyl) Phenyl, Tris (2,4-di-tert-butylphenyl) Phenyl, Tris (2,6-di-tert-butylphenyl) Phenyl, Tris (2,6-di-tert-butylphenyl) Examples include phosphite. Particularly, tris (2,6-di-tert-butylphenyl) phosphite is preferable.
  • the compound represented by the formula [13] include phosphite derived from 2,2'-methylenebis (4,6-di-tert-butylphenol) and 2,6-di-tert-butylphenol, 2. , 2'-Methylenebis (4,6-di-tert-butylphenol) and phenol-derived phosphite.
  • 2,2'-methylenebis (4,6-di-tert-butylphenol) and phosphite derived from phenol are preferable.
  • the content of the phosphorus-based heat stabilizer is preferably 0.001 to 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, based on 100 parts by weight of the total of the A component and the B component. More preferably, it is 0.05 to 1.0 parts by weight. If the content of the phosphorus-based heat stabilizer is less than 0.001 part by weight, the mechanical properties may not be sufficiently exhibited, and if it exceeds 3.0 parts by weight, the mechanical properties may not be sufficiently exhibited.
  • the phenolic heat stabilizer used in the present invention generally include hindered phenol, semi-hindered phenol, and less hindered phenol compound. In particular, a hindered phenol compound is more preferably used from the viewpoint of applying a heat-stable formulation to a polypropylene-based resin.
  • hindered phenol compounds include vitamin E, n-octadecyl- ⁇ - (4'-hydroxy-3', 5'-di-tert-butylfell) propionate, and 2-tert-butyl-6.
  • n-octadecyl- ⁇ - (4'-hydroxy-3', 5'-di-tert-butylfell) propionate 2-tert-butyl-6- (3'-tert-butyl-5'-methyl -2'-Hydroxybenzyl) -4-methylphenyl acrylate, 3,9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,- Dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane, and tetrakis [methyl-3- (3', 5'-di-tert-butyl-4-hydroxyphenyl) propionate] methane Is.
  • sulfur-containing antioxidant A sulfur-containing antioxidant can also be used as an antioxidant in the resin composition constituting the thermoplastic resin sheet. It is particularly suitable when the resin composition is used for rotary molding or compression molding.
  • sulfur-containing antioxidants include dilauryl-3,3'-thiodipropionic acid ester, ditridecyl-3,3'-thiodipropionic acid ester, and dimyristyl-3,3'-thiodipropionic acid ester.
  • the phosphorus-based heat stabilizer, the phenol-based heat stabilizer, and the sulfur-containing antioxidant listed above can be used alone or in combination of two or more.
  • the content of the phenolic heat stabilizer and the sulfur-containing antioxidant is preferably 0.0001 to 1 part by weight with respect to 100 parts by weight in total of the A component and the B component. It is more preferably 0.0005 to 0.5 parts by weight, and even more preferably 0.001 to 0.2 parts by weight.
  • a mold release agent can be further added to the resin composition constituting the thermoplastic resin sheet for the purpose of improving the productivity at the time of molding and reducing the distortion of the molded product. As such a mold release agent, a known one can be used.
  • saturated fatty acid esters unsaturated fatty acid esters, polyolefin waxes (polyethylene wax, 1-alkene polymer, etc. those modified with functional group-containing compounds such as acid modification can also be used), silicone compounds, fluorine compounds ( Fluorine oil typified by polyfluoroalkyl ether), paraffin wax, beeswax and the like can be mentioned.
  • polyolefin waxes polyethylene wax, 1-alkene polymer, etc. those modified with functional group-containing compounds such as acid modification can also be used
  • silicone compounds fluorine compounds ( Fluorine oil typified by polyfluoroalkyl ether), paraffin wax, beeswax and the like can be mentioned.
  • fatty acid ester is mentioned as a preferable mold release agent.
  • Such fatty acid esters are esters of fatty alcohols and aliphatic carboxylic acids.
  • the aliphatic alcohol may be a monohydric alcohol or a divalent or higher polyhydric alcohol.
  • the carbon number of the alcohol is preferably in the range of 3 to 32, more preferably in the range of 5 to 30.
  • Examples of such monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, ceryl alcohol, and toriacontanol.
  • polyhydric alcohols examples include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), trimethylolpropane, xylitol, sorbitol, and mannitol.
  • a polyhydric alcohol is more preferable.
  • the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms.
  • Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid and bechenic acid.
  • Saturated aliphatic carboxylic acids such as icosanoic acid and docosanoic acid
  • unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and setreic acid
  • the aliphatic carboxylic acid preferably has 14 to 20 carbon atoms.
  • saturated aliphatic carboxylic acids are preferable. Particularly stearic acid and palmitic acid are preferred.
  • the above-mentioned aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from animal fats and oils represented by beef fat and pork fat and natural fats and oils such as vegetable fats and oils represented by palm oil and sunflower oil. Therefore, these aliphatic carboxylic acids are usually mixtures containing other carboxylic acid components having different carbon atoms. Therefore, also in the production of the fatty acid ester of the present invention, an aliphatic carboxylic acid, particularly stearic acid or palmitic acid, which is produced from such natural fats and oils and is in the form of a mixture containing other carboxylic acid components, is preferably used.
  • the fatty acid ester used in the present invention may be either a partial ester or a total ester (full ester). However, the partial ester is more preferably a full ester because it usually has a high hydroxyl value and easily induces decomposition of the resin at high temperatures.
  • the acid value of the fatty acid ester of the present invention is preferably 20 or less, more preferably 4 to 20, and even more preferably 4 to 12 from the viewpoint of thermal stability.
  • the acid value can be substantially 0.
  • the hydroxyl value of the fatty acid ester is more preferably in the range of 0.1 to 30.
  • the iodine value is preferably 10 or less.
  • the iodine value can be substantially 0.
  • the content of the release agent is preferably 0.005 to 2 parts by weight, more preferably 0.01 to 1 part by weight, still more preferably 0.05 with respect to 100 parts by weight of the total of the A component and the B component. ⁇ 0.5 parts by weight.
  • the resin composition constituting the thermoplastic resin sheet of the present invention can contain an ultraviolet absorber.
  • benzophenone system for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-Sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxitrihydride benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2 , 2'-Dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methan, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone and the like are exemplified
  • benzotriazole system for example, 2- (2-hydroxy-5-methylphenyl) benzotriazol, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2'-methylenebis [4- (1,1,3) , 3-Tetramethylbutyl) -6- (2H-benzotriazole-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- (2-) Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5) -Ter
  • a copolymer of 2- (2'-hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole and a vinyl-based monomer copolymerizable with the monomer examples thereof include a polymer having a 2-hydroxyphenyl-2H-benzotriazole skeleton, such as a copolymer of loxyethylphenyl) -2H-benzotriazole and a vinyl-based monomer copolymerizable with the monomer.
  • hydroxyphenyltriazine system for example, 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazine-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) Examples thereof include -1,3,5-triazine-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-butyloxyphenol. Will be done.
  • the phenyl group of the above-exemplified compound such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hexyloxyphenol is 2,4-dimethyl.
  • a compound that has become a phenyl group is exemplified.
  • cyclic iminoester system for example, 2,2'-p-phenylene bis (3,1-benzoxazine-4-one), 2,2'-(4,4'-diphenylene) bis (3,1-benzoxazine) -4-one), 2,2'-(2,6-naphthalene) bis (3,1-benzoxazine-4-one) and the like are exemplified.
  • cyanoacrylate system for example, 1,3-bis-[(2'-cyano-3', 3'-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy] ] Methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like are exemplified.
  • the above-mentioned ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that it has a photostable monomer having such an ultraviolet-absorbing monomer and / or a hindered amine structure, and an alkyl (meth) acrylate. It may be a polymer type ultraviolet absorber which is copolymerized with a monomer such as.
  • a compound containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of the (meth) acrylic acid ester is preferably exemplified.
  • benzotriazole-based and hydroxyphenyltriazine-based are preferable in terms of ultraviolet absorption ability
  • cyclic iminoester-based and cyanoacrylate-based are preferable in terms of heat resistance and hue (transparency).
  • the above-mentioned ultraviolet absorber may be used alone or in a mixture of two or more kinds.
  • the content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, still more preferably 0.03 with respect to 100 parts by weight of the total of the A component and the B component. It is ⁇ 1 part by weight, more preferably 0.05 to 0.5 part by weight.
  • the resin composition constituting the thermoplastic resin sheet can contain a hindered amine-based light stabilizer.
  • the hindered amine-based light stabilizer is generally called HALS (Hindered Amine Light Stabilizer), and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in its structure.
  • Hindered amine-based photostabilizers are roughly classified according to the binding partner of the nitrogen atom in the piperidine skeleton, and are classified into NH type (hydrogen is bonded to the nitrogen atom) and NR type (alkyl group (R) is bonded to the nitrogen atom). , N-OR type (an alkoxy group (OR) is bonded to a nitrogen atom).
  • NH type hydrogen is bonded to the nitrogen atom
  • NR type alkyl group (R) is bonded to the nitrogen atom
  • N-OR type an alkoxy group (OR) is bonded to a nitrogen atom.
  • the above-mentioned hindered amine-based light stabilizer can be used alone or in combination of two or more.
  • the content of the hindered amine-based light stabilizer is preferably 0 to 1 part by weight, more preferably 0.05 to 1 part by weight, still more preferably 0, based on 100 parts by weight of the total of the A component and the B component. It is .08 to 0.7 parts by weight, particularly preferably 0.1 to 0.5 parts by weight. If the content of the hindered amine-based light stabilizer is more than 1 part by weight, the appearance may be poor due to gas generation and the physical properties may be deteriorated due to the decomposition of the polycarbonate resin, which is not preferable. Further, if it is less than 0.05 parts by weight, sufficient light resistance may not be exhibited.
  • a flame retardant can be added to the resin composition constituting the thermoplastic resin sheet to impart flame retardancy.
  • various compounds conventionally known as flame retardants of thermoplastic resins can be applied, but more preferably, (i) halogen-based flame retardant (for example, brominated polycarbonate compound) (ii) phosphorus-based.
  • Flame retardants eg, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphonic acid amide compounds, and phosphate compounds, etc.
  • Metal salt-based flame retardants eg, organic sulfonic acid alkali (earth)
  • a silicone-based flame retardant composed of (iv) a silicone compound, such as a metal salt, a borate metal salt-based flame retardant, and a tin acid metal salt-based flame retardant.
  • a silicone compound such as a metal salt, a borate metal salt-based flame retardant, and a tin acid metal salt-based flame retardant.
  • the compounding of the compound used as the flame retardant not only improves the flame retardancy but also improves the antistatic property, the fluidity, the rigidity, and the thermal stability based on the properties of each compound.
  • the content of the flame retardant is preferably 0.01 to 30 parts by weight, more preferably 0.05 to 28 parts by weight, still more preferably 0.08 with respect to 100 parts by weight of the total of the A component and the B component. ⁇ 25 parts by weight. If the content of the flame retardant is less than 0.01 parts by weight, sufficient flame retardancy may not be obtained, and if it exceeds 30 parts by weight, the impact strength and chemical resistance may be significantly reduced. (Dyeing pigment) It is possible to provide a molded product that further contains various dyes and pigments in the resin composition constituting the thermoplastic resin sheet and exhibits various design properties.
  • fluorescent dyes include coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, perylene-based fluorescent dyes, anthracinone-based fluorescent dyes, thioindigo-based fluorescent dyes, xanthene-based fluorescent dyes, and xantone-based fluorescent dyes.
  • coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, and perylene-based fluorescent dyes which have good heat resistance and little deterioration during molding of the polycarbonate resin, are suitable.
  • dyes other than the above brewing agents and fluorescent dyes include perylene dyes, coumarin dyes, thioindigo dyes, anthracinone dyes, thioxanthone dyes, ferrocyanides such as navy blue, perinone dyes, quinoline dyes, and quinacridones. Examples thereof include dyes, dioxazine dyes, isoindrinone dyes, and phthalocyanine dyes.
  • the resin composition of the present invention can also be blended with a metallic pigment to obtain a better metallic color.
  • the metallic pigment those having a metal film or a metal oxide film on various plate-shaped fillers are suitable.
  • the content of the dyeing pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the A component and the B component.
  • other resins can be used in a small proportion as long as the effects of the present invention are exhibited.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, and polypropylene resins.
  • resins such as polyolefin resins, polymethacrylate resins, phenol resins, and epoxy resins. (Other fillers)
  • a small proportion of other fillers can be used as long as the effect of the present invention is exhibited.
  • fillers include fibrous fillers such as potassium titanate whisker, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone wool fiber, metal fiber, warastonite, sericite, kaolin. , Mica, clay, bentonite, asbestos, talc, alumina silicate and other silicates.
  • swellable layered silicates such as montmorillonite and synthetic mica, metal compounds such as alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, and calcium sulfate.
  • additives such as barium sulfate, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and non-fibrous fillers such as silica.
  • an additive known per se can be blended in a small proportion in order to impart various functions to the molded product and improve the characteristics. These additives are in the usual blending amount as long as the object of the present invention is not impaired.
  • Such additives include sliding agents (eg, PTFE particles), fluorescent dyes, inorganic phosphors (eg, phosphors having aluminate as the parent crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents.
  • Photocatalytic antifouling agents for example, fine particle titanium oxide, fine particle zinc oxide
  • radical generators for example, infrared absorbers (heat ray absorbers), photochromic agents and the like.
  • Photochromic agents for example, fine particle titanium oxide, fine particle zinc oxide
  • radical generators for example, radical generators, infrared absorbers (heat ray absorbers), photochromic agents and the like.
  • melt kneading a commonly used single-screw or twin-screw extruder, various kneaders, and other kneading devices can be used. In particular, a biaxial high kneader is preferable.
  • the cylinder set temperature of the kneading device is preferably in the range of 200 to 360 ° C, more preferably in the range of 200 ° C to 300 ° C, and further preferably in the range of 230 to 280 ° C.
  • each component may be mixed uniformly in advance with a device such as a tumbler or a Henschel mixer, or if necessary, mixing may be omitted and a method of separately quantitatively supplying each component to the kneading device is also used. be able to.
  • Thermoplastic resin sheet used in the present invention is formed by stacking reinforcing fiber sheets at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet and lower than the heat resistant temperature of the reinforcing fibers constituting the reinforcing fiber sheet. By the pressure treatment, the thermoplastic resin sheet is melted and arranged without voids around the reinforcing fibers to form a fiber-reinforced resin composite.
  • the form of the thermoplastic resin sheet used in the present invention is not particularly limited, but at least one of the three dimensions of length, width, and thickness is in the range of 1 to 300 ⁇ m in order to achieve the above object. It is preferable, 1 to 100 ⁇ m is more preferable, 1 to 50 ⁇ m is even more preferable, and 1 to 30 ⁇ m is most preferable. Examples of those having such a form include films, non-woven fabrics, and the mesh-like fiber sheets listed below, and among them, the mesh-like fiber sheet is preferable from the viewpoint of impregnation of the reinforcing fiber of the thermoplastic resin sheet into the periphery.
  • thermoplastic resin sheet As a mesh-like fiber sheet, higher adhesion to the reinforcing fibers can be obtained as compared with a normal non-woven fabric made of fibers having no mesh structure. Further, in order to obtain high adhesion to the reinforcing fiber, it is preferable that the hollow fiber is a deformed fiber having an irregular cross-sectional shape.
  • the term “hollow” is not limited to those having obvious voids such as known hollow fibers, but may be those having bubbles inside the fibers.
  • the hollow fiber described in the present invention has air bubbles inside the fiber.
  • the hollow fiber has non-continuous air bubbles inside and has an irregular non-circular cross section. It is preferably a thing.
  • the bubbles inside the deformed fiber refer to the closed space (void) existing inside the fiber.
  • the voids inside the synthetic fiber are voids having the same cross-sectional shape continuous in the fiber axis direction, as seen in hollow fibers and the like.
  • the preferred voids of the present invention are in the form of discontinuous air bubbles.
  • a non-continuous bubble-like void which is a preferable shape of the present invention, it is possible to uniformly improve the fluidity of the thermoplastic resin, unlike the case of a normal continuous void. As a result, it is possible to exhibit particularly excellent impregnation property in the composite with the reinforcing fiber as compared with the continuous voids.
  • the thermoplastic resin fiber used in the present invention has bubbles inside the fiber as described above, but the hollow ratio in the cross section of the single fiber is preferably in the range of 0.5 to 40%.
  • the hollow ratio means the ratio of the total area of the bubbles in the fiber cross section when a plurality of bubbles are included in the fiber cross section.
  • the hollow ratio of the fiber is preferably in the range of 1 to 30%, particularly preferably 5 to 20%. If the hollow ratio of the fiber is less than 0.5%, the impregnation property at the time of compounding with the reinforcing fiber may be insufficient, and if it exceeds 40%, the strength of the non-woven fabric structure is lowered.
  • the fiber manufacturing process such as spinning, especially in the case of irregularly shaped fibers, many fiber breaks occur and the manufacturing efficiency tends to decrease.
  • This hollow ratio is obtained by determining the area of the hollow portion with respect to the total cross-sectional area including the hollow portion of the fiber as the hollow ratio from the fiber cross-sectional photograph of the image obtained at a magnification of 100 times with a scanning electron microscope (SEM). be.
  • SEM scanning electron microscope
  • each bubble is preferably in the range of 0.1 to 100 ⁇ m. In particular, it is preferably in the range of 0.5 to 50 ⁇ m. If the size of the bubbles is smaller than 0.1 ⁇ m, the impregnation property at the time of compounding with the reinforcing fiber may be insufficient, and if it is larger than 100 ⁇ m, the compounding with the reinforcing fiber does not occur uniformly. Instead, defects (air bubbles) may remain inside the reinforced fiber plastic.
  • a deformed fiber is preferably used, but the irregular non-circular cross section in the outer peripheral cross section of the deformed fiber is a shape in which the cross section shape is more disordered than a regular cross section such as an ellipse or a regular polygon. Is preferable. Since the cross-sectional shape of a normal synthetic fiber depends on the shape of the spinneret, it is generally a regular cross-section. This is because an irregular base shape increases the rate of yarn breakage during melt spinning. However, when the irregular shape of the cross section is regular, when the nonwoven fabric is formed, another fiber may be contained in the irregular shape portion of the fiber and packed tightly, and the voids may be reduced.
  • the mesh-like fiber of the present invention is different from the above, and is preferably a fiber having a cross-sectional shape that does not depend on the shape of the base.
  • the fibers constituting the thermoplastic resin sheet of the present invention are preferably deformed fibers obtained by slit spinning using a foaming agent, as will be described later, for example.
  • the end face angle of the hollow fiber used in the present invention is preferably less than 60 degrees, more preferably 1 to 55 degrees, and even more preferably 3 to 45 degrees.
  • This end face angle is obtained from the fiber cross-section photograph of the image obtained at a magnification of 100 times with a scanning electron microscope (SEM) as in the above-mentioned measurement of the hollow ratio, and is a straight line (length) connecting both ends of the fiber cross section.
  • a straight line (short axis) is defined at the thickest part in the direction orthogonal to the axis), and the long axis of the triangle connecting both ends of the short axis and the end of the long axis near the short axis.
  • the angle of the end was calculated and used as the end face angle.
  • the end face angle is less than 60 degrees, hollow fibers made of a thermoplastic resin easily penetrate between the reinforcing fibers, and it may be possible to secure higher impregnation property.
  • the degree of deformation is larger than 1 and 20 or less in the cross section of the single fiber. Further, the degree of deformation is preferably 2 to 10.
  • the degree of deformation of the cross-sectional shape of the fiber is a numerical value defined by the ratio D1 / D2 of the circumscribed circle diameter D1 and the inscribed circle diameter D2 of the cross section of the single fiber shown in FIG.
  • this degree of atypia is obtained from the fiber cross-sectional photograph of the image obtained at a magnification of 100 times with a scanning electron microscope (SEM) as in the measurement of the hollowness ratio and the like, and is obtained in the transverse cross section.
  • the diameter D1 of the extrinsic circle and the diameter D2 of the inscribed circle are measured, and the ratio (D1 / D2) is calculated as the degree of atypia.
  • the ratio (D1 / D2) is calculated as the degree of atypia.
  • the value of this atypia is large, hollow fibers made of a thermoplastic resin easily penetrate between the reinforcing fibers, and it becomes possible to secure higher impregnation property.
  • thermoplastic resin to which a foaming agent is added is extruded from a slit die and molded.
  • the thermoplastic resin discharged from the slit die becomes a thin sheet, but since the foaming agent is added to the thermoplastic resin used in the present invention, the resin is discharged from the slit die.
  • a mesh-like sheet is formed by foaming inside and allowing air bubbles to pass to the outside of the thin sheet.
  • each fiber constituting the mesh-like sheet becomes a deformed fiber.
  • the bubbles staying inside the resin without going out form voids inside the deformed fiber.
  • FIG. 1 is a schematic diagram thereof.
  • the thermoplastic resin contains a foaming agent, but the foaming agent is a foamable substance and may be a substance that becomes a gas when the molten resin is extruded from the slit die. It's fine.
  • This foaming agent is not necessarily a substance that foams by itself, and the resin itself may also serve as a foaming agent having the property of generating such a gas, or may be a substance that helps to generate a gas. ..
  • Specific methods for obtaining a mesh fiber sheet include, for example, a method of kneading a substance such as an inert gas that is a gas at room temperature such as nitrogen gas and carbon dioxide gas into a molten thermoplastic resin, and a method of kneading a substance such as water at room temperature.
  • a method of kneading a substance that becomes a gas at the melting temperature of the thermoplastic resin with the molten thermoplastic resin for example, a method of kneading a substance that generates a gas by decomposition such as a diazo compound or sodium carbonate with the molten thermoplastic resin.
  • thermoplastic resin such as polycarbonate (for example, polyester or polyamide) to generate a gas with such a molten thermoplastic resin
  • a method of kneading a polymer that reacts with a part of a molten thermoplastic resin such as polycarbonate (for example, polyester or polyamide) to generate a gas with such a molten thermoplastic resin can be adopted.
  • thermoplastic resin when the thermoplastic resin is extruded from the slit die in a molten state, gas may be generated from the die together with the resin, and the various foamable substances and the thermoplastic resin described above are the slit die. It is preferably well kneaded before being extruded from. If this kneading is not sufficient, it may be difficult to obtain a mesh-like fiber sheet or deformed fiber having uniform and desired physical properties.
  • the foaming agent for this purpose is particularly suitable to be an inert gas.
  • an inert gas When an inert gas is used, the inert gas dissolves in the thermoplastic resin in a small amount under the conditions of high temperature and high pressure during melt spinning. Then, when the gas is extruded from the slit die, a large number of minute bubbles are generated, especially when the inert gas is used.
  • discontinuous bubbles can be stably generated inside the deformed fiber by the generation of bubbles during the spinning process and further by the elution of the dissolved inert gas. ..
  • the resin discharged from the die is cooled quickly.
  • This cooling is also a factor that determines the size of the mesh at the mesh fiber sheet stage and the fiber diameter and shape of the finally obtained deformed fiber, so it is desirable to manage it sufficiently. For example, when it is desired to produce a mesh-like fiber sheet having a large fiber diameter and a large mesh, cooling may be reduced. If the fiber diameter is small and the mesh is thin, the reverse is recommended.
  • the air cooling method is preferable for this cooling, and the mesh and fiber diameter are adjusted by changing the air volume, but a liquid such as water or contact with a cooled solid is used. Is also possible.
  • thermoplastic resin is extruded from the slit die together with the foaming agent in a molten state, and then the discharged resin is taken up at a sufficient speed. If the take-up speed is not sufficient, the strength of the mesh-like fiber sheet or the deformed fiber obtained may be weakened, or in an extreme case, a large hole may be formed in the sheet, and a uniform deformed fiber may not be obtained.
  • the guideline for the pick-up speed is expressed by the draft rate, and is usually 10 times or more, preferably 20 to 400 times. Further, it is preferable that the draft rate is 300 times or less, particularly 20 to 200 times.
  • the draft rate used here is expressed by the ratio of the take-up speed to the linear speed of the resin passing through the die.
  • one method of adjusting the mesh size of the mesh-like fiber sheet used in the present invention and the fiber diameter of the deformed fiber is to change the melt viscosity of the resin.
  • a method of changing the melt viscosity for example, there are a method of changing the temperature condition, a method of changing the degree of polymerization of the resin, a method of using a plasticizer, or a method of using a combination thereof, but the method of changing the temperature condition is the most important. Easy and preferable.
  • the degree of deformation, the hollow ratio, and the shape of the hollow voids of the above-mentioned deformed fibers can be adjusted by adjusting the amount of the foamable substance added in spinning, the temperature condition, the draft rate, and the like.
  • the deformed fiber of the present invention undergoes the state of the mesh-like fiber sheet as described above in the middle of its production.
  • the deformed fibers in the nonwoven fabric structure contain bubbles inside and the cross-sectional shape thereof is irregular and non-circular.
  • such deformed fibers usually have low strength, and it is very difficult to produce them in an industrially stable manner.
  • high-strength deformed fibers with less yarn breakage can be stably produced.
  • the spreading step means a step of stretching the mesh-like fiber sheet in the horizontal direction to expand the mesh.
  • Specific methods include, for example, a method of expanding the mesh fiber sheet in the horizontal direction while grasping both ends thereof, and a method of expanding the mesh fiber sheet extruded from the circular slit in the diameter direction of the slit. .. In particular, a method of stacking a large number of sheets and expanding them in the horizontal direction while grasping both ends thereof is preferable.
