WO2022118557A1 - Polyamide manufacturing method and polyamide manufactured by said manufacturing method - Google Patents

Polyamide manufacturing method and polyamide manufactured by said manufacturing method Download PDF

Info

Publication number
WO2022118557A1
WO2022118557A1 PCT/JP2021/038705 JP2021038705W WO2022118557A1 WO 2022118557 A1 WO2022118557 A1 WO 2022118557A1 JP 2021038705 W JP2021038705 W JP 2021038705W WO 2022118557 A1 WO2022118557 A1 WO 2022118557A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine
polyester
polyamide
producing
glycol
Prior art date
Application number
PCT/JP2021/038705
Other languages
French (fr)
Japanese (ja)
Inventor
辰典 正木
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2022566780A priority Critical patent/JPWO2022118557A1/ja
Publication of WO2022118557A1 publication Critical patent/WO2022118557A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation

Definitions

  • the present invention relates to a method for producing a polyamide by recycling the constituent components of polyester.
  • the method of recycling resin materials is material recycling, in which the recovered waste resin is melted again and used, and the recovered waste resin is once decomposed into monomers and oligomers by a chemical reaction, and this decomposition product is used as a raw material for chemical recycling. It is roughly divided into three types: thermal recycling, which uses the recovered waste resin as a heat source. Material recycling is widely used from the viewpoint of ease of recycling, but due to the effects of impurities and deterioration of resin, the material obtained by remelting can maintain the same performance as virgin material. There is the problem of being difficult.
  • Patent Document 1 proposes a method in which an aprotic sparse-protic polar solvent is added to polyester and diamine.
  • Patent Document 2 proposes a method of reacting polyester and diamine in supercritical water or subcritical water. Since both methods use a solvent, it is necessary to remove the solvent after the reaction, and the method of Patent Document 2 further requires high temperature and high pressure, so that the process cost becomes excessive.
  • Patent Document 3 proposes a method in which diamine is added to polyester in multiple stages and melt-kneaded. Since this method requires heating above the melting point of the aromatic polyamide, there is a concern about the generation of by-products and gelation.
  • An object of the present invention is to provide a method for chemically recycling polyester constituents to produce polyamide under solvent-free and low-temperature conditions while suppressing process costs.
  • the method for producing a polyamide of the present invention is a method for producing a polyamide containing a dicarboxylic acid component and a diamine component in a solid phase state using a polyester containing a dicarboxylic acid component and a glycol component and a diamine. It is characterized in that the steps (I) to (III) are performed in this order.
  • Polyester having a specific surface area of 100 cm 2 / g or more and diamine are added to the reactor.
  • (II) Under normal pressure, heat and stir at (melting point of diamine -100 ° C) to (melting point of diamine + 150 ° C).
  • (III) After that, heating and stirring are further performed at a temperature of (the boiling point of glycol having the highest boiling point among the glycol components constituting the polyester ⁇ 50 ° C.) or higher.
  • polyethylene terephthalate as the polyester.
  • the method for producing a polyamide of the present invention it is preferable to use a powdery polyester. According to the method for producing a polyamide of the present invention, it is preferable to use an aliphatic diamine having 6 to 12 carbon atoms. According to the method for producing a polyamide of the present invention, it is preferable to use 1,10-decanediamine.
  • the polyamide of the present invention is produced by the above method.
  • polyester can be chemically recycled under mild conditions, and can be upgraded to a polyamide having excellent performance such as heat resistance, hydrolysis resistance, and mechanical strength as compared with before recycling.
  • a recycling method can be provided. Further, when decanediamine made of a plant-derived raw material is used as the diamine to be used, it is possible to provide a unprecedented sustainable resin material such as a biomass material and a recycled material.
  • the raw material polyester may be used or discarded during the production process.
  • the polyester is not particularly limited as long as it contains a dicarboxylic acid component and a glycol component and has an ester bond in the molecule.
  • polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate and the like can be mentioned.
  • examples of the aliphatic polyester include polybutylene succinate and the like.
  • Polyethylene terephthalate and polybutylene terephthalate are preferable because polyamides having excellent mechanical strength and the like can be obtained, and polyethylene terephthalate is particularly preferable because they are easily available as raw materials.
  • the polyester may be a polyester obtained by copolymerizing another dicarboxylic acid component, a glycol component, an oxycarboxylic acid component, or the like with the components constituting the polyester, as long as the object in the present invention is not impaired. It may be a blend of the above-mentioned polyesters or a blend of the above-mentioned polyester and a copolymerized polyester.
  • dicarboxylic acid component examples include isophthalic acid, naphthalenedicarboxylic acid, 5-sophthalosulfoisophthalic acid, phthalic acid anhydride, sebacic acid, adipic acid, succinic acid and the like, and the diol component includes other components that can be copolymerized. , Etandiol, propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol and the like.
  • the raw material polyester needs to have a specific surface area of 100 cm 2 / g or more, preferably 500 cm 2 / g or more, and more preferably 1000 cm 2 / g or more.
  • the specific surface area of the polyester is 100 cm 2 / g or more, the added diamine is adsorbed on the surface of the polyester at the same time even if it is melted by heating, so that the aminolysis reaction proceeds rapidly and adheres to the wall surface of the device. And it is possible to suppress the adhesion between polyesters.
  • the specific surface area of the raw material polyester is preferably 40,000 cm 2 / g or less because the operability may decrease due to adhesion to the wall surface of the device or the like.
  • the shape of the polyester is not particularly limited as long as the specific surface area is within the above range, and it is preferably in the form of powders or fibers.
  • the powdery material can be obtained by pulverizing polyester.
  • the fibrous material may be cut to a length that can be put into the reaction device, or may be provided as it is without being cut.
  • the raw material diamine may be either an aliphatic diamine or an aromatic diamine
  • the polyester glycol is produced from the viewpoint of efficiently removing the polyester glycol component produced by the reaction between the polyester and the diamine.
  • Those having a boiling point higher than the boiling point of the component are preferable.
  • polyethylene terephthalate is used as the raw material polyester, it is particularly preferable to use a diamine having a boiling point higher than the boiling point of ethylene glycol (198 ° C.).
  • diamines examples include aromatic diamines having 6 to 20 carbon atoms, alicyclic diamines having 6 to 20 carbon atoms, and aliphatic diamines having 6 to 12 carbon atoms, such as hexamethylenediamine and 2-methyloctamethylene.
  • diamines include diamine, trimethylhexamethylenediamine, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane.
