WO2022118624A1 - Urethanization reaction catalyst, urethane compound, curable composition, cured product, and method for producing urethane compound - Google Patents

Urethanization reaction catalyst, urethane compound, curable composition, cured product, and method for producing urethane compound Download PDF

Info

Publication number
WO2022118624A1
WO2022118624A1 PCT/JP2021/041445 JP2021041445W WO2022118624A1 WO 2022118624 A1 WO2022118624 A1 WO 2022118624A1 JP 2021041445 W JP2021041445 W JP 2021041445W WO 2022118624 A1 WO2022118624 A1 WO 2022118624A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
urethane
acid
zirconium
urethanization reaction
Prior art date
Application number
PCT/JP2021/041445
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 橋本
康介 桑田
洋一 谷本
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022566810A priority Critical patent/JP7468701B2/en
Publication of WO2022118624A1 publication Critical patent/WO2022118624A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds

Definitions

  • the present invention uses a urethanization reaction catalyst having a high catalytic ability, a urethane compound obtained by using the urethanization reaction catalyst, a curable composition, a cured product, and the urethanization catalyst regardless of the type of reaction raw material.
  • the present invention relates to a method for producing a urethane compound.
  • Urethane resin is generally widely used in various fields such as paints, adhesives, and electronic materials because it has excellent characteristics such as high flexibility, elongation, and impact resistance.
  • a urethanization catalyst used in producing a urethane resin it is known that a metal compound such as zinc, magnesium, or aluminum can be used in addition to an organotin compound (see Patent Document 1 below).
  • Patent Document 1 describes a technique of using an acetylacetone compound such as zinc, magnesium, or aluminum as a urethanization catalyst, but these urethanization reaction catalysts do not have sufficient catalytic ability, and in particular, a urethanization reaction.
  • an isocyanate group remains in the reaction system and turbidity occurs in the reaction system.
  • the problem to be solved by the present invention is a urethanization reaction catalyst having a high catalytic ability, a urethane compound obtained by using the urethanization reaction catalyst, a curable composition, and a cured product, regardless of the type of reaction raw material. , And a method for producing a urethane compound using the urethanization catalyst.
  • the present inventors have used a zirconium compound and another metal compound in combination as a urethanization catalyst, and zirconium in the zirconium compound and other in the other metal compound.
  • a zirconium compound and another metal compound in combination as a urethanization catalyst, and zirconium in the zirconium compound and other in the other metal compound.
  • the present invention contains the zirconium compound (A) and the other metal compound (B) other than the zirconium compound (A), and is based on 100 parts by mass of the total mass of zirconium in the zirconium compound (A).
  • the present invention relates to a urethanization reaction catalyst characterized in that the total mass of other metals in the other metal compound (B) is in the range of 10 to 80 parts by mass.
  • the present invention further relates to a urethane compound obtained by using the urethanization reaction catalyst.
  • the present invention further relates to a curable composition containing the urethane compound.
  • the present invention further relates to a cured product of the curable composition.
  • the present invention further relates to a method for producing a urethane compound using the urethanization reaction catalyst.
  • a urethanization reaction catalyst having a high catalytic ability a urethane compound obtained by using the urethanization reaction catalyst, a curable composition, a cured product, and the urethanization catalyst.
  • the urethanization reaction catalyst of the present invention contains a zirconium compound (A) and a metal compound (B) other than the zirconium compound (A), and the total mass of zirconium in the zirconium compound (A) is 100 mass. It is characterized in that the total mass of the other metal in the other metal compound (B) with respect to the portion is in the range of 10 to 80 parts by mass.
  • the zirconium compound (A) is not particularly limited as long as it is a compound having a zirconium atom, and a wide variety of compounds can be used. Further, in the present invention, one type of the zirconium compound (A) may be used alone, or two or more types may be used in combination.
  • examples of the inorganic zirconium compound include zirconium oxide, zirconium hydride, and zirconium chloride.
  • examples of the organic zirconium compound include compounds represented by any of the following general formulas (1) to (6).
  • Zr (OR 1 ) 4 ... General formula (1)
  • Zr (R 2 COH 2 COR 3 ) 4 ...
  • General formula (2) Zr (OR 1 ) m (R 2 COCH 2 COR 3 ) n ...
  • General formula (3) Zr (OR 1 ) m (R 4 COCH 2 COOR 5 ) n ...
  • R 1 and R 6 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • R2 , R3 , R4 , and R5 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
  • m and n are integers of 1 to 3 respectively, and the sum of m and n is 4.
  • R 1 and R 6 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms. Of these, an aliphatic hydrocarbon group having 3 to 6 carbon atoms is preferable because it is more excellent in catalytic ability.
  • R 2 , R 3 , R 4 and R 5 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
  • the compounds represented by any of the general formulas (1) to (4) are preferable because they are more excellent in catalytic ability, and are represented by the general formula (2) or (4). Compounds are more preferred.
  • the metal compound (B) other than the zirconium compound (A) is not particularly limited, and a wide variety of compounds can be used. Further, in the present invention, as the other metal compound (B), one kind may be used alone, or two or more kinds may be used in combination. Specific examples of the other metal compound (B) include zinc compounds, titanium compounds, iron compounds, aluminum compounds, calcium compounds, magnesium compounds and the like. Among them, at least one of a zinc compound, a titanium compound, and an iron compound is preferable, and a zinc compound is particularly preferable, because it is more excellent in catalytic ability.
  • the total mass of the zirconium compound (A), the zinc compound, the titanium compound, and the iron compound is preferably 80 parts by mass or more in 100 parts by mass of the total mass of the urethanization reaction catalyst. , 90 parts by mass or more is more preferable, and 95 parts by mass or more is particularly preferable.
  • examples of the inorganic zinc compound include zinc oxide, zinc hydroxide, zinc chloride and the like.
  • examples of the organozinc compound include compounds represented by any of the following general formulas (7) to (10), zinc complexes other than these, and the like.
  • General formula (8) Zn (R 10 COCH 2 COOR 11 ) 2 ...
  • General formula (9) Zn (OCOR 12 ) 2 ...
  • R 7 and R 12 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • R8, R9 , R10, and R11 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
  • R 7 and R 12 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms. Of these, an aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferable because it is more excellent in catalytic ability.
  • R 8 , R 9 , R 10 and R 11 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
  • the ligand for the zinc complex include imidazole-type ligands such as imidazole and 2-methylimidazole; and pyridine-type coordinations such as pyridine, 2,2'-bipyridine, and 1,10-phenanthroline. Child; phosphine ligands such as trimethylphosphine, triphenylphosphine, 1,2-bis (diphenylphosphino) ethane and the like can be mentioned.
  • a complex prepared in advance may be used, or the compound represented by any of the general formulas (7) to (10) is arranged in the reaction system of the urethanization reaction.
  • a compound to be a coordinate may be added to form a complex in the reaction system.
  • the compound represented by the general formula (8) or (10) or the zinc complex having an imidazole-type ligand is preferable because it is more excellent in catalytic ability, and is represented by the general formula (10).
  • Compounds or zinc complexes having an imidazole-type ligand are more preferable.
  • examples of the inorganic titanium compound include titanium oxide, zinc hydroxide, titanium chloride and the like.
  • examples of the organic titanium compound include compounds represented by any of the following general formulas (11) to (15).
  • Ti (OR 13 ) 4 ... General formula (11) Ti (R 14 COH 2 COR 15 ) 4 ...
  • General formula (12) Ti (OR 13 ) m (R 14 COCH 2 COR 15 ) n ...
  • General formula (13) Ti (OR 13 ) m (R 16 COCH 2 COOR 17 ) n ...
  • R 13 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • R 14 , R 15 , R 16 and R 17 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. ]
  • R 13 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms. Among them, an aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferable, and an aliphatic hydrocarbon group having 1 to 4 carbon atoms is more preferable, because it is more excellent in catalytic ability. Further, R 14 , R 15 , R 16 and R 17 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
  • the compound represented by any of the general formulas (11) to (14) is preferable, and the compound represented by the general formula (14) is more preferable, because the titanium compound is more excellent in catalytic ability.
  • examples of the inorganic iron compound include iron oxide, iron hydroxide, iron chloride and the like.
  • examples of the organic iron compound include compounds represented by the following general formula (16).
  • General formula (16) [In the above general formula (16), R 18 and R 19 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. ]
  • R 18 and R 19 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
  • the total mass of other metals in the other metal compound (B) is in the range of 10 to 80 parts by mass with respect to 100 parts by mass of the total mass of zirconium in the zirconium compound (A).
  • the total mass of other metals in the other metal compound (B) is preferably in the range of 10 to 70 parts by mass with respect to 100 parts by mass of the total mass of zirconium in the zirconium compound (A). It is more preferably in the range of about 50 parts by mass.
  • the urethanization reaction catalyst of the present invention has high catalytic ability regardless of the type of reaction raw material. Therefore, in the method for producing a urethane compound using the urethanization reaction catalyst of the present invention, the reaction raw materials are not particularly limited, and a wide variety of reaction raw materials can be used. Further, the urethanization reaction catalyst of the present invention can be widely used as a catalyst for any urethanization reaction.
  • the urethane compound produced by using the urethanization reaction of the present invention is, for example, a curable urethane resin having a reactive group such as a polymerizable unsaturated bond, a two-component curable urethane resin having a hydroxyl group or an isocyanate group, and a high-grade urethane compound.
  • a curable urethane resin having a reactive group such as a polymerizable unsaturated bond
  • a two-component curable urethane resin having a hydroxyl group or an isocyanate group and a high-grade urethane compound.
  • thermoplastic urethane resins having a molecular weight examples thereof include thermoplastic urethane resins having a molecular weight.
  • reaction raw material examples include a polyisocyanate compound (X), an alcoholic hydroxyl group-containing compound (Y-1), and a phenolic hydroxyl group-containing compound (Y-2). ..
  • the zirconium compound, zinc compound, and titanium compound which have been conventionally known as urethanization reaction catalysts, tend to have low catalytic activity, especially when the phenolic hydroxyl group-containing compound (Y-2) is used as a reaction raw material.
  • the urethanization reaction catalyst of the present invention exhibits high catalytic ability even when the phenolic hydroxyl group-containing compound (Y-2) is used as a reaction raw material.
  • the polyisocyanate compound (X) is an aliphatic diisocyanate compound such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate; Alicyclic diisocyanate compounds such as diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; aromatic diisocyanates such as phenylenediocyanate, tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, naphthalenedi isocyanate and the like.
  • Alicyclic diisocyanate compounds such as diisocyanate, isophorone diisocyanate, hydrogenated x
  • R 20 is either a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, respectively.
  • Each of R 21 is an alkyl group having 1 to 4 carbon atoms independently, or a bond point connected to a structural site represented by the structural formula (1) via a methylene group marked with *.
  • m is 0 or an integer of 1 to 3
  • l is an integer of 1 or more.
  • the alcoholic hydroxyl group-containing compound (Y-1) is, for example, a monool monomer, a diol monomer, a trifunctional or higher-functional polyol monomer, a polyolefin polyol compound, a polyether polyol compound, a polyester polyol compound, a lactone-modified polyol compound, or a polycarbonate polyol compound. And so on.
  • the alcoholic hydroxyl group-containing compound (Y-1) may be used alone or in combination of two or more.
  • the monool monomer is, for example, a lower alcohol compound such as methanol, ethanol, propanol, butanol, pentanol, hexanol; a higher alcohol compound such as lauryl alcohol, myristyl alcohol, stearyl alcohol, oleyl alcohol, linolyl alcohol; cyclohexanol and the like.
  • a lower alcohol compound such as methanol, ethanol, propanol, butanol, pentanol, hexanol
  • a higher alcohol compound such as lauryl alcohol, myristyl alcohol, stearyl alcohol, oleyl alcohol, linolyl alcohol
  • cyclohexanol and the like examples thereof include monool compounds containing an alicyclic structure.
  • the diol monomer is, for example, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonane.
  • Linear aliphatic diol compounds such as diol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol; propylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-ethyl-1,3-propanediol, 2-methyl-1,4-butanediol, 2-ethyl-2-methyl-1,3-propanediol, 2-ethylbutane-14-butanediol, 2,3- Didimethyl-1,4-butanediol, 3-methyl-1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 3,3-dimethylpentane-1,5-diol, 2,2- Diethyl-1,3-propanediol, 3-propylpentane-1,5-d
  • trifunctional or higher functional polyol monomer examples include trifunctional or higher functional aliphatic polyol compounds such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, and pentaerythritol.
  • polyolefin polyol compound examples include polyol compounds having a polyolefin structure and a polydiene structure. Specific examples thereof include polyethylene-based polyols, polypropylene-based polyols, polybutadiene polyols, hydrogenated polybutadiene polyols, polyisoprene polyols, hydrogenated polyisoprene polyols and the like.
  • the molecular weight of the polyolefin polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
  • the polyether polyol compound includes the diol monomer, a trifunctional or higher functional polyol monomer, and a cyclic ether compound such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether. Examples thereof include those obtained by ring-opening polymerization with.
  • the molecular weight of the polyether polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
  • polyester polyol compound examples include those using the diol monomer, a trifunctional or higher functional polyol monomer, and a polybasic acid compound as reaction raw materials.
  • the polybasic acid compound is, for example, an aliphatic dicarboxylic acid compound such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid, and Derivatives of these acid anhydrides, acid halides, alkyl esters, etc .; alicyclic dicarboxylic acid compounds such as trahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, and these acid anhydrides, acid halides, etc.
  • alkyl esters such as alkyl esters; aromatic dicarboxylic acid compounds such as phthalic acid, isophthalic acid and terephthalic acid, and derivatives such as these acid anhydrides, acid halides and alkyl esters; Trifunctional or higher aliphatic polycarboxylic acid compounds, and derivatives such as these acid anhydrides, acid halides, and alkyl esters; trifunctional or higher functional alicyclic polycarboxylic acid compounds such as 1,2,4-cyclohexanetricarboxylic acid.
  • polyester polyol compound is not particularly limited, but generally, a polyester polyol compound having a number average molecular weight (Mn) in the range of 500 to 5,000 is widely used.
  • lactone-modified polyol compound examples include a ring-opening polymer of a lactone compound such as ⁇ -caprolactone and ⁇ -butyrolactone, and a polymer of the diol monomer or a trifunctional or higher functional polyol monomer and the lactone compound.
  • the molecular weight of the lactone-modified polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 4,000 are widely used.
  • polycarbonate polyol compound examples include those using the diol monomer, a trifunctional or higher functional polyol monomer, and a carbonylating agent as reaction raw materials.
  • the carbonylating agent include phosgene, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like.
  • the molecular weight of the polycarbonate polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
  • the phenolic hydroxyl group-containing compound (Y-2) is, for example, an aromatic monohydroxy compound, an aromatic dihydroxy compound, a trifunctional or higher functional aromatic polyhydroxy compound, a phenol resin, a polyether polyol compound, a polyester polyol compound, or a polycarbonate polyol. Examples include compounds.