  • the method of expanding in the horizontal direction may be any method such as a method of grasping and expanding only both ends, a method of dividing into several zones in the width direction and expanding each zone, and other methods.
  • the above-mentioned spreading it may be carried out as it is on one mesh fiber sheet, or two or more sheets may be laminated.
  • the number of sheets is preferably 2 to 2000, preferably 10 to 1000.
  • the mesh-like fiber sheets to be laminated may be of the same type, or a plurality of mesh-like fiber sheets made of different polymers may be laminated together.
  • the reinforcing fiber constituting the reinforcing fiber sheet used in the laminate of the present invention is preferably a reinforcing fiber having a heat resistance of 350 ° C. or higher.
  • inorganic fibers such as high-strength carbon fibers, glass fibers, and metal fibers, and organic synthetic fibers such as aromatic polyamide fibers can be used. Further, these may be used alone or in combination of two or more.
  • the metal fiber include stainless steel fiber, which is preferable in terms of conductivity and mechanical properties.
  • the surface of the reinforcing fiber may be coated with a metal or the like or vapor-filmed.
  • nickel-coated carbon fiber is preferred in terms of conductivity.
  • carbon fibers and glass fibers having high strength and high elasticity are preferable, and carbon fibers, more specifically polyacrylonitrile (PAN) type, petroleum / coal pitch type, are used to obtain a highly rigid laminate.
  • PAN-based carbon fiber made from PAN is preferable because it is excellent in productivity and mechanical properties on an industrial scale.
  • the reinforcing fiber used in the present invention may have a fiber shape long in one direction, and is a concept including not only general fibers and filaments but also so-called whiskers and the like.
  • examples of reinforcing fibers preferably used in the present invention are glass fibers, flat cross-section glass fibers, carbon fibers, metal fibers, asbestos, rock wool, ceramic fibers, slag fibers, potassium titanate whisker, and boron whisker.
  • inorganic fillers such as sepiolite, aramid fiber, polyimide fiber, PBO (polyparaphenylene benz)
  • heat-resistant organic fibers typified by heat-resistant organic fibers such as oxazole) fibers and polybenzthiazole fibers, and fibers in which a different material such as a metal or a metal oxide is surface-coated on these fibers.
  • a fibrous form is sufficient, and examples thereof include metal-coated glass fiber, metal-coated glass flake, titanium oxide-coated glass flake, and metal-coated carbon fiber.
  • the method of surface coating of different materials is not particularly limited, and for example, various known plating methods (for example, electrolytic plating, electroless plating, hot-dip plating, etc.), vacuum vapor deposition method, ion plating method, CVD method (for example). For example, thermal CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method and the like can be mentioned.
  • reinforcing fibers one selected from glass fiber, carbon fiber and aramid fiber is preferable, and at least one selected from carbon fiber and glass fiber is more preferable. Further, as these reinforcing fibers for reinforcement, only one kind may be used, or a plurality of kinds may be used.
  • the thickness of the reinforcing fiber so-called fineness, it is preferable to use one having an average diameter of 3 to 20 ⁇ m, and further preferably 5 to 15 ⁇ m. In such a range, not only the physical characteristics of the fiber are high, but also the dispersibility in the thermoplastic resin that finally becomes the matrix is excellent. Further, from the viewpoint of productivity, it is also preferable that the reinforcing fiber is a fiber bundle of 1,000 to 50,000 single fibers.
  • the reinforcing fiber used in the laminate of the present invention preferably has a high strength in order to finally reinforce the resin, and the tensile strength of the fiber is 3500 MPa to 7000 MPa, and the modulus is It is preferably 220 GPa to 900 GPa. From the viewpoint of finally obtaining a high-strength molded product, carbon fiber is particularly preferable as the reinforcing fiber, and PAN-based carbon fiber is more preferable.
  • the surface of the carbon fiber is preferably oxidized for the purpose of increasing the compatibility with the matrix resin and improving the dispersibility of the polypropylene resin and the polycarbonate resin.
  • the mechanism is not yet clear, by oxidizing the surface of the carbon fiber, the polarity of the surface is improved, and the adhesion between the non-polar propylene resin and the carbon fiber is further lowered. As a result, it is considered that the adhesion to the polycarbonate resin having a relatively high polarity is improved.
  • the degree of oxidation treatment can be quantified by the surface oxygen concentration (O / C) on the carbon fiber.
  • the surface oxygen concentration (O / C) on the carbon fiber is the surface oxygen concentration (O / C) which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy. ) Is preferably 0.15 or more, more preferably 0.18 or more, and further preferably 0.2 or more. If the surface oxygen concentration is less than 0.15, the adhesion between the carbon fiber and the polycarbonate resin may be insufficient, which is not preferable.
  • the upper limit of the surface oxygen concentration is not particularly limited, but is generally preferably 0.5 or less from the viewpoint of the balance between the handleability and productivity of carbon fibers.
  • the oxidation treatment method is not particularly limited, and for example, (1) a method of treating carbon fibers with an acid or an alkali or a salt thereof, or an oxidizing gas, and (2) a carbon fiberizable fiber or a fibrous carbon filler.
  • a method of firing at a temperature of 700 ° C. or higher in the presence of an inert gas containing an oxygen-containing compound, and (3) a method of oxidizing carbon fibers and then heat-treating in the presence of an inert gas are preferably exemplified. Will be done.
  • the existing form of these reinforcing fibers in the laminate either long fiber or short fiber can be used.
  • the resin it is preferable to have a long fiber shape, and conversely, from the viewpoint of making the physical properties of the obtained complex isotropic, it is preferable to have a structure mainly composed of short fibers.
  • the short fiber means a discontinuous fiber that is not a long fiber.
  • the reinforcing fiber sheet is a fiber aggregate or a non-woven fabric in which the orientation of the fibers is randomized in advance.
  • the reinforcing fiber When the reinforcing fiber is used as a short fiber (discontinuous fiber), its length is preferably 300 ⁇ m or more, more preferably 3 mm or more, further preferably 6 mm or more, and further preferably 20 mm. The above is the most preferable.
  • a staple fiber When used as a staple fiber, it is preferably 100 mm or less, more preferably 80 mm or less, and particularly preferably 60 mm or less. When such a fiber is used as a non-woven fabric shape, anisotropy with respect to strength and dimensions is improved.
  • the reinforcing fiber when used as a long fiber, it can be used in various forms such as a unidirectional sheet, a woven fabric, a knitted fabric, and a braid. However, from the viewpoint of reinforcing the strength of the finally obtained complex, it is preferable to use it as a unidirectional sheet (so-called UD sheet). Alternatively, it is preferable that part or all of the reinforcing fibers are unidirectional fiber sheets or unidirectional tapes, and these are partially used. As a particularly preferable form when used as a long fiber, a woven fabric having two or three axes is also preferable. Further, as these fiber forms, it is also possible to partially use one kind or a combination of two or more kinds of forms.
  • the content of the reinforcing fiber constituting the reinforcing fiber sheet used in the present invention is 151 to 900 parts by weight, preferably 300 to 800 parts by weight, based on 100 parts by weight of the total of the A component and the B component. It is more preferably 400 to 700 parts by weight, still more preferably 550 to 650 parts by weight. If the content of the reinforcing fibers is less than 151 parts by weight, the strength of the fiber-reinforced resin composite is not sufficiently exhibited, and if it exceeds 900 parts by weight, many slips of the reinforcing fibers occur and the strength becomes non-uniform.
  • thermoplastic resin sheet and the reinforcing fiber sheet are superposed, and the temperature is equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet, and the reinforcing fiber sheet is formed.
  • a fiber-reinforced resin composite can be obtained by pressure-treating at a temperature lower than the heat-resistant temperature of the fiber.
  • the weight ratio of the thermoplastic resin sheet to the reinforcing fiber sheet is preferably in the range of 45:55 to 20:80, and more preferably in the range of 35:65 to 25:75.
  • the thickness is preferably 0.05 to 0.5 mm when the thickness is measured under the condition of a load of 1.25 N / cm 2 using a peacock with a stylus having a diameter of 8 mm. , 0.1 to 0.3 mm is more preferable, and the texture is preferably in the range of 2 to 100 g / m 2 .
  • the reinforcing fiber sheet preferably has a thickness of 0.05 to 1.0 mm and a basis weight of 100 to 2000 g / m 2 .
  • the laminate of the present invention is a stack of a plurality of such thin thermoplastic resin sheets and reinforcing fiber sheets, and the stacking method is that they are alternately arranged. It is preferable to arrange a thermoplastic resin sheet on the surface.
  • the number of reinforcing fiber sheets is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 to 2.
  • FIG. 4 shows a schematic cross-sectional view of the laminated body of the present invention.
  • reference numeral 5 is a thermoplastic resin sheet layer
  • reference numeral 6 is a reinforcing fiber sheet layer.
  • the fiber-reinforced resin composite of the present invention comprises the above-mentioned laminate of the present invention.
  • the fiber-reinforced resin composite of the present invention is obtained by pressure-treating a laminated body, and has a structure in which reinforcing fiber sheets are laminated via a thermoplastic resin sheet. A part of the thermoplastic resin sheet of the laminated body is impregnated with the reinforcing fiber sheet, but basically has the same cross-sectional shape as the laminated body.
  • FIG. 5 shows a schematic cross-sectional view of the fiber reinforced resin complex of the present invention.
  • reference numeral 5 is a thermoplastic resin sheet layer
  • reference numeral 6 is a reinforcing fiber sheet layer.
  • the above-mentioned laminate is pressure-treated at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet and lower than the heat resistant temperature of the reinforcing fiber constituting the reinforcing fiber sheet. Can be manufactured.
  • the reinforcing fiber is surrounded by the thermoplastic resin, but it is preferable that there are no voids in order to improve the physical properties of the complex.
  • the temperature of the pressurizing treatment depends on the thermoplastic resin used, but is preferably in the range of 200 to 340 ° C., more preferably 240 to 330 ° C.
  • the treatment time is preferably about 1 to 30 minutes, more preferably about 1 to 10 minutes, and particularly preferably in the range of 3 to 10 minutes.
  • the press pressure during processing is preferably in the range of 2 to 30 MPa, more preferably 5 to 20 MPa.
  • each measurement item in an Example was measured by the following method.
  • the degree of deformation was expressed by the average value of the degree of deformation for 20 fibers.
  • the size of the bubbles counts larger than the diameter of the reinforcing fibers, and if the number is 3 or less, the impregnation property of the resin into the reinforcing fibers is good.
  • (II-3) Bending elastic modulus The laminates obtained in Examples and Comparative Examples are inserted into a preheated hot press, and the fibers are subjected to the conditions (temperature, press time, press pressure) shown in Tables 3 to 5. A reinforced resin composite was obtained. From the obtained fiber-reinforced resin composite, a size of 80 mm in length and 10 mm in width was cut out as a sample piece, and the flexural modulus was measured in accordance with ISO178 (measurement conditions: test speed 2 mm / min, test temperature 23 ° C.).
  • Fibers are partially unevenly laminated, but do not affect the surface appearance.
  • C component modified polyolefin resin
  • C-1 Maleic anhydride-modified polypropylene resin [manufactured by Mitsubishi Chemical Corporation, "SCONA TPPP 9212GA” (product name)]
  • C-2 Acid-modified olefin wax which is a copolymer of maleic anhydride and ⁇ -olefin ["Diacarna DC30M” (product name) manufactured by Mitsubishi Chemical Corporation]
  • D component styrene-based thermoplastic elastomer
  • D-1 Styrene-ethylene / propylene-styrene block copolymer [Styrene content: 65 wt%, MFR: 0.4 g / 10 min, Septon 2104 manufactured by Kuraray Co., Ltd.
  • the laminate was inserted into a preheated hot press to obtain a fiber reinforced resin composite (FRP molded product) under the press conditions (temperature, press time, press pressure) shown in Tables 2 and 3.
  • the press conditions temperature, press time, press pressure
  • the evaluation of the finally obtained fiber reinforced resin composite is shown in Tables 2 and 3.

Abstract

The present invention provides a laminate having exceptional adhesion with respect to reinforcing fibers, as well as exceptional rigidity, strength, and external appearance. The present invention is a laminate of a strengthening fiber sheet and a thermoplastic resin sheet, wherein the laminate is characterized in that the thermoplastic resin sheet is formed from a resin composition containing 0.1-900 parts by weight of (C) a modified polyolefin resin (C component) per 100 parts by weight of a resin component comprising 1-99 parts by weight of (A) a polypropylene resin (A component) and 1-99 parts by weight of (B) a polycarbonate resin (B component), and the strengthening fiber content for strengthening fibers constituting the strengthening fiber sheet is 151-900 parts by weight per 100 parts by weight of the resin component comprising the A component and the B component.

Description

積層体およびそれからなる繊維強化樹脂複合体ならびに繊維強化樹脂複合体の製造方法A method for producing a laminate, a fiber-reinforced resin composite composed of the laminate, and a fiber-reinforced resin composite.
 本発明は、積層体およびそれからなる繊維強化樹脂複合体ならびに繊維強化樹脂複合体の製造方法に関する。さらに詳しくは、剛性、強度、低比重性および外観に優れ、電気・電子部品、家庭電化製品、自動車関連部品、インフラ関連部品、住設関連部品等に好適な積層体およびそれからなる繊維強化樹脂複合体ならびに繊維強化樹脂複合体の製造方法に関する。 The present invention relates to a laminate, a fiber-reinforced resin composite composed of the laminate, and a method for producing the fiber-reinforced resin composite. More specifically, it is excellent in rigidity, strength, low specific gravity and appearance, and is suitable for electric / electronic parts, home electric appliances, automobile-related parts, infrastructure-related parts, housing-related parts, etc. The present invention relates to a body and a method for producing a fiber-reinforced resin composite.
 繊維強化樹脂複合体は、その軽量性や高い物性から、自動車、航空機部材や一般工業用材料その他の幅広い分野に用いられている。そしてこれらの複合体は、力学特性に加え表面外観品位などが要求されるため、強化繊維に十分に樹脂を含浸させ、ボイドなども低減する必要がある。 Fiber reinforced resin composites are used in a wide range of fields such as automobiles, aircraft parts, general industrial materials, etc. due to their light weight and high physical characteristics. Since these complexes are required to have surface appearance quality in addition to mechanical properties, it is necessary to sufficiently impregnate the reinforcing fibers with a resin and reduce voids and the like.
 強化繊維に樹脂を充分に含浸させる上で、これまでマトリックス樹脂として熱硬化性樹脂が用いられてきた。一方、熱可塑性樹脂は、価格が安く熱硬化性樹脂に比べ、耐衝撃性、耐熱特性、リサイクル性が優れているものの、強化繊維への含浸が難しいこと、熱硬化性樹脂に比べ、高温高圧成形が必要であることなどの問題点を抱えているため、未だ広く使われていない。 Thermosetting resin has been used as a matrix resin to sufficiently impregnate the reinforcing fiber with resin. On the other hand, thermoplastic resins are cheaper and have better impact resistance, heat resistance characteristics, and recyclability than thermosetting resins, but they are difficult to impregnate into reinforced fibers, and they are higher in temperature and pressure than thermosetting resins. It has not been widely used yet due to problems such as the need for molding.
 ポリプロピレン樹脂は、成形加工性、耐薬品性に優れ、しかも低比重であることから、電気・電子部品、家庭電化製品、ハウジング、包装材料、自動車部品など、工業的に幅広く用いられている。さらに近年、自動車軽量化の要望から、バンパー、内外装部品などの自動車用途にも幅広く用いられている。そのためポリプロピレン樹脂をマトリックス樹脂とした繊維強化樹脂複合体は、軽量性、剛性、強度を兼ね備えた素材になりうるとして、これまで様々な検討がなされている。しかしながらポリプロピレン樹脂は、炭素繊維との接着性が良くないため、単に両者を積層したのみでは十分な力学的物性が得られない。繊維長0.1~6mm程度の炭素繊維チョップドストランドと、ポリプロピレン樹脂の接着性を改良するために、無水マレイン酸等の酸無水物をグラフトした変性ポリプロピレンを配合した組成物が提案されている。(特許文献1、2)。またウレタン変性エポキシ樹脂とエポキシ樹脂とを主成分とする、炭素繊維束に用いるサイジング剤が提案されている(特許文献3)。また、繊維長1~6mm程度の炭素繊維とポリプロピレン樹脂の接着性を改良するために、重合体鎖に結合したカルボン酸塩を含むポリプロピレン樹脂を用いることが提案されている(特許文献4)。 Polypropylene resin has excellent molding processability and chemical resistance, and has a low specific gravity, so it is widely used industrially in electrical and electronic parts, home appliances, housings, packaging materials, automobile parts, and the like. Furthermore, in recent years, due to the demand for weight reduction of automobiles, it is widely used for automobile applications such as bumpers and interior / exterior parts. Therefore, various studies have been made so far, considering that a fiber-reinforced resin complex using polypropylene resin as a matrix resin can be a material having lightness, rigidity, and strength. However, since polypropylene resin does not have good adhesiveness to carbon fibers, sufficient mechanical properties cannot be obtained simply by laminating both. A composition containing a carbon fiber chopped strand having a fiber length of about 0.1 to 6 mm and a modified polypropylene grafted with an acid anhydride such as maleic anhydride has been proposed in order to improve the adhesiveness of the polypropylene resin. (Patent Documents 1 and 2). Further, a sizing agent used for a carbon fiber bundle containing a urethane-modified epoxy resin and an epoxy resin as main components has been proposed (Patent Document 3). Further, in order to improve the adhesiveness between the carbon fiber having a fiber length of about 1 to 6 mm and the polypropylene resin, it has been proposed to use a polypropylene resin containing a carboxylate bonded to a polymer chain (Patent Document 4).
 これらの変性ポリオレフィンは、チョップドストランド状炭素繊維の表面上に存在するカルボン酸などの官能基と溶融混練時に反応し、炭素繊維の表面にポリオレフィンを化学結合させることによって、チョップドストランド状炭素繊維との接着性を向上させることが知られている。しかし、溶融混練を経由しないシート状炭素繊維との複合体形成においては、シート状炭素繊維との密着性が不十分であり、結果として力学的特性が不十分となるという問題があった。 These modified polyolefins react with functional groups such as carboxylic acid existing on the surface of the chopped strand-shaped carbon fiber during melt-kneading, and chemically bond the polyolefin to the surface of the carbon fiber to form a chopped strand-shaped carbon fiber. It is known to improve adhesion. However, in forming a complex with the sheet-shaped carbon fibers that does not go through melt-kneading, there is a problem that the adhesion to the sheet-shaped carbon fibers is insufficient, and as a result, the mechanical properties are insufficient.
 一方、寸法安定性が充分でないポリプロピレン樹脂に、寸法安定性を付与するために、寸法安定性に優れたポリカーボネート樹脂をブレンドし溶融混練することが提案されている。その際、ポリプロピレン樹脂とポリカーボネート樹脂との相溶性を改良するため、特定の表面性を有するカーボンミルドファイバーを含有させることが提案されている(特許文献5)。この提案によれば、カーボンミルドファイバーと樹脂成分との接着性は向上する。しかし、溶融混練を経由しないシート状炭素繊維との複合体形成においては、シート状炭素繊維との密着性が不十分であり、結果として力学的特性が不十分となるという問題があった。また、ポリプロピレン樹脂にポリカーボネート樹脂を添加することで、接着性を向上させている事が知られている(特許文献6)。しかし、金属及び熱硬化性CFRPが使用されている製品を代替し、用途拡大をするには、更なる強度、剛性及び高外観が求められている。 On the other hand, in order to impart dimensional stability to polypropylene resin having insufficient dimensional stability, it has been proposed to blend and melt-knead a polycarbonate resin having excellent dimensional stability. At that time, in order to improve the compatibility between the polypropylene resin and the polycarbonate resin, it has been proposed to contain carbon milled fiber having a specific surface property (Patent Document 5). According to this proposal, the adhesiveness between the carbon milled fiber and the resin component is improved. However, in forming a complex with the sheet-shaped carbon fibers that does not go through melt-kneading, there is a problem that the adhesion to the sheet-shaped carbon fibers is insufficient, and as a result, the mechanical properties are insufficient. Further, it is known that the adhesiveness is improved by adding the polycarbonate resin to the polypropylene resin (Patent Document 6). However, in order to replace products in which metals and thermosetting CFRP are used and expand their applications, further strength, rigidity and high appearance are required.
特開昭55-50041号公報Japanese Unexamined Patent Publication No. 55-50041 特開昭58-113239号公報Japanese Unexamined Patent Publication No. 58-11239 特開昭61-252371号公報Japanese Unexamined Patent Publication No. 61-252371 特開2010-150359号公報Japanese Unexamined Patent Publication No. 2010-150359 特開2016-222774号公報Japanese Unexamined Patent Publication No. 2016-22774 特許第6744414号公報Japanese Patent No. 6744414
 本発明の課題は、上記問題を解決し、熱可塑性樹脂と強化繊維との密着性に優れ、剛性、強度および外観に優れた積層体およびそれからなる繊維強化樹脂複合体を得ることにある。 An object of the present invention is to solve the above problems and to obtain a laminate having excellent adhesion between a thermoplastic resin and a reinforcing fiber and having excellent rigidity, strength and appearance, and a fiber reinforced resin composite composed of the laminate.
 本発明者らは、かかる課題を解決するため鋭意検討した結果、ポリプロピレン樹脂、ポリカーボネート樹脂および変性ポリオレフィン樹脂からなるポリプロピレン樹脂組成物からなる熱可塑性樹脂シートが、補強用繊維シートとの積層時に、非相溶による層状剥離や著しい物性低下を起こすことなく、剛性、強度および外観に優れた繊維強化樹脂複合体を得ることができることを見出し本発明に達した。 As a result of diligent studies to solve such a problem, the present inventors have found that a thermoplastic resin sheet made of a polypropylene resin composition composed of a polypropylene resin, a polycarbonate resin and a modified polyolefin resin is not formed when laminated with a reinforcing fiber sheet. We have found that it is possible to obtain a fiber-reinforced resin composite having excellent rigidity, strength and appearance without causing layered peeling or significant deterioration of physical properties due to compatibility, and have reached the present invention.
 すなわち本発明によれば、(1)補強用繊維シートと熱可塑性樹脂シートとの積層体であって、熱可塑性樹脂シートが、(A)ポリプロピレン樹脂(A成分)1~99重量部および(B)ポリカーボネート樹脂(B成分)99~1重量部からなる樹脂成分100重量部に対して(C)変性ポリオレフィン樹脂(C成分)を0.1~900重量部含有する樹脂組成物であり、かつ補強用繊維シートを構成する補強用繊維の含有量がA成分とB成分とからなる樹脂成分100重量部に対し151~900重量部であることを特徴とする積層体が提供される。
本発明のより好適な態様の一つは、(2)B成分が下記式〔1〕で表されるカーボネート構成単位を全カーボネート構成単位中1~100モル%含むポリカーボネート樹脂である上記構成(1)に記載の積層体である。
That is, according to the present invention, (1) a laminate of a reinforcing fiber sheet and a thermoplastic resin sheet, wherein the thermoplastic resin sheet is (A) 1 to 99 parts by weight of a polypropylene resin (A component) and (B). ) A resin composition containing 0.1 to 900 parts by weight of (C) modified polyolefin resin (C component) with respect to 100 parts by weight of the resin component consisting of 99 to 1 part by weight of the polycarbonate resin (B component) and reinforced. Provided is a laminate characterized in that the content of the reinforcing fiber constituting the fiber sheet is 151 to 900 parts by weight with respect to 100 parts by weight of the resin component composed of the A component and the B component.
One of the more preferable embodiments of the present invention is the above-mentioned configuration (1) in which (2) the B component is a polycarbonate resin containing 1 to 100 mol% of the carbonate constituent units represented by the following formula [1] in the total carbonate constituent units. ).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[上記一般式〔1〕において、RおよびRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基およびカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合は、それらは同一でも異なっていても良く、aおよいbは夫々1~4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。 [In the above general formula [1], R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms, respectively. 20 cycloalkyl groups, cycloalkoxy groups with 6 to 20 carbon atoms, alkenyl groups with 2 to 10 carbon atoms, aryl groups with 6 to 14 carbon atoms, aryloxy groups with 6 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having a number of 7 to 20 and an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. It may be different, where a and b are integers of 1 to 4, respectively, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula [2].
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17およびR18は各々独立に水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基および炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19およびR20は各々独立に水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基およびカルボキシル基からなる群から選ばれる基を表し、R21,R22,R23,R24,R25およびR26は各々独立に水素原子、炭素数1~12のアルキル基または炭素数6~12の置換若しくは無置換のアリール基であり、複数ある場合はそれらは同一でも異なっていても良く、cは1~10の整数、dは4~7の整数であり、eは自然数であり、fは0または自然数であり、e+fは150以下の自然数であり、Xは炭素数2~8の二価脂肪族基である。)]
 本発明のより好適な態様の一つは、(3)C成分が無水マレイン酸変性ポリプロピレンであることを特徴とする上記構成(1)または(2)に記載の積層体である。
(In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon atoms, respectively. Represents a group selected from the group consisting of an aryl group having a number of 6 to 14 and an aralkyl group having a carbon atom number of 7 to 20, and R 19 and R 20 independently represent a hydrogen atom, a halogen atom, and an alkyl having 1 to 18 carbon atoms. Group, alkoxy group with 1 to 10 carbon atoms, cycloalkyl group with 6 to 20 carbon atoms, cycloalkoxy group with 6 to 20 carbon atoms, alkenyl group with 2 to 10 carbon atoms, 6 to 14 carbon atoms A group consisting of an aryl group, an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. Represents a group selected from, and R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, or substituted or unsubstituted groups having 6 to 12 carbon atoms, respectively. If there are a plurality of aryl groups, they may be the same or different, c is an integer of 1 to 10, d is an integer of 4 to 7, e is a natural number, and f is 0 or a natural number. Yes, e + f is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)]
One of the more preferable embodiments of the present invention is the laminate according to the above configuration (1) or (2), wherein the component (3) C is maleic anhydride-modified polypropylene.