  • the diamine is preferably an aliphatic diamine having 8 to 12 carbon atoms, and particularly preferably 1,10-decanediamine, from the viewpoint of the balance between the melting point and the boiling point and the use after regeneration. .. Since 1,10-decanediamine is generally a plant-derived raw material, the polyamide 10T obtained by using this and polyethylene terephthalate has a diamine component as a biomass material and a dicarboxylic acid component as a recycled material. , It is a material with a very low environmental load.
  • the method of the present invention for producing a polyamide containing a dicarboxylic acid component and a diamine component is described in the following (I) in a solid phase state in which the polyester as a raw material and the polyamide as a reaction product are not melted by using the polyester and the diamine. )-(III) in this order.
  • (I) Polyester having a specific surface area of 100 cm 2 / g or more and diamine are added to the reactor.
  • heat and stir at (melting point of diamine -100 ° C) to (melting point of diamine + 150 ° C).
  • heating and stirring are further performed at a temperature of (the boiling point of glycol having the highest boiling point among the glycol components constituting the polyester ⁇ 50 ° C.) or higher.
  • the reactor that can be used in the production method of the present invention is not particularly limited, but a device capable of uniformly stirring even a solid is preferable in order to maintain a solid phase state, that is, a solid (powder) state from beginning to end.
  • the amount of diamine to be blended in the polyester is preferably 1.00 to 1.50 mol with respect to 1 mol of the repeating unit of the polyester. If the blending amount of the diamine is less than 1.00 mol, the obtained polyamide becomes a copolymer in which the glycol component remains, and the physical properties may be deteriorated. On the other hand, if the blending amount of the diamine exceeds 1.50 mol, the diamine is excessive with respect to the dicarboxylic acid component of the polyester, and the obtained polyamide may not have a high degree of polymerization.
  • step (II) heating and stirring are performed under normal pressure.
  • the temperature in step (II) needs to be (melting point of diamine ⁇ 100 ° C.) to (melting point of diamine + 150 ° C.), and is from (melting point of diamine ⁇ 50 ° C.) to (melting point of diamine + 150 ° C.). It is preferable, and it is more preferable that it is (melting point of diamine) to (melting point of diamine + 120 ° C.). If the temperature in step (II) is lower than (melting point of diamine ⁇ 100 ° C.), the reaction between diamine and polyester is difficult to proceed, and it becomes difficult to obtain polyamide.
  • the polyester used in the present invention has a specific surface area of 100 cm 2 / g or more, so that diamine is adsorbed on the polyester surface at the same time as melting, and the system as a whole Can maintain a solid phase state (solid state).
  • step (III) further heating and stirring is performed in step (III).
  • the temperature in the step (III) needs to be higher than (the boiling point of the glycol having the highest boiling point among the glycol components constituting the polyester ⁇ 50 ° C.). If the temperature in step (III) is lower than (the boiling point of glycol having the highest boiling point among the glycol components constituting polyester), the produced glycol component cannot be sufficiently removed, and the obtained polyamide is a dicarboxylic acid. It is a copolymer composed of an acid component, a diamine component, and a glycol component. Further, the temperature in the step (III) is preferably 280 ° C. or lower. If the temperature in the step (III) is higher than 280 ° C., the polyamide may be gelled or the diamine component may be volatilized and discharged to the outside of the system, so that the degree of polymerization may not be increased.
  • steps (I) to (III) are performed in a substantially solid phase state.
  • the method performed in the solid phase state is economically excellent because it does not require complicated equipment and does not require a step of removing a solvent or the like.
  • a step of washing the polyamide with a low boiling point solvent may be provided after step (III) for the purpose of removing reaction by-products. In that case, it is necessary to remove the cleaning solvent and dry the polyamide.
  • the method for producing a polyamide of the present invention is, if necessary, an antioxidant, an antioxidant, a flame retardant, a flame retardant, a heat stabilizer, a light stabilizer, a colorant, a lubricant, a reinforcing material, a filler, and a pigment. Etc. may be mixed and carried out.
  • a polyamide in which the glycol component of polyester is replaced with a diamine component can be obtained.
  • the polyamide produced by the method of the present invention preferably has an amide group conversion rate represented by the ratio of amide bonds to total bonds of 90% or more, more preferably 95% or more, and more preferably 99% or more. It is more preferable to have.
  • the polyamide produced by the method of the present invention can be obtained by various molded products, films, sheets, fibers, etc. by a known method such as injection molding, extrusion molding, blow molding, compression molding, or by a known film forming method or spinning method. Can be processed into.
  • Polyester PET-1 Fiber waste discharged in the manufacturing process of polyethylene terephthalate (PET) fiber (fineness 3.0 dtex, density 1.38, specific surface area 1742 cm 2 / g)
  • PET-2 Fiber waste discharged in the PET fiber manufacturing process (fineness 10.0 dtex, specific density 1.38, specific surface area 954 cm 2 / g)
  • PET-3 The recovered PET bottle was cut into pieces of about 5 mm with scissors and then crushed by a crusher (volume average particle diameter 95 ⁇ m, specific density 1.38, specific surface area 458 cm 2 / g).
  • PET-4 The recovered PET bottle was cut into 5 mm pieces with scissors (specific surface area 54 cm 2 / g).
  • DDA Diamine / decanediamine
  • HMDA Hexamethylenediamine
  • NDA Nonandinamine
  • BDA Butane diamine
  • Example 1 6.00 g of PET-1 was weighed, and 1.10 mol of DDA was weighed with respect to 1 mol of the repeating unit of PET-1, and they were put into a reactor with a stirrer (step (I)). Under a nitrogen atmosphere, step (II) was heated and stirred at 170 ° C. for 3 hours, and then step (III) was heated and stirred at 250 ° C. for 9 hours. After completion of the reaction, the temperature was returned to room temperature, and the reaction product was taken out from the reactor to obtain a white polyamide powder.
  • Table 1 shows the results of measuring the polyamide production conditions, the melting point of the obtained polyamide, and the amide group conversion rate.
  • Comparative Example 1 since the specific surface area of the polyester was too low, the reaction with the diamine did not proceed efficiently, and in the step (II), the polyester was in a viscous state.
  • Comparative Example 2 since the temperature in step (II) was too high, the diamine was vaporized, and the obtained polyamide had a low amide group conversion rate.
  • Comparative Example 3 the temperature in step (III) was too low, so that the glycol component could not be sufficiently removed, and the obtained polyamide had a low amide group conversion rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyamides (AREA)

Abstract

A polyamide manufacturing method for using a diamine and a polyester including a dicarboxylic acid component and a glycol component to manufacture, in a solid-phase state, a polyamide containing a dicarboxylic acid component and a diamine component, the polyamide manufacturing method being characterized in carrying out the following steps (I) to (III) in the sequence listed. (I) Adding a diamine and a polyester having a specific surface area of 100 cm2/g or above. (II) Performing heating and stirring under normal pressure and at a temperature of between (melting point of the diamine – 100°C) and (melting point of the diamine + 150°C). (III) Then further performing heating and stirring at a temperature equal to or higher than (boiling point of glycol having the highest boiling point from among the glycol components constituting the polyester – 50°C).