  • the phenolic hydroxyl group-containing compound (Y-2) may be used alone or in combination of two or more.
  • aromatic monohydroxy compound examples include phenol, cresol, xylenol, trimethylphenol, ethylphenol, propylphenol, butylphenol, pentylphenol, hexylphenol, octylphenol, nonylphenol, and naphthol.
  • the pre-aromatic dihydroxy compound is, for example, dihydroxybenzene, dihydroxynaphthalene, biphenol, tetramethylbiphenol, bisphenol A, bisphenol F. , Bisphenol S and the like.
  • trifunctional or higher functional aromatic polyhydroxy compound examples include trihydroxybenzene, trihydroxynaphthalene, trihydroxytriphenylmethane, and trihydroxytriphenylethane.
  • the phenolic resin may be, for example, various novolak resins made from one or more of the aromatic monohydroxy compound, the aromatic dihydroxy compound, and the trifunctional or higher functional aromatic polyhydroxy compound, and dicyclopentadiene. Examples thereof include a phenol-added resin, a phenol aralkyl resin, a naphthol aralkyl resin, and a triphenol methane type resin.
  • the molecular weight of the raphenol resin is not particularly limited, but generally, a raphenol resin having a number average molecular weight (Mn) in the range of 300 to 3,000 is widely used.
  • the polyether polyol compound may be, for example, one or more of the aromatic monohydroxy compound, the aromatic dihydroxy compound, and the trifunctional or higher functional aromatic polyhydroxy compound, and ethylene oxide, propylene oxide, tetrahydrofuran, and ethyl glycidyl ether. , Ppropylglycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether and the like obtained by ring-opening polymerization with a cyclic ether compound.
  • the molecular weight of the polyether polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
  • the polyester polyol compound is, for example, one or a plurality of the aromatic monohydroxy compound, the aromatic dihydroxy compound, the trifunctional or higher functional aromatic polyhydroxy compound, and a polybasic acid compound as a reaction raw material.
  • the polybasic acid compound is, for example, an aliphatic dicarboxylic acid compound such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid, and Derivatives of these acid anhydrides, acid halides, alkyl esters, etc .; alicyclic dicarboxylic acid compounds such as trahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, and these acid anhydrides, acid halides, etc.
  • alkyl esters such as alkyl esters; aromatic dicarboxylic acid compounds such as phthalic acid, isophthalic acid and terephthalic acid, and derivatives such as these acid anhydrides, acid halides and alkyl esters; Trifunctional or higher aliphatic polycarboxylic acid compounds, and derivatives such as these acid anhydrides, acid halides, and alkyl esters; trifunctional or higher functional alicyclic polycarboxylic acid compounds such as 1,2,4-cyclohexanetricarboxylic acid.
  • polyester polyol compound is not particularly limited, but generally, a polyester polyol compound having a number average molecular weight (Mn) in the range of 500 to 5,000 is widely used.
  • the polycarbonate polyol compound may be, for example, one or a plurality of the aromatic monohydroxy compound, the aromatic dihydroxy compound, the trifunctional or higher functional aromatic polyhydroxy compound, and a carbonylating agent as a reaction raw material.
  • a carbonylating agent include phosgene, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like.
  • the molecular weight of the polycarbonate polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
  • the urethanization catalyst of the present invention can be used in the same manner as the conventionally known urethanization catalyst, and the urethanization reaction using the urethanization catalyst of the present invention can be carried out under the same conditions as the general urethanization reaction. can. Specific examples thereof include a method in which the reaction raw material is heated to about 40 to 160 ° C. and reacted for about 1 to 20 hours.
  • the addition amount of the urethanization catalyst of the present invention is preferably in the range of 0.01 to 0.09% by mass with respect to the total mass of the reaction raw materials of the urethane compound, and is 0. It is preferably in the range of 0.03 to 0.07% by mass.
  • the urethane compound may be produced in a solvent if necessary.
  • the solvent used here is, for example, a polar organic solvent such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, ⁇ -butyrolactone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether and the like.
  • Ethylene glycol dialkyl ethers Diethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dibutyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol Ethylene glycol monoalkyl ether acetates such as monoethyl ether acetate and ethylene glycol monobutyl ether acetate; diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate , Polyethylene glycol monoalkyl ether acetates such as triethylene glycol monobutyl ether acetate; propylene glycol dialkyl ether
  • Glycol monoalkyl ether acetates dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glyco Polypropylene glycol monoalkyl ether acetates such as lumonomethyl ether acetate, tripropylene glycol monoethyl ether acetate, tripropylene glycol monobutyl ether acetate; dialkyl ethers of copolymerized polyether glycols such as low molecular weight ethylene-propylene copolymer; Monoacetate monoalkyl ethers of copolymerized polyether glycols; alkyl esters of copolymerized polyether glycols; and monoalkyl esters of copolymerized polyether glycols Monoalkyl ethers; esters such as ethyl acetate and butyl acetate; acetone, Ketones
  • the molar ratio of the isocyanate group to the hydroxyl group in the reaction raw material is appropriately adjusted according to the desired performance of the obtained urethane compound, the application, etc., but is generally (isocyanate group).
  • the molar ratio) / (molar ratio of hydroxyl groups) 1 / 0.95 to 1 / 5.0 is preferable.
  • the order of charging the reaction raw materials of the urethane compound is as follows, depending on the desired performance of the obtained urethane compound, the application, etc. Can be mentioned.
  • the urethanization catalyst of the present invention exhibits higher catalytic ability than the conventionally known urethanization catalyst, particularly when the phenolic hydroxyl group-containing compound (Y-2) is used as a reaction raw material.
  • the polyisocyanate compound (X) is reacted with the alcoholic hydroxyl group-containing compound (Y-1) to obtain an isocyanate group-containing intermediate.
  • Step 1 a method for producing a urethane compound (hereinafter abbreviated as production method (1)) in which the intermediate is reacted with the phenolic hydroxyl group-containing compound (Y-2) (step 2) can be mentioned.
  • the entire amount of the urethanization catalyst may be added in the first step, or may be added in portions in a plurality of steps. ..
  • the amount of the urethanization catalyst added is preferably in the range of 0.01 to 0.09% by mass, preferably 0.03 to 0.09% by mass, based on the total mass of the reaction raw materials of the urethane compound, as described above. It is preferably in the range of 0.07% by mass.
  • the reaction ratio between the polyisocyanate compound (X) and the alcoholic hydroxyl group-containing compound (Y-1) is the reaction ratio of the alcoholic hydroxyl group-containing compound (Y-1) in the alcoholic hydroxyl group-containing compound (Y-1).
  • the condition may be such that the isocyanate group in the polyisocyanate compound (X) is excessive with respect to the hydroxyl group, and the specific ratio is appropriately adjusted according to the desired performance of the obtained urethane compound, application, and the like. ..
  • the polyisocyanate compound (X) is compared with 1 mol of the hydroxyl group in the alcoholic hydroxyl group-containing compound (Y-1). ) Is preferably in a proportion of 1.2 to 2.3 mol of isocyanate groups.
  • the reaction temperature in the step 1 is appropriately changed depending on the types of the polyisocyanate compound (X) and the alcoholic hydroxyl group-containing compound (Y-1) to be used, but since the reaction proceeds efficiently, 40
  • the temperature is preferably in the range of -80 ° C.
  • the reaction time is preferably in the range of 1 to 10 hours, more preferably in the range of 1 to 6 hours.
  • step 2 of the production method (1) the reaction ratio between the intermediate obtained in step 1 and the phenolic hydroxyl group-containing compound (Y-2) is determined by the desired performance of the obtained urethane compound, applications, and the like. It is adjusted appropriately according to. Above all, since the obtained urethane compound is excellent in the cured material properties when used for a curable composition, the phenolic hydroxyl group-containing compound (Y-2) contains 1 mol of the isocyanate group in the intermediate. The ratio of hydroxyl groups is preferably 2.0 to 7.0 mol.
  • the reaction temperature in the step 1 is appropriately changed depending on the type of the polyisocyanate compound (X), the alcoholic hydroxyl group-containing compound (Y-1), the phenolic hydroxyl group-containing compound (Y-2), and the like. Since the reaction proceeds efficiently, the temperature is preferably in the range of 100 to 160 ° C. The reaction time is preferably in the range of 1 to 10 hours.
  • the specific structure, molecular weight, etc. of the urethane compound obtained by the production method (1) are appropriately adjusted according to the type of reaction raw material, desired performance of the urethane compound, application, and the like.
  • the weight average molecular weight (Mw) is preferably in the range of 5,000 to 50,000 because the obtained urethane compound is excellent in the cured physical properties when used for a curable composition.
  • the weight average molecular weight (Mw) of the urethane compound is measured by gel permeation chromatography (GPC) under the measurement conditions described in Examples.
  • the urethane compound obtained by using the urethanization reaction catalyst of the present invention can be used for various purposes like a general urethane compound.
  • the urethane compound (or urethane resin) obtained by using the phenolic hydroxyl group-containing compound (Y-2) as the reaction raw material of the urethane compound the urethane bond between the phenolic hydroxyl group and the isocyanate group is dissociated under high temperature conditions. Therefore, it can be used as a curable composition by combining with a compound capable of reacting with a phenolic hydroxyl group or an isocyanate group.
  • An epoxy resin is mentioned as an example of a compound that can react with the phenolic hydroxyl group or the isocyanate group.
  • the epoxy resin may have any specific structure and may be used without particular limitation.
  • phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, bisphenol novolak type epoxy resin, biphenol novolak type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin examples thereof include a triphenol methane type epoxy resin, a tetraphenol ethane type epoxy resin, a dicyclopentadiene-phenol addition reaction type epoxy resin, a phenol aralkyl type epoxy resin, and a naphthol aralkyl type epoxy resin.
  • the blending ratio of the urethane compound and the epoxy resin is appropriately adjusted according to the desired cured physical properties and the like.
  • the epoxy resin is in the range of 10 to 1000 parts by mass with respect to 100 parts by mass of the urethane compound.
  • the curable composition may contain other compounds or resin components, and various additives such as a curing accelerator, a solvent, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, and an emulsifier, if necessary. May be contained.
  • various additives such as a curing accelerator, a solvent, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, and an emulsifier, if necessary. May be contained.
  • binder resins such as polyester resin, phenoxy resin, PPS resin, PPE resin, and polyarylane resin; phenol resin, melamine resin, alkoxysilane-based curing agent, polybasic acid anhydride, cyanate compound, and the like. Examples thereof include reactive compounds of.
  • the curing accelerator examples include a urethanization reaction catalyst of the present invention, a phosphorus compound such as triphenylphosphine, and a tertiary amine such as 1,8-diazabicyclo- [5.4.0] -undecene (DBU).
  • a phosphorus compound such as triphenylphosphine
  • a tertiary amine such as 1,8-diazabicyclo- [5.4.0] -undecene (DBU).
  • DBU 1,8-diazabicyclo- [5.4.0] -undecene
  • Examples thereof include imidazole compounds, pyridine compounds such as 4-dimethylaminopyridine, organic acid metal salts, Lewis acids, amine complex salts and the like.
  • One type of these high-acceleration agents may be used alone, or two or more types may be used in combination.
  • the amount of these curing accelerators added is preferably in the range of 0.001 to 5% by mass with
  • the solvent examples include various solvents exemplified as the reaction solvent of the production method (1).
  • the amount of the solvent used is preferably such that the non-volatile content of the curable composition is 10 to 80% by mass.
  • the curable composition can be heated to obtain a cured product.
  • the heating temperature is preferably in the range of 150 to 220 ° C.
  • a heat-drying time for drying the solvent may be provided in advance. The temperature for heating and drying is appropriately adjusted depending on the solvent used, but is preferably in the range of 50 to 120 ° C.
  • the use of the curable composition is not limited, and it can be used in the same manner as a general thermosetting resin material.
  • the urethane compound obtained by the production method (1) has flexibility or toughness as a urethane resin and heat resistance due to the phenolic hydroxyl group-containing compound (Y-2), and thus is particularly an electronic material. It can be suitably used for heat-resistant materials and the like.
  • Isocyanate group content [mass%] 42.02 x (V1-V2) x 0.0005 x 100/2 (Explanation of symbols and numbers in the formula)
  • V1 Titration of hydrochloric acid when measured with a blank without adding urethane prepolymer [ml] 0.0005: Hydrochloric acid concentration [mol / ml] 42.02: Molecular weight of isocyanate group [g / mol]
  • IR infrared absorption spectrum
  • Example 1 Production of Urethane Resin (1) (Step 1) Propylene glycol monomethyl ether acetate 283.9 g, isophorone diisocyanate 23.6 g (0.106 mol), polybutadiene diol (0.106 mol) in a flask equipped with a stirrer, a thermometer, and a condenser.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 4 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (1).
  • the ratio of the total mass of zinc in the zinc complex to the total mass of zirconium in zirconium dibutoxybis (ethylacetoacetate) was 31%.
  • Example 2 Production of Urethane Resin (2) (Step 1) In a flask equipped with a stirrer, a thermometer, and a condenser, 283.9 g of propylene glycol monomethyl ether acetate, 23.6 g (0.106 mol) of isophorone diisocyanate, and polybutadiene diol (.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 7 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (2).
  • the ratio of the total mass of titanium in titanium diisopropoxybis (ethylacetate acetate) to the total mass of zirconium in zirconium dibutoxybis (ethylacetate acetate) was 25%.
  • Example 3 Production of Urethane Resin (3) (Step 1) In a flask equipped with a stirrer, a thermometer, and a condenser, 283.9 g of propylene glycol monomethyl ether acetate, 23.6 g (0.106 mol) of isophoron diisocyanate, and polybutadiene diol (.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 6 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (3).
  • the ratio of the total mass of iron in iron (III) acetylacetonate to the total mass of zirconium in zirconium tetraacetylacetonate was 23%.
  • Example 4 Production of Urethane Resin (4) (Step 1) In a flask equipped with a stirrer, a thermometer, and a condenser, 283.9 g of propylene glycol monomethyl ether acetate, 23.6 g (0.106 mol) of isophorone diisocyanate, and polybutadiene diol (.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 5 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (4).
  • the ratio of the total mass of zinc in zinc 2-ethylhexanoate to the total mass of zirconium in zirconium tetraacetylacetonate was 20%.
  • Step 2 After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (1') having an isocyanate group.
  • the isocyanate group content of the urethane prepolymer (1') was 0.940% by mass.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (1') was obtained.
  • Step 2 After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (2') having an isocyanate group.
  • the isocyanate group content of the urethane prepolymer (2') was 0.962% by mass.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (2') was obtained.
  • Step 2 After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (3') having an isocyanate group.
  • the isocyanate group content of the urethane prepolymer (3') was 1.455% by mass.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (3') was obtained.
  • Step 2 After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (4') having an isocyanate group.
  • the isocyanate group content of the urethane prepolymer (4') was 1.576% by mass.
  • Step 2 Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (4') was obtained.
  • reaction time during urethane resin production and evaluation of residual isocyanate groups For Examples 1 to 4 and Comparative Examples 1 to 4, the reaction time (reaction time in step 2) required to produce urethane resin from urethane prepolymer is shown. I summarized it in 1. Further, it was confirmed by the infrared absorption spectrum measured under the above conditions whether or not the isocyanate group remained in the obtained urethane resin.

