WO2022118375A1 - Train operation system, train operation method, control circuit, and storage medium - Google Patents

Train operation system, train operation method, control circuit, and storage medium Download PDF

Info

Publication number
WO2022118375A1
WO2022118375A1 PCT/JP2020/044680 JP2020044680W WO2022118375A1 WO 2022118375 A1 WO2022118375 A1 WO 2022118375A1 JP 2020044680 W JP2020044680 W JP 2020044680W WO 2022118375 A1 WO2022118375 A1 WO 2022118375A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
tag
radio
train
wireless
Prior art date
Application number
PCT/JP2020/044680
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 井浦
明▲徳▼ 平
裕康 佐野
周作 梅田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/044680 priority Critical patent/WO2022118375A1/en
Priority to JP2022560972A priority patent/JP7229437B2/en
Publication of WO2022118375A1 publication Critical patent/WO2022118375A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves

Definitions

  • This disclosure relates to a train operation system using the position information of crew members, a train operation method, a control circuit, and a storage medium.
  • Patent Document 1 discloses a technique for giving a business instruction related to train operation based on the position information of a mobile terminal of a crew member.
  • the position information used in the train operation business is the result of position estimation using GPS satellites, and the position estimation accuracy is in the metric class.
  • the position estimation accuracy depends on the presence or absence of visibility from GPS satellites. Therefore, in reality, the position of the crew can only be grasped in units of areas of about several tens of meters, and there is a problem that detailed and appropriate judgments and instructions cannot be made to the crew based on the position information of the crew. there were. Business efficiency and applications based on the location information of crew members will be limited.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a train operation system capable of train operation with improved position estimation accuracy of crew members.
  • the train operation system of the present disclosure includes a radio tag possessed by the crew and performing ultra-high band radio communication, and a radio tag and ultra-high band radio installed on the train.
  • a radio tag and ultra-high band radio installed on the train.
  • positioning information indicating the position of the wireless tag is generated. It is characterized by including an information collecting device for transmitting information including positioning information and an operation management device for generating information for crew members based on the information including positioning information.
  • the train operation system according to this disclosure has the effect of being able to operate trains with improved accuracy of crew position estimation. Further, the train operation system according to the present disclosure has an effect that the system operation can be continued regardless of whether or not there is a line of sight from GPS satellites.
  • the figure which shows the configuration example of the train operation system which concerns on Embodiment 1. A sequence diagram showing the operation of each information node of the train operation system according to the first embodiment.
  • the figure which shows the structural example of the processing circuit in the case where the processing circuit provided in the UWB wireless tag which concerns on Embodiment 1 is realized by a processor and a memory.
  • the figure which shows the example which the primary UWB radio sensor which concerns on Embodiment 5 periodically allocates a time slot.
  • FIG. 1 is a diagram showing a configuration example of the train operation system 1 according to the first embodiment.
  • the train operation system 1 is a system that uses the position information of the crew, and is composed of a plurality of communication nodes. Specifically, the train operation system 1 operates with a UWB radio tag 10, UWB radio sensors 20-1, 20-2, an information collecting device 30, an in-train radio slave station 40, and a radio base station 50. A management device 60 is provided.
  • the UWB wireless sensors 20-1 and 20-2 are not distinguished, they may be referred to as the UWB wireless sensor 20.
  • the train operation system 1 includes two UWB wireless sensors 20 in the example of FIG. 1, but may include three or more UWB wireless sensors 20.
  • each communication node constituting the train operation system 1 is capable of bidirectional communication between the upper node and the lower node. Is. Hereinafter, each communication node will be described in detail.
  • the UWB wireless tag 10 is a communication node owned by the crew.
  • the UWB wireless tag 10 is a wireless tag that performs ultra-high band wireless communication with the UWB wireless sensor 20 and UWB.
  • the UWB radio tag 10 receives the preamble signal 119, the train operation information 125, and the instruction information 126 from the UWB radio sensor 20.
  • the UWB radio tag 10 analyzes the preamble signal 119, which is a distance measuring radio signal transmitted from the UWB radio sensor 20, and calculates the reception time of the radio wave in space, that is, the preamble signal 119.
  • the UWB radio tag 10 notifies the information terminal held by the crew member of the train operation information 125 and the instruction information 126 transmitted from the operation management device 60 to the crew member.
  • the train operation information 125 is notification information related to train operation.
  • the instruction information 126 is information indicating an instruction directed to a specific crew member who has the UWB radio tag 10.
  • the signal sequence of the preamble signal 119 transmitted by the UWB wireless sensor 20 differs depending on the device-specific ID (IDentification) of the UWB wireless sensor 20.
  • the preamble signal 119 may be referred to as a first preamble signal.
  • the UWB wireless tag 10 transmits the preamble signal 120, the tag ID 121 of the UWB wireless tag 10, the terminal information 122, and the timing information 129 to the UWB wireless sensor 20 according to the instruction from the UWB wireless sensor 20.
  • the tag ID 121 of the UWB wireless tag 10 is an ID unique to the device of the UWB wireless tag 10 or an ID unique to the crew holding the UWB wireless tag 10, that is, tag identification information.
  • the tag ID 121 of the UWB wireless tag 10 may be an ID unique to the device of the UWB wireless tag 10 and unique to the crew holding the UWB wireless tag 10.
  • the terminal information 122 is information about an information device, such as information automatically acquired by an information device in which the UWB wireless tag 10 is incorporated, and information generated by a crew member operating the information device.
  • the timing information 129 is information including the transmission time of the preamble signal 120 transmitted by the UWB radio tag 10 and the reception time of the preamble signal 119 from the UWB radio sensor 20.
  • the UWB wireless tag 10 may transmit the preamble signal 120 by sequential instructions from the UWB wireless sensor 20, or may send the preamble signal 120 to the UWB wireless tag 10 by the UWB wireless sensor 20 without depending on the sequential instructions from the UWB wireless sensor 20.
  • the preamble signal 120 may be transmitted periodically according to the initial setting of.
  • the signal sequence of the preamble signal 120 transmitted by the UWB radio tag 10 differs depending on the device-specific ID of the UWB radio tag 10 or the crew-specific ID of the UWB radio tag 10.
  • the preamble signal 120 may be referred to as a second preamble signal.
  • the UWB wireless sensor 20 is a communication node installed on a train (not shown).
  • the UWB wireless sensor 20 is a wireless sensor that performs ultra-high band wireless communication with the UWB wireless tag 10 and UWB.
  • the UWB radio sensor 20 receives the preamble signal 120, the tag ID 121, the terminal information 122, and the timing information 129 from the UWB radio tag 10.
  • the UWB radio sensor 20 analyzes the preamble signal 120 transmitted from the UWB radio tag 10 and calculates the reception time of radio waves in space.
  • the UWB wireless sensor 20 calculates the distance between the UWB wireless tag 10 and the UWB wireless sensor 20 by using the transmission time information of the preamble signal 119 of the UWB wireless sensor 20 and the timing information 129 from the UWB wireless tag 10. Then, the distance measurement information 127 is generated. The UWB wireless sensor 20 transmits the generated ranging information 127, the tag ID 121 received from the UWB wireless tag 10, and the terminal information 122 to the information collecting device 30.
  • the UWB radio sensor 20 receives the train operation information 125 and the instruction information 126 from the information collecting device 30.
  • the UWB radio sensor 20 transmits the preamble signal 119, which is a distance measuring radio signal, the train operation information 125 received from the information collecting device 30, and the instruction information 126 to the UWB radio tag 10.
  • the information collecting device 30 is a communication node installed on a train (not shown).
  • the information collecting device 30 collects and aggregates information from a plurality of UWB wireless sensors 20, and also distributes the information to the plurality of UWB wireless sensors 20.
  • the information collecting device 30 receives the ranging information 127, the tag ID 121, and the terminal information 122 from the plurality of UWB wireless sensors 20.
  • the information collecting device 30 uses the ranging information 127 received from the plurality of UWB wireless sensors 20 to generate positioning information 128 indicating the position of the UWB wireless tag 10.
  • the information collecting device 30 identifies a vehicle in which the UWB radio tag 10 exists by using, for example, a train ID, a vehicle ID, or the like, and further, the UWB radio tag 10 is based on Cartesian coordinates originating from a specific position in the vehicle. Positioning information 128 indicating the position of is generated.
  • the train ID is identification information for identifying a train (not shown).
  • the vehicle ID is identification information for identifying each vehicle forming a train.
  • the information collecting device 30 transmits the generated positioning information 128, the tag ID 121 received from the plurality of UWB radio sensors 20, and the terminal information 122 to the in-train radio slave station 40 which is a higher-level communication node.
  • the information collecting device 30 receives the train operation information 125 and the instruction information 126 from the in-train radio slave station 40 which is a higher-level communication node.
  • the information collecting device 30 transmits the train operation information 125 and the instruction information 126 received from the in-train radio slave station 40 to the UWB radio sensor 20.
  • the in-train radio slave station 40 is a communication node installed in a train (not shown).
  • the in-train radio slave station 40 transmits the information generated by the information collecting device 30 to a communication device outside the train. Specifically, the in-train radio slave station 40 receives the positioning information 128, the tag ID 121, and the terminal information 122 from the information collecting device 30. The in-train radio slave station 40 transmits the positioning information 128, the tag ID 121, and the terminal information 122 received from the information collecting device 30 to the radio base station 50. Further, the in-train radio slave station 40 receives train operation information 125 and instruction information 126 from the radio base station 50. The in-train radio slave station 40 transmits the train operation information 125 and the instruction information 126 received from the radio base station 50 to the information collecting device 30.
  • the radio base station 50 is a communication node installed on the ground.
  • the radio base station 50 transmits information from the in-train radio slave station 40 to the operation management device 60.
  • the radio base station 50 receives the positioning information 128, the tag ID 121, and the terminal information 122 from the in-train radio slave station 40.
  • the radio base station 50 transmits the positioning information 128, the tag ID 121, and the terminal information 122 received from the in-train radio slave station 40 to the operation management device 60.
  • the radio base station 50 receives the train operation information 125 and the instruction information 126 from the operation management device 60.
  • the radio base station 50 transmits the train operation information 125 and the instruction information 126 received from the operation management device 60 to the in-train radio slave station 40.
  • the operation management device 60 is a communication node installed in a command room or the like (not shown) on the ground.
  • the operation management device 60 receives information from the radio base station 50 and gives information, authentication, and the like to the crew based on the received information. Specifically, the operation management device 60 receives the positioning information 128, the tag ID 121, and the terminal information 122 from the radio base station 50.
  • the operation management device 60 generates train operation information 125 and instruction information 126 to be transmitted to the crew based on the received positioning information 128, tag ID 121, and terminal information 122.
  • the operation management device 60 transmits the generated train operation information 125 and instruction information 126 to the radio base station 50.
  • FIG. 2 is a sequence diagram showing the operation of each information node of the train operation system 1 according to the first embodiment.
  • the UWB radio tag 10 transmits the preamble signal 120 and the tag ID 121 to the UWB radio sensor 20-1 (step S101).
  • the UWB radio sensor 20-1 transmits the preamble signal 119 to the UWB radio tag 10 (step S102).
  • the UWB radio tag 10 transmits the preamble signal 120 and the timing information 129 to the UWB radio sensor 20-1 (step S103).
  • the timing information 129 includes the time when the UWB radio tag 10 transmits the preamble signal 120 in steps S101 and S103, and the time when the UWB radio tag 10 receives the preamble signal 119 from the UWB radio sensor 20-1 in step S102. It has been.
  • the UWB radio tag 10 transmits the preamble signal 120 and the tag ID 121 to the UWB radio sensor 20-2 (step S104).
  • the UWB radio sensor 20-2 transmits the preamble signal 119 to the UWB radio tag 10 (step S105).
  • the UWB radio tag 10 transmits the preamble signal 120 and the timing information 129 to the UWB radio sensor 20-2 (step S106).
  • the timing information 129 includes the time when the UWB radio tag 10 transmits the preamble signal 120 in steps S104 and S106, and the time when the UWB radio tag 10 receives the preamble signal 119 from the UWB radio sensor 20-2 in step S105. It has been.
  • FIG. 3 is a flowchart showing the operation of the UWB wireless tag 10 according to the first embodiment.
  • the UWB radio tag 10 transmits a preamble signal 120, that is, a second preamble signal, and a tag ID 121 to the UWB radio sensor 20 (step S201).
  • the UWB radio tag 10 receives the preamble signal 119, that is, the first preamble signal from the UWB radio sensor 20 (step S202).
  • the UWB radio tag 10 generates timing information 129 (step S203) and transmits it to the UWB radio sensor 20 (step S204).
  • the UWB radio sensor 20-1 receives the preamble signal 120 transmitted from the UWB radio tag 10 in steps S101 and S103, and the preamble signal 119 to the UWB radio tag 10 in step S102.
  • the distance between the UWB radio tag 10 and the UWB radio sensor 20-1 is calculated using the time when the UWB radio tag 10 is transmitted and the timing information 129 received from the UWB radio tag 10, and the distance measurement information 127 is generated.
  • the UWB wireless sensor 20-1 transmits the generated ranging information 127 and the tag ID 121 received from the UWB wireless tag 10 to the information collecting device 30 (step S107).
  • the UWB radio sensor 20-2 has a time when the preamble signal 120 transmitted from the UWB radio tag 10 in steps S104 and S106 is received and a time when the preamble signal 119 is transmitted to the UWB radio tag 10 in step S105.
  • the timing information 129 received from the UWB radio tag 10 is used to calculate the distance between the UWB radio tag 10 and the UWB radio sensor 20-2, and the distance measurement information 127 is generated.
  • the UWB wireless sensor 20-2 transmits the generated ranging information 127 and the tag ID 121 received from the UWB wireless tag 10 to the information collecting device 30 (step S108).
  • FIG. 4 is a flowchart showing the operation of the UWB wireless sensor 20 according to the first embodiment.
  • the UWB radio sensor 20 receives the preamble signal 120, that is, the second preamble signal, and the tag ID 121 from the UWB radio tag 10 (step S301).
  • the UWB radio sensor 20 transmits a preamble signal 119, that is, a first preamble signal to the UWB radio tag 10 (step S302).
  • the UWB radio sensor 20 receives timing information 129 from the UWB radio tag 10 (step S303), and generates distance measurement information 127 using the reception time of the preamble signal 120, the transmission time of the preamble signal 119, and the timing information 129. (Step S304).
  • the UWB wireless sensor 20 transmits the ranging information 127 and the tag ID 121 to the information collecting device 30 (step S305).
  • the information collecting device 30 obtains the positioning information 128 based on the distance measurement information 127 received from the two or more UWB wireless sensors 20, here the UWB wireless sensors 20-1 and 20-2. Generate.
  • the information collecting device 30 transmits the generated positioning information 128 and the tag ID 121 received from the UWB radio sensors 20-1 and 20-2 to the in-train radio slave station 40 (step S109).
  • FIG. 5 is a flowchart showing the operation of the information collecting device 30 according to the first embodiment.
  • the information collecting device 30 receives the ranging information 127 and the tag ID 121 from the UWB wireless sensor 20 (step S401).
  • the information collecting device 30 generates the positioning information 128 based on the distance measurement information 127 (step S402).
  • the information collecting device 30 transmits the positioning information 128 and the tag ID 121 to the in-train radio slave station 40 (step S403).
  • the in-train radio slave station 40 receives the positioning information 128 and the tag ID 121 from the information collecting device 30.
  • the in-train radio slave station 40 transmits the positioning information 128 and the tag ID 121 received from the information collecting device 30 to the radio base station 50 (step S110).
  • the radio base station 50 receives the positioning information 128 and the tag ID 121 from the in-train radio slave station 40.
  • the radio base station 50 transmits the positioning information 128 and the tag ID 121 received from the in-train radio slave station 40 to the operation management device 60 (step S111).
  • the operation management device 60 receives the positioning information 128 and the tag ID 121 from the radio base station 50.
  • the operation management device 60 generates train operation information 125 and instruction information 126 based on the received positioning information 128 and tag ID 121.
  • the operation management device 60 transmits the generated train operation information 125 and instruction information 126 to the radio base station 50 (step S112).
  • FIG. 6 is a flowchart showing the operation of the operation management device 60 according to the first embodiment.
  • the operation management device 60 receives the positioning information 128 and the tag ID 121 from the radio base station 50 (step S501).
  • the operation management device 60 generates train operation information 125 and instruction information 126 based on the positioning information 128 and the tag ID 121 (step S502).
  • the operation management device 60 transmits the train operation information 125 and the instruction information 126 to the radio base station 50 (step S503).
  • the radio base station 50 receives the train operation information 125 and the instruction information 126 from the operation management device 60.
  • the radio base station 50 transmits the train operation information 125 and the instruction information 126 received from the operation management device 60 to the in-train radio slave station 40 (step S113).
  • the in-train radio slave station 40 receives train operation information 125 and instruction information 126 from the radio base station 50.
  • the in-train radio slave station 40 transmits the train operation information 125 and the instruction information 126 received from the radio base station 50 to the information collecting device 30 (step S114).
  • the information collecting device 30 receives the train operation information 125 and the instruction information 126 from the in-train radio slave station 40.
  • the information collecting device 30 transmits the train operation information 125 and the instruction information 126 received from the in-train radio slave station 40 to the UWB radio sensors 20-1 and 20-2 (steps S115 and S116).
  • the UWB radio sensor 20-1 receives train operation information 125 and instruction information 126 from the information collecting device 30.
  • the UWB radio sensor 20-1 transmits the train operation information 125 and the instruction information 126 received from the information collecting device 30 to the UWB radio tag 10 (step S117).
  • the UWB radio sensor 20-2 receives the train operation information 125 and the instruction information 126 from the information collecting device 30.
