WO2022118554A1 - Estimation system, estimation method, and program - Google Patents

Estimation system, estimation method, and program Download PDF

Info

Publication number
WO2022118554A1
WO2022118554A1 PCT/JP2021/038584 JP2021038584W WO2022118554A1 WO 2022118554 A1 WO2022118554 A1 WO 2022118554A1 JP 2021038584 W JP2021038584 W JP 2021038584W WO 2022118554 A1 WO2022118554 A1 WO 2022118554A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
polymer
molecular weight
viscosity
solute concentration
Prior art date
Application number
PCT/JP2021/038584
Other languages
French (fr)
Japanese (ja)
Inventor
義文 柳田
真樹 福田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2022118554A1 publication Critical patent/WO2022118554A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a method for estimating the molecular weight of a polymer, and is particularly suitable for rapidly grasping the molecular weight of a biodegradable polymer existing as a solid content of an aqueous suspension, and is useful for a system for feeding back measurement results to process control.
  • molecular weight estimation systems, estimation methods, and programs This application claims priority based on Japanese Patent Application No. 2020-202074 filed in Japan on December 4, 2020, the contents of which are incorporated herein by reference.
  • plastics mainly polyolefins
  • Various molding resins and molded products have been developed according to the contents, applications, and molding methods, and have become indispensable materials in modern life.
  • Biodegradable plastics are completely biodegraded by microorganisms in the soil and water and are taken up by the carbon cycle process in nature, so they are aggressive as environmentally friendly plastic materials with little adverse effect on the ecosystem. It is desired to be used.
  • plant-derived biodegradable plastics such as polyhydroxyalkanoate (hereinafter, also referred to as “PHA”) are attracting attention.
  • PHA polyhydroxyalkanoate
  • PHA is an aliphatic polyester (thermoplastic polyester) that is produced by microorganisms using natural organic acids and fats and oils derived from plants as a carbon source and accumulated in cells as an energy storage substance.
  • P3HA poly (3-hydroxy alkanoate)
  • P3HA is a thermoplastic polyester produced and accumulated as an energy storage substance in the cells of many microbial species, and is a material that can undergo biodegradation not only in soil but also in seawater.
  • PHA produced by microorganisms is water-insoluble and usually accumulates in microbial cells as granules. Therefore, in order to use PHA as a plastic, a step of separating and taking out PHA from inside microbial cells is necessary. be.
  • Known methods for separating and purifying PHA from microbial cells include a method of extracting PHA from microbial cells using an organic solvent in which PHA is soluble, and a method of disrupting or solubilizing cell constituents other than PHA to remove them. As a result, a method for obtaining PHA or the like is used.
  • Patent Document 1 and Patent Document 2 many methods for separating and purifying PHA using extraction with an organic solvent have been reported in early research.
  • a halogen compound such as chloroform is used as the organic solvent having the highest solubility of PHA, but when PHA is dissolved in the solvent, the viscosity of the solution becomes very high and it is difficult to handle. Therefore, in order to extract PHA, it is necessary to treat the polymer under extremely thin conditions of about 2 to 3%, and a very large amount of solvent is required.
  • Patent Document 3 as a method for separating and purifying PHA, an alkali is added to an aqueous suspension, and the suspension is ejected from a minute opening under pressurized and heated conditions to perform separation and purification by fluid shearing force. How to do it has been reported.
  • Patent Document 4 as a method for separating and purifying PHA, alkali depolymerization and physical crushing are performed while controlling the hydrolysis of PHA by continuously adding an alkali to an aqueous suspension and controlling the pH. Purification methods have been reported.
  • Patent Documents 5 and 6 report a method for producing a high molecular weight PHA using a microorganism capable of producing a high molecular weight PHA, which can obtain an industrially useful plastic molded body.
  • an object of the present invention is an estimation that the pretreatment step required for measuring the molecular weight of a polymer can be greatly simplified and the time required for measuring the molecular weight of a polymer can be shortened.
  • the estimation system is an estimation system that estimates the molecular weight of a polymer existing as a solid content of an aqueous slurry, and comprises a solvent that dissolves the polymer and the polymer.
  • It has a storage unit, an estimation unit that estimates the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information, and the related information.
  • the estimation method is an estimation method for estimating the molecular weight of a polymer existing as a solid content of an aqueous slurry, in which a storage unit dissolves a solvent that dissolves the polymer and the polymer as a solute.
  • a storage unit dissolves a solvent that dissolves the polymer and the polymer as a solute.
  • the unit includes estimating the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
  • the program according to one aspect of the present invention is a program for estimating the molecular weight of a polymer existing as a solid content of an aqueous slurry, in which a computer is used to dissolve a solvent for dissolving the polymer and the polymer as a solute.
  • a storage unit that stores at least one solute concentration information regarding the solute concentration of the polymer solution and the viscosity information indicating the viscosity of the polymer solution, and related information indicating the correspondence between the molecular weight information indicating the molecular weight of the polymer, and the above-mentioned storage unit. It functions as an estimation unit for estimating the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
  • the pretreatment step required for measuring the molecular weight of the polymer can be greatly simplified, and the time required for measuring the molecular weight of the polymer existing as the solid content of the aqueous slurry can be shortened. ..
  • First Embodiment >> The first embodiment will be described with reference to FIGS. 1 to 4.
  • the solubility of water in the solvent is sufficiently negligible (the influence of the water content in the polymer does not significantly affect the solution viscosity and the solution density), and the two components of the solvent and the polymer are used.
  • An example in which molecular weight information is estimated based on one solute concentration information and viscosity information will be described in a system that can be regarded.
  • the method for acquiring solute concentration information in the first embodiment is not limited to the method using density as long as the influence of water can be sufficiently ignored.
  • a method for measuring the refractive index, the speed of sound using ultrasonic waves, the attenuation rate, and the like may be adopted. Even if the effect of water cannot be ignored, the effect of water contained in the polymer has a significant effect on the solution viscosity by using spectroscopic methods in the infrared, near-infrared, and ultraviolet visible regions.
  • solute concentration information in the three-component system of solvent, water and polymer can be obtained without being affected by water.
  • FIG. 1 is a block diagram showing an example of the configuration of the estimation system 1 according to the first embodiment.
  • the estimation system 1 is a system for estimating the molecular weight information of the polymer.
  • the estimation target of the molecular weight information is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter, also referred to as "PHBH")
  • PHBH is a Kaneka biodegradable polymer (registered trademark).
  • the estimation target of the molecular weight information is not limited to PHBH.
  • the estimation target is not limited to PHBH as long as it is a polymer or the like existing as the solid content of the aqueous slurry.
  • the polymer present as the solid content of the aqueous slurry is, for example, a polymer produced by culture.
  • the polymer produced by culture is polyhydroxyalkanoate (hereinafter, also referred to as “PHA”). More specifically, PHA is a microbially produced poly (3-hydroxyalkanoate) (hereinafter, also referred to as "P3HA").
  • the molecular weight information of the polymer estimated by the estimation system 1 includes, for example, the ultimate viscosity, the viscosity average molecular weight, the weight average molecular weight, and the like, but is not particularly limited.
  • the estimation system 1 estimates the molecular weight (molecular weight information) of PHBH based on the solution density (an example of solute concentration information) and the viscosity (viscosity information) of the polymer solution.
  • the polymer solution is a solution in which PHBH is dissolved as a solute.
  • Solute concentration information is information regarding the solute concentration of the polymer solution.
  • the solute concentration information is used to calculate the solute concentration.
  • the estimation system 1 uses a regression model (an example of related information) for estimating the molecular weight.
  • the regression model of the first embodiment is a model showing the correspondence between the solvent for dissolving PHBH, the solution density of the polymer solution, the viscosity, and the molecular weight.
  • the estimation system 1 obtains the solution density and viscosity of the polymer solution depending on the solvent.
  • the estimation system 1 inputs the acquired solution density and viscosity to the regression model. Thereby, the estimation system 1 can estimate the molecular weight output from the regression model as the molecular weight of PHBH.
  • the estimation system 1 includes a density meter 10, a viscometer 20, and an estimation device 30-1.
  • the density meter 10 is a device for measuring the density of the polymer solution.
  • the measurement method of the densitometer according to the first embodiment is a vibration type.
  • the measurement method of the density meter is not limited to the vibration method.
  • the density meter 10 has a density measuring unit 11 and a communication unit 12.
  • the density measuring unit 11 has a function of measuring the density of the polymer solution.
  • the polymer solution after the pretreatment is input to the density meter 10.
  • the density measuring unit 11 measures the density of the input polymer solution. After measuring the density, the density measuring unit 11 inputs the density information indicating the measured density to the communication unit 12.
  • the polymer solution used to measure the density is input from the densitometer 10 to the viscometer 20.
  • the communication unit 12 has a function of transmitting and receiving various information. For example, the communication unit 12 transmits the density information to the estimation device 30-1.
  • the communication unit 12 may use either a wired or wireless communication method.
  • the viscometer 20 is a device for measuring the viscosity of the polymer solution.
  • the measuring method of the viscometer 20 according to the first embodiment is a falling ball type.
  • the measuring method of the viscometer is not limited to the falling ball method.
  • the measuring method of the viscometer may be an EMS (Electro Magnetically Spinning) type, a rotary type, a thin tube type, a vibration type, or the like.
  • the viscometer 20 has a viscosity measuring unit 21 and a communication unit 22.
  • the viscosity measuring unit 21 has a function of measuring the viscosity of the polymer solution.
  • a polymer solution whose density has been measured by the density meter 10 is input to the viscometer 20.
  • the viscosity measuring unit 21 measures the viscosity of the input polymer solution. After measuring the viscosity, the viscosity measuring unit 21 inputs the viscosity information indicating the measured viscosity to the communication unit 22.
  • the polymer solution used to measure the viscosity is discarded as waste liquid.
  • the communication unit 22 has a function of transmitting and receiving various information. For example, the communication unit 22 transmits the viscosity information to the estimation device 30-1.
  • the communication unit 22 may use either a wired or wireless communication method.
  • the pretreatment can be simplified by the solvent extraction method by using the solution density and viscosity of the polymer solution measured by the densitometer 10 and the viscometer 20. ..
  • the estimation system 1 can reduce the time required for estimating the molecular weight. For example, in the GPC, it took about 2 hours from the pretreatment to the completion of the measurement, but in the estimation system 1, it can be shortened to 30 minutes or less.
  • the estimation device 30-1 is a device for estimating the molecular weight of the polymer.
  • Examples of the estimation device 30-1 include a PC (Personal Computer), a server device, a smartphone, a tablet terminal, and the like.
  • FIG. 2 is a block diagram showing an example of the configuration of the estimation device 30 according to each embodiment.
  • “-1" is added to the reference numeral of the configuration of the estimation device 30-1 according to the first embodiment.
  • the estimation device 30-1 has a communication unit 31-1, a control unit 32-1, a storage unit 33-1 and an output unit 34-1.
  • the communication unit 31-1 has a function of transmitting and receiving various information.
  • the communication unit 31-1 receives density information from the density meter 10. Further, the communication unit 31-1 receives viscosity information from the viscometer 20. The communication unit 31-1 inputs the received information to the control unit 32-1.
  • the communication unit 31-1 may use either a wired or wireless communication method.
  • Control unit 32-1 has a function of controlling the overall operation of the estimation device 30-1. This function is realized, for example, by causing a CPU (Central Processing Unit) provided as hardware in the estimation device 30-1 to execute a program.
  • a CPU Central Processing Unit
  • control unit 32-1 has a model generation unit 320-1, an estimation unit 321-1, and an output processing unit 322-1.
  • Model generator 320-1 The model generation unit 320-1 has a function of generating a regression model 330-1.
  • the regression model 330-1 is a model showing the correspondence between the solvent that dissolves PHBH, the solution density and viscosity of the polymer solution, and the molecular weight of the polymer.
  • the model generation unit 320-1 stores the generated regression model 330-1 in the storage unit 33-1.
  • the model generation unit 320-1 of the first embodiment generates a regression model 330-1 by statistical analysis. For example, the model generator 320-1 generates a regression model 330-1 based on each of the solution densities and viscosities of the polymer solution and the known molecular weights corresponding to the solution densities and viscosities. Specifically, the model generation unit 320-1 calculates the solute concentration from the solution density, and generates a model for calculating the molecular weight based on the solute concentration and the viscosity.
  • the model generation unit 320-1 generates an equation showing the correlation from the solution density and the solute concentration of the polymer solution obtained in advance. If the solution density of the polymer solution is known from the formula, the solute concentration of the polymer solution can be calculated. In the case of a two-component system as in the first embodiment, each component concentration can be expressed by one variable (for example, W x ). For example, if the concentration of one of the two components is W x %, the concentration of the other component is (1-W x )%. The correlation between the solution density of the polymer solution and the component concentration W x % is shown by the following mathematical formula (1). In addition, Constant. Is a constant.
  • Solution density Const. + A x W x (1)
  • the value of a in the formula (1) can be calculated by learning using a plurality of data. If the value of a in the formula (1) is known, the component concentration W x % can be retrospectively predicted from the density of the polymer solution measured by the density measuring unit 11 using the formula (1). Further, if the component concentration W x % is known, another component concentration (1-W x )% can also be calculated. Therefore, in the two-component system, if the solution density of the polymer solution is known, the solute concentration of the polymer solution can be calculated. That is, the solute concentration of the polymer solution can be calculated based on only one measured value. The one measured value used for calculating the solute concentration is not limited to the measured value of the density, and may be the measured value of the speed of sound.
  • the model generation unit 320-1 can calculate the intrinsic viscosity [ ⁇ ] from the mathematical formulas (2) and (3).
  • the model generation unit 320-1 can calculate the molecular weight M from the calculated intrinsic viscosity [ ⁇ ] and the mathematical formula (4).
  • the model generation unit 320-1 generates an equation showing the correlation between the solution density and viscosity obtained in advance and the molecular weight as the regression model 330-1 based on the calculation result of the molecular weight.
  • the correlation is shown, for example, by a linear regression model.
  • the estimation unit 321-1 estimates the molecular weight of the polymer solution using the regression model 330-1.
  • the estimation unit 321-1 can easily estimate the molecular weight by using the regression model 330-1 generated in advance by the model generation unit 320-1.
  • the estimation unit 321-1 estimates the molecular weight of PHBH based on the input data including the solution density (one solute concentration information) and the viscosity, and the regression model 330-1 stored in the storage unit 33-1. ..
  • the estimation unit 321-1 inputs the density information measured by the density meter 10 and the viscosity information measured by the viscometer 20 into the regression model 330-1.
  • the regression model 330-1 to which the density information and the viscosity information are input outputs the molecular weight information of the polymer solution to be estimated.
  • the estimation unit 321-1 estimates the molecular weight indicated by the molecular weight information as the molecular weight to be estimated.
  • the output processing unit 322-1 has a function of controlling the output of molecular weight information.
  • the output processing unit 322-1 inputs the molecular weight estimated by the estimation unit 321-1 to the output unit 34-1 as molecular weight information and displays it. This allows the user to confirm the molecular weight of the estimation target.
  • the storage unit 33-1 has a function of storing various types of information.
  • the storage unit 33-1 is a storage medium, for example, an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a RAM (Random Access read / maid) It is composed of any combination of these storage media.
  • the storage unit 33-1 can use, for example, a non-volatile memory. As shown in FIG. 2, the storage unit 33-1 stores the regression model 330-1.
  • the output unit 34-1 has a function of outputting various information.
  • the output unit 34-1 is realized by a display device such as a display included in the estimation device 30-1.
  • the output unit 34-1 displays the molecular weight information input from the output processing unit 322-1.
  • FIG. 3 is a flowchart showing the flow of the regression model generation process in the estimation system 1 according to the first embodiment.
  • FIG. 4 is a flowchart showing the flow of the molecular weight estimation process in the estimation system 1 according to the first embodiment.
  • the estimation device 30-1 calculates the solute concentration from the solution density of the polymer solution (S100).
  • the estimation device 30-1 calculates the molecular weight of the polymer solution from the viscosity of the polymer solution and the calculated solute concentration (S102).
  • the estimation device 30-1 generates a regression model 330-1 based on the solution density, viscosity, and molecular weight (S104).
  • the estimation device 30-1 stores the generated regression model 330-1 in the storage unit 33-1 (S106).
  • the viscometer 20 acquires the viscosity of the polymer solution to be estimated (S202).
  • the estimation device 30-1 inputs the solution density and viscosity into the regression model 330-1 (S204).
  • the estimation device 30-1 estimates the molecular weight output by the regression model 330-1 as the molecular weight to be estimated (S206).
  • the estimation system 1 is a system for estimating the molecular weight of the polymer existing as the solid content of the aqueous slurry.
  • the storage unit 33-1 of the estimation system 1 stores a regression model 330-1 showing the correspondence between the solvent for dissolving the polymer, each of the polymer solution density and the viscosity of the polymer solution, and the molecular weight information indicating the molecular weight of the polymer. ..
  • the estimation unit 321-1 of the estimation system 1 estimates the molecular weight of the polymer based on the input data including the solution density and the viscosity and the regression model 330-1.
  • the estimation system 1 when the solution density and viscosity of the polymer solution to be estimated are input to the regression model 330-1, the molecular weight of the polymer is output. As a result, the time required for measuring the molecular weight can be shortened. Further, the solution density and the viscosity of the polymer solution can be obtained by the densitometer 10 and the viscometer 20, respectively. Therefore, in the estimation system 1, the pretreatment can be simplified by the solvent extraction method. As a result, the time required for preprocessing can be shortened.
  • the estimation system 1 according to the first embodiment can shorten the time required for measuring the molecular weight of the polymer.
  • Second embodiment An example in which molecular weight information is estimated based on one solute concentration information (solution density) and viscosity information in a two-component system of a solvent and a polymer has been described, but the present invention is not limited to this example.
  • molecular weight information may be estimated based on two solute concentration information and viscosity information.
  • the solubility of water in the solvent is in a non-negligible range (which has a significant effect on the solution density), and the two solute concentration information in the solvent, polymer, and water three-component system.
  • An example in which the molecular weight information is estimated based on the viscosity information will be described.
  • the second embodiment will be described with reference to FIGS. 5 to 7, but the description overlapping with the first embodiment will be omitted.
  • FIG. 5 is a block diagram showing an example of the configuration of the estimation system 2 according to the second embodiment.
  • the estimation system 2 is a system for estimating the molecular weight of the polymer as in the estimation system 1.
  • two solute concentration information is used to measure the molecular weight in the three-component system.
  • One of the two solute concentration information is the solution density as in the estimation system 1.
  • the other of the two solute concentration information is sound velocity information (an example of solute concentration information) indicating the speed of sound (sound velocity) propagating in the polymer solution. That is, the estimation system 2 according to the second embodiment estimates the molecular weight of PHBH based on the solution density, sound velocity (sound velocity information), and viscosity (viscosity information) of the polymer solution.
  • the drying step which is a pretreatment step for measuring the molecular weight
  • the pretreatment can be performed. It is possible to reduce the time required for. As a result, the estimation system 2 can shorten the measurement time for confirming the molecular weight of the polymer.
  • the method for acquiring the solute concentration information in the second embodiment is not limited to the method based on the combination of the solution density and the sound velocity information.
  • solute concentration information in the three-component system of the solvent, water and the polymer can be obtained.
  • the estimation system 2 uses a regression model for estimating the molecular weight.
  • the regression model of the second embodiment is a model showing the correspondence between the solvent for dissolving PHBH, the solution density of the polymer solution, the speed of sound, the viscosity, and the molecular weight.
  • the estimation system 2 can estimate the molecular weight of PHBH by a regression model by acquiring the solution density, sound velocity, and viscosity of the polymer solution according to the solvent.
  • the estimation system 1 includes a density meter 10, a sound velocity meter 40, a viscometer 20, and an estimation device 30-2.
  • Density meter 10 Since the density meter 10 according to the second embodiment is the same device as the density meter 10 according to the first embodiment described above, overlapping description will be omitted. However, the difference is that the polymer solution used for measuring the density is input from the density meter 10 to the sound velocity meter 40.
  • the sound velocity meter 40 is a device for measuring the speed of sound in a polymer solution. As shown in FIG. 5, the sound velocity meter 40 has a sound velocity measuring unit 41 and a communication unit 42.
  • the sound velocity measuring unit 41 has a function of measuring the sound velocity in the polymer solution.
  • the polymer solution whose density has been measured by the density meter 10 is input to the sound velocity meter 40.
  • the sound velocity measuring unit 41 measures the sound velocity in the input polymer solution. After measuring the sound velocity, the sound velocity measuring unit 41 inputs sound velocity information indicating the measured sound velocity to the communication unit 42.
  • the polymer solution used for measuring the speed of sound is input from the sound velocity meter 40 to the viscometer 20.
  • the communication unit 42 has a function of transmitting and receiving various information. For example, the communication unit 42 transmits the sound velocity information to the estimation device 30-2.
  • the communication unit 42 may use either a wired or wireless communication method.
  • the estimation device 30-2 is a device for estimating the molecular weight of the polymer.
  • Examples of the estimation device 30-2 include a PC (Personal Computer), a server device, a smartphone, a tablet terminal, and the like.
  • FIG. 2 is a block diagram showing an example of the configuration of the estimation device 30 according to each embodiment.
  • “-2" is added to the reference numeral of the configuration of the estimation device 30-2 according to the second embodiment.
  • the estimation device 30-2 has a communication unit 31-2, a control unit 32-2, a storage unit 33-2, and an output unit 34-2.
  • Communication unit 31-2 Since the function of the communication unit 31-2 according to the second embodiment is the same as the function of the communication unit 31-1 according to the first embodiment described above, duplicate description will be omitted. However, the difference is that the communication unit 31-2 receives the sound velocity information from the sound velocity meter 40.
  • Control unit 32-2 has a function of controlling the overall operation of the estimation device 30-2. This function is realized, for example, by causing a CPU (Central Processing Unit) provided as hardware in the estimation device 30-2 to execute a program.
  • a CPU Central Processing Unit
  • control unit 32-2 has a model generation unit 320-2, an estimation unit 321-2, and an output processing unit 322-2.
  • Model generator 320-2 Since the function of the model generation unit 320-2 according to the second embodiment is the same as the function of the model generation unit 320-1 according to the first embodiment described above, duplicate description will be omitted. However, the difference is that the model generator 320-2 calculates the solute concentration from the solution density and the speed of sound. The model generation unit 320-2 generates a regression model 330-2.
  • the model generation unit 320-2 generates an equation showing the correlation from the solution density, the speed of sound, and the solute concentration of the polymer solution obtained in advance. From this formula, if the solution density and sound velocity of the polymer solution are known, the solute concentration of the polymer solution can be calculated.
  • each component concentration can be expressed by at least two variables (for example, W x and W y ). For example, if the concentration of the first component of the three components is W x % and the concentration of the second component is W y %, the concentration of the third component is (1-W x ⁇ W y )%.
  • the values of a and b in the formula (5) and the values of c and d in the formula (6) can be calculated by learning using a plurality of data. If the values of a and b in the formula (5) and the values of c and d in the formula (6) are known, the density and sound velocity of the polymer solution measured by the density measuring unit 11 using the formulas (5) and (6).
  • the component concentration W x % and the component concentration W y % can be recursively predicted from the speed of sound in the polymer solution measured by the measuring unit 41. Further, if the component concentration W x % and the component concentration W y % are known, the third component concentration (1-W x ⁇ W y )% can also be calculated.
  • the solute concentration of the polymer solution can be calculated. That is, the solute concentration of the polymer solution can be calculated based on the two measured values.
  • the two measured values used for calculating the solute concentration are not limited to the measured values of density and sound velocity as long as they are a plurality of measured values having different degrees of influence of each component concentration.
  • FIG. 6 is a flowchart showing the flow of the regression model generation process in the estimation system 2 according to the second embodiment.
  • FIG. 7 is a flowchart showing the flow of the molecular weight estimation process in the estimation system 2 according to the second embodiment.
  • the estimation device 30-2 calculates the solute concentration from the solution density and the speed of sound of the polymer solution (S300).
  • the estimation device 30-2 calculates the molecular weight of the polymer solution from the viscosity of the polymer solution and the calculated solute concentration (S302).
  • the estimation device 30-2 generates a regression model 330-2 based on the solution density, viscosity, sound velocity, and molecular weight (S304).
  • the estimation device 30-2 stores the generated regression model 330-2 in the storage unit 33-2 (S306).
  • the densitometer 10 acquires the solution density of the polymer solution to be estimated (S400).
  • the sound velocity meter 40 acquires the sound velocity in the polymer solution to be estimated (S402).
  • the viscometer 20 acquires the viscosity of the polymer solution to be estimated (S404).
  • the estimation device 30-2 inputs the solution density, sound velocity, and viscosity into the regression model 330-2 (S406).
  • the estimation device 30-2 estimates the molecular weight output by the regression model 330-2 as the molecular weight to be estimated (S408).
  • the estimation system 2 is a system for estimating the molecular weight of the polymer existing as the solid content of the aqueous slurry.
  • the storage unit 33-2 of the estimation system 2 corresponds to each of the solvent for dissolving the polymer, the solution density of the polymer solution, the sound velocity in the polymer solution, and the viscosity of the polymer solution, and the molecular weight information indicating the molecular weight of the polymer.
  • the regression model 330-2 shown is stored.
  • the estimation unit 321-2 of the estimation system 2 estimates the molecular weight of the polymer based on the input data including the solution density, the speed of sound, and the viscosity, and the regression model 330-2.
  • the estimation system 2 when the solution density, sound velocity, and viscosity of the polymer solution to be estimated are input to the regression model 330-2 in the three-component system, the molecular weight of the polymer is output. Will be done. As a result, the time required for measuring the molecular weight can be shortened. Further, the solution density, sound velocity, and viscosity of the polymer solution can be obtained by the density meter 10, the sound velocity meter 40, and the viscometer 20, respectively. Therefore, in the estimation system 2, the pretreatment can be simplified by the solvent extraction method. As a result, the time required for preprocessing can be shortened.
  • the estimation system 2 according to the second embodiment can shorten the time required for measuring the molecular weight of the polymer.
  • Modification example >> The embodiment of the present invention has been described above. Subsequently, a modified example of the embodiment of the present invention will be described. In addition, each modification described below may be applied to the embodiment of the present invention alone, or may be applied to the embodiment of the present invention in combination. Further, each modification may be applied in place of the configuration described in the embodiment of the present invention, or may be additionally applied to the configuration described in each embodiment of the present invention.
  • the model generation unit 320 may generate a regression model 330 (trained model) by machine learning.
  • machine learning methods include SVR (support vector regression), random forest, deep learning by neural network, and the like.
  • the model generation unit 320 generates a trained model by, for example, supervised learning.
  • supervised learning a learning model is trained using a learning data set.
  • the data set is a set of learning data that is input at the time of learning and teacher data that shows the correct answer of the data output based on the input data.
  • the training data is the solution density and viscosity of the polymer solution.
  • the teacher data is the molecular weight of the polymer.
  • the model generation unit 320-1 according to the first embodiment generates a trained model in which the correspondence between the solution density, the viscosity, and the molecular weight is learned by using the training data and the teacher data.
  • the estimation unit 321-1 according to the first embodiment obtains the molecular weight of the polymer solution as an output by inputting the density measured by the densitometer 10 and the viscosity measured by the viscometer 20 into the trained model. be able to.
  • the training data are the solution density and viscosity of the polymer solution and the speed of sound in the polymer solution.
  • the model generation unit 320-2 according to the second embodiment generates a trained model in which the correspondence between the solution density, the viscosity, the speed of sound, and the molecular weight is learned by using the training data and the teacher data.
  • the estimation unit 321-2 inputs the density measured by the density meter 10, the viscosity measured by the viscosity meter 20, and the sound velocity measured by the sound velocity meter 40 into the trained model. , The molecular weight of the polymer solution can be obtained as an output.
  • the regression model 330 may be generated by an external device (eg, a server device) different from the estimation device 30.
  • the estimation device 30 stores the regression model 330 generated by the external device in the storage unit 33, and uses the regression model 330.
  • the estimation system 1 in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • Lysozyme is an enzyme that decomposes sugar chains (peptidoglycan) in the cell wall after adjusting the solid content concentration to 18% by adding IW (industrial water) to the inactivated culture solution obtained above. Wako Pure Chemical Industries, Ltd.) was added, and the mixture was kept at 50 ° C. for 2 hours.
  • alcalase manufactured by Novozymes
  • 30% sodium hydroxide was added at 50 ° C., and the mixture was kept for 2 hours while adjusting the pH to 8.5.
  • For the enzyme-treated liquid obtained above adjust the pH to 11.6 ⁇ 0.2 with 30% sodium hydroxide, set the internal temperature to 50 ⁇ 2 ° C, and carry out the alkaline depolymerization reaction of PHA. After 14 hours, a PHA aqueous suspension was obtained. Further, by obtaining a sample having an arbitrary reaction time, PHA aqueous suspensions having different molecular weights were obtained.
  • the reduced viscosity of the PHA solution and the ultimate viscosity of PHA were calculated by the least squares method as the limit values in the infinite dilution of the reduced viscosity.
  • the PHA solution prepared for viscosity measurement and the PHA solution adjusted by adding an arbitrary amount of water are distributed to a vibration type density / sound velocity meter (manufactured by Anton Pearl Co., Ltd.) to measure the density and sound velocity, and the density and sound velocity are measured.
  • a regression model for predicting PHA density using the speed of sound as an explanatory variable was constructed.
  • Example 1 The PHA aqueous suspension obtained by alkaline depolymerization was centrifuged, the supernatant was removed, and the suspension was washed with ethanol. The solid content after washing was dried in a vacuum dryer for 15 minutes to obtain PHA powder. 5 mg of PHA powder was dissolved in 5 ml of chloroform, measured using a falling ball viscometer and a vibration type density system (manufactured by Anton Pearl Co., Ltd.), and the predicted molecular weight was calculated by a regression prediction model.
  • Example 2 After centrifuging the PHA aqueous suspension obtained by alkaline depolymerization, the supernatant was removed and washed with pure water to obtain a PHA powder containing water. 5 mg of PHA powder was dissolved in 5 ml of chloroform, measured using a falling ball viscometer and a vibration type density system (manufactured by Anton Pearl Co., Ltd.), and the predicted molecular weight was calculated by a regression prediction model.