Abstract

The present invention provides: a urethanization reaction catalyst characterized by containing a zirconium compound (A) and other metal compounds (B) except the zirconium compound (A), wherein the total mass of other metals in the other metal compounds (B) is in a range of 10-80 parts by mass with respect to 100 parts by mass of the total mass of zirconium in the zirconium compound (A); a urethane compound obtained by using said urethanization reaction catalyst; a curable composition; a cured product; and a method for producing a urethane compound using said urethanization catalyst. The urethanization reaction catalyst has high catalytic ability regardless of the types of reaction raw materials.

Description

ウレタン化反応触媒、ウレタン化合物、硬化性組成物、硬化物及びウレタン化合物の製造方法Urethaneization reaction catalyst, urethane compound, curable composition, cured product and method for producing urethane compound
 本発明は、反応原料の種類によらず、高い触媒能を有するウレタン化反応触媒、前記ウレタン化反応触媒を用いて得られるウレタン化合物、硬化性組成物、硬化物、及び前記ウレタン化触媒を用いたウレタン化合物の製造方法に関する。 The present invention uses a urethanization reaction catalyst having a high catalytic ability, a urethane compound obtained by using the urethanization reaction catalyst, a curable composition, a cured product, and the urethanization catalyst regardless of the type of reaction raw material. The present invention relates to a method for producing a urethane compound.
 ウレタン樹脂は、一般に、高い柔軟性や伸び、耐衝撃性等に優れる特徴を有することから、塗料や接着剤、電子材料等、様々な分野で広く利用されている。ウレタン樹脂を製造する際に用いるウレタン化触媒としては、有機スズ化合物の他、亜鉛やマグネシウム、アルミニウム等の金属化合物が利用できることが知られている(下記特許文献1参照)。 Urethane resin is generally widely used in various fields such as paints, adhesives, and electronic materials because it has excellent characteristics such as high flexibility, elongation, and impact resistance. As a urethanization catalyst used in producing a urethane resin, it is known that a metal compound such as zinc, magnesium, or aluminum can be used in addition to an organotin compound (see Patent Document 1 below).
 下記特許文献1には、ウレタン化触媒として、亜鉛やマグネシウム、アルミニウム等のアセチルアセトン化合物を用いる技術が記載されているが、これらのウレタン化反応触媒は触媒能が十分ではなく、特に、ウレタン化反応原料としてフェノール性水酸基を有する化合物を用いる場合には、反応系中にイソシアネート基が残存する、反応系に濁りが生じるなどの課題があった。 The following Patent Document 1 describes a technique of using an acetylacetone compound such as zinc, magnesium, or aluminum as a urethanization catalyst, but these urethanization reaction catalysts do not have sufficient catalytic ability, and in particular, a urethanization reaction. When a compound having a phenolic hydroxyl group is used as a raw material, there are problems that an isocyanate group remains in the reaction system and turbidity occurs in the reaction system.
特開2015-136678号公報Japanese Unexamined Patent Publication No. 2015-136678
 従って、本発明が解決しようとする課題は、反応原料の種類によらず、高い触媒能を有するウレタン化反応触媒、前記ウレタン化反応触媒を用いて得られるウレタン化合物、硬化性組成物、硬化物、及び前記ウレタン化触媒を用いたウレタン化合物の製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is a urethanization reaction catalyst having a high catalytic ability, a urethane compound obtained by using the urethanization reaction catalyst, a curable composition, and a cured product, regardless of the type of reaction raw material. , And a method for producing a urethane compound using the urethanization catalyst.
 本発明者らは前記課題を解決すべく鋭意検討した結果、ウレタン化触媒としてジルコニウム化合物と、その他の金属化合物とを併用し、かつ、ジルコニウム化合物中のジルコニウムと、その他の金属化合物中のその他の金属との質量比をある一定の割合とすることにより、反応原料の種類によらず、高効率でウレタン化反応が進行することを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have used a zirconium compound and another metal compound in combination as a urethanization catalyst, and zirconium in the zirconium compound and other in the other metal compound. By setting the mass ratio to the metal to a certain ratio, it was found that the urethanization reaction proceeds with high efficiency regardless of the type of the reaction raw material, and the present invention has been completed.
 即ち、本発明は、ジルコニウム化合物(A)と、前記ジルコニウム化合物(A)以外のその他の金属化合物(B)とを含有し、前記ジルコニウム化合物(A)中のジルコニウムの総質量100質量部に対する、その他の金属化合物(B)中のその他の金属の総質量が10~80質量部の範囲であることを特徴とするウレタン化反応触媒に関する。 That is, the present invention contains the zirconium compound (A) and the other metal compound (B) other than the zirconium compound (A), and is based on 100 parts by mass of the total mass of zirconium in the zirconium compound (A). The present invention relates to a urethanization reaction catalyst characterized in that the total mass of other metals in the other metal compound (B) is in the range of 10 to 80 parts by mass.
 本発明は更に、前記ウレタン化反応触媒を用いて得られるウレタン化合物に関する。 The present invention further relates to a urethane compound obtained by using the urethanization reaction catalyst.
 本発明は更に、前記ウレタン化合物を含有する硬化性組成物に関する。 The present invention further relates to a curable composition containing the urethane compound.
 本発明は更に、前記硬化性組成物の硬化物に関する。 The present invention further relates to a cured product of the curable composition.
 本発明は更に、前記ウレタン化反応触媒を用いたウレタン化合物の製造方法に関する。 The present invention further relates to a method for producing a urethane compound using the urethanization reaction catalyst.
 本発明によれば、反応原料の種類によらず、高い触媒能を有するウレタン化反応触媒、前記ウレタン化反応触媒を用いて得られるウレタン化合物、硬化性組成物、硬化物、及び前記ウレタン化触媒を用いたウレタン化合物の製造方法を提供することができる。 According to the present invention, regardless of the type of reaction raw material, a urethanization reaction catalyst having a high catalytic ability, a urethane compound obtained by using the urethanization reaction catalyst, a curable composition, a cured product, and the urethanization catalyst. Can provide a method for producing a urethane compound using the above.
 以下、本発明を詳細に説明する。
 本発明のウレタン化反応触媒は、ジルコニウム化合物(A)と、前記ジルコニウム化合物(A)以外のその他の金属化合物(B)とを含有し、前記ジルコニウム化合物(A)中のジルコニウムの総質量100質量部に対する、その他の金属化合物(B)中のその他の金属の総質量が10~80質量部の範囲であるこことを特徴とする。
Hereinafter, the present invention will be described in detail.
The urethanization reaction catalyst of the present invention contains a zirconium compound (A) and a metal compound (B) other than the zirconium compound (A), and the total mass of zirconium in the zirconium compound (A) is 100 mass. It is characterized in that the total mass of the other metal in the other metal compound (B) with respect to the portion is in the range of 10 to 80 parts by mass.
 本発明において前記ジルコニウム化合物(A)は、ジルコニウム原子を有する化合物であれば特に限定なく、多種多様なものを用いることができる。また、本発明では前記ジルコニウム化合物(A)として、一種類を単独で用いて良いし、二種類以上を併用してもよい。 In the present invention, the zirconium compound (A) is not particularly limited as long as it is a compound having a zirconium atom, and a wide variety of compounds can be used. Further, in the present invention, one type of the zirconium compound (A) may be used alone, or two or more types may be used in combination.
 前記ジルコニウム化合物のうち、無機ジルコニウム化合物としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、塩化ジルコニウム等が挙げられる。 Among the zirconium compounds, examples of the inorganic zirconium compound include zirconium oxide, zirconium hydride, and zirconium chloride.
 前記ジルコニウム化合物のうち、有機ジルコニウム化合物としては、例えば、下記一般式(1)~(6)のいずれかで表される化合物等が挙げられる。
Zr(OR               ・・・一般式(1)
Zr(RCOHCOR         ・・・一般式(2)
Zr(OR(RCOCHCOR   ・・・一般式(3)
Zr(OR(RCOCHCOOR  ・・・一般式(4)
Zr(OR(OCOR        ・・・一般式(5)
ZrO(OCOR            ・・・一般式(6)
[上記一般式(1)~(6)中、R及びRはそれぞれ独立して炭素原子数1~20の脂肪族炭化水素基である。R、R、R、Rはそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。m及びnはそれぞれ1~3の整数であり、mとnとの和は4である。]
Among the zirconium compounds, examples of the organic zirconium compound include compounds represented by any of the following general formulas (1) to (6).
Zr (OR 1 ) 4 ... General formula (1)
Zr (R 2 COH 2 COR 3 ) 4 ... General formula (2)
Zr (OR 1 ) m (R 2 COCH 2 COR 3 ) n ... General formula (3)
Zr (OR 1 ) m (R 4 COCH 2 COOR 5 ) n ... General formula (4)
Zr (OR 1 ) m (OCOR 6 ) n ... General formula (5)
ZrO (OCOR 6 ) 2 ... General formula (6)
[In the above general formulas (1) to (6), R 1 and R 6 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms. R2 , R3 , R4 , and R5 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. m and n are integers of 1 to 3 respectively, and the sum of m and n is 4. ]
上記一般式(1)~(6)中、R及びRはそれぞれ独立して炭素原子数1~20の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数3~6の脂肪族炭化水素基であることが好ましい。また、R、R、R、Rはそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数1~4の脂肪族炭化水素基であることが好ましい。 In the above general formulas (1) to (6), R 1 and R 6 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms. Of these, an aliphatic hydrocarbon group having 3 to 6 carbon atoms is preferable because it is more excellent in catalytic ability. Further, R 2 , R 3 , R 4 and R 5 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
 前記ジルコニウム化合物(A)の中でも、触媒能により優れることから、前記一般式(1)~(4)のいずれかで表される化合物が好ましく、前記一般式(2)又は(4)で表される化合物がより好ましい。 Among the zirconium compounds (A), the compounds represented by any of the general formulas (1) to (4) are preferable because they are more excellent in catalytic ability, and are represented by the general formula (2) or (4). Compounds are more preferred.
 前記ジルコニウム化合物(A)以外のその他の金属化合物(B)は、特に限定なく、多種多様なものを用いることができる。また、本発明では前記その他の金属化合物(B)として、一種類を単独で用いて良いし、二種類以上を併用してもよい。前記その他の金属化合物(B)の具体例としては、例えば、亜鉛化合物、チタン化合物、鉄化合物、アルミニウム化合物、カルシウム化合物、マグネシウム化合物等が挙げられる。中でも、触媒能により優れることから、亜鉛化合物、チタン化合物、鉄化合物のいずれか一種類以上が好ましく、亜鉛化合物が特に好ましい。更に、より好ましい態様としては、ウレタン化反応触媒の総質量100質量部中、前記ジルコニウム化合物(A)、亜鉛化合物、チタン化合物、及び鉄化合物の合計質量が、80質量部以上であることが好ましく、90質量部以上であることがより好ましく、95質量部以上であることが特に好ましい。 The metal compound (B) other than the zirconium compound (A) is not particularly limited, and a wide variety of compounds can be used. Further, in the present invention, as the other metal compound (B), one kind may be used alone, or two or more kinds may be used in combination. Specific examples of the other metal compound (B) include zinc compounds, titanium compounds, iron compounds, aluminum compounds, calcium compounds, magnesium compounds and the like. Among them, at least one of a zinc compound, a titanium compound, and an iron compound is preferable, and a zinc compound is particularly preferable, because it is more excellent in catalytic ability. Further, as a more preferable embodiment, the total mass of the zirconium compound (A), the zinc compound, the titanium compound, and the iron compound is preferably 80 parts by mass or more in 100 parts by mass of the total mass of the urethanization reaction catalyst. , 90 parts by mass or more is more preferable, and 95 parts by mass or more is particularly preferable.
 前記亜鉛化合物のうち、無機亜鉛化合物としては、例えば、酸化亜鉛、水酸化亜鉛、塩化亜鉛等が挙げられる。 Among the zinc compounds, examples of the inorganic zinc compound include zinc oxide, zinc hydroxide, zinc chloride and the like.
 前記亜鉛化合物のうち、有機亜鉛化合物としては、例えば、下記一般式(7)~(10)のいずれかで表される化合物や、これら以外の亜鉛錯体等が挙げられる。
Zn(OR              ・・・一般式(7)
Zn(RCOCHCOR       ・・・一般式(8)
Zn(R10COCHCOOR11     ・・・一般式(9)
Zn(OCOR12            ・・・一般式(10)
[上記一般式(7)~(10)中、R及びR12はそれぞれ独立して炭素原子数1~20の脂肪族炭化水素基である。R、R、R10、R11はそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。]
Among the zinc compounds, examples of the organozinc compound include compounds represented by any of the following general formulas (7) to (10), zinc complexes other than these, and the like.
Zn (OR 7 ) 2 ... General formula (7)
Zn (R 8 COCH 2 COR 9 ) 2 ... General formula (8)
Zn (R 10 COCH 2 COOR 11 ) 2 ... General formula (9)
Zn (OCOR 12 ) 2 ... General formula (10)
[In the above general formulas (7) to (10), R 7 and R 12 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms. R8, R9 , R10, and R11 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. ]
上記一般式(7)~(10)中、R及びR12はそれぞれ独立して炭素原子数1~20の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数3~10の脂肪族炭化水素基であることが好ましい。また、R、R、R10、R11はそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数1~4の脂肪族炭化水素基であることが好ましい。 In the above general formulas (7) to (10), R 7 and R 12 are independently aliphatic hydrocarbon groups having 1 to 20 carbon atoms. Of these, an aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferable because it is more excellent in catalytic ability. Further, R 8 , R 9 , R 10 and R 11 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
 前記亜鉛錯体について、配位子の具体例としては、例えば、イミダゾール、2-メチルイミダゾール等のイミダゾール型配位子;ピリジン、2,2’-ビピリジン、1,10-フェナントロリン等のピリジン型配位子;トリメチルホスフィン、トリフェニルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン等のホスフィン配位子等が挙げられる。 Specific examples of the ligand for the zinc complex include imidazole-type ligands such as imidazole and 2-methylimidazole; and pyridine-type coordinations such as pyridine, 2,2'-bipyridine, and 1,10-phenanthroline. Child; phosphine ligands such as trimethylphosphine, triphenylphosphine, 1,2-bis (diphenylphosphino) ethane and the like can be mentioned.
 前記亜鉛錯体を用いる場合、予め錯体として調整したものを用いてもよいし、ウレタン化反応の反応系中に、前記一般式(7)~(10)のいずれかで表される化合物と、配位子となる化合物とを添加し、反応系中で錯体を生じさせてもよい。 When the zinc complex is used, a complex prepared in advance may be used, or the compound represented by any of the general formulas (7) to (10) is arranged in the reaction system of the urethanization reaction. A compound to be a coordinate may be added to form a complex in the reaction system.
 前記亜鉛化合物の中でも、触媒能により優れることから、前記一般式(8)又は(10)で表される化合物或いはイミダゾール型配位子を有する亜鉛錯体が好ましく、前記一般式(10)で表される化合物又はイミダゾール型配位子を有する亜鉛錯体がより好ましい。 Among the zinc compounds, the compound represented by the general formula (8) or (10) or the zinc complex having an imidazole-type ligand is preferable because it is more excellent in catalytic ability, and is represented by the general formula (10). Compounds or zinc complexes having an imidazole-type ligand are more preferable.
 前記チタン化合物のうち、無機チタン化合物としては、例えば、酸化チタン、水酸化亜鉛、塩化チタン等が挙げられる。 Among the titanium compounds, examples of the inorganic titanium compound include titanium oxide, zinc hydroxide, titanium chloride and the like.
 前記チタン化合物のうち、有機チタン化合物としては、例えば、下記一般式(11)~(15)のいずれかで表される化合物が挙げられる。
Ti(OR13                ・・・一般式(11)
Ti(R14COHCOR15         ・・・一般式(12)
Ti(OR13(R14COCHCOR15  ・・・一般式(13)
Ti(OR13(R16COCHCOOR17 ・・・一般式(14)
(R13O)Ti-O-Ti(OR13     ・・・一般式(15)