 本発明のより好適な態様の一つは、(4)熱可塑性樹脂シートを構成する樹脂組成物が、更に(D)スチレン系熱可塑性エラストマー(D成分)をA成分とB成分とからなる樹脂成分100重量部に対し1~20重量部含有することを特徴とする上記構成(1)~(3)のいずれかに記載の積層体である。 One of the more preferable embodiments of the present invention is a resin in which (4) the resin composition constituting the thermoplastic resin sheet further comprises (D) a styrene-based thermoplastic elastomer (component D) as a component A and a component B. The laminate according to any one of the above configurations (1) to (3), which is characterized by containing 1 to 20 parts by weight with respect to 100 parts by weight of the component.
 本発明のより好適な態様の一つは、(5)補強用繊維シートが、織編物、不織布、一方向性シートのいずれかである上記構成(1)~(4)のいずれかに記載の積層体である。 One of the more preferable embodiments of the present invention is described in any one of the above configurations (1) to (4), wherein the (5) reinforcing fiber sheet is any one of a woven or knitted fabric, a non-woven fabric, and a unidirectional sheet. It is a laminated body.
 本発明のより好適な態様の一つは、(6)補強用繊維シートを構成する繊維が、炭素繊維およびガラス繊維からなる群より選ばれる少なくとも一種の繊維である上記構成(1)~(5)のいずれかに記載の積層体である。 One of the more preferable embodiments of the present invention is the above-mentioned configurations (1) to (5), wherein the fibers constituting the reinforcing fiber sheet (6) are at least one fiber selected from the group consisting of carbon fibers and glass fibers. ) Is the laminated body described in any one of.
 本発明のより好適な態様の一つは、(7)補強用繊維シートを構成する繊維が、X線光電子分光法によって測定される繊維表面の酸素(O)と炭素(C)との原子数の比である表面酸素濃度(O/C)が0.15以上である炭素繊維である上記構成(6)に記載の積層体である。 One of the more preferable embodiments of the present invention is (7) the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy in the fiber constituting the reinforcing fiber sheet. The laminate according to the above configuration (6), which is a carbon fiber having a surface oxygen concentration (O / C) of 0.15 or more, which is the ratio of the above.
 本発明のより好適な態様の一つは、(8)熱可塑性樹脂シートが、網目状の中空繊維からなるものである上記構成(1)~(7)のいずれかに記載の積層体である。 One of the more preferable embodiments of the present invention is the laminate according to any one of the above configurations (1) to (7), wherein the (8) thermoplastic resin sheet is made of a mesh-like hollow fiber. ..
 本発明のより好適な態様の一つは、(9)上記構成(1)~(8)のいずれかに記載の積層体からなる繊維強化樹脂複合体である。 One of the more preferable embodiments of the present invention is (9) a fiber-reinforced resin complex composed of the laminate according to any one of the above configurations (1) to (8).
 本発明のより好適な態様の一つは、(10)上記構成(1)~(8)のいずれかに記載の積層体を、熱可塑性樹脂シートを構成する熱可塑性樹脂の溶融温度以上、補強用繊維シートを構成する補強用繊維の耐熱温度未満の温度で、加圧処理することを特徴とする繊維強化樹脂複合体の製造方法である。 One of the more preferable embodiments of the present invention is to reinforce (10) the laminate according to any one of the above configurations (1) to (8) at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet. This is a method for producing a fiber-reinforced resin composite, which comprises pressure-treating at a temperature lower than the heat-resistant temperature of the reinforcing fibers constituting the fiber sheet.
 本発明の積層体は、柔軟性が高く、金型等への追随性に優れた材料となる。また、この積層体を加熱加圧処理して得られる繊維強化樹脂複合体は、強度、剛性及び外観に優れ、電気・電子部品、家庭電化製品、自動車関連部品、インフラ関連部品、住設関連部品等に有用であり、その奏する産業上の効果は格別である。 The laminate of the present invention is a material having high flexibility and excellent followability to molds and the like. In addition, the fiber reinforced resin composite obtained by heat-pressurizing this laminate has excellent strength, rigidity and appearance, and is excellent in electric / electronic parts, household electrical appliances, automobile-related parts, infrastructure-related parts, and housing-related parts. It is useful for such purposes, and its industrial effect is exceptional.
本発明で用いる中空繊維の断面図の模式図である。It is a schematic diagram of the sectional view of the hollow fiber used in this invention. 本発明で用いる中空繊維の断面図を電子顕微鏡にて撮影したものである。A cross-sectional view of the hollow fiber used in the present invention is taken with an electron microscope. 本発明で用いる中空繊維の異型度の測定方法を示す概略図である。It is a schematic diagram which shows the measuring method of the atypia of the hollow fiber used in this invention. 本発明の積層体の断面図の模式図である。It is a schematic diagram of the sectional view of the laminated body of this invention. 本発明の繊維強化樹脂複合体の断面図の模式図である。It is a schematic diagram of the sectional view of the fiber reinforced resin composite of this invention.
 以下、本発明について具体的に説明する。
<積層体>
(A成分:ポリプロピレン樹脂)
 本発明における熱可塑性樹脂シートを構成するポリプロピレン樹脂組成物のA成分として用いられるポリプロピレン樹脂は、プロピレンの重合体であるが、本発明においては、他のモノマーとの共重合体も含む。本発明のポリプロピレン樹脂の例には、ホモポリプロピレン樹脂がある。またプロピレンとエチレンとのブロック共重合体や、プロピレンと炭素数4~10のα-オレフィンとのブロック共重合体(「ブロックポリプロピレン」ともいう)、プロピレンとエチレンとのランダム共重合体や、プロピレンと炭素数4~10のα-オレフィンとのランダム共重合体(「ランダムポリプロピレン」ともいう)が含まれる。なお、「ブロックポリプロピレン」と「ランダムポリプロピレン」を合わせて、「ポリプロピレン共重合体」ともいう。
Hereinafter, the present invention will be specifically described.
<Laminated body>
(Component A: polypropylene resin)
The polypropylene resin used as the component A of the polypropylene resin composition constituting the thermoplastic resin sheet in the present invention is a polymer of propylene, but in the present invention, a copolymer with other monomers is also included. An example of the polypropylene resin of the present invention is a homopolypropylene resin. Further, a block copolymer of propylene and ethylene, a block copolymer of propylene and an α-olefin having 4 to 10 carbon atoms (also referred to as “block polypropylene”), a random copolymer of propylene and ethylene, and propylene. It contains a random copolymer (also referred to as "random polypropylene") of α-olefin having 4 to 10 carbon atoms. In addition, "block polypropylene" and "random polypropylene" are collectively referred to as "polypropylene copolymer".
 本発明においては、ポリプロピレン樹脂として上記のホモポリプロピレン樹脂、ブロックポリプロピレン、ランダムポリプロピレンの1種あるいは2種以上を使用してよく、中でもホモポリプロピレン、ブロックポリプロピレンが好ましい。なお、ポリプロピレン樹脂にはC成分である変性ポリプロピレン樹脂は含まれない。 In the present invention, one or more of the above-mentioned homopolypropylene resin, block polypropylene, and random polypropylene may be used as the polypropylene resin, and homopolypropylene and block polypropylene are preferable. The polypropylene resin does not contain the modified polypropylene resin which is the C component.
 ポリプロピレン共重合体に用いられる炭素数4~10のα-オレフィンの例には、1-ブテン、1-ペンテン、イソブチレン、3-メチル-1-ブテン、1-ヘキセン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセンが含まれる。 Examples of α-olefins having 4 to 10 carbon atoms used in polypropylene copolymers include 1-butene, 1-pentene, isobutylene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1. -Butene, 1-heptene, 3-methyl-1-hexene are included.
 ポリプロピレン共重合体中のエチレンの含有量は、全モノマー中、5重量%以下であることが好ましい。ポリプロピレン共重合体中の炭素数4~10のα-オレフィンの含有量は、全モノマー中20重量%以下であることが好ましい。 The ethylene content in the polypropylene copolymer is preferably 5% by weight or less in all the monomers. The content of the α-olefin having 4 to 10 carbon atoms in the polypropylene copolymer is preferably 20% by weight or less in the total monomer.
 ポリプロピレン共重合体は、プロピレンとエチレンとの共重合体、またはプロピレンと1-ブテンとの共重合体であることが好ましく、特にプロピレンとエチレンとの共重合体が好ましい。 The polypropylene copolymer is preferably a copolymer of propylene and ethylene, or a copolymer of propylene and 1-butene, and particularly preferably a copolymer of propylene and ethylene.
 本発明におけるポリプロピレン樹脂のメルトフローレイト(230℃、2.16kg)は、0.1~5g/10minであることが好ましく、0.2~4g/10minであることがより好ましく、0.3~3g/10minであることが特に好ましい。ポリプロピレン樹脂のメルトフローレイトが0.1g/10min未満では高粘度のため成形性に劣り、5g/10minを越えると十分な靭性が発現しない場合がある。なお、メルトフローレイトは「MFR」とも呼ばれる。MFRはISO1133に準拠して測定した。
(B成分:ポリカーボネート樹脂)
 熱可塑性樹脂シートを構成する樹脂組成物のB成分として用いられるポリカーボネート樹脂は、通常、ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものが挙げられる。その他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものが挙げられる。
The melt flow rate (230 ° C., 2.16 kg) of the polypropylene resin in the present invention is preferably 0.1 to 5 g / 10 min, more preferably 0.2 to 4 g / 10 min, and 0.3 to 0.3 to. It is particularly preferable that it is 3 g / 10 min. If the melt flow rate of the polypropylene resin is less than 0.1 g / 10 min, the moldability is poor due to the high viscosity, and if it exceeds 5 g / 10 min, sufficient toughness may not be exhibited. The melt flow rate is also called "MFR". MFR was measured according to ISO1133.
(B component: polycarbonate resin)
Examples of the polycarbonate resin used as the B component of the resin composition constituting the thermoplastic resin sheet include those obtained by reacting a dihydroxy compound and a carbonate precursor by an interfacial polycondensation method or a melt transesterification method. .. In addition, those obtained by polymerizing a carbonate prepolymer by a solid phase transesterification method or those obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method can be mentioned.
 ここで使用されるジヒドロキシ成分としては、通常、芳香族ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、ビスフェノール類でも脂肪族ジオール類でも良い。ビスフェノール類としては、下記式〔3〕で表されるビスフェノール類が好ましく用いられる。 The dihydroxy component used here may be any as long as it is usually used as the dihydroxy component of aromatic polycarbonate, and may be bisphenols or aliphatic diols. As the bisphenols, bisphenols represented by the following formula [3] are preferably used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[上記一般式〔3〕において、RおよびRは夫々独立して、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基およびカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合は、それらは同一でも異なっていても良く、aおよびbは夫々1~4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。 [In the above general formula [3], R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 carbon atoms. ~ 20 cycloalkyl groups, 6-20 carbon atoms cycloalkoxy groups, 2-10 carbon atoms alkenyl groups, 6-14 carbon atoms aryl groups, 6-14 carbon atoms aryloxy groups, carbon Represents a group selected from the group consisting of an aralkyl group having 7 to 20 atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group, and if there are a plurality of each, they are the same. However, they may be different, and a and b are integers of 1 to 4, respectively, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula [2].
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17およびR18は各々独立に、水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基および炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19およびR20は各々独立に、水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基およびカルボキシル基からなる群から選ばれる基を表し、R21,R22,R23,R24,R25およびR26は各々独立に、水素原子、炭素数1~12のアルキル基または炭素数6~12の置換若しくは無置換のアリール基であり、複数ある場合は、それらは同一でも異なっていても良く、cは1~10の整数、dは4~7の整数であり、eは自然数であり、fは0または自然数であり、e+fは150以下の自然数であり、Xは炭素数2~8の二価脂肪族基である。)]
 ビスフェノール類の具体例としては、例えば4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。
(In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon. Represents a group selected from the group consisting of an aryl group having 6 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 independently represent hydrogen atoms, halogen atoms, and carbon atoms 1 to 18 respectively. Alkyl group, alkoxy group with 1 to 10 carbon atoms, cycloalkyl group with 6 to 20 carbon atoms, cycloalkoxy group with 6 to 20 carbon atoms, alkenyl group with 2 to 10 carbon atoms, 6 carbon atoms From an aryl group of up to 14; an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. Represents a group selected from the group consisting of, R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are each independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms. Alternatively, it is an unsubstituted aryl group, and if there are a plurality of them, they may be the same or different, c is an integer of 1 to 10, d is an integer of 4 to 7, e is a natural number, and f is a natural number. It is 0 or a natural number, e + f is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)]
Specific examples of bisphenols include, for example, 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl). -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) -3, 3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3) -T-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4- Hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl) -4-Hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 4,4'-dihydroxydiphenylether, 4,4'-dihydroxy-3,3'-dimethyldiphenyle -Tell, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenylsulfooxide, 4,4'-dihydroxydiphenylsulfide, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 4,4'-Dihydroxy-3,3'-dimethyldiphenylsulfoxide,4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide,2,2'-diphenyl-4,4'-sulfonyldiphenol,4,4'-dihydroxy-3,3'-diphenyldiphenylsulfoxide,4,4'-dihydroxy-3,3'-diphenyldiphenylsulfide, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis { 2- (4-Hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydroxyphenyl) cyclo Hexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4'-(1,3-_) Adamantane diyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantan and the like can be mentioned.
 脂肪族ジオール類としては、例えば2,2-ビス-(4-ヒドロキシシクロヘキシル)-プロパン、1,14-テトラデカンジオール、オクタエチレングリコール、1,16-ヘキサデカンジオール、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、ビス{(2-ヒドロキシエトキシ)フェニル}メタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}エタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-1-フェニルエタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-メチルフェニル}プロパン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}-3,3,5-トリメチルシクロヘキサン、2,2-ビス{4-(2-ヒドロキシエトキシ)-3,3’-ビフェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)-3-イソプロピルフェニル}プロパン、2,2-ビス{3-t-ブチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}ブタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}-4-メチルペンタン、2,2-ビス{(2-ヒドロキシエトキシ)フェニル}オクタン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}デカン、2,2-ビス{3-ブロモ-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3,5-ジメチル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、2,2-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}プロパン、1,1-ビス{3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2-ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9-ビス{(2-ヒドロキシエトキシ)フェニル}フルオレン、9,9-ビス{4-(2-ヒドロキシエトキシ)-3-メチルフェニル}フルオレン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1-ビス{(2-ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’-ビス(2-ヒドロキシエトキシ)ジフェニルエ-テル、4,4’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチルジフェニルエ-テル、1,3-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス[2-{(2-ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8-ビス{(2-ヒドロキシエトキシ)フェニル}トリシクロ[5.2.1.02,6]デカン、1,3-ビス{(2-ヒドロキシエトキシ)フェニル}-5,7-ジメチルアダマンタン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール(イソソルビド)、1,4:3,6-ジアンヒドロ-D-マンニトール(イソマンニド)、1,4:3,6-ジアンヒドロ-L-イジトール(イソイディッド)等が挙げられる。 Examples of the aliphatic diols include 2,2-bis- (4-hydroxycyclohexyl) -propane, 1,14-tetradecanediol, octaethyleneglycol, 1,16-hexadecanediol, and 4,4'-bis (2-). Hydroxyethoxy) biphenyl, bis {(2-hydroxyethoxy) phenyl} methane, 1,1-bis {(2-hydroxyethoxy) phenyl} ethane, 1,1-bis {(2-hydroxyethoxy) phenyl} -1- Phenylethane, 2,2-bis {(2-hydroxyethoxy) phenyl} propane, 2,2-bis {(2-hydroxyethoxy) -3-methylphenyl} propane, 1,1-bis {(2-hydroxyethoxy) ) Penyl} -3,3,5-trimethylcyclohexane, 2,2-bis {4- (2-hydroxyethoxy) -3,3'-biphenyl} propane, 2,2-bis {(2-hydroxyethoxy)- 3-Isopropyl} propane, 2,2-bis {3-t-butyl-4- (2-hydroxyethoxy) phenyl} propane, 2,2-bis {(2-hydroxyethoxy) phenyl} butane, 2,2 -Bis {(2-hydroxyethoxy) phenyl} -4-methylpentane, 2,2-bis {(2-hydroxyethoxy) phenyl} octane, 1,1-bis {(2-hydroxyethoxy) phenyl} decane, 2 , 2-bis {3-bromo-4- (2-hydroxyethoxy) phenyl} propane, 2,2-bis {3,5-dimethyl-4- (2-hydroxyethoxy) phenyl} propane, 2,2-bis {3-Cycloxy-4- (2-hydroxyethoxy) phenyl} propane, 1,1-bis {3-cyclohexyl-4- (2-hydroxyethoxy) phenyl} cyclohexane, bis {(2-hydroxyethoxy) phenyl} diphenylmethane , 9,9-bis {(2-hydroxyethoxy) phenyl} fluorene, 9,9-bis {4- (2-hydroxyethoxy) -3-methylphenyl} fluorene, 1,1-bis {(2-hydroxyethoxy) ) Benz} cyclohexane, 1,1-bis {(2-hydroxyethoxy) phenyl} cyclopentane, 4,4'-bis (2-hydroxyethoxy) diphenylether, 4,4'-bis (2-hydroxyethoxy) ) -3,3'-dimethyldiphenyl ether, 1,3-bis [2-{(2-hydroxyethoxy) phenyl} propyl] benzene, 1,4-bis [2-{(2-hydroxyethoxy) phenyl} propyl] benzene, 1,4-bis {(2-hydroxyethoxy) phenyl} cyclohexane, 1,3-bis {(2-hydroxyethoxy) phenyl } Cyclohexane, 4,8-bis {(2-hydroxyethoxy) phenyl} tricyclo [5.2.1.02,6] decane, 1,3-bis {(2-hydroxyethoxy) phenyl} -5,7- Dimethyladamantan, 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro (5,5) undecane, 1,4: 3,6-dianhydro-D -Sorbitol (isosorbide), 1,4: 3,6-dianhydro-D-mannitol (isomannide), 1,4: 3,6-dianhydro-L-iditol (isoidid) and the like can be mentioned.
 これらの中で芳香族ビスフェノール類が好ましく、なかでも1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、および1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましい。殊に、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-スルホニルジフェノールおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。 Among these, aromatic bisphenols are preferable, and among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4). -Hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-sulfonyl Diphenol, 2,2'-dimethyl-4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) Propyl} benzene and 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene are preferred. In particular, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-sulfonyldiphenol and 9,9-bis (4-hydroxy-3-). Methylphenyl) fluorene is preferred. Of these, 2,2-bis (4-hydroxyphenyl) propane, which has excellent strength and good durability, is most suitable. Moreover, these may be used individually or in combination of 2 or more types.
 本発明のB成分として使用されるポリカーボネート樹脂は、分岐化剤を上記のジヒドロキシ化合物と併用して分岐化ポリカーボネート樹脂としてもよい。 The polycarbonate resin used as the B component of the present invention may be a branched polycarbonate resin by using a branching agent in combination with the above dihydroxy compound.
 かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノールが挙げられる。また、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン等が挙げられる。また、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられる。中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。 Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglucolcin, fluoroglucolside, 4,6-dimethyl-2,4,6-tris (4-hydrochidiphenyl) heptene-2,2. 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane , 1,1,1-Tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [1 , 1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol and other trisphenols. Further, tetra (4-hydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene and the like can be mentioned. Examples thereof include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid and acid chlorides thereof. Of these, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable, and 1,1,1-tris (4-hydroxyphenyl) ethane is particularly preferable. Hydroxyphenyl) ethane is preferred.
 これらのポリカーボネート樹脂は、通常の芳香族ポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば、芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。 These polycarbonate resins are produced by a reaction method known per se for producing an ordinary aromatic polycarbonate resin, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene or carbonic acid diester. The basic means for the manufacturing method will be briefly described.
 カーボネート前駆物質として、例えば、ホスゲンを使用する反応では、通常、酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば、塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば、第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0~40℃であり、反応時間は数分~5時間である。カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は、生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。 In a reaction using, for example, phosgene as a carbonate precursor, the reaction is usually carried out in the presence of an acid binder and a solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. Further, for example, a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction. At that time, the reaction temperature is usually 0 to 40 ° C., and the reaction time is several minutes to 5 hours. The transesterification reaction using a carbonic acid diester as a carbonic acid precursor is carried out by a method of distilling off the produced alcohol or phenol by stirring a predetermined ratio of aromatic dihydroxy components with the carbonic acid diester while heating them in an inert gas atmosphere. .. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C. The reaction is completed by distilling off the produced alcohols or phenols under reduced pressure from the initial stage. It is also possible to use catalysts normally used in transesterification reactions to accelerate the reaction. Examples of the carbonic acid diester used in the transesterification reaction include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like. Of these, diphenyl carbonate is particularly preferable.
 重合反応においては末端停止剤を使用することがある。末端停止剤は分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記一般式〔4〕~〔6〕で表される単官能フェノール類を示すことができる。 A terminal inhibitor may be used in the polymerization reaction. The terminal terminator is used for molecular weight regulation, and the obtained polycarbonate resin has a closed end, so that it is superior in thermal stability as compared with the non-termination agent. As such a terminal terminator, monofunctional phenols represented by the following general formulas [4] to [6] can be shown.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、Aは水素原子、炭素数1~9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1~9)、フェニル基、またはフェニルアルキル基(アルキル部分の炭素数1~9)であり、rは1~5、好ましくは1~3の整数である。] [In the formula, A is a hydrogen atom, an alkyl group having 1 to 9 carbon atoms, an alkylphenyl group (the number of carbon atoms in the alkyl moiety is 1 to 9), a phenyl group, or a phenylalkyl group (the number of carbon atoms in the alkyl moiety is 1 to 9). R is an integer of 1 to 5, preferably 1 to 3. ]
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、Yは-R-O-、-R-CO-O-または-R-O-CO-である、ここでRは、単結合または炭素数1~10、好ましくは1~5の二価の脂肪族炭化水素基を示し、nは10~50の整数を示す。]
 上記一般式〔4〕で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p-tert-ブチルフェノール、p-クレゾール、p-クミルフェノール、2-フェニルフェノール、4-フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。
[In the formula, Y is -RO-, -R-CO-O- or -RO-CO-, where R is a single bond or 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms. It represents a divalent aliphatic hydrocarbon group, and n represents an integer of 10 to 50. ]
Specific examples of the monofunctional phenols represented by the above general formula [4] include, for example, phenol, isopropylphenol, p-tert-butylphenol, p-cresol, p-cumylphenol, 2-phenylphenol, 4-phenyl. Examples include phenol and isooctylphenol.
 また、上記一般式〔5〕~〔6〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。 Further, the monofunctional phenols represented by the above general formulas [5] to [6] are phenols having a long-chain alkyl group or an aliphatic ester group as a substituent, and these are used to end the polycarbonate resin. When sealed, they not only function as a terminal terminator or a molecular weight modifier, but also improve the melt fluidity of the resin, facilitate the molding process, and have the effect of lowering the water absorption rate of the resin, which is preferable. used.
 上記一般式〔5〕の置換フェノール類としては、nが10~30、特に10~26のものが好ましい。その具体例としては例えば、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。 As the substituted phenols of the above general formula [5], those having n of 10 to 30, particularly 10 to 26 are preferable. Specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, and triacylphenol.
 また、上記一般式〔6〕の置換フェノール類としては、Yが-R-CO-O-であり、Rが単結合である化合物が好ましく、nが10~30、特に10~26のものが好適である。その具体例としては例えば、ヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。 Further, as the substituted phenols of the above general formula [6], compounds in which Y is —R—CO—O— and R is a single bond are preferable, and n is 10 to 30, particularly 10 to 26. Suitable. Specific examples thereof include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eikosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate.
 これら単官能フェノール類の内、上記一般式〔4〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp-tert-ブチルフェノール、p-クミルフェノールまたは2-フェニルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。 Among these monofunctional phenols, monofunctional phenols represented by the above general formula [4] are preferable, alkyl-substituted or phenylalkyl-substituted phenols are more preferable, and p-tert-butylphenol and p are particularly preferable. -Kumilphenol or 2-phenylphenol. It is desirable that the terminal terminator of these monofunctional phenols be introduced into the terminal at least 5 mol%, preferably at least 10 mol% with respect to the total terminal of the obtained polycarbonate resin, and the terminal terminator is used alone. Or a mixture of two or more types may be used.
 本発明のB成分として用いられるポリカーボネート樹脂は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。 The polycarbonate resin used as the B component of the present invention may be a polyester carbonate obtained by copolymerizing an aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired. good.
 本発明のB成分として用いられるポリカーボネート樹脂の粘度平均分子量は、13,000~25,000の範囲が好ましく、13,000~21,000がより好ましく、16,000~21,000の範囲がさらにより好ましく、16,000~20,000の範囲が最も好ましい。分子量が25,000を越えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が13,000未満であると機械的強度に問題が生じる場合がある。なお、本発明でいう粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。 The viscosity average molecular weight of the polycarbonate resin used as the component B of the present invention is preferably in the range of 13,000 to 25,000, more preferably 13,000 to 21,000, and further preferably in the range of 16,000 to 21,000. More preferably, the range of 16,000 to 20,000 is most preferable. If the molecular weight exceeds 25,000, the melt viscosity may become too high and the moldability may be inferior, and if the molecular weight is less than 13,000, a problem may occur in mechanical strength. The viscosity average molecular weight referred to in the present invention was obtained by first determining the specific viscosity calculated by the following formula from a solution of 0.7 g of polycarbonate resin in 100 ml of methylene chloride using an Ostwald viscometer. The specific viscosity is inserted by the following formula to obtain the viscosity average molecular weight M.