Abstract

An estimation system for estimating the molecular weight of a polymer that is present as a solid component in an aqueous slurry, the estimation system having: a storage unit for storing relevant information indicating a correspondence among a solvent in which the polymer is dissolved, each of at least one item of solute concentration information relating to the solute concentration of a polymer solution in which the polymer is dissolved as a solute and viscosity information indicating the viscosity of the polymer solution, and molecular weight information indicating the molecular weight of the polymer; and an estimation unit for estimating the molecular weight information of the polymer on the basis of the relevant information and input data including the solute concentration information and the viscosity information.

Description

推定システム、推定方法、及びプログラムEstimating system, estimation method, and program
 本発明は、高分子の分子量の推定方法に関し、特に、水性懸濁液の固形分として存在する生分解性高分子の迅速な分子量把握に好適で、測定結果を工程制御にフィードバックするシステムに有用な、分子量の推定システム、推定方法、及びプログラムに関する。
 本願は、2020年12月4日に、日本に出願された特願2020-202074号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for estimating the molecular weight of a polymer, and is particularly suitable for rapidly grasping the molecular weight of a biodegradable polymer existing as a solid content of an aqueous suspension, and is useful for a system for feeding back measurement results to process control. Regarding molecular weight estimation systems, estimation methods, and programs.
This application claims priority based on Japanese Patent Application No. 2020-202074 filed in Japan on December 4, 2020, the contents of which are incorporated herein by reference.
 ポリオレフィンを中心とした各種プラスチックは、耐腐食性も高く、軽量化や省エネルギー化などの観点から、容器包装分野を中心に幅広い分野で利用されている素材である。内容物や用途、成形方法に合わせた多様な成型用樹脂や成型品が開発されており、現代生活において不可欠な素材となっている。 Various plastics, mainly polyolefins, have high corrosion resistance and are used in a wide range of fields, mainly in the container and packaging field, from the viewpoint of weight reduction and energy saving. Various molding resins and molded products have been developed according to the contents, applications, and molding methods, and have become indispensable materials in modern life.
 一方で、多くのプラスチックは再利用が難しいことや衛生上の懸念などから、大量生産・大量消費・大量廃棄され、埋め立て処理や焼却処理に伴う問題を引き起こしている。また、高い耐腐食性から微生物等により分解されにくく、海洋へ流出したプラスチックペレットが環境に残存することによる生態系への影響が指摘されている。更には、近年プラスチックが紫外線などで崩壊・微粒化したマイクロプラスチックが、海水中の有害な化合物を吸着し、これを海生生物が摂取することで有害物が食物連鎖に取り込まれる問題も指摘されており、地球規模での循環型社会の実現のため、微生物の働きによって水と二酸化炭素に分解される生分解性プラスチックが注目を集めている。 On the other hand, many plastics are mass-produced, mass-consumed, and mass-discarded due to the difficulty of reuse and hygiene concerns, causing problems associated with landfill and incineration. In addition, it has been pointed out that the plastic pellets that have flowed out into the ocean remain in the environment because of their high corrosion resistance and are not easily decomposed by microorganisms, which has an impact on the ecosystem. Furthermore, it has been pointed out that in recent years, microplastics, which have been disintegrated and atomized by ultraviolet rays, adsorb harmful compounds in seawater, and when marine organisms ingest them, harmful substances are taken into the food chain. In order to realize a circulating society on a global scale, biodegradable plastics, which are decomposed into water and carbon dioxide by the action of microorganisms, are attracting attention.
 生分解性プラスチックは、土中や水中の微生物により完全に生分解され、自然界の炭素循環プロセスに取り込まれることになるため、生態系への悪影響がほとんどない環境調和型のプラスチック材料として積極的な使用が望まれている。代表的な生分解性プラスチックとして、ポリヒドロキシアルカノエート(以下、「PHA」とも称される)等の植物由来の生分解性プラスチックが注目されている。PHAは、微生物によって植物由来の天然の有機酸や油脂を炭素源として生産され、細胞内にエネルギー蓄積物質として蓄積される脂肪族ポリエステル(熱可塑性ポリエステル)である。具体的なPHAとして、ポリ(3-ヒドロキシアルカノエート)(以下、「P3HA」とも称される)がある。P3HAは、多くの微生物種の細胞内にエネルギー貯蔵物質として生産、蓄積される熱可塑性ポリエステルであり、土中だけでなく、海水中でも生分解が進行しうる材料である。 Biodegradable plastics are completely biodegraded by microorganisms in the soil and water and are taken up by the carbon cycle process in nature, so they are aggressive as environmentally friendly plastic materials with little adverse effect on the ecosystem. It is desired to be used. As a typical biodegradable plastic, plant-derived biodegradable plastics such as polyhydroxyalkanoate (hereinafter, also referred to as “PHA”) are attracting attention. PHA is an aliphatic polyester (thermoplastic polyester) that is produced by microorganisms using natural organic acids and fats and oils derived from plants as a carbon source and accumulated in cells as an energy storage substance. As a specific PHA, there is poly (3-hydroxy alkanoate) (hereinafter, also referred to as “P3HA”). P3HA is a thermoplastic polyester produced and accumulated as an energy storage substance in the cells of many microbial species, and is a material that can undergo biodegradation not only in soil but also in seawater.
 微生物が生産するPHAは、水不溶性であり、通常顆粒体として微生物細胞内に蓄積されるため、PHAをプラスチックとして利用するためには、微生物細胞内からPHAを分離して取り出すという工程が必要である。PHAを微生物細胞から分離精製する既知の方法として、通常、PHAが可溶である有機溶媒を用いて微生物細胞からPHAを抽出する方法や、PHA以外の細胞構成成分を破砕もしくは可溶化させて除くことによりPHAを得る方法等が用いられている。 PHA produced by microorganisms is water-insoluble and usually accumulates in microbial cells as granules. Therefore, in order to use PHA as a plastic, a step of separating and taking out PHA from inside microbial cells is necessary. be. Known methods for separating and purifying PHA from microbial cells include a method of extracting PHA from microbial cells using an organic solvent in which PHA is soluble, and a method of disrupting or solubilizing cell constituents other than PHA to remove them. As a result, a method for obtaining PHA or the like is used.
 例えば、下記特許文献1及び特許文献2のように、初期の研究では有機溶媒による抽出を利用したPHAの分離精製方法が多く報告されている。これらの報告では、PHAの溶解度が最も高い有機溶媒としてクロロホルム等のハロゲン化合物が用いられているが、PHAを該溶剤に溶解すると溶液の粘性が非常に高くなり取り扱いが困難であった。そのためPHAの抽出にはポリマー濃度を2~3%程度と極めて薄い条件で処理する必要があり、非常に大量の溶媒を必要とした。加えて、溶媒層からPHAを高い回収率で晶析させるためには、上記溶媒の4~5倍量という大量のメタノールやヘキサン等のPHA貧溶媒が別途必要である。そのため、工業的に生産するには大規模な設備が必要となる。さらには、溶媒の使用量が膨大なため溶媒の回収コストと損失溶媒のコストがかかるという問題があった。 For example, as in Patent Document 1 and Patent Document 2 below, many methods for separating and purifying PHA using extraction with an organic solvent have been reported in early research. In these reports, a halogen compound such as chloroform is used as the organic solvent having the highest solubility of PHA, but when PHA is dissolved in the solvent, the viscosity of the solution becomes very high and it is difficult to handle. Therefore, in order to extract PHA, it is necessary to treat the polymer under extremely thin conditions of about 2 to 3%, and a very large amount of solvent is required. In addition, in order to crystallize PHA from the solvent layer with a high recovery rate, a large amount of a PHA-poor solvent such as methanol or hexane, which is 4 to 5 times the amount of the above solvent, is separately required. Therefore, large-scale equipment is required for industrial production. Further, since the amount of the solvent used is enormous, there is a problem that the recovery cost of the solvent and the cost of the lost solvent are high.
 下記特許文献3では、PHAの分離精製方法として、水性懸濁液にアルカリを添加し、加圧・加温条件において微小開口部から懸濁液を噴出させることで、流体剪断力による分離精製を行う方法が報告されている。
 下記特許文献4では、PHAの分離精製方法として、水性懸濁液にアルカリを連続的に添加し、pHを制御することでPHAの加水分解を制御しながら、アルカリ解重合と物理破砕を行う分離精製方法が報告されている。
 これらの報告では、微生物生産で得られたPHAの分子量が比較的低いため、短時間で分離精製を行うことで、解重合反応を抑制しつつ高純度のPHAを取得することが要求されており、任意分子量を得るためのフィードバック制御や迅速な分子量確認に関する報告は含まれていない。
In Patent Document 3 below, as a method for separating and purifying PHA, an alkali is added to an aqueous suspension, and the suspension is ejected from a minute opening under pressurized and heated conditions to perform separation and purification by fluid shearing force. How to do it has been reported.
In Patent Document 4 below, as a method for separating and purifying PHA, alkali depolymerization and physical crushing are performed while controlling the hydrolysis of PHA by continuously adding an alkali to an aqueous suspension and controlling the pH. Purification methods have been reported.
In these reports, since the molecular weight of PHA obtained by microbial production is relatively low, it is required to obtain high-purity PHA while suppressing the depolymerization reaction by performing separation and purification in a short time. , Does not include reports on feedback control to obtain arbitrary molecular weight or rapid molecular weight confirmation.
 下記特許文献5及び特許文献6では、産業上有用なプラスチック成形体を得られる、高分子量のPHAを生産できる微生物を用いた、高分子量のPHA製造方法が報告されている。 The following Patent Documents 5 and 6 report a method for producing a high molecular weight PHA using a microorganism capable of producing a high molecular weight PHA, which can obtain an industrially useful plastic molded body.
特開平2-69187号公報Japanese Unexamined Patent Publication No. 2-69187 特開平7-79788号公報Japanese Unexamined Patent Publication No. 7-79788 特開平7-31489号公報Japanese Unexamined Patent Publication No. 7-31489 国際公開第2003/091444号International Publication No. 2003/091444 国際公開第2012/102371号International Publication No. 2012/102371 国際公開第2014/065253号International Publication No. 2014/06253
 しかしながら、上記特許文献の様に粘度計やGPCを単独で用いる方法では、ポリマーの分子量の測定(前処理含む)に時間がかかる。特に、水性懸濁液の固形分として存在するポリマーの前処理工程では、水分を含有するポリマーの乾燥や秤量、溶媒抽出に時間を要する。そのため、前処理を開始してから測定が完了するまでに時間がかかってしまい、工程制御のため迅速なフィードバックが困難となる。そこで、高分子量から任意分子量への分子量調整を行う解重合工程においては、ポリマーの分子量の測定にかかる時間を短縮することが望まれる。 However, in the method using a viscometer or GPC alone as in the above patent document, it takes time to measure the molecular weight of the polymer (including pretreatment). In particular, in the pretreatment step of the polymer existing as the solid content of the aqueous suspension, it takes time to dry, weigh, and extract the solvent of the polymer containing water. Therefore, it takes time from the start of the pretreatment to the completion of the measurement, and it is difficult to give quick feedback because of the process control. Therefore, in the depolymerization step of adjusting the molecular weight from the high molecular weight to an arbitrary molecular weight, it is desired to shorten the time required for measuring the molecular weight of the polymer.
 上述の課題を鑑み、本発明の目的は、ポリマーの分子量の測定に必要な前処理工程を大幅に簡略化することが可能で、ポリマーの分子量の測定にかかる時間を短縮することが可能な推定システム、推定方法、及びプログラムを提供することにある。 In view of the above problems, an object of the present invention is an estimation that the pretreatment step required for measuring the molecular weight of a polymer can be greatly simplified and the time required for measuring the molecular weight of a polymer can be shortened. To provide systems, estimation methods, and programs.
 上述の課題を解決するために、本発明の一態様に係る推定システムは、水系スラリーの固形分として存在するポリマーの分子量を推定する推定システムであって、前記ポリマーを溶解する溶媒と、前記ポリマーが溶質として溶解しているポリマー溶液の溶質濃度に関する少なくとも一つの溶質濃度情報及び前記ポリマー溶液の粘度を示す粘度情報の各々と、前記ポリマーの分子量を示す分子量情報との対応を示す関連情報を記憶する記憶部と、前記溶質濃度情報及び前記粘度情報を含む入力データと、前記関連情報とに基づき、前記ポリマーの分子量情報を推定する推定部と、を有する。 In order to solve the above-mentioned problems, the estimation system according to one aspect of the present invention is an estimation system that estimates the molecular weight of a polymer existing as a solid content of an aqueous slurry, and comprises a solvent that dissolves the polymer and the polymer. Stores at least one solute concentration information regarding the solute concentration of the polymer solution dissolved as a solute and related information indicating the correspondence between each of the viscosity information indicating the viscosity of the polymer solution and the molecular weight information indicating the molecular weight of the polymer. It has a storage unit, an estimation unit that estimates the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information, and the related information.
 本発明の一態様に係る推定方法は、水系スラリーの固形分として存在するポリマーの分子量を推定する推定方法であって、記憶部が、前記ポリマーを溶解する溶媒と、前記ポリマーが溶質として溶解しているポリマー溶液の溶質濃度に関する少なくとも一つの溶質濃度情報及び前記ポリマー溶液の粘度を示す粘度情報の各々と、前記ポリマーの分子量を示す分子量情報との対応を示す関連情報を記憶することと、推定部が、前記溶質濃度情報及び前記粘度情報を含む入力データと、前記関連情報とに基づき、前記ポリマーの分子量情報を推定することと、を含む。 The estimation method according to one aspect of the present invention is an estimation method for estimating the molecular weight of a polymer existing as a solid content of an aqueous slurry, in which a storage unit dissolves a solvent that dissolves the polymer and the polymer as a solute. To store and estimate at least one solute concentration information regarding the solute concentration of the polymer solution and the relevant information indicating the correspondence between each of the viscosity information indicating the viscosity of the polymer solution and the molecular weight information indicating the molecular weight of the polymer. The unit includes estimating the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
 本発明の一態様に係るプログラムは、水系スラリーの固形分として存在するポリマーの分子量を推定するためのプログラムであって、コンピュータを、前記ポリマーを溶解する溶媒と、前記ポリマーが溶質として溶解しているポリマー溶液の溶質濃度に関する少なくとも一つの溶質濃度情報及び前記ポリマー溶液の粘度を示す粘度情報の各々と、前記ポリマーの分子量を示す分子量情報との対応を示す関連情報を記憶する記憶部と、前記溶質濃度情報及び前記粘度情報を含む入力データと、前記関連情報とに基づき、前記ポリマーの分子量情報を推定する推定部と、として機能させる。 The program according to one aspect of the present invention is a program for estimating the molecular weight of a polymer existing as a solid content of an aqueous slurry, in which a computer is used to dissolve a solvent for dissolving the polymer and the polymer as a solute. A storage unit that stores at least one solute concentration information regarding the solute concentration of the polymer solution and the viscosity information indicating the viscosity of the polymer solution, and related information indicating the correspondence between the molecular weight information indicating the molecular weight of the polymer, and the above-mentioned storage unit. It functions as an estimation unit for estimating the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
 本発明によれば、ポリマーの分子量の測定に必要な前処理工程を大幅に簡略化することが可能で、水系スラリーの固形分として存在するポリマーの分子量の測定にかかる時間を短縮することができる。 According to the present invention, the pretreatment step required for measuring the molecular weight of the polymer can be greatly simplified, and the time required for measuring the molecular weight of the polymer existing as the solid content of the aqueous slurry can be shortened. ..
第1の実施形態に係る推定システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the estimation system which concerns on 1st Embodiment. 各実施形態に係る推定装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the estimation apparatus which concerns on each embodiment. 第1の実施形態に係る推定システムにおける回帰モデル生成処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the regression model generation processing in the estimation system which concerns on 1st Embodiment. 第1の実施形態に係る推定システムにおける分子量推定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the molecular weight estimation process in the estimation system which concerns on 1st Embodiment. 第2の実施形態に係る推定システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the estimation system which concerns on 2nd Embodiment. 第2の実施形態に係る推定システムにおける回帰モデル生成処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the regression model generation processing in the estimation system which concerns on 2nd Embodiment. 第2の実施形態に係る推定システムにおける分子量推定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the molecular weight estimation process in the estimation system which concerns on 2nd Embodiment.