[上記一般式(11)~(15)中、R13は炭素原子数1~20の脂肪族炭化水素基である。R14、R15、R16、R17はそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。]
Among the titanium compounds, examples of the organic titanium compound include compounds represented by any of the following general formulas (11) to (15).
Ti (OR 13 ) 4 ... General formula (11)
Ti (R 14 COH 2 COR 15 ) 4 ... General formula (12)
Ti (OR 13 ) m (R 14 COCH 2 COR 15 ) n ... General formula (13)
Ti (OR 13 ) m (R 16 COCH 2 COOR 17 ) n ... General formula (14)
(R 13 O) 3 Ti-O-Ti (OR 13 ) 3 ... General formula (15)
[In the above general formulas (11) to (15), R 13 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms. R 14 , R 15 , R 16 and R 17 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. ]
上記一般式(11)~(15)中、R13は炭素原子数1~20の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数1~10の脂肪族炭化水素基であることが好ましく、炭素原子数1~4の脂肪族炭化水素基であることがより好ましい。また、R14、R15、R16、R17はそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数1~4の脂肪族炭化水素基であることが好ましい。 In the above general formulas (11) to (15), R 13 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms. Among them, an aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferable, and an aliphatic hydrocarbon group having 1 to 4 carbon atoms is more preferable, because it is more excellent in catalytic ability. Further, R 14 , R 15 , R 16 and R 17 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
 前記チタン化合物の中でも、触媒能により優れることから、前記一般式(11)~(14)のいずれかで表される化合物が好ましく、前記一般式(14)で表される化合物がより好ましい。 Among the titanium compounds, the compound represented by any of the general formulas (11) to (14) is preferable, and the compound represented by the general formula (14) is more preferable, because the titanium compound is more excellent in catalytic ability.
 前記鉄化合物のうち、無機鉄化合物としては、例えば、酸化鉄、水酸化鉄、塩化鉄等が挙げられる。 Among the iron compounds, examples of the inorganic iron compound include iron oxide, iron hydroxide, iron chloride and the like.
 前記鉄化合物のうち、有機鉄化合物としては、例えば、下記一般式(16)で表される化合物が挙げられる。
Fe(R18COHCOR19   ・・・一般式(16)
[上記一般式(16)中、R18、R19はそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。]
Among the iron compounds, examples of the organic iron compound include compounds represented by the following general formula (16).
Fe (R 18 COH 2 COR 19 ) 3 ... General formula (16)
[In the above general formula (16), R 18 and R 19 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. ]
上記一般式(16)中、R18、R19はそれぞれ独立して炭素原子数1~10の脂肪族炭化水素基である。中でも、触媒能により優れることから、炭素原子数1~4の脂肪族炭化水素基であることが好ましい。 In the above general formula (16), R 18 and R 19 are independently aliphatic hydrocarbon groups having 1 to 10 carbon atoms. Of these, an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable because it is more excellent in catalytic ability.
 本発明では、前記ジルコニウム化合物(A)中のジルコニウムの総質量100質量部に対する、前記その他の金属化合物(B)中のその他の金属の総質量は、10~80質量部の範囲である。両金属の比率が当該範囲内であることにより、特に優れた触媒能を発揮する。更に、前記ジルコニウム化合物(A)中のジルコニウムの総質量100質量部に対する、前記その他の金属化合物(B)中のその他の金属の総質量が10~70質量部の範囲であることが好ましく、15~50質量部の範囲であることがより好ましい。 In the present invention, the total mass of other metals in the other metal compound (B) is in the range of 10 to 80 parts by mass with respect to 100 parts by mass of the total mass of zirconium in the zirconium compound (A). When the ratio of both metals is within the above range, particularly excellent catalytic ability is exhibited. Further, the total mass of other metals in the other metal compound (B) is preferably in the range of 10 to 70 parts by mass with respect to 100 parts by mass of the total mass of zirconium in the zirconium compound (A). It is more preferably in the range of about 50 parts by mass.
 本発明のウレタン化反応触媒は、反応原料の種類によらず高い触媒能を有する。したがって、本発明のウレタン化反応触媒を用いたウレタン化合物の製造方法においては、反応原料は特に限定なく、多種多様なものを用いることができる。また、本発明のウレタン化反応触媒は、あらゆるウレタン化反応用の触媒として、広く利用することができる。本願発明のウレタン化反応を用いて製造されるウレタン化合物は、例えば、重合性不飽和結合等の反応性基を有する硬化性ウレタン樹脂や、水酸基或いはイソシアネート基を有する2液硬化型ウレタン樹脂、高分子量の熱可塑性ウレタン樹脂等が挙げられる。 The urethanization reaction catalyst of the present invention has high catalytic ability regardless of the type of reaction raw material. Therefore, in the method for producing a urethane compound using the urethanization reaction catalyst of the present invention, the reaction raw materials are not particularly limited, and a wide variety of reaction raw materials can be used. Further, the urethanization reaction catalyst of the present invention can be widely used as a catalyst for any urethanization reaction. The urethane compound produced by using the urethanization reaction of the present invention is, for example, a curable urethane resin having a reactive group such as a polymerizable unsaturated bond, a two-component curable urethane resin having a hydroxyl group or an isocyanate group, and a high-grade urethane compound. Examples thereof include thermoplastic urethane resins having a molecular weight.
 本発明のウレタン化合物の製造方法において利用できる反応原料としては、例えば、ポリイソシアネート化合物(X)、アルコール性水酸基含有化合物(Y-1)、フェノール性水酸基含有化合物(Y-2)等が挙げられる。 Examples of the reaction raw material that can be used in the method for producing a urethane compound of the present invention include a polyisocyanate compound (X), an alcoholic hydroxyl group-containing compound (Y-1), and a phenolic hydroxyl group-containing compound (Y-2). ..
 ウレタン化反応触媒として従来から知られていたジルコニウム化合物や亜鉛化合物、チタン化合物は、特に、前記フェノール性水酸基含有化合物(Y-2)を反応原料とする場合に触媒活性が低い傾向にあったが、本願発明のウレタン化反応触媒は、前記フェノール性水酸基含有化合物(Y-2)を反応原料とする場合であっても、高い触媒能を示す。 The zirconium compound, zinc compound, and titanium compound, which have been conventionally known as urethanization reaction catalysts, tend to have low catalytic activity, especially when the phenolic hydroxyl group-containing compound (Y-2) is used as a reaction raw material. The urethanization reaction catalyst of the present invention exhibits high catalytic ability even when the phenolic hydroxyl group-containing compound (Y-2) is used as a reaction raw material.
 前記ポリイソシアネート化合物(X)は、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(17)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The polyisocyanate compound (X) is an aliphatic diisocyanate compound such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate; Alicyclic diisocyanate compounds such as diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; aromatic diisocyanates such as phenylenediocyanate, tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, naphthalenedi isocyanate and the like. Compounds; Polymethylene polyphenyl polyisocyanates having a repeating structure represented by the following structural formula (17); examples thereof include isocyanurate-modified products, biuret-modified products, and allophanate-modified products. These may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
[式中、R20はそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。R21はそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式(1)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。mは0又は1~3の整数であり、lは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000001
[In the formula, R 20 is either a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, respectively. Each of R 21 is an alkyl group having 1 to 4 carbon atoms independently, or a bond point connected to a structural site represented by the structural formula (1) via a methylene group marked with *. m is 0 or an integer of 1 to 3, and l is an integer of 1 or more. ]
 前記アルコール性水酸基含有化合物(Y-1)は、例えば、モノオールモノマー、ジオールモノマー、3官能以上のポリオールモノマー、ポリオレフィンポリオール化合物、ポリエーテルポリオール化合物、ポリエステルポリオール化合物、ラクトン変性ポリオール化合物、ポリカーボネートポリオール化合物等が挙げられる。前記アルコール性水酸基含有化合物(Y-1)はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。 The alcoholic hydroxyl group-containing compound (Y-1) is, for example, a monool monomer, a diol monomer, a trifunctional or higher-functional polyol monomer, a polyolefin polyol compound, a polyether polyol compound, a polyester polyol compound, a lactone-modified polyol compound, or a polycarbonate polyol compound. And so on. The alcoholic hydroxyl group-containing compound (Y-1) may be used alone or in combination of two or more.
 前記モノオールモノマーは、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール等の低級アルコール化合物;ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、オレイルアルコール、リノリルアルコール当の高級アルコール化合物;シクロヘキサノール等の脂環構造含有モノオール化合物等が挙げられる。 The monool monomer is, for example, a lower alcohol compound such as methanol, ethanol, propanol, butanol, pentanol, hexanol; a higher alcohol compound such as lauryl alcohol, myristyl alcohol, stearyl alcohol, oleyl alcohol, linolyl alcohol; cyclohexanol and the like. Examples thereof include monool compounds containing an alicyclic structure.
 前記ジオールモノマーは、例えば、エチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等の直鎖の脂肪族ジオール化合物;プロピレングリコール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、2-エチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、2-エチル-2-メチル-1,3-プロパンジオール、2-エチルブタン-14-ブタンジオール、2,3-ジメチル-1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジメチル-1,5-ペンタンジオール、3,3-ジメチルペンタン-1,5-ジオール、2,2-ジエチル-1,3-プロパンジオール、3-プロピルペンタン-1,5-ジオール、2,2-ジエチル-1,4-ブタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2,2-ジプロピル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,5-ジエチル-1,6-ヘキサンジオール等の分岐鎖を有する脂肪族ジオール化合物;シクロヘキサンジオールやシクロヘキサンジメタノール等の脂環構造含有ジオール化合物等が挙げられる。 The diol monomer is, for example, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonane. Linear aliphatic diol compounds such as diol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol; propylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 2-ethyl-1,3-propanediol, 2-methyl-1,4-butanediol, 2-ethyl-2-methyl-1,3-propanediol, 2-ethylbutane-14-butanediol, 2,3- Didimethyl-1,4-butanediol, 3-methyl-1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 3,3-dimethylpentane-1,5-diol, 2,2- Diethyl-1,3-propanediol, 3-propylpentane-1,5-diol, 2,2-diethyl-1,4-butanediol, 2,4-diethyl-1,5-pentanediol, 2,2- An aliphatic diol compound having a branched chain such as dipropyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,5-diethyl-1,6-hexanediol; cyclohexanediol or Examples thereof include an alicyclic structure-containing diol compound such as cyclohexanedimethanol.
 前記3官能以上のポリオールモノマーは、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトール等の3官能以上の脂肪族ポリオール化合物等が挙げられる。 Examples of the trifunctional or higher functional polyol monomer include trifunctional or higher functional aliphatic polyol compounds such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, and pentaerythritol.
前記ポリオレフィンポリオール化合物としては、例えば、ポリオレフィン構造やポリジエン構造を有するポリオール化合物等が挙げられる。具体的には、例えば、ポリエチレン系ポリオール、ポリプロピレン系ポリオール、ポリブタジエンポリオール、水素添加ポリブタジエンポリオール、ポリイソプレンポリオール、水素添加ポリイソプレンポリオール等が挙げられる。ポリオレフィンポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 Examples of the polyolefin polyol compound include polyol compounds having a polyolefin structure and a polydiene structure. Specific examples thereof include polyethylene-based polyols, polypropylene-based polyols, polybutadiene polyols, hydrogenated polybutadiene polyols, polyisoprene polyols, hydrogenated polyisoprene polyols and the like. The molecular weight of the polyolefin polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
 前記ポリエーテルポリオール化合物は、前記ジオールモノマーや3官能以上のポリオールモノマーと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の環状エーテル化合物との開環重合によって得られるものが挙げられる。ポリエーテルポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 The polyether polyol compound includes the diol monomer, a trifunctional or higher functional polyol monomer, and a cyclic ether compound such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether. Examples thereof include those obtained by ring-opening polymerization with. The molecular weight of the polyether polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
 前記ポリエステルポリオール化合物は、前記ジオールモノマーや3官能以上のポリオールモノマーと、多塩基酸化合物とを反応原料とするものが挙げられる。前記多塩基酸化合物は、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;トラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸等の脂環族ジカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;1,2,5-ヘキサントリカルボン酸等の3官能以上の脂肪族ポリカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;1,2,4-シクロヘキサントリカルボン酸等の3官能以上の脂環族ポリカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;トリメリット酸、無水トリメリット酸、1,2,5-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸等の3官能以上の芳香族ポリカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体等が挙げられる。これら多塩基酸化合物はそれぞれ単独で用いても良いし、二種類以上を併用しても良い。ポリエステルポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 Examples of the polyester polyol compound include those using the diol monomer, a trifunctional or higher functional polyol monomer, and a polybasic acid compound as reaction raw materials. The polybasic acid compound is, for example, an aliphatic dicarboxylic acid compound such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid, and Derivatives of these acid anhydrides, acid halides, alkyl esters, etc .; alicyclic dicarboxylic acid compounds such as trahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, and these acid anhydrides, acid halides, etc. Derivatives such as alkyl esters; aromatic dicarboxylic acid compounds such as phthalic acid, isophthalic acid and terephthalic acid, and derivatives such as these acid anhydrides, acid halides and alkyl esters; Trifunctional or higher aliphatic polycarboxylic acid compounds, and derivatives such as these acid anhydrides, acid halides, and alkyl esters; trifunctional or higher functional alicyclic polycarboxylic acid compounds such as 1,2,4-cyclohexanetricarboxylic acid. , And derivatives of these acid anhydrides, acid halides, alkyl esters, etc .; trifunctional acids such as trimellitic acid, trimellitic anhydride, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid. Examples thereof include the above aromatic polycarboxylic acid compounds, and derivatives such as acid anhydrides, acid halides, and alkyl esters thereof. Each of these polybasic acid compounds may be used alone, or two or more kinds may be used in combination. The molecular weight of the polyester polyol compound is not particularly limited, but generally, a polyester polyol compound having a number average molecular weight (Mn) in the range of 500 to 5,000 is widely used.