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
 本発明のB成分として用いられるポリカーボネート樹脂は、樹脂中の全Cl(塩素)量が好ましくは0~200ppm、より好ましくは0~150ppmである。ポリカーボネート樹脂中の全Cl量が200ppmを越えると、色相および熱安定性が悪くなる場合があるので好ましくない。
Specific viscosity (η SP ) = (t-t 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
η SP / c = [η] +0.45 × [η] 2 c (however, [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 M 0.83
c = 0.7
The total amount of Cl (chlorine) in the polycarbonate resin used as the component B of the present invention is preferably 0 to 200 ppm, more preferably 0 to 150 ppm. If the total amount of Cl in the polycarbonate resin exceeds 200 ppm, the hue and thermal stability may deteriorate, which is not preferable.
 B成分の含有量は、A成分とB成分との合計100重量部中、99~1重量部であり、好ましくは50~5重量部、より好ましくは25~5重量部、最も好ましくは15~5重量部である。B成分が99重量部より多いと、繊維強化樹脂複合体とした時の外観改善が不十分となる。また、B成分が1重量部より少ないと、樹脂と強化繊維との密着性が低下し、繊維強化複合体としたときの強度が十分に発現せず、外観改善も不十分となる。
(C成分:変性ポリオレフィン樹脂)
 熱可塑性樹脂シートを構成する樹脂組成物は、相溶化剤として、変性ポリオレフィン樹脂を含有する。変性ポリオレフィン樹脂は、ポリプロピレン樹脂と強化繊維との界面密着性を向上させ、繊維強化樹脂複合体の強度を向上させる。
The content of the B component is 99 to 1 part by weight, preferably 50 to 5 parts by weight, more preferably 25 to 5 parts by weight, and most preferably 15 to 15 parts by weight in 100 parts by weight of the total of the A component and the B component. 5 parts by weight. If the B component is more than 99 parts by weight, the appearance improvement when the fiber reinforced resin composite is formed is insufficient. Further, when the B component is less than 1 part by weight, the adhesion between the resin and the reinforcing fiber is lowered, the strength of the fiber-reinforced composite is not sufficiently developed, and the appearance is not sufficiently improved.
(C component: modified polyolefin resin)
The resin composition constituting the thermoplastic resin sheet contains a modified polyolefin resin as a compatibilizer. The modified polyolefin resin improves the interfacial adhesion between the polypropylene resin and the reinforcing fiber, and improves the strength of the fiber-reinforced resin composite.
 変性ポリオレフィン樹脂は、不飽和カルボン酸またはその誘導体で変性された酸変性ポリオレフィン樹脂であることが好ましい。変性されたポリオレフィン樹脂としてはポリエチレン樹脂、ポリプロピレン樹脂等が挙げられ、ポリプロピレン樹脂が好ましい。なお変性ポリプロピレン樹脂には、プロピレン単独重合体、プロピレンランダム共重合体、プロピレンブロック共重合体等を含む。ポリオレフィン樹脂の変性には、グラフト変性や共重合化等の方法を使用することができる。 The modified polyolefin resin is preferably an acid-modified polyolefin resin modified with an unsaturated carboxylic acid or a derivative thereof. Examples of the modified polyolefin resin include polyethylene resin and polypropylene resin, and polypropylene resin is preferable. The modified polypropylene resin includes a propylene homopolymer, a propylene random copolymer, a propylene block copolymer and the like. For the modification of the polyolefin resin, a method such as graft modification or copolymerization can be used.
 ポリオレフィン樹脂を変性するために用いる不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、ナジック酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸等が挙げられる。また、その不飽和カルボン酸の誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等がある。例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ナジック酸、アクリル酸メチル、メタクル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N-ブチルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウム等が挙げられる。これらの中でも、不飽和ジカルボン酸およびその誘導体が好ましく、特に無水マレイン酸または無水フタル酸が好適である。 Examples of the unsaturated carboxylic acid used for modifying the polyolefin resin include acrylic acid, methacrylic acid, maleic acid, nadic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, sorbic acid, mesaconic acid, angelic acid and the like. Can be mentioned. Derivatives of the unsaturated carboxylic acid include acid anhydrides, esters, amides, imides, metal salts and the like. For example, maleic anhydride, itaconic anhydride, citraconic anhydride, nadic acid anhydride, methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, monoethyl maleic acid ester, acrylamide, maleic acid monoamide, maleimide, N- Examples thereof include butylmaleimide, sodium acrylate, sodium methacrylate and the like. Among these, unsaturated dicarboxylic acids and derivatives thereof are preferable, and maleic anhydride or phthalic anhydride is particularly preferable.
 変性ポリプロピレン樹脂の結晶化温度(Tc)は、好ましくは90~125℃、より好ましくは110~120℃である。極限粘度は、好ましくは0.1~2.4dl/g、好ましくは0.2~1.6dl/gである。変性ポリオレフィン樹脂の結晶化温度(Tc)は、示差走査熱量計(DSC)によって測定することができる。変性ポリオレフィン樹脂の極限粘度は、テトラリン中、135℃で測定することができる。変性ポリオレフィン樹脂のカルボン酸付加量は、0.1~14重量%の範囲であることが好ましく、0.8~8重量%の範囲であることがより好ましい。酸付加量は、酸変性ポリオレフィン樹脂のIRスペクトルを測定し、1670cm-1~1810cm-1のピークの面積から求めることができる。 The crystallization temperature (Tc) of the modified polypropylene resin is preferably 90 to 125 ° C, more preferably 110 to 120 ° C. The ultimate viscosity is preferably 0.1 to 2.4 dl / g, preferably 0.2 to 1.6 dl / g. The crystallization temperature (Tc) of the modified polyolefin resin can be measured by a differential scanning calorimeter (DSC). The ultimate viscosity of the modified polyolefin resin can be measured in tetralin at 135 ° C. The amount of carboxylic acid added to the modified polyolefin resin is preferably in the range of 0.1 to 14% by weight, more preferably in the range of 0.8 to 8% by weight. The acid addition amount can be determined from the area of the peak of 1670 cm -1 to 1810 cm -1 by measuring the IR spectrum of the acid-modified polyolefin resin.
 変性ポリオレフィン樹脂の含有量は、A成分とB成分との合計100重量部に対し、0.1~900重量部であり、好ましくは1~500重量部であり、より好ましくは5~300重量部であり、さらに好ましくは、50~150重量部である。変性ポリオレフィン樹脂の含有量が0.1重量部未満では繊維強化樹脂複合体の強度が向上せず、900重量部を超えるとシート加工性が悪化するため、繊維強化複合体としたときの強度が十分に発現せず、外観改善も不十分となる。
(D成分:スチレン系熱可塑性エラストマー)
 熱可塑性樹脂シートを構成する樹脂組成物には、更にスチレン系熱可塑性エラストマーを添加することができる。スチレン系熱可塑性エラストマーは、ポリプロピレン樹脂とポリカーボネート樹脂との相溶性を向上させ、繊維強化樹脂複合体の強度(曲げ弾性率、曲げ強度)を向上させる。
The content of the modified polyolefin resin is 0.1 to 900 parts by weight, preferably 1 to 500 parts by weight, and more preferably 5 to 300 parts by weight with respect to 100 parts by weight of the total of the components A and B. It is more preferably 50 to 150 parts by weight. If the content of the modified polyolefin resin is less than 0.1 parts by weight, the strength of the fiber reinforced resin composite does not improve, and if it exceeds 900 parts by weight, the sheet processability deteriorates. It is not sufficiently expressed and the appearance is not sufficiently improved.
(D component: styrene-based thermoplastic elastomer)
A styrene-based thermoplastic elastomer can be further added to the resin composition constituting the thermoplastic resin sheet. The styrene-based thermoplastic elastomer improves the compatibility between the polypropylene resin and the polycarbonate resin, and improves the strength (bending elastic modulus, bending strength) of the fiber-reinforced resin composite.
 スチレン系熱可塑性エラストマーとしては、スチレン-エチレン・ブチレン-スチレンブロック共重合体、スチレン-水添ブタジエン-スチレントリブロック共重合体、スチレン-イソプレン-スチレントリブロック共重合体、スチレン-水添イソプレン-スチレントリブロック共重合体、スチレン-水添ブタジエンジブロック共重合体、スチレン-水添イソプレンジブロック共重合体、スチレン-イソプレンジブロック共重合体等が挙げられ、その中でもスチレン-エチレン・ブチレン-スチレンブロック共重合体が最も好適である。 Examples of the styrene-based thermoplastic elastomer include styrene-ethylene-butylene-styrene block copolymer, styrene-hydrogenated butadiene-styrene triblock copolymer, styrene-isoprene-styrene triblock copolymer, and styrene-hydrogenated isoprene-. Examples thereof include styrene triblock copolymers, styrene-hydrogenated butadiene diblock copolymers, styrene-hydrogenated isoprange block copolymers, styrene-isopresend block copolymers, etc., among which styrene-ethylene-butylene- The styrene block copolymer is most suitable.
 また、下記式(I)または(II)で表されるブロック共重合体も好適に用いられる。
X-(Y-X)    …(I)
(X-Y)      …(II)
 一般式(I)および(II)におけるXはスチレン重合体ブロックで、式(I)においては分子鎖両末端で重合度が同じであってもよいし、異なっていてもよい。Yはイソプレン重合体ブロック、水添されたブタジエン重合体ブロックおよび水添されたイソプレン重合ブロックの中から選ばれた少なくとも1種である。また、nは1以上の整数である。
Further, a block copolymer represented by the following formula (I) or (II) is also preferably used.
X- (YX) n ... (I)
(XY) n ... (II)
X in the general formulas (I) and (II) is a styrene polymer block, and in the formula (I), the degree of polymerization may be the same or different at both ends of the molecular chain. Y is at least one selected from an isoprene polymer block, a hydrogenated butadiene polymer block and a hydrogenated isoprene polymer block. Further, n is an integer of 1 or more.
 前記ブロック共重合体におけるX成分の含有量は、好ましくは20~80重量%、より好ましくは25~70重量%の範囲にあることが望ましい。この量が20重量%未満では樹脂組成物の剛性が低下する傾向がある。また80重量%を超えると成形加工性および衝撃強度が低下する傾向がある。このようなブロック共重合体の具体例としては、スチレン-水添ブタジエン-スチレントリブロック共重合体、スチレン-イソプレン-スチレントリブロック共重合体、スチレン-水添イソプレン-スチレントリブロック共重合体、スチレン-水添ブタジエンジブロック共重合体、スチレン-水添イソプレンジブロック共重合体、スチレン-イソプレンジブロック共重合体などが挙げられる。 The content of the X component in the block copolymer is preferably in the range of 20 to 80% by weight, more preferably 25 to 70% by weight. If this amount is less than 20% by weight, the rigidity of the resin composition tends to decrease. Further, if it exceeds 80% by weight, the molding processability and the impact strength tend to decrease. Specific examples of such block copolymers include styrene-hydrogenated butadiene-styrene triblock copolymer, styrene-isoprene-styrene triblock copolymer, styrene-hydrogenated isoprene-styrene triblock copolymer, and the like. Examples thereof include a styrene-hydrogenated butadiene diblock copolymer, a styrene-hydrogenated isoprange block copolymer, and a styrene-isoprerange block copolymer.
 スチレン系熱可塑性エラストマーの重量平均分子量は、25万以下が好ましく、22万以下がより好ましく、20万以下がさらに好ましい。重量平均分子量が25万を超えると、成形加工性が低下し、ポリプロピレン樹脂への分散性も悪化する場合がある。また、重量平均分子量の下限については特に限定されないが、4万以上が好ましく、5万以上がより好ましい。なお、重量平均分子量は以下の方法で測定した。すなわち、ゲルパーミエーションクロマトグラフにより、ポリスチレン換算で分子量を測定し、重量平均分子量を算出する。 The weight average molecular weight of the styrene-based thermoplastic elastomer is preferably 250,000 or less, more preferably 220,000 or less, and even more preferably 200,000 or less. If the weight average molecular weight exceeds 250,000, the moldability is lowered and the dispersibility in the polypropylene resin may be deteriorated. The lower limit of the weight average molecular weight is not particularly limited, but is preferably 40,000 or more, and more preferably 50,000 or more. The weight average molecular weight was measured by the following method. That is, the molecular weight is measured in terms of polystyrene by a gel permeation chromatograph, and the weight average molecular weight is calculated.
 スチレン系熱可塑性エラストマーの含有量は、樹脂成分100重量部に対し、1~20重量部であることが好ましく、より好ましくは3~15重量部であり、さらに好ましくは5~13重量部、最も好ましくは5~10重量部である。スチレン系熱可塑性エラストマーの含有量が、1重量部未満では繊維強化樹脂複合体の強度が向上せず、20重量部を超えると繊維強化樹脂複合体の成形時にガスが発生し、成形加工性が低下してしまう場合がある。
(その他の成分)
 熱可塑性樹脂シートを構成する樹脂組成物には、本発明の効果を損なわない範囲で各種添加剤を配合することができる。かかる添加剤としては、リン系熱安定剤、フェノール系熱安定剤、イオウ含有酸化防止剤、離型剤、紫外線吸収剤、ヒンダードアミン系光安定剤、相溶化剤、難燃剤、染顔料などが挙げられる。以下これら添加剤について具体的に説明する。
(リン系熱安定剤)
 リン系熱安定剤としては、ホスファイト化合物、ホスホナイト化合物、およびホスフェート化合物のいずれも使用可能である。
The content of the styrene-based thermoplastic elastomer is preferably 1 to 20 parts by weight, more preferably 3 to 15 parts by weight, still more preferably 5 to 13 parts by weight, most preferably 5 to 13 parts by weight, based on 100 parts by weight of the resin component. It is preferably 5 to 10 parts by weight. If the content of the styrene-based thermoplastic elastomer is less than 1 part by weight, the strength of the fiber-reinforced resin composite does not improve, and if it exceeds 20 parts by weight, gas is generated during molding of the fiber-reinforced resin composite, and the molding processability is improved. It may decrease.
(Other ingredients)
Various additives can be added to the resin composition constituting the thermoplastic resin sheet as long as the effects of the present invention are not impaired. Examples of such additives include phosphorus-based heat stabilizers, phenol-based heat stabilizers, sulfur-containing antioxidants, mold release agents, ultraviolet absorbers, hindered amine-based light stabilizers, compatibilizers, flame retardants, dyes and pigments. Be done. Hereinafter, these additives will be specifically described.
(Phosphorus heat stabilizer)
As the phosphorus-based heat stabilizer, any of a phosphite compound, a phosphonite compound, and a phosphate compound can be used.
 ホスファイト化合物としては、さまざまなものを用いることができる。具体的には例えば下記一般式〔7〕で表わされるホスファイト化合物、下記一般式〔8〕で表わされるホスファイト化合物、および下記一般式〔9〕で表わされるホスファイト化合物を挙げることができる。 Various phosphite compounds can be used. Specific examples thereof include a phosphite compound represented by the following general formula [7], a phosphite compound represented by the following general formula [8], and a phosphite compound represented by the following general formula [9].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中R31は、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数6~20のアルカリール基、炭素数7~30のアラルキル基、またはこれらのハロ、アルキルチオ(アルキル基は炭素数1~30)またはヒドロキシ置換基を示し、3個のR31は互いに同一または互いに異なるいずれの場合も選択でき、また2価フェノール類から誘導されることにより環状構造も選択できる。] [In the formula, R 31 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkaline phenol group having 6 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or these. It represents a halo, an alkylthio (alkyl group has 1 to 30 carbon atoms) or a hydroxy substituent, and the three R 31s can be selected either identically or differently from each other, and are cyclic by being derived from divalent phenols. You can also choose the structure. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中R32、R33はそれぞれ、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数6~20のアルキルアリール基、炭素数7~30のアラルキル基、炭素数4~20のシクロアルキル基、炭素数15~25の2-(4-オキシフェニル)プロピル置換アリール基を示す。なお、シクロアルキル基およびアリール基は、アルキル基で置換されていないもの、またはアルキル基で置換されているもののいずれも選択できる。] [In the formula, R 32 and R 33 are hydrogen atoms, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 30 carbon atoms, respectively. , A cycloalkyl group having 4 to 20 carbon atoms and a 2- (4-oxyphenyl) propyl substituted aryl group having 15 to 25 carbon atoms. As the cycloalkyl group and the aryl group, either one which is not substituted with an alkyl group or one substituted with an alkyl group can be selected. ]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中R34、R35は炭素数12~15のアルキル基である。なお、R34およびR35は互いに同一または互いに異なるいずれの場合も選択できる。]
 ホスホナイト化合物としては下記一般式〔10〕で表わされるホスホナイト化合物、および下記一般式〔11〕で表わされるホスホナイト化合物を挙げることができる。
[In the formula, R 34 and R 35 are alkyl groups having 12 to 15 carbon atoms. In addition, R 34 and R 35 can be selected in either the same case or different from each other. ]
Examples of the phosphonite compound include a phosphonite compound represented by the following general formula [10] and a phosphonite compound represented by the following general formula [11].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、Ar、Arは、炭素数6~20のアリール基、炭素数6~20のアルキルアリール基、または炭素数15~25の2-(4-オキシフェニル)プロピル置換アリール基を示し、4つのArは互いに同一、または互いに異なるいずれも選択できる。または2つのArは互いに同一、または互いに異なるいずれも選択できる。]
 上記一般式〔7〕で表されるホスファイト化合物の好ましい具体例としては、ジフェニルイソオクチルホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイトが挙げられる。
[In the formula, Ar 1 and Ar 2 are aryl groups having 6 to 20 carbon atoms, alkyl aryl groups having 6 to 20 carbon atoms, or 2- (4-oxyphenyl) propyl substituted aryl groups having 15 to 25 carbon atoms. As shown, the four Ar 1s can be selected to be the same as each other or different from each other. Alternatively, the two Ar 2s can be selected to be the same as each other or different from each other. ]
Preferred specific examples of the phosphite compound represented by the above general formula [7] are diphenylisooctylphosphite, 2,2'-methylenebis (4,6-di-tert-butylphenyl) octylphosphite, and diphenylmono. Examples thereof include (tridecylic) phosphite, phenyldiisodecylphosphite, and phenyldi (tridecylic) phosphite.
 上記一般式〔8〕で表されるホスファイト化合物の好ましい具体例としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。好ましくはジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトを挙げることができる。かかるホスファイト化合物は1種、または2種以上を併用することができる。 Preferred specific examples of the phosphite compound represented by the above general formula [8] include distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and bis (2). , 6-Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite and the like. Preferred are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphos. You can mention fight. The phosphite compound may be used alone or in combination of two or more.
 上記一般式〔9〕で表されるホスファイト化合物の好ましい具体例としては、4,4’-イソプロピリデンジフェノールテトラトリデシルホスファイトを挙げることができる。 As a preferable specific example of the phosphite compound represented by the above general formula [9], 4,4'-isopropyridene diphenol tetratridecylphosphite can be mentioned.
 上記一般式〔10〕で表されるホスホナイト化合物の好ましい具体例としては、テトラキス(2,4-ジ-iso-プロピルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-n-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-iso-プロピルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-n-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト等が挙げられる。なかでも、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトがより好ましい。このテトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイトは、2種以上の混合物が好ましい。具体的には、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイトおよび、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイトの1種もしくは2種以上を併用して使用可能であるが、好ましくはかかる3種の混合物である。 Preferred specific examples of the phosphonite compound represented by the above general formula [10] include tetrakis (2,4-di-iso-propylphenyl) -4,4'-biphenylenediphosphonite and tetrakis (2,4-di). -N-Butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-tert) -Butylphenyl) -4,3'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, tetrakis (2,6-di-iso-propyl) Phenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,6-di-n-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenirange phosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3'-biphenirange phosphonite, tetrakis (2,6-di-tert-butylphenyl) -3 , 3'-biphenylenediphosphonite and the like. Of these, tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite is preferable, and tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is more preferable. The tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferably a mixture of two or more. Specifically, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenedi One or more of phosphonite and tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite can be used in combination, but preferably three such types. It is a mixture.
 上記一般式〔11〕で表されるホスホナイト化合物の好ましい具体例としては、ビス(2,4-ジ-iso-プロピルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイトビス(2,6-ジ-iso-プロピルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられる。ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。 Preferred specific examples of the phosphonite compound represented by the above general formula [11] include bis (2,4-di-iso-propylphenyl) -4-phenyl-phenylphosphonite and bis (2,4-di-n). -Butylphenyl) -3-Phenyl-Phenylphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di-tert-butylphenyl) -3 -Phenyl-Phenylphosphonite bis (2,6-di-iso-propylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, Examples thereof include bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite and bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite. Bis (di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, and bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite is more preferred.
 このビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトは、2種以上の混合物が好ましい。具体的にはビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、およびビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイトの1種もしくは2種を併用して使用可能である。好ましくはかかる2種の混合物である。また、2種の混合物の場合その混合比は、重量比で5:1~4の範囲が好ましく、5:2~3の範囲がより好ましい。 This bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite is preferably a mixture of two or more. Specifically, one of bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite. Species or two species can be used in combination. It is preferably a mixture of the two. Further, in the case of a mixture of two kinds, the mixing ratio thereof is preferably in the range of 5: 1 to 4 in terms of weight ratio, and more preferably in the range of 5: 2 to 3.
 一方、ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができる。好ましくはトリメチルホスフェートである。 On the other hand, as the phosphate compound, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl Examples thereof include phosphate and diisopropyl phosphate. It is preferably trimethyl phosphate.
 上記のリン系熱安定剤の中で、さらに好ましい化合物としては、以下の一般式〔12〕および〔13〕で表される化合物を挙げることができる。 Among the above phosphorus-based heat stabilizers, more preferable compounds include compounds represented by the following general formulas [12] and [13].
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式〔12〕中、R36およびR37は、それぞれ独立して炭素原子数1~12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示す。] [In the formula [12], R 36 and R 37 each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group. ]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式〔13〕中、R41、R42、R43、R44、R47、R48およびR49はそれぞれ独立して、水素原子、炭素原子数1~12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示し、R45は、水素原子または炭素原子数1~4のアルキル基を示し、およびR46は水素原子またはメチル基を示す。]
 式〔12〕中、R36およびR37は、好ましくは炭素原子数1~12のアルキル基であり、より好ましくは炭素原子数1~8のアルキル基である。
[In the formula [13], R 41 , R 42 , R 43 , R 44 , R 47 , R 48 and R 49 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, cycloalkyl groups, respectively. An aryl group or an aralkyl group is indicated, R 45 indicates a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 46 indicates a hydrogen atom or a methyl group. ]
In the formula [12], R 36 and R 37 are preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
 式〔12〕で表される化合物としては具体的に、トリス(ジメチルフェニル)ホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイトなどが挙げられる。特にトリス(2,6-ジ-tert-ブチルフェニル)ホスファイトが好ましい。 Specific examples of the compound represented by the formula [12] include tris (dimethylphenyl) phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, and tris (di-n-butyl). Phenyl) Phenyl) Phenyl, Tris (2,4-di-tert-butylphenyl) Phenyl, Tris (2,6-di-tert-butylphenyl) Phenyl, Tris (2,6-di-tert-butylphenyl) Examples include phosphite. Particularly, tris (2,6-di-tert-butylphenyl) phosphite is preferable.
 式〔13〕で表される化合物としては具体的に、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェノール)と2,6-ジ-tert-ブチルフェノールから誘導されるホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェノール)とフェノールから誘導されるホスファイトが挙げられる。特に2,2’-メチレンビス(4,6-ジ-tert-ブチルフェノール)とフェノールから誘導されるホスファイトが好ましい。 Specific examples of the compound represented by the formula [13] include phosphite derived from 2,2'-methylenebis (4,6-di-tert-butylphenol) and 2,6-di-tert-butylphenol, 2. , 2'-Methylenebis (4,6-di-tert-butylphenol) and phenol-derived phosphite. In particular, 2,2'-methylenebis (4,6-di-tert-butylphenol) and phosphite derived from phenol are preferable.
 リン系熱安定剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.001~3.0重量部、より好ましくは0.01~2.0重量部、さらに好ましくは0.05~1.0重量部である。リン系熱安定剤の含有量が0.001重量部未満では機械特性が十分に発現せず、3.0重量部を超えても機械特性を十分に発現しない場合がある。
(フェノール系熱安定剤)
 本発明に使用されるフェノール系熱安定剤としては、一般的にヒンダードフェノール、セミヒンダードフェノール、レスヒンダードフェノール化合物が挙げられる。ポリプロピレン系樹脂に対して熱安定処方を施すという観点で特にヒンダードフェノール化合物がより好適に用いられる。
The content of the phosphorus-based heat stabilizer is preferably 0.001 to 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, based on 100 parts by weight of the total of the A component and the B component. More preferably, it is 0.05 to 1.0 parts by weight. If the content of the phosphorus-based heat stabilizer is less than 0.001 part by weight, the mechanical properties may not be sufficiently exhibited, and if it exceeds 3.0 parts by weight, the mechanical properties may not be sufficiently exhibited.
(Phenolic heat stabilizer)
Examples of the phenolic heat stabilizer used in the present invention generally include hindered phenol, semi-hindered phenol, and less hindered phenol compound. In particular, a hindered phenol compound is more preferably used from the viewpoint of applying a heat-stable formulation to a polypropylene-based resin.