  • the UWB radio sensor 20-2 transmits the train operation information 125 and the instruction information 126 received from the information collecting device 30 to the UWB radio tag 10 (step S118).
  • An individual application is to transmit the positioning information 128 to the operation management device 60 using the train operation system 1 and to distribute the train operation information 125 and the instruction information 126 to the UWB radio tag 10 based on the positioning information 128. It is also possible to apply to. Additional information collected by the UWB radio tag 10, for example, image data taken by the crew when the UWB radio tag 10 is mounted on the smartphone, acceleration information detected by the UWB radio tag 10, and input by the crew.
  • the UWB wireless tag 10 transmits the terminal information 122 to the UWB wireless sensor 20.
  • the UWB radio sensor 20, the higher-level information collecting device 30, the in-train radio slave station 40, and the radio base station 50 transfer the terminal information 122.
  • the operation management device 60 can receive the terminal information 122.
  • FIG. 7 is a block diagram showing a configuration example of the UWB wireless tag 10 according to the first embodiment.
  • the UWB wireless tag 10 includes a communication unit 11, a storage unit 12, and a control unit 13.
  • the communication unit 11 communicates with the UWB wireless sensor 20 and the information terminal held by the crew.
  • the communication unit 11 may include an antenna or the like.
  • the storage unit 12 stores information acquired from the UWB wireless sensor 20 and the information terminal held by the crew.
  • the control unit 13 analyzes the preamble signal 119 transmitted from the UWB wireless sensor 20 and performs processing such as calculating the reception time of radio waves in space.
  • the communication unit 11 communicates with another communication node.
  • the storage unit 12 stores information or the like acquired from another communication node.
  • the control unit 13 generates distance measurement information 127 in the case of the UWB wireless sensor 20, positioning information 128 in the case of the information collecting device 30, and train operation information in the case of the operation management device 60. Generate 125 and instruction information 126.
  • the UWB radio tag 10 will be described as an example.
  • the communication unit 11 is realized by a communication device.
  • the storage unit 12 is a memory.
  • the control unit 13 is realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • the processing circuit is also called a control circuit.
  • FIG. 8 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the UWB wireless tag 10 according to the first embodiment is realized by the processor 91 and the memory 92.
  • the processing circuit 90 shown in FIG. 8 is a control circuit and includes a processor 91 and a memory 92.
  • each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92.
  • the processing circuit 90 includes a memory 92 for storing a program in which the processing of the UWB wireless tag 10 is eventually executed. It can be said that this program is a program for causing the UWB wireless tag 10 to execute each function realized by the processing circuit 90.
  • This program may be provided by a storage medium in which the program is stored, or may be provided by other means such as a communication medium.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, a computing device, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 is, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EPROM (registered trademark) (Electrically EPROM). This includes semiconductor memory, magnetic discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Disc), and the like.
  • FIG. 9 is a diagram showing an example of a processing circuit 93 in the case where the processing circuit included in the UWB wireless tag 10 according to the first embodiment is configured by dedicated hardware.
  • the processing circuit 93 shown in FIG. 9 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. The thing is applicable.
  • the processing circuit a part may be realized by dedicated hardware and a part may be realized by software or firmware.
  • the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
  • the UWB radio tag 10 and the UWB radio sensor 20 can perform centimeter-class position estimation by communicating with the UWB radio. .. Unlike GPS satellites, UWB radio enables position estimation and data transmission with a single device.
  • the UWB wireless sensor 20 generates ranging information 127 indicating the distance between the UWB wireless sensor 20 and the UWB wireless tag 10, and the information collecting device 30 is based on the ranging information 127 acquired from the plurality of UWB wireless sensors 20.
  • the positioning information 128 indicating the position of the UWB radio tag 10 is generated, and the operation management device 60 generates the train operation information 125 and the instruction information 126 by using the positioning information 128.
  • the train operation system 1 can perform train operation with improved estimation accuracy of the position of the UWB radio tag 10 possessed by the crew, that is, the position of the crew. Further, since the train operation system 1 can transmit the train operation information 125 and the instruction information 126 from the operation management device 60 to the UWB radio tag 10 in real time, both high-precision positioning and data transmission can be achieved. It is possible to create a system that contributes to operational efficiency using UWB radio.
  • Embodiment 2 In the second embodiment, the case where the train operation system 1 described in the first embodiment authenticates the train operation by the crew member having the UWB radio tag 10 will be described.
  • the configuration of the train operation system 1 is the same as that of the first embodiment shown in FIG. Specifically, two authentication methods will be described as an authentication method for train operation by a crew member having a UWB radio tag 10 in the train operation system 1.
  • FIG. 10 is a diagram showing an example of a train operation authentication method by a crew member having a UWB radio tag 10 in the train operation system 1 according to the second embodiment.
  • FIG. 10 shows an example of the first authentication method.
  • the first authentication method is a method using an authentication code 110 from the train cab 70, a crew member's positioning information 128, and a tag ID 121.
  • the cab 70 is mounted on the train and wirelessly transmits the authentication code 110 with low transmission power.
  • the UWB radio tag 10 owned by the crew needs to be located in the vicinity of the cab 70 in the train in order to correctly receive the authentication code 110 transmitted from the cab 70.
  • the authentication information 111 is information issued by the operation management device 60.
  • the train operation system 1 needs to transmit the positioning information 128 and the tag ID 121 to the operation management device 60 together with the authentication code 110 received from the driver's cab 70.
  • the reason why the positioning information 128 is required is to confirm whether or not the UWB radio tag 10, that is, the crew member having the UWB radio tag 10 is present at an appropriate position.
  • a suitable position is, for example, in a train.
  • the reason why the tag ID 121 is required for the authentication for the operation of the cab 70 for the crew is that the authentication is not given to the crew who are not qualified to operate the cab 70.
  • the administrator of the train operation system 1 or the like pre-registers the tag ID 121 that can be authenticated in the operation management device 60.
  • the operation management device 60 does not issue the authentication information 111 to the UWB wireless tag 10 having the tag ID 121 other than the registered tag ID 121.
  • the operation management device 60 requires all of the authentication code 110, the positioning information 128, and the tag ID 121 when issuing the authentication information 111. This has the effect that the driver's cab 70 cannot be operated unless a crew member who is qualified to operate the driver's cab 70 is located in the vicinity of the driver's cab 70 and is in a state where the driving operation can be performed.
  • the UWB wireless tag 10 receives the authentication code 110 from the train cab 70, and sends the received authentication code 110 and the above-mentioned tag ID 121 to the operation management device 60 as the destination of the UWB. It transmits to the wireless sensor 20.
  • the operation management device 60 issues authentication information 111 for the driver's cab 70 based on the authentication code 110, positioning information 128, and tag ID 121 received from the radio base station 50, and uses the issued authentication information 111 as the UWB wireless tag 10. Is transmitted to the radio base station 50 as the destination.
  • the second authentication method is a method that does not use the authentication code 110 from the driver's cab 70. For example, when the positioning accuracy of the positioning information 128 is high, the authentication code 110 may not be required. In this case, the operation management device 60 issues the authentication information 111 using only the positioning information 128 and the tag ID 121, and transmits the authentication information 111 to the driver's cab 70.
  • the UWB wireless tag 10 transmits the above-mentioned tag ID 121 to the UWB wireless sensor 20 with the operation management device 60 as the destination.
  • the operation management device 60 issues authentication information 111 for the driver's cab 70 based on the positioning information 128 received from the radio base station 50 and the tag ID 121, and the issued authentication information 111 is addressed to the UWB radio tag 10. It transmits to the radio base station 50.
  • Both of the above two authentication methods authenticate the operation of the driver's cab 70 to the crew via the UWB wireless tag 10, but are not limited to these.
  • operation permission may be authenticated from the operation management device 60 to the driver's cab 70 via CBTC (Communications Based Train Control) radio.
  • the operation management device 60 is performed by the crew using the positioning information 128 and the tag ID 121, which are the position information of the crew having the UWB radio tag 10.
  • the operation of the train cab 70 can be authenticated.
  • Embodiment 3 In the first embodiment, regarding the train operation system 1, the installation position of the UWB radio sensor 20, the setting of the directivity of the antenna included in the UWB radio sensor 20 (not shown), and the like are not particularly mentioned.
  • the UWB radio sensor 20 may be installed inside the train vehicle and at a position where the outside of the train or the outside of the train can be seen.
  • the directivity of the antenna is adjusted to reduce the antenna gain toward the inside of the train and increase the antenna gain toward the outside of the train. .. That is, the antenna of the UWB radio sensor 20 is adjusted so that the antenna gain in the direction outside the train is larger than the antenna gain in the direction inside the train.
  • the UWB radio tag 10 possessed by the crew can communicate with the UWB radio sensor 20 installed outside the vehicle when it is outside the vehicle, and with the UWB radio sensor 20 installed outside the vehicle when it is inside the vehicle. Communication becomes impossible. As a result, in the train operation system 1, the accuracy of the UWB radio tag 10 possessed by the crew member, that is, the crew member's determination of whether the train is inside or outside the train is improved.
  • the train operation system 1 does not install the main body of the UWB radio sensor 20 in a position where the outside of the vehicle or the outside of the train can be seen, and only the antenna provided in the UWB radio sensor 20 is outside the vehicle or the train. It may be installed in a position where the outside can be seen.
  • the single UWB wireless sensor 20 can only measure the distance from the UWB wireless tag 10. Therefore, the information collecting device 30 or the operation management device 60 determines whether the crew is outside the train or inside the train.
  • the antenna of the UWB radio sensor 20 or the UWB radio sensor 20 is installed at a position where the outside of the vehicle or the outside of the train can be seen, so that the UWB radio tag is installed.
  • the positioning information 128 of 10 it is possible to determine whether the crew member having the UWB radio tag 10, that is, the UWB radio tag 10 is inside or outside the train.
  • the information collecting device 30 generates positioning information 128 indicating the position of the UWB radio tag 10 based on the distance measurement information 127 received from the plurality of UWB radio sensors 20. At this time, the information collecting device 30 may generate the positioning information 128 after averaging the plurality of distance measurement information 127, or may average the generated plurality of positioning information 128. As a result, the information collecting device 30 can improve the accuracy of the positioning information 128 transmitted to the in-train radio slave station 40. Further, the information collecting device 30 can reduce the communication traffic to the operation management device 60.
  • the operation management device 60 may average a plurality of positioning information 128 received from the radio base station 50. As a result, the operation management device 60 can improve the accuracy of the position of the UWB wireless tag 10 when grasping the position of the UWB wireless tag 10.
  • Embodiment 5 a case where the timing of performing distance measurement of the UWB radio tag 10 among the plurality of UWB radio sensors 20, that is, the timing of transmitting the preamble signal 119 and the timing of receiving the preamble signal 120 will be described.
  • FIG. 11 is a diagram showing an example of a control relationship in the case of controlling the timing of performing distance measurement of the UWB radio tag 10 among the plurality of UWB radio sensors 20 according to the fifth embodiment. In the example of FIG.
  • one of the plurality of UWB wireless sensors 20 is the primary UWB wireless sensor 20a, and the other UWB wireless sensors 20 are the secondary UWB wireless sensors 20b-1 and 20b-2.
  • the secondary UWB radio sensors 20b-1 and 20b-2 operate, that is, measure the distance of the UWB radio tag 10 based on the instruction from the primary UWB radio sensor 20a.
  • the secondary UWB wireless sensors 20b-1 and 20b-2 are not distinguished, they are referred to as secondary UWB wireless sensors 20b.
  • the primary UWB wireless sensor 20a and the secondary UWB wireless sensor 20b are not distinguished, they are referred to as the UWB wireless sensor 20.
  • the primary UWB radio sensor 20a may be simply referred to as a primer radio sensor
  • the secondary UWB radio sensor 20b may be simply referred to as a second radio sensor.
  • the plurality of secondary UWB radio sensors 20b synchronize with the time information of the primary UWB radio sensor 20a.
  • the primary UWB radio sensor 20a schedules the secondary UWB radio sensor 20b according to the individually generated random numbers of each UWB radio sensor 20, the time slot timing set periodically at regular time intervals, and the like, that is, distance measurement. Allocate opportunities slots.
  • the primary UWB radio sensor 20a may have equal opportunities for slot allocation for all secondary UWB radio sensors 20b, or may be a specific secondary UWB radio depending on the location of the UWB radio tag 10, other circumstances, and the like.
  • the allocation opportunity of the sensor 20b may be increased or decreased.
  • FIG. 12 is a diagram showing an example in which the primary UWB wireless sensor 20a according to the fifth embodiment allocates a time slot by a generated random number.
  • FIG. 12 shows an example in which time slots are assigned to a total of three UWB wireless sensors 20 of UWB wireless sensors 20-1, 20-2, and 20-3 according to generated random numbers.
  • FIG. 13 is a diagram showing an example in which the primary UWB radio sensor 20a according to the fifth embodiment periodically allocates time slots.
  • FIG. 13 is an example in which time slots are assigned at intervals of 5 slots to a total of 3 UWB wireless sensors 20 of UWB wireless sensors 20-1, 20-2, and 20-3.
  • FIGS. 12 and 13 are pre-scheduled by the primary UWB radio sensor 20a. After being scheduled once by the primary UWB radio sensor 20a, each secondary UWB radio sensor 20b operates autonomously over a period of time. On the other hand, there is also a method in which the secondary UWB wireless sensor 20b operates based on the sequential instruction from the primary UWB wireless sensor 20a. In this case, the secondary UWB radio sensor 20b does not necessarily have to be time-synchronized with the primary UWB radio sensor 20a.
  • FIGS. 12 and 13 show an example of time slot hopping, but in addition to this, when a plurality of frequency channels are available, the train operation system 1 channel hopping by a method similar to time slot hopping. May be carried out. Unlike the case of time slot hopping, the train operation system 1 performs random numbers generated individually for the UWB radio sensor 20 and scheduling of channel timings periodically set at regular channel intervals in channel hopping. The train operation system 1 may schedule the time slot hopping and the channel hopping by dividing the time-frequency two-dimensional region into slots. In this way, the primary UWB radio sensor 20a controls the time and frequency radio resources when the secondary UWB radio sensor 20b transmits a signal to the UWB radio tag 10.
  • the information collecting device 30 may have these control functions. In this case, there is no distinction between the primary UWB wireless sensor 20a and the secondary UWB wireless sensor 20b. That is, the UWB wireless sensor 20 synchronizes with the time information of the information collecting device 30. The information collecting device 30 controls radio resources when the UWB radio sensor 20 transmits a signal to the UWB radio tag 10.
  • the UWB wireless sensors 20 in order for the plurality of UWB wireless sensors 20 to acquire the positioning information 128 at high frequency in the train operation system 1, the UWB wireless sensors 20 avoid wireless access collisions. is required. Therefore, of the plurality of UWB wireless sensors 20, one is the primary UWB wireless sensor 20a, the other is the secondary UWB wireless sensor 20b, and the primary UWB wireless sensor 20a controls the wireless access of the secondary UWB wireless sensor 20b. As a result, the train operation system 1 can avoid communication collisions between the UWB radio sensors 20.
  • Embodiment 6 in the first embodiment, in the train operation system 1, the information collecting device 30 and the in-train radio slave station 40 are set as different communication nodes. However, the functions of the information collecting device 30 and the in-train radio slave station 40 may be integrated into one communication node. Further, the communication nodes may be aggregated as a device having the function of the primary UWB wireless sensor 20a.
  • Embodiment 7 When the primary UWB radio sensor 20a manages the secondary UWB radio sensor 20b as in the fifth embodiment, the allocation opportunity of the specific secondary UWB radio sensor 20b is increased or decreased depending on the position of the UWB radio tag 10 and other situations. Can be considered. For example, when the secondary UWB radio sensor 20b recognizes the gesture of the UWB radio tag 10, high-frequency distance measurement is required. In this case, the primary UWB radio sensor 20a does not allocate distance measurement opportunities to all secondary UWB radio sensors 20b, but increases the number of distance measurement allocations to the secondary UWB radio sensors 20b around the UWB radio tag 10 for which gesture recognition is desired. Control to make it.
  • the primary UWB radio sensor 20a increases or decreases the radio resource for the specific secondary UWB radio sensor 20b based on the position of the UWB radio tag 10, the operation mode, and the like.
  • the information collecting device 30 has a control function of the primary UWB radio sensor 20a
  • the information collecting device 30 is a radio resource for a specific UWB radio sensor 20 based on the position of the UWB radio tag 10, the operation mode, and the like. Increase or decrease.
  • the train operation system 1 has a specific UWB radio from a specific secondary UWB radio sensor 20b based on a situation such as a position of a specific UWB radio tag 10 and an operation mode. Increases the chance of allocating transmission of the preamble signal 120 to tag 10. As a result, the train operation system 1 can track the position of the UWB radio tag 10 by shortening the acquisition interval of the position of the UWB radio tag 10.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A train operation system (1) provided with: a UWB wireless tag (10) that is possessed by a train crew and performs ultra-wide-band wireless communication; UWB wireless sensors (20-1, 20-2) that are installed in a train and perform ultra-wide-band wireless communication with the UWB wireless tag (10) to generate distance measurement information (127) indicating distances with the UWB wireless tag (10); an information collection device (30) that generates positioning information (128) indicating a position of the UWB wireless tag (10) using the distance measurement information (127) received from the UWB wireless sensors (20-1, 20-2) and transmits information including the positioning information (128); and an operation control device (60) that generates information for the train crew on the basis of the information including the positioning information (128).

Description

列車運行システム、列車運行方法、制御回路および記憶媒体Train operation system, train operation method, control circuit and storage medium
 本開示は、乗務員の位置情報を用いる列車運行システム、列車運行方法、制御回路および記憶媒体に関する。 This disclosure relates to a train operation system using the position information of crew members, a train operation method, a control circuit, and a storage medium.
 近年、Bluetooth(登録商標)、GPS(Global Positioning System)などを用いて、情報端末を有する乗務員の位置情報を取得し、業務を効率化するシステムが実用化されつつある。乗務員が情報端末を持ち、GPS位置情報、カメラ映像などの情報を乗務員と指令室との間で授受することで、業務を効率化するための技術、製品、サービスなどが展開されている。特許文献1には、乗務員の携帯端末の位置情報に基づいて、列車運行に関わる業務指示を与える技術が開示されている。 In recent years, a system that uses Bluetooth (registered trademark), GPS (Global Positioning System), etc. to acquire the location information of crew members who have information terminals and streamline operations is being put into practical use. The crew has an information terminal, and information such as GPS position information and camera images is exchanged between the crew and the command room, and technologies, products, services, etc. for streamlining operations are being developed. Patent Document 1 discloses a technique for giving a business instruction related to train operation based on the position information of a mobile terminal of a crew member.
特開2018-149921号公報Japanese Unexamined Patent Publication No. 2018-149921
 列車運行業務で利用される位置情報はGPS衛星を用いた位置推定結果であり、位置推定精度はメートル級である。また、GPS衛星からの見通しの有無によっても位置推定精度が左右されてしまう。そのため、実際には数十メートル程度のエリア単位でしか乗務員の位置を把握することができず、乗務員の位置情報に基づいて乗務員に対して詳細かつ適切な判断、指示などができない、という問題があった。乗務員の位置情報に基づく業務効率化、アプリケーションなどは限定的となってしまう。 The position information used in the train operation business is the result of position estimation using GPS satellites, and the position estimation accuracy is in the metric class. In addition, the position estimation accuracy depends on the presence or absence of visibility from GPS satellites. Therefore, in reality, the position of the crew can only be grasped in units of areas of about several tens of meters, and there is a problem that detailed and appropriate judgments and instructions cannot be made to the crew based on the position information of the crew. there were. Business efficiency and applications based on the location information of crew members will be limited.
 本開示は、上記に鑑みてなされたものであって、乗務員の位置推定精度を向上させた列車運行が可能な列車運行システムを得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a train operation system capable of train operation with improved position estimation accuracy of crew members.
 上述した課題を解決し、目的を達成するために、本開示の列車運行システムは、乗務員が有し、超高帯域無線通信を行う無線タグと、列車に設置され、無線タグと超高帯域無線通信を行い、無線タグとの間の距離を示す測距情報を生成する複数の無線センサと、複数の無線センサから受信した測距情報を用いて、無線タグの位置を示す測位情報を生成し、測位情報を含む情報を送信する情報収集装置と、測位情報を含む情報に基づいて、乗務員に対する情報を生成する運行管理装置と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the train operation system of the present disclosure includes a radio tag possessed by the crew and performing ultra-high band radio communication, and a radio tag and ultra-high band radio installed on the train. Using a plurality of wireless sensors that communicate and generate distance measurement information indicating the distance between the wireless tag and the distance measurement information received from the multiple wireless sensors, positioning information indicating the position of the wireless tag is generated. It is characterized by including an information collecting device for transmitting information including positioning information and an operation management device for generating information for crew members based on the information including positioning information.
 本開示に係る列車運行システムは、乗務員の位置推定精度を向上させた列車運行ができる、という効果を奏する。また、本開示に係る列車運行システムは、GPS衛星からの見通しの有無に関わらずシステム運用を継続できる、という効果を奏する。 The train operation system according to this disclosure has the effect of being able to operate trains with improved accuracy of crew position estimation. Further, the train operation system according to the present disclosure has an effect that the system operation can be continued regardless of whether or not there is a line of sight from GPS satellites.
実施の形態1に係る列車運行システムの構成例を示す図The figure which shows the configuration example of the train operation system which concerns on Embodiment 1. 実施の形態1に係る列車運行システムの各情報ノードの動作を示すシーケンス図A sequence diagram showing the operation of each information node of the train operation system according to the first embodiment. 実施の形態1に係るUWB(Ultra Wide Band)無線タグの動作を示すフローチャートA flowchart showing the operation of the UWB (Ultra Wide Band) wireless tag according to the first embodiment. 実施の形態1に係るUWB無線センサの動作を示すフローチャートA flowchart showing the operation of the UWB wireless sensor according to the first embodiment. 実施の形態1に係る情報収集装置の動作を示すフローチャートA flowchart showing the operation of the information collecting device according to the first embodiment. 実施の形態1に係る運行管理装置の動作を示すフローチャートA flowchart showing the operation of the operation management device according to the first embodiment. 実施の形態1に係るUWB無線タグの構成例を示すブロック図A block diagram showing a configuration example of a UWB wireless tag according to the first embodiment. 実施の形態1に係るUWB無線タグが備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図The figure which shows the structural example of the processing circuit in the case where the processing circuit provided in the UWB wireless tag which concerns on Embodiment 1 is realized by a processor and a memory. 実施の形態1に係るUWB無線タグが備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図The figure which shows the example of the processing circuit in the case where the processing circuit provided in the UWB wireless tag which concerns on Embodiment 1 is configured by the dedicated hardware. 実施の形態2に係る列車運行システムにおけるUWB無線タグを有する乗務員による列車操作の認証方法の例を示す図The figure which shows the example of the authentication method of the train operation by the crew having a UWB radio tag in the train operation system which concerns on Embodiment 2. 実施の形態5に係る複数のUWB無線センサの間でUWB無線タグの測距を行うタイミングを制御する場合の制御関係の例を示す図The figure which shows the example of the control relation in the case of controlling the timing which performs the distance measurement of the UWB radio tag among the plurality of UWB radio sensors which concerns on Embodiment 5. 実施の形態5に係るプライマリUWB無線センサが生成乱数によって時間スロットを割り当てた例を示す図The figure which shows the example which allocated the time slot by the generated random number by the primary UWB radio sensor which concerns on Embodiment 5. 実施の形態5に係るプライマリUWB無線センサが定期的に時間スロットを割り当てた例を示す図The figure which shows the example which the primary UWB radio sensor which concerns on Embodiment 5 periodically allocates a time slot.
 以下に、本開示の実施の形態に係る列車運行システム、列車運行方法、制御回路および記憶媒体を図面に基づいて詳細に説明する。 Hereinafter, the train operation system, the train operation method, the control circuit, and the storage medium according to the embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る列車運行システム1の構成例を示す図である。列車運行システム1は、乗務員の位置情報を用いるシステムであって、複数の通信ノードから構成される。具体的には、列車運行システム1は、UWB無線タグ10と、UWB無線センサ20-1,20-2と、情報収集装置30と、列車内無線子局40と、無線基地局50と、運行管理装置60と、を備える。以降の説明において、UWB無線センサ20-1,20-2を区別しない場合、UWB無線センサ20と称することがある。列車運行システム1は、図1の例ではUWB無線センサ20を2つ備えているが、3つ以上のUWB無線センサ20を備えていてもよい。列車運行システム1のネットワーク上において、UWB無線タグ10を下位とし、運行管理装置60を上位とすると、列車運行システム1を構成する各通信ノードは、上位ノードおよび下位ノードにおいて双方向の通信が可能である。以下、各通信ノードについて詳細に説明する。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the train operation system 1 according to the first embodiment. The train operation system 1 is a system that uses the position information of the crew, and is composed of a plurality of communication nodes. Specifically, the train operation system 1 operates with a UWB radio tag 10, UWB radio sensors 20-1, 20-2, an information collecting device 30, an in-train radio slave station 40, and a radio base station 50. A management device 60 is provided. In the following description, when the UWB wireless sensors 20-1 and 20-2 are not distinguished, they may be referred to as the UWB wireless sensor 20. The train operation system 1 includes two UWB wireless sensors 20 in the example of FIG. 1, but may include three or more UWB wireless sensors 20. Assuming that the UWB radio tag 10 is at the lower level and the operation management device 60 is at the upper level on the network of the train operation system 1, each communication node constituting the train operation system 1 is capable of bidirectional communication between the upper node and the lower node. Is. Hereinafter, each communication node will be described in detail.
 UWB無線タグ10は、乗務員が有する通信ノードである。UWB無線タグ10は、UWB無線センサ20とUWB、すなわち超高帯域無線通信を行う無線タグである。UWB無線タグ10は、UWB無線センサ20からプリアンブル信号119、列車運行情報125、および指示情報126を受信する。UWB無線タグ10は、UWB無線センサ20から送信される測距用無線信号であるプリアンブル信号119を解析し、空間での電波、すなわちプリアンブル信号119の受信時刻を算出する。UWB無線タグ10は、運行管理装置60から乗務員へ伝送される列車運行情報125および指示情報126を、乗務員が保持する情報端末に通知する。列車運行情報125とは、列車運行に関連する報知情報である。指示情報126とは、UWB無線タグ10を保有する特定の乗務員に向けた指示を示す情報である。UWB無線センサ20が送信するプリアンブル信号119の信号系列は、UWB無線センサ20の機器固有のID(IDentification)によって異なる。以降の説明において、プリアンブル信号119を第1のプリアンブル信号と称することがある。 The UWB wireless tag 10 is a communication node owned by the crew. The UWB wireless tag 10 is a wireless tag that performs ultra-high band wireless communication with the UWB wireless sensor 20 and UWB. The UWB radio tag 10 receives the preamble signal 119, the train operation information 125, and the instruction information 126 from the UWB radio sensor 20. The UWB radio tag 10 analyzes the preamble signal 119, which is a distance measuring radio signal transmitted from the UWB radio sensor 20, and calculates the reception time of the radio wave in space, that is, the preamble signal 119. The UWB radio tag 10 notifies the information terminal held by the crew member of the train operation information 125 and the instruction information 126 transmitted from the operation management device 60 to the crew member. The train operation information 125 is notification information related to train operation. The instruction information 126 is information indicating an instruction directed to a specific crew member who has the UWB radio tag 10. The signal sequence of the preamble signal 119 transmitted by the UWB wireless sensor 20 differs depending on the device-specific ID (IDentification) of the UWB wireless sensor 20. In the following description, the preamble signal 119 may be referred to as a first preamble signal.
 また、UWB無線タグ10は、UWB無線センサ20からの指示によって、プリアンブル信号120、UWB無線タグ10のタグID121、端末情報122、およびタイミング情報129をUWB無線センサ20に送信する。UWB無線タグ10のタグID121とは、UWB無線タグ10の機器固有のIDまたはUWB無線タグ10を保有する乗務員固有のID、すなわちタグ識別情報である。UWB無線タグ10のタグID121は、UWB無線タグ10の機器固有かつUWB無線タグ10を保有する乗務員固有のIDであってもよい。端末情報122は、UWB無線タグ10が組み込まれている情報機器で自動的に取得された情報、情報機器を乗務員が操作したことにより発生する情報など、情報機器についての情報である。タイミング情報129は、UWB無線タグ10が送信するプリアンブル信号120の送信時刻、およびUWB無線センサ20からのプリアンブル信号119の受信時刻を含む情報である。なお、UWB無線タグ10は、UWB無線センサ20からの逐次指示によってプリアンブル信号120を送信してもよいし、UWB無線センサ20からの逐次指示に寄らず、UWB無線センサ20によるUWB無線タグ10への初期設定に応じて定期的にプリアンブル信号120を送信してもよい。UWB無線タグ10が送信するプリアンブル信号120の信号系列は、UWB無線タグ10の機器固有のIDまたはUWB無線タグ10を保有する乗務員固有のIDによって異なる。以降の説明において、プリアンブル信号120を第2のプリアンブル信号と称することがある。 Further, the UWB wireless tag 10 transmits the preamble signal 120, the tag ID 121 of the UWB wireless tag 10, the terminal information 122, and the timing information 129 to the UWB wireless sensor 20 according to the instruction from the UWB wireless sensor 20. The tag ID 121 of the UWB wireless tag 10 is an ID unique to the device of the UWB wireless tag 10 or an ID unique to the crew holding the UWB wireless tag 10, that is, tag identification information. The tag ID 121 of the UWB wireless tag 10 may be an ID unique to the device of the UWB wireless tag 10 and unique to the crew holding the UWB wireless tag 10. The terminal information 122 is information about an information device, such as information automatically acquired by an information device in which the UWB wireless tag 10 is incorporated, and information generated by a crew member operating the information device. The timing information 129 is information including the transmission time of the preamble signal 120 transmitted by the UWB radio tag 10 and the reception time of the preamble signal 119 from the UWB radio sensor 20. The UWB wireless tag 10 may transmit the preamble signal 120 by sequential instructions from the UWB wireless sensor 20, or may send the preamble signal 120 to the UWB wireless tag 10 by the UWB wireless sensor 20 without depending on the sequential instructions from the UWB wireless sensor 20. The preamble signal 120 may be transmitted periodically according to the initial setting of. The signal sequence of the preamble signal 120 transmitted by the UWB radio tag 10 differs depending on the device-specific ID of the UWB radio tag 10 or the crew-specific ID of the UWB radio tag 10. In the following description, the preamble signal 120 may be referred to as a second preamble signal.
 UWB無線センサ20は、図示しない列車に設置される通信ノードである。UWB無線センサ20は、UWB無線タグ10とUWB、すなわち超高帯域無線通信を行う無線センサである。UWB無線センサ20は、UWB無線タグ10からプリアンブル信号120、タグID121、端末情報122、およびタイミング情報129を受信する。UWB無線センサ20は、UWB無線タグ10から送信されるプリアンブル信号120を解析し、空間での電波の受信時刻を算出する。UWB無線センサ20は、UWB無線センサ20のプリアンブル信号119の送信時刻の情報とUWB無線タグ10からのタイミング情報129とを用いて、UWB無線タグ10とUWB無線センサ20との間の距離を算出し、測距情報127を生成する。UWB無線センサ20は、生成した測距情報127、UWB無線タグ10から受信したタグID121、および端末情報122を情報収集装置30に送信する。 The UWB wireless sensor 20 is a communication node installed on a train (not shown). The UWB wireless sensor 20 is a wireless sensor that performs ultra-high band wireless communication with the UWB wireless tag 10 and UWB. The UWB radio sensor 20 receives the preamble signal 120, the tag ID 121, the terminal information 122, and the timing information 129 from the UWB radio tag 10. The UWB radio sensor 20 analyzes the preamble signal 120 transmitted from the UWB radio tag 10 and calculates the reception time of radio waves in space. The UWB wireless sensor 20 calculates the distance between the UWB wireless tag 10 and the UWB wireless sensor 20 by using the transmission time information of the preamble signal 119 of the UWB wireless sensor 20 and the timing information 129 from the UWB wireless tag 10. Then, the distance measurement information 127 is generated. The UWB wireless sensor 20 transmits the generated ranging information 127, the tag ID 121 received from the UWB wireless tag 10, and the terminal information 122 to the information collecting device 30.
 また、UWB無線センサ20は、情報収集装置30から列車運行情報125および指示情報126を受信する。UWB無線センサ20は、測距用無線信号であるプリアンブル信号119、情報収集装置30から受信した列車運行情報125、および指示情報126をUWB無線タグ10に送信する。 Further, the UWB radio sensor 20 receives the train operation information 125 and the instruction information 126 from the information collecting device 30. The UWB radio sensor 20 transmits the preamble signal 119, which is a distance measuring radio signal, the train operation information 125 received from the information collecting device 30, and the instruction information 126 to the UWB radio tag 10.
 情報収集装置30は、図示しない列車に設置される通信ノードである。情報収集装置30は、複数のUWB無線センサ20からの情報を収集して集約し、また複数のUWB無線センサ20に情報の配信を行う。情報収集装置30は、複数のUWB無線センサ20から測距情報127、タグID121、および端末情報122を受信する。情報収集装置30は、複数のUWB無線センサ20から受信した測距情報127を用いて、UWB無線タグ10の位置を示す測位情報128を生成する。情報収集装置30は、例えば、列車ID、車両IDなどを用いてUWB無線タグ10が存在する車両を特定し、さらに該当車両内のある特定された位置を原点したデカルト座標によって、UWB無線タグ10の位置を示す測位情報128を生成する。列車IDとは、図示しない列車を識別するための識別情報である。車両IDとは、列車を編成する各車両を識別するための識別情報である。情報収集装置30は、生成した測位情報128、複数のUWB無線センサ20から受信したタグID121、および端末情報122を上位の通信ノードである列車内無線子局40に送信する。 The information collecting device 30 is a communication node installed on a train (not shown). The information collecting device 30 collects and aggregates information from a plurality of UWB wireless sensors 20, and also distributes the information to the plurality of UWB wireless sensors 20. The information collecting device 30 receives the ranging information 127, the tag ID 121, and the terminal information 122 from the plurality of UWB wireless sensors 20. The information collecting device 30 uses the ranging information 127 received from the plurality of UWB wireless sensors 20 to generate positioning information 128 indicating the position of the UWB wireless tag 10. The information collecting device 30 identifies a vehicle in which the UWB radio tag 10 exists by using, for example, a train ID, a vehicle ID, or the like, and further, the UWB radio tag 10 is based on Cartesian coordinates originating from a specific position in the vehicle. Positioning information 128 indicating the position of is generated. The train ID is identification information for identifying a train (not shown). The vehicle ID is identification information for identifying each vehicle forming a train. The information collecting device 30 transmits the generated positioning information 128, the tag ID 121 received from the plurality of UWB radio sensors 20, and the terminal information 122 to the in-train radio slave station 40 which is a higher-level communication node.
 また、情報収集装置30は、上位の通信ノードである列車内無線子局40から列車運行情報125および指示情報126を受信する。情報収集装置30は、列車内無線子局40から受信した列車運行情報125および指示情報126をUWB無線センサ20に送信する。 Further, the information collecting device 30 receives the train operation information 125 and the instruction information 126 from the in-train radio slave station 40 which is a higher-level communication node. The information collecting device 30 transmits the train operation information 125 and the instruction information 126 received from the in-train radio slave station 40 to the UWB radio sensor 20.
 列車内無線子局40は、図示しない列車に設置される通信ノードである。列車内無線子局40は、情報収集装置30で生成された情報を列車外の通信機器に伝送する。具体的には、列車内無線子局40は、情報収集装置30から測位情報128、タグID121、および端末情報122を受信する。列車内無線子局40は、情報収集装置30から受信した測位情報128、タグID121、および端末情報122を無線基地局50に送信する。また、列車内無線子局40は、無線基地局50から列車運行情報125および指示情報126を受信する。列車内無線子局40は、無線基地局50から受信した列車運行情報125および指示情報126を情報収集装置30に送信する。 The in-train radio slave station 40 is a communication node installed in a train (not shown). The in-train radio slave station 40 transmits the information generated by the information collecting device 30 to a communication device outside the train. Specifically, the in-train radio slave station 40 receives the positioning information 128, the tag ID 121, and the terminal information 122 from the information collecting device 30. The in-train radio slave station 40 transmits the positioning information 128, the tag ID 121, and the terminal information 122 received from the information collecting device 30 to the radio base station 50. Further, the in-train radio slave station 40 receives train operation information 125 and instruction information 126 from the radio base station 50. The in-train radio slave station 40 transmits the train operation information 125 and the instruction information 126 received from the radio base station 50 to the information collecting device 30.
 無線基地局50は、地上に設置される通信ノードである。無線基地局50は、列車内無線子局40からの情報を運行管理装置60へ伝送する。具体的には、無線基地局50は、列車内無線子局40から測位情報128、タグID121、および端末情報122を受信する。無線基地局50は、列車内無線子局40から受信した測位情報128、タグID121、および端末情報122を運行管理装置60に送信する。また、無線基地局50は、運行管理装置60から列車運行情報125および指示情報126を受信する。無線基地局50は、運行管理装置60から受信した列車運行情報125および指示情報126を列車内無線子局40に送信する。 The radio base station 50 is a communication node installed on the ground. The radio base station 50 transmits information from the in-train radio slave station 40 to the operation management device 60. Specifically, the radio base station 50 receives the positioning information 128, the tag ID 121, and the terminal information 122 from the in-train radio slave station 40. The radio base station 50 transmits the positioning information 128, the tag ID 121, and the terminal information 122 received from the in-train radio slave station 40 to the operation management device 60. Further, the radio base station 50 receives the train operation information 125 and the instruction information 126 from the operation management device 60. The radio base station 50 transmits the train operation information 125 and the instruction information 126 received from the operation management device 60 to the in-train radio slave station 40.
 運行管理装置60は、地上の図示しない指令室などに設置される通信ノードである。運行管理装置60は、無線基地局50から情報を受信し、受信した情報に基づいて乗務員に対する情報、認証などを与える。具体的には、運行管理装置60は、無線基地局50から測位情報128、タグID121、および端末情報122を受信する。運行管理装置60は、受信した測位情報128、タグID121、および端末情報122に基づいて、乗務員へ伝送する列車運行情報125および指示情報126を生成する。運行管理装置60は、生成した列車運行情報125および指示情報126を無線基地局50に送信する。 The operation management device 60 is a communication node installed in a command room or the like (not shown) on the ground. The operation management device 60 receives information from the radio base station 50 and gives information, authentication, and the like to the crew based on the received information. Specifically, the operation management device 60 receives the positioning information 128, the tag ID 121, and the terminal information 122 from the radio base station 50. The operation management device 60 generates train operation information 125 and instruction information 126 to be transmitted to the crew based on the received positioning information 128, tag ID 121, and terminal information 122. The operation management device 60 transmits the generated train operation information 125 and instruction information 126 to the radio base station 50.
 列車運行システム1において、運行管理装置60が、UWB無線タグ10の位置を示す測位情報128およびタグID121に基づいて、UWB無線タグ10への列車運行情報125および指示情報126を生成して配信するまでの情報伝送の動作について説明する。図2は、実施の形態1に係る列車運行システム1の各情報ノードの動作を示すシーケンス図である。 In the train operation system 1, the operation management device 60 generates and distributes the train operation information 125 and the instruction information 126 to the UWB radio tag 10 based on the positioning information 128 indicating the position of the UWB radio tag 10 and the tag ID 121. The operation of information transmission up to is described. FIG. 2 is a sequence diagram showing the operation of each information node of the train operation system 1 according to the first embodiment.
 UWB無線タグ10は、プリアンブル信号120およびタグID121をUWB無線センサ20-1に送信する(ステップS101)。UWB無線センサ20-1は、プリアンブル信号119をUWB無線タグ10に送信する(ステップS102)。UWB無線タグ10は、プリアンブル信号120およびタイミング情報129をUWB無線センサ20-1に送信する(ステップS103)。タイミング情報129には、ステップS101およびステップS103でUWB無線タグ10がプリアンブル信号120を送信した時刻、およびステップS102でUWB無線タグ10がUWB無線センサ20-1からプリアンブル信号119を受信した時刻が含まれている。 The UWB radio tag 10 transmits the preamble signal 120 and the tag ID 121 to the UWB radio sensor 20-1 (step S101). The UWB radio sensor 20-1 transmits the preamble signal 119 to the UWB radio tag 10 (step S102). The UWB radio tag 10 transmits the preamble signal 120 and the timing information 129 to the UWB radio sensor 20-1 (step S103). The timing information 129 includes the time when the UWB radio tag 10 transmits the preamble signal 120 in steps S101 and S103, and the time when the UWB radio tag 10 receives the preamble signal 119 from the UWB radio sensor 20-1 in step S102. It has been.
 同様に、UWB無線タグ10は、プリアンブル信号120およびタグID121をUWB無線センサ20-2に送信する(ステップS104)。UWB無線センサ20-2は、プリアンブル信号119をUWB無線タグ10に送信する(ステップS105)。UWB無線タグ10は、プリアンブル信号120およびタイミング情報129をUWB無線センサ20-2に送信する(ステップS106)。タイミング情報129には、ステップS104およびステップS106でUWB無線タグ10がプリアンブル信号120を送信した時刻、およびステップS105でUWB無線タグ10がUWB無線センサ20-2からプリアンブル信号119を受信した時刻が含まれている。 Similarly, the UWB radio tag 10 transmits the preamble signal 120 and the tag ID 121 to the UWB radio sensor 20-2 (step S104). The UWB radio sensor 20-2 transmits the preamble signal 119 to the UWB radio tag 10 (step S105). The UWB radio tag 10 transmits the preamble signal 120 and the timing information 129 to the UWB radio sensor 20-2 (step S106). The timing information 129 includes the time when the UWB radio tag 10 transmits the preamble signal 120 in steps S104 and S106, and the time when the UWB radio tag 10 receives the preamble signal 119 from the UWB radio sensor 20-2 in step S105. It has been.
 図3は、実施の形態1に係るUWB無線タグ10の動作を示すフローチャートである。UWB無線タグ10は、プリアンブル信号120、すなわち第2のプリアンブル信号、およびタグID121をUWB無線センサ20に送信する(ステップS201)。UWB無線タグ10は、UWB無線センサ20からプリアンブル信号119、すなわち第1のプリアンブル信号を受信する(ステップS202)。UWB無線タグ10は、タイミング情報129を生成し(ステップS203)、UWB無線センサ20に送信する(ステップS204)。 FIG. 3 is a flowchart showing the operation of the UWB wireless tag 10 according to the first embodiment. The UWB radio tag 10 transmits a preamble signal 120, that is, a second preamble signal, and a tag ID 121 to the UWB radio sensor 20 (step S201). The UWB radio tag 10 receives the preamble signal 119, that is, the first preamble signal from the UWB radio sensor 20 (step S202). The UWB radio tag 10 generates timing information 129 (step S203) and transmits it to the UWB radio sensor 20 (step S204).
 図2の説明に戻って、UWB無線センサ20-1は、UWB無線タグ10からステップS101およびステップS103で送信されたプリアンブル信号120を受信した時刻と、ステップS102でUWB無線タグ10へプリアンブル信号119を送信した時刻と、UWB無線タグ10から受信したタイミング情報129とを用いて、UWB無線タグ10とUWB無線センサ20-1との間の距離を算出し、測距情報127を生成する。UWB無線センサ20-1は、生成した測距情報127、およびUWB無線タグ10から受信したタグID121を情報収集装置30に送信する(ステップS107)。 Returning to the description of FIG. 2, the UWB radio sensor 20-1 receives the preamble signal 120 transmitted from the UWB radio tag 10 in steps S101 and S103, and the preamble signal 119 to the UWB radio tag 10 in step S102. The distance between the UWB radio tag 10 and the UWB radio sensor 20-1 is calculated using the time when the UWB radio tag 10 is transmitted and the timing information 129 received from the UWB radio tag 10, and the distance measurement information 127 is generated. The UWB wireless sensor 20-1 transmits the generated ranging information 127 and the tag ID 121 received from the UWB wireless tag 10 to the information collecting device 30 (step S107).
 同様に、UWB無線センサ20-2は、UWB無線タグ10からステップS104およびステップS106で送信されたプリアンブル信号120を受信した時刻と、ステップS105でUWB無線タグ10へプリアンブル信号119を送信した時刻と、UWB無線タグ10から受信したタイミング情報129とを用いて、UWB無線タグ10とUWB無線センサ20-2との間の距離を算出し、測距情報127を生成する。UWB無線センサ20-2は、生成した測距情報127、およびUWB無線タグ10から受信したタグID121を情報収集装置30に送信する(ステップS108)。 Similarly, the UWB radio sensor 20-2 has a time when the preamble signal 120 transmitted from the UWB radio tag 10 in steps S104 and S106 is received and a time when the preamble signal 119 is transmitted to the UWB radio tag 10 in step S105. , The timing information 129 received from the UWB radio tag 10 is used to calculate the distance between the UWB radio tag 10 and the UWB radio sensor 20-2, and the distance measurement information 127 is generated. The UWB wireless sensor 20-2 transmits the generated ranging information 127 and the tag ID 121 received from the UWB wireless tag 10 to the information collecting device 30 (step S108).
 図4は、実施の形態1に係るUWB無線センサ20の動作を示すフローチャートである。UWB無線センサ20は、UWB無線タグ10からプリアンブル信号120、すなわち第2のプリアンブル信号、およびタグID121を受信する(ステップS301)。UWB無線センサ20は、プリアンブル信号119、すなわち第1のプリアンブル信号をUWB無線タグ10に送信する(ステップS302)。UWB無線センサ20は、UWB無線タグ10からタイミング情報129を受信し(ステップS303)、プリアンブル信号120の受信時刻、プリアンブル信号119の送信時刻、およびタイミング情報129を用いて測距情報127を生成する(ステップS304)。UWB無線センサ20は、測距情報127およびタグID121を情報収集装置30に送信する(ステップS305)。 FIG. 4 is a flowchart showing the operation of the UWB wireless sensor 20 according to the first embodiment. The UWB radio sensor 20 receives the preamble signal 120, that is, the second preamble signal, and the tag ID 121 from the UWB radio tag 10 (step S301). The UWB radio sensor 20 transmits a preamble signal 119, that is, a first preamble signal to the UWB radio tag 10 (step S302). The UWB radio sensor 20 receives timing information 129 from the UWB radio tag 10 (step S303), and generates distance measurement information 127 using the reception time of the preamble signal 120, the transmission time of the preamble signal 119, and the timing information 129. (Step S304). The UWB wireless sensor 20 transmits the ranging information 127 and the tag ID 121 to the information collecting device 30 (step S305).
 図2の説明に戻って、情報収集装置30は、2つ以上のUWB無線センサ20、ここではUWB無線センサ20-1,20-2から受信した測距情報127に基づいて、測位情報128を生成する。情報収集装置30は、生成した測位情報128、およびUWB無線センサ20-1,20-2から受信したタグID121を列車内無線子局40に送信する(ステップS109)。 Returning to the description of FIG. 2, the information collecting device 30 obtains the positioning information 128 based on the distance measurement information 127 received from the two or more UWB wireless sensors 20, here the UWB wireless sensors 20-1 and 20-2. Generate. The information collecting device 30 transmits the generated positioning information 128 and the tag ID 121 received from the UWB radio sensors 20-1 and 20-2 to the in-train radio slave station 40 (step S109).
 図5は、実施の形態1に係る情報収集装置30の動作を示すフローチャートである。情報収集装置30は、UWB無線センサ20から測距情報127およびタグID121を受信する(ステップS401)。情報収集装置30は、測距情報127に基づいて、測位情報128を生成する(ステップS402)。情報収集装置30は、測位情報128およびタグID121を列車内無線子局40に送信する(ステップS403)。 FIG. 5 is a flowchart showing the operation of the information collecting device 30 according to the first embodiment. The information collecting device 30 receives the ranging information 127 and the tag ID 121 from the UWB wireless sensor 20 (step S401). The information collecting device 30 generates the positioning information 128 based on the distance measurement information 127 (step S402). The information collecting device 30 transmits the positioning information 128 and the tag ID 121 to the in-train radio slave station 40 (step S403).
 図2の説明に戻って、列車内無線子局40は、情報収集装置30から測位情報128およびタグID121を受信する。列車内無線子局40は、情報収集装置30から受信した測位情報128およびタグID121を無線基地局50に送信する(ステップS110)。 Returning to the explanation of FIG. 2, the in-train radio slave station 40 receives the positioning information 128 and the tag ID 121 from the information collecting device 30. The in-train radio slave station 40 transmits the positioning information 128 and the tag ID 121 received from the information collecting device 30 to the radio base station 50 (step S110).
 無線基地局50は、列車内無線子局40から測位情報128およびタグID121を受信する。無線基地局50は、列車内無線子局40から受信した測位情報128およびタグID121を運行管理装置60に送信する(ステップS111)。 The radio base station 50 receives the positioning information 128 and the tag ID 121 from the in-train radio slave station 40. The radio base station 50 transmits the positioning information 128 and the tag ID 121 received from the in-train radio slave station 40 to the operation management device 60 (step S111).
 運行管理装置60は、無線基地局50から測位情報128およびタグID121を受信する。運行管理装置60は、受信した測位情報128およびタグID121に基づいて、列車運行情報125および指示情報126を生成する。運行管理装置60は、生成した列車運行情報125および指示情報126を無線基地局50に送信する(ステップS112)。 The operation management device 60 receives the positioning information 128 and the tag ID 121 from the radio base station 50. The operation management device 60 generates train operation information 125 and instruction information 126 based on the received positioning information 128 and tag ID 121. The operation management device 60 transmits the generated train operation information 125 and instruction information 126 to the radio base station 50 (step S112).
 図6は、実施の形態1に係る運行管理装置60の動作を示すフローチャートである。運行管理装置60は、無線基地局50から測位情報128およびタグID121を受信する(ステップS501)。運行管理装置60は、測位情報128およびタグID121に基づいて、列車運行情報125および指示情報126を生成する(ステップS502)。運行管理装置60は、列車運行情報125および指示情報126を無線基地局50に送信する(ステップS503)。 FIG. 6 is a flowchart showing the operation of the operation management device 60 according to the first embodiment. The operation management device 60 receives the positioning information 128 and the tag ID 121 from the radio base station 50 (step S501). The operation management device 60 generates train operation information 125 and instruction information 126 based on the positioning information 128 and the tag ID 121 (step S502). The operation management device 60 transmits the train operation information 125 and the instruction information 126 to the radio base station 50 (step S503).
 図2の説明に戻って、無線基地局50は、運行管理装置60から列車運行情報125および指示情報126を受信する。無線基地局50は、運行管理装置60から受信した列車運行情報125および指示情報126を列車内無線子局40に送信する(ステップS113)。 Returning to the description of FIG. 2, the radio base station 50 receives the train operation information 125 and the instruction information 126 from the operation management device 60. The radio base station 50 transmits the train operation information 125 and the instruction information 126 received from the operation management device 60 to the in-train radio slave station 40 (step S113).
 列車内無線子局40は、無線基地局50から列車運行情報125および指示情報126を受信する。列車内無線子局40は、無線基地局50から受信した列車運行情報125および指示情報126を情報収集装置30に送信する(ステップS114)。 The in-train radio slave station 40 receives train operation information 125 and instruction information 126 from the radio base station 50. The in-train radio slave station 40 transmits the train operation information 125 and the instruction information 126 received from the radio base station 50 to the information collecting device 30 (step S114).
 情報収集装置30は、列車内無線子局40から列車運行情報125および指示情報126を受信する。情報収集装置30は、列車内無線子局40から受信した列車運行情報125および指示情報126をUWB無線センサ20-1,20-2に送信する(ステップS115,S116)。 The information collecting device 30 receives the train operation information 125 and the instruction information 126 from the in-train radio slave station 40. The information collecting device 30 transmits the train operation information 125 and the instruction information 126 received from the in-train radio slave station 40 to the UWB radio sensors 20-1 and 20-2 (steps S115 and S116).
 UWB無線センサ20-1は、情報収集装置30から列車運行情報125および指示情報126を受信する。UWB無線センサ20-1は、情報収集装置30から受信した列車運行情報125および指示情報126をUWB無線タグ10に送信する(ステップS117)。同様に、UWB無線センサ20-2は、情報収集装置30から列車運行情報125および指示情報126を受信する。UWB無線センサ20-2は、情報収集装置30から受信した列車運行情報125および指示情報126をUWB無線タグ10に送信する(ステップS118)。 The UWB radio sensor 20-1 receives train operation information 125 and instruction information 126 from the information collecting device 30. The UWB radio sensor 20-1 transmits the train operation information 125 and the instruction information 126 received from the information collecting device 30 to the UWB radio tag 10 (step S117). Similarly, the UWB radio sensor 20-2 receives the train operation information 125 and the instruction information 126 from the information collecting device 30. The UWB radio sensor 20-2 transmits the train operation information 125 and the instruction information 126 received from the information collecting device 30 to the UWB radio tag 10 (step S118).
 このような列車運行システム1を用いた運行管理装置60への測位情報128の伝送、および測位情報128に基づくUWB無線タグ10への列車運行情報125および指示情報126の配信システムを、個別のアプリケーションに適用することも可能である。UWB無線タグ10で収集された付加的な情報、例えば、UWB無線タグ10がスマートフォンに搭載されている場合において乗務員が撮影した画像データ、UWB無線タグ10で検知された加速度情報、乗務員が入力したテキストデータなどを運行管理装置60に伝送する必要がある場合、UWB無線タグ10は、端末情報122としてUWB無線センサ20に送信する。UWB無線センサ20、さらに、上位の情報収集装置30、列車内無線子局40、および無線基地局50は、端末情報122を転送する。これにより、運行管理装置60は、端末情報122を受信することができる。 An individual application is to transmit the positioning information 128 to the operation management device 60 using the train operation system 1 and to distribute the train operation information 125 and the instruction information 126 to the UWB radio tag 10 based on the positioning information 128. It is also possible to apply to. Additional information collected by the UWB radio tag 10, for example, image data taken by the crew when the UWB radio tag 10 is mounted on the smartphone, acceleration information detected by the UWB radio tag 10, and input by the crew. When it is necessary to transmit text data or the like to the operation management device 60, the UWB wireless tag 10 transmits the terminal information 122 to the UWB wireless sensor 20. The UWB radio sensor 20, the higher-level information collecting device 30, the in-train radio slave station 40, and the radio base station 50 transfer the terminal information 122. As a result, the operation management device 60 can receive the terminal information 122.
 列車運行システム1が備える通信ノードの構成について説明する。列車運行システム1が備える各通信ノードは同様の構成のため、UWB無線タグ10を例にして説明する。図7は、実施の形態1に係るUWB無線タグ10の構成例を示すブロック図である。UWB無線タグ10は、通信部11と、記憶部12と、制御部13と、を備える。通信部11は、UWB無線センサ20、および乗務員が保持する情報端末との間で通信を行う。通信部11には、アンテナなどが含まれていてもよい。記憶部12は、UWB無線センサ20、および乗務員が保持する情報端末から取得した情報などを記憶する。制御部13は、UWB無線センサ20から送信されるプリアンブル信号119を解析し、空間での電波の受信時刻を算出する処理などを行う。 The configuration of the communication node included in the train operation system 1 will be described. Since each communication node included in the train operation system 1 has the same configuration, the UWB radio tag 10 will be described as an example. FIG. 7 is a block diagram showing a configuration example of the UWB wireless tag 10 according to the first embodiment. The UWB wireless tag 10 includes a communication unit 11, a storage unit 12, and a control unit 13. The communication unit 11 communicates with the UWB wireless sensor 20 and the information terminal held by the crew. The communication unit 11 may include an antenna or the like. The storage unit 12 stores information acquired from the UWB wireless sensor 20 and the information terminal held by the crew. The control unit 13 analyzes the preamble signal 119 transmitted from the UWB wireless sensor 20 and performs processing such as calculating the reception time of radio waves in space.
 UWB無線センサ20、情報収集装置30、運行管理装置60などにおいても同様である。通信部11は、他の通信ノードとの通信を行う。記憶部12は、他の通信ノードから取得した情報などを記憶する。制御部13は、UWB無線センサ20の場合であれば測距情報127を生成し、情報収集装置30の場合であれば測位情報128を生成し、運行管理装置60の場合であれば列車運行情報125および指示情報126を生成する。 The same applies to the UWB wireless sensor 20, the information collecting device 30, the operation management device 60, and the like. The communication unit 11 communicates with another communication node. The storage unit 12 stores information or the like acquired from another communication node. The control unit 13 generates distance measurement information 127 in the case of the UWB wireless sensor 20, positioning information 128 in the case of the information collecting device 30, and train operation information in the case of the operation management device 60. Generate 125 and instruction information 126.
 つづいて、列車運行システム1が備える通信ノードのハードウェア構成について説明する。前述のように、列車運行システム1が備える各通信ノードは同様の構成のため、UWB無線タグ10を例にして説明する。UWB無線タグ10において、通信部11は、通信機により実現される。記憶部12はメモリである。制御部13は処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。処理回路は制御回路とも呼ばれる。 Next, the hardware configuration of the communication node included in the train operation system 1 will be described. As described above, since each communication node included in the train operation system 1 has the same configuration, the UWB radio tag 10 will be described as an example. In the UWB wireless tag 10, the communication unit 11 is realized by a communication device. The storage unit 12 is a memory. The control unit 13 is realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware. The processing circuit is also called a control circuit.
 図8は、実施の形態1に係るUWB無線タグ10が備える処理回路をプロセッサ91およびメモリ92で実現する場合の処理回路90の構成例を示す図である。図8に示す処理回路90は制御回路であり、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、UWB無線タグ10の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能をUWB無線タグ10に実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。 FIG. 8 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the UWB wireless tag 10 according to the first embodiment is realized by the processor 91 and the memory 92. The processing circuit 90 shown in FIG. 8 is a control circuit and includes a processor 91 and a memory 92. When the processing circuit 90 is composed of the processor 91 and the memory 92, each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit 90, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit 90 includes a memory 92 for storing a program in which the processing of the UWB wireless tag 10 is eventually executed. It can be said that this program is a program for causing the UWB wireless tag 10 to execute each function realized by the processing circuit 90. This program may be provided by a storage medium in which the program is stored, or may be provided by other means such as a communication medium.
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, a computing device, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 92 is, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EPROM (registered trademark) (Electrically EPROM). This includes semiconductor memory, magnetic discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Disc), and the like.
 図9は、実施の形態1に係るUWB無線タグ10が備える処理回路を専用のハードウェアで構成する場合の処理回路93の例を示す図である。図9に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 FIG. 9 is a diagram showing an example of a processing circuit 93 in the case where the processing circuit included in the UWB wireless tag 10 according to the first embodiment is configured by dedicated hardware. The processing circuit 93 shown in FIG. 9 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. The thing is applicable. As for the processing circuit, a part may be realized by dedicated hardware and a part may be realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
 以上説明したように、本実施の形態によれば、列車運行システム1において、UWB無線タグ10およびUWB無線センサ20は、UWB無線によって通信を行うことで、センチメートル級の位置推定が可能である。UWB無線は、GPS衛星と異なり、位置推定およびデータ伝送が1つのデバイスで可能となっている。UWB無線センサ20は、UWB無線センサ20とUWB無線タグ10との距離を示す測距情報127を生成し、情報収集装置30は、複数のUWB無線センサ20から取得した測距情報127に基づいて、UWB無線タグ10の位置を示す測位情報128を生成し、運行管理装置60は、測位情報128を用いて、列車運行情報125および指示情報126を生成する。これにより、列車運行システム1は、乗務員が有するUWB無線タグ10の位置、すなわち乗務員の位置の推定精度を向上させた列車運行を行うことができる。また、列車運行システム1は、運行管理装置60からの列車運行情報125および指示情報126をリアルタイムにUWB無線タグ10に伝送することが可能であることから、高精度測位およびデータ伝送を両立し、UWB無線を活用した業務効率化に資するシステム作りが可能である。 As described above, according to the present embodiment, in the train operation system 1, the UWB radio tag 10 and the UWB radio sensor 20 can perform centimeter-class position estimation by communicating with the UWB radio. .. Unlike GPS satellites, UWB radio enables position estimation and data transmission with a single device. The UWB wireless sensor 20 generates ranging information 127 indicating the distance between the UWB wireless sensor 20 and the UWB wireless tag 10, and the information collecting device 30 is based on the ranging information 127 acquired from the plurality of UWB wireless sensors 20. , The positioning information 128 indicating the position of the UWB radio tag 10 is generated, and the operation management device 60 generates the train operation information 125 and the instruction information 126 by using the positioning information 128. As a result, the train operation system 1 can perform train operation with improved estimation accuracy of the position of the UWB radio tag 10 possessed by the crew, that is, the position of the crew. Further, since the train operation system 1 can transmit the train operation information 125 and the instruction information 126 from the operation management device 60 to the UWB radio tag 10 in real time, both high-precision positioning and data transmission can be achieved. It is possible to create a system that contributes to operational efficiency using UWB radio.
実施の形態2.
 実施の形態2では、実施の形態1で説明した列車運行システム1において、UWB無線タグ10を有する乗務員による列車操作の認証を行う場合について説明する。
Embodiment 2.
In the second embodiment, the case where the train operation system 1 described in the first embodiment authenticates the train operation by the crew member having the UWB radio tag 10 will be described.
 実施の形態2において、列車運行システム1の構成は、図1に示す実施の形態1のときの構成と同様である。具体的に、列車運行システム1においてUWB無線タグ10を有する乗務員による列車操作の認証方法として、2つの認証方法を説明する。 In the second embodiment, the configuration of the train operation system 1 is the same as that of the first embodiment shown in FIG. Specifically, two authentication methods will be described as an authentication method for train operation by a crew member having a UWB radio tag 10 in the train operation system 1.
 図10は、実施の形態2に係る列車運行システム1におけるUWB無線タグ10を有する乗務員による列車操作の認証方法の例を示す図である。図10は、1つ目の認証方法の例を示すものである。1つ目の認証方法は、列車の運転台70からの認証コード110と、乗務員の測位情報128と、タグID121とを用いる方法である。運転台70は、列車に搭載され、認証コード110を低送信電力で無線送信している。乗務員が保有するUWB無線タグ10は、運転台70から送信される認証コード110を正しく受信するためには、列車内の運転台70の近傍に位置する必要がある。 FIG. 10 is a diagram showing an example of a train operation authentication method by a crew member having a UWB radio tag 10 in the train operation system 1 according to the second embodiment. FIG. 10 shows an example of the first authentication method. The first authentication method is a method using an authentication code 110 from the train cab 70, a crew member's positioning information 128, and a tag ID 121. The cab 70 is mounted on the train and wirelessly transmits the authentication code 110 with low transmission power. The UWB radio tag 10 owned by the crew needs to be located in the vicinity of the cab 70 in the train in order to correctly receive the authentication code 110 transmitted from the cab 70.
 また、乗務員は、運転台70を操作するためには、操作を許可するための認証情報111を、保有するUWB無線タグ10から運転台70に対して送信させる必要がある。認証情報111は、運行管理装置60から発行される情報である。認証情報111の発行のため、列車運行システム1は、運転台70から受信した認証コード110とともに、測位情報128およびタグID121を運行管理装置60に伝送する必要がある。測位情報128が必要となる理由は、UWB無線タグ10、すなわちUWB無線タグ10を有する乗務員が適切な位置に存在するか否かを確認するためである。適切な位置とは、例えば、列車内である。測位情報128で示されるUWB無線タグ10、すなわちUWB無線タグ10を有する乗務員の位置が列車外の場合、運行管理装置60は、運転台70に対する認証情報111を発行しない。 Further, in order to operate the driver's cab 70, the crew member needs to transmit the authentication information 111 for permitting the operation from the possessed UWB wireless tag 10 to the driver's cab 70. The authentication information 111 is information issued by the operation management device 60. In order to issue the authentication information 111, the train operation system 1 needs to transmit the positioning information 128 and the tag ID 121 to the operation management device 60 together with the authentication code 110 received from the driver's cab 70. The reason why the positioning information 128 is required is to confirm whether or not the UWB radio tag 10, that is, the crew member having the UWB radio tag 10 is present at an appropriate position. A suitable position is, for example, in a train. When the position of the UWB radio tag 10 indicated by the positioning information 128, that is, the crew member having the UWB radio tag 10 is outside the train, the operation management device 60 does not issue the authentication information 111 to the driver's cab 70.
 乗務員に対する運転台70の操作のための認証においてタグID121が必要な理由は、運転台70の操作資格の無い乗務員などに認証を与えないためである。列車運行システム1の管理者などは、運行管理装置60に対して、認証可能なタグID121を事前登録しておく。運行管理装置60は、登録済みのタグID121以外のタグID121を持つUWB無線タグ10には認証情報111を発行しない。このように、列車運行システム1において、運行管理装置60は、認証情報111の発行の際、認証コード110、測位情報128、およびタグID121の全てが必要である。これにより、運転台70の操作資格のある乗務員が運転台70の近傍に位置し、運転動作を実施できる状態にならない限り、運転台70の操作ができないという効果が得られる。 The reason why the tag ID 121 is required for the authentication for the operation of the cab 70 for the crew is that the authentication is not given to the crew who are not qualified to operate the cab 70. The administrator of the train operation system 1 or the like pre-registers the tag ID 121 that can be authenticated in the operation management device 60. The operation management device 60 does not issue the authentication information 111 to the UWB wireless tag 10 having the tag ID 121 other than the registered tag ID 121. As described above, in the train operation system 1, the operation management device 60 requires all of the authentication code 110, the positioning information 128, and the tag ID 121 when issuing the authentication information 111. This has the effect that the driver's cab 70 cannot be operated unless a crew member who is qualified to operate the driver's cab 70 is located in the vicinity of the driver's cab 70 and is in a state where the driving operation can be performed.
 すなわち、1つ目の認証方法において、UWB無線タグ10は、列車の運転台70から認証コード110を受信し、受信した認証コード110および前述のタグID121を、運行管理装置60を宛先にしてUWB無線センサ20に送信する。運行管理装置60は、無線基地局50から受信した認証コード110、測位情報128、およびタグID121に基づいて、運転台70に対する認証情報111を発行し、発行した認証情報111を、UWB無線タグ10を宛先にして無線基地局50に送信する。 That is, in the first authentication method, the UWB wireless tag 10 receives the authentication code 110 from the train cab 70, and sends the received authentication code 110 and the above-mentioned tag ID 121 to the operation management device 60 as the destination of the UWB. It transmits to the wireless sensor 20. The operation management device 60 issues authentication information 111 for the driver's cab 70 based on the authentication code 110, positioning information 128, and tag ID 121 received from the radio base station 50, and uses the issued authentication information 111 as the UWB wireless tag 10. Is transmitted to the radio base station 50 as the destination.
 2つ目の認証方法は、運転台70からの認証コード110を用いない方法である。例えば、測位情報128の測位精度が高い場合、認証コード110を不要としてもよい。この場合、運行管理装置60は、測位情報128およびタグID121のみを用いて認証情報111を発行し、運転台70まで伝送する。 The second authentication method is a method that does not use the authentication code 110 from the driver's cab 70. For example, when the positioning accuracy of the positioning information 128 is high, the authentication code 110 may not be required. In this case, the operation management device 60 issues the authentication information 111 using only the positioning information 128 and the tag ID 121, and transmits the authentication information 111 to the driver's cab 70.
 すなわち、2つ目の認証方法において、UWB無線タグ10は、前述のタグID121を、運行管理装置60を宛先にしてUWB無線センサ20に送信する。運行管理装置60は、無線基地局50から受信した測位情報128、およびタグID121に基づいて、運転台70に対する認証情報111を発行し、発行した認証情報111を、UWB無線タグ10を宛先にして無線基地局50に送信する。 That is, in the second authentication method, the UWB wireless tag 10 transmits the above-mentioned tag ID 121 to the UWB wireless sensor 20 with the operation management device 60 as the destination. The operation management device 60 issues authentication information 111 for the driver's cab 70 based on the positioning information 128 received from the radio base station 50 and the tag ID 121, and the issued authentication information 111 is addressed to the UWB radio tag 10. It transmits to the radio base station 50.
 上記2つの認証方法は、いずれもUWB無線タグ10を介して、乗務員に対して運転台70の操作を認証しているが、これらに限定されない。例えば、CBTC(Communications Based Train Control)無線を介して、運行管理装置60から運転台70へ操作許可の認証を実施してもよい。 Both of the above two authentication methods authenticate the operation of the driver's cab 70 to the crew via the UWB wireless tag 10, but are not limited to these. For example, operation permission may be authenticated from the operation management device 60 to the driver's cab 70 via CBTC (Communications Based Train Control) radio.
 以上説明したように、本実施の形態によれば、列車運行システム1において、運行管理装置60は、UWB無線タグ10を有する乗務員の位置情報である測位情報128およびタグID121を用いて、乗務員による列車の運転台70の操作を認証することができる。 As described above, according to the present embodiment, in the train operation system 1, the operation management device 60 is performed by the crew using the positioning information 128 and the tag ID 121, which are the position information of the crew having the UWB radio tag 10. The operation of the train cab 70 can be authenticated.
実施の形態3.
 実施の形態1では、列車運行システム1について、UWB無線センサ20の設置位置、UWB無線センサ20が備える図示しないアンテナの指向性の設定などは特に言及されていない。
Embodiment 3.
In the first embodiment, regarding the train operation system 1, the installation position of the UWB radio sensor 20, the setting of the directivity of the antenna included in the UWB radio sensor 20 (not shown), and the like are not particularly mentioned.
 例えば、列車運行システム1は、UWB無線センサ20を、列車の車両内に設置するとともに、車両外または列車外が見通せる位置に設置してもよい。このとき、車両外または列車外が見通せる位置に設置されたUWB無線センサ20について、アンテナの指向性を調整して列車内方向へのアンテナ利得を小さくし、列車外方向へのアンテナ利得を大きくする。すなわち、UWB無線センサ20のアンテナは、列車内の方向のアンテナ利得よりも列車外の方向のアンテナ利得が大きくなるように調整される。乗務員が有するUWB無線タグ10は、車両外にあるときは車両外に設置されたUWB無線センサ20との通信が可能となり、車両内にあるときは車両外に設置されたUWB無線センサ20との通信が不可能となる。これにより、列車運行システム1では、乗務員が有するUWB無線タグ10、すなわち乗務員の列車内外判定の精度が改善される。 For example, in the train operation system 1, the UWB radio sensor 20 may be installed inside the train vehicle and at a position where the outside of the train or the outside of the train can be seen. At this time, for the UWB radio sensor 20 installed at a position where the outside of the vehicle or the outside of the train can be seen, the directivity of the antenna is adjusted to reduce the antenna gain toward the inside of the train and increase the antenna gain toward the outside of the train. .. That is, the antenna of the UWB radio sensor 20 is adjusted so that the antenna gain in the direction outside the train is larger than the antenna gain in the direction inside the train. The UWB radio tag 10 possessed by the crew can communicate with the UWB radio sensor 20 installed outside the vehicle when it is outside the vehicle, and with the UWB radio sensor 20 installed outside the vehicle when it is inside the vehicle. Communication becomes impossible. As a result, in the train operation system 1, the accuracy of the UWB radio tag 10 possessed by the crew member, that is, the crew member's determination of whether the train is inside or outside the train is improved.
 なお、列車運行システム1は、UWB無線センサ20の設置位置について、UWB無線センサ20の本体は車両外または列車外が見通せる位置に設置せず、UWB無線センサ20が備えるアンテナのみを車両外または列車外が見通せる位置に設置してもよい。 Regarding the installation position of the UWB radio sensor 20, the train operation system 1 does not install the main body of the UWB radio sensor 20 in a position where the outside of the vehicle or the outside of the train can be seen, and only the antenna provided in the UWB radio sensor 20 is outside the vehicle or the train. It may be installed in a position where the outside can be seen.
 ここで、単一のUWB無線センサ20は、UWB無線タグ10との測距しかできない。そのため、情報収集装置30または運行管理装置60が、乗務員が列車外にいるのか列車内にいるのかの列車内外判定を行う。 Here, the single UWB wireless sensor 20 can only measure the distance from the UWB wireless tag 10. Therefore, the information collecting device 30 or the operation management device 60 determines whether the crew is outside the train or inside the train.
 以上説明したように、本実施の形態によれば、列車運行システム1は、車両外または列車外が見通せる位置にUWB無線センサ20またはUWB無線センサ20のアンテナが設置されることによって、UWB無線タグ10の測位情報128を用いて、UWB無線タグ10、すなわちUWB無線タグ10を有する乗務員の列車内外判定を行うことができる。 As described above, according to the present embodiment, in the train operation system 1, the antenna of the UWB radio sensor 20 or the UWB radio sensor 20 is installed at a position where the outside of the vehicle or the outside of the train can be seen, so that the UWB radio tag is installed. Using the positioning information 128 of 10, it is possible to determine whether the crew member having the UWB radio tag 10, that is, the UWB radio tag 10 is inside or outside the train.
実施の形態4.
 実施の形態1では、情報収集装置30は、複数のUWB無線センサ20から受信した測距情報127に基づいて、UWB無線タグ10の位置を示す測位情報128を生成している。このとき、情報収集装置30は、複数個の測距情報127を平均化してから測位情報128を生成してもよいし、生成した複数個の測位情報128を平均化してもよい。これにより、情報収集装置30は、列車内無線子局40に送信する測位情報128の精度を向上させることができる。また、情報収集装置30は、運行管理装置60への通信トラヒックを削減することができる。
Embodiment 4.
In the first embodiment, the information collecting device 30 generates positioning information 128 indicating the position of the UWB radio tag 10 based on the distance measurement information 127 received from the plurality of UWB radio sensors 20. At this time, the information collecting device 30 may generate the positioning information 128 after averaging the plurality of distance measurement information 127, or may average the generated plurality of positioning information 128. As a result, the information collecting device 30 can improve the accuracy of the positioning information 128 transmitted to the in-train radio slave station 40. Further, the information collecting device 30 can reduce the communication traffic to the operation management device 60.
 また、運行管理装置60は、無線基地局50から受信した複数個の測位情報128を平均化してもよい。これにより、運行管理装置60は、UWB無線タグ10の位置を把握する際、UWB無線タグ10の位置の精度を向上させることができる。 Further, the operation management device 60 may average a plurality of positioning information 128 received from the radio base station 50. As a result, the operation management device 60 can improve the accuracy of the position of the UWB wireless tag 10 when grasping the position of the UWB wireless tag 10.
実施の形態5.
 実施の形態5では、複数のUWB無線センサ20の間で、UWB無線タグ10の測距を行うタイミング、すなわちプリアンブル信号119の送信およびプリアンブル信号120の受信のタイミングを調整する場合について説明する。
Embodiment 5.
In the fifth embodiment, a case where the timing of performing distance measurement of the UWB radio tag 10 among the plurality of UWB radio sensors 20, that is, the timing of transmitting the preamble signal 119 and the timing of receiving the preamble signal 120 will be described.
 列車運行システム1において、設置されている複数のUWB無線センサ20が非同期の場合、各UWB無線センサ20が、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)によって独立にUWB無線タグ10の測距を行う方法が考えらえる。しかしながら、測位情報128の取得頻度を担保する必要がある場合、CSMA/CAによる制御は不適切である。そのため、複数のUWB無線センサ20の動作を一括して制御する必要がある。図11は、実施の形態5に係る複数のUWB無線センサ20の間でUWB無線タグ10の測距を行うタイミングを制御する場合の制御関係の例を示す図である。図11の例では、複数のUWB無線センサ20のうちの1つをプライマリUWB無線センサ20aとし、他のUWB無線センサ20をセカンダリUWB無線センサ20b-1,20b-2とする。セカンダリUWB無線センサ20b-1,20b-2は、プライマリUWB無線センサ20aからの指示に基づいて、動作、すなわちUWB無線タグ10の測距を行う。以降の説明において、セカンダリUWB無線センサ20b-1,20b-2を区別しない場合はセカンダリUWB無線センサ20bと称する。また、プライマリUWB無線センサ20aおよびセカンダリUWB無線センサ20bを区別しない場合はUWB無線センサ20と称する。プライマリUWB無線センサ20aを単にプライマ無線センサと称し、セカンダリUWB無線センサ20bを単にセカンダ無線センサと称することがある。 In the train operation system 1, when a plurality of UWB radio sensors 20 installed are asynchronous, each UWB radio sensor 20 independently measures the distance of the UWB radio tag 10 by CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance). I can think of a way to do this. However, when it is necessary to secure the acquisition frequency of the positioning information 128, the control by CSMA / CA is inappropriate. Therefore, it is necessary to collectively control the operation of the plurality of UWB wireless sensors 20. FIG. 11 is a diagram showing an example of a control relationship in the case of controlling the timing of performing distance measurement of the UWB radio tag 10 among the plurality of UWB radio sensors 20 according to the fifth embodiment. In the example of FIG. 11, one of the plurality of UWB wireless sensors 20 is the primary UWB wireless sensor 20a, and the other UWB wireless sensors 20 are the secondary UWB wireless sensors 20b-1 and 20b-2. The secondary UWB radio sensors 20b-1 and 20b-2 operate, that is, measure the distance of the UWB radio tag 10 based on the instruction from the primary UWB radio sensor 20a. In the following description, when the secondary UWB wireless sensors 20b-1 and 20b-2 are not distinguished, they are referred to as secondary UWB wireless sensors 20b. When the primary UWB wireless sensor 20a and the secondary UWB wireless sensor 20b are not distinguished, they are referred to as the UWB wireless sensor 20. The primary UWB radio sensor 20a may be simply referred to as a primer radio sensor, and the secondary UWB radio sensor 20b may be simply referred to as a second radio sensor.
 複数のUWB無線センサ20の間でUWB無線タグ10の測距を行うタイミングを制御する1つの例として、時間スロットホッピングによる制御がある。以下、時間スロットホッピングについて説明する。複数のセカンダリUWB無線センサ20bは、プライマリUWB無線センサ20aの時刻情報に同期する。プライマリUWB無線センサ20aは、各UWB無線センサ20の個別の生成乱数、一定の時間間隔を空けて定期的に設定される時間スロットタイミングなどに合わせて、セカンダリUWB無線センサ20bをスケジューリング、すなわち測距機会のスロット割当を行う。プライマリUWB無線センサ20aは、スロット割当について、全てのセカンダリUWB無線センサ20bに対して等機会であってもよいし、UWB無線タグ10の位置、その他の状況などに応じて、特定のセカンダリUWB無線センサ20bの割当機会を増減させてもよい。 As one example of controlling the timing of performing distance measurement of the UWB wireless tag 10 among a plurality of UWB wireless sensors 20, there is control by time slot hopping. Hereinafter, time slot hopping will be described. The plurality of secondary UWB radio sensors 20b synchronize with the time information of the primary UWB radio sensor 20a. The primary UWB radio sensor 20a schedules the secondary UWB radio sensor 20b according to the individually generated random numbers of each UWB radio sensor 20, the time slot timing set periodically at regular time intervals, and the like, that is, distance measurement. Allocate opportunities slots. The primary UWB radio sensor 20a may have equal opportunities for slot allocation for all secondary UWB radio sensors 20b, or may be a specific secondary UWB radio depending on the location of the UWB radio tag 10, other circumstances, and the like. The allocation opportunity of the sensor 20b may be increased or decreased.
 図12は、実施の形態5に係るプライマリUWB無線センサ20aが生成乱数によって時間スロットを割り当てた例を示す図である。図12は、UWB無線センサ20-1,20-2,20-3の計3個のUWB無線センサ20に対して、生成乱数に従って時間スロットが割り当てられた例である。図13は、実施の形態5に係るプライマリUWB無線センサ20aが定期的に時間スロットを割り当てた例を示す図である。図13は、UWB無線センサ20-1,20-2,20-3の計3個のUWB無線センサ20に対して、5スロット間隔で時間スロットが割り当てられた例である。 FIG. 12 is a diagram showing an example in which the primary UWB wireless sensor 20a according to the fifth embodiment allocates a time slot by a generated random number. FIG. 12 shows an example in which time slots are assigned to a total of three UWB wireless sensors 20 of UWB wireless sensors 20-1, 20-2, and 20-3 according to generated random numbers. FIG. 13 is a diagram showing an example in which the primary UWB radio sensor 20a according to the fifth embodiment periodically allocates time slots. FIG. 13 is an example in which time slots are assigned at intervals of 5 slots to a total of 3 UWB wireless sensors 20 of UWB wireless sensors 20-1, 20-2, and 20-3.
 図12および図13の例は、プライマリUWB無線センサ20aによって事前にスケジューリングされた場合である。プライマリUWB無線センサ20aによって一度スケジューリングされた後、各セカンダリUWB無線センサ20bは、一定期間にわたって自律的に動作する。これに対して、セカンダリUWB無線センサ20bが、プライマリUWB無線センサ20aからの逐次指示に基づいて動作する方法もある。この場合、セカンダリUWB無線センサ20bは、必ずしもプライマリUWB無線センサ20aに時刻同期する必要はない。 The examples of FIGS. 12 and 13 are pre-scheduled by the primary UWB radio sensor 20a. After being scheduled once by the primary UWB radio sensor 20a, each secondary UWB radio sensor 20b operates autonomously over a period of time. On the other hand, there is also a method in which the secondary UWB wireless sensor 20b operates based on the sequential instruction from the primary UWB wireless sensor 20a. In this case, the secondary UWB radio sensor 20b does not necessarily have to be time-synchronized with the primary UWB radio sensor 20a.
 また、図12および図13は時間スロットホッピングの例を示しているが、これに加えて、列車運行システム1は、複数の周波数チャネルを利用可能な場合、時間スロットホッピングと同様の方法によってチャネルホッピングを実施してもよい。列車運行システム1は、時間スロットホッピングの場合と異なり、チャネルホッピングではUWB無線センサ20個別の生成乱数、一定のチャネル間隔を空けて定期的に設定されるチャネルタイミングのスケジューリングなどする。列車運行システム1は、時間スロットホッピングとチャネルホッピングとを合わせて、時間-周波数の2次元領域をスロット分割してスケジューリングしてもよい。このように、プライマリUWB無線センサ20aは、セカンダリUWB無線センサ20bがUWB無線タグ10へ信号を送信する際の時間および周波数の無線リソースを制御する。 Further, FIGS. 12 and 13 show an example of time slot hopping, but in addition to this, when a plurality of frequency channels are available, the train operation system 1 channel hopping by a method similar to time slot hopping. May be carried out. Unlike the case of time slot hopping, the train operation system 1 performs random numbers generated individually for the UWB radio sensor 20 and scheduling of channel timings periodically set at regular channel intervals in channel hopping. The train operation system 1 may schedule the time slot hopping and the channel hopping by dividing the time-frequency two-dimensional region into slots. In this way, the primary UWB radio sensor 20a controls the time and frequency radio resources when the secondary UWB radio sensor 20b transmits a signal to the UWB radio tag 10.
 なお、プライマリUWB無線センサ20aがセカンダリUWB無線センサ20bに対する制御機能を有する場合について説明したが、これらの制御機能を情報収集装置30が備えていてもよい。この場合、プライマリUWB無線センサ20a、およびセカンダリUWB無線センサ20bの区別はない。すなわち、UWB無線センサ20は、情報収集装置30の時刻情報に同期する。情報収集装置30は、UWB無線センサ20がUWB無線タグ10へ信号を送信する際の無線リソースを制御する。 Although the case where the primary UWB wireless sensor 20a has a control function for the secondary UWB wireless sensor 20b has been described, the information collecting device 30 may have these control functions. In this case, there is no distinction between the primary UWB wireless sensor 20a and the secondary UWB wireless sensor 20b. That is, the UWB wireless sensor 20 synchronizes with the time information of the information collecting device 30. The information collecting device 30 controls radio resources when the UWB radio sensor 20 transmits a signal to the UWB radio tag 10.
 以上説明したように、本実施の形態によれば、列車運行システム1において、複数のUWB無線センサ20が高頻度で測位情報128を取得するためには、UWB無線センサ20による無線アクセス衝突の回避が必要である。そのため、複数のUWB無線センサ20のうち、1つをプライマリUWB無線センサ20aとし、他をセカンダリUWB無線センサ20bとし、プライマリUWB無線センサ20aが、セカンダリUWB無線センサ20bの無線アクセスを制御する。これにより、列車運行システム1は、UWB無線センサ20間の通信衝突を回避することができる。 As described above, according to the present embodiment, in order for the plurality of UWB wireless sensors 20 to acquire the positioning information 128 at high frequency in the train operation system 1, the UWB wireless sensors 20 avoid wireless access collisions. is required. Therefore, of the plurality of UWB wireless sensors 20, one is the primary UWB wireless sensor 20a, the other is the secondary UWB wireless sensor 20b, and the primary UWB wireless sensor 20a controls the wireless access of the secondary UWB wireless sensor 20b. As a result, the train operation system 1 can avoid communication collisions between the UWB radio sensors 20.
実施の形態6.
 実施の形態1では、列車運行システム1において、情報収集装置30および列車内無線子局40を異なる通信ノードとしている。しかしながら、情報収集装置30および列車内無線子局40の有する機能を1つの通信ノードに集約してもよい。さらに、通信ノードは、プライマリUWB無線センサ20aの機能を併せ持つ機器として集約してもよい。
Embodiment 6.
In the first embodiment, in the train operation system 1, the information collecting device 30 and the in-train radio slave station 40 are set as different communication nodes. However, the functions of the information collecting device 30 and the in-train radio slave station 40 may be integrated into one communication node. Further, the communication nodes may be aggregated as a device having the function of the primary UWB wireless sensor 20a.
実施の形態7.
 実施の形態5のようにプライマリUWB無線センサ20aがセカンダリUWB無線センサ20bを管理する場合、UWB無線タグ10の位置、その他の状況に応じて、特定のセカンダリUWB無線センサ20bの割当機会を増減させることが考えられる。例えば、セカンダリUWB無線センサ20bは、UWB無線タグ10のジェスチャー認識をする場合、高頻度の測距が必要となる。この場合、プライマリUWB無線センサ20aは、全てのセカンダリUWB無線センサ20bに測距機会を割り当てるのではなく、ジェスチャー認識したいUWB無線タグ10の周辺のセカンダリUWB無線センサ20bへの測距割当回数を増加させる制御を行う。
Embodiment 7.
When the primary UWB radio sensor 20a manages the secondary UWB radio sensor 20b as in the fifth embodiment, the allocation opportunity of the specific secondary UWB radio sensor 20b is increased or decreased depending on the position of the UWB radio tag 10 and other situations. Can be considered. For example, when the secondary UWB radio sensor 20b recognizes the gesture of the UWB radio tag 10, high-frequency distance measurement is required. In this case, the primary UWB radio sensor 20a does not allocate distance measurement opportunities to all secondary UWB radio sensors 20b, but increases the number of distance measurement allocations to the secondary UWB radio sensors 20b around the UWB radio tag 10 for which gesture recognition is desired. Control to make it.
 すなわち、実施の形態5の例において、プライマリUWB無線センサ20aは、UWB無線タグ10の位置、動作モードなどの状況に基づいて、特定のセカンダリUWB無線センサ20bに対する無線リソースを増減させる。なお、情報収集装置30がプライマリUWB無線センサ20aの制御機能を有する場合、情報収集装置30は、UWB無線タグ10の位置、動作モードなどの状況に基づいて、特定のUWB無線センサ20に対する無線リソースを増減させる。 That is, in the example of the fifth embodiment, the primary UWB radio sensor 20a increases or decreases the radio resource for the specific secondary UWB radio sensor 20b based on the position of the UWB radio tag 10, the operation mode, and the like. When the information collecting device 30 has a control function of the primary UWB radio sensor 20a, the information collecting device 30 is a radio resource for a specific UWB radio sensor 20 based on the position of the UWB radio tag 10, the operation mode, and the like. Increase or decrease.
 以上説明したように、本実施の形態によれば、列車運行システム1は、特定のUWB無線タグ10の位置、動作モードなどの状況に基づいて、特定のセカンダリUWB無線センサ20bから特定のUWB無線タグ10へのプリアンブル信号120の送信の割当機会を増加させる。これにより、列車運行システム1は、UWB無線タグ10の位置の取得間隔を短縮化することで、UWB無線タグ10の位置をトラッキングすることが可能となる。 As described above, according to the present embodiment, the train operation system 1 has a specific UWB radio from a specific secondary UWB radio sensor 20b based on a situation such as a position of a specific UWB radio tag 10 and an operation mode. Increases the chance of allocating transmission of the preamble signal 120 to tag 10. As a result, the train operation system 1 can track the position of the UWB radio tag 10 by shortening the acquisition interval of the position of the UWB radio tag 10.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1 列車運行システム、10 UWB無線タグ、11 通信部、12 記憶部、13 制御部、20-1,20-2 UWB無線センサ、20a プライマリUWB無線センサ、20b-1,20b-2 セカンダリUWB無線センサ、30 情報収集装置、40 列車内無線子局、50 無線基地局、60 運行管理装置、70 運転台。 1 train operation system, 10 UWB radio tag, 11 communication unit, 12 storage unit, 13 control unit, 20-1, 20-2 UWB radio sensor, 20a primary UWB radio sensor, 20b-1, 20b-2 secondary UWB radio sensor , 30 information gathering device, 40 in-train radio slave station, 50 radio base station, 60 operation management device, 70 cab.

Claims (23)

  1.  乗務員が有し、超高帯域無線通信を行う無線タグと、
     列車に設置され、前記無線タグと超高帯域無線通信を行い、前記無線タグとの間の距離を示す測距情報を生成する複数の無線センサと、
     前記複数の無線センサから受信した前記測距情報を用いて、前記無線タグの位置を示す測位情報を生成し、前記測位情報を含む情報を送信する情報収集装置と、
     前記測位情報を含む情報に基づいて、前記乗務員に対する情報を生成する運行管理装置と、
     を備えることを特徴とする列車運行システム。
    A wireless tag owned by the crew for ultra-high band wireless communication,
    A plurality of wireless sensors installed on a train, performing ultra-high band wireless communication with the wireless tag, and generating distance measurement information indicating the distance between the wireless tag and the wireless tag.
    An information collecting device that uses the distance measurement information received from the plurality of wireless sensors to generate positioning information indicating the position of the wireless tag and transmits information including the positioning information.
    An operation management device that generates information for the crew based on the information including the positioning information, and
    A train operation system characterized by being equipped with.
  2.  前記無線タグは、
     前記複数の無線センサから送信される第1のプリアンブル信号を解析して空間での電波の受信時刻を算出し、前記複数の無線センサからの指示によって、第2のプリアンブル信号、前記無線タグのタグ識別情報、前記無線タグが組み込まれている情報機器についての端末情報、および、前記第2のプリアンブル信号の送信時刻および前記受信時刻を含むタイミング情報を前記複数の無線センサに送信し、
     前記運行管理装置から前記乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を前記複数の無線センサから受信し、前記乗務員が保持する情報端末に通知する、
     ことを特徴とする請求項1に記載の列車運行システム。
    The wireless tag is
    The first preamble signal transmitted from the plurality of wireless sensors is analyzed to calculate the reception time of the radio wave in space, and the second preamble signal and the tag of the wireless tag are instructed by the plurality of wireless sensors. The identification information, the terminal information about the information device in which the wireless tag is incorporated, and the timing information including the transmission time and the reception time of the second preamble signal are transmitted to the plurality of wireless sensors.
    Train operation information and instruction information, which are information for the crew member transmitted from the operation management device to the crew member, are received from the plurality of wireless sensors and notified to the information terminal held by the crew member.
    The train operation system according to claim 1, wherein the train operation system is characterized in that.
  3.  第1のプリアンブル信号を送信する前記無線センサは、
     前記無線タグから、第2のプリアンブル信号、前記無線タグのタグ識別情報、前記無線タグが組み込まれている情報機器についての端末情報、および、前記第2のプリアンブル信号の送信時刻および前記第1のプリアンブル信号の受信時刻を含むタイミング情報を受信し、前記第2のプリアンブル信号を解析して空間での電波の受信時刻を算出し、前記第1のプリアンブル信号の送信時刻の情報と前記タイミング情報とを用いて前記無線タグと前記無線センサとの間の距離を算出して前記測距情報を生成し、前記測距情報、前記タグ識別情報、および前記端末情報を前記情報収集装置に送信し、
     前記情報収集装置から前記乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を受信し、前記第1のプリアンブル信号、前記列車運行情報、および前記指示情報を前記無線タグに送信する、
     ことを特徴とする請求項1または2に記載の列車運行システム。
    The wireless sensor that transmits the first preamble signal is
    From the radio tag, a second preamble signal, tag identification information of the radio tag, terminal information about an information device in which the radio tag is incorporated, a transmission time of the second preamble signal, and the first preamble signal. The timing information including the reception time of the preamble signal is received, the second preamble signal is analyzed to calculate the reception time of the radio wave in space, and the transmission time information of the first preamble signal and the timing information are used. The distance between the radio tag and the radio sensor is calculated using the above to generate the distance measurement information, and the distance measurement information, the tag identification information, and the terminal information are transmitted to the information collecting device.
    Receives train operation information and instruction information transmitted from the information collecting device to the crew, and transmits the first preamble signal, the train operation information, and the instruction information to the radio tag. ,
    The train operation system according to claim 1 or 2, wherein the train operation system is characterized in that.
  4.  前記情報収集装置は、
     前記複数の無線センサから前記測距情報、前記無線タグのタグ識別情報、および前記無線タグが組み込まれている情報機器についての端末情報を受信し、前記測距情報を用いて前記測位情報を生成し、前記測位情報、前記タグ識別情報、および前記端末情報を上位の通信ノードに送信し、
     前記上位の通信ノードから前記乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を受信し、前記列車運行情報、および前記指示情報を前記複数の無線センサに送信する、
     ことを特徴とする請求項1から3のいずれか1つに記載の列車運行システム。
    The information collecting device is
    The distance measurement information, the tag identification information of the wireless tag, and the terminal information about the information device in which the wireless tag is incorporated are received from the plurality of wireless sensors, and the positioning information is generated using the distance measurement information. Then, the positioning information, the tag identification information, and the terminal information are transmitted to a higher-level communication node.
    The train operation information and instruction information, which are information for the crew member transmitted from the upper communication node to the crew member, are received, and the train operation information and the instruction information are transmitted to the plurality of wireless sensors.
    The train operation system according to any one of claims 1 to 3, wherein the train operation system is characterized in that.
  5.  さらに、列車内無線子局を備え、前記列車内無線子局は、
     前記情報収集装置から前記測位情報、前記無線タグのタグ識別情報、および前記無線タグが組み込まれている情報機器についての端末情報を受信し、前記測位情報、前記タグ識別情報、および前記端末情報を上位の通信ノードに送信し、
     前記上位の通信ノードから前記乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を受信し、前記列車運行情報、および前記指示情報を前記情報収集装置に送信する、
     ことを特徴とする請求項1から4のいずれか1つに記載の列車運行システム。
    Further, the in-train radio slave station is provided, and the in-train radio slave station is equipped with the in-train radio slave station.
    The positioning information, the tag identification information of the wireless tag, and the terminal information about the information device in which the wireless tag is incorporated are received from the information collecting device, and the positioning information, the tag identification information, and the terminal information are obtained. Send to the upper communication node and
    The train operation information and instruction information, which are information for the crew member transmitted from the upper communication node to the crew member, are received, and the train operation information and the instruction information are transmitted to the information collecting device.
    The train operation system according to any one of claims 1 to 4, wherein the train operation system is characterized in that.
  6.  さらに、無線基地局を備え、前記無線基地局は、
     下位の通信ノードから前記測位情報、前記無線タグのタグ識別情報、および前記無線タグが組み込まれている情報機器についての端末情報を受信し、前記測位情報、前記タグ識別情報、および前記端末情報を前記運行管理装置に送信し、
     前記運行管理装置から前記乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を受信し、前記列車運行情報、および前記指示情報を前記下位の通信ノードに送信する、
     ことを特徴とする請求項1から5のいずれか1つに記載の列車運行システム。
    Further, a radio base station is provided, and the radio base station is equipped with a radio base station.
    The positioning information, the tag identification information of the wireless tag, and the terminal information about the information device in which the wireless tag is incorporated are received from the lower communication node, and the positioning information, the tag identification information, and the terminal information are obtained. Send to the operation management device
    The train operation information and instruction information, which are information for the crew member transmitted from the operation management device to the crew member, are received, and the train operation information and the instruction information are transmitted to the lower communication node.
    The train operation system according to any one of claims 1 to 5, wherein the train operation system is characterized in that.
  7.  前記運行管理装置は、
     下位の通信ノードから前記測位情報、前記無線タグのタグ識別情報、および前記無線タグが組み込まれている情報機器についての端末情報を受信し、前記測位情報、前記タグ識別情報、および前記端末情報に基づいて、前記乗務員へ伝送する列車運行情報および指示情報を生成し、前記列車運行情報および前記指示情報を前記下位の通信ノードに送信する、
     ことを特徴とする請求項1から6のいずれか1つに記載の列車運行システム。
    The operation management device is
    The positioning information, the tag identification information of the radio tag, and the terminal information about the information device in which the radio tag is incorporated are received from the lower communication node, and the positioning information, the tag identification information, and the terminal information are used. Based on this, the train operation information and the instruction information to be transmitted to the crew are generated, and the train operation information and the instruction information are transmitted to the lower communication node.
    The train operation system according to any one of claims 1 to 6, wherein the train operation system is characterized in that.
  8.  前記無線タグは、前記列車の運転台から認証コードを受信し、前記認証コードおよび前記無線タグのタグ識別情報を、前記運行管理装置を宛先にして送信し、
     前記運行管理装置は、前記認証コード、前記測位情報、および前記タグ識別情報に基づいて、前記運転台に対する認証情報を発行し、前記無線タグを宛先にして送信する、
     ことを特徴とする請求項1から7のいずれか1つに記載の列車運行システム。
    The wireless tag receives an authentication code from the cab of the train, and transmits the authentication code and the tag identification information of the wireless tag to the operation management device as a destination.
    The operation management device issues authentication information for the driver's cab based on the authentication code, the positioning information, and the tag identification information, and transmits the authentication information to the wireless tag as a destination.
    The train operation system according to any one of claims 1 to 7, wherein the train operation system is characterized in that.
  9.  前記無線タグは、前記無線タグのタグ識別情報を、前記運行管理装置を宛先にして送信し、
     前記運行管理装置は、前記測位情報、および前記タグ識別情報に基づいて、前記列車の運転台に対する認証情報を発行し、前記無線タグを宛先にして送信する、
     ことを特徴とする請求項1から7のいずれか1つに記載の列車運行システム。
    The wireless tag transmits the tag identification information of the wireless tag to the operation management device as a destination.
    The operation management device issues authentication information for the cab of the train based on the positioning information and the tag identification information, and transmits the authentication information to the wireless tag as a destination.
    The train operation system according to any one of claims 1 to 7, wherein the train operation system is characterized in that.
  10.  前記無線センサは、前記列車の列車外または前記列車外が見通せる位置に設置されたアンテナを備え、前記アンテナは、前記列車の列車内の方向のアンテナ利得よりも前記列車外の方向のアンテナ利得が大きくなるように調整され、
     前記情報収集装置または前記運行管理装置は、前記測位情報に基づいて、前記乗務員が前記列車外にいるのか前記列車内にいるのかの列車内外判定を行う、
     ことを特徴とする請求項1から9のいずれか1つに記載の列車運行システム。
    The radio sensor includes an antenna installed outside the train or at a position where the outside of the train can be seen, and the antenna has an antenna gain in the direction outside the train rather than an antenna gain in the direction inside the train. Adjusted to be larger,
    The information collecting device or the operation management device determines whether the crew member is outside the train or inside the train based on the positioning information.
    The train operation system according to any one of claims 1 to 9, wherein the train operation system is characterized in that.
  11.  前記情報収集装置は、複数個の前記測距情報を平均化してから前記測位情報を生成する、または生成した複数個の前記測位情報を平均化する、
     ことを特徴とする請求項1から10のいずれか1つに記載の列車運行システム。
    The information collecting device averages the plurality of distance measurement information and then generates the positioning information, or averages the generated plurality of the positioning information.
    The train operation system according to any one of claims 1 to 10, wherein the train operation system is characterized in that.
  12.  前記運行管理装置は、複数個の前記測位情報を平均化する、
     ことを特徴とする請求項1から11のいずれか1つに記載の列車運行システム。
    The operation management device averages a plurality of the positioning information.
    The train operation system according to any one of claims 1 to 11, characterized in that.
  13.  前記複数の無線センサのうち、1つをプライマリ無線センサとし、他をセカンダリ無線センサとし、
     前記セカンダリ無線センサは、前記プライマリ無線センサの時刻情報に同期し、
     前記プライマリ無線センサは、前記セカンダリ無線センサが前記無線タグへ信号を送信する際の無線リソースを制御する、
     ことを特徴とする請求項1から12のいずれか1つに記載の列車運行システム。
    Of the plurality of wireless sensors, one is a primary wireless sensor and the other is a secondary wireless sensor.
    The secondary radio sensor synchronizes with the time information of the primary radio sensor,
    The primary radio sensor controls radio resources when the secondary radio sensor transmits a signal to the radio tag.
    The train operation system according to any one of claims 1 to 12, characterized in that.
  14.  前記プライマリ無線センサは、前記無線タグの状況に基づいて、特定の前記セカンダリ無線センサに対する前記無線リソースを増減させる、
     ことを特徴とする請求項13に記載の列車運行システム。
    The primary radio sensor increases or decreases the radio resource for a particular secondary radio sensor based on the status of the radio tag.
    The train operation system according to claim 13.
  15.  前記無線センサは、前記情報収集装置の時刻情報に同期し、
     前記情報収集装置は、前記無線センサが前記無線タグへ信号を送信する際の無線リソースを制御する、
     ことを特徴とする請求項1から12のいずれか1つに記載の列車運行システム。
    The wireless sensor synchronizes with the time information of the information collecting device.
    The information gathering device controls radio resources when the radio sensor transmits a signal to the radio tag.
    The train operation system according to any one of claims 1 to 12, characterized in that.
  16.  前記情報収集装置は、前記無線タグの状況に基づいて、特定の前記無線センサに対する前記無線リソースを増減させる、
     ことを特徴とする請求項15に記載の列車運行システム。
    The information gathering device increases or decreases the radio resource for a particular radio sensor based on the status of the radio tag.
    The train operation system according to claim 15, wherein the train operation system is characterized in that.
  17.  列車運行システムの列車運行方法であって、
     乗務員の有する無線タグが、超高帯域無線通信を行う第1のステップと、
     列車に設置される複数の無線センサが、前記無線タグと超高帯域無線通信を行い、前記無線タグとの間の距離を示す測距情報を生成する第2のステップと、
     情報収集装置が、前記複数の無線センサから受信した前記測距情報を用いて、前記無線タグの位置を示す測位情報を生成し、前記測位情報を含む情報を送信する第3のステップと、
     運行管理装置が、前記測位情報を含む情報に基づいて、前記乗務員に対する情報を生成する第4のステップと、
     を含むことを特徴とする列車運行方法。
    It is a train operation method of the train operation system,
    The first step in which the crew's wireless tag performs ultra-high band wireless communication,
    A second step in which a plurality of wireless sensors installed in the train perform ultra-high band wireless communication with the wireless tag and generate distance measurement information indicating the distance between the wireless tag and the wireless tag.
    A third step in which the information collecting device uses the distance measurement information received from the plurality of wireless sensors to generate positioning information indicating the position of the wireless tag, and transmits information including the positioning information.
    A fourth step in which the operation management device generates information for the crew member based on the information including the positioning information, and
    A train operation method characterized by including.
  18.  無線タグ、複数の無線センサ、および運行管理装置によって列車運行システムが構成され、前記無線タグを制御するための制御回路であって、
     前記複数の無線センサから送信される第1のプリアンブル信号を解析して空間での電波の受信時刻を算出し、前記複数の無線センサからの指示によって、第2のプリアンブル信号、前記無線タグのタグ識別情報、前記無線タグが組み込まれている情報機器についての端末情報、および、前記第2のプリアンブル信号の送信時刻および前記受信時刻を含むタイミング情報を前記複数の無線センサに送信、
     前記運行管理装置から列車の乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を前記複数の無線センサから受信し、前記乗務員が保持する情報端末に通知、
     を前記無線タグに実施させることを特徴とする制御回路。
    A train operation system is composed of a wireless tag, a plurality of wireless sensors, and an operation management device, and is a control circuit for controlling the wireless tag.
    The first preamble signal transmitted from the plurality of wireless sensors is analyzed to calculate the reception time of the radio wave in space, and the second preamble signal and the tag of the wireless tag are instructed by the plurality of wireless sensors. The identification information, the terminal information about the information device in which the wireless tag is incorporated, and the timing information including the transmission time and the reception time of the second preamble signal are transmitted to the plurality of wireless sensors.
    Train operation information and instruction information, which are information for the crew members transmitted from the operation management device to the train crew members, are received from the plurality of radio sensors and notified to the information terminal held by the crew members.
    A control circuit comprising the above-mentioned wireless tag.
  19.  無線タグ、複数の無線センサ、および運行管理装置によって列車運行システムが構成され、第1のプリアンブル信号を送信する前記無線センサを制御するための制御回路であって、
     前記無線タグから、第2のプリアンブル信号、前記無線タグのタグ識別情報、前記無線タグが組み込まれている情報機器についての端末情報、および、前記第2のプリアンブル信号の送信時刻および前記第1のプリアンブル信号の受信時刻を含むタイミング情報を受信し、前記第2のプリアンブル信号を解析して空間での電波の受信時刻を算出し、前記第1のプリアンブル信号の送信時刻の情報と前記タイミング情報とを用いて前記無線タグと前記無線センサとの間の距離を算出して前記無線タグと前記無線センサとの間の距離を示す測距情報を生成し、前記測距情報、前記タグ識別情報、および前記端末情報を上位の通信ノードに送信、
     前記上位の通信ノードから列車の乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を受信し、前記第1のプリアンブル信号、前記列車運行情報、および前記指示情報を前記無線タグに送信、
     を前記無線センサに実施させることを特徴とする制御回路。
    A control circuit for controlling the radio sensor that transmits a first preamble signal, wherein the train operation system is composed of a radio tag, a plurality of radio sensors, and an operation management device.
    From the radio tag, a second preamble signal, tag identification information of the radio tag, terminal information about an information device in which the radio tag is incorporated, a transmission time of the second preamble signal, and the first preamble signal. The timing information including the reception time of the preamble signal is received, the second preamble signal is analyzed to calculate the reception time of the radio wave in space, and the transmission time information of the first preamble signal and the timing information are used. The distance between the radio tag and the radio sensor is calculated using the above to generate distance measurement information indicating the distance between the radio tag and the radio sensor, and the distance measurement information, the tag identification information, and the like. And send the terminal information to the upper communication node,
    The train operation information and instruction information, which are information for the crew members transmitted from the upper communication node to the train crew members, are received, and the first preamble signal, the train operation information, and the instruction information are used in the radio tag. send,
    A control circuit comprising the above-mentioned wireless sensor.
  20.  無線タグ、複数の無線センサ、および運行管理装置によって列車運行システムが構成され、前記運行管理装置を制御するための制御回路であって、
     下位の通信ノードから前記無線タグの位置を示す測位情報、前記無線タグのタグ識別情報、および前記無線タグが組み込まれている情報機器についての端末情報を受信し、前記測位情報、前記タグ識別情報、および前記端末情報に基づいて、列車の乗務員へ伝送する列車運行情報および指示情報を生成し、前記列車運行情報および前記指示情報を前記下位の通信ノードに送信、
     を前記運行管理装置に実施させることを特徴とする制御回路。
    A train operation system is composed of a wireless tag, a plurality of wireless sensors, and an operation management device, and is a control circuit for controlling the operation management device.
    Positioning information indicating the position of the radio tag, tag identification information of the radio tag, and terminal information about an information device in which the radio tag is incorporated are received from a lower communication node, and the positioning information and the tag identification information are received. , And, based on the terminal information, generate train operation information and instruction information to be transmitted to the train crew, and transmit the train operation information and the instruction information to the lower communication node.
    A control circuit characterized by having the operation management device carry out the above.
  21.  無線タグ、複数の無線センサ、および運行管理装置によって列車運行システムが構成され、前記無線タグを制御するためのプログラムが記憶された記憶媒体であって、
     前記プログラムは、
     前記複数の無線センサから送信される第1のプリアンブル信号を解析して空間での電波の受信時刻を算出し、前記複数の無線センサからの指示によって、第2のプリアンブル信号、前記無線タグのタグ識別情報、前記無線タグが組み込まれている情報機器についての端末情報、および、前記第2のプリアンブル信号の送信時刻および前記受信時刻を含むタイミング情報を前記複数の無線センサに送信、
     前記運行管理装置から列車の乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を前記複数の無線センサから受信し、前記乗務員が保持する情報端末に通知、
     を前記無線タグに実施させることを特徴とする記憶媒体。
    A storage medium in which a train operation system is composed of a wireless tag, a plurality of wireless sensors, and an operation management device, and a program for controlling the wireless tag is stored.
    The program
    The first preamble signal transmitted from the plurality of wireless sensors is analyzed to calculate the reception time of the radio wave in space, and the second preamble signal and the tag of the wireless tag are instructed by the plurality of wireless sensors. The identification information, the terminal information about the information device in which the wireless tag is incorporated, and the timing information including the transmission time and the reception time of the second preamble signal are transmitted to the plurality of wireless sensors.
    Train operation information and instruction information, which are information for the crew members transmitted from the operation management device to the train crew members, are received from the plurality of radio sensors and notified to the information terminal held by the crew members.
    A storage medium, characterized in that the wireless tag is used.
  22.  無線タグ、複数の無線センサ、および運行管理装置によって列車運行システムが構成され、第1のプリアンブル信号を送信する前記無線センサを制御するためのプログラムが記憶された記憶媒体であって、
     前記プログラムは、
     前記無線タグから、第2のプリアンブル信号、前記無線タグのタグ識別情報、前記無線タグが組み込まれている情報機器についての端末情報、および、前記第2のプリアンブル信号の送信時刻および前記第1のプリアンブル信号の受信時刻を含むタイミング情報を受信し、前記第2のプリアンブル信号を解析して空間での電波の受信時刻を算出し、前記第1のプリアンブル信号の送信時刻の情報と前記タイミング情報とを用いて前記無線タグと前記無線センサとの間の距離を算出して前記無線タグと前記無線センサとの間の距離を示す測距情報を生成し、前記測距情報、前記タグ識別情報、および前記端末情報を上位の通信ノードに送信、
     前記上位の通信ノードから列車の乗務員へ伝送される前記乗務員に対する情報である列車運行情報および指示情報を受信し、前記第1のプリアンブル信号、前記列車運行情報、および前記指示情報を前記無線タグに送信、
     を前記無線センサに実施させることを特徴とする記憶媒体。
    A storage medium in which a train operation system is composed of a wireless tag, a plurality of wireless sensors, and an operation management device, and a program for controlling the wireless sensor that transmits a first preamble signal is stored.
    The program
    From the radio tag, a second preamble signal, tag identification information of the radio tag, terminal information about an information device in which the radio tag is incorporated, a transmission time of the second preamble signal, and the first preamble signal. The timing information including the reception time of the preamble signal is received, the second preamble signal is analyzed to calculate the reception time of the radio wave in space, and the transmission time information of the first preamble signal and the timing information are used. The distance between the radio tag and the radio sensor is calculated using the above to generate distance measurement information indicating the distance between the radio tag and the radio sensor, and the distance measurement information, the tag identification information, and the like. And send the terminal information to the upper communication node,
    The train operation information and instruction information, which are information for the crew members transmitted from the upper communication node to the train crew members, are received, and the first preamble signal, the train operation information, and the instruction information are used in the radio tag. send,
    A storage medium, characterized in that the wireless sensor performs the above.
  23.  無線タグ、複数の無線センサ、および運行管理装置によって列車運行システムが構成され、前記運行管理装置を制御するためのプログラムが記憶された記憶媒体であって、
     前記プログラムは、
     下位の通信ノードから前記無線タグの位置を示す測位情報、前記無線タグのタグ識別情報、および前記無線タグが組み込まれている情報機器についての端末情報を受信し、前記測位情報、前記タグ識別情報、および前記端末情報に基づいて、列車の乗務員へ伝送する列車運行情報および指示情報を生成し、前記列車運行情報および前記指示情報を前記下位の通信ノードに送信、
     を前記運行管理装置に実施させることを特徴とする記憶媒体。
    A storage medium in which a train operation system is composed of a wireless tag, a plurality of wireless sensors, and an operation management device, and a program for controlling the operation management device is stored.
    The program
    Positioning information indicating the position of the radio tag, tag identification information of the radio tag, and terminal information about an information device in which the radio tag is incorporated are received from a lower communication node, and the positioning information and the tag identification information are received. , And, based on the terminal information, generate train operation information and instruction information to be transmitted to the train crew, and transmit the train operation information and the instruction information to the lower communication node.
    A storage medium, characterized in that the operation management device is used to carry out the above.
PCT/JP2020/044680 2020-12-01 2020-12-01 Train operation system, train operation method, control circuit, and storage medium WO2022118375A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/044680 WO2022118375A1 (en) 2020-12-01 2020-12-01 Train operation system, train operation method, control circuit, and storage medium
JP2022560972A JP7229437B2 (en) 2020-12-01 2020-12-01 Train operation system, train operation method, control circuit and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044680 WO2022118375A1 (en) 2020-12-01 2020-12-01 Train operation system, train operation method, control circuit, and storage medium

Publications (1)

Publication Number Publication Date
WO2022118375A1 true WO2022118375A1 (en) 2022-06-09

Family

ID=81853010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044680 WO2022118375A1 (en) 2020-12-01 2020-12-01 Train operation system, train operation method, control circuit, and storage medium

Country Status (2)

Country Link
JP (1) JP7229437B2 (en)
WO (1) WO2022118375A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135235A (en) * 2002-10-15 2004-04-30 Matsushita Electric Ind Co Ltd Mobile terminal and uwb communication controller
JP2009159208A (en) * 2007-12-26 2009-07-16 Panasonic Corp Emergency report/vehicle state recognizing system
JP2009161043A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Crew position detecting device
JP2013237409A (en) * 2012-05-17 2013-11-28 Hitachi Ltd Passenger position specifying device
KR20160124298A (en) * 2015-04-16 2016-10-27 (주)티엘씨테크놀로지 System for high precision train position detection using wireless access points and the method thereof
JP2018128893A (en) * 2017-02-09 2018-08-16 東日本旅客鉄道株式会社 Crew arrangement management support system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135235A (en) * 2002-10-15 2004-04-30 Matsushita Electric Ind Co Ltd Mobile terminal and uwb communication controller
JP2009159208A (en) * 2007-12-26 2009-07-16 Panasonic Corp Emergency report/vehicle state recognizing system
JP2009161043A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Crew position detecting device
JP2013237409A (en) * 2012-05-17 2013-11-28 Hitachi Ltd Passenger position specifying device
KR20160124298A (en) * 2015-04-16 2016-10-27 (주)티엘씨테크놀로지 System for high precision train position detection using wireless access points and the method thereof
JP2018128893A (en) * 2017-02-09 2018-08-16 東日本旅客鉄道株式会社 Crew arrangement management support system

Also Published As

Publication number Publication date
JPWO2022118375A1 (en) 2022-06-09
JP7229437B2 (en) 2023-02-27

Similar Documents

Publication Publication Date Title
JP7100149B2 (en) Radio frequency identification system, how to build a relay network, readers, and repeaters
US9385803B2 (en) Provision of broadband access to airborne platforms
EP2985925B1 (en) Wireless charging platform using beamforming for wireless sensor network
US10056938B2 (en) Fast radio frequency communication for sport timing applications
US20110130894A1 (en) System and method for providing driving guidance service to vehicles
US20190215695A1 (en) Methods and apparatus for detecting attacks in v2x networks
WO2013007089A1 (en) Simple and precise radio frequency positioning system and method
TWI431551B (en) System and method for multi-lane free-flow highway electronic toll collection
EP3369215B1 (en) Bulk propagation timing measurement messaging
WO2016056166A2 (en) Wireless communication device and communicaton method
EP2291047B1 (en) Mobile Communication Apparatus, Communication Method, and Communication System
WO2020249314A1 (en) Low power radar in radio communication terminal
US20200100114A1 (en) Methods providing security for multiple nas connections using separate counts and related network nodes and wireless terminals
WO2022118375A1 (en) Train operation system, train operation method, control circuit, and storage medium
US20100322183A1 (en) Wireless communication system, terminal device, and wireless communication method in wireless communication system
US11558752B2 (en) Access spectrum assignment
US11700560B2 (en) Wireless communication system, wireless communication method and terminal device
JP5274387B2 (en) Sensor network system and sensor device
US8792464B2 (en) Communication network for detecting uncooperative communications device and related methods
JP5733187B2 (en) Communication device
CN113748585A (en) Managing power states for a group of aggregation nodes
CN113196361A (en) Communication method and device
JP2015095839A (en) Optical radio communication system and optical radio communication method
CN117499979B (en) Target detection method and device for phased array antenna
KR20140025079A (en) Robot, method for estimating location in the robot, and recording medium for executing the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964229

Country of ref document: EP

Kind code of ref document: A1