 前記ラクトン変性ポリオール化合物は、例えば、ε-カプロラクトン、γ-ブチロラクトン等のラクトン化合物の開環重合物や、前記ジオールモノマーや3官能以上のポリオールモノマーと前記ラクトン化合物との重合物等が挙げられる。ラクトン変性ポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~4,000の範囲であるものが広く利用されている。 Examples of the lactone-modified polyol compound include a ring-opening polymer of a lactone compound such as ε-caprolactone and γ-butyrolactone, and a polymer of the diol monomer or a trifunctional or higher functional polyol monomer and the lactone compound. The molecular weight of the lactone-modified polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 4,000 are widely used.
 前記ポリカーボネートポリオール化合物は、例えば、前記ジオールモノマーや3官能以上のポリオールモノマーと、カルボニル化剤とを反応原料とするものが挙げられる。前記カルボニル化剤は、例えば、ホスゲン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等が挙げられる。ポリカーボネートポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 Examples of the polycarbonate polyol compound include those using the diol monomer, a trifunctional or higher functional polyol monomer, and a carbonylating agent as reaction raw materials. Examples of the carbonylating agent include phosgene, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like. The molecular weight of the polycarbonate polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
 前記フェノール性水酸基含有化合物(Y-2)は、例えば、芳香族モノヒドロキシ化合物、芳香族ジヒドロキシ化合物、3官能以上の芳香族ポリヒドロキシ化合物、フェノール樹脂、ポリエーテルポリオール化合物、ポリエステルポリオール化合物、ポリカーボネートポリオール化合物等が挙げられる。前記フェノール性水酸基含有化合物(Y-2)はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。 The phenolic hydroxyl group-containing compound (Y-2) is, for example, an aromatic monohydroxy compound, an aromatic dihydroxy compound, a trifunctional or higher functional aromatic polyhydroxy compound, a phenol resin, a polyether polyol compound, a polyester polyol compound, or a polycarbonate polyol. Examples include compounds. The phenolic hydroxyl group-containing compound (Y-2) may be used alone or in combination of two or more.
 前記芳香族モノヒドロキシ化合物は、例えば、フェノール、クレゾール、キシレノール、トリメチルフェノール、エチルフェノール、プロピルフェノール、ブチルフェノール、ペンチルフェノール、ヘキシルフェノール、オクチルフェノール、ノニルフェノール、ナフトール等が挙げられる。 Examples of the aromatic monohydroxy compound include phenol, cresol, xylenol, trimethylphenol, ethylphenol, propylphenol, butylphenol, pentylphenol, hexylphenol, octylphenol, nonylphenol, and naphthol.
 前芳香族ジヒドロキシ化合物は、例えば、ジヒドロキシベンゼン、ジヒドロキシナフタレン、ビフェノール、テトラメチルビフェノール、ビスフェノールA、ビスフェノールF
、ビスフェノールS等が挙げられる。
The pre-aromatic dihydroxy compound is, for example, dihydroxybenzene, dihydroxynaphthalene, biphenol, tetramethylbiphenol, bisphenol A, bisphenol F.
, Bisphenol S and the like.
 前記3官能以上の芳香族ポリヒドロキシ化合物は、例えば、トリヒドロキシベンゼン、トリヒドロキシナフタレン、トリヒドロキシトリフェニルメタン、トリヒドロキシトリフェニルエタン等が挙げられる。 Examples of the trifunctional or higher functional aromatic polyhydroxy compound include trihydroxybenzene, trihydroxynaphthalene, trihydroxytriphenylmethane, and trihydroxytriphenylethane.
 前記フェノール樹脂は、例えば、前記芳香族モノヒドロキシ化合物、前記芳香族ジヒドロキシ化合物、前記3官能以上の芳香族ポリヒドロキシ化合物の1種乃至複数種を原料とする各種のノボラック樹脂や、ジシクロペンタジエン-フェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型樹脂等が挙げられる。ラフェノール樹脂の分子量は特に限定されないが、一般には、数平均分子量(Mn)が300~3,000の範囲であるものが広く利用されている。 The phenolic resin may be, for example, various novolak resins made from one or more of the aromatic monohydroxy compound, the aromatic dihydroxy compound, and the trifunctional or higher functional aromatic polyhydroxy compound, and dicyclopentadiene. Examples thereof include a phenol-added resin, a phenol aralkyl resin, a naphthol aralkyl resin, and a triphenol methane type resin. The molecular weight of the raphenol resin is not particularly limited, but generally, a raphenol resin having a number average molecular weight (Mn) in the range of 300 to 3,000 is widely used.
 前記ポリエーテルポリオール化合物は、例えば、前記芳香族モノヒドロキシ化合物、前記芳香族ジヒドロキシ化合物、前記3官能以上の芳香族ポリヒドロキシ化合物の1種乃至複数種と、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の環状エーテル化合物との開環重合によって得られるものが挙げられる。ポリエーテルポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 The polyether polyol compound may be, for example, one or more of the aromatic monohydroxy compound, the aromatic dihydroxy compound, and the trifunctional or higher functional aromatic polyhydroxy compound, and ethylene oxide, propylene oxide, tetrahydrofuran, and ethyl glycidyl ether. , Ppropylglycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether and the like obtained by ring-opening polymerization with a cyclic ether compound. The molecular weight of the polyether polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
 前記ポリエステルポリオール化合物は、例えば、前記芳香族モノヒドロキシ化合物、前記芳香族ジヒドロキシ化合物、前記3官能以上の芳香族ポリヒドロキシ化合物の1種乃至複数種と、多塩基酸化合物とを反応原料とするものが挙げられる。前記多塩基酸化合物は、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;トラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸等の脂環族ジカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;1,2,5-ヘキサントリカルボン酸等の3官能以上の脂肪族ポリカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;1,2,4-シクロヘキサントリカルボン酸等の3官能以上の脂環族ポリカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体;トリメリット酸、無水トリメリット酸、1,2,5-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸等の3官能以上の芳香族ポリカルボン酸化合物、及びこれらの酸無水物や酸ハロゲン化物、アルキルエステル等の誘導体等が挙げられる。これら多塩基酸化合物はそれぞれ単独で用いても良いし、二種類以上を併用しても良い。ポリエステルポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 The polyester polyol compound is, for example, one or a plurality of the aromatic monohydroxy compound, the aromatic dihydroxy compound, the trifunctional or higher functional aromatic polyhydroxy compound, and a polybasic acid compound as a reaction raw material. Can be mentioned. The polybasic acid compound is, for example, an aliphatic dicarboxylic acid compound such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid, and Derivatives of these acid anhydrides, acid halides, alkyl esters, etc .; alicyclic dicarboxylic acid compounds such as trahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, and these acid anhydrides, acid halides, etc. Derivatives such as alkyl esters; aromatic dicarboxylic acid compounds such as phthalic acid, isophthalic acid and terephthalic acid, and derivatives such as these acid anhydrides, acid halides and alkyl esters; Trifunctional or higher aliphatic polycarboxylic acid compounds, and derivatives such as these acid anhydrides, acid halides, and alkyl esters; trifunctional or higher functional alicyclic polycarboxylic acid compounds such as 1,2,4-cyclohexanetricarboxylic acid. , And derivatives of these acid anhydrides, acid halides, alkyl esters, etc .; trifunctional acids such as trimellitic acid, trimellitic anhydride, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid. Examples thereof include the above aromatic polycarboxylic acid compounds, and derivatives such as acid anhydrides, acid halides, and alkyl esters thereof. Each of these polybasic acid compounds may be used alone, or two or more kinds may be used in combination. The molecular weight of the polyester polyol compound is not particularly limited, but generally, a polyester polyol compound having a number average molecular weight (Mn) in the range of 500 to 5,000 is widely used.
 前記ポリカーボネートポリオール化合物は、例えば、前記芳香族モノヒドロキシ化合物、前記芳香族ジヒドロキシ化合物、前記3官能以上の芳香族ポリヒドロキシ化合物の1種乃至複数種と、カルボニル化剤とを反応原料とするものが挙げられる。前記カルボニル化剤は、例えば、ホスゲン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等が挙げられる。ポリカーボネートポリオール化合物の分子量は特に限定されないが、一般には、数平均分子量(Mn)が500~5,000の範囲であるものが広く利用されている。 The polycarbonate polyol compound may be, for example, one or a plurality of the aromatic monohydroxy compound, the aromatic dihydroxy compound, the trifunctional or higher functional aromatic polyhydroxy compound, and a carbonylating agent as a reaction raw material. Can be mentioned. Examples of the carbonylating agent include phosgene, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like. The molecular weight of the polycarbonate polyol compound is not particularly limited, but in general, those having a number average molecular weight (Mn) in the range of 500 to 5,000 are widely used.
 本発明のウレタン化触媒は、従来公知のウレタン化触媒と同様に用いることができ、本発明のウレタン化触媒を用いたウレタン化反応は、一般的なウレタン化反応と同様の条件で行うことができる。具体的には、反応原料を40~160℃程度に加熱し、1~20時間程度反応させる方法が挙げられる。 The urethanization catalyst of the present invention can be used in the same manner as the conventionally known urethanization catalyst, and the urethanization reaction using the urethanization catalyst of the present invention can be carried out under the same conditions as the general urethanization reaction. can. Specific examples thereof include a method in which the reaction raw material is heated to about 40 to 160 ° C. and reacted for about 1 to 20 hours.
 本発明のウレタン化触媒の添加量は、十分な触媒活性が得られることから、ウレタン化合物の反応原料の総質量に対し、0.01~0.09質量%の範囲であることが好ましく、0.03~0.07質量%の範囲であることが好ましい。 Since sufficient catalytic activity can be obtained, the addition amount of the urethanization catalyst of the present invention is preferably in the range of 0.01 to 0.09% by mass with respect to the total mass of the reaction raw materials of the urethane compound, and is 0. It is preferably in the range of 0.03 to 0.07% by mass.
 ウレタン化合物の製造は、必要に応じて溶媒中で行ってもよい。ここで用いる溶媒は、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトンなどの極性有機溶媒;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート等のポリプロピレングリコールモノアルキルエーテルアセテート類;低分子のエチレン-プロピレン共重合体等の共重合ポリエーテルグリコールのジアルキルエーテル類;共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;共重合ポリエーテルグリコールのアルキルエステル類;および共重合ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類;酢酸エチルおよび酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン等の芳香族溶媒;ヘキサン、シクロヘキサン等の脂肪族および脂環族溶媒等が挙げられる。これらはそれぞれ単独で用いてもよいし、複数種の混合溶媒として用いてもよい。溶媒の使用量は特に限定されないが、反応原料の総質量に対し、20~300質量%の範囲であることが好ましい。 The urethane compound may be produced in a solvent if necessary. The solvent used here is, for example, a polar organic solvent such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, γ-butyrolactone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether and the like. Ethylene glycol dialkyl ethers; Diethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dibutyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol Ethylene glycol monoalkyl ether acetates such as monoethyl ether acetate and ethylene glycol monobutyl ether acetate; diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate , Polyethylene glycol monoalkyl ether acetates such as triethylene glycol monobutyl ether acetate; propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether; dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, di Polypropylene glycol dialkyl ethers such as propylene glycol dibutyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether and tripropylene glycol dibutyl ether; propylene such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and propylene glycol monobutyl ether acetate. Glycol monoalkyl ether acetates; dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glyco Polypropylene glycol monoalkyl ether acetates such as lumonomethyl ether acetate, tripropylene glycol monoethyl ether acetate, tripropylene glycol monobutyl ether acetate; dialkyl ethers of copolymerized polyether glycols such as low molecular weight ethylene-propylene copolymer; Monoacetate monoalkyl ethers of copolymerized polyether glycols; alkyl esters of copolymerized polyether glycols; and monoalkyl esters of copolymerized polyether glycols Monoalkyl ethers; esters such as ethyl acetate and butyl acetate; acetone, Ketones such as methyl ethyl ketone and cyclohexanone; aromatic solvents such as toluene and xylene; aliphatic and alicyclic solvents such as hexane and cyclohexane can be mentioned. Each of these may be used alone or as a mixed solvent of a plurality of kinds. The amount of the solvent used is not particularly limited, but is preferably in the range of 20 to 300% by mass with respect to the total mass of the reaction raw materials.
 ウレタン化合物の反応原料において、反応原料中のイソシアネート基と水酸基とのモル比は、得られるウレタン化合物における所望の性能や、用途等に応じて適宜調整されるが、一般的には(イソシアネート基のモル比)/(水酸基のモル比)=1/0.95~1/5.0の範囲であることが好ましい。 In the reaction raw material of the urethane compound, the molar ratio of the isocyanate group to the hydroxyl group in the reaction raw material is appropriately adjusted according to the desired performance of the obtained urethane compound, the application, etc., but is generally (isocyanate group). The molar ratio) / (molar ratio of hydroxyl groups) = 1 / 0.95 to 1 / 5.0 is preferable.
 ウレタン化合物の反応原料の仕込み順は、得られるウレタン化合物における所望の性能や、用途等に応じて、反応原料を一括で仕込む方法、原料の一部を分割で仕込む方法、多段反応とする方法などが挙げられる。前述の通り、本発明のウレタン化触媒は、特に、前記フェノール性水酸基含有化合物(Y-2)を反応原料とする場合に、従来公知のウレタン化触媒と比較して高い触媒能を示す。このような特性を生かしたウレタン化合物の製造例の一例として、例えば、前記ポリイソシアネート化合物(X)と、前記アルコール性水酸基含有化合物(Y-1)とを反応させてイソシアネート基含有中間体を得(工程1)、次いで、前記中間体とフェノール性水酸基含有化合物(Y-2)とを反応させる(工程2)ウレタン化合物の製造方法(以下製造方法(1)と略記する)が挙げられる。 The order of charging the reaction raw materials of the urethane compound is as follows, depending on the desired performance of the obtained urethane compound, the application, etc. Can be mentioned. As described above, the urethanization catalyst of the present invention exhibits higher catalytic ability than the conventionally known urethanization catalyst, particularly when the phenolic hydroxyl group-containing compound (Y-2) is used as a reaction raw material. As an example of production of a urethane compound utilizing such characteristics, for example, the polyisocyanate compound (X) is reacted with the alcoholic hydroxyl group-containing compound (Y-1) to obtain an isocyanate group-containing intermediate. (Step 1), then a method for producing a urethane compound (hereinafter abbreviated as production method (1)) in which the intermediate is reacted with the phenolic hydroxyl group-containing compound (Y-2) (step 2) can be mentioned.
 前記製造方法(1)のような多段反応にてウレタン化合物を製造する場合、前記ウレタン化触媒は、第一工程にて全量を添加してもよいし、複数の工程において分割添加してもよい。いずれの場合においても、ウレタン化触媒の添加量は、前述の通り、ウレタン化合物の反応原料の総質量に対し、0.01~0.09質量%の範囲であることが好ましく、0.03~0.07質量%の範囲であることが好ましい。 When the urethane compound is produced by a multi-step reaction as in the production method (1), the entire amount of the urethanization catalyst may be added in the first step, or may be added in portions in a plurality of steps. .. In any case, the amount of the urethanization catalyst added is preferably in the range of 0.01 to 0.09% by mass, preferably 0.03 to 0.09% by mass, based on the total mass of the reaction raw materials of the urethane compound, as described above. It is preferably in the range of 0.07% by mass.
 前記製造方法(1)の工程1において、前記ポリイソシアネート化合物(X)と、前記アルコール性水酸基含有化合物(Y-1)との反応割合は、前記アルコール性水酸基含有化合物(Y-1)中の水酸基に対し、前記ポリイソシアネート化合物(X)中のイソシアネート基が過剰となる条件であればよく、具体的な比率は、得られるウレタン化合物における所望の性能や、用途等に応じて適宜調整される。中でも、得られるウレタン化合物を硬化性組成物用に用いた際の硬化物物性に優れることから、前記アルコール性水酸基含有化合物(Y-1)中の水酸基1モルに対し、前記ポリイソシアネート化合物(X)中のイソシアネート基が1.2~2.3モルとなる割合であることが好ましい。 In step 1 of the production method (1), the reaction ratio between the polyisocyanate compound (X) and the alcoholic hydroxyl group-containing compound (Y-1) is the reaction ratio of the alcoholic hydroxyl group-containing compound (Y-1) in the alcoholic hydroxyl group-containing compound (Y-1). The condition may be such that the isocyanate group in the polyisocyanate compound (X) is excessive with respect to the hydroxyl group, and the specific ratio is appropriately adjusted according to the desired performance of the obtained urethane compound, application, and the like. .. Above all, since the obtained urethane compound is excellent in cured material properties when used for a curable composition, the polyisocyanate compound (X) is compared with 1 mol of the hydroxyl group in the alcoholic hydroxyl group-containing compound (Y-1). ) Is preferably in a proportion of 1.2 to 2.3 mol of isocyanate groups.
 前記工程1の反応温度は、用いる前記ポリイソシアネート化合物(X)及び前記アルコール性水酸基含有化合物(Y-1)の種類等に応じて適宜変更されるが、反応が効率よく進行することから、40~80℃の範囲であることが好ましい。また、反応時間は、1~10時間の範囲であることが好ましく、1~6時間の範囲であることがより好ましい。 The reaction temperature in the step 1 is appropriately changed depending on the types of the polyisocyanate compound (X) and the alcoholic hydroxyl group-containing compound (Y-1) to be used, but since the reaction proceeds efficiently, 40 The temperature is preferably in the range of -80 ° C. The reaction time is preferably in the range of 1 to 10 hours, more preferably in the range of 1 to 6 hours.
 前記製造方法(1)の工程2において、前記工程1で得た中間体と、前記フェノール性水酸基含有化合物(Y-2)との反応割合は、得られるウレタン化合物における所望の性能や、用途等に応じて適宜調整される。中でも、得られるウレタン化合物を硬化性組成物用に用いた際の硬化物物性に優れることから、前記中間体中のイソシアネート基1モルに対し、前記フェノール性水酸基含有化合物(Y-2)中の水酸基が2.0~7.0モルとなる割合であることが好ましい。 In step 2 of the production method (1), the reaction ratio between the intermediate obtained in step 1 and the phenolic hydroxyl group-containing compound (Y-2) is determined by the desired performance of the obtained urethane compound, applications, and the like. It is adjusted appropriately according to. Above all, since the obtained urethane compound is excellent in the cured material properties when used for a curable composition, the phenolic hydroxyl group-containing compound (Y-2) contains 1 mol of the isocyanate group in the intermediate. The ratio of hydroxyl groups is preferably 2.0 to 7.0 mol.
 前記工程1の反応温度は、前記ポリイソシアネート化合物(X)、前記アルコール性水酸基含有化合物(Y-1)及び前記フェノール性水酸基含有化合物(Y-2)の種類等に応じて適宜変更されるが、反応が効率よく進行することから、100~160℃の範囲であることが好ましい。また、反応時間は、1~10時間の範囲であることが好ましい。 The reaction temperature in the step 1 is appropriately changed depending on the type of the polyisocyanate compound (X), the alcoholic hydroxyl group-containing compound (Y-1), the phenolic hydroxyl group-containing compound (Y-2), and the like. Since the reaction proceeds efficiently, the temperature is preferably in the range of 100 to 160 ° C. The reaction time is preferably in the range of 1 to 10 hours.
 前記製造方法(1)にて得られるウレタン化合物の具体構造や分子量等は、反応原料の種類や、ウレタン化合物における所望の性能、用途等に応じて適宜調整される。中でも、得られるウレタン化合物を硬化性組成物用に用いた際の硬化物物性に優れることから、重量平均分子量(Mw)が5,000~50,000の範囲であることが好ましい。本発明においてウレタン化合物の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)を用いて、実施例に記載の測定条件で測定したものである。 The specific structure, molecular weight, etc. of the urethane compound obtained by the production method (1) are appropriately adjusted according to the type of reaction raw material, desired performance of the urethane compound, application, and the like. Above all, the weight average molecular weight (Mw) is preferably in the range of 5,000 to 50,000 because the obtained urethane compound is excellent in the cured physical properties when used for a curable composition. In the present invention, the weight average molecular weight (Mw) of the urethane compound is measured by gel permeation chromatography (GPC) under the measurement conditions described in Examples.
 本発明のウレタン化反応触媒を用いて得られるウレタン化合物は、一般的なウレタン化合物同様、様々な用途に用いることができる。このうち、ウレタン化合物の反応原料として前記フェノール性水酸基含有化合物(Y-2)を用いて得られるウレタン化合物(或いはウレタン樹脂)は、フェノール性水酸基とイソシアネート基とによるウレタン結合が高温条件下において解離することから、フェノール性水酸基或いはイソシアネート基と反応し得る化合物と組み合わせることにより、硬化性組成物として用いることができる。 The urethane compound obtained by using the urethanization reaction catalyst of the present invention can be used for various purposes like a general urethane compound. Of these, in the urethane compound (or urethane resin) obtained by using the phenolic hydroxyl group-containing compound (Y-2) as the reaction raw material of the urethane compound, the urethane bond between the phenolic hydroxyl group and the isocyanate group is dissociated under high temperature conditions. Therefore, it can be used as a curable composition by combining with a compound capable of reacting with a phenolic hydroxyl group or an isocyanate group.
 前記フェノール性水酸基或いはイソシアネート基と反応し得る化合物の一例としては、エポキシ樹脂が挙げられる。前記エポキシ樹脂はどのような具体構造を有するものであってもよく、特に限定なく用いることができる。具体例の一部としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、テトラフェノールエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等が挙げられる。 An epoxy resin is mentioned as an example of a compound that can react with the phenolic hydroxyl group or the isocyanate group. The epoxy resin may have any specific structure and may be used without particular limitation. As a part of specific examples, for example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolac type epoxy resin, bisphenol novolak type epoxy resin, biphenol novolak type epoxy resin, bisphenol type epoxy resin, biphenyl type epoxy resin, Examples thereof include a triphenol methane type epoxy resin, a tetraphenol ethane type epoxy resin, a dicyclopentadiene-phenol addition reaction type epoxy resin, a phenol aralkyl type epoxy resin, and a naphthol aralkyl type epoxy resin.
 前記ウレタン化合物と、前記エポキシ樹脂との配合割合は、所望の硬化物物性等に応じて適宜調整される。特に、硬化物における機械物性等に優れることから、ウレタン化合物100質量部に対し、エポキシ樹脂が10~1000質量部となる範囲であることが好ましい。 The blending ratio of the urethane compound and the epoxy resin is appropriately adjusted according to the desired cured physical properties and the like. In particular, since the cured product is excellent in mechanical properties and the like, it is preferable that the epoxy resin is in the range of 10 to 1000 parts by mass with respect to 100 parts by mass of the urethane compound.
 前記硬化性組成物は、必要に応じて、その他の化合物又は樹脂成分や、硬化促進剤、溶剤、難燃剤、無機質充填材、シランカップリング剤、離型剤、顔料、乳化剤等の各種添加剤を含有しても良い。 The curable composition may contain other compounds or resin components, and various additives such as a curing accelerator, a solvent, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, and an emulsifier, if necessary. May be contained.
前記その他の化合物又は樹脂成分としては、ポリエステル樹脂、フェノキシ樹脂、PPS樹脂、PPE樹脂、ポリアリレーン樹脂等のバインダー樹脂;フェノール樹脂、メラミン樹脂、アルコキシシラン系硬化剤、多塩基酸無水物、シアネート化合物等の反応性化合物等が挙げられる。 Examples of the other compounds or resin components include binder resins such as polyester resin, phenoxy resin, PPS resin, PPE resin, and polyarylane resin; phenol resin, melamine resin, alkoxysilane-based curing agent, polybasic acid anhydride, cyanate compound, and the like. Examples thereof include reactive compounds of.
 前記硬化促進剤としては、本発明のウレタン化反応触媒や、トリフェニルホスフィン等のリン系化合物、1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)等の第3級アミン、イミダゾール化合物、4-ジメチルアミノピリジン等のピリジン化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これら高加促進剤は一種類を単独で用いてもよいし、2種類以上を併用してもよい。これら硬化促進剤の添加量は、硬化性組成物中の溶剤を除く成分の合計100質量部に対し、0.001~5質量%の範囲であることが好ましい。 Examples of the curing accelerator include a urethanization reaction catalyst of the present invention, a phosphorus compound such as triphenylphosphine, and a tertiary amine such as 1,8-diazabicyclo- [5.4.0] -undecene (DBU). Examples thereof include imidazole compounds, pyridine compounds such as 4-dimethylaminopyridine, organic acid metal salts, Lewis acids, amine complex salts and the like. One type of these high-acceleration agents may be used alone, or two or more types may be used in combination. The amount of these curing accelerators added is preferably in the range of 0.001 to 5% by mass with respect to 100 parts by mass of the total components excluding the solvent in the curable composition.
 前記溶剤は、例えば、前記製造方法(1)の反応溶媒として例示した各種の溶剤が挙げられる。溶剤の使用量は、硬化性組成物の不揮発分が10~80質量%となる割合であることが好ましい。 Examples of the solvent include various solvents exemplified as the reaction solvent of the production method (1). The amount of the solvent used is preferably such that the non-volatile content of the curable composition is 10 to 80% by mass.
 前記硬化性組成物は、加熱することにより硬化物を得ることができる。加熱温度は、150~220℃の範囲であることが好ましい。硬化性組成物が溶剤を使用する場合には、予め溶剤を乾燥させるための加熱乾燥時間を設けてもよい。加熱乾燥の温度は用いる溶剤によって適宜調整されるが、50~120℃の範囲であることが好ましい。 The curable composition can be heated to obtain a cured product. The heating temperature is preferably in the range of 150 to 220 ° C. When the curable composition uses a solvent, a heat-drying time for drying the solvent may be provided in advance. The temperature for heating and drying is appropriately adjusted depending on the solvent used, but is preferably in the range of 50 to 120 ° C.
 前記硬化性組成物の用途は限定されず、一般的な熱硬化性樹脂材料と同様に用いることができる。前記製造方法(1)にて得られるウレタン化合物は、ウレタン樹脂としての柔軟性或いは靱性と、フェノール性水酸基含有化合物(Y-2)に起因する耐熱性等を兼備することから、特に、電子材料向けの耐熱材料等に好適に用いることができる。 The use of the curable composition is not limited, and it can be used in the same manner as a general thermosetting resin material. The urethane compound obtained by the production method (1) has flexibility or toughness as a urethane resin and heat resistance due to the phenolic hydroxyl group-containing compound (Y-2), and thus is particularly an electronic material. It can be suitably used for heat-resistant materials and the like.
 次に本発明を実施例、比較例により具体的に説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
イソシアネート基含有率の測定方法
 フラスコにウレタンプレポリマー2g、酢酸エチル20ml、ジノルマルブチルアミン10%酢酸エチル溶液10mlを加えて、室温で20分間撹拌する。その後、ブロモフェノールブルー指示薬を2滴加えて、0.5mol/L(0.0005mol/mL)塩酸で滴定を行う。滴定した量(V2[ml])を下記の計算式に代入し、イソシアネート基含有率[質量%]を算出する。
イソシアネート基含有量[質量%]=42.02×(V1-V2)×0.0005×100/2
(式中の記号及び数字の説明)
V1:ウレタンプレポリマーを加えず、ブランクで測定した際の塩酸の滴定量[ml]
0.0005:塩酸の濃度[mol/ml]
42.02:イソシアネート基の分子量[g/mol]
Method for measuring isocyanate group content 2 g of urethane prepolymer, 20 ml of ethyl acetate and 10 ml of dinormal butylamine 10% ethyl acetate solution are added to the flask, and the mixture is stirred at room temperature for 20 minutes. Then, 2 drops of the bromophenol blue indicator are added, and titration is performed with 0.5 mol / L (0.0005 mol / mL) hydrochloric acid. The titrated amount (V2 [ml]) is substituted into the following formula to calculate the isocyanate group content [mass%].
Isocyanate group content [mass%] = 42.02 x (V1-V2) x 0.0005 x 100/2
(Explanation of symbols and numbers in the formula)
V1: Titration of hydrochloric acid when measured with a blank without adding urethane prepolymer [ml]
0.0005: Hydrochloric acid concentration [mol / ml]
42.02: Molecular weight of isocyanate group [g / mol]
赤外線吸収スペクトル(IR)の測定
 ウレタン樹脂をKBr板上に薄く塗布し、日本分光社製「FT/IR-4100」を用いて、赤外線吸収スペクトルを測定した。イソシアネート基の特性吸収である2270cm-1の位置にピークが存在するか否かで、残存するイソシアネート基の有無を確認した。
Measurement of infrared absorption spectrum (IR) A urethane resin was thinly applied on a KBr plate, and the infrared absorption spectrum was measured using "FT / IR-4100" manufactured by Nippon Spectroscopy. The presence or absence of residual isocyanate groups was confirmed by the presence or absence of a peak at the position of 2270 cm -1 , which is the characteristic absorption of isocyanate groups.
実施例1 ウレタン樹脂(1)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、ジルコニウムジブトキシビス(エチルアセトアセテート)(マツモトファインケミカル株式会社社製「オルガチックスZC-580」)0.0985g、亜鉛錯体(楠本化成株式会社製「K-KAT XK-614」)0.0295gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(1)を得た。ウレタンプレポリマー(1)のイソシアネート基含有率は、0.892質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、4時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(1)を得た。
 実施例1において、ジルコニウムジブトキシビス(エチルアセトアセテート)中のジルコニウムの総質量に対する、亜鉛錯体中の亜鉛の総質量の割合は、31%であった。
Example 1 Production of Urethane Resin (1) (Step 1) Propylene glycol monomethyl ether acetate 283.9 g, isophorone diisocyanate 23.6 g (0.106 mol), polybutadiene diol (0.106 mol) in a flask equipped with a stirrer, a thermometer, and a condenser. Hydroxyl value 32.2 mgKOH / g) 185.0 g (0.053 mol), zirconium dibutoxybis (ethylacetacetate) ("Organix ZC-580" manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.0985 g, zinc complex (Kusumoto Kasei) "K-KAT XK-614" manufactured by Co., Ltd.) 0.0295 g was added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (1) having an isocyanate group. The isocyanate group content of the urethane prepolymer (1) was 0.892% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 4 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (1).
In Example 1, the ratio of the total mass of zinc in the zinc complex to the total mass of zirconium in zirconium dibutoxybis (ethylacetoacetate) was 31%.