 かかるヒンダードフェノール化合物としては、具体例としては、例えばビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどを挙げることができる。これらを好ましく使用できる。 Specific examples of such hindered phenol compounds include vitamin E, n-octadecyl-β- (4'-hydroxy-3', 5'-di-tert-butylfell) propionate, and 2-tert-butyl-6. -(3'-tert-Butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylaminomethyl) phenol, 3,5-Di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert) -Butylphenol), 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,2'-dimethylene-bis (6-- α-Methyl-benzyl-p-cresol) 2,2'-ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6- Hexandiol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, bis [2-tert-butyl-4-methyl 6- (3-tert-butyl-5-methyl-2) -Hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,-dimethylethyl} -2, 4,8,10-Tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3-methyl-6-tert-butylphenol) ), 2,2'-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4'-di-thiobis (2, 6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,4-bis (n-octylthio) -6- ( 4-Hydroxy-3', 5'-di-tert-butylanilino) -1,3,5-triazine, N, N'-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinna) Mido), N, N'-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-) tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert- Butyl-4-hydroxyphenyl) isocyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2, 6-Dimethylbenzyl) isocyanurate, 1,3,5-tris2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3') , 5'-di-tert-butyl-4-hydroxyphenyl) propionate] methane and the like. These can be preferably used.
 より好ましくは、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンである。さらに、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネートが好ましい。
(イオウ含有酸化防止剤)
 熱可塑性樹脂シートを構成する樹脂組成物には、酸化防止剤としてイオウ含有酸化防止剤を使用することもできる。特に樹脂組成物が回転成形や圧縮成形に使用される場合には好適である。
More preferably, n-octadecyl-β- (4'-hydroxy-3', 5'-di-tert-butylfell) propionate, 2-tert-butyl-6- (3'-tert-butyl-5'-methyl -2'-Hydroxybenzyl) -4-methylphenyl acrylate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,- Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, and tetrakis [methyl-3- (3', 5'-di-tert-butyl-4-hydroxyphenyl) propionate] methane Is. Further, n-octadecyl-β- (4'-hydroxy-3', 5'-di-tert-butylfell) propionate is preferable.
(Sulfur-containing antioxidant)
A sulfur-containing antioxidant can also be used as an antioxidant in the resin composition constituting the thermoplastic resin sheet. It is particularly suitable when the resin composition is used for rotary molding or compression molding.
 かかるイオウ含有酸化防止剤の具体例としては、ジラウリル-3,3’-チオジプロピオン酸エステル、ジトリデシル-3,3’-チオジプロピオン酸エステル、ジミリスチル-3,3’-チオジプロピオン酸エステル、ジステアリル-3,3’-チオジプロピオン酸エステル、ラウリルステアリル-3,3’-チオジプロピオン酸エステル、ペンタエリスリトールテトラ(β-ラウリルチオプロピオネート)エステル、ビス[2-メチル-4-(3-ラウリルチオプロピオニルオキシ)-5-tert-ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2-メルカプト-6-メチルベンズイミダゾール、1,1’-チオビス(2-ナフトール)などを挙げることができる。より好ましくは、ペンタエリスリトールテトラ(β-ラウリルチオプロピオネート)エステルを挙げることができる。 Specific examples of such sulfur-containing antioxidants include dilauryl-3,3'-thiodipropionic acid ester, ditridecyl-3,3'-thiodipropionic acid ester, and dimyristyl-3,3'-thiodipropionic acid ester. , Distearyl-3,3'-thiodipropionic acid ester, laurylstearyl-3,3'-thiodipropionic acid ester, pentaerythritol tetra (β-laurylthiopropionate) ester, bis [2-methyl-4 -(3-Laurylthiopropionyloxy) -5-tert-butylphenyl] sulfide, octadecyldisulfide, mercaptobenzimidazole, 2-mercapto-6-methylbenzimidazole, 1,1'-thiobis (2-naphthol), etc. be able to. More preferably, pentaerythritol tetra (β-laurylthiopropionate) ester can be mentioned.
 上記に挙げたリン系熱安定剤、フェノール系熱安定剤、およびイオウ含有酸化防止剤はそれぞれ単独または2種以上併用することができる。フェノール系熱安定剤およびイオウ含有酸化防止剤の含有量は、A成分とB成分との合計100重量部に対し、0.0001~1重量部であることが好ましい。より好ましくは0.0005~0.5重量部であり、さらに好ましくは0.001~0.2重量部である。
(離型剤)
 熱可塑性樹脂シートを構成する樹脂組成物には、その成形時の生産性向上や成形品の歪みの低減を目的として、更に離型剤を配合することができる。かかる離型剤としては公知のものが使用できる。
The phosphorus-based heat stabilizer, the phenol-based heat stabilizer, and the sulfur-containing antioxidant listed above can be used alone or in combination of two or more. The content of the phenolic heat stabilizer and the sulfur-containing antioxidant is preferably 0.0001 to 1 part by weight with respect to 100 parts by weight in total of the A component and the B component. It is more preferably 0.0005 to 0.5 parts by weight, and even more preferably 0.001 to 0.2 parts by weight.
(Release agent)
A mold release agent can be further added to the resin composition constituting the thermoplastic resin sheet for the purpose of improving the productivity at the time of molding and reducing the distortion of the molded product. As such a mold release agent, a known one can be used.
 例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1-アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。 For example, saturated fatty acid esters, unsaturated fatty acid esters, polyolefin waxes (polyethylene wax, 1-alkene polymer, etc. those modified with functional group-containing compounds such as acid modification can also be used), silicone compounds, fluorine compounds ( Fluorine oil typified by polyfluoroalkyl ether), paraffin wax, beeswax and the like can be mentioned.
 中でも好ましい離型剤として脂肪酸エステルが挙げられる。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは、1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、好ましくは3~32の範囲、より好適には5~30の範囲である。 Among them, fatty acid ester is mentioned as a preferable mold release agent. Such fatty acid esters are esters of fatty alcohols and aliphatic carboxylic acids. The aliphatic alcohol may be a monohydric alcohol or a divalent or higher polyhydric alcohol. The carbon number of the alcohol is preferably in the range of 3 to 32, more preferably in the range of 5 to 30.
 かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。 Examples of such monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, ceryl alcohol, and toriacontanol.
 かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本発明の脂肪酸エステルにおいては多価アルコールがより好ましい。 Examples of such polyhydric alcohols include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), trimethylolpropane, xylitol, sorbitol, and mannitol. In the fatty acid ester of the present invention, a polyhydric alcohol is more preferable.
 一方、脂肪族カルボン酸は炭素数3~32であることが好ましく、特に炭素数10~22の脂肪族カルボン酸が好ましい。 On the other hand, the aliphatic carboxylic acid preferably has 3 to 32 carbon atoms, and particularly preferably an aliphatic carboxylic acid having 10 to 22 carbon atoms.
 該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、ベヘン酸、イコサン酸、およびドコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14~20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。特にステアリン酸およびパルミチン酸が好ましい。 Examples of the aliphatic carboxylic acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid and bechenic acid. Saturated aliphatic carboxylic acids such as icosanoic acid and docosanoic acid, and unsaturated aliphatic carboxylic acids such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and setreic acid can be mentioned. .. Among the above, the aliphatic carboxylic acid preferably has 14 to 20 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferable. Particularly stearic acid and palmitic acid are preferred.
 ステアリン酸やパルミチン酸など上記の脂肪族カルボン酸は通常、牛脂や豚脂などに代表される動物性油脂およびパーム油やサンフラワー油に代表される植物性油脂などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常、炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって本発明の脂肪酸エステルの製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる脂肪族カルボン酸、殊にステアリン酸やパルミチン酸が好ましく使用される。 The above-mentioned aliphatic carboxylic acids such as stearic acid and palmitic acid are usually produced from animal fats and oils represented by beef fat and pork fat and natural fats and oils such as vegetable fats and oils represented by palm oil and sunflower oil. Therefore, these aliphatic carboxylic acids are usually mixtures containing other carboxylic acid components having different carbon atoms. Therefore, also in the production of the fatty acid ester of the present invention, an aliphatic carboxylic acid, particularly stearic acid or palmitic acid, which is produced from such natural fats and oils and is in the form of a mixture containing other carboxylic acid components, is preferably used.
 本発明に用いられる脂肪酸エステルは、部分エステルおよび全エステル(フルエステル)のいずれであってもよい。しかしながら部分エステルでは、通常、水酸基価が高くなり高温時の樹脂の分解などを誘発しやすいことから、より好適にはフルエステルである。本発明の脂肪酸エステルにおける酸価は、熱安定性の点から好ましく20以下、より好ましくは4~20の範囲、更に好ましくは4~12の範囲である。尚、酸価は実質的に0を取り得る。また脂肪酸エステルの水酸基価は、0.1~30の範囲がより好ましい。更にヨウ素価は、10以下が好ましい。尚、ヨウ素価は実質的に0を取り得る。これらの特性はJIS K 0070に規定された方法により求めることができる。 The fatty acid ester used in the present invention may be either a partial ester or a total ester (full ester). However, the partial ester is more preferably a full ester because it usually has a high hydroxyl value and easily induces decomposition of the resin at high temperatures. The acid value of the fatty acid ester of the present invention is preferably 20 or less, more preferably 4 to 20, and even more preferably 4 to 12 from the viewpoint of thermal stability. The acid value can be substantially 0. The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1 to 30. Further, the iodine value is preferably 10 or less. The iodine value can be substantially 0. These characteristics can be obtained by the method specified in JIS K0070.
 離型剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.005~2重量部、より好ましくは0.01~1重量部、更に好ましくは0.05~0.5重量部である。
(紫外線吸収剤)
 本発明の熱可塑性樹脂シートを構成する樹脂組成物は紫外線吸収剤を含有することができる。
The content of the release agent is preferably 0.005 to 2 parts by weight, more preferably 0.01 to 1 part by weight, still more preferably 0.05 with respect to 100 parts by weight of the total of the A component and the B component. ~ 0.5 parts by weight.
(UV absorber)
The resin composition constituting the thermoplastic resin sheet of the present invention can contain an ultraviolet absorber.
 ベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。 In the benzophenone system, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy- 5-Sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxitrihydride benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2 , 2'-Dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodium sulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) ) Methan, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone and the like are exemplified.
 ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ルが挙げられる。並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や、2-(2’―ヒドロキシ-5-アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。 In the benzotriazole system, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazol, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2'-methylenebis [4- (1,1,3) , 3-Tetramethylbutyl) -6- (2H-benzotriazole-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- (2-) Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5) -Tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'- Methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine-4-one), 2- [2-hydroxy-3- (3,4,5) , 6-Tetrahydrophthalimidemethyl) -5-methylphenyl] Benzotriazole can be mentioned. In addition, a copolymer of 2- (2'-hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole and a vinyl-based monomer copolymerizable with the monomer, and 2- (2'-hydroxy-5-acrylic). Examples thereof include a polymer having a 2-hydroxyphenyl-2H-benzotriazole skeleton, such as a copolymer of loxyethylphenyl) -2H-benzotriazole and a vinyl-based monomer copolymerizable with the monomer.
 ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。 In the hydroxyphenyltriazine system, for example, 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazine-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) Examples thereof include -1,3,5-triazine-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-butyloxyphenol. Will be done. Further, the phenyl group of the above-exemplified compound such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. A compound that has become a phenyl group is exemplified.
 環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)などが例示される。 In the cyclic iminoester system, for example, 2,2'-p-phenylene bis (3,1-benzoxazine-4-one), 2,2'-(4,4'-diphenylene) bis (3,1-benzoxazine) -4-one), 2,2'-(2,6-naphthalene) bis (3,1-benzoxazine-4-one) and the like are exemplified.
 シアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。 In the cyanoacrylate system, for example, 1,3-bis-[(2'-cyano-3', 3'-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy] ] Methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like are exemplified.
 さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。 Further, the above-mentioned ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that it has a photostable monomer having such an ultraviolet-absorbing monomer and / or a hindered amine structure, and an alkyl (meth) acrylate. It may be a polymer type ultraviolet absorber which is copolymerized with a monomer such as. As the ultraviolet-absorbing monomer, a compound containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of the (meth) acrylic acid ester is preferably exemplified. Ru.
 上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相(透明性)の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。 Among the above, benzotriazole-based and hydroxyphenyltriazine-based are preferable in terms of ultraviolet absorption ability, and cyclic iminoester-based and cyanoacrylate-based are preferable in terms of heat resistance and hue (transparency). The above-mentioned ultraviolet absorber may be used alone or in a mixture of two or more kinds.
 紫外線吸収剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.02~2重量部、さらに好ましくは0.03~1重量部、更に好ましくは0.05~0.5重量部である。
(ヒンダードアミン系光安定剤)
 熱可塑性樹脂シートを構成する樹脂組成物は、ヒンダードアミン系光安定剤を含有することができる。ヒンダードアミン系光安定剤は一般にHALS(Hindered Amine Light Stabilizer)と呼ばれ、2,2,6,6-テトラメチルピペリジン骨格を構造中に有する化合物である。
The content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, still more preferably 0.03 with respect to 100 parts by weight of the total of the A component and the B component. It is ~ 1 part by weight, more preferably 0.05 to 0.5 part by weight.
(Hinderdamine-based light stabilizer)
The resin composition constituting the thermoplastic resin sheet can contain a hindered amine-based light stabilizer. The hindered amine-based light stabilizer is generally called HALS (Hindered Amine Light Stabilizer), and is a compound having a 2,2,6,6-tetramethylpiperidine skeleton in its structure.
 例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)カーボネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)オキサレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)マロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)テレフタレート、N,N’-ビス-2,2,6,6-テトラメチル-4-ピペリジニル-1,3-ベンゼンジカルボキシアミド、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、α,α'-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、N,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、および1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β',β'-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物などが挙げられる。 For example, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethyl Piperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6- Tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2,6,6 -Tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2 , 2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, Bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2,6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl) -4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, bis (1,2) , 2,6,6-pentamethyl-4-piperidyl) carbonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) oxalate, bis (1,2,2,6,6-pentamethyl-4) -Piperidyl) malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) adipate, bis (1,2) , 2,6,6-pentamethyl-4-piperidyl) terephthalate, N, N'-bis-2,2,6,6-tetramethyl-4-piperidinyl-1,3-benzenedicarboxyamide, 1,2- Bis (2,2,6,6-tetramethyl-4-piperidyloxy) ethane, α, α'-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6-tetramethyl-4-piperidyloxy) 2,2,6,6-Tetramethyl-4-piperidyltrilen-2,4-dicarbamée To, bis (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene- 1,3,5-tricarboxylate, N, N', N'', N'''-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetra) Methylpiperidin-4-yl) amino) -triazine-2-yl) -4,7-diazadecan-1,10-diamine, dibutylamine 1,3,5-triazine N, N'-bis (2,2) , 6,6-Tetramethyl-4-piperidyl) -1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [{6 -(1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexa Methylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetra Carboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane tetracarboxylate, tris (2,2,6,6-tetramethyl-4- Piperidil) -benzene-1,3,4-tricarboxylate, 1- [2- {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy} butyl] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] 2,2,6,6-tetramethylpiperidine, and 1,2,3,4-butanetetracarboxylic acid and 1,2,2 , 6,6-Pentamethyl-4-piperidinol and β, β, β', β'-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethanol Examples thereof include condensates.
 ヒンダードアミン系光安定剤は、ピペリジン骨格中の窒素原子の結合相手により大きく分けて、N-H型(窒素原子に水素が結合)、N-R型(窒素原子にアルキル基(R)が結合)、N-OR型(窒素原子にアルコキシ基(OR)が結合)の3タイプがある。ポリカーボネート樹脂に適用する際、ヒンダードアミン系光安定剤の塩基性の観点から、低塩基性であるN-R型、N-OR型を用いるのがより好ましい。上記ヒンダードアミン系光安定剤は、単独でまたは2種以上を組合せて使用することができる。 Hindered amine-based photostabilizers are roughly classified according to the binding partner of the nitrogen atom in the piperidine skeleton, and are classified into NH type (hydrogen is bonded to the nitrogen atom) and NR type (alkyl group (R) is bonded to the nitrogen atom). , N-OR type (an alkoxy group (OR) is bonded to a nitrogen atom). When applied to a polycarbonate resin, it is more preferable to use the low-basic NR type and N-OR type from the viewpoint of the basicity of the hindered amine-based light stabilizer. The above-mentioned hindered amine-based light stabilizer can be used alone or in combination of two or more.
 ヒンダードアミン系光安定剤の含有量は、A成分とB成分との合計100重量部に対し、0~1重量部であることが好ましく、0.05~1重量部がより好ましく、さらに好ましくは0.08~0.7重量部、特に好ましくは0.1~0.5重量部である。ヒンダードアミン系光安定剤の含有量が1重量部より多いとガス発生による外観不良やポリカーボネート樹脂の分解による物性低下が起こる場合があり好ましくない。また、0.05重量部未満であると、十分な耐光性が発現しない場合がある。
(難燃剤)
 熱可塑性樹脂シートを構成する樹脂組成物には、難燃剤を配合して難燃性を付与することができる。かかる難燃剤としては従来、熱可塑性樹脂の難燃剤として知られる各種の化合物が適用できるが、より好適には、(i)ハロゲン系難燃剤(例えば、臭素化ポリカーボネート化合物など)(ii)リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、ホスホン酸アミド化合物、およびホスファゼン化合物など)、(iii)金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(iv)シリコーン化合物からなるシリコーン系難燃剤である。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
The content of the hindered amine-based light stabilizer is preferably 0 to 1 part by weight, more preferably 0.05 to 1 part by weight, still more preferably 0, based on 100 parts by weight of the total of the A component and the B component. It is .08 to 0.7 parts by weight, particularly preferably 0.1 to 0.5 parts by weight. If the content of the hindered amine-based light stabilizer is more than 1 part by weight, the appearance may be poor due to gas generation and the physical properties may be deteriorated due to the decomposition of the polycarbonate resin, which is not preferable. Further, if it is less than 0.05 parts by weight, sufficient light resistance may not be exhibited.
(Flame retardants)
A flame retardant can be added to the resin composition constituting the thermoplastic resin sheet to impart flame retardancy. As the flame retardant, various compounds conventionally known as flame retardants of thermoplastic resins can be applied, but more preferably, (i) halogen-based flame retardant (for example, brominated polycarbonate compound) (ii) phosphorus-based. Flame retardants (eg, monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphonic acid amide compounds, and phosphate compounds, etc.), (iii) Metal salt-based flame retardants (eg, organic sulfonic acid alkali (earth)). It is a silicone-based flame retardant composed of (iv) a silicone compound, such as a metal salt, a borate metal salt-based flame retardant, and a tin acid metal salt-based flame retardant. The compounding of the compound used as the flame retardant not only improves the flame retardancy but also improves the antistatic property, the fluidity, the rigidity, and the thermal stability based on the properties of each compound.
 難燃剤の含有量は、A成分とB成分との合計100重量部に対し、好ましくは0.01~30重量部であり、より好ましくは0.05~28重量部、さらに好ましくは0.08~25重量部である。難燃剤の含有量が0.01重量部未満の場合、十分な難燃性が得られない場合があり、30重量部を超えた場合、衝撃強度および耐薬品性の低下が大きい場合がある。
(染顔料)
 熱可塑性樹脂シートを構成する樹脂組成物には、更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。また極微量の染顔料による着色、かつ鮮やかな発色性を有する繊維強化樹脂組成物もまた提供可能である。
The content of the flame retardant is preferably 0.01 to 30 parts by weight, more preferably 0.05 to 28 parts by weight, still more preferably 0.08 with respect to 100 parts by weight of the total of the A component and the B component. ~ 25 parts by weight. If the content of the flame retardant is less than 0.01 parts by weight, sufficient flame retardancy may not be obtained, and if it exceeds 30 parts by weight, the impact strength and chemical resistance may be significantly reduced.
(Dyeing pigment)
It is possible to provide a molded product that further contains various dyes and pigments in the resin composition constituting the thermoplastic resin sheet and exhibits various design properties. By blending a fluorescent whitening agent or a fluorescent dye that emits light other than that, a better design effect that makes the best use of the emitted color can be imparted. It is also possible to provide a fiber-reinforced resin composition which is colored with a very small amount of dye and has a vivid color-developing property.
 蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。 Examples of fluorescent dyes (including fluorescent whitening agents) include coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, perylene-based fluorescent dyes, anthracinone-based fluorescent dyes, thioindigo-based fluorescent dyes, xanthene-based fluorescent dyes, and xantone-based fluorescent dyes. , Thioxanthene-based fluorescent dyes, thioxanthone-based fluorescent dyes, thiazine-based fluorescent dyes, diaminostilben-based fluorescent dyes, and the like. Among these, coumarin-based fluorescent dyes, benzopyran-based fluorescent dyes, and perylene-based fluorescent dyes, which have good heat resistance and little deterioration during molding of the polycarbonate resin, are suitable.
 上記ブルーイング剤および蛍光染料以外の染料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、各種板状フィラーに金属被膜または金属酸化物被膜を有するものが好適である。 Examples of dyes other than the above brewing agents and fluorescent dyes include perylene dyes, coumarin dyes, thioindigo dyes, anthracinone dyes, thioxanthone dyes, ferrocyanides such as navy blue, perinone dyes, quinoline dyes, and quinacridones. Examples thereof include dyes, dioxazine dyes, isoindrinone dyes, and phthalocyanine dyes. Further, the resin composition of the present invention can also be blended with a metallic pigment to obtain a better metallic color. As the metallic pigment, those having a metal film or a metal oxide film on various plate-shaped fillers are suitable.
 上記の染顔料の含有量は、A成分とB成分との合計100重量部に対して、0.00001~1重量部が好ましく、0.00005~0.5重量部がより好ましい。
(他の樹脂)
 熱可塑性樹脂シートを構成するポリプロピレン樹脂組成物には、他の樹脂を本発明の効果を発揮する範囲において、少割合使用することもできる。
The content of the dyeing pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of the A component and the B component.
(Other resins)
In the polypropylene resin composition constituting the thermoplastic resin sheet, other resins can be used in a small proportion as long as the effects of the present invention are exhibited.
 かかる他の樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリプロピレン樹脂以外のポリオレフィン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。
(その他充填材)
 熱可塑性樹脂シートを構成する樹脂組成物には、他の充填材を本発明の効果を発揮する範囲において、少割合使用することもできる。
Examples of such other resins include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, and polypropylene resins. Examples thereof include resins such as polyolefin resins, polymethacrylate resins, phenol resins, and epoxy resins.
(Other fillers)
In the resin composition constituting the thermoplastic resin sheet, a small proportion of other fillers can be used as long as the effect of the present invention is exhibited.
 かかる他の充填材としては、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラストナイト、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩が挙げられる。また、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどの非繊維状充填剤が挙げられる。
(その他の添加剤)
 本発明の熱可塑性樹脂シートを構成する樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。かかる添加剤としては、摺動剤(例えばPTFE粒子)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、およびフォトクロミック剤などが挙げられる。
(樹脂組成物の製造方法)
 熱可塑性樹脂シートを構成する樹脂組成物を製造する方法に特に制限はなく、周知の方法を用いることができる。たとえば、溶液状態で各成分を混合し、溶剤を蒸発させるか、溶剤中に沈殿させる方法が挙げられる。工業的見地からみると溶融状態で各成分を混練する方法が好ましい。溶融混練には一般に使用されている一軸または二軸の押出機、各種のニーダー等の混練装置を用いることができる。特に二軸の高混練機が好ましい。溶融混練に際しては、混練装置のシリンダー設定温度は200~360℃の範囲が好ましく、より好ましくは200℃~300℃の範囲であり、さらに好ましくは230~280℃である。混練に際しては、各成分は予めタンブラーもしくはヘンシェルミキサーのような装置で各成分を均一に混合してもよいし、必要な場合には混合を省き、混練装置にそれぞれ別個に定量供給する方法も用いることができる。
(熱可塑性樹脂シート)
 本発明で用いられる熱可塑性樹脂シートは、補強用繊維シートを重ね合わせ、熱可塑性樹脂シートを構成する熱可塑性樹脂の溶融温度以上、補強用繊維シートを構成する補強用繊維の耐熱温度未満の温度で、加圧処理することにより、熱可塑性樹脂シートが溶融し、補強用繊維の周囲に空隙なく配置され繊維強化樹脂複合体となる。
Other fillers include fibrous fillers such as potassium titanate whisker, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone wool fiber, metal fiber, warastonite, sericite, kaolin. , Mica, clay, bentonite, asbestos, talc, alumina silicate and other silicates. In addition, swellable layered silicates such as montmorillonite and synthetic mica, metal compounds such as alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, and calcium sulfate. , Sulfates such as barium sulfate, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and non-fibrous fillers such as silica.
(Other additives)
In the resin composition constituting the thermoplastic resin sheet of the present invention, an additive known per se can be blended in a small proportion in order to impart various functions to the molded product and improve the characteristics. These additives are in the usual blending amount as long as the object of the present invention is not impaired. Such additives include sliding agents (eg, PTFE particles), fluorescent dyes, inorganic phosphors (eg, phosphors having aluminate as the parent crystal), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents. , Photocatalytic antifouling agents (for example, fine particle titanium oxide, fine particle zinc oxide), radical generators, infrared absorbers (heat ray absorbers), photochromic agents and the like.