Description

ポリアミドの製造方法およびその製造方法により製造されたポリアミドPolyamide manufacturing method and polyamide manufactured by the manufacturing method
 本発明は、ポリエステルの構成成分をリサイクルしてポリアミドを製造する方法に関するものである。 The present invention relates to a method for producing a polyamide by recycling the constituent components of polyester.
 資源の有効利用の観点から、また地球温暖化対策としての二酸化炭素排出抑制の観点から、材料のリサイクル技術が数多く検討されている。
 樹脂材料をリサイクルする方法は、回収した廃樹脂を再度溶融加工して用いるマテリアルリサイクル、回収した廃樹脂を化学反応により一旦モノマーやオリゴマーに分解し、この分解物を原料として再度重合に用いるケミカルリサイクル、回収した廃樹脂を熱源として用いるサーマルリサイクルの3種に大別される。
 マテリアルリサイクルは、リサイクルのしやすさの観点から広く普及しているが、不純物や樹脂の劣化の影響により、再度溶融加工して得られた材料は、バージン材と同等の性能を維持することが困難であるという問題がある。
 ケミカルリサイクルは、原料にまで分解するため、再度重合して得られた材料は、バージン材と全く同じ性能にすることが可能であるが、複雑な工程を経る必要があるために、コスト面でバージン材の代替とすることが困難である。
 これらの問題により、現在はサーマルリサイクルされる廃樹脂が最も多いが、資源の有効利用や二酸化炭素排出量の観点では望まれない方法である。従って、安価なケミカルリサイクル技術の開発が強く求められている。
From the viewpoint of effective use of resources and from the viewpoint of controlling carbon dioxide emissions as a measure against global warming, many material recycling techniques are being studied.
The method of recycling resin materials is material recycling, in which the recovered waste resin is melted again and used, and the recovered waste resin is once decomposed into monomers and oligomers by a chemical reaction, and this decomposition product is used as a raw material for chemical recycling. It is roughly divided into three types: thermal recycling, which uses the recovered waste resin as a heat source.
Material recycling is widely used from the viewpoint of ease of recycling, but due to the effects of impurities and deterioration of resin, the material obtained by remelting can maintain the same performance as virgin material. There is the problem of being difficult.
Since chemical recycling decomposes into raw materials, the material obtained by repolymerization can have exactly the same performance as the virgin material, but it requires a complicated process, so it is cost effective. It is difficult to substitute for virgin material.
Due to these problems, waste resin that is thermally recycled is the most common at present, but it is an undesired method from the viewpoint of effective use of resources and carbon dioxide emissions. Therefore, there is a strong demand for the development of inexpensive chemical recycling technology.
 飲料用ボトルなどに広く使用されているポリエチレンテレフタレートに関しても、様々なリサイクル技術が開発されている。中でもケミカルリサイクル法は、ポリエチレンテレフタレートをビス-2-ヒドロキシエチルテレフタレートに解重合し、再重合する技術が開発されている。しかしながら、ポリエステルの重合は、不純物や水を限りなく除去する必要があり、解重合モノマーの精製に多大なコストを要するという問題がある。 Various recycling technologies have been developed for polyethylene terephthalate, which is widely used for beverage bottles. Among them, in the chemical recycling method, a technique of depolymerizing polyethylene terephthalate into bis-2-hydroxyethyl terephthalate and repolymerizing it has been developed. However, the polymerization of polyester needs to remove impurities and water as much as possible, and has a problem that a great cost is required to purify the depolymerization monomer.
 一方、ポリエステルとジアミンからポリアミドを合成する方法が開発されている。この合成方法は、ジアミンによるポリエステルのアミノリシス反応を利用した方法であり、この反応は、ポリエステルの重合に比べて非常に進行しやすい反応である。
 特許文献1には、ポリエステルとジアミンに非プロトン系疎プロトン極性溶媒を加えた方法が提案されている。また特許文献2には、ポリエステルとジアミンを超臨界水または亜臨界水中で反応させる方法が提案されている。いずれの方法も溶媒を用いた方法であるために、反応後の溶媒の除去が必要であり、また特許文献2の方法はさらに高温高圧が必要であることからプロセスコストが過大となってしまう。
 特許文献3には、ポリエステルにジアミンを多段階で加え、溶融混練する方法が提案されている。この方法は芳香族ポリアミドの融点以上に加熱する必要があるため、副生成物の発生やゲル化の懸念がある。
On the other hand, a method for synthesizing polyamide from polyester and diamine has been developed. This synthetic method utilizes the aminolysis reaction of polyester with diamine, and this reaction is a reaction that is much easier to proceed than the polymerization of polyester.
Patent Document 1 proposes a method in which an aprotic sparse-protic polar solvent is added to polyester and diamine. Further, Patent Document 2 proposes a method of reacting polyester and diamine in supercritical water or subcritical water. Since both methods use a solvent, it is necessary to remove the solvent after the reaction, and the method of Patent Document 2 further requires high temperature and high pressure, so that the process cost becomes excessive.
Patent Document 3 proposes a method in which diamine is added to polyester in multiple stages and melt-kneaded. Since this method requires heating above the melting point of the aromatic polyamide, there is a concern about the generation of by-products and gelation.
特開平11-106504号公報Japanese Unexamined Patent Publication No. 11-106504 特開2004-83721号公報Japanese Unexamined Patent Publication No. 2004-83721 特開2001-11175号公報Japanese Unexamined Patent Publication No. 2001-11175
 本発明は、ポリエステルの構成成分をケミカルリサイクルして、無溶媒かつ低温な条件で、プロセスコストを抑えつつ、ポリアミドを製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for chemically recycling polyester constituents to produce polyamide under solvent-free and low-temperature conditions while suppressing process costs.
 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、特定の比表面積を有するポリエステルとジアミンとを加熱撹拌したところ、溶媒を用いることなく、また溶融温度まで加熱することなくポリアミドを合成することにより、上記課題を解決することを見出し、本発明に到達した。
 本発明のポリアミドの製造方法は、ジカルボン酸成分とグリコール成分を含むポリエステルと、ジアミンとを用いて、ジカルボン酸成分とジアミン成分を含むポリアミドを、固相状態で製造する方法であって、以下の(I)~(III)の工程の順でおこなうことを特徴とする。
(I)比表面積が100cm/g以上であるポリエステルと、ジアミンとを反応器に加え、
(II)常圧下、(ジアミンの融点-100℃)~(ジアミンの融点+150℃)で加熱撹拌をおこない、
(III)その後、さらに(ポリエステルを構成するグリコール成分のうち最も高い沸点を有するグリコールの沸点-50℃)以上で加熱撹拌をおこなう。
 本発明のポリアミドの製造方法によれば、ポリエステルとしてポリエチレンテレフタレートを用いることが好ましい。
 本発明のポリアミドの製造方法によれば、繊維状のポリエステルを用いることが好ましい。
 本発明のポリアミドの製造方法によれば、粉粒体状のポリエステルを用いることが好ましい。
 本発明のポリアミドの製造方法によれば、炭素数6~12の脂肪族ジアミンを用いることが好ましい。
 本発明のポリアミドの製造方法によれば、1,10-デカンジアミンを用いることが好ましい。
 本発明のポリアミドは、上記の方法で製造されたものである。
As a result of diligent research to solve the above problems, the present inventors heated and stirred polyester having a specific specific surface area and diamine, and found that polyamide was not used and was not heated to the melting temperature. We have found that the above-mentioned problems can be solved by synthesizing the above-mentioned problems, and have reached the present invention.
The method for producing a polyamide of the present invention is a method for producing a polyamide containing a dicarboxylic acid component and a diamine component in a solid phase state using a polyester containing a dicarboxylic acid component and a glycol component and a diamine. It is characterized in that the steps (I) to (III) are performed in this order.
(I) Polyester having a specific surface area of 100 cm 2 / g or more and diamine are added to the reactor.
(II) Under normal pressure, heat and stir at (melting point of diamine -100 ° C) to (melting point of diamine + 150 ° C).
(III) After that, heating and stirring are further performed at a temperature of (the boiling point of glycol having the highest boiling point among the glycol components constituting the polyester −50 ° C.) or higher.