実施例2 ウレタン樹脂(2)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、ジルコニウムジブトキシビス(エチルアセトアセテート)(マツモトファインケミカル株式会社社製「オルガチックスZC-580」)0.0985g、チタンジイソプロポキシビス(エチルアセトアセテート)(マツモトファインケミカル株式会社社製「オルガチックスTC-750」)0.0295gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(2)を得た。ウレタンプレポリマー(2)のイソシアネート基含有率は、0.899質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、7時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(2)を得た。
 実施例2において、ジルコニウムジブトキシビス(エチルアセトアセテート)中のジルコニウムの総質量に対する、チタンジイソプロポキシビス(エチルアセトアセテート)中のチタンの総質量の割合は、25%であった。
Example 2 Production of Urethane Resin (2) (Step 1) In a flask equipped with a stirrer, a thermometer, and a condenser, 283.9 g of propylene glycol monomethyl ether acetate, 23.6 g (0.106 mol) of isophorone diisocyanate, and polybutadiene diol (. Hydroxyl value 32.2 mgKOH / g) 185.0 g (0.053 mol), zirconium dibutoxybis (ethylacetacetate) ("Organix ZC-580" manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.0985 g, titanium diisopropoxybis (Ethylacetacetate) (“Organix TC-750” manufactured by Matsumoto Fine Chemicals Co., Ltd.) 0.0295 g was added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (2) having an isocyanate group. The isocyanate group content of the urethane prepolymer (2) was 0.899% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 7 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (2).
In Example 2, the ratio of the total mass of titanium in titanium diisopropoxybis (ethylacetate acetate) to the total mass of zirconium in zirconium dibutoxybis (ethylacetate acetate) was 25%.
実施例3 ウレタン樹脂(3)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、ジルコニウムテトラアセチルアセトネート(マツモトファインケミカル株式会社製「オルガチックスZC-150」)0.0985g、鉄(III)アセチルアセトネート(日本化学産業株式会社製「ナーセム第二鉄」)0.0295gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(3)を得た。ウレタンプレポリマー(3)のイソシアネート基含有率は、0.883質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、6時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(3)を得た。
 実施例3において、ジルコニウムテトラアセチルアセトネート中のジルコニウムの総質量に対する、鉄(III)アセチルアセトネート中の鉄の総質量の割合は、23%であった。
Example 3 Production of Urethane Resin (3) (Step 1) In a flask equipped with a stirrer, a thermometer, and a condenser, 283.9 g of propylene glycol monomethyl ether acetate, 23.6 g (0.106 mol) of isophoron diisocyanate, and polybutadiene diol (. Hydroxyl value 32.2 mgKOH / g) 185.0 g (0.053 mol), zirconium tetraacetylacetonate (“Organix ZC-150” manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.0985 g, iron (III) acetylacetonate (Nippon Kagaku) 0.0295 g of "Nasem Daini Iron" manufactured by Sangyo Co., Ltd. was added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (3) having an isocyanate group. The isocyanate group content of the urethane prepolymer (3) was 0.883% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 6 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (3).
In Example 3, the ratio of the total mass of iron in iron (III) acetylacetonate to the total mass of zirconium in zirconium tetraacetylacetonate was 23%.
実施例4 ウレタン樹脂(4)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、ジルコニウムテトラアセチルアセトネート(マツモトファインケミカル株式会社製「オルガチックスZC-150」)0.0985g、2-エチルヘキサン酸亜鉛(和光純薬株式会社製)0.0200g、1-メチルイミダゾール(東京化成工業株式会社製)0.0095gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(4)を得た。ウレタンプレポリマー(4)のイソシアネート基含有率は、0.897質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、5時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(4)を得た。
 実施例4において、ジルコニウムテトラアセチルアセトネート中のジルコニウムの総質量に対する、2-エチルヘキサン酸亜鉛中の亜鉛の総質量の割合は、20%であった。
Example 4 Production of Urethane Resin (4) (Step 1) In a flask equipped with a stirrer, a thermometer, and a condenser, 283.9 g of propylene glycol monomethyl ether acetate, 23.6 g (0.106 mol) of isophorone diisocyanate, and polybutadiene diol (. Hydroxyl value 32.2 mgKOH / g) 185.0 g (0.053 mol), zirconium tetraacetylacetonate (“Organix ZC-150” manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.0985 g, zinc 2-ethylhexanoate (Wako Pure Chemical Industries, Ltd.) 0.0200 g (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 0.0095 g of 1-methylimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (4) having an isocyanate group. The isocyanate group content of the urethane prepolymer (4) was 0.897% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 5 hours, and it was confirmed that the increase in viscosity had subsided to obtain a urethane resin (4).
In Example 4, the ratio of the total mass of zinc in zinc 2-ethylhexanoate to the total mass of zirconium in zirconium tetraacetylacetonate was 20%.
比較例1 ウレタン樹脂(1’)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、ジルコニウムテトラアセチルアセトネート(マツモトファインケミカル株式会社製「オルガチックスZC-700」)0.1280gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(1’)を得た。ウレタンプレポリマー(1’)のイソシアネート基含有率は、0.940質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、11時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(1’)を得た。
Comparative Example 1 Production of Urethane Resin (1') (Step 1) Propylene glycol monomethyl ether acetate 283.9 g, isophorone diisocyanate 23.6 g (0.106 mol), polybutadiene diol in a flask equipped with a stirrer, a thermometer, and a condenser. 185.0 g (0.053 mol) of (hydroxyl value 32.2 mgKOH / g) and 0.1280 g of zirconium tetraacetylacetonate (“Organix ZC-700” manufactured by Matsumoto Fine Chemical Co., Ltd.) were added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (1') having an isocyanate group. The isocyanate group content of the urethane prepolymer (1') was 0.940% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (1') was obtained.
比較例2 ウレタン樹脂(2’)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、亜鉛錯体(楠本化成株式会社製「K-KAT XK-614」)0.1280gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(2’)を得た。ウレタンプレポリマー(2’)のイソシアネート基含有率は、0.962質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、11時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(2’)を得た。
Comparative Example 2 Production of Urethane Resin (2') (Step 1) Propylene glycol monomethyl ether acetate 283.9 g, isophorone diisocyanate 23.6 g (0.106 mol), polybutadiene diol in a flask equipped with a stirrer, a thermometer, and a condenser. 185.0 g (0.053 mol) of (hydroxyl value 32.2 mgKOH / g) and 0.1280 g of a zinc complex (“K-KAT XK-614” manufactured by Kusumoto Kasei Co., Ltd.) were added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (2') having an isocyanate group. The isocyanate group content of the urethane prepolymer (2') was 0.962% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (2') was obtained.
比較例3 ウレタン樹脂(3’)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコに、プロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価=32.2mgKOH/g)185.0g(0.053mol)、アルミニウム錯体(楠本化成株式会社製「K-KAT XK-5218」)0.1280gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(3’)を得た。ウレタンプレポリマー(3’)のイソシアネート基含有率は、1.455質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、11時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(3’)を得た。
Comparative Example 3 Production of Urethane Resin (3') (Step 1) Propylene glycol monomethyl ether acetate 283.9 g, isophorone diisocyanate 23.6 g (0.106 mol), polybutadiene diol in a flask equipped with a stirrer, a thermometer, and a condenser. 185.0 g (0.053 mol) of (hydroxyl value = 32.2 mgKOH / g) and 0.1280 g of an aluminum complex (“K-KAT XK-5218” manufactured by Kusumoto Kasei Co., Ltd.) were added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (3') having an isocyanate group. The isocyanate group content of the urethane prepolymer (3') was 1.455% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (3') was obtained.
比較例4 ウレタン樹脂(4’)の製造
 (工程1)撹拌装置、温度計、コンデンサーを付けたフラスコにプロピレングリコールモノメチルエーテルアセテート283.9g、イソホロンジイソシアネート23.6g(0.106mol)、ポリブタジエンジオール(水酸基価32.2mgKOH/g)185.0g(0.053mol)、チタンイソプロポキシトリスイソステアレート(マツモトファインケミカル株式会社製「オルガチックスTC-800」)0.1280gを加えた。60℃まで昇温した後、4時間攪拌し、イソシアネート基を有するウレタンプレポリマー(4’)を得た。ウレタンプレポリマー(4’)のイソシアネート基含有率は、1.576質量%であった。
 (工程2)次いで、反応溶液を80℃まで加熱し、オルソクレゾールノボラック樹脂(重量平均分子量668)75.3g(0.113mol)を加えた。140℃まで昇温した後、11時間攪拌し、粘度の上昇が収まったことを確認して、ウレタン樹脂(4’)を得た。
Comparative Example 4 Production of Urethane Resin (4') (Step 1) Propylene Glycol Monomethyl Ether Acetate 283.9 g, Isophorone Diisocyanate 23.6 g (0.106 mol), Polybutadiene Didiol (0.106 mol) in a flask equipped with a stirrer, a thermometer, and a condenser. A hydroxyl value of 32.2 mgKOH / g) 185.0 g (0.053 mol) and 0.1280 g of titanium isopropoxytris isostearate (“Organix TC-800” manufactured by Matsumoto Fine Chemical Co., Ltd.) were added. After raising the temperature to 60 ° C., the mixture was stirred for 4 hours to obtain a urethane prepolymer (4') having an isocyanate group. The isocyanate group content of the urethane prepolymer (4') was 1.576% by mass.
(Step 2) Next, the reaction solution was heated to 80 ° C., and 75.3 g (0.113 mol) of orthocresol novolak resin (weight average molecular weight 668) was added. After raising the temperature to 140 ° C., the mixture was stirred for 11 hours, and it was confirmed that the increase in viscosity had subsided, and a urethane resin (4') was obtained.
ウレタンプレポリマーのイソシアネート基含有率の評価
 実施例1~4及び比較例1~4について、ウレタンプレポリマーのイソシアネート基含有率を表1にまとめた。実施例1~4及び比較例1~4のいずれも、ウレタンプレポリマーの製造に要した反応時間(工程1の反応時間)は4時間であり、また、反応終点における理論イソシアネート基含有率は0.906質量%である。実施例1~4はいずれもイソシアネート基含有量が理論値を下回っており、反応が十分に進行したことが分かる。他方、比較例1~4はいずれもイソシアネート基含有量が理論値を超えており、反応が十分に進行していないことが分かる。
Evaluation of Isocyanate Group Content of Urethane Prepolymer For Examples 1 to 4 and Comparative Examples 1 to 4, the isocyanate group content of the urethane prepolymer is summarized in Table 1. In both Examples 1 to 4 and Comparative Examples 1 to 4, the reaction time (reaction time in step 1) required for producing the urethane prepolymer was 4 hours, and the theoretical isocyanate group content at the reaction end point was 0. .906 mass%. In all of Examples 1 to 4, the isocyanate group content was lower than the theoretical value, indicating that the reaction proceeded sufficiently. On the other hand, in all of Comparative Examples 1 to 4, the isocyanate group content exceeded the theoretical value, and it can be seen that the reaction did not proceed sufficiently.
ウレタン樹脂製造時の反応時間と残存イソシアネート基の評価
 実施例1~4及び比較例1~4について、ウレタンプレポリマーからウレタン樹脂を製造する際に要した反応時間(工程2の反応時間)を表1にまとめた。また、得られたウレタン樹脂中にイソシアネート基が残存するか否かを前記の条件で測定した赤外線吸収スペクトルにて確認した。
Reaction time during urethane resin production and evaluation of residual isocyanate groups For Examples 1 to 4 and Comparative Examples 1 to 4, the reaction time (reaction time in step 2) required to produce urethane resin from urethane prepolymer is shown. I summarized it in 1. Further, it was confirmed by the infrared absorption spectrum measured under the above conditions whether or not the isocyanate group remained in the obtained urethane resin.
ウレタン樹脂の外観評価
 実施例1~4及び比較例1~4について、得られたウレタン樹脂の外観を目視観察し、濁りの有無を確認した。
Appearance evaluation of urethane resin With respect to Examples 1 to 4 and Comparative Examples 1 to 4, the appearance of the obtained urethane resin was visually observed to confirm the presence or absence of turbidity.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1. ジルコニウム化合物(A)と、前記ジルコニウム化合物(A)以外のその他の金属化合物(B)とを含有し、前記ジルコニウム化合物(A)中のジルコニウムの総質量100質量部に対する、その他の金属化合物(B)中のその他の金属の総質量が10~80質量部の範囲であることを特徴とするウレタン化反応触媒。 The other metal compound (B) containing the zirconium compound (A) and the other metal compound (B) other than the zirconium compound (A) with respect to 100 parts by mass of the total mass of zirconium in the zirconium compound (A). ), The total mass of the other metals is in the range of 10 to 80 parts by mass.
  2. ウレタン化反応の原料として、少なくともフェノール性水酸基含有化合物(Y-2)を用いる、請求項1記載のウレタン化反応触媒。 The urethanization reaction catalyst according to claim 1, wherein at least a phenolic hydroxyl group-containing compound (Y-2) is used as a raw material for the urethanization reaction.
  3. ウレタン化反応の原料として、少なくともアルコール性水酸基含有化合物(Y-1)と、フェノール性水酸基含有化合物(Y-2)とを用いる、請求項1記載のウレタン化反応触媒。 The urethanization reaction catalyst according to claim 1, wherein at least an alcoholic hydroxyl group-containing compound (Y-1) and a phenolic hydroxyl group-containing compound (Y-2) are used as raw materials for the urethanization reaction.
  4. 前記その他の金属化合物(B)が、亜鉛化合物、チタン化合物、鉄化合物のいずれか一種類以上である請求項1記載のウレタン化反応触媒。 The urethanization reaction catalyst according to claim 1, wherein the other metal compound (B) is at least one of a zinc compound, a titanium compound, and an iron compound.
  5. 請求項1~4のいずれか一つに記載のウレタン化反応触媒を用いて得られるウレタン化合物。 A urethane compound obtained by using the urethanization reaction catalyst according to any one of claims 1 to 4.
  6. 請求項5記載のウレタン化合物を含有する硬化性組成物。 A curable composition containing the urethane compound according to claim 5.
  7. 請求項6記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 6.
  8. 請求項1~4のいずれか一つに記載のウレタン化反応触媒を用いたウレタン化合物の製造方法。 The method for producing a urethane compound using the urethanization reaction catalyst according to any one of claims 1 to 4.
  9. 請求項1~4のいずれか一つに記載のウレタン化反応触媒の存在下、ポリイソシアネート化合物と、アルコール性水酸基含有化合物(Y-1)とを反応させてイソシアネート基含有中間体を得、次いで、前記中間体とフェノール性水酸基含有化合物(Y-2)とを反応させる、ウレタン化合物の製造方法。 In the presence of the urethanization reaction catalyst according to any one of claims 1 to 4, the polyisocyanate compound is reacted with the alcoholic hydroxyl group-containing compound (Y-1) to obtain an isocyanate group-containing intermediate, and then , A method for producing a urethane compound, which comprises reacting the intermediate with a phenolic hydroxyl group-containing compound (Y-2).
PCT/JP2021/041445 2020-12-03 2021-11-11 Urethanization reaction catalyst, urethane compound, curable composition, cured product, and method for producing urethane compound WO2022118624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566810A JP7468701B2 (en) 2020-12-03 2021-11-11 URETHANE REACTION CATALYST, URETHANE COMPOUND, CURABLE COMPOSITION, CURED PRODUCT, AND METHOD FOR PRODUCING URETHANE COMPOUND