 以下、図面を参照しながら本発明の各実施形態について詳しく説明する。 Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings.
<<1.第1の実施形態>>
 図1~図4を参照して、第1の実施形態について説明する。
 第1の実施形態では、溶媒に対する水の溶解度が十分無視できる(ポリマーに含まれる水分の影響が、溶液粘度と溶液密度に顕著な影響を与えない)範囲であり、溶媒とポリマーの2成分とみなせる系において、1つの溶質濃度情報と粘度情報に基づき、分子量情報が推定される例について説明する。
<< 1. First Embodiment >>
The first embodiment will be described with reference to FIGS. 1 to 4.
In the first embodiment, the solubility of water in the solvent is sufficiently negligible (the influence of the water content in the polymer does not significantly affect the solution viscosity and the solution density), and the two components of the solvent and the polymer are used. An example in which molecular weight information is estimated based on one solute concentration information and viscosity information will be described in a system that can be regarded.
 第1の実施形態における溶質濃度情報の取得方法としては、水分の影響が十分に無視できる範囲であれば、密度を用いる方法に限定されない。例えば、屈折率、超音波を用いた音速や減衰率などの測定方法を採用しても良い。また、水分の影響が無視できない場合であっても、赤外・近赤外・紫外可視領域等における分光学的手法を用いることにより、ポリマーに含まれる水分の影響が溶液粘度に顕著な影響を与えない範囲であれば、水分の影響が受けることなく、溶媒と水とポリマーの3成分系における溶質濃度情報を取得することができる。 The method for acquiring solute concentration information in the first embodiment is not limited to the method using density as long as the influence of water can be sufficiently ignored. For example, a method for measuring the refractive index, the speed of sound using ultrasonic waves, the attenuation rate, and the like may be adopted. Even if the effect of water cannot be ignored, the effect of water contained in the polymer has a significant effect on the solution viscosity by using spectroscopic methods in the infrared, near-infrared, and ultraviolet visible regions. As long as it is not given, solute concentration information in the three-component system of solvent, water and polymer can be obtained without being affected by water.
 <1-1.推定システムの構成>
 図1を参照して、第1の実施形態に係る推定システムの構成について説明する。図1は、第1の実施形態に係る推定システム1の構成の一例を示すブロック図である。
<1-1. Configuration of estimation system>
The configuration of the estimation system according to the first embodiment will be described with reference to FIG. 1. FIG. 1 is a block diagram showing an example of the configuration of the estimation system 1 according to the first embodiment.
 第1の実施形態に係る推定システム1は、ポリマーの分子量情報を推定するシステムである。第1の実施形態では、分子量情報の推定対象がポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(以下、「PHBH」とも称される)である例について説明する。PHBHは、カネカ生分解性ポリマー(登録商標)である。
 なお、分子量情報の推定対象は、PHBHに限定されない。推定対象は、水系スラリーの固形分として存在するポリマー等であれば、PHBHに限定されない。水系スラリーの固形分として存在するポリマーは、例えば、培養生産されたポリマーである。具体的に、培養生産されたポリマーは、ポリヒドロキシアルカノエート(以下、「PHA」とも称される)である。より具体的に、PHAは、微生物産生のポリ(3-ヒドロキシアルカノエート)(以下、「P3HA」とも称される)である。推定システム1により推定されるポリマーの分子量情報は、例えば極限粘度、粘度平均分子量、重量平均分子量などが含まれるが、特に限定されない。
The estimation system 1 according to the first embodiment is a system for estimating the molecular weight information of the polymer. In the first embodiment, an example in which the estimation target of the molecular weight information is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter, also referred to as "PHBH") will be described. PHBH is a Kaneka biodegradable polymer (registered trademark).
The estimation target of the molecular weight information is not limited to PHBH. The estimation target is not limited to PHBH as long as it is a polymer or the like existing as the solid content of the aqueous slurry. The polymer present as the solid content of the aqueous slurry is, for example, a polymer produced by culture. Specifically, the polymer produced by culture is polyhydroxyalkanoate (hereinafter, also referred to as “PHA”). More specifically, PHA is a microbially produced poly (3-hydroxyalkanoate) (hereinafter, also referred to as "P3HA"). The molecular weight information of the polymer estimated by the estimation system 1 includes, for example, the ultimate viscosity, the viscosity average molecular weight, the weight average molecular weight, and the like, but is not particularly limited.
 推定システム1は、ポリマー溶液の溶液密度(溶質濃度情報の一例)と粘度(粘度情報)に基づき、PHBHの分子量(分子量情報)を推定する。ポリマー溶液は、PHBHが溶質として溶解している溶液である。溶質濃度情報は、ポリマー溶液の溶質濃度に関する情報である。溶質濃度情報は、溶質濃度の算出に用いられる。
 推定システム1は、分子量の推定に回帰モデル(関連情報の一例)を用いる。第1の実施形態の回帰モデルは、PHBHを溶解する溶媒と、ポリマー溶液の溶液密度と、粘度と、分子量との対応関係を示すモデルである。推定システム1は、ポリマー溶液の溶媒に応じた溶液密度と粘度を取得する。推定システム1は、取得した溶液密度と粘度を回帰モデルへ入力する。これにより、推定システム1は、回帰モデルから出力される分子量をPHBHの分子量と推定することができる。
The estimation system 1 estimates the molecular weight (molecular weight information) of PHBH based on the solution density (an example of solute concentration information) and the viscosity (viscosity information) of the polymer solution. The polymer solution is a solution in which PHBH is dissolved as a solute. Solute concentration information is information regarding the solute concentration of the polymer solution. The solute concentration information is used to calculate the solute concentration.
The estimation system 1 uses a regression model (an example of related information) for estimating the molecular weight. The regression model of the first embodiment is a model showing the correspondence between the solvent for dissolving PHBH, the solution density of the polymer solution, the viscosity, and the molecular weight. The estimation system 1 obtains the solution density and viscosity of the polymer solution depending on the solvent. The estimation system 1 inputs the acquired solution density and viscosity to the regression model. Thereby, the estimation system 1 can estimate the molecular weight output from the regression model as the molecular weight of PHBH.
 図1に示すように、推定システム1は、密度計10、粘度計20、及び推定装置30-1を有する。 As shown in FIG. 1, the estimation system 1 includes a density meter 10, a viscometer 20, and an estimation device 30-1.
 (1)密度計10
 密度計10は、ポリマー溶液の密度を測定する装置である。第1の実施形態に係る密度計の測定方式は、振動式である。なお、密度計の測定方式は、振動式に限定されない。
 図1に示すように、密度計10は、密度測定部11及び通信部12を有する。
(1) Density meter 10
The density meter 10 is a device for measuring the density of the polymer solution. The measurement method of the densitometer according to the first embodiment is a vibration type. The measurement method of the density meter is not limited to the vibration method.
As shown in FIG. 1, the density meter 10 has a density measuring unit 11 and a communication unit 12.
 密度測定部11は、ポリマー溶液の密度を測定する機能を有する。密度計10には、前処理後のポリマー溶液が入力される。密度測定部11は、入力されたポリマー溶液の密度を測定する。密度の測定後、密度測定部11は、測定した密度を示す密度情報を通信部12へ入力する。密度の測定に用いられたポリマー溶液は、密度計10から粘度計20へ入力される。 The density measuring unit 11 has a function of measuring the density of the polymer solution. The polymer solution after the pretreatment is input to the density meter 10. The density measuring unit 11 measures the density of the input polymer solution. After measuring the density, the density measuring unit 11 inputs the density information indicating the measured density to the communication unit 12. The polymer solution used to measure the density is input from the densitometer 10 to the viscometer 20.
 通信部12は、各種情報を送受信する機能を有する。例えば、通信部12は、密度情報を推定装置30-1へ送信する。
 なお、通信部12は、有線あるいは無線のいずれの通信方式を用いてもよい。
The communication unit 12 has a function of transmitting and receiving various information. For example, the communication unit 12 transmits the density information to the estimation device 30-1.
The communication unit 12 may use either a wired or wireless communication method.
 (2)粘度計20
 粘度計20は、ポリマー溶液の粘度を測定する装置である。第1の実施形態に係る粘度計20の測定方式は、落球式である。粘度計の測定方式は、落球式に限定されない。例えば、粘度計の測定方式は、EMS(Electro Magnetically Spinning)式、回転式、細管式、又は振動式等であってもよい。
 図1に示すように、粘度計20は、粘度測定部21及び通信部22を有する。
(2) Viscometer 20
The viscometer 20 is a device for measuring the viscosity of the polymer solution. The measuring method of the viscometer 20 according to the first embodiment is a falling ball type. The measuring method of the viscometer is not limited to the falling ball method. For example, the measuring method of the viscometer may be an EMS (Electro Magnetically Spinning) type, a rotary type, a thin tube type, a vibration type, or the like.
As shown in FIG. 1, the viscometer 20 has a viscosity measuring unit 21 and a communication unit 22.
 粘度測定部21は、ポリマー溶液の粘度を測定する機能を有する。粘度計20には、密度計10にて密度が測定されたポリマー溶液が入力される。粘度測定部21は、入力されたポリマー溶液の粘度を測定する。粘度の測定後、粘度測定部21は、測定した粘度を示す粘度情報を通信部22へ入力する。粘度の測定に用いられたポリマー溶液は、廃液として廃棄される。 The viscosity measuring unit 21 has a function of measuring the viscosity of the polymer solution. A polymer solution whose density has been measured by the density meter 10 is input to the viscometer 20. The viscosity measuring unit 21 measures the viscosity of the input polymer solution. After measuring the viscosity, the viscosity measuring unit 21 inputs the viscosity information indicating the measured viscosity to the communication unit 22. The polymer solution used to measure the viscosity is discarded as waste liquid.
 通信部22は、各種情報を送受信する機能を有する。例えば、通信部22は、粘度情報を推定装置30-1へ送信する。
 なお、通信部22は、有線あるいは無線のいずれの通信方式を用いてもよい。
The communication unit 22 has a function of transmitting and receiving various information. For example, the communication unit 22 transmits the viscosity information to the estimation device 30-1.
The communication unit 22 may use either a wired or wireless communication method.
 ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)によって分子量を測定する場合、測定対象となる溶媒の抽出や溶媒の乾燥等が前処理として行われる。GPCでは、前処理に時間がかかるだけでなく、分子量の測定にも時間がかかる。一方、第1の実施形態に係る推定システム1では、密度計10と粘度計20によって測定されたポリマー溶液の溶液密度と粘度を用いることで、溶媒抽出法により前処理を簡素化することができる。これにより、推定システム1は、分子量の推定にかかる時間を短縮することができる。例えば、GPCでは前処理から測定完了までに約2時間かかっていたところ、推定システム1では30分以下に短縮し得る。 When measuring the molecular weight by gel permeation chromatography (GPC), extraction of the solvent to be measured, drying of the solvent, etc. are performed as pretreatment. In GPC, not only the pretreatment takes time, but also the measurement of molecular weight takes time. On the other hand, in the estimation system 1 according to the first embodiment, the pretreatment can be simplified by the solvent extraction method by using the solution density and viscosity of the polymer solution measured by the densitometer 10 and the viscometer 20. .. As a result, the estimation system 1 can reduce the time required for estimating the molecular weight. For example, in the GPC, it took about 2 hours from the pretreatment to the completion of the measurement, but in the estimation system 1, it can be shortened to 30 minutes or less.
 (3)推定装置30-1
 推定装置30-1は、ポリマーの分子量を推定する装置である。推定装置30-1の一例として、PC(Personal Computer)、サーバ装置、スマートフォン、及びタブレット端末等が挙げられる。
(3) Estimator 30-1
The estimation device 30-1 is a device for estimating the molecular weight of the polymer. Examples of the estimation device 30-1 include a PC (Personal Computer), a server device, a smartphone, a tablet terminal, and the like.
 <1-2.推定装置の構成>
 図2を参照して、第1の実施形態に係る推定装置30-1の構成について説明する。図2は、各実施形態に係る推定装置30の構成の一例を示すブロック図である。図2において、第1の実施形態に係る推定装置30-1が有する構成の符号には「-1」が付されている。図2に示すように、推定装置30-1は、通信部31-1、制御部32-1、記憶部33-1、及び出力部34-1を有する。
<1-2. Estimator configuration>
The configuration of the estimation device 30-1 according to the first embodiment will be described with reference to FIG. 2. FIG. 2 is a block diagram showing an example of the configuration of the estimation device 30 according to each embodiment. In FIG. 2, "-1" is added to the reference numeral of the configuration of the estimation device 30-1 according to the first embodiment. As shown in FIG. 2, the estimation device 30-1 has a communication unit 31-1, a control unit 32-1, a storage unit 33-1 and an output unit 34-1.
 (1)通信部31-1
 通信部31-1は、各種情報を送受信する機能を有する。例えば、通信部31-1は、密度計10から密度情報を受信する。また、通信部31-1は、粘度計20から粘度情報を受信する。通信部31-1は、受信した情報を制御部32-1へ入力する。
 なお、通信部31-1は、有線あるいは無線のいずれの通信方式を用いてもよい。
(1) Communication unit 31-1
The communication unit 31-1 has a function of transmitting and receiving various information. For example, the communication unit 31-1 receives density information from the density meter 10. Further, the communication unit 31-1 receives viscosity information from the viscometer 20. The communication unit 31-1 inputs the received information to the control unit 32-1.
The communication unit 31-1 may use either a wired or wireless communication method.
 (2)制御部32-1
 制御部32-1は、推定装置30-1の動作全般を制御する機能を有する。当該機能は、例えば、推定装置30-1がハードウェアとして備えるCPU(Central Processing Unit)にプログラムを実行させることによって実現される。
(2) Control unit 32-1
The control unit 32-1 has a function of controlling the overall operation of the estimation device 30-1. This function is realized, for example, by causing a CPU (Central Processing Unit) provided as hardware in the estimation device 30-1 to execute a program.
 図2に示すように制御部32-1は、モデル生成部320-1、推定部321-1、及び出力処理部322-1を有する。 As shown in FIG. 2, the control unit 32-1 has a model generation unit 320-1, an estimation unit 321-1, and an output processing unit 322-1.
 (2-1)モデル生成部320-1
 モデル生成部320-1は、回帰モデル330-1を生成する機能を有する。回帰モデル330-1は、PHBHを溶解する溶媒と、ポリマー溶液の溶液密度及び粘度の各々と、ポリマーの分子量との対応を示すモデルである。モデル生成部320-1は、生成した回帰モデル330-1を記憶部33-1に記憶させる。
(2-1) Model generator 320-1
The model generation unit 320-1 has a function of generating a regression model 330-1. The regression model 330-1 is a model showing the correspondence between the solvent that dissolves PHBH, the solution density and viscosity of the polymer solution, and the molecular weight of the polymer. The model generation unit 320-1 stores the generated regression model 330-1 in the storage unit 33-1.
 第1の実施形態のモデル生成部320-1は、統計解析により回帰モデル330-1を生成する。
 例えば、モデル生成部320-1は、ポリマー溶液の溶液密度及び粘度の各々と、溶液密度及び粘度に対応する既知の分子量とに基づき、回帰モデル330-1を生成する。具体的に、モデル生成部320-1は、溶液密度から溶質濃度を算出し、当該溶質濃度と粘度とに基づき分子量を算出するモデルを生成する。
The model generation unit 320-1 of the first embodiment generates a regression model 330-1 by statistical analysis.
For example, the model generator 320-1 generates a regression model 330-1 based on each of the solution densities and viscosities of the polymer solution and the known molecular weights corresponding to the solution densities and viscosities. Specifically, the model generation unit 320-1 calculates the solute concentration from the solution density, and generates a model for calculating the molecular weight based on the solute concentration and the viscosity.
 ポリマー溶液の溶液密度と溶質濃度との間には、相関関係がある。モデル生成部320-1は、予め取得されるポリマー溶液の溶液密度と溶質濃度から当該相関関係を示す式を生成する。当該式により、ポリマー溶液の溶液密度が分かれば、当該ポリマー溶液の溶質濃度が算出可能となる。
 第1の実施形態のように2成分系である場合、各成分濃度は1つの変数(例えばW)によって表現可能である。例えば、2成分のうちの1つの成分濃度をW%とすると、もう1つの成分濃度は(1-W)%である。