According to the method for producing a polyamide of the present invention, it is preferable to use polyethylene terephthalate as the polyester.
According to the method for producing a polyamide of the present invention, it is preferable to use a fibrous polyester.
According to the method for producing a polyamide of the present invention, it is preferable to use a powdery polyester.
According to the method for producing a polyamide of the present invention, it is preferable to use an aliphatic diamine having 6 to 12 carbon atoms.
According to the method for producing a polyamide of the present invention, it is preferable to use 1,10-decanediamine.
The polyamide of the present invention is produced by the above method.
 本発明によれば、温和な条件でポリエステルをケミカルリサイクルすることができ、かつリサイクル前に比べて、耐熱性、耐加水分解性、機械強度などの性能に優れるポリアミドへとアップグレードすることが可能なリサイクル方法を提供することができる。さらに、用いるジアミンに植物由来原料からなるデカンジアミンを用いた場合には、バイオマス材料かつリサイクル材料という従来にないサステナブルな樹脂材料を提供することができる。 According to the present invention, polyester can be chemically recycled under mild conditions, and can be upgraded to a polyamide having excellent performance such as heat resistance, hydrolysis resistance, and mechanical strength as compared with before recycling. A recycling method can be provided. Further, when decanediamine made of a plant-derived raw material is used as the diamine to be used, it is possible to provide a unprecedented sustainable resin material such as a biomass material and a recycled material.
 以下、本発明を詳細に説明する。
 本発明の製造方法において、原料のポリエステルは、使用済み、または、製造工程中に廃棄されたものを使用することができる。
 ポリエステルは、ジカルボン酸成分とグリコール成分を含み、分子内にエステル結合を有するものであれば特に限定されるものではなく、例えば、芳香族ポリエステルでは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等が挙げられ、また、脂肪族ポリエステルでは、例えば、ポリブチレンサクシネート等が挙げられる。機械的強度等に優れるポリアミドが得られることから、ポリエチレンテレフタレート、ポリブチレンテレフタレートが好ましく、原料として入手が容易であることから、ポリエチレンテレフタレートが特に好ましい。
Hereinafter, the present invention will be described in detail.
In the production method of the present invention, the raw material polyester may be used or discarded during the production process.
The polyester is not particularly limited as long as it contains a dicarboxylic acid component and a glycol component and has an ester bond in the molecule. For example, in the case of aromatic polyester, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate and the like can be mentioned. In addition, examples of the aliphatic polyester include polybutylene succinate and the like. Polyethylene terephthalate and polybutylene terephthalate are preferable because polyamides having excellent mechanical strength and the like can be obtained, and polyethylene terephthalate is particularly preferable because they are easily available as raw materials.
 また、本発明における目的を阻害しない範囲であれば、ポリエステルは、上記ポリエステルを構成する成分に、他のジカルボン酸成分、グリコール成分あるいはオキシカルボン酸成分等が共重合されたものでもよく、あるいは、上記したポリエステル同士のブレンドや、上記したポリエステルと共重合したポリエステルとをブレンドしたものでもよい。
 共重合できる他の成分としては、ジカルボン酸成分では、例えば、イソフタル酸、ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、無水フタル酸、セバシン酸、アジピン酸、コハク酸等が挙げられ、ジオール成分では、エタンジオール、プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール等が挙げられる。
Further, the polyester may be a polyester obtained by copolymerizing another dicarboxylic acid component, a glycol component, an oxycarboxylic acid component, or the like with the components constituting the polyester, as long as the object in the present invention is not impaired. It may be a blend of the above-mentioned polyesters or a blend of the above-mentioned polyester and a copolymerized polyester.
Examples of the dicarboxylic acid component include isophthalic acid, naphthalenedicarboxylic acid, 5-sophthalosulfoisophthalic acid, phthalic acid anhydride, sebacic acid, adipic acid, succinic acid and the like, and the diol component includes other components that can be copolymerized. , Etandiol, propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol and the like.
 本発明において、原料のポリエステルは、比表面積が100cm/g以上であることが必要であり、500cm/g以上であることが好ましく、1000cm/g以上であることがさらに好ましい。ポリエステルの比表面積が100cm/g以上であることで、添加されたジアミンは、加熱により融解しても同時にポリエステルの表面に吸着されるため、アミノリシス反応が速やかに進行し、装置壁面への付着やポリエステル同士の固着を抑制することができる。また、原料ポリエステルの比表面積は、装置壁面等への付着により操業性が低下することがあるため、40000cm/g以下であることが好ましい。 In the present invention, the raw material polyester needs to have a specific surface area of 100 cm 2 / g or more, preferably 500 cm 2 / g or more, and more preferably 1000 cm 2 / g or more. When the specific surface area of the polyester is 100 cm 2 / g or more, the added diamine is adsorbed on the surface of the polyester at the same time even if it is melted by heating, so that the aminolysis reaction proceeds rapidly and adheres to the wall surface of the device. And it is possible to suppress the adhesion between polyesters. Further, the specific surface area of the raw material polyester is preferably 40,000 cm 2 / g or less because the operability may decrease due to adhesion to the wall surface of the device or the like.
 ポリエステルの形状は、比表面積が上記範囲であれば特に限定されず、粉粒体状または繊維状であることが好ましい。粉粒体状のものは、ポリエステルを粉砕することで得ることができる。繊維状のものは、反応装置に投入可能な長さに裁断してもよく、裁断せずにそのまま供してもよい。 The shape of the polyester is not particularly limited as long as the specific surface area is within the above range, and it is preferably in the form of powders or fibers. The powdery material can be obtained by pulverizing polyester. The fibrous material may be cut to a length that can be put into the reaction device, or may be provided as it is without being cut.
 本発明の製造方法において、原料のジアミンは、脂肪族ジアミンまたは芳香族ジアミンのいずれでもよく、ポリエステルとジアミンとの反応により生成する、ポリエステルのグリコール成分を効率的に除去する観点から、ポリエステルのグリコール成分の沸点よりも高い沸点を有するものが好ましい。
 例えば、原料ポリエステルとしてポリエチレンテレフタレートを用いる場合は、エチレングリコールの沸点(198℃)よりも高い沸点を有するジアミンを用いることが特に好ましい。そのようなジアミンとして、炭素数6~20の芳香族ジアミンや、炭素数6~20の脂環式ジアミンや、炭素数6~12の脂肪族ジアミン、例えば、ヘキサメチレンジアミン、2-メチルオクタメチレンジアミン、トリメチルヘキサメチレンジアミン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどが挙げられる。
 これらの中でも、融点と沸点のバランスや、再生後の用途などの観点から、ジアミンは、炭素数8~12の脂肪族ジアミンであることが好ましく、特に1,10-デカンジアミンであることが好ましい。1,10-デカンジアミンは、一般的に植物由来原料であるため、これとポリエチレンテレフタレートとを用いて得られるポリアミド10Tは、ジアミン成分がバイオマス材料であり、かつジカルボン酸成分がリサイクル材料であるため、環境負荷が非常に低い材料となる。
In the production method of the present invention, the raw material diamine may be either an aliphatic diamine or an aromatic diamine, and the polyester glycol is produced from the viewpoint of efficiently removing the polyester glycol component produced by the reaction between the polyester and the diamine. Those having a boiling point higher than the boiling point of the component are preferable.
For example, when polyethylene terephthalate is used as the raw material polyester, it is particularly preferable to use a diamine having a boiling point higher than the boiling point of ethylene glycol (198 ° C.). Examples of such diamines include aromatic diamines having 6 to 20 carbon atoms, alicyclic diamines having 6 to 20 carbon atoms, and aliphatic diamines having 6 to 12 carbon atoms, such as hexamethylenediamine and 2-methyloctamethylene. Examples thereof include diamine, trimethylhexamethylenediamine, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane.