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020200870 2020-12-03
JP2020-200870 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022118624A1 true WO2022118624A1 (en) 2022-06-09

Family

ID=81853111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041445 WO2022118624A1 (en) 2020-12-03 2021-11-11 Urethanization reaction catalyst, urethane compound, curable composition, cured product, and method for producing urethane compound

Country Status (3)

Country Link
JP (1) JP7468701B2 (en)
TW (1) TW202235472A (en)
WO (1) WO2022118624A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070010810A (en) * 2005-07-20 2007-01-24 에스엔케이폴리텍(주) Polyurethane foam having shock absorption and resilience and the method for preparing thereof
JP2010235921A (en) * 2009-03-13 2010-10-21 Auto Kagaku Kogyo Kk Curable composition and its production method
JP2011157414A (en) * 2010-01-29 2011-08-18 Tosoh Corp Catalyst for blocking-agent dissociation comprising aluminum compound and metal compound other than aluminum and its application
JP2012102086A (en) * 2010-10-13 2012-05-31 Nippon Synthetic Chem Ind Co Ltd:The Method for producing urethane compound, and urethane compound obtained by the method
US20160272752A1 (en) * 2013-10-30 2016-09-22 Dow Global Technologies Llc Syntactic polyurethane elastomers for use in subsea pipeline insulation
JP2020189833A (en) * 2019-05-17 2020-11-26 Kjケミカルズ株式会社 Method for producing unsaturated urethane compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130795B2 (en) 2007-06-14 2013-01-30 Dic株式会社 Thermosetting polyimide resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070010810A (en) * 2005-07-20 2007-01-24 에스엔케이폴리텍(주) Polyurethane foam having shock absorption and resilience and the method for preparing thereof
JP2010235921A (en) * 2009-03-13 2010-10-21 Auto Kagaku Kogyo Kk Curable composition and its production method
JP2011157414A (en) * 2010-01-29 2011-08-18 Tosoh Corp Catalyst for blocking-agent dissociation comprising aluminum compound and metal compound other than aluminum and its application
JP2012102086A (en) * 2010-10-13 2012-05-31 Nippon Synthetic Chem Ind Co Ltd:The Method for producing urethane compound, and urethane compound obtained by the method
US20160272752A1 (en) * 2013-10-30 2016-09-22 Dow Global Technologies Llc Syntactic polyurethane elastomers for use in subsea pipeline insulation
JP2020189833A (en) * 2019-05-17 2020-11-26 Kjケミカルズ株式会社 Method for producing unsaturated urethane compound

Also Published As

Publication number Publication date
JP7468701B2 (en) 2024-04-16
TW202235472A (en) 2022-09-16
JPWO2022118624A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN100404577C (en) Preparation of isocyanurate group containing polyisocyanate mixtures
US10011677B2 (en) Polycarbodiimide composition, method for producing polycarbodiimide composition, aqueous dispersion composition, solution composition, resin composition, and cured resin
US11208579B2 (en) Curable resin composition and adhesive for bonding structural material using composition
CN102131755A (en) Use of 1,1-dimethylol cycloalkanes or 1,1-dimethylol cycloalkenes for production of polymers
US10941240B2 (en) Biorenewable high performance polyester polyols
CN104745061B (en) PCDL containing carbonate products
CN105308109B (en) Include the composition of silylated polymer
JP2007524746A (en) Low viscosity hydrophobic polyol
CA2064986C (en) High performance polyurethane coating compositions and processes for making same
MXPA96000899A (en) Polyurethane coatings with ultra-basket based on volati organic components
US20060004176A1 (en) Oligocarbonate polyols having terminal secondary hydroxyl groups
WO2008047562A1 (en) Base material for adhesive and method for producing adhesive
CN104884552B (en) The curable coating composition of one pack system, its preparation and application and coating prepared therefrom and product
US7241504B2 (en) Diols formed by ring-opening of epoxies
TWI752047B (en) Polycarbodiimide composition, method for producing polycarbodiimide composition, water-dispersed composition, solution composition, resin composition, and resin cured product
WO2022118624A1 (en) Urethanization reaction catalyst, urethane compound, curable composition, cured product, and method for producing urethane compound
EP3362499B1 (en) Systems and methods for forming polyurethanes
KR101619088B1 (en) Polyurethane adhesive composition and method for preparing the same
EP3632951A1 (en) Epoxy resin, epoxy resin-containing composition and cured product of same
CN111065664A (en) Heat-curable composition
JP2017019961A (en) Adhesive composition
JPS61231019A (en) Polyol resin
KR102308560B1 (en) Urethane resin for adhesive and manufacturing method thereof
WO2022108738A1 (en) Polyurethane and polyisocyanurate hybrid coatings
JPH07216302A (en) Coating resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900379

Country of ref document: EP

Kind code of ref document: A1