WO2022118367A1 - Sound source direction estimation device, program, and sound source direction estimation method - Google Patents

Sound source direction estimation device, program, and sound source direction estimation method Download PDF

Info

Publication number
WO2022118367A1
WO2022118367A1 PCT/JP2020/044623 JP2020044623W WO2022118367A1 WO 2022118367 A1 WO2022118367 A1 WO 2022118367A1 JP 2020044623 W JP2020044623 W JP 2020044623W WO 2022118367 A1 WO2022118367 A1 WO 2022118367A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
sound source
scores
score
source direction
Prior art date
Application number
PCT/JP2020/044623
Other languages
French (fr)
Japanese (ja)
Inventor
英明 寺島
雅哉 安部
武 藤田
礼司 山佐
Original Assignee
三菱電機株式会社
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機株式会社
Priority to CN202080107599.2A priority Critical patent/CN116490451B/en
Priority to PCT/JP2020/044623 priority patent/WO2022118367A1/en
Priority to JP2022564726A priority patent/JP7237255B2/en
Publication of WO2022118367A1 publication Critical patent/WO2022118367A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the present disclosure relates to a sound source direction estimation device, a program, and a sound source direction estimation method.
  • one or more aspects of the present disclosure are intended to ensure that the sound source direction estimation result of the first round trip and the sound source direction estimation result of the second round trip can be integrated.
  • the sound in the hoistway where the elevator car moves for the first time is acquired by the sound collecting unit directed in the first direction on a predetermined plane. Acquisition of acquiring the sound data of 1 and the second sound data acquired by the sound collecting unit directed in the second direction in the plane for the sound in the hoistway where the car moves for the second time.
  • the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane.
  • a plurality of first scores which are a plurality of scores indicating the possibility of the sound source direction of the target sound being recorded, are calculated from the first sound, and the above-mentioned is performed for each angle with respect to the second direction in the plane.
  • a plurality of second scores which are a plurality of scores indicating the possibility of the target sound included in the second sound, which is the sound indicated by the second sound data, in the direction of the sound source, are referred to as the second score.
  • a score calculation unit calculated from sound and a sound source direction estimation unit that estimates the sound source direction using the first score and the second score are provided, and the sound source direction estimation unit is described in the plane.
  • the computer acquires the sound in the hoistway where the elevator car moves for the first time at the sound collecting unit directed in the first direction in a predetermined plane. Acquisition of acquiring the sound data of 1 and the second sound data acquired by the sound collecting unit directed in the second direction in the plane for the sound in the hoistway where the car moves for the second time. A unit, when the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane.
  • a plurality of first scores which are a plurality of scores indicating the possibility of being the sound source direction of the target sound, are calculated from the first sound, and the first score is calculated for each angle with respect to the second direction in the plane.
  • a plurality of second scores which are a plurality of scores indicating the possibility of the target sound being directed to the sound source, included in the second sound, which is the sound indicated by the sound data of 2, are obtained from the second sound.
  • the score calculation unit calculated from the above and the sound source direction are made to function as a sound source direction estimation unit estimated by using the first score and the second score, and the sound source direction estimation unit is the above-mentioned in the plane.
  • the sound in the hoistway where the elevator car moves for the first time is acquired by a sound collecting unit directed in the first direction on a predetermined plane.
  • the sound data of 1 and the second sound data acquired by the sound collecting unit in which the sound in the hoistway where the car moves for the second time is directed to the second direction in the plane are acquired.
  • the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane.
  • a plurality of first scores which are a plurality of scores indicating the possibility of the sound source direction of the target sound, are calculated from the first sound, and the second score is calculated for each angle with respect to the second direction in the plane.
  • a plurality of second scores which are a plurality of scores indicating the possibility of the target sound included in the second sound, which is the sound indicated by the sound data, in the direction of the sound source, are calculated from the second sound. It is a sound source direction estimation method that estimates the sound source direction using the first score and the second score, and is one score selected from the plurality of first scores in the plane.
  • the first straight line which is a straight line extending from the sound collecting portion at an angle corresponding to the first selection score, is rotated around an axis orthogonal to the first direction in the plane.
  • the second selection score which is one score selected from the plurality of second scores in the plane.
  • the sound source direction estimation result of the first round trip and the sound source direction estimation result of the second round trip can be reliably integrated.
  • FIG. It is a block diagram which shows roughly the structure of the sound source direction estimation system in Embodiments 1 to 4. It is a schematic diagram which shows the installation example of the microphone array. It is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 1.
  • FIG. It is a top view which shows the 1st example which put the microphone array on the car of an elevator. It is a top view which shows the 2nd example which put the microphone array on the car of an elevator.
  • It is a first perspective view which shows the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score.
  • FIG. 2 is a second perspective view showing the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. It is a third perspective view which shows the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. It is a fourth perspective view which shows the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. It is a flowchart which shows the process at the time of acquiring a sound data in a sound source direction estimation system. It is a flowchart which shows the process of estimating the sound source direction by the sound source direction estimation apparatus in Embodiment 1. FIG. It is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 2.
  • FIG. 1 shows the state which the score of the 1st round trip was reversed. It is a perspective view which shows the state which the score of the 2nd round trip was reversed. It is a perspective view which shows the example which shifted the angle in the score of the 2nd round trip.
  • (A) to (E) are tables showing the relationship between the angle and the score.
  • FIG. 3 shows an example of the sound source direction estimation apparatus in Embodiment 3.
  • FIG. It is a flowchart which shows the process of estimating the sound source direction by the sound source direction estimation apparatus in Embodiment 3.
  • FIG. is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 4.
  • FIG. 1 is a block diagram schematically showing the configuration of the sound source direction estimation system 100 according to the first embodiment.
  • the sound source direction estimation system 100 includes a computer 101 that functions as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 113.
  • the sound source direction estimation device realized by the computer 101 is a device that executes the sound source direction estimation method.
  • the computer 101 may be a portable terminal device such as a smartphone.
  • the microphone array 110 is a device including a plurality of microphones. In the microphone array 110, the sound data output from each of the plurality of microphones is output in a completely synchronized state.
  • the microphone array 110 may be separated from the computer 101 or may be incorporated into the computer 101 to be integrated. Further, the microphone array 110 may be equipped with an acceleration sensor or an image sensor. These sensors may be installed in the vicinity of the microphone array 110.
  • the input device 111 is a device that receives input from the user.
  • the input device 111 may be separated from the computer 101 or may be incorporated into the computer 101 to be integrated.
  • the output device 112 is a device that outputs the processing result of the computer 101.
  • the output device 112 may be separated from the computer 101 or may be incorporated into the computer 101 to be integrated.
  • the output device 112 is a display, but may be a speaker.
  • the input device 111 and the output device 112 may be configured by, for example, a touch panel.
  • the sensor 113 is a sensor that acquires a synchronization signal for synchronizing the sound data acquired by the microphone array 110.
  • the sensor 113 is an acceleration sensor or an image sensor.
  • the computer 101 includes a processor 102, a main storage device 103, an auxiliary storage device 104, a communication device 105, and an interface (I / F) 106.
  • the processor 102 controls the entire computer 101.
  • the processor 102 is a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), or the like.
  • the processor 102 may be a multiprocessor.
  • the computer 101 may have a processing circuit instead of the processor 102.
  • the processing circuit may be a single circuit or a composite circuit. In other words, the computer can be configured by a processing network.
  • the main storage device 103 is, for example, a RAM (Random Access Memory).
  • the auxiliary storage device 104 is, for example, a ROM (Read Only Memory), an HDD (Hard Disk Drive), or an SSD (Solid State Drive).
  • the main storage device 103 and the auxiliary storage device 104 store various data and programs necessary for processing by the computer 101.
  • the communication device 105 executes communication via the network.
  • the communication device 105 is, for example, a wired LAN (Local Area Network) adapter, a wireless LAN adapter, or a Bluetooth (registered trademark) adapter.
  • the communication device 105 may be referred to as a communication interface.
  • the communication device 105 communicates with an external device.
  • the microphone array 110 is a sound collecting device that functions as a sound collecting unit installed in the hoistway of an elevator.
  • the microphone array 110 is installed above the cage, below the cage, above the counterweight, or below the counterweight.
  • the microphone array 110 is interlocked with the car.
  • the car may be referred to as an elevator car.
  • the hoistway may be referred to as an elevator hoistway.
  • the microphone array 110 may be installed in a pit portion, near a hoist, or in a place where the position does not change due to the elevator operation.
  • the microphone array 110 may be fixed to the hoistway. Further, the microphone array 110 brought by the user may be installed in the hoistway by the user.
  • FIG. 2 is a schematic view showing an installation example of the microphone array 110.
  • FIG. 2 shows a case where the microphone array 110 is installed on a car in the first embodiment.
  • FIG. 2 shows a wall surface 120, a car guide rail 121, a car 122, a car upper guide shoe 123, a car lower guide shoe 124, a counterweight guide rail 125, a counterweight 126, and a counterweight upper guide shoe. 127 and a counterweight lower guide shoe 128 are shown.
  • the wall surface 120 is a concrete wall surface.
  • the car guide rail 121 is a rail for moving the car 122 up and down.
  • the car 122 moves up and down along the car guide rail 121. Therefore, the car guide rail 121 serves as a hoistway for the elevator.
  • the car upper guide shoe 123 and the car lower guide shoe 124 are joints between the car guide rail 121 and the car 122.
  • the counterweight guide rail 125 is a rail for moving the counterweight 126 up and down.
  • the counterweight upper guide shoe 127 and the counterweight lower guide shoe 128 are joints between the counterweight guide rail 125 and the counterweight 126.
  • FIG. 3 is a block diagram showing an example of the sound source direction estimation device according to the first embodiment.
  • the sound source direction estimation device 130 includes an acquisition unit 131, a synchronization unit 132, a data storage unit 133, a score calculation unit 134, a sound source direction estimation unit 135, and an input unit 140.
  • the output unit 141 is provided.
  • the acquisition unit 131 acquires sound data.
  • the acquisition unit 131 acquires sound data from the microphone array 110.
  • the acquisition unit 131 may acquire the sound data from a recording medium in which the sound data is recorded.
  • the sound data is data showing the sound in the hoistway where the elevator car 122 moves. Further, the sound data is sound data of a plurality of channels.
  • the acquisition unit 131 is a microphone array 110 which is a sound collection unit in which the sound in the hoistway where the elevator car 122 moves for the first time is directed to the first direction in a predetermined plane.
  • the first sound data which is the acquired sound data, and the sound in the hoistway where the car 122 moves for the second time are the sound data acquired by the microphone array 110 directed in the second direction on the plane.
  • the predetermined plane is a horizontal plane, but the present invention is not limited to such an example.
  • the acquisition unit 131 acquires synchronization data indicating a signal or the like for synchronization processing performed by the synchronization unit 132.
  • the synchronization data is acquired from, for example, a sensor 113 such as an acceleration sensor or an image sensor.
  • the microphone array 110 and the sensor 113 are mounted on the elevator car 122, for example, and output sound data and synchronization data when the elevator car 122 is reciprocated a plurality of times.
  • FIG. 4 and 5 show a top view showing an example of a case where the microphone array 110 is placed on the elevator car 122 and reciprocated twice.
  • the direction from the microphone array 110 toward the door 129 is referred to as the door direction.
  • the microphone array 110 is directed toward the door in the first round trip, which is the first movement.
  • the microphone array 110 in the second round trip, which is the second movement, the microphone array 110 is directed to the right where the counterweight 126 is present. As described above, the orientation of the microphone array 