Among these, the diamine is preferably an aliphatic diamine having 8 to 12 carbon atoms, and particularly preferably 1,10-decanediamine, from the viewpoint of the balance between the melting point and the boiling point and the use after regeneration. .. Since 1,10-decanediamine is generally a plant-derived raw material, the polyamide 10T obtained by using this and polyethylene terephthalate has a diamine component as a biomass material and a dicarboxylic acid component as a recycled material. , It is a material with a very low environmental load.
 本発明の、ジカルボン酸成分とジアミン成分を含むポリアミドを製造する方法は、上記ポリエステルと上記ジアミンとを用いて、原料のポリエステルや反応生成物のポリアミドが融解しない固相状態で、以下の(I)~(III)の工程の順でおこなう。
(I)比表面積が100cm/g以上であるポリエステルと、ジアミンとを反応器に加え、
(II)常圧下、(ジアミンの融点-100℃)~(ジアミンの融点+150℃)で加熱撹拌をおこない、
(III)その後、さらに(ポリエステルを構成するグリコール成分のうち最も高い沸点を有するグリコールの沸点-50℃)以上で加熱撹拌をおこなう。
The method of the present invention for producing a polyamide containing a dicarboxylic acid component and a diamine component is described in the following (I) in a solid phase state in which the polyester as a raw material and the polyamide as a reaction product are not melted by using the polyester and the diamine. )-(III) in this order.
(I) Polyester having a specific surface area of 100 cm 2 / g or more and diamine are added to the reactor.
(II) Under normal pressure, heat and stir at (melting point of diamine -100 ° C) to (melting point of diamine + 150 ° C).
(III) After that, heating and stirring are further performed at a temperature of (the boiling point of glycol having the highest boiling point among the glycol components constituting the polyester −50 ° C.) or higher.
 本発明の製造方法に用いることができる反応器は特に限定されないが、終始、固相状態、すなわち、固体(粉末)状態を維持させるため、固体でも均一に撹拌することができる装置が好ましい。 The reactor that can be used in the production method of the present invention is not particularly limited, but a device capable of uniformly stirring even a solid is preferable in order to maintain a solid phase state, that is, a solid (powder) state from beginning to end.
 工程(I)において、ポリエステルに配合するジアミンの量は、ポリエステルの繰り返し単位1molに対して、1.00~1.50molであることが好ましい。ジアミンの配合量が1.00mol未満であると、得られるポリアミドは、グリコール成分が残った共重合体となり、物性が低下することがある。一方、ジアミンの配合量が1.50molを超えると、ポリエステルのジカルボン酸成分に対してジアミンが過多となってしまい、得られるポリアミドは、重合度が上がらなくなることがある。 In the step (I), the amount of diamine to be blended in the polyester is preferably 1.00 to 1.50 mol with respect to 1 mol of the repeating unit of the polyester. If the blending amount of the diamine is less than 1.00 mol, the obtained polyamide becomes a copolymer in which the glycol component remains, and the physical properties may be deteriorated. On the other hand, if the blending amount of the diamine exceeds 1.50 mol, the diamine is excessive with respect to the dicarboxylic acid component of the polyester, and the obtained polyamide may not have a high degree of polymerization.
 工程(II)において、常圧下で加熱撹拌をおこなう。
 工程(II)における温度は、(ジアミンの融点-100℃)~(ジアミンの融点+150℃)であることが必要であり、(ジアミンの融点-50℃)~(ジアミンの融点+150℃)であることが好ましく、(ジアミンの融点)~(ジアミンの融点+120℃)であることがさらに好ましい。
 工程(II)における温度が、(ジアミンの融点-100℃)より低いと、ジアミンとポリエステルとの反応が進行しにくく、ポリアミドを得ることが困難となる。また、工程(II)における温度が(ジアミンの融点+150℃)より高いと、ジアミンは、沸点に近くなるため、ポリエステルと反応するよりも先に気化して、系外に排除されてしまい、ポリアミドの高分子量化が困難となる。
 工程(II)における温度が、ジアミンの融点以上であっても、本発明で用いるポリエステルは100cm/g以上の比表面積を有するため、ジアミンは、溶融と同時にポリエステル表面に吸着され、系全体としては固相状態(固体状態)を維持することができる。
In step (II), heating and stirring are performed under normal pressure.
The temperature in step (II) needs to be (melting point of diamine −100 ° C.) to (melting point of diamine + 150 ° C.), and is from (melting point of diamine −50 ° C.) to (melting point of diamine + 150 ° C.). It is preferable, and it is more preferable that it is (melting point of diamine) to (melting point of diamine + 120 ° C.).
If the temperature in step (II) is lower than (melting point of diamine −100 ° C.), the reaction between diamine and polyester is difficult to proceed, and it becomes difficult to obtain polyamide. Further, when the temperature in the step (II) is higher than (melting point of diamine + 150 ° C.), the diamine is close to the boiling point, so that it is vaporized before reacting with polyester and is excluded from the system, so that the polyamide It becomes difficult to increase the molecular weight of.
Even if the temperature in step (II) is higher than the melting point of diamine, the polyester used in the present invention has a specific surface area of 100 cm 2 / g or more, so that diamine is adsorbed on the polyester surface at the same time as melting, and the system as a whole Can maintain a solid phase state (solid state).
 工程(II)に続いて、工程(III)において、さらに加熱撹拌を行う。
 工程(III)における温度は、(ポリエステルを構成するグリコール成分のうち最も高い沸点を有するグリコールの沸点-50℃)以上であることが必要である。
 工程(III)における温度が(ポリエステルを構成するグリコール成分のうち最も高い沸点を有するグリコールの沸点-50℃)未満であると、生成するグリコール成分を十分に除去できず、得られるポリアミドは、ジカルボン酸成分、ジアミン成分、グリコール成分からなる共重合体となる。
 また、工程(III)における温度は、280℃以下であることが好ましい。工程(III)における温度が280℃よりも高いと、ポリアミドは、ゲル化が起こったり、ジアミン成分が揮発して系外に排出されてしまい、重合度が上がらなくなることがある。
Following step (II), further heating and stirring is performed in step (III).
The temperature in the step (III) needs to be higher than (the boiling point of the glycol having the highest boiling point among the glycol components constituting the polyester −50 ° C.).
If the temperature in step (III) is lower than (the boiling point of glycol having the highest boiling point among the glycol components constituting polyester), the produced glycol component cannot be sufficiently removed, and the obtained polyamide is a dicarboxylic acid. It is a copolymer composed of an acid component, a diamine component, and a glycol component.
Further, the temperature in the step (III) is preferably 280 ° C. or lower. If the temperature in the step (III) is higher than 280 ° C., the polyamide may be gelled or the diamine component may be volatilized and discharged to the outside of the system, so that the degree of polymerization may not be increased.
 以上の工程(I)~(III)は、実質的に固相の状態でおこなう。固相状態で行う方法は、煩雑な設備が不要となり、また溶媒などの除去工程が不要となることから、経済的にも優れた方法である。ただし、必要に応じて、反応副生成物の除去の目的で、工程(III)以降において、低沸点溶媒を用いてポリアミドを洗浄する工程を設けてもよい。その場合は、洗浄溶媒の除去、ポリアミドの乾燥が必要である。 The above steps (I) to (III) are performed in a substantially solid phase state. The method performed in the solid phase state is economically excellent because it does not require complicated equipment and does not require a step of removing a solvent or the like. However, if necessary, a step of washing the polyamide with a low boiling point solvent may be provided after step (III) for the purpose of removing reaction by-products. In that case, it is necessary to remove the cleaning solvent and dry the polyamide.
 本発明のポリアミドの製造方法は、必要に応じて、酸化防止剤、帯電防止材、難燃剤、難燃助剤、熱安定剤、光安定剤、着色剤、滑剤、強化材、充填材、顔料等を配合して実施してもよい。 The method for producing a polyamide of the present invention is, if necessary, an antioxidant, an antioxidant, a flame retardant, a flame retardant, a heat stabilizer, a light stabilizer, a colorant, a lubricant, a reinforcing material, a filler, and a pigment. Etc. may be mixed and carried out.
 上記工程(I)~(III)により、ポリエステルのグリコール成分が、ジアミン成分に置換されたポリアミドが得られる。本発明の方法によって製造されるポリアミドは、全結合に対するアミド結合の割合で表わされるアミド基変換率が、90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることがさらに好ましい。 By the above steps (I) to (III), a polyamide in which the glycol component of polyester is replaced with a diamine component can be obtained. The polyamide produced by the method of the present invention preferably has an amide group conversion rate represented by the ratio of amide bonds to total bonds of 90% or more, more preferably 95% or more, and more preferably 99% or more. It is more preferable to have.
 本発明の方法で製造されたポリアミドは、射出成形、押出成形、ブロー成形、圧縮成形などの公知の方法により、あるいは公知の製膜方法や紡糸方法により、各種成形品、フィルム、シート、繊維等に加工することができる。 The polyamide produced by the method of the present invention can be obtained by various molded products, films, sheets, fibers, etc. by a known method such as injection molding, extrusion molding, blow molding, compression molding, or by a known film forming method or spinning method. Can be processed into.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
1.測定方法
 ポリアミドの物性測定は以下の方法によりおこなった。
1. 1. Measurement method The physical properties of polyamide were measured by the following method.
(1)融点
 示差走査熱量計(パーキンエルマー社製 DSC-7型)用い、昇温速度20℃/分で360℃まで昇温した後、360℃で5分間保持し、降温速度20℃/分で25℃まで降温し、さらに25℃で5分間保持後、再び昇温速度20℃/分で昇温測定した際の吸熱ピークのトップを融点(Tm)とした。
(1) Melting point Using a differential scanning calorimeter (DSC-7 type manufactured by PerkinElmer), the temperature was raised to 360 ° C at a temperature rise rate of 20 ° C./min, held at 360 ° C. for 5 minutes, and the temperature drop rate was 20 ° C./min. The temperature was lowered to 25 ° C., and the temperature was further maintained at 25 ° C. for 5 minutes, and then the top of the heat absorption peak when the temperature was raised again at a heating rate of 20 ° C./min was defined as the melting point (Tm).
(2)アミド基変換率
 高分解能核磁気共鳴装置(日本電子社製 ECA500NMR、分解能:500MHz、溶媒:トリフルオロ酢酸、温度:25℃)を用いて、H-NMR分析することにより、ジカルボン酸成分、ジアミン成分、グリコール成分、末端カルボキシル基、末端水酸基、末端アミノ基由来の各ピーク強度面積比から、全結合に対するアミド結合の割合を算出し、アミド基変換率とした。反応前はすべてエステル結合であるため、アミド基変換率は0%である。
(2) Amide group conversion rate Dicarboxylic acid by 1 H-NMR analysis using a high-resolution nuclear magnetic resonance apparatus (ECA500NMR manufactured by Nippon Denshi Co., Ltd., resolution: 500 MHz, solvent: trifluoroacetic acid, temperature: 25 ° C.). The ratio of the amide bond to the total bond was calculated from each peak intensity area ratio derived from the component, the diamine component, the glycol component, the terminal carboxyl group, the terminal hydroxyl group, and the terminal amino group, and used as the amide group conversion rate. Since all the bonds are ester bonds before the reaction, the amide group conversion rate is 0%.
2.原料
 実施例および比較例で用いた原料を以下に示す。
2. 2. Raw Materials The raw materials used in Examples and Comparative Examples are shown below.
(1)ポリエステル
・PET-1
 ポリエチレンテレフタレート(PET)繊維の製造工程で排出された繊維屑(繊度3.0dtex、密度1.38、比表面積1742cm/g)
・PET-2
 PET繊維の製造工程で排出された繊維屑(繊度10.0dtex、比重1.38、比表面積954cm/g)
・PET-3
 回収されたPETボトルをハサミで約5mm片に裁断した後、粉砕機にて粉砕したもの(体積平均粒子径95μm、比重1.38、比表面積458cm/g)
・PET-4
 回収されたPETボトルをハサミで5mm片に裁断したもの(比表面積54cm/g)
(1) Polyester PET-1
Fiber waste discharged in the manufacturing process of polyethylene terephthalate (PET) fiber (fineness 3.0 dtex, density 1.38, specific surface area 1742 cm 2 / g)
・ PET-2
Fiber waste discharged in the PET fiber manufacturing process (fineness 10.0 dtex, specific density 1.38, specific surface area 954 cm 2 / g)
・ PET-3
The recovered PET bottle was cut into pieces of about 5 mm with scissors and then crushed by a crusher (volume average particle diameter 95 μm, specific density 1.38, specific surface area 458 cm 2 / g).
・ PET-4
The recovered PET bottle was cut into 5 mm pieces with scissors (specific surface area 54 cm 2 / g).
(2)ジアミン
・デカンジアミン(DDA、融点62℃、沸点260℃以上)
・ヘキサメチレンジアミン(HMDA、融点42℃、沸点205℃)
・ノナンジアミン(NDA、融点37℃、沸点260℃)
・ブタンジアミン(BDA、融点30℃、沸点160℃)
(2) Diamine / decanediamine (DDA, melting point 62 ° C, boiling point 260 ° C or higher)
Hexamethylenediamine (HMDA, melting point 42 ° C, boiling point 205 ° C)
Nonandinamine (NDA, melting point 37 ° C, boiling point 260 ° C)
Butane diamine (BDA, melting point 30 ° C, boiling point 160 ° C)
実施例1
 PET-1を6.00g秤量し、また、PET-1の繰り返し単位1molに対して1.10molのDDAを秤量し、それらを撹拌機付き反応器に投入した(工程(I))。
 窒素雰囲気下、工程(II)として、170℃で3時間加熱撹拌をおこない、続けて工程(III)として、250℃で9時間加熱撹拌をおこなった。
 反応終了後、室温まで戻し、反応物を反応器から取り出し、白色のポリアミド粉末を得た。
Example 1
6.00 g of PET-1 was weighed, and 1.10 mol of DDA was weighed with respect to 1 mol of the repeating unit of PET-1, and they were put into a reactor with a stirrer (step (I)).
Under a nitrogen atmosphere, step (II) was heated and stirred at 170 ° C. for 3 hours, and then step (III) was heated and stirred at 250 ° C. for 9 hours.
After completion of the reaction, the temperature was returned to room temperature, and the reaction product was taken out from the reactor to obtain a white polyamide powder.
実施例2~7、比較例1~3
 ポリエステルの種類、ジアミンの種類と量、工程(II)の温度と時間、工程(III)の温度を、表1に記載の通りとした以外は実施例1と同様にして、白色のポリアミド粉末を得た。
Examples 2 to 7, Comparative Examples 1 to 3
The white polyamide powder was prepared in the same manner as in Example 1 except that the type of polyester, the type and amount of diamine, the temperature and time of step (II), and the temperature of step (III) were as shown in Table 1. Obtained.
 ポリアミドの製造条件と、得られたポリアミドの融点およびアミド基変換率を測定した結果を表1に示す。 Table 1 shows the results of measuring the polyamide production conditions, the melting point of the obtained polyamide, and the amide group conversion rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7では、反応初期に融解したジアミンが、すぐさまポリエステルに吸着され、その後、乾燥した固体状態を維持し、得られたポリアミドは、アミド基変換率が高いものであった。 In Examples 1 to 7, the diamine melted at the initial stage of the reaction was immediately adsorbed on the polyester and then maintained in a dry solid state, and the obtained polyamide had a high amide group conversion rate.
 比較例1では、ポリエステルの比表面積が低すぎたため、ジアミンとの反応が効率よく進行せず、工程(II)では、粘調な状態であった。
 比較例2では、工程(II)の温度が高すぎたため、ジアミンが気化し、得られたポリアミドは、アミド基変換率が低いものであった。
 比較例3では、工程(III)の温度が低すぎたため、グリコール成分が十分に除去できず、得られたポリアミドは、アミド基変換率が低いものであった。
In Comparative Example 1, since the specific surface area of the polyester was too low, the reaction with the diamine did not proceed efficiently, and in the step (II), the polyester was in a viscous state.
In Comparative Example 2, since the temperature in step (II) was too high, the diamine was vaporized, and the obtained polyamide had a low amide group conversion rate.
In Comparative Example 3, the temperature in step (III) was too low, so that the glycol component could not be sufficiently removed, and the obtained polyamide had a low amide group conversion rate.

Claims (7)

  1.  ジカルボン酸成分とグリコール成分を含むポリエステルと、ジアミンとを用いて、ジカルボン酸成分とジアミン成分を含むポリアミドを、固相状態で製造する方法であって、以下の(I)~(III)の工程の順でおこなうことを特徴とするポリアミドの製造方法。
    (I)比表面積が100cm/g以上であるポリエステルと、ジアミンとを反応器に加え、
    (II)常圧下、(ジアミンの融点-100℃)~(ジアミンの融点+150℃)で加熱撹拌をおこない、
    (III)その後、さらに(ポリエステルを構成するグリコール成分のうち最も高い沸点を有するグリコールの沸点-50℃)以上で加熱撹拌をおこなう。
    A method for producing a polyamide containing a dicarboxylic acid component and a diamine component in a solid phase state using a polyester containing a dicarboxylic acid component and a glycol component and a diamine, and the following steps (I) to (III). A method for producing a polyamide, which is characterized by performing in the order of.
    (I) Polyester having a specific surface area of 100 cm 2 / g or more and diamine are added to the reactor.
    (II) Under normal pressure, heat and stir at (melting point of diamine -100 ° C) to (melting point of diamine + 150 ° C).
    (III) After that, heating and stirring are further performed at a temperature of (the boiling point of glycol having the highest boiling point among the glycol components constituting the polyester −50 ° C.) or higher.
  2.  ポリエステルとしてポリエチレンテレフタレートを用いることを特徴とする請求項1に記載のポリアミドの製造方法。 The method for producing a polyamide according to claim 1, wherein polyethylene terephthalate is used as the polyester.
  3.  繊維状のポリエステルを用いることを特徴とする請求項1または2に記載のポリアミドの製造方法。 The method for producing a polyamide according to claim 1 or 2, wherein a fibrous polyester is used.
  4.  粉粒体状のポリエステルを用いることを特徴とする請求項1または2に記載のポリアミドの製造方法。 The method for producing a polyamide according to claim 1 or 2, wherein a powdery polyester is used.
  5.  炭素数6~12の脂肪族ジアミンを用いることを特徴とする請求項1~4のいずれかに記載のポリアミドの製造方法。 The method for producing a polyamide according to any one of claims 1 to 4, wherein an aliphatic diamine having 6 to 12 carbon atoms is used.
  6.  1,10-デカンジアミンを用いることを特徴とする請求項1~4のいずれかに記載のポリアミドの製造方法。 The method for producing a polyamide according to any one of claims 1 to 4, wherein 1,10-decanediamine is used.
  7.  請求項1~6のいずれかに記載の方法で製造されたポリアミド。 Polyamide produced by the method according to any one of claims 1 to 6.
PCT/JP2021/038705 2020-12-04 2021-10-20 Polyamide manufacturing method and polyamide manufactured by said manufacturing method WO2022118557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566780A JPWO2022118557A1 (en) 2020-12-04 2021-10-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-201406 2020-12-04
JP2020201406 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118557A1 true WO2022118557A1 (en) 2022-06-09

Family

ID=81853105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038705 WO2022118557A1 (en) 2020-12-04 2021-10-20 Polyamide manufacturing method and polyamide manufactured by said manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2022118557A1 (en)
WO (1) WO2022118557A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265566A (en) * 1997-03-24 1998-10-06 M & S Kenkyu Kaihatsu Kk Production of polyamide resin
JPH11106504A (en) * 1997-10-03 1999-04-20 M And S Kenkyu Kaihatsu Kk Preparation of polyamide resin
JPH11158269A (en) * 1997-11-27 1999-06-15 M & S Kenkyu Kaihatsu Kk Production of polyamide resin
JP2001072765A (en) * 1999-06-29 2001-03-21 M & S Kenkyu Kaihatsu Kk Production of polyamide resin
JP2003292616A (en) * 2002-04-08 2003-10-15 Chubu Electric Power Co Inc Method for producing polyamide resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265566A (en) * 1997-03-24 1998-10-06 M & S Kenkyu Kaihatsu Kk Production of polyamide resin
JPH11106504A (en) * 1997-10-03 1999-04-20 M And S Kenkyu Kaihatsu Kk Preparation of polyamide resin
JPH11158269A (en) * 1997-11-27 1999-06-15 M & S Kenkyu Kaihatsu Kk Production of polyamide resin
JP2001072765A (en) * 1999-06-29 2001-03-21 M & S Kenkyu Kaihatsu Kk Production of polyamide resin
JP2003292616A (en) * 2002-04-08 2003-10-15 Chubu Electric Power Co Inc Method for producing polyamide resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM YANGSOO, CHOI YOUNG-JIN: "Conversion of polyester into heat-resistant polyamide by reacting with aromatic diamine compound II. Semibatch reaction by nitrogen gas sweeping process", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 94, no. 5, 5 December 2004 (2004-12-05), US , pages 2223 - 2232, XP055937538, ISSN: 0021-8995, DOI: 10.1002/app.21172 *

Also Published As

Publication number Publication date
JPWO2022118557A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
EP2137231B1 (en) Polymer manufacturing process
EP2370495B1 (en) Process for the manufacture of polybutylene terephthalate copolymers from polyethylene terephthalate, and compositions and articles thereof
JP2000505482A (en) Polyester / polyester amide blend
GB1568756A (en) Preparation of branched poly (alkylene terephthalates)
JP2004514518A (en) Low melt viscosity amorphous copolyester with improved lipid resistance
CN107257814B (en) Biodegradable copolyester composition
CN101405340A (en) Modified hybride resin based on natural fatty acids and method for the manufacture thereof
CN114127187A (en) Biodegradable composite material having improved mechanical properties using natural polymer nanofiber aqueous dispersion and method for producing same
EP2847244B1 (en) Polyester binder material for coating composition
JP2001139674A (en) Preparation process of liquid crystal polyester
WO2022118557A1 (en) Polyamide manufacturing method and polyamide manufactured by said manufacturing method
JP6576802B2 (en) Liquid crystal polymer
WO2002024823A2 (en) Polyester triglycidyl isocyanurate resin powder coatings based on 1, 3-propanediol
Bi et al. Synthesis and characterization of copolymers of poly (m-xylylene adipamide) and poly (ethylene terephthalate) oligomers by melt copolycondensation
JP2003503518A (en) Amide-type polymer / silicone polymer blend and method for producing the same
JP4152767B2 (en) Polyester block copolymer and method for producing the same
JP3432279B2 (en) Polyethylene succinate resin composition
WO2007044017A1 (en) Polymer manufacturing process
JP2001181380A (en) Polyester and its preparation method
JP2000119391A (en) Copoly(ethylene terephthalate/ethylene terephthalamide) and its production
AU2013227982B2 (en) Polymer Manufacturing Process
JP2021084976A (en) Polyethylene terephthalate resin composition
JP2662133B2 (en) Copolyester
JPH01170618A (en) Production of copolyester
KR980009308A (en) METHOD FOR PREPARING POLYETHYLENE TEREPHTHALATE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900313

Country of ref document: EP

Kind code of ref document: A1