(Manufacturing method of resin composition)
The method for producing the resin composition constituting the thermoplastic resin sheet is not particularly limited, and a well-known method can be used. For example, a method of mixing each component in a solution state and evaporating the solvent or precipitating in the solvent can be mentioned. From an industrial point of view, a method of kneading each component in a molten state is preferable. For melt kneading, a commonly used single-screw or twin-screw extruder, various kneaders, and other kneading devices can be used. In particular, a biaxial high kneader is preferable. In melt kneading, the cylinder set temperature of the kneading device is preferably in the range of 200 to 360 ° C, more preferably in the range of 200 ° C to 300 ° C, and further preferably in the range of 230 to 280 ° C. In kneading, each component may be mixed uniformly in advance with a device such as a tumbler or a Henschel mixer, or if necessary, mixing may be omitted and a method of separately quantitatively supplying each component to the kneading device is also used. be able to.
(Thermoplastic resin sheet)
The thermoplastic resin sheet used in the present invention is formed by stacking reinforcing fiber sheets at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet and lower than the heat resistant temperature of the reinforcing fibers constituting the reinforcing fiber sheet. By the pressure treatment, the thermoplastic resin sheet is melted and arranged without voids around the reinforcing fibers to form a fiber-reinforced resin composite.
 本発明で用いられる熱可塑性樹脂シートの形態は、特に制限はないが、上記目的を達成するためには長さ・幅・厚さの三次元のうち少なくとも一次元が1~300μmの範囲にあることが好ましく、1~100μmがより好ましく、1~50μmが更により好ましく、1~30μmが最も好ましい。このような形態を持ちうるものとしてフィルム、不織布および以下に挙げる網目状繊維シートが挙げられ、なかでも熱可塑性樹脂シートの補強用繊維の周囲への含浸性という観点から網目状繊維シートが好ましい。
(網目状繊維シート)
 本発明においては、熱可塑性樹脂シートを網目状繊維シートとすることで、網目構造を持たない繊維からなる通常の不織布と比較して、強化繊維とのより高い密着性を得ることができる。さらに補強用繊維との高い密着性を得る上では、中空繊維の断面形状が不規則な非円形断面である、異形繊維であることが好ましい。なおここで中空とは、公知の中空繊維のように明らかな空隙が有るものばかりでは無く、繊維内部に気泡が有る程度のものであっても構わない。
The form of the thermoplastic resin sheet used in the present invention is not particularly limited, but at least one of the three dimensions of length, width, and thickness is in the range of 1 to 300 μm in order to achieve the above object. It is preferable, 1 to 100 μm is more preferable, 1 to 50 μm is even more preferable, and 1 to 30 μm is most preferable. Examples of those having such a form include films, non-woven fabrics, and the mesh-like fiber sheets listed below, and among them, the mesh-like fiber sheet is preferable from the viewpoint of impregnation of the reinforcing fiber of the thermoplastic resin sheet into the periphery.
(Reticulated fiber sheet)
In the present invention, by using the thermoplastic resin sheet as a mesh-like fiber sheet, higher adhesion to the reinforcing fibers can be obtained as compared with a normal non-woven fabric made of fibers having no mesh structure. Further, in order to obtain high adhesion to the reinforcing fiber, it is preferable that the hollow fiber is a deformed fiber having an irregular cross-sectional shape. Here, the term “hollow” is not limited to those having obvious voids such as known hollow fibers, but may be those having bubbles inside the fibers.
 本発明で述べる中空繊維は、その繊維内部に気泡を有するのであるが、例えば図1に模式的に示すように、内部に非連続の気泡を有し、かつ不規則な非円形断面の繊維状物であることが好ましい。 The hollow fiber described in the present invention has air bubbles inside the fiber. For example, as schematically shown in FIG. 1, the hollow fiber has non-continuous air bubbles inside and has an irregular non-circular cross section. It is preferably a thing.
 さらに具体的には、図2の電子顕微鏡写真に示したように、内部に複数のそれも形状の異なる気泡を有し、かつ扁平形状の繊維状物であることが好ましい。 More specifically, as shown in the electron micrograph of FIG. 2, it is preferable that it is a flat fibrous material having a plurality of bubbles having different shapes inside.
 なお、ここで異形繊維内部の気泡とは、繊維内部に存在する閉鎖した空間(空隙)のことを指す。通常、合成繊維内部の空隙は、中空繊維などにみられるように、繊維軸方向に連続した同じ断面形状を有する空隙である。これと異なり本発明の好ましい空隙は、非連続の気泡状の形態をとっている。本発明においては、このような非連続の、しかも繊維の長さ方向において断面形状の異なる気泡を、中空繊維の内部に有していることが好ましい。本発明の好ましい形状である非連続の気泡状の空隙が存在する場合、通常の連続した空隙の場合と異なり、均一に熱可塑性樹脂の流動性を向上させることが可能になる。その結果として連続した空隙に比べ、強化繊維との複合化において、特に優れた含浸性を発現することができる。 Here, the bubbles inside the deformed fiber refer to the closed space (void) existing inside the fiber. Usually, the voids inside the synthetic fiber are voids having the same cross-sectional shape continuous in the fiber axis direction, as seen in hollow fibers and the like. Unlike this, the preferred voids of the present invention are in the form of discontinuous air bubbles. In the present invention, it is preferable to have such discontinuous bubbles having different cross-sectional shapes in the length direction of the fiber inside the hollow fiber. When a non-continuous bubble-like void, which is a preferable shape of the present invention, is present, it is possible to uniformly improve the fluidity of the thermoplastic resin, unlike the case of a normal continuous void. As a result, it is possible to exhibit particularly excellent impregnation property in the composite with the reinforcing fiber as compared with the continuous voids.
 本発明で用いる熱可塑性樹脂繊維は、上記のようにその繊維内部に気泡を有するものであるが、単繊維横断面における中空率としては0.5~40%の範囲であることが好ましい。ここで中空率とは繊維断面において複数の気泡が含まれている場合、その気泡の面積を合計した面積が、繊維断面中に占める割合をいう。さらには繊維の中空率としては1~30%、特には5~20%の範囲であることが好ましい。繊維の中空率が0.5%未満の場合、強化繊維との複合化の際の含浸性が不十分となる場合があり、40%を超える場合には、不織布構造体の強度が低下することに加え、紡糸などの繊維の製造工程において、特に異形繊維である場合に、繊維切断が多く発生し、製造効率が低下する傾向にある。 The thermoplastic resin fiber used in the present invention has bubbles inside the fiber as described above, but the hollow ratio in the cross section of the single fiber is preferably in the range of 0.5 to 40%. Here, the hollow ratio means the ratio of the total area of the bubbles in the fiber cross section when a plurality of bubbles are included in the fiber cross section. Further, the hollow ratio of the fiber is preferably in the range of 1 to 30%, particularly preferably 5 to 20%. If the hollow ratio of the fiber is less than 0.5%, the impregnation property at the time of compounding with the reinforcing fiber may be insufficient, and if it exceeds 40%, the strength of the non-woven fabric structure is lowered. In addition, in the fiber manufacturing process such as spinning, especially in the case of irregularly shaped fibers, many fiber breaks occur and the manufacturing efficiency tends to decrease.
 なおこの中空率は、走査電子顕微鏡(SEM)にて倍率100倍で得られた画像の繊維断面写真から、繊維の中空部を含む全断面積に対する中空部の面積を中空率として求めたものである。本発明ではこのような中空部が存在することにより、繊維断面の壁部分が薄くなり溶解しやすく特に細かい部分に対する成形性が向上する。しかし繊維の中空率が大きすぎると中空繊維全体の熱伝導率が小さくなり、成形効率が低下する傾向にある。 This hollow ratio is obtained by determining the area of the hollow portion with respect to the total cross-sectional area including the hollow portion of the fiber as the hollow ratio from the fiber cross-sectional photograph of the image obtained at a magnification of 100 times with a scanning electron microscope (SEM). be. In the present invention, the presence of such a hollow portion makes the wall portion of the fiber cross section thin and easily dissolves, and the moldability for a particularly fine portion is improved. However, if the hollow ratio of the fiber is too large, the thermal conductivity of the entire hollow fiber becomes small, and the molding efficiency tends to decrease.
 また個々の気泡の大きさとしては0.1~100μmの範囲にあることが好ましい。特には0.5~50μmの範囲内であることが好ましい。気泡の大きさが0.1μmより小さくなると、強化繊維との複合化の際の含浸性が不十分となる場合があり、100μmより大きくなると、強化繊維との複合化が均一に起こらないばかりでなく、強化繊維プラスチック内部に欠点(気泡)が残ってしまう場合がある。 The size of each bubble is preferably in the range of 0.1 to 100 μm. In particular, it is preferably in the range of 0.5 to 50 μm. If the size of the bubbles is smaller than 0.1 μm, the impregnation property at the time of compounding with the reinforcing fiber may be insufficient, and if it is larger than 100 μm, the compounding with the reinforcing fiber does not occur uniformly. Instead, defects (air bubbles) may remain inside the reinforced fiber plastic.
 本発明では、異形繊維が好ましく用いられるが、その異形繊維の外周断面における不規則な非円形断面は、楕円や正多角形などの規則的な断面よりも、断面形状に乱れがある形状であることが好ましい。通常の合成繊維においては、その断面形状は紡糸口金の形状に依存するため、規則的な断面であることが一般的である。不規則な口金形状では溶融紡糸の際の断糸の発生率が高くなるからである。しかし断面の異形状態が規則的なものの場合、不織布を構成する際に、繊維の異形部分に別の繊維が収まって最密充填化され、かえって空隙が減少することがある。本発明の網目状の繊維は、上記と異なり異形であって、口金形状に依存しない断面形状の繊維であることが好ましい。本発明の熱可塑性樹脂シートを構成する繊維は、例えば後に述べるように発泡剤を用いたスリット紡糸にて得られる異形繊維であることが好ましい。 In the present invention, a deformed fiber is preferably used, but the irregular non-circular cross section in the outer peripheral cross section of the deformed fiber is a shape in which the cross section shape is more disordered than a regular cross section such as an ellipse or a regular polygon. Is preferable. Since the cross-sectional shape of a normal synthetic fiber depends on the shape of the spinneret, it is generally a regular cross-section. This is because an irregular base shape increases the rate of yarn breakage during melt spinning. However, when the irregular shape of the cross section is regular, when the nonwoven fabric is formed, another fiber may be contained in the irregular shape portion of the fiber and packed tightly, and the voids may be reduced. The mesh-like fiber of the present invention is different from the above, and is preferably a fiber having a cross-sectional shape that does not depend on the shape of the base. The fibers constituting the thermoplastic resin sheet of the present invention are preferably deformed fibers obtained by slit spinning using a foaming agent, as will be described later, for example.
 そしてこのように不規則な外側断面や網目状の形態を有することにより、各異形繊維の重なり部分において必ず空隙が発生するばかりではなく、繊維間空隙もまた様々な形状を取ることになる。繊維間の空隙が一様とならず、繊維の重なりも少なくなるのである。また、不規則な形状により曲げ剛性や物質の密度がランダムになる。そしてこのようにランダムとなることにより、強化繊維との複合化において、結果的には均一な機械特性を有することができるのである。 And by having such an irregular outer cross section and a mesh-like morphology, not only voids are always generated in the overlapping portion of each irregularly shaped fiber, but also interfiber voids take various shapes. The voids between the fibers are not uniform, and the overlap of fibers is reduced. In addition, the irregular shape makes the bending rigidity and the density of the substance random. And, by being random in this way, it is possible to have uniform mechanical properties as a result in the composite with the reinforcing fiber.
 本発明で用いる中空繊維の端面角度としては60度未満であることが好ましく、1~55度であることがより好ましく、3~45度であることがさらに好ましい。この端面角度は、上記の中空率の測定と同じく、走査電子顕微鏡(SEM)にて倍率100倍で得られた画像の繊維断面写真から求めるものであり、繊維断面の両端部を結ぶ直線(長軸)に対して直交する方向に最も厚みのある部分に直線(短軸)を定め、該短軸の両端と、短軸から近い側の長軸端部の三点を結んだ三角形の長軸端部の角度を求めて、端面角度とした。この端面角度が60度未満であることにより補強用繊維間に熱可塑性樹脂からなる中空繊維が侵入しやすくなり、より高い含浸性を確保することが可能となる場合がある。 The end face angle of the hollow fiber used in the present invention is preferably less than 60 degrees, more preferably 1 to 55 degrees, and even more preferably 3 to 45 degrees. This end face angle is obtained from the fiber cross-section photograph of the image obtained at a magnification of 100 times with a scanning electron microscope (SEM) as in the above-mentioned measurement of the hollow ratio, and is a straight line (length) connecting both ends of the fiber cross section. A straight line (short axis) is defined at the thickest part in the direction orthogonal to the axis), and the long axis of the triangle connecting both ends of the short axis and the end of the long axis near the short axis. The angle of the end was calculated and used as the end face angle. When the end face angle is less than 60 degrees, hollow fibers made of a thermoplastic resin easily penetrate between the reinforcing fibers, and it may be possible to secure higher impregnation property.
 本発明で好ましく用いられる異形繊維としては、単繊維の横断面において、異型度が1より大きく20以下であることが好ましい。さらには異形度が2~10であることが好ましい。ここで、繊維の断面形状の異型度とは、図3に示される単繊維横断面の外接円直径D1と内接円直径D2との比D1/D2で定義される数値である。この異型度が上記好ましい範囲にある場合に、強化繊維との複合化の際に優れた含浸性を発現することができる。より具体的にはこの異型度は、上記の中空率等の測定と同じく、走査電子顕微鏡(SEM)にて倍率100倍で得られた画像の繊維断面写真から求めるものであり、維横断面における外接円の直径D1と、内接円の直径D2を測定し、その比(D1/D2)を異型度として算出する。端面角度とは逆に、この異型度の値は大きいことにより補強用繊維間に熱可塑性樹脂からなる中空繊維が侵入しやすくなり、より高い含浸性を確保することが可能となる。 As the deformed fiber preferably used in the present invention, it is preferable that the degree of deformation is larger than 1 and 20 or less in the cross section of the single fiber. Further, the degree of deformation is preferably 2 to 10. Here, the degree of deformation of the cross-sectional shape of the fiber is a numerical value defined by the ratio D1 / D2 of the circumscribed circle diameter D1 and the inscribed circle diameter D2 of the cross section of the single fiber shown in FIG. When the degree of atypia is in the above preferable range, excellent impregnation property can be exhibited at the time of compounding with the reinforcing fiber. More specifically, this degree of atypia is obtained from the fiber cross-sectional photograph of the image obtained at a magnification of 100 times with a scanning electron microscope (SEM) as in the measurement of the hollowness ratio and the like, and is obtained in the transverse cross section. The diameter D1 of the extrinsic circle and the diameter D2 of the inscribed circle are measured, and the ratio (D1 / D2) is calculated as the degree of atypia. Contrary to the end face angle, when the value of this atypia is large, hollow fibers made of a thermoplastic resin easily penetrate between the reinforcing fibers, and it becomes possible to secure higher impregnation property.
 本発明の網目状繊維シートの製造方法においては、まず異形繊維を得るために、発泡剤を添加した熱可塑性樹脂をスリットダイから押出し、成形する。この時、スリットダイから吐出された熱可塑性樹脂は薄いシート状になるのであるが、本発明で用いる熱可塑性樹脂には発泡剤が添加されているために、スリットダイから吐出された際に樹脂中で発泡し、薄いシートの外部に気泡が通じることにより、網目状シートが形成されることになる。同時に網目状シートを構成する各繊維は、異形繊維となるのである。また逆に外部に出ずに、樹脂内部に留まった気泡は、異形繊維内部の空隙を形成する。図1がその模式図である。図2の電子顕微鏡写真は、本発明のこのような工程により生じる異形繊維の集合体の断面写真である。このように本発明では、熱可塑性樹脂は発泡剤を含有するのであるが、発泡剤とは発泡性の物質であって、溶融した樹脂がスリットダイから押出される際に気体となる物質であれば良い。この発泡剤は必ずしも自らが発泡する物質であるとは限らず、樹脂自体がかかる気体を発生する性質を有する発泡剤を兼ねても良く、また気体を発生することを助ける物質であっても良い。具体的な網目状繊維シートを得る方法としては、例えば、窒素ガス、炭酸ガスの如き常温で気体の不活性ガスなどの物質を溶融熱可塑性樹脂中に混練する方法、水などの如く常温では液体を呈するが、熱可塑性樹脂の溶融温度では気体となる物質を溶融熱可塑性樹脂と混練する方法、例えば、ジアゾ化合物、炭酸ソーダなどの分解により気体を発生する物質を溶融熱可塑性樹脂と混練する方法、例えば、ポリカーボネートの如き溶融熱可塑性樹脂の一部(例えばポリエステル、ポリアミド)と反応して気体を発生する重合体をそのような溶融熱可塑性樹脂と混練する方法などを採用しうる。 In the method for producing a mesh fiber sheet of the present invention, first, in order to obtain a deformed fiber, a thermoplastic resin to which a foaming agent is added is extruded from a slit die and molded. At this time, the thermoplastic resin discharged from the slit die becomes a thin sheet, but since the foaming agent is added to the thermoplastic resin used in the present invention, the resin is discharged from the slit die. A mesh-like sheet is formed by foaming inside and allowing air bubbles to pass to the outside of the thin sheet. At the same time, each fiber constituting the mesh-like sheet becomes a deformed fiber. On the contrary, the bubbles staying inside the resin without going out form voids inside the deformed fiber. FIG. 1 is a schematic diagram thereof. The electron micrograph of FIG. 2 is a cross-sectional photograph of an aggregate of deformed fibers produced by such a step of the present invention. As described above, in the present invention, the thermoplastic resin contains a foaming agent, but the foaming agent is a foamable substance and may be a substance that becomes a gas when the molten resin is extruded from the slit die. It's fine. This foaming agent is not necessarily a substance that foams by itself, and the resin itself may also serve as a foaming agent having the property of generating such a gas, or may be a substance that helps to generate a gas. .. Specific methods for obtaining a mesh fiber sheet include, for example, a method of kneading a substance such as an inert gas that is a gas at room temperature such as nitrogen gas and carbon dioxide gas into a molten thermoplastic resin, and a method of kneading a substance such as water at room temperature. However, a method of kneading a substance that becomes a gas at the melting temperature of the thermoplastic resin with the molten thermoplastic resin, for example, a method of kneading a substance that generates a gas by decomposition such as a diazo compound or sodium carbonate with the molten thermoplastic resin. For example, a method of kneading a polymer that reacts with a part of a molten thermoplastic resin such as polycarbonate (for example, polyester or polyamide) to generate a gas with such a molten thermoplastic resin can be adopted.
 いずれの方法であっても熱可塑性樹脂が溶融状態でスリットダイから押出される際、該樹脂と共に気体がダイから発生すればよく、上記した種々の発泡性物質と熱可塑性樹脂とは、スリットダイから押し出される前に十分に混練されていることが好ましい。この混練が充分でないと均一でかつ所望する物性を有する網目状繊維シートや異形繊維が得難くなる恐れがある。 In any method, when the thermoplastic resin is extruded from the slit die in a molten state, gas may be generated from the die together with the resin, and the various foamable substances and the thermoplastic resin described above are the slit die. It is preferably well kneaded before being extruded from. If this kneading is not sufficient, it may be difficult to obtain a mesh-like fiber sheet or deformed fiber having uniform and desired physical properties.
 同時に本発明の製造方法では繊維内部に気泡を発生させることが好ましい。この目的のための発泡剤としては、不活性ガスであることが特に適している。不活性ガスを用いた場合には、溶融紡糸時の高温・高圧の条件下では、熱可塑性樹脂中に不活性ガスが少量ながら溶解する。そしてスリットダイから押し出される際には、不活性ガスを用いた場合に特に、微小な、しかも多数の気泡が発生することになるのである。本発明においては、このような紡糸工程途中の気泡の発生によって、さらには、溶解していた不活性ガスの溶出により、異形繊維の内部に不連続な気泡を、安定して生じさせることができる。 At the same time, in the production method of the present invention, it is preferable to generate bubbles inside the fiber. The foaming agent for this purpose is particularly suitable to be an inert gas. When an inert gas is used, the inert gas dissolves in the thermoplastic resin in a small amount under the conditions of high temperature and high pressure during melt spinning. Then, when the gas is extruded from the slit die, a large number of minute bubbles are generated, especially when the inert gas is used. In the present invention, discontinuous bubbles can be stably generated inside the deformed fiber by the generation of bubbles during the spinning process and further by the elution of the dissolved inert gas. ..
 ダイより吐出された樹脂は速やかに冷却することが好ましい。この冷却は網目状繊維シート段階での網目の大きさや、最終的に得られる異形繊維の繊維径や形状を定める要因ともなるため、十分に管理することが望ましい。例えば、繊維径が大きく網目の大きい網目状繊維シートを製造したい場合は冷却を少なくすればよい。繊維径を小さく網目を細くする場合は逆にするとよい。この冷却は一般的には空気冷却の方法が好ましく、その風量を変化させる事で網目や繊維径の調節がなされるが、水等の液体を使用したり、冷却した固体と接触させたりすることも可能である。 It is preferable that the resin discharged from the die is cooled quickly. This cooling is also a factor that determines the size of the mesh at the mesh fiber sheet stage and the fiber diameter and shape of the finally obtained deformed fiber, so it is desirable to manage it sufficiently. For example, when it is desired to produce a mesh-like fiber sheet having a large fiber diameter and a large mesh, cooling may be reduced. If the fiber diameter is small and the mesh is thin, the reverse is recommended. Generally, the air cooling method is preferable for this cooling, and the mesh and fiber diameter are adjusted by changing the air volume, but a liquid such as water or contact with a cooled solid is used. Is also possible.
 さらにこの網目状繊維シートの製造方法としては、熱可塑性樹脂を発泡剤と共にスリットダイより溶融状態で押出した後に、吐出された樹脂を十分な速さで引取ることが好ましい。この引取り速度が十分でない場合得られる網目状繊維シートや異形繊維の強度が弱くなったり、極端な場合はシートに大きな穴の開いた状態となり、均一な異形繊維が得られないおそれがある。この引取速度の目安はドラフト率で表現され、通常10倍以上であり、20~400倍であることが好ましい。さらには300倍以下、特には20~200倍のドラフト率で引取られることが好ましい。ここでドラフト率が低すぎると繊維が太くなりすぎる傾向にある。逆に高すぎても糸切れが発生し、安定な網目状繊維シートの製造が困難になる傾向にある。ここでドラフトとは、繊維を伸張して樹脂の分子を配向させ、強度を向上させることである。またここで用いるドラフト率は、ダイを通る樹脂の線速度に対する引取り速度の比で表現されるものである。引取りの途中で、後に述べる延展を行う場合には、延展を行わない場合の速度に換算しドラフト率とする。 Further, as a method for producing this mesh-like fiber sheet, it is preferable that the thermoplastic resin is extruded from the slit die together with the foaming agent in a molten state, and then the discharged resin is taken up at a sufficient speed. If the take-up speed is not sufficient, the strength of the mesh-like fiber sheet or the deformed fiber obtained may be weakened, or in an extreme case, a large hole may be formed in the sheet, and a uniform deformed fiber may not be obtained. The guideline for the pick-up speed is expressed by the draft rate, and is usually 10 times or more, preferably 20 to 400 times. Further, it is preferable that the draft rate is 300 times or less, particularly 20 to 200 times. Here, if the draft rate is too low, the fibers tend to be too thick. On the contrary, if it is too high, yarn breakage will occur, and it tends to be difficult to manufacture a stable mesh fiber sheet. Here, the draft is to stretch the fibers to orient the molecules of the resin and improve the strength. The draft rate used here is expressed by the ratio of the take-up speed to the linear speed of the resin passing through the die. When the extension described later is performed during the collection, the speed is converted to the speed when the extension is not performed and used as the draft rate.
 さらに本発明で用いる網目状繊維シートの網目の大きさや、異形繊維の繊維径を調節する一つの方法に、樹脂の溶融粘度を変える方法がある。この溶融粘度を変える方法としては、例えば温度条件を変える方法、樹脂の重合度を変える方法、可塑剤などを使用する方法、またはこれらの組合せによる方法等があるが、温度条件を変える方法が最も簡単であり好ましい。また、紡糸での発泡性物質の添加量や温度条件、ドラフト率等により、前述の異形繊維の異型度や中空率、中空空隙の形状については、調整が可能である。 Further, one method of adjusting the mesh size of the mesh-like fiber sheet used in the present invention and the fiber diameter of the deformed fiber is to change the melt viscosity of the resin. As a method of changing the melt viscosity, for example, there are a method of changing the temperature condition, a method of changing the degree of polymerization of the resin, a method of using a plasticizer, or a method of using a combination thereof, but the method of changing the temperature condition is the most important. Easy and preferable. Further, the degree of deformation, the hollow ratio, and the shape of the hollow voids of the above-mentioned deformed fibers can be adjusted by adjusting the amount of the foamable substance added in spinning, the temperature condition, the draft rate, and the like.
 本発明の異形繊維は、上記のような網目状繊維シートの状態を、その製造の途中工程で経るものであることが好ましい。網目状繊維シートの形態を経ることにより、容易に大きな倍率でのドラフトや延展が可能となり、安定的な生産性を確保できるのである。結果として、十分な強度を持った異形繊維が容易に得られる。本発明においては、不織布構造体中の異形繊維が内部に気泡を含有し、その断面形状が不規則な非円形断面であることが好ましい。しかし通常このような異形繊維は強度が弱く、工業的に安定して生産することが非常に困難であった。しかし上述のように一旦網目状繊維シートの形態を経ることによって、断糸等が少ない高強度の異形繊維を、安定して製造することができる。 It is preferable that the deformed fiber of the present invention undergoes the state of the mesh-like fiber sheet as described above in the middle of its production. By passing through the form of a mesh-like fiber sheet, it is possible to easily draft and spread at a large magnification, and stable productivity can be ensured. As a result, deformed fibers having sufficient strength can be easily obtained. In the present invention, it is preferable that the deformed fibers in the nonwoven fabric structure contain bubbles inside and the cross-sectional shape thereof is irregular and non-circular. However, such deformed fibers usually have low strength, and it is very difficult to produce them in an industrially stable manner. However, once the fiber sheet is formed as a mesh as described above, high-strength deformed fibers with less yarn breakage can be stably produced.
 また、このような網目状繊維シートは、下記に述べる延展工程により、さらに均一かつ高強度の網目状繊維シートとすることができ、補強用繊維シートへの含浸性に優れるため、成形後の複合体について高い物性を得ることができる。ここで延展工程とは、網目状繊維シートをヨコ方向に延伸して、網目を拡げる工程のことをいう。その具体的な方法としては、例えば、網目状繊維シートをその両端を把持しながらヨコ方向に拡げる方法や円形状のスリットから押出された網目状繊維シートをスリットの直径方向に拡げる方法などがある。特に多数枚のシートを積層して、その両端を把持しつつヨコ方向に拡げる方法が好ましい。工業生産性が他の方法に比べ高いばかりでなく、積層により厚さ方向や幅方向の均一性が向上する。ヨコ方向へ拡げる方法は、上記の通り、両端のみを把持して拡げる方法、幅方向に幾つかのゾーンに分け、各ゾーンを拡げる方法、その他の方法等、いずれの方法であってもよい。上記の延展を行う場合、一枚の網目状繊維シートにそのまま行ってもよく、2枚以上積層して行ってもよい。2枚以上積層する場合、その枚数は2~2000枚、好ましくは10~1000枚の範囲が好ましい。なお、積層する網目状繊維シートは、同種の物でも良いし、異種ポリマーで作製した複数の網目状繊維シートを一緒に積層してもよい。さらには、短繊維からなる不織布ウェブや、スパンボンド不織布等の長繊維不織布などを組み合わせることも可能である。
(補強用繊維シート)
 本発明の積層体に用いられる補強用繊維シートを構成する補強用繊維としては、耐熱性が350℃以上の補強用繊維であることが好ましい。
Further, such a mesh-like fiber sheet can be further made into a uniform and high-strength mesh-like fiber sheet by the spreading step described below, and has excellent impregnation property into the reinforcing fiber sheet. High physical characteristics can be obtained for the body. Here, the spreading step means a step of stretching the mesh-like fiber sheet in the horizontal direction to expand the mesh. Specific methods include, for example, a method of expanding the mesh fiber sheet in the horizontal direction while grasping both ends thereof, and a method of expanding the mesh fiber sheet extruded from the circular slit in the diameter direction of the slit. .. In particular, a method of stacking a large number of sheets and expanding them in the horizontal direction while grasping both ends thereof is preferable. Not only is the industrial productivity higher than other methods, but the lamination improves the uniformity in the thickness direction and the width direction. As described above, the method of expanding in the horizontal direction may be any method such as a method of grasping and expanding only both ends, a method of dividing into several zones in the width direction and expanding each zone, and other methods. When the above-mentioned spreading is performed, it may be carried out as it is on one mesh fiber sheet, or two or more sheets may be laminated. When two or more sheets are laminated, the number of sheets is preferably 2 to 2000, preferably 10 to 1000. The mesh-like fiber sheets to be laminated may be of the same type, or a plurality of mesh-like fiber sheets made of different polymers may be laminated together. Further, it is also possible to combine a non-woven fabric web made of short fibers, a long-fiber non-woven fabric such as a spunbonded non-woven fabric, and the like.
(Reinforcing fiber sheet)
The reinforcing fiber constituting the reinforcing fiber sheet used in the laminate of the present invention is preferably a reinforcing fiber having a heat resistance of 350 ° C. or higher.
 具体的には、強度の高い炭素繊維、ガラス繊維、金属繊維などの無機繊維や、芳香族ポリアミド繊維等の有機合成繊維を用いることができる。さらにはこれらを単独または2種以上を併用しても良い。金属繊維としては、例えばステンレス繊維を挙げることができ、導電性・機械的特性において好ましい。また、強化繊維の表面に金属などを被覆したり蒸着させたりしてもよい。例えば、ニッケルコート炭素繊維は導電性において好ましい。特には高強度、高弾性率である炭素繊維やガラス繊維が好ましく、さらには高剛性の積層体を得るためには炭素繊維、より具体的にはポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系などの炭素繊維を挙げることが可能である。特には、PANを原料としたPAN系炭素繊維が、工業規模における生産性および機械的特性に優れており好ましい。 Specifically, inorganic fibers such as high-strength carbon fibers, glass fibers, and metal fibers, and organic synthetic fibers such as aromatic polyamide fibers can be used. Further, these may be used alone or in combination of two or more. Examples of the metal fiber include stainless steel fiber, which is preferable in terms of conductivity and mechanical properties. Further, the surface of the reinforcing fiber may be coated with a metal or the like or vapor-filmed. For example, nickel-coated carbon fiber is preferred in terms of conductivity. In particular, carbon fibers and glass fibers having high strength and high elasticity are preferable, and carbon fibers, more specifically polyacrylonitrile (PAN) type, petroleum / coal pitch type, are used to obtain a highly rigid laminate. , Rayon-based, lignin-based and other carbon fibers can be mentioned. In particular, PAN-based carbon fiber made from PAN is preferable because it is excellent in productivity and mechanical properties on an industrial scale.
 また本発明で用いる補強用繊維としては、一方向に長い繊維形状であれば良く、一般的なファイバーやフィラメントのみでなく、いわゆるウィスカー等も含む概念である。 Further, the reinforcing fiber used in the present invention may have a fiber shape long in one direction, and is a concept including not only general fibers and filaments but also so-called whiskers and the like.
 より具体的に本発明に好適に用いられる補強用繊維を例示すると、ガラスファイバー、扁平断面ガラスファイバー、カーボンファイバー、メタルファイバー、アスベスト、ロックウール、セラミックファイバー、スラグファイバー、チタン酸カリウムウィスカー、ボロンウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、酸化チタンウィスカー、ワラストナイト、ゾノトライト、パリゴルスカイト(アタパルジャイト)、およびセピオライトなどの無機充填材からなる繊維状物、アラミド繊維、ポリイミド繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維およびポリベンズチアゾール繊維などの耐熱有機繊維に代表され耐熱有機繊維、並びにこれらの繊維に対して例えば金属や金属酸化物などの異種材料を表面被覆した繊維などが例示される。 More specifically, examples of reinforcing fibers preferably used in the present invention are glass fibers, flat cross-section glass fibers, carbon fibers, metal fibers, asbestos, rock wool, ceramic fibers, slag fibers, potassium titanate whisker, and boron whisker. , Aluminum borate whisker, Calcium carbonate whisker, Titanium oxide whisker, Wallastnite, Zonotolite, Parigorskite (atapaljite), and fibrous material consisting of inorganic fillers such as sepiolite, aramid fiber, polyimide fiber, PBO (polyparaphenylene benz) Examples thereof include heat-resistant organic fibers typified by heat-resistant organic fibers such as oxazole) fibers and polybenzthiazole fibers, and fibers in which a different material such as a metal or a metal oxide is surface-coated on these fibers.
 異種材料を表面被覆した繊維としては繊維状の形態であれば足り、例えば金属コートガラスファイバー、金属コートガラスフレーク、酸化チタンコートガラスフレーク、および金属コートカーボンファイバーなどが例示される。異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。 As the fiber surface-coated with different materials, a fibrous form is sufficient, and examples thereof include metal-coated glass fiber, metal-coated glass flake, titanium oxide-coated glass flake, and metal-coated carbon fiber. The method of surface coating of different materials is not particularly limited, and for example, various known plating methods (for example, electrolytic plating, electroless plating, hot-dip plating, etc.), vacuum vapor deposition method, ion plating method, CVD method (for example). For example, thermal CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method and the like can be mentioned.
 これらの補強用繊維の中でも、ガラス繊維、炭素繊維およびアラミド繊維から選ばれる1種であることが好ましく、炭素繊維およびガラス繊維から選ばれる少なくとも1種であることがより好ましい。またこれらの補強用の強化繊維は、1種のみを使用してもよく、複数種を使用してもよい。 Among these reinforcing fibers, one selected from glass fiber, carbon fiber and aramid fiber is preferable, and at least one selected from carbon fiber and glass fiber is more preferable. Further, as these reinforcing fibers for reinforcement, only one kind may be used, or a plurality of kinds may be used.
 補強用繊維の太さ、いわゆる繊度としては、平均直径として3~20μmのものを使用することが好ましく、さらには5~15μmであることが好ましい。このような範囲では繊維の物性が高いだけではなく、最終的にマトリックスとなる熱可塑性樹脂中での分散性にも優れる。また、生産性の面から、この補強用繊維は、1000~50000本の単繊維が繊維束となったものであることも好ましい。 As the thickness of the reinforcing fiber, so-called fineness, it is preferable to use one having an average diameter of 3 to 20 μm, and further preferably 5 to 15 μm. In such a range, not only the physical characteristics of the fiber are high, but also the dispersibility in the thermoplastic resin that finally becomes the matrix is excellent. Further, from the viewpoint of productivity, it is also preferable that the reinforcing fiber is a fiber bundle of 1,000 to 50,000 single fibers.
 また本発明の積層体に用いる補強用の繊維としては、最終的に樹脂を補強するためにも強度は高い方が好ましく、繊維の引張強度としては、3500MPa~7000MPaであることや、モジュラスとしては220GPa~900GPaであることが好ましい。最終的に高強度の成形品が得られる観点からも、補強用繊維としては特には炭素繊維が好ましく、PAN系炭素繊維であることがより好ましい。 Further, the reinforcing fiber used in the laminate of the present invention preferably has a high strength in order to finally reinforce the resin, and the tensile strength of the fiber is 3500 MPa to 7000 MPa, and the modulus is It is preferably 220 GPa to 900 GPa. From the viewpoint of finally obtaining a high-strength molded product, carbon fiber is particularly preferable as the reinforcing fiber, and PAN-based carbon fiber is more preferable.
 炭素繊維の表面はマトリックス樹脂との相溶性を高め、ポリプロピレン樹脂とポリカーボネート樹脂の分散性を向上する目的で酸化処理されることが好ましい。機構はまだ明らかではないが、炭素繊維の表面を酸化処理することで、表面の極性が向上し、非極性であるプロピレン樹脂と炭素繊維の密着性はより低下することになる。結果として、相対的に極性の高いポリカーボネート樹脂との密着性が向上するものと考えられる。 The surface of the carbon fiber is preferably oxidized for the purpose of increasing the compatibility with the matrix resin and improving the dispersibility of the polypropylene resin and the polycarbonate resin. Although the mechanism is not yet clear, by oxidizing the surface of the carbon fiber, the polarity of the surface is improved, and the adhesion between the non-polar propylene resin and the carbon fiber is further lowered. As a result, it is considered that the adhesion to the polycarbonate resin having a relatively high polarity is improved.
 酸化処理の度合は炭素繊維上の表面酸素濃度(O/C)によって定量することができる。炭素繊維上の表面酸素濃度(O/C)は、X線光電子分光法によって測定される繊維表面の酸素(O)と炭素(C)との原子数の比である表面酸素濃度(O/C)が0.15以上であることが好ましく、0.18以上であることがより好ましく、0.2以上であることがさらに好ましい。表面酸素濃度が0.15未満である場合、炭素繊維とポリカーボネート樹脂との密着性が不十分となる場合があり、好ましくない。なお、表面酸素濃度の上限は特に限定されないが、炭素繊維の取扱性、生産性のバランスから一般的に0.5以下であることが好ましい。 The degree of oxidation treatment can be quantified by the surface oxygen concentration (O / C) on the carbon fiber. The surface oxygen concentration (O / C) on the carbon fiber is the surface oxygen concentration (O / C) which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy. ) Is preferably 0.15 or more, more preferably 0.18 or more, and further preferably 0.2 or more. If the surface oxygen concentration is less than 0.15, the adhesion between the carbon fiber and the polycarbonate resin may be insufficient, which is not preferable. The upper limit of the surface oxygen concentration is not particularly limited, but is generally preferably 0.5 or less from the viewpoint of the balance between the handleability and productivity of carbon fibers.
 酸化処理方法は特に限定されないが、例えば、(1)炭素繊維を酸もしくはアルカリまたはそれらの塩、あるいは酸化性気体により処理する方法、(2)炭素繊維化可能な繊維または繊維状炭素充填材を、含酸素化合物を含む不活性ガスの存在下、700℃以上の温度で焼成する方法、および(3)炭素繊維を酸化処理した後、不活性ガスの存在下で熱処理する方法などが好適に例示される。 The oxidation treatment method is not particularly limited, and for example, (1) a method of treating carbon fibers with an acid or an alkali or a salt thereof, or an oxidizing gas, and (2) a carbon fiberizable fiber or a fibrous carbon filler. , A method of firing at a temperature of 700 ° C. or higher in the presence of an inert gas containing an oxygen-containing compound, and (3) a method of oxidizing carbon fibers and then heat-treating in the presence of an inert gas are preferably exemplified. Will be done.
 これらの補強用繊維の積層体中での存在形態としては、長繊維や短繊維のいずれの形態でも用いることが可能である。しかし、樹脂の補強の観点からは長繊維形状であることが好ましく、逆に得られる複合体の物性を等方性とする観点からは、短繊維を主とする構成であることが好ましい。ここで短繊維とは、長繊維ではない不連続繊維であることをいう。短繊維として用いる場合には、補強用繊維シートが、あらかじめ繊維の配向をランダムにした繊維集合体や不織布であることが好ましい。 As the existing form of these reinforcing fibers in the laminate, either long fiber or short fiber can be used. However, from the viewpoint of reinforcing the resin, it is preferable to have a long fiber shape, and conversely, from the viewpoint of making the physical properties of the obtained complex isotropic, it is preferable to have a structure mainly composed of short fibers. Here, the short fiber means a discontinuous fiber that is not a long fiber. When used as short fibers, it is preferable that the reinforcing fiber sheet is a fiber aggregate or a non-woven fabric in which the orientation of the fibers is randomized in advance.
 また、補強用繊維を短繊維(不連続繊維)として用いる場合には、その長さは300μm以上であることが好ましく、3mm以上であることがより好ましく、6mm以上であることが更に好ましく、20mm以上であることが最も好ましい。また短繊維として用いる場合は100mm以下であることが好ましく、さらには80mm以下であることが、特には60mm以下であることが好ましい。このような繊維を不織布形状として用いた場合には、強度や寸法に対する異方性が改善される。 When the reinforcing fiber is used as a short fiber (discontinuous fiber), its length is preferably 300 μm or more, more preferably 3 mm or more, further preferably 6 mm or more, and further preferably 20 mm. The above is the most preferable. When used as a staple fiber, it is preferably 100 mm or less, more preferably 80 mm or less, and particularly preferably 60 mm or less. When such a fiber is used as a non-woven fabric shape, anisotropy with respect to strength and dimensions is improved.
 一方補強用繊維を長繊維として用いる場合には、一方向性シートや、織物、編物、組紐、などのさまざまな形態で用いることができる。ただし最終的に得られる複合体の強度補強の面からは、一方向性シート(いわゆるUDシート)として用いることが好ましい。あるいは補強用繊維の一部または全部が一方向性繊維シートや一方向性テープであって、それらを部分的に用いることが好ましい。長繊維として用いる場合の特に好ましい形態としては、2軸や3軸等の織物であることも好ましい。さらにはこれらの繊維形態としては、部分的に1種または2種以上の形態を組み合わせて使用することも可能である。 On the other hand, when the reinforcing fiber is used as a long fiber, it can be used in various forms such as a unidirectional sheet, a woven fabric, a knitted fabric, and a braid. However, from the viewpoint of reinforcing the strength of the finally obtained complex, it is preferable to use it as a unidirectional sheet (so-called UD sheet). Alternatively, it is preferable that part or all of the reinforcing fibers are unidirectional fiber sheets or unidirectional tapes, and these are partially used. As a particularly preferable form when used as a long fiber, a woven fabric having two or three axes is also preferable. Further, as these fiber forms, it is also possible to partially use one kind or a combination of two or more kinds of forms.
 本発明に用いられる補強用繊維シートを構成する補強用繊維の含有量は、A成分とB成分との合計100重量部に対し、151~900重量部であり、好ましくは300~800重量部、より好ましくは400~700重量部、さらに好ましくは550~650重量部である。補強用繊維の含有量が151重量部未満では、繊維強化樹脂複合体の強度が十分に発揮されず、900重量部を超えると強化繊維の滑落が多数発生し、強度が不均一となる。
(積層方法)
 さらに本発明の積層体は、上記のような熱可塑性樹脂シートと補強用繊維シートとを重ね合わせ、熱可塑性樹脂シートを構成する熱可塑性樹脂の溶融温度以上、補強用繊維シートを構成する補強用繊維の耐熱温度未満の温度で、加圧処理することにより繊維強化樹脂複合体とすることが可能である。
The content of the reinforcing fiber constituting the reinforcing fiber sheet used in the present invention is 151 to 900 parts by weight, preferably 300 to 800 parts by weight, based on 100 parts by weight of the total of the A component and the B component. It is more preferably 400 to 700 parts by weight, still more preferably 550 to 650 parts by weight. If the content of the reinforcing fibers is less than 151 parts by weight, the strength of the fiber-reinforced resin composite is not sufficiently exhibited, and if it exceeds 900 parts by weight, many slips of the reinforcing fibers occur and the strength becomes non-uniform.
(Laminating method)
Further, in the laminate of the present invention, the above-mentioned thermoplastic resin sheet and the reinforcing fiber sheet are superposed, and the temperature is equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet, and the reinforcing fiber sheet is formed. A fiber-reinforced resin composite can be obtained by pressure-treating at a temperature lower than the heat-resistant temperature of the fiber.
 熱可塑性樹脂シートと補強用繊維シートとの重量比率としては45:55~20:80の範囲であることが好ましく、35:65~25:75の範囲であることがより好ましい。また熱可塑性樹脂シートとしては、直径8mmの測定子のピーコックを使用して、荷重1.25N/cmの条件下の厚さを測定した時の厚さは0.05~0.5mmが好ましく、0.1~0.3mmがより好ましく、目付は2~100g/mの範囲内であることが好ましい。補強用繊維シートとしては、厚さは0.05~1.0mm、目付は100~2000g/mの範囲内であることが好ましい。 The weight ratio of the thermoplastic resin sheet to the reinforcing fiber sheet is preferably in the range of 45:55 to 20:80, and more preferably in the range of 35:65 to 25:75. As the thermoplastic resin sheet, the thickness is preferably 0.05 to 0.5 mm when the thickness is measured under the condition of a load of 1.25 N / cm 2 using a peacock with a stylus having a diameter of 8 mm. , 0.1 to 0.3 mm is more preferable, and the texture is preferably in the range of 2 to 100 g / m 2 . The reinforcing fiber sheet preferably has a thickness of 0.05 to 1.0 mm and a basis weight of 100 to 2000 g / m 2 .
 本発明の積層体は、このような薄い熱可塑性樹脂シートと補強用繊維シートとを複数枚重ねたものであって、重ね方としては交互に配列したものであることが、さらには表裏の最表面には熱可塑性樹脂シートを配置することが好ましい。補強用繊維シートの枚数は、好ましくは1枚~5枚、より好ましくは1枚~3枚、さらに好ましくは1枚~2枚である。図4に、本発明の積層体の断面図の模式図を示す。図4中、符号5は熱可塑性樹脂シート層で、符号6は補強用繊維シート層である。
<繊維強化樹脂複合体>
 本発明の繊維強化樹脂複合体は、前述の本発明の積層体からなる。本発明の繊維強化樹脂複合体は、積層体を加圧処理することにより得られ、補強用繊維シートが熱可塑性樹脂シートを介して重ね合わさった構造を有する。積層体の熱可塑性樹脂シートの一部は、補強用繊維シートに含浸しているが、基本的には、積層体と同様な断面形状を有する。図5に本発明の繊維強化樹脂複合体の断面図の模式図を示す。図5中、符号5は熱可塑性樹脂シート層で、符号6は補強用繊維シート層である。
<繊維強化樹脂複合体の製造方法>
 本発明の繊維強化樹脂複合体は、本発明の積層体を加圧処理することにより得られる。具体的には、前述の積層体を、熱可塑性樹脂シートを構成する熱可塑性樹脂の溶融温度以上、補強用繊維シートを構成する補強用繊維の耐熱温度未満の温度で、加圧処理することにより製造することができる。
The laminate of the present invention is a stack of a plurality of such thin thermoplastic resin sheets and reinforcing fiber sheets, and the stacking method is that they are alternately arranged. It is preferable to arrange a thermoplastic resin sheet on the surface. The number of reinforcing fiber sheets is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 to 2. FIG. 4 shows a schematic cross-sectional view of the laminated body of the present invention. In FIG. 4, reference numeral 5 is a thermoplastic resin sheet layer, and reference numeral 6 is a reinforcing fiber sheet layer.
<Fiber reinforced plastic complex>
The fiber-reinforced resin composite of the present invention comprises the above-mentioned laminate of the present invention. The fiber-reinforced resin composite of the present invention is obtained by pressure-treating a laminated body, and has a structure in which reinforcing fiber sheets are laminated via a thermoplastic resin sheet. A part of the thermoplastic resin sheet of the laminated body is impregnated with the reinforcing fiber sheet, but basically has the same cross-sectional shape as the laminated body. FIG. 5 shows a schematic cross-sectional view of the fiber reinforced resin complex of the present invention. In FIG. 5, reference numeral 5 is a thermoplastic resin sheet layer, and reference numeral 6 is a reinforcing fiber sheet layer.
<Manufacturing method of fiber reinforced resin composite>
The fiber-reinforced resin complex of the present invention can be obtained by pressure-treating the laminate of the present invention. Specifically, the above-mentioned laminate is pressure-treated at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet and lower than the heat resistant temperature of the reinforcing fiber constituting the reinforcing fiber sheet. Can be manufactured.
 この方法により、補強用繊維の周囲を熱可塑性樹脂によって包囲するのであるが、複合体の物性を向上させるためにも空隙が存在しないことが好ましい。加圧処理の温度としては使用する熱可塑性樹脂にもよるが200~340℃、さらには240~330℃の範囲であることが好ましい。処理時間としては1~30分程度が好ましく、1~10分程度がより好ましく、特には3~10分の範囲であることが好ましい。加工時のプレス圧力としては2~30MPa、さらには5~20MPaの範囲内であることが好ましい。 By this method, the reinforcing fiber is surrounded by the thermoplastic resin, but it is preferable that there are no voids in order to improve the physical properties of the complex. The temperature of the pressurizing treatment depends on the thermoplastic resin used, but is preferably in the range of 200 to 340 ° C., more preferably 240 to 330 ° C. The treatment time is preferably about 1 to 30 minutes, more preferably about 1 to 10 minutes, and particularly preferably in the range of 3 to 10 minutes. The press pressure during processing is preferably in the range of 2 to 30 MPa, more preferably 5 to 20 MPa.
 本発明者らが現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。 The embodiment of the present invention, which the present inventors consider to be the best at present, is a collection of preferable ranges of the above-mentioned requirements. For example, a representative example thereof will be described in the following examples. Of course, the present invention is not limited to these forms.
 次に本発明の実施例および比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
(I)熱可塑性樹脂シートの評価
(I-1)目付(繊維状シートの場合)
 JIS L 1913に準じて測定した。
(I-2)異型度(繊維状シートの場合)
 図3に示される単繊維横断面の外接円直径D1と内接円直径D2との比(D1/D2)を算出し、異型度とした。なお異形度は繊維20本分の異形度の平均値で表した。
(I-3)中空率(繊維状シートの場合)
 デジタル化した繊維断面写真を、画像解析システム、ピアス-2(ピアス(株)製)を用い、繊維の断面積(中空部を含む)と中空部面積を測定し、その面積比から中空率(%)を算出した。なお中空率は繊維20本分の中空率の平均値で表した。
(I-4)平均厚み(フィルム状シートの場合)
 直径8mmの測定子のピーコックを使用して、荷重1.25N/cmの条件下の厚さを測定した。なお測定はフィルムの両端部および中心部の三点を測定し、これらの平均値を平均厚みとした。
(II)積層体および繊維強化樹脂複合体の評価
(II-1)成形加工性
 実施例および比較例で得られた積層体を予熱したホットプレスに挿入して、温度250℃およびプレス時間10分の条件下、15MPaのプレス圧にて、繊維強化樹脂複合体を成形するときの成形加工性を以下の基準で評価を実施した。
Next, examples and comparative examples of the present invention will be described in detail, but the present invention is not limited thereto. In addition, each measurement item in an Example was measured by the following method.
(I) Evaluation of thermoplastic resin sheet (I-1) Metsuke (in the case of fibrous sheet)
It was measured according to JIS L 1913.
(I-2) Degree of atypia (in the case of fibrous sheet)
The ratio (D1 / D2) of the circumscribed circle diameter D1 and the inscribed circle diameter D2 of the cross section of the single fiber shown in FIG. 3 was calculated and used as the degree of atypia. The degree of deformation was expressed by the average value of the degree of deformation for 20 fibers.
(I-3) Hollow ratio (in the case of fibrous sheet)
Using an image analysis system, Pierce-2 (manufactured by Pierce Co., Ltd.), the cross-sectional area of the fiber (including the hollow portion) and the area of the hollow portion are measured from the digitized cross-sectional photograph of the fiber, and the hollow ratio (hollow ratio) is measured from the area ratio. %) Was calculated. The hollow ratio is represented by the average value of the hollow ratio of 20 fibers.
(I-4) Average thickness (in the case of film-like sheet)
Using a peacock with a stylus with a diameter of 8 mm, the thickness under the condition of a load of 1.25 N / cm 2 was measured. The measurement was performed at three points at both ends and the center of the film, and the average value of these points was taken as the average thickness.
(II) Evaluation of Laminated Body and Fiber Reinforced Resin Composite (II-1) Moldability The laminates obtained in Examples and Comparative Examples were inserted into a preheated hot press, and the temperature was 250 ° C. and the pressing time was 10 minutes. Under the above conditions, the molding processability when molding the fiber-reinforced resin composite under the press pressure of 15 MPa was evaluated according to the following criteria.
   ○: 成形時にガス発生がなく、表面外観の良い成形品が得られる
   △: 成形時にややガス発生するが、表面外観には影響しない
   ×: 成形時にガス発生が多く、表面外観の悪い成形品が得られる
(II-2)空隙数
 実施例および比較例で得られた積層体を予熱したホットプレスに挿入して、表3~表5に示す条件(温度、プレス時間、プレス圧)にて、繊維強化樹脂複合体を得た。得られた繊維強化樹脂複合体の断面を走査電子顕微鏡(SEM、JEOL社製、JSM-6100)にて、倍率100倍で観察し、空隙数を断面中の気泡の数で評価した。気泡の大きさは強化繊維径より大きなものをカウントし、数は3個以下であれば強化繊維への樹脂の含浸性は良好である。
(II-3)曲げ弾性率
 実施例および比較例で得られた積層体を予熱したホットプレスに挿入して、表3~表5に示す条件(温度、プレス時間、プレス圧)にて、繊維強化樹脂複合体を得た。得られた繊維強化樹脂複合体から、長さ80mm、幅10mmのサイズを切り出しサンプル片とし、ISO178に準拠して曲げ弾性率を測定した(測定条件:試験速度2mm/min、試験温度23℃)。なおサンプル片はお互いが垂直になるような二方向で切り出し、曲げ弾性率はその二方向の曲げ弾性率の平均値として評価を実施した。
(II-4)曲げ強度
 実施例および比較例で得られた積層体を(II-2)と同様な方法でサンプル片を作成し、ISO178に準拠して曲げ強度を測定した(測定条件:試験速度2mm/min、試験温度23℃)。なおサンプル片はお互いが垂直になるような二方向で切り出し、曲げ強度はその二方向の曲げ強度の平均値として評価を実施した。
(II-5)外観
 実施例および比較例で得られた積層体(II-2)と同様なサンプル片を作製し、目視でサンプルを確認し、以下の基準で評価をした。
◯: No gas is generated during molding, and a molded product with a good surface appearance can be obtained. △: A little gas is generated during molding, but it does not affect the surface appearance. (II-2) Number of voids obtained The laminates obtained in Examples and Comparative Examples were inserted into a preheated hot press, and under the conditions (temperature, press time, press pressure) shown in Tables 3 to 5. A fiber reinforced resin composite was obtained. The cross section of the obtained fiber-reinforced resin composite was observed with a scanning electron microscope (SEM, manufactured by JEOL, JSM-6100) at a magnification of 100 times, and the number of voids was evaluated by the number of bubbles in the cross section. The size of the bubbles counts larger than the diameter of the reinforcing fibers, and if the number is 3 or less, the impregnation property of the resin into the reinforcing fibers is good.
(II-3) Bending elastic modulus The laminates obtained in Examples and Comparative Examples are inserted into a preheated hot press, and the fibers are subjected to the conditions (temperature, press time, press pressure) shown in Tables 3 to 5. A reinforced resin composite was obtained. From the obtained fiber-reinforced resin composite, a size of 80 mm in length and 10 mm in width was cut out as a sample piece, and the flexural modulus was measured in accordance with ISO178 (measurement conditions: test speed 2 mm / min, test temperature 23 ° C.). .. The sample pieces were cut out in two directions so that they were perpendicular to each other, and the flexural modulus was evaluated as the average value of the flexural modulus in the two directions.
(II-4) Bending strength A sample piece was prepared from the laminates obtained in Examples and Comparative Examples by the same method as in (II-2), and the bending strength was measured in accordance with ISO178 (measurement conditions: test). Speed 2 mm / min, test temperature 23 ° C). The sample pieces were cut out in two directions so that they were perpendicular to each other, and the bending strength was evaluated as the average value of the bending strengths in the two directions.
(II-5) Appearance A sample piece similar to the laminate (II-2) obtained in Examples and Comparative Examples was prepared, the sample was visually confirmed, and the evaluation was made according to the following criteria.
  〇:繊維が均一に積層されており、表面外観が良好である。 〇: The fibers are evenly laminated and the surface appearance is good.
  △:繊維が一部不均一に積層されているが、表面外観には影響しない。 △: Fibers are partially unevenly laminated, but do not affect the surface appearance.
  ×:繊維が不均一に積層されており、表面外観が悪い。
[使用組成]
 実施例では、下記の成分を使用した。
(A成分)(ポリプロピレン樹脂)
A-1:ホモポリプロピレン樹脂[(株)サンアロマー製「VS200A」、MFR(230℃、2.16kg荷重)=0.5g/10min]
A-2:ホモポリプロピレン樹脂[(株)プライムポリマー製「プライムポリプロJ105G」、MFR(230℃、2.16kg荷重)=9g/10min]
(B成分)(ポリカーボネート樹脂)
B-1:モノマー成分として2,2-ビス(4-ヒドロキシフェニル)プロパンからなるポリカーボネート樹脂[MVR(300℃、1.2kg荷重)=8.5cm/10min]
B-2:モノマー成分として2,2-ビス(4-ヒドロキシフェニル)プロパンおよび下記式〔14〕で表されるポリジオルガノシロキサン化合物(式中の平均繰り返し数 p=約37)からなる共重合ポリカーボネート樹脂[MVR(300℃、1.2kg荷重)=5.5cm/10min、ポリジオルガノシロキサン成分含有量8.2%]
X: The fibers are non-uniformly laminated and the surface appearance is poor.
[Composition used]
In the examples, the following components were used.
(Component A) (Polypropylene resin)
A-1: Homopolypropylene resin [“VS200A” manufactured by SunAllomer Ltd., MFR (230 ° C., 2.16 kg load) = 0.5 g / 10 min]
A-2: Homopolypropylene resin ["Prime Polypropylene J105G" manufactured by Prime Polymer Co., Ltd., MFR (230 ° C, 2.16 kg load) = 9 g / 10 min]
(B component) (polycarbonate resin)
B-1: Polycarbonate resin composed of 2,2-bis (4-hydroxyphenyl) propane as a monomer component [MVR (300 ° C., 1.2 kg load) = 8.5 cm 3/10 min]
B-2: Copolymerized polycarbonate composed of 2,2-bis (4-hydroxyphenyl) propane as a monomer component and a polydiorganosiloxane compound represented by the following formula [14] (average number of repetitions p in the formula p = about 37). Resin [MVR (300 ° C, 1.2 kg load) = 5.5 cm 3/10 min, polycarbonate siloxane component content 8.2%]
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(C成分:変性ポリオレフィン樹脂)
C-1:無水マレイン酸変性ポリプロピレン樹脂[三菱化学(株)製、「SCONA TPPP 9212GA」(製品名)]
C-2:無水マレイン酸とα-オレフィンとの共重合体である酸変性オレフィンワックス[三菱化学(株)製「ダイヤカルナDC30M」(製品名)]
(D成分:スチレン系熱可塑エラストマー)
D-1:スチレン-エチレン・プロピレン-スチレンブロック共重合体[スチレン含有量:65wt%、MFR:0.4g/10min、(株)クラレ製 セプトン2104(製品名)]
(補強用繊維)
FI-1:炭素繊維一方向テープ[東邦テナックス(株)製「F-22」、繊維径=7μm]
FI-2:炭素繊維織布[東邦テナックス(株)製「W3101」、目付=200g/m、厚さ0.25mm、繊維径=7μm]
FI-3:ニッケルコート炭素繊維テープ[東邦テナックス(株)製「HTS40 MC」、繊維径=7.5μm、幅10mm]
FI-4:ガラス繊維織布[日東紡株式会社製「WF150」、目付=144g/m、厚さ0.22mm、繊維径=13μm]
FI-5:アラミド繊維不織布[帝人株式会社製「テクノーラ EF200」、目付=200g/m、繊維径=12μm]
FI-6:炭素繊維シート[東邦テナックス(株)製:HT C422 6mm、長径7μm、カット長6mmの炭素繊維を加圧して幅300mm、長さ300mmのシート状にしたもの]
[製造例1~9、11~14](熱可塑性樹脂の繊維で構成されたシートの製造)
 表1に記載のポリプロピレン樹脂組成物を、80℃で5時間、熱風循環式乾燥機にて乾燥した後、発泡剤として窒素ガスを溶融混合し(窒素封入圧=3MPa)、二軸押出機から表に記載の押出温度で押出し、ダイ出口で急冷しながら表に記載の紡糸速度で引取り、中空網目状繊維シートとして巻き取った。この中空網目状繊維シートの評価を表1に示す。
[製造例10](熱可塑性樹脂シート(フィルム状)の製造)
 表1に記載のポリプロピレン樹組成物を、80℃で5時間、熱風循環式乾燥機にて乾燥した後、二軸押出機から表に記載の押出温度で押出し、ダイ出口で急冷しながら表に記載の厚みのフィルム状の熱可塑性樹脂シートを作成した。このフィルム状シートの評価を表1に示す。
[製造例15]
 表1に記載のポリプロピレン樹脂組成物を、80℃で5時間、熱風循環式乾燥機にて乾燥した後、発泡剤として窒素ガスを溶融混合し(窒素封入圧=3MPa)、二軸押出機から表に記載の押出温度で押出し、ダイ出口で急冷しながら表に記載の紡糸速度で引取り、中空網目状繊維シートとして巻き取った。得られた中空網目状繊維シートを7枚積層してベルトにより送り出し、その両端を把持しつつヨコ方向に延展倍率7倍で延展させた後、150℃加熱処理を施し、巻き取った。この中空網目状繊維シートの評価を表1に示す。
[実施例1~18、比較例1~6]
 製造例1~15で得られた熱可塑性樹脂シートおよび補強用繊維シートを表2および表3に示す割合となるように積層し、積層体とした。
(C component: modified polyolefin resin)
C-1: Maleic anhydride-modified polypropylene resin [manufactured by Mitsubishi Chemical Corporation, "SCONA TPPP 9212GA" (product name)]
C-2: Acid-modified olefin wax which is a copolymer of maleic anhydride and α-olefin ["Diacarna DC30M" (product name) manufactured by Mitsubishi Chemical Corporation]
(D component: styrene-based thermoplastic elastomer)
D-1: Styrene-ethylene / propylene-styrene block copolymer [Styrene content: 65 wt%, MFR: 0.4 g / 10 min, Septon 2104 manufactured by Kuraray Co., Ltd. (product name)]
(Reinforcing fiber)
FI-1: Carbon fiber unidirectional tape ["F-22" manufactured by Toho Tenax Co., Ltd., fiber diameter = 7 μm]
FI-2: Carbon fiber woven fabric ["W3101" manufactured by Toho Tenax Co., Ltd., basis weight = 200 g / m 2 , thickness 0.25 mm, fiber diameter = 7 μm]
FI-3: Nickel coated carbon fiber tape ["HTS40 MC" manufactured by Toho Tenax Co., Ltd., fiber diameter = 7.5 μm, width 10 mm]
FI-4: Glass fiber woven fabric ["WF150" manufactured by Nitto Boseki Co., Ltd., grain = 144 g / m 2 , thickness 0.22 mm, fiber diameter = 13 μm]
FI-5: Aramid fiber non-woven fabric ["Technora EF200" manufactured by Teijin Limited, basis weight = 200 g / m 2 , fiber diameter = 12 μm]
FI-6: Carbon fiber sheet [manufactured by Toho Tenax Co., Ltd .: HT C422 6 mm, major axis 7 μm, cut length 6 mm, carbon fiber is pressed to form a sheet with a width of 300 mm and a length of 300 mm]
[Manufacturing Examples 1-9, 11-14] (Manufacturing of a sheet composed of thermoplastic resin fibers)
The polypropylene resin composition shown in Table 1 was dried at 80 ° C. for 5 hours in a hot air circulation type dryer, and then nitrogen gas was melt-mixed as a foaming agent (nitrogen filling pressure = 3 MPa) from a twin-screw extruder. It was extruded at the extrusion temperature shown in the table, taken up at the spinning speed shown in the table while quenching at the die outlet, and wound up as a hollow mesh fiber sheet. The evaluation of this hollow mesh fiber sheet is shown in Table 1.
[Manufacturing Example 10] (Manufacturing of thermoplastic resin sheet (film))
The polypropylene tree composition shown in Table 1 is dried at 80 ° C. for 5 hours in a hot air circulation type dryer, then extruded from a twin-screw extruder at the extrusion temperature shown in the table, and rapidly cooled at the die outlet to be shown in the table. A film-shaped thermoplastic resin sheet having the stated thickness was prepared. The evaluation of this film-like sheet is shown in Table 1.
[Manufacturing Example 15]
The polypropylene resin composition shown in Table 1 was dried at 80 ° C. for 5 hours in a hot air circulation type dryer, and then nitrogen gas was melt-mixed as a foaming agent (nitrogen filling pressure = 3 MPa) from a twin-screw extruder. It was extruded at the extrusion temperature shown in the table, taken up at the spinning speed shown in the table while quenching at the die outlet, and wound up as a hollow mesh fiber sheet. Seven of the obtained hollow mesh fiber sheets were laminated and sent out by a belt, and the fibers were spread in the horizontal direction at a spreading magnification of 7 times while grasping both ends thereof, and then heat-treated at 150 ° C. and wound up. The evaluation of this hollow mesh fiber sheet is shown in Table 1.
[Examples 1 to 18, Comparative Examples 1 to 6]
The thermoplastic resin sheets and reinforcing fiber sheets obtained in Production Examples 1 to 15 were laminated in the proportions shown in Tables 2 and 3 to form a laminated body.
 積層体を予熱したホットプレスに挿入して、表2および表3に示すプレス条件(温度、プレス時間、プレス圧)にて、繊維強化樹脂複合体(FRP成形体)を得た。なお積層の際に、補強用繊維が偏らないように配慮し、また繊維強化樹脂複合体の厚みは、予め加熱加圧後に目的の厚みになるように、熱可塑性繊維シートおよび補強用繊維の量を調整した。最終的に得られた繊維強化樹脂複合体の評価を表2および表3に示す。 The laminate was inserted into a preheated hot press to obtain a fiber reinforced resin composite (FRP molded product) under the press conditions (temperature, press time, press pressure) shown in Tables 2 and 3. At the time of laminating, care should be taken not to bias the reinforcing fibers, and the thickness of the fiber-reinforced resin composite should be the amount of the thermoplastic fiber sheet and the reinforcing fibers so that the desired thickness is obtained after heating and pressurizing in advance. Was adjusted. The evaluation of the finally obtained fiber reinforced resin composite is shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
1.異形繊維断面
2.気泡
3.外接円
4.内接円
5.熱可塑性樹脂シート層
6.補強用繊維シート層
1. 1. Deformed fiber cross section 2. Bubbles 3. Circumscribed circle 4. Inscribed circle 5. Thermoplastic resin sheet layer 6. Reinforcing fiber sheet layer

Claims (10)

  1.  補強用繊維シートと熱可塑性樹脂シートとの積層体であって、熱可塑性樹脂シートが、(A)ポリプロピレン樹脂(A成分)1~99重量部および(B)ポリカーボネート樹脂(B成分)99~1重量部からなる樹脂成分100重量部に対して(C)変性ポリオレフィン樹脂(C成分)を0.1~900重量部含有する樹脂組成物であり、かつ補強用繊維シートを構成する補強用繊維の含有量がA成分とB成分とからなる樹脂成分100重量部に対し151~900重量部であることを特徴とする積層体。 A laminate of a reinforcing fiber sheet and a thermoplastic resin sheet, wherein the thermoplastic resin sheet is (A) 1 to 99 parts by weight of a polypropylene resin (A component) and (B) 99 to 1 parts of a polycarbonate resin (B component). A resin composition containing 0.1 to 900 parts by weight of the (C) modified polyolefin resin (C component) with respect to 100 parts by weight of the resin component composed of parts by weight, and the reinforcing fiber constituting the reinforcing fiber sheet. A laminate characterized in that the content is 151 to 900 parts by weight with respect to 100 parts by weight of the resin component composed of the A component and the B component.
  2.  B成分が下記式〔1〕で表されるカーボネート構成単位を全カーボネート構成単位中1~100モル%含むポリカーボネート樹脂であることを特徴とする請求項1に記載の積層体。
    Figure JPOXMLDOC01-appb-C000001
    [上記一般式〔1〕において、RおよびRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基およびカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、aおよびbは夫々1~4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17およびR18は各々独立に水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基および炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19およびR20は各々独立に水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基およびカルボキシル基からなる群から選ばれる基を表し、R21,R22,R23,R24,R25およびR26は各々独立に水素原子、炭素数1~12のアルキル基または炭素数6~12の置換若しくは無置換のアリール基であり、複数ある場合はそれらは同一でも異なっていても良く、cは1~10の整数、dは4~7の整数であり、eは自然数であり、fは0または自然数であり、e+fは150以下の自然数であり、Xは炭素数2~8の二価脂肪族基である)]
    The laminate according to claim 1, wherein the component B is a polycarbonate resin containing 1 to 100 mol% of the carbonate constituent units represented by the following formula [1] in the total carbonate constituent units.
    Figure JPOXMLDOC01-appb-C000001
    [In the above general formula [1], R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms, respectively. 20 cycloalkyl groups, cycloalkoxy groups with 6 to 20 carbon atoms, alkenyl groups with 2 to 10 carbon atoms, aryl groups with 6 to 14 carbon atoms, aryloxy groups with 6 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having a number of 7 to 20 and an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. A and b are each an integer of 1 to 4, and W is at least one group selected from the group consisting of a single bond or a group represented by the following general formula [2].
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon atoms, respectively. Represents a group selected from the group consisting of an aryl group having a number of 6 to 14 and an aralkyl group having a carbon atom number of 7 to 20, and R 19 and R 20 independently represent a hydrogen atom, a halogen atom, and an alkyl having 1 to 18 carbon atoms. Group, alkoxy group with 1 to 10 carbon atoms, cycloalkyl group with 6 to 20 carbon atoms, cycloalkoxy group with 6 to 20 carbon atoms, alkenyl group with 2 to 10 carbon atoms, 6 to 14 carbon atoms A group consisting of an aryl group, an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group and a carboxyl group. Represents a group selected from, and R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, or substituted or unsubstituted groups having 6 to 12 carbon atoms, respectively. If there are a plurality of aryl groups, they may be the same or different, c is an integer of 1 to 10, d is an integer of 4 to 7, e is a natural number, and f is 0 or a natural number. Yes, e + f is a natural number of 150 or less, and X is a divalent aliphatic group having 2 to 8 carbon atoms.)]
  3.  C成分が無水マレイン酸変性ポリプロピレンであることを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the C component is maleic anhydride-modified polypropylene.
  4.  熱可塑性樹脂シートを構成する樹脂組成物が、更に(D)スチレン系熱可塑性エラストマー(D成分)をA成分とB成分とからなる樹脂成分100重量部に対し1~20重量部含有することを特徴とする請求項1~3のいずれか1項に記載の積層体。 The resin composition constituting the thermoplastic resin sheet further contains (D) a styrene-based thermoplastic elastomer (component D) in an amount of 1 to 20 parts by weight based on 100 parts by weight of the resin component composed of the component A and the component B. The laminate according to any one of claims 1 to 3, which is characterized.
  5.  補強用繊維シートが、織編物、不織布、一方向性シートのいずれかである請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the reinforcing fiber sheet is one of a woven or knitted fabric, a non-woven fabric, and a unidirectional sheet.
  6.  補強用繊維シートを構成する繊維が、炭素繊維およびガラス繊維から選ばれる少なくとも一種の繊維であることを特徴とする請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the fiber constituting the reinforcing fiber sheet is at least one kind of fiber selected from carbon fiber and glass fiber.
  7.  補強用繊維シートを構成する繊維が、X線光電子分光法によって測定される繊維表面の酸素(O)と炭素(C)との原子数の比である表面酸素濃度(O/C)が0.15以上である炭素繊維であることを特徴とする請求項6に記載の積層体。 The fiber constituting the reinforcing fiber sheet has a surface oxygen concentration (O / C) of 0. The laminate according to claim 6, wherein the carbon fiber is 15 or more.
  8.  熱可塑性樹脂シートが網目状の中空繊維からなるものであることを特徴とする請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the thermoplastic resin sheet is made of a mesh-like hollow fiber.
  9.  請求項1~8のいずれか1項に記載の積層体からなる繊維強化樹脂複合体。 A fiber-reinforced resin complex composed of the laminate according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の積層体を、熱可塑性樹脂シートを構成する熱可塑性樹脂の溶融温度以上、補強用繊維シートを構成する補強用繊維の耐熱温度未満の温度で、加圧処理することを特徴とする繊維強化樹脂複合体の製造方法。 The laminate according to any one of claims 1 to 8 is placed at a temperature equal to or higher than the melting temperature of the thermoplastic resin constituting the thermoplastic resin sheet and lower than the heat resistant temperature of the reinforcing fiber constituting the reinforcing fiber sheet. A method for producing a fiber-reinforced resin composite, which comprises a pressure treatment.
PCT/JP2021/042407 2020-12-01 2021-11-18 Laminate, fiber-reinforced plastic complex formed from laminate, and method for manufacturing fiber-reinforced plastic complex WO2022118666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566834A JPWO2022118666A1 (en) 2020-12-01 2021-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020199553 2020-12-01
JP2020-199553 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022118666A1 true WO2022118666A1 (en) 2022-06-09

Family

ID=81853539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042407 WO2022118666A1 (en) 2020-12-01 2021-11-18 Laminate, fiber-reinforced plastic complex formed from laminate, and method for manufacturing fiber-reinforced plastic complex

Country Status (2)

Country Link
JP (1) JPWO2022118666A1 (en)
WO (1) WO2022118666A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083195A (en) * 2004-09-14 2006-03-30 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition, method for producing the resin composition and molded product of the resin composition
JP2016222774A (en) * 2015-05-28 2016-12-28 帝人株式会社 Fiber-reinforced polypropylene resin composition
JP2019126964A (en) * 2018-01-24 2019-08-01 帝人株式会社 Laminate, and fiber-reinforced resin complex comprising the laminate
JP2020147683A (en) * 2019-03-14 2020-09-17 帝人株式会社 Aromatic polycarbonate resin composition
JP2020147675A (en) * 2019-03-13 2020-09-17 帝人株式会社 Fiber-reinforced polypropylene resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083195A (en) * 2004-09-14 2006-03-30 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition, method for producing the resin composition and molded product of the resin composition
JP2016222774A (en) * 2015-05-28 2016-12-28 帝人株式会社 Fiber-reinforced polypropylene resin composition
JP2019126964A (en) * 2018-01-24 2019-08-01 帝人株式会社 Laminate, and fiber-reinforced resin complex comprising the laminate
JP2020147675A (en) * 2019-03-13 2020-09-17 帝人株式会社 Fiber-reinforced polypropylene resin composition
JP2020147683A (en) * 2019-03-14 2020-09-17 帝人株式会社 Aromatic polycarbonate resin composition

Also Published As

Publication number Publication date
JPWO2022118666A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP6808016B2 (en) Laminated body and fiber reinforced resin composite composed of it
JPWO2008146400A1 (en) Resin composition
KR20200068737A (en) Polycarbonate-polydioorganosiloxane copolymer, resin composition thereof, and method for manufacturing same
JP6807634B2 (en) Fiber reinforced polypropylene resin composition
CN112574545A (en) Glass-filled flame retardant polycarbonate compositions and thin-walled articles thereof
JP6975651B2 (en) Laminated body and fiber reinforced resin composite composed of it
KR102585425B1 (en) Reusable medical container
WO2022118666A1 (en) Laminate, fiber-reinforced plastic complex formed from laminate, and method for manufacturing fiber-reinforced plastic complex
JP7208069B2 (en) Fiber-reinforced polypropylene resin composition
JP7116198B2 (en) Molding material made of carbon fiber reinforced polycarbonate resin composition
JP5558926B2 (en) Flame retardant polycarbonate resin composition
JPH07258426A (en) Molding of high gloss
WO2023167054A1 (en) Resin composition for fiber-reinforced molded composite object, and fiber-reinforced molded composite object
JP2020132830A (en) Method for manufacturing resin composition
WO2017145682A1 (en) Block member for rain water storage tank
JP2020147683A (en) Aromatic polycarbonate resin composition
TWI830851B (en) Molding materials containing carbon fiber reinforced polycarbonate resin compositions
JP2023128656A (en) Resin composition for fiber-reinforced composite molding
JP2023128655A (en) Fiber-reinforced composite molding
JP7428558B2 (en) Flame retardant polycarbonate resin composition
WO2023047827A1 (en) Resin composition and molded article thereof
JP2023113987A (en) Polycarbonate resin composition and molding of the same
CN112143195A (en) Reinforced polycarbonate compositions with improved heat resistance
JPH07286096A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900421

Country of ref document: EP

Kind code of ref document: A1