 ポリマー溶液の溶液密度と成分濃度W%との相関関係は、下記の数式(1)によって示される。なお、数式(1)におけるConst.は、定数である。
  溶液密度=Const.+a×W   (1)
 数式(1)のaの値は、複数のデータを用いた学習によって算出可能である。数式(1)のaの値が分かれば、数式(1)式を用いて、密度測定部11が測定したポリマー溶液の密度から成分濃度W%を回帰予測することができる。また、成分濃度W%が分かれば、もう1つの成分濃度(1-W)%も算出可能である。よって、2成分系において、ポリマー溶液の溶液密度が分かれば、ポリマー溶液の溶質濃度が算出可能となる。即ち、1つの測定値のみに基づきポリマー溶液の溶質濃度を算出することができる。
 なお、溶質濃度の算出に用いる1つの測定値は、密度の測定値に限定されず、音速の測定値であってもよい。
There is a correlation between the solution density of the polymer solution and the solute concentration. The model generation unit 320-1 generates an equation showing the correlation from the solution density and the solute concentration of the polymer solution obtained in advance. If the solution density of the polymer solution is known from the formula, the solute concentration of the polymer solution can be calculated.
In the case of a two-component system as in the first embodiment, each component concentration can be expressed by one variable (for example, W x ). For example, if the concentration of one of the two components is W x %, the concentration of the other component is (1-W x )%.
The correlation between the solution density of the polymer solution and the component concentration W x % is shown by the following mathematical formula (1). In addition, Constant. Is a constant.
Solution density = Const. + A x W x (1)
The value of a in the formula (1) can be calculated by learning using a plurality of data. If the value of a in the formula (1) is known, the component concentration W x % can be retrospectively predicted from the density of the polymer solution measured by the density measuring unit 11 using the formula (1). Further, if the component concentration W x % is known, another component concentration (1-W x )% can also be calculated. Therefore, in the two-component system, if the solution density of the polymer solution is known, the solute concentration of the polymer solution can be calculated. That is, the solute concentration of the polymer solution can be calculated based on only one measured value.
The one measured value used for calculating the solute concentration is not limited to the measured value of the density, and may be the measured value of the speed of sound.
 モデル生成部320-1は、算出した溶質濃度と予め取得される粘度を用いて、分子量を算出する。還元粘度をηred、比粘度をηsp、溶質濃度をc、固有粘度(極限粘度)を[η]とすると、還元粘度ηredは、下記の数式(2)によって示される。
  ηred=ηsp/c=[η]+kc+k+・・・   (2)
The model generation unit 320-1 calculates the molecular weight using the calculated solute concentration and the viscosity obtained in advance. Assuming that the reduced viscosity is η redo , the specific viscosity is η sp , the solute concentration is c, and the intrinsic viscosity (extreme viscosity) is [η], the reduced viscosity η redo is expressed by the following formula (2).
η red = η sp / c = [η] + k 2 c + k 3 c 2 + ... (2)
 ポリマー溶液の粘度をη、溶媒の粘度をηとすると、比粘度ηspは、下記の数式(3)によって示される。
  ηsp=(η-η)/η   (3)
Assuming that the viscosity of the polymer solution is η and the viscosity of the solvent is η 0 , the specific viscosity η sp is expressed by the following mathematical formula (3).
η sp = (η-η 0 ) / η 0 (3)
 分子量をMとすると、固有粘度[η]は、下記の数式(4)(Mark-Houwink-桜田式)によって示される。なお、K及びαは定数である。
  [η]=KMα   (4)
Assuming that the molecular weight is M, the intrinsic viscosity [η] is expressed by the following mathematical formula (4) (Mark-Howwink-Sakurada formula). In addition, K and α are constants.
[Η] = KM α (4)
 モデル生成部320-1は、数式(2)及び数式(3)より、固有粘度[η]を算出することができる。モデル生成部320-1は、算出した固有粘度[η]と数式(4)より、分子量Mを算出することができる。 The model generation unit 320-1 can calculate the intrinsic viscosity [η] from the mathematical formulas (2) and (3). The model generation unit 320-1 can calculate the molecular weight M from the calculated intrinsic viscosity [η] and the mathematical formula (4).
 モデル生成部320-1は、分子量の算出結果に基づき、予め取得された溶液密度及び粘度と、分子量との間の相関関係を示す式を回帰モデル330-1として生成する。当該相関関係は、例えば、線形の回帰モデルによって示される。 The model generation unit 320-1 generates an equation showing the correlation between the solution density and viscosity obtained in advance and the molecular weight as the regression model 330-1 based on the calculation result of the molecular weight. The correlation is shown, for example, by a linear regression model.
 (2-2)推定部321-1
 推定部321-1は、回帰モデル330-1を用いてポリマー溶液の分子量を推定する。推定部321-1は、モデル生成部320-1によって予め生成された回帰モデル330-1を用いることで、分子量の推定を容易に行うことができる。
(2-2) Presumption unit 321-1
The estimation unit 321-1 estimates the molecular weight of the polymer solution using the regression model 330-1. The estimation unit 321-1 can easily estimate the molecular weight by using the regression model 330-1 generated in advance by the model generation unit 320-1.
 推定部321-1は、溶液密度(1つの溶質濃度情報)と、粘度とを含む入力データと、記憶部33-1に記憶された回帰モデル330-1とに基づき、PHBHの分子量を推定する。
 推定部321-1は、密度計10が測定した密度情報と粘度計20が測定した粘度情報を回帰モデル330-1へ入力する。密度情報と粘度情報を入力された回帰モデル330-1は、推定対象であるポリマー溶液の分子量情報を出力する。推定部321-1は、当該分子量情報が示す分子量を推定対象の分子量と推定する。
The estimation unit 321-1 estimates the molecular weight of PHBH based on the input data including the solution density (one solute concentration information) and the viscosity, and the regression model 330-1 stored in the storage unit 33-1. ..
The estimation unit 321-1 inputs the density information measured by the density meter 10 and the viscosity information measured by the viscometer 20 into the regression model 330-1. The regression model 330-1 to which the density information and the viscosity information are input outputs the molecular weight information of the polymer solution to be estimated. The estimation unit 321-1 estimates the molecular weight indicated by the molecular weight information as the molecular weight to be estimated.
 (2-3)出力処理部322-1
 出力処理部322-1は、分子量情報の出力を制御する機能を有する。例えば、出力処理部322-1は、推定部321-1が推定した分子量を分子量情報として出力部34-1へ入力し、表示させる。これにより、ユーザは、推定対象の分子量を確認することができる。
(2-3) Output processing unit 322-1
The output processing unit 322-1 has a function of controlling the output of molecular weight information. For example, the output processing unit 322-1 inputs the molecular weight estimated by the estimation unit 321-1 to the output unit 34-1 as molecular weight information and displays it. This allows the user to confirm the molecular weight of the estimation target.
 (3)記憶部33-1
 記憶部33-1は、各種情報を記憶する機能を有する。記憶部33-1は、記憶媒体、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。記憶部33-1は、例えば、不揮発性メモリを用いることができる。
 図2に示すように、記憶部33-1は、回帰モデル330-1を記憶する。
(3) Storage unit 33-1
The storage unit 33-1 has a function of storing various types of information. The storage unit 33-1 is a storage medium, for example, an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a RAM (Random Access read / maid) It is composed of any combination of these storage media. The storage unit 33-1 can use, for example, a non-volatile memory.
As shown in FIG. 2, the storage unit 33-1 stores the regression model 330-1.
 (4)出力部34-1
 出力部34-1は、各種情報を出力する機能を有する。出力部34-1は、推定装置30-1が有するディスプレイ等の表示装置によって実現される。出力部34-1は、出力処理部322-1から入力される分子量情報を表示する。
(4) Output unit 34-1
The output unit 34-1 has a function of outputting various information. The output unit 34-1 is realized by a display device such as a display included in the estimation device 30-1. The output unit 34-1 displays the molecular weight information input from the output processing unit 322-1.
 <1-3.処理の流れ>
 図3及び図4を参照して、第1の実施形態に係る推定システム1における処理の流れについて説明する。図3は、第1の実施形態に係る推定システム1における回帰モデル生成処理の流れを示すフローチャートである。図4は、第1の実施形態に係る推定システム1における分子量推定処理の流れを示すフローチャートである。
<1-3. Processing flow>
A processing flow in the estimation system 1 according to the first embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a flowchart showing the flow of the regression model generation process in the estimation system 1 according to the first embodiment. FIG. 4 is a flowchart showing the flow of the molecular weight estimation process in the estimation system 1 according to the first embodiment.
 (1)回帰モデル生成処理
 図3に示すように、まず、推定装置30-1は、ポリマー溶液の溶液密度から溶質濃度を算出する(S100)。
(1) Regression model generation process As shown in FIG. 3, first, the estimation device 30-1 calculates the solute concentration from the solution density of the polymer solution (S100).
 次いで、推定装置30-1は、ポリマー溶液の粘度と算出した溶質濃度からポリマー溶液の分子量を算出する(S102)。 Next, the estimation device 30-1 calculates the molecular weight of the polymer solution from the viscosity of the polymer solution and the calculated solute concentration (S102).
 次いで、推定装置30-1は、溶液密度、粘度、分子量に基づき、回帰モデル330-1を生成する(S104)。 Next, the estimation device 30-1 generates a regression model 330-1 based on the solution density, viscosity, and molecular weight (S104).
 最後に、推定装置30-1は、生成した回帰モデル330-1を記憶部33-1に記憶させる(S106)。 Finally, the estimation device 30-1 stores the generated regression model 330-1 in the storage unit 33-1 (S106).
 (2)分子量推定処理
 図4に示すように、まず、密度計10は、推定対象のポリマー溶液の溶液密度を取得する(S200)。
(2) Molecular Weight Estimating Process As shown in FIG. 4, first, the densitometer 10 acquires the solution density of the polymer solution to be estimated (S200).
 次いで、粘度計20は、推定対象のポリマー溶液の粘度を取得する(S202)。 Next, the viscometer 20 acquires the viscosity of the polymer solution to be estimated (S202).
 次いで、推定装置30-1は、溶液密度と粘度を回帰モデル330-1へ入力する(S204)。 Next, the estimation device 30-1 inputs the solution density and viscosity into the regression model 330-1 (S204).
 最後に、推定装置30-1は、回帰モデル330-1が出力する分子量を推定対象の分子量と推定する(S206)。 Finally, the estimation device 30-1 estimates the molecular weight output by the regression model 330-1 as the molecular weight to be estimated (S206).
 以上説明したように、第1の実施形態に係る推定システム1は、水系スラリーの固形分として存在するポリマーの分子量を推定するシステムである。
 推定システム1の記憶部33-1は、ポリマーを溶解する溶媒と、ポリマー溶液密度及びポリマー溶液の粘度の各々と、ポリマーの分子量を示す分子量情報との対応を示す回帰モデル330-1を記憶する。
 推定システム1の推定部321-1は、溶液密度及び粘度を含む入力データと、回帰モデル330-1とに基づき、ポリマーの分子量を推定する。
As described above, the estimation system 1 according to the first embodiment is a system for estimating the molecular weight of the polymer existing as the solid content of the aqueous slurry.
The storage unit 33-1 of the estimation system 1 stores a regression model 330-1 showing the correspondence between the solvent for dissolving the polymer, each of the polymer solution density and the viscosity of the polymer solution, and the molecular weight information indicating the molecular weight of the polymer. ..
The estimation unit 321-1 of the estimation system 1 estimates the molecular weight of the polymer based on the input data including the solution density and the viscosity and the regression model 330-1.
 かかる構成により、第1の実施形態に係る推定システム1では、2成分系において、推定対象であるポリマー溶液の溶液密度と粘度を回帰モデル330-1へ入力すると、ポリマーの分子量が出力される。これにより、分子量の測定にかかる時間を短縮することができる。また、ポリマー溶液の溶液密度と粘度は、それぞれ密度計10と粘度計20により取得可能である。そのため、推定システム1では、溶媒抽出法によって前処理を簡素化できる。これにより、前処理にかかる時間を短縮することもできる。 With this configuration, in the estimation system 1 according to the first embodiment, when the solution density and viscosity of the polymer solution to be estimated are input to the regression model 330-1, the molecular weight of the polymer is output. As a result, the time required for measuring the molecular weight can be shortened. Further, the solution density and the viscosity of the polymer solution can be obtained by the densitometer 10 and the viscometer 20, respectively. Therefore, in the estimation system 1, the pretreatment can be simplified by the solvent extraction method. As a result, the time required for preprocessing can be shortened.
 よって、第1の実施形態に係る推定システム1は、ポリマーの分子量の測定にかかる時間を短縮することができる。 Therefore, the estimation system 1 according to the first embodiment can shorten the time required for measuring the molecular weight of the polymer.
<<2.第2の実施形態>>
 上述の実施形態では、溶媒とポリマーの2成分系において、1つの溶質濃度情報(溶液密度)と粘度情報に基づき、分子量情報が推定される例について説明したが、かかる例に限定されない。例えば、3成分系において、2つの溶質濃度情報と粘度情報に基づき、分子量情報が推定されてもよい。具体的に、第2の実施形態では、溶媒に対する水の溶解度が無視できない(溶液密度に顕著な影響を与える)範囲であり、溶媒、ポリマー、及び水の3成分系において、2つの溶質濃度情報と粘度情報に基づき、分子量情報が推定される例について説明する。
 以下、図5~図7を参照して、第2の実施形態について説明するが、第1の実施形態と重複する説明については省略する。
<< 2. Second embodiment >>
In the above-described embodiment, an example in which molecular weight information is estimated based on one solute concentration information (solution density) and viscosity information in a two-component system of a solvent and a polymer has been described, but the present invention is not limited to this example. For example, in a three-component system, molecular weight information may be estimated based on two solute concentration information and viscosity information. Specifically, in the second embodiment, the solubility of water in the solvent is in a non-negligible range (which has a significant effect on the solution density), and the two solute concentration information in the solvent, polymer, and water three-component system. An example in which the molecular weight information is estimated based on the viscosity information will be described.
Hereinafter, the second embodiment will be described with reference to FIGS. 5 to 7, but the description overlapping with the first embodiment will be omitted.
 <2-1.推定システムの構成>
 図5を参照して、第2の実施形態に係る推定システムの構成について説明する。図5は、第2の実施形態に係る推定システム2の構成の一例を示すブロック図である。
<2-1. Configuration of estimation system>
The configuration of the estimation system according to the second embodiment will be described with reference to FIG. FIG. 5 is a block diagram showing an example of the configuration of the estimation system 2 according to the second embodiment.
 第2の実施形態に係る推定システム2は、推定システム1と同様にポリマーの分子量を推定するシステムである。推定システム2では、3成分系における分子量を測定するために、2つの溶質濃度情報を用いる。2つの溶質濃度情報の内の1つは、推定システム1と同様に溶液密度である。2つの溶質濃度情報の内のもう1つは、ポリマー溶液中を伝播する音の速度(音速)を示す音速情報(溶質濃度情報の一例)である。即ち、第2の実施形態に係る推定システム2は、ポリマー溶液の溶液密度、音速(音速情報)、及び粘度(粘度情報)に基づき、PHBHの分子量を推定する。
 第2の実施形態にかかる推定システム2では、音速を用いることで、含水状態でサンプリングされる培養系ポリマーの製造工程において、分子量測定のための前処理工程である乾燥工程を省略でき、前処理にかかる時間を短縮することができる。これにより、推定システム2は、ポリマーの分子量を確認するための測定時間を短縮することができる。
The estimation system 2 according to the second embodiment is a system for estimating the molecular weight of the polymer as in the estimation system 1. In the estimation system 2, two solute concentration information is used to measure the molecular weight in the three-component system. One of the two solute concentration information is the solution density as in the estimation system 1. The other of the two solute concentration information is sound velocity information (an example of solute concentration information) indicating the speed of sound (sound velocity) propagating in the polymer solution. That is, the estimation system 2 according to the second embodiment estimates the molecular weight of PHBH based on the solution density, sound velocity (sound velocity information), and viscosity (viscosity information) of the polymer solution.
In the estimation system 2 according to the second embodiment, by using the speed of sound, the drying step, which is a pretreatment step for measuring the molecular weight, can be omitted in the manufacturing step of the culture polymer sampled in a water-containing state, and the pretreatment can be performed. It is possible to reduce the time required for. As a result, the estimation system 2 can shorten the measurement time for confirming the molecular weight of the polymer.
 第2の実施形態における溶質濃度情報の取得方法は、溶液密度と音速情報の組合せによる方法に限定されない。例えば、密度、屈折率、超音波を用いた音速や減衰率、赤外・近赤外・紫外可視領域等における分光学的手法などを用いることも可能である。これらの任意の組合せを採用することにより、溶媒と水とポリマーの3成分系における溶質濃度情報を取得することができる。 The method for acquiring the solute concentration information in the second embodiment is not limited to the method based on the combination of the solution density and the sound velocity information. For example, it is also possible to use density, refractive index, sound velocity and attenuation using ultrasonic waves, spectroscopic methods in the infrared / near-infrared / ultraviolet-visible region, and the like. By adopting any combination of these, solute concentration information in the three-component system of the solvent, water and the polymer can be obtained.
 第2の実施形態に係る推定対象は、上述した第1の実施形態に係る推定対象と同一であるため、重複する説明を省略する。 Since the estimation target according to the second embodiment is the same as the estimation target according to the first embodiment described above, duplicate description will be omitted.
 推定システム2は、分子量の推定に回帰モデルを用いる。第2の実施形態の回帰モデルは、PHBHを溶解する溶媒と、ポリマー溶液の溶液密度と、音速と、粘度と、分子量との対応関係を示すモデルである。推定システム2は、ポリマー溶液の溶媒に応じた溶液密度と音速と粘度を取得することで、回帰モデルによりPHBHの分子量を推定することができる。 The estimation system 2 uses a regression model for estimating the molecular weight. The regression model of the second embodiment is a model showing the correspondence between the solvent for dissolving PHBH, the solution density of the polymer solution, the speed of sound, the viscosity, and the molecular weight. The estimation system 2 can estimate the molecular weight of PHBH by a regression model by acquiring the solution density, sound velocity, and viscosity of the polymer solution according to the solvent.
 図5に示すように、推定システム1は、密度計10、音速計40、粘度計20、及び推定装置30-2を有する。 As shown in FIG. 5, the estimation system 1 includes a density meter 10, a sound velocity meter 40, a viscometer 20, and an estimation device 30-2.
 (1)密度計10
 第2の実施形態に係る密度計10は、上述した第1の実施形態に係る密度計10と同一の装置であるため、重複する説明を省略する。ただし、密度の測定に用いられたポリマー溶液が密度計10から音速計40へ入力される点は異なる。
(1) Density meter 10
Since the density meter 10 according to the second embodiment is the same device as the density meter 10 according to the first embodiment described above, overlapping description will be omitted. However, the difference is that the polymer solution used for measuring the density is input from the density meter 10 to the sound velocity meter 40.
 (2)音速計40
 音速計40は、ポリマー溶液中における音速を測定する装置である。
 図5に示すように、音速計40は、音速測定部41及び通信部42を有する。
(2) Sound velocity meter 40
The sound velocity meter 40 is a device for measuring the speed of sound in a polymer solution.
As shown in FIG. 5, the sound velocity meter 40 has a sound velocity measuring unit 41 and a communication unit 42.
 音速測定部41は、ポリマー溶液中における音速を測定する機能を有する。音速計40には、密度計10にて密度が測定されたポリマー溶液が入力される。音速測定部41は、入力されたポリマー溶液中における音速を測定する。音速の測定後、音速測定部41は、測定した音速を示す音速情報を通信部42へ入力する。音速の測定に用いられたポリマー溶液は、音速計40から粘度計20へ入力される。 The sound velocity measuring unit 41 has a function of measuring the sound velocity in the polymer solution. The polymer solution whose density has been measured by the density meter 10 is input to the sound velocity meter 40. The sound velocity measuring unit 41 measures the sound velocity in the input polymer solution. After measuring the sound velocity, the sound velocity measuring unit 41 inputs sound velocity information indicating the measured sound velocity to the communication unit 42. The polymer solution used for measuring the speed of sound is input from the sound velocity meter 40 to the viscometer 20.
 通信部42は、各種情報を送受信する機能を有する。例えば、通信部42は、音速情報を推定装置30-2へ送信する。
 なお、通信部42は、有線あるいは無線のいずれの通信方式を用いてもよい。
The communication unit 42 has a function of transmitting and receiving various information. For example, the communication unit 42 transmits the sound velocity information to the estimation device 30-2.
The communication unit 42 may use either a wired or wireless communication method.
 (3)粘度計20
 第2の実施形態に係る粘度計20は、上述した第1に係る実施形態の粘度計20と同一の装置であるため、重複する説明を省略する。ただし、ポリマー溶液が音速計40から入力される点は異なる。
(3) Viscometer 20
Since the viscometer 20 according to the second embodiment is the same device as the viscometer 20 according to the first embodiment described above, overlapping description will be omitted. However, the difference is that the polymer solution is input from the sonicometer 40.
 (4)推定装置30-2
 推定装置30-2は、ポリマーの分子量を推定する装置である。推定装置30-2の一例として、PC(Personal Computer)、サーバ装置、スマートフォン、及びタブレット端末等が挙げられる。
(4) Estimator 30-2
The estimation device 30-2 is a device for estimating the molecular weight of the polymer. Examples of the estimation device 30-2 include a PC (Personal Computer), a server device, a smartphone, a tablet terminal, and the like.
 <2-2.推定装置の構成>
 図2を参照して、第2の実施形態に係る推定装置30-2の構成について説明する。図2は、各実施形態に係る推定装置30の構成の一例を示すブロック図である。図2において、第2の実施形態に係る推定装置30-2が有する構成の符号には「-2」が付されている。図2に示すように、推定装置30-2は、通信部31-2、制御部32-2、記憶部33-2、及び出力部34-2を有する。
<2-2. Estimator configuration>
The configuration of the estimation device 30-2 according to the second embodiment will be described with reference to FIG. 2. FIG. 2 is a block diagram showing an example of the configuration of the estimation device 30 according to each embodiment. In FIG. 2, "-2" is added to the reference numeral of the configuration of the estimation device 30-2 according to the second embodiment. As shown in FIG. 2, the estimation device 30-2 has a communication unit 31-2, a control unit 32-2, a storage unit 33-2, and an output unit 34-2.
 (1)通信部31-2
 第2の実施形態に係る通信部31-2の機能は、上述した第1の実施形態に係る通信部31-1の機能と同様であるため、重複する説明を省略する。ただし、通信部31-2が、音速計40から音速情報を受信する点は異なる。
(1) Communication unit 31-2
Since the function of the communication unit 31-2 according to the second embodiment is the same as the function of the communication unit 31-1 according to the first embodiment described above, duplicate description will be omitted. However, the difference is that the communication unit 31-2 receives the sound velocity information from the sound velocity meter 40.
 (2)制御部32-2
 制御部32-2は、推定装置30-2の動作全般を制御する機能を有する。当該機能は、例えば、推定装置30-2がハードウェアとして備えるCPU(Central Processing Unit)にプログラムを実行させることによって実現される。
(2) Control unit 32-2
The control unit 32-2 has a function of controlling the overall operation of the estimation device 30-2. This function is realized, for example, by causing a CPU (Central Processing Unit) provided as hardware in the estimation device 30-2 to execute a program.
 図2に示すように制御部32-2は、モデル生成部320-2、推定部321-2、及び出力処理部322-2を有する。 As shown in FIG. 2, the control unit 32-2 has a model generation unit 320-2, an estimation unit 321-2, and an output processing unit 322-2.
 (2-1)モデル生成部320-2
 第2の実施形態に係るモデル生成部320-2の機能は、上述した第1の実施形態に係るモデル生成部320-1の機能と同様であるため、重複する説明を省略する。ただし、モデル生成部320-2が溶液密度と音速から溶質濃度を算出する点は異なる。なお、モデル生成部320-2は、回帰モデル330-2を生成する。
(2-1) Model generator 320-2
Since the function of the model generation unit 320-2 according to the second embodiment is the same as the function of the model generation unit 320-1 according to the first embodiment described above, duplicate description will be omitted. However, the difference is that the model generator 320-2 calculates the solute concentration from the solution density and the speed of sound. The model generation unit 320-2 generates a regression model 330-2.
 ポリマー溶液の溶液密度と音速と溶質濃度との間には、相関関係がある。モデル生成部320-2は、予め取得されるポリマー溶液の溶液密度と音速と溶質濃度から当該相関関係を示す式を生成する。当該式により、ポリマー溶液の溶液密度と音速が分かれば、当該ポリマー溶液の溶質濃度が算出可能となる。
 第2の実施形態のように3成分系である場合、各成分濃度は少なくとも2つの変数(例えばWとW)によって表現可能である。例えば、3成分のうちの1つ目の成分濃度をW%、2つ目の成分濃度W%とすると、3つ目の成分濃度は(1-W-W)%である。
 ポリマー溶液の溶液密度と成分濃度W%と成分濃度W%との相関関係は、下記の数式(5)によって示される。なお、数式(5)におけるConst.は、定数である。
  溶液密度=Const.+a×W+b×W   ・・・(5)
 また、音速と成分濃度W%と成分濃度W%との相関関係は、下記の数式(6)によって示される。なお、数式(6)におけるConst.は、定数である。
  音速=Const.+c×W+d×W   ・・・(6)
 数式(5)のaとbの値と数式(6)のcとdの値は、複数のデータを用いた学習によって算出可能である。数式(5)のaとbの値と数式(6)のcとdの値が分かれば、数式(5)及び(6)を用いて、密度測定部11が測定したポリマー溶液の密度と音速測定部41が測定したポリマー溶液中における音速から成分濃度W%と成分濃度W%を回帰予測することができる。また、成分濃度W%と成分濃度W%が分かれば、3つ目の成分濃度(1-W-W)%も算出可能である。よって、3成分系において、ポリマー溶液の溶液密度とポリマー溶液中の音速が分かれば、当該ポリマー溶液の溶質濃度が算出可能となる。即ち、2つの測定値に基づきポリマー溶液の溶質濃度を算出することができる。
 なお、溶質濃度の算出に用いる2つの測定値は、各成分濃度の影響度の異なる複数の測定値であれば、密度と音速の測定値に限定されない。
There is a correlation between the solution density of polymer solutions and the speed of sound and solute concentration. The model generation unit 320-2 generates an equation showing the correlation from the solution density, the speed of sound, and the solute concentration of the polymer solution obtained in advance. From this formula, if the solution density and sound velocity of the polymer solution are known, the solute concentration of the polymer solution can be calculated.
In the case of a three-component system as in the second embodiment, each component concentration can be expressed by at least two variables (for example, W x and W y ). For example, if the concentration of the first component of the three components is W x % and the concentration of the second component is W y %, the concentration of the third component is (1-W x −W y )%.
The correlation between the solution density of the polymer solution, the component concentration W x %, and the component concentration W y % is shown by the following mathematical formula (5). In addition, Constant. Is a constant.
Solution density = Const. + A x W x + b x W y ... (5)
Further, the correlation between the speed of sound, the component concentration W x %, and the component concentration W y % is shown by the following mathematical formula (6). In addition, Constant. Is a constant.
Speed of sound = Const. + C x W x + d x W y ... (6)
The values of a and b in the formula (5) and the values of c and d in the formula (6) can be calculated by learning using a plurality of data. If the values of a and b in the formula (5) and the values of c and d in the formula (6) are known, the density and sound velocity of the polymer solution measured by the density measuring unit 11 using the formulas (5) and (6). The component concentration W x % and the component concentration W y % can be recursively predicted from the speed of sound in the polymer solution measured by the measuring unit 41. Further, if the component concentration W x % and the component concentration W y % are known, the third component concentration (1-W x −W y )% can also be calculated. Therefore, in the three-component system, if the solution density of the polymer solution and the speed of sound in the polymer solution are known, the solute concentration of the polymer solution can be calculated. That is, the solute concentration of the polymer solution can be calculated based on the two measured values.
The two measured values used for calculating the solute concentration are not limited to the measured values of density and sound velocity as long as they are a plurality of measured values having different degrees of influence of each component concentration.
 (2-2)推定部321-2
 第2の実施形態に係る推定部321-2の機能は、上述した第1の実施形態に係る推定部321-1の機能と同様であるため、重複する説明を省略する。ただし、推定部321-2が溶液密度及び音速(2つの溶質濃度情報)と、粘度とを含む入力データを回帰モデル330-2へ入力する点は異なる。
(2-2) Presumption unit 321-2
Since the function of the estimation unit 321-2 according to the second embodiment is the same as the function of the estimation unit 321-1 according to the first embodiment described above, duplicate description will be omitted. However, the difference is that the estimation unit 321-2 inputs input data including the solution density, the speed of sound (two solute concentration information), and the viscosity to the regression model 330-2.
 (2-3)出力処理部322-2
 第2の実施形態に係る出力処理部322-2の機能は、上述した第1の実施形態に係る出力処理部322-1の機能と同様であるため、重複する説明を省略する。
(2-3) Output processing unit 322-2
Since the function of the output processing unit 322-2 according to the second embodiment is the same as the function of the output processing unit 322-1 according to the first embodiment described above, duplicate description will be omitted.
 (3)記憶部33-2
 第2の実施形態に係る記憶部33-2の機能は、上述した第1の実施形態に係る記憶部33-1の機能と同様であるため、重複する説明を省略する。
(3) Storage unit 33-2
Since the function of the storage unit 33-2 according to the second embodiment is the same as the function of the storage unit 33-1 according to the first embodiment described above, duplicate description will be omitted.
 (4)出力部34-2
 第2の実施形態に係る出力部34-2の機能は、上述した第1の実施形態に係る出力部34-1の機能と同様であるため、重複する説明を省略する。
(4) Output unit 34-2
Since the function of the output unit 34-2 according to the second embodiment is the same as the function of the output unit 34-1 according to the first embodiment described above, duplicate description will be omitted.
 <2-3.処理の流れ>
 図6及び図7を参照して、第2の実施形態に係る推定システム2における処理の流れについて説明する。図6は、第2の実施形態に係る推定システム2における回帰モデル生成処理の流れを示すフローチャートである。図7は、第2の実施形態に係る推定システム2における分子量推定処理の流れを示すフローチャートである。
<2-3. Processing flow>
A processing flow in the estimation system 2 according to the second embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is a flowchart showing the flow of the regression model generation process in the estimation system 2 according to the second embodiment. FIG. 7 is a flowchart showing the flow of the molecular weight estimation process in the estimation system 2 according to the second embodiment.
 (1)回帰モデル生成処理
 図6に示すように、まず、推定装置30-2は、ポリマー溶液の溶液密度と音速から溶質濃度を算出する(S300)。
(1) Regression model generation process As shown in FIG. 6, first, the estimation device 30-2 calculates the solute concentration from the solution density and the speed of sound of the polymer solution (S300).
 次いで、推定装置30-2は、ポリマー溶液の粘度と算出した溶質濃度からポリマー溶液の分子量を算出する(S302)。 Next, the estimation device 30-2 calculates the molecular weight of the polymer solution from the viscosity of the polymer solution and the calculated solute concentration (S302).
 次いで、推定装置30-2は、溶液密度、粘度、音速、分子量に基づき、回帰モデル330-2を生成する(S304)。 Next, the estimation device 30-2 generates a regression model 330-2 based on the solution density, viscosity, sound velocity, and molecular weight (S304).
 最後に、推定装置30-2は、生成した回帰モデル330-2を記憶部33-2に記憶させる(S306)。 Finally, the estimation device 30-2 stores the generated regression model 330-2 in the storage unit 33-2 (S306).
 (2)分子量推定処理
 図7に示すように、まず、密度計10は、推定対象のポリマー溶液の溶液密度を取得する(S400)。
(2) Molecular Weight Estimating Process As shown in FIG. 7, first, the densitometer 10 acquires the solution density of the polymer solution to be estimated (S400).
 次いで、音速計40は、推定対象のポリマー溶液中の音速を取得する(S402)。 Next, the sound velocity meter 40 acquires the sound velocity in the polymer solution to be estimated (S402).
 次いで、粘度計20は、推定対象のポリマー溶液の粘度を取得する(S404)。 Next, the viscometer 20 acquires the viscosity of the polymer solution to be estimated (S404).
 次いで、推定装置30-2は、溶液密度と音速と粘度を回帰モデル330-2へ入力する(S406)。 Next, the estimation device 30-2 inputs the solution density, sound velocity, and viscosity into the regression model 330-2 (S406).
 最後に、推定装置30-2は、回帰モデル330-2が出力する分子量を推定対象の分子量と推定する(S408)。 Finally, the estimation device 30-2 estimates the molecular weight output by the regression model 330-2 as the molecular weight to be estimated (S408).
 以上説明したように、第2の実施形態に係る推定システム2は、水系スラリーの固形分として存在するポリマーの分子量を推定するシステムである。
 推定システム2の記憶部33-2は、ポリマーを溶解する溶媒と、ポリマー溶液の溶液密度、ポリマー溶液中の音速、及びポリマー溶液の粘度の各々と、ポリマーの分子量を示す分子量情報との対応を示す回帰モデル330-2を記憶する。
 推定システム2の推定部321-2は、溶液密度、音速、及び粘度を含む入力データと、回帰モデル330-2とに基づき、ポリマーの分子量を推定する。
As described above, the estimation system 2 according to the second embodiment is a system for estimating the molecular weight of the polymer existing as the solid content of the aqueous slurry.
The storage unit 33-2 of the estimation system 2 corresponds to each of the solvent for dissolving the polymer, the solution density of the polymer solution, the sound velocity in the polymer solution, and the viscosity of the polymer solution, and the molecular weight information indicating the molecular weight of the polymer. The regression model 330-2 shown is stored.
The estimation unit 321-2 of the estimation system 2 estimates the molecular weight of the polymer based on the input data including the solution density, the speed of sound, and the viscosity, and the regression model 330-2.
 かかる構成により、第2の実施形態に係る推定システム2では、3成分系において、推定対象であるポリマー溶液の溶液密度、音速、及び粘度を回帰モデル330-2へ入力すると、ポリマーの分子量が出力される。これにより、分子量の測定にかかる時間を短縮することができる。また、ポリマー溶液の溶液密度、音速、及び粘度は、それぞれ密度計10、音速計40、及び粘度計20により取得可能である。そのため、推定システム2では、溶媒抽出法によって前処理を簡素化できる。これにより、前処理にかかる時間を短縮することもできる。 With this configuration, in the estimation system 2 according to the second embodiment, when the solution density, sound velocity, and viscosity of the polymer solution to be estimated are input to the regression model 330-2 in the three-component system, the molecular weight of the polymer is output. Will be done. As a result, the time required for measuring the molecular weight can be shortened. Further, the solution density, sound velocity, and viscosity of the polymer solution can be obtained by the density meter 10, the sound velocity meter 40, and the viscometer 20, respectively. Therefore, in the estimation system 2, the pretreatment can be simplified by the solvent extraction method. As a result, the time required for preprocessing can be shortened.
 よって、第2の実施形態に係る推定システム2は、ポリマーの分子量の測定にかかる時間を短縮することができる。 Therefore, the estimation system 2 according to the second embodiment can shorten the time required for measuring the molecular weight of the polymer.
<<3.変形例>>
 以上、本発明の実施形態について説明した。続いて、本発明の実施形態の変形例について説明する。なお、以下に説明する各変形例は、単独で本発明の実施形態に適用されてもよいし、組み合わせで本発明の実施形態に適用されてもよい。また、各変形例は、本発明の実施形態で説明した構成に代えて適用されてもよいし、本発明の各実施形態で説明した構成に対して追加的に適用されてもよい。
<< 3. Modification example >>
The embodiment of the present invention has been described above. Subsequently, a modified example of the embodiment of the present invention will be described. In addition, each modification described below may be applied to the embodiment of the present invention alone, or may be applied to the embodiment of the present invention in combination. Further, each modification may be applied in place of the configuration described in the embodiment of the present invention, or may be additionally applied to the configuration described in each embodiment of the present invention.
 (1)第1の変形例
 上述の各実施形態では、モデル生成部320が統計的手法によって回帰モデルを生成する例について説明したが、かかる例に限定されない。モデル生成部320は、機械学習により回帰モデル330(学習済みモデル)を生成してもよい。機械学習の手法の一例として、SVR(サポートベクター回帰)、ランダムフォレスト、ニューラルネットワークによるディープラーニング等が挙げられる。
(1) First Modification Example In each of the above-described embodiments, an example in which the model generation unit 320 generates a regression model by a statistical method has been described, but the present invention is not limited to this example. The model generation unit 320 may generate a regression model 330 (trained model) by machine learning. Examples of machine learning methods include SVR (support vector regression), random forest, deep learning by neural network, and the like.
 モデル生成部320は、例えば、教師あり学習によって学習済みモデルを生成する。教師あり学習では、学習モデルに学習用のデータセットを用いた学習を行わせる。データセットは、学習時の入力となる学習データと、当該入力データに基づき出力されるデータの正解を示す教師データのセットである。 The model generation unit 320 generates a trained model by, for example, supervised learning. In supervised learning, a learning model is trained using a learning data set. The data set is a set of learning data that is input at the time of learning and teacher data that shows the correct answer of the data output based on the input data.
 第1の実施形態の場合、学習データは、ポリマー溶液の溶液密度と粘度である。教師データは、ポリマーの分子量である。第1の実施形態に係るモデル生成部320-1は、当該学習データと当該教師データを用いて、溶液密度、粘度、及び分子量の対応を学習した学習済みモデルを生成する。
 第1の実施形態に係る推定部321-1は、学習済みモデルに対して、密度計10が測定した密度及び粘度計20が測定した粘度を入力することで、ポリマー溶液の分子量を出力として得ることができる。
In the case of the first embodiment, the training data is the solution density and viscosity of the polymer solution. The teacher data is the molecular weight of the polymer. The model generation unit 320-1 according to the first embodiment generates a trained model in which the correspondence between the solution density, the viscosity, and the molecular weight is learned by using the training data and the teacher data.
The estimation unit 321-1 according to the first embodiment obtains the molecular weight of the polymer solution as an output by inputting the density measured by the densitometer 10 and the viscosity measured by the viscometer 20 into the trained model. be able to.
 第2の実施形態の場合、学習データは、ポリマー溶液の溶液密度と粘度とポリマー溶液中の音速である。第2の実施形態に係るモデル生成部320-2は、当該学習データと当該教師データを用いて、溶液密度、粘度、音速、及び分子量の対応を学習した学習済みモデルを生成する。
 第2の実施形態に係る推定部321-2は、学習済みモデルに対して、密度計10が測定した密度、粘度計20が測定した粘度、及び音速計40が測定した音速を入力することで、ポリマー溶液の分子量を出力として得ることができる。
In the second embodiment, the training data are the solution density and viscosity of the polymer solution and the speed of sound in the polymer solution. The model generation unit 320-2 according to the second embodiment generates a trained model in which the correspondence between the solution density, the viscosity, the speed of sound, and the molecular weight is learned by using the training data and the teacher data.
The estimation unit 321-2 according to the second embodiment inputs the density measured by the density meter 10, the viscosity measured by the viscosity meter 20, and the sound velocity measured by the sound velocity meter 40 into the trained model. , The molecular weight of the polymer solution can be obtained as an output.
 (2)第2の変形例
 上述した実施形態では、回帰モデル330が推定装置30によって生成される例について説明したが、かかる例に限定されない。回帰モデル330は、推定装置30とは異なる外部の装置(例えばサーバ装置)によって生成されてもよい。この場合、推定装置30は、外部の装置によって生成された回帰モデル330を記憶部33に記憶させ、回帰モデル330を使用する。
(2) Second Modified Example In the above-described embodiment, an example in which the regression model 330 is generated by the estimation device 30 has been described, but the present invention is not limited to this example. The regression model 330 may be generated by an external device (eg, a server device) different from the estimation device 30. In this case, the estimation device 30 stores the regression model 330 generated by the external device in the storage unit 33, and uses the regression model 330.
 以上、本発明の実施形態の変形例について説明した。なお、上述した実施形態における推定システム1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The modification of the embodiment of the present invention has been described above. The estimation system 1 in the above-described embodiment may be realized by a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
 以上、図面を参照してこの発明の実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the gist of the present invention. It is possible to do.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
〔測定および回帰モデルの構築〕
 上述した実施形態における測定および評価を、以下の方法で行った。
[Measurement and regression model construction]
The measurement and evaluation in the above-described embodiment were performed by the following methods.
 (PHA水性懸濁液の調整)
 国際公開第2014/65253号に記載の方法で培養し、PHAを含有する菌体を含む菌体培養液を得た。得られた菌体培養液は、内温70℃で8時間加熱・攪拌処理し、滅菌処理を行った。
 上記で得られた不活化培養液に対してIW(工業用水)を添加して固形分濃度を18%に調整した後、細胞壁中の糖鎖(ペプチドグリカン)を分解する酵素であるリゾチーム(富士フイルム和光純薬(株)社製)を添加し、50℃で2時間保持した。その後、タンパク質分解酵素であるアルカラーゼ(Novozyme社製)を添加し、次いで、50℃で30%水酸化ナトリウムを添加して、pH8.5に調整しながら2時間保持した。
 上記で得られた酵素処理後液に対して、30%水酸化ナトリウムを用いてpHを11.6±0.2に調整し、内温を50±2℃として、PHAのアルカリ解重合反応を14時間行い、PHA水性懸濁液を得た。また、任意反応時間のサンプルを取得することで、分子量の異なるPHA水性懸濁液を得た。
(Preparation of PHA aqueous suspension)
The cells were cultured by the method described in International Publication No. 2014/65253 to obtain a cell culture solution containing cells containing PHA. The obtained bacterial cell culture solution was heated and stirred at an internal temperature of 70 ° C. for 8 hours, and then sterilized.
Lysozyme (Fujifilm) is an enzyme that decomposes sugar chains (peptidoglycan) in the cell wall after adjusting the solid content concentration to 18% by adding IW (industrial water) to the inactivated culture solution obtained above. Wako Pure Chemical Industries, Ltd.) was added, and the mixture was kept at 50 ° C. for 2 hours. Then, alcalase (manufactured by Novozymes), which is a proteolytic enzyme, was added, and then 30% sodium hydroxide was added at 50 ° C., and the mixture was kept for 2 hours while adjusting the pH to 8.5.
For the enzyme-treated liquid obtained above, adjust the pH to 11.6 ± 0.2 with 30% sodium hydroxide, set the internal temperature to 50 ± 2 ° C, and carry out the alkaline depolymerization reaction of PHA. After 14 hours, a PHA aqueous suspension was obtained. Further, by obtaining a sample having an arbitrary reaction time, PHA aqueous suspensions having different molecular weights were obtained.
 (還元粘度・極限粘度・密度・音速の測定、回帰モデル構築)
 アルカリ解重合により得られたPHA水性懸濁液を遠心分離した後、上清を除去しエタノールで洗浄した。洗浄後の固形分を真空乾燥機にて15分乾燥させ、PHA粉体を取得した。
 PHA粉体1mg~10mgをクロロホルム1mlに対して溶解させ、濃度既知で還元粘度が0.05~1の範囲にある、少なくとも3水準PHA溶液を準備し、それら溶液の粘度を、落球式粘度計(アントンパール社製)を用いて測定した。JIS-K7367に準じ、PHA溶液の還元粘度、および、PHAの極限粘度を還元粘度の無限希釈における極限値として最小二乗法により算出した。また、粘度測定に作成したPHA溶液、および任意の水分量添加により調整されたPHA溶液を、振動式密度・音速計(アントンパール社製)に流通させ、密度および音速の測定を行い、密度と音速を説明変数としたPHA濃度予測のための回帰モデルを構築した。
(Measurement of reduced viscosity, extreme viscosity, density, speed of sound, construction of regression model)
The PHA aqueous suspension obtained by alkaline depolymerization was centrifuged, the supernatant was removed, and the suspension was washed with ethanol. The solid content after washing was dried in a vacuum dryer for 15 minutes to obtain PHA powder.
Dissolve 1 mg to 10 mg of PHA powder in 1 ml of chloroform to prepare at least three-level PHA solutions with known concentrations and reduced viscosities in the range of 0.05 to 1, and measure the viscosities of those solutions with a falling ball viscometer. It was measured using (manufactured by Anton Pearl). According to JIS-K7367, the reduced viscosity of the PHA solution and the ultimate viscosity of PHA were calculated by the least squares method as the limit values in the infinite dilution of the reduced viscosity. In addition, the PHA solution prepared for viscosity measurement and the PHA solution adjusted by adding an arbitrary amount of water are distributed to a vibration type density / sound velocity meter (manufactured by Anton Pearl Co., Ltd.) to measure the density and sound velocity, and the density and sound velocity are measured. A regression model for predicting PHA density using the speed of sound as an explanatory variable was constructed.
 (重量平均分子量の測定、回帰モデル構築)
 PHA粉体5mgを、クロロホルム5mlに溶解したのち、不溶物を濾過により除いた。この溶液を「Shodex K805L(300x8mm、2本連結)」(昭和電工社製)を装着した島津製作所製GPCシステムを用い、クロロホルムを移動相として分子量を測定した。分子量標準サンプルとして、昭和電工(株)製のポリスチレン標準品(分子量6水準:6,870,000、2,000,000、696,000、129,000、19,900、3,090)を用い、較正曲線を作成し、PS換算の分子量を算出した。また、粘度・濃度に関する情報を説明変数とした重量平均分子量予測のための回帰モデルを構築した。
(Measurement of weight average molecular weight, construction of regression model)
After dissolving 5 mg of PHA powder in 5 ml of chloroform, the insoluble material was removed by filtration. The molecular weight of this solution was measured using a GPC system manufactured by Shimadzu Corporation equipped with "Chromatography K805L (300 x 8 mm, two connected)" (manufactured by Showa Denko KK) using chloroform as a mobile phase. As a molecular weight standard sample, a polystyrene standard product manufactured by Showa Denko KK (molecular weight 6 levels: 6,870,000, 2,000,000, 696,000, 129,000, 19,900, 3,090) was used. , A calibration curve was created and the molecular weight in terms of PS was calculated. We also constructed a regression model for weight average molecular weight prediction using information on viscosity and concentration as explanatory variables.
〔実施例1〕
 アルカリ解重合により得られたPHA水性懸濁液を遠心分離した後、上清を除去しエタノールで洗浄した。洗浄後の固形分を真空乾燥機にて15分乾燥させ、PHA粉体を取得した。
 PHA粉体5mgをクロロホルム5mlに対して溶解させ、落球式粘度計・振動式密度系(アントンパール社製)を用いて測定し、回帰予測モデルにより予測分子量を算出した。
[Example 1]
The PHA aqueous suspension obtained by alkaline depolymerization was centrifuged, the supernatant was removed, and the suspension was washed with ethanol. The solid content after washing was dried in a vacuum dryer for 15 minutes to obtain PHA powder.
5 mg of PHA powder was dissolved in 5 ml of chloroform, measured using a falling ball viscometer and a vibration type density system (manufactured by Anton Pearl Co., Ltd.), and the predicted molecular weight was calculated by a regression prediction model.
〔実施例2〕
 アルカリ解重合により得られたPHA水性懸濁液を遠心分離した後、上清を除去し純水で洗浄を行い、水分を含むPHA粉体を取得した。
 PHA粉体5mgをクロロホルム5mlに対して溶解させ、落球式粘度計・振動式密度系(アントンパール社製)を用いて測定し、回帰予測モデルにより予測分子量を算出した。
[Example 2]
After centrifuging the PHA aqueous suspension obtained by alkaline depolymerization, the supernatant was removed and washed with pure water to obtain a PHA powder containing water.
5 mg of PHA powder was dissolved in 5 ml of chloroform, measured using a falling ball viscometer and a vibration type density system (manufactured by Anton Pearl Co., Ltd.), and the predicted molecular weight was calculated by a regression prediction model.
 1,2 推定システム
 10 密度計
 11 密度測定部
 12 通信部
 20 粘度計
 21 粘度測定部
 22 通信部
 30-1,30-2 推定装置
 31-1,31-2 通信部
 32-1,32-2 制御部
 33-1,33-2 記憶部
 34-1,34-2 出力部
 40 音速計
 41 音速測定部
 42 通信部
 320-1,320-2 モデル生成部
 321-1,321-2 推定部
 322-1,322-2 出力処理部
 330-1,330-2 回帰モデル
1, 2, estimation system 10 Density meter 11 Density measurement unit 12 Communication unit 20 Viscometer 21 Viscosity measurement unit 22 Communication unit 30-1, 30-2 Estimator 31-1, 31-2 Communication unit 32-1, 32-2 Control unit 33-1, 33-2 Storage unit 34-1, 34-2 Output unit 40 Viscometer 41 Sound velocity measurement unit 42 Communication unit 320-1, 320-2 Model generation unit 321-1,321-2 Estimating unit 322 -1,322-2 Output processing unit 330-1,330-2 Regression model

Claims (11)

  1.  水系スラリーの固形分として存在するポリマーの分子量を推定する推定システムであって、
     前記ポリマーを溶解する溶媒と、前記ポリマーが溶質として溶解しているポリマー溶液の溶質濃度に関する少なくとも一つの溶質濃度情報及び前記ポリマー溶液の粘度を示す粘度情報の各々と、前記ポリマーの分子量を示す分子量情報との対応を示す関連情報を記憶する記憶部と、
     前記溶質濃度情報及び前記粘度情報を含む入力データと、前記関連情報とに基づき、前記ポリマーの分子量情報を推定する推定部と、
     を有する、推定システム。
    An estimation system that estimates the molecular weight of a polymer that exists as the solid content of an aqueous slurry.
    Each of the solvent for dissolving the polymer, at least one solute concentration information regarding the solute concentration of the polymer solution in which the polymer is dissolved as a solute, and the viscosity information indicating the viscosity of the polymer solution, and the molecular weight indicating the molecular weight of the polymer. A storage unit that stores related information indicating the correspondence with the information,
    An estimation unit that estimates the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
    Has an estimation system.
  2.  前記関連情報は、2つの前記溶質濃度情報と、前記粘度情報と、前記分子量情報との対応を示し、
     前記推定部は、2つの前記溶質濃度情報及び前記粘度情報を含む前記入力データと前記関連情報に基づき、前記ポリマーの分子量情報を推定する、
     請求項1に記載の推定システム。
    The related information indicates the correspondence between the two solute concentration information, the viscosity information, and the molecular weight information.
    The estimation unit estimates the molecular weight information of the polymer based on the input data including the two solute concentration information and the viscosity information and the related information.
    The estimation system according to claim 1.
  3.  前記溶質濃度情報の1つは、前記ポリマー溶液中を伝播する音の速度を示す音速情報であり、
     前記溶質濃度は、前記音速情報を少なくとも含む前記溶質濃度情報から算出される、
     請求項2に記載の推定システム。
    One of the solute concentration information is sound velocity information indicating the velocity of sound propagating in the polymer solution.
    The solute concentration is calculated from the solute concentration information including at least the sound velocity information.
    The estimation system according to claim 2.
  4.  前記関連情報は、1つの前記溶質濃度情報と、前記粘度情報と、前記分子量情報との対応を示し、
     前記推定部は、1つの前記溶質濃度情報及び前記粘度情報を含む前記入力データと前記関連情報に基づき、前記ポリマーの分子量情報を推定する、
     請求項1から請求項3のいずれか1項に記載の推定システム。
    The related information indicates the correspondence between the solute concentration information, the viscosity information, and the molecular weight information.
    The estimation unit estimates the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
    The estimation system according to any one of claims 1 to 3.
  5.  前記溶質濃度情報の1つは、前記ポリマー溶液の溶液密度であり、
     前記溶質濃度は、前記溶液密度を少なくとも含む前記溶質濃度情報から算出される、
     請求項1から請求項4のいずれか1項に記載の推定システム。
    One of the solute concentration information is the solution density of the polymer solution.
    The solute concentration is calculated from the solute concentration information including at least the solution density.
    The estimation system according to any one of claims 1 to 4.
  6.  前記溶質濃度情報及び前記粘度情報の各々と、前記溶質濃度情報及び前記粘度情報に対応する既知の分子量情報とに基づき、前記ポリマー溶液の分子量を推定する回帰モデルを生成するモデル生成部、
     をさらに備え、
     前記推定部は、前記関連情報として前記回帰モデルを用いて、前記ポリマーの分子量を推定する、
     請求項1から請求項5のいずれか1項に記載の推定システム。
    A model generator that generates a regression model that estimates the molecular weight of the polymer solution based on each of the solute concentration information and the viscosity information, and the known molecular weight information corresponding to the solute concentration information and the viscosity information.
    Further prepare
    The estimation unit estimates the molecular weight of the polymer by using the regression model as the related information.
    The estimation system according to any one of claims 1 to 5.
  7.  前記モデル生成部は、機械学習により前記回帰モデルを生成する、
     請求項6に記載の推定システム。
    The model generation unit generates the regression model by machine learning.
    The estimation system according to claim 6.
  8.  前記ポリマーは、培養生産されたポリマーである、
     請求項1から請求項7のいずれか1項に記載の推定システム。
    The polymer is a culture-produced polymer.
    The estimation system according to any one of claims 1 to 7.
  9.  前記ポリマーは、P3HA(ポリ(3-ヒドロキシアルカノエート))である、
     請求項1~請求項8のいずれか1項に記載の推定システム。
    The polymer is P3HA (poly (3-hydroxy alkanoate)),
    The estimation system according to any one of claims 1 to 8.
  10.  水系スラリーの固形分として存在するポリマーの分子量を推定する推定方法であって、
     記憶部が、前記ポリマーを溶解する溶媒と、前記ポリマーが溶質として溶解しているポリマー溶液の溶質濃度に関する少なくとも一つの溶質濃度情報及び前記ポリマー溶液の粘度を示す粘度情報の各々と、前記ポリマーの分子量を示す分子量情報との対応を示す関連情報を記憶することと、
     推定部が、前記溶質濃度情報及び前記粘度情報を含む入力データと、前記関連情報とに基づき、前記ポリマーの分子量情報を推定することと、
     を含む、推定方法。
    It is an estimation method for estimating the molecular weight of a polymer existing as a solid content of an aqueous slurry.
    The storage unit contains at least one solute concentration information regarding the solvent for dissolving the polymer, the solute concentration of the polymer solution in which the polymer is dissolved as a solute, and viscosity information indicating the viscosity of the polymer solution, and each of the viscosity information of the polymer. To store related information indicating the correspondence with the molecular weight information indicating the molecular weight, and
    The estimation unit estimates the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
    Estimating method, including.
  11.  水系スラリーの固形分として存在するポリマーの分子量を推定するためのプログラムであって、
     コンピュータを、
     前記ポリマーを溶解する溶媒と、前記ポリマーが溶質として溶解しているポリマー溶液の溶質濃度に関する少なくとも一つの溶質濃度情報及び前記ポリマー溶液の粘度を示す粘度情報の各々と、前記ポリマーの分子量を示す分子量情報との対応を示す関連情報を記憶する記憶部と、
     前記溶質濃度情報及び前記粘度情報を含む入力データと、前記関連情報とに基づき、前記ポリマーの分子量情報を推定する推定部と、
     として機能させる、プログラム。
    A program for estimating the molecular weight of a polymer present as the solid content of an aqueous slurry.
    Computer,
    Each of the solvent for dissolving the polymer, at least one solute concentration information regarding the solute concentration of the polymer solution in which the polymer is dissolved as a solute, and the viscosity information indicating the viscosity of the polymer solution, and the molecular weight indicating the molecular weight of the polymer. A storage unit that stores related information indicating the correspondence with the information,
    An estimation unit that estimates the molecular weight information of the polymer based on the input data including the solute concentration information and the viscosity information and the related information.
    A program that functions as.
PCT/JP2021/038584 2020-12-04 2021-10-19 Estimation system, estimation method, and program WO2022118554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-202074 2020-12-04
JP2020202074 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118554A1 true WO2022118554A1 (en) 2022-06-09

Family

ID=81853521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038584 WO2022118554A1 (en) 2020-12-04 2021-10-19 Estimation system, estimation method, and program

Country Status (1)

Country Link
WO (1) WO2022118554A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119847A (en) * 1998-08-13 2002-04-23 Symyx Technologies Parallel processing apparatus for reaction mixture
US6635224B1 (en) * 1998-10-30 2003-10-21 General Electric Company Online monitor for polymer processes
JP2004125447A (en) * 2002-09-30 2004-04-22 Mitsubishi Chemicals Corp Molecular weight measuring method and device for high polymer fluid and molecular weight control method and device for high polymer fluid
JP2009079178A (en) * 2007-09-27 2009-04-16 Sumitomo Chemical Co Ltd Device, program and method for formulating relation, recording medium, concentration calculation device and method for controlling viscosity
CN102455274A (en) * 2010-10-18 2012-05-16 袁俊海 Method for measuring intrinsic viscosity of polymer
CN103217360A (en) * 2013-04-10 2013-07-24 中国石油天然气股份有限公司 Method for detecting molecular weight of hydrolyzed polyacrylamide
WO2018186278A1 (en) * 2017-04-05 2018-10-11 株式会社カネカ Polyhydroxyalkanoate particles and aqueous dispersion of same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119847A (en) * 1998-08-13 2002-04-23 Symyx Technologies Parallel processing apparatus for reaction mixture
US6635224B1 (en) * 1998-10-30 2003-10-21 General Electric Company Online monitor for polymer processes
JP2004125447A (en) * 2002-09-30 2004-04-22 Mitsubishi Chemicals Corp Molecular weight measuring method and device for high polymer fluid and molecular weight control method and device for high polymer fluid
JP2009079178A (en) * 2007-09-27 2009-04-16 Sumitomo Chemical Co Ltd Device, program and method for formulating relation, recording medium, concentration calculation device and method for controlling viscosity
CN102455274A (en) * 2010-10-18 2012-05-16 袁俊海 Method for measuring intrinsic viscosity of polymer
CN103217360A (en) * 2013-04-10 2013-07-24 中国石油天然气股份有限公司 Method for detecting molecular weight of hydrolyzed polyacrylamide
WO2018186278A1 (en) * 2017-04-05 2018-10-11 株式会社カネカ Polyhydroxyalkanoate particles and aqueous dispersion of same

Similar Documents

Publication Publication Date Title
Di Bartolo et al. A review of bioplastics and their adoption in the circular economy
Arikan et al. A review: investigation of bioplastics
Zhang et al. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery
Montazer et al. Challenges with verifying microbial degradation of polyethylene
Quecholac-Piña et al. Degradation of plastics under anaerobic conditions: A short review
Delacuvellerie et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment
Elvers et al. Technology trends in biodegradable polymers: evidence from patent analysis
Bher et al. Biodegradation of biodegradable polymers in mesophilic aerobic environments
Mostafa et al. Mechanical properties of some bioplastics under different soil types used as biodegradable drip tubes
Tyagi et al. A critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications
Kim et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs
Ahsan et al. Biodegradation of different types of bioplastics through composting—a recent trend in green recycling
Baldera-Moreno et al. Biotechnological aspects and mathematical modeling of the biodegradation of plastics under controlled conditions
Günkaya et al. An environmental comparison of biocomposite film based on orange peel-derived pectin jelly-corn starch and LDPE film: LCA and biodegradability
Kazimierowicz et al. Effect of low-temperature conditioning of excess dairy sewage sludge with the use of solidified carbon dioxide on the efficiency of methane fermentation
Nanda et al. Algal bioplastics: current market trends and technical aspects
Silva et al. Biodegradation of polymers: stages, measurement, standards and prospects
Halden et al. Time: a key driver of uncertainty when assessing the risk of environmental plastics to human health
Orlando et al. Microbial enzyme biotechnology to reach plastic waste circularity: current status, problems and perspectives
WO2022118554A1 (en) Estimation system, estimation method, and program
Viel et al. Biodegradation of plastics induced by marine organisms: future perspectives for bioremediation approaches
Albertsson et al. Biodegradation and test methods for environmental and biomedical applications of polymers
Adnan et al. Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization
White et al. Comparative study of the biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) microbeads in municipal wastewater in environmental and controlled laboratory conditions
Jiang et al. Machine learning based prediction of enzymatic degradation of plastics using encoded protein sequence and effective feature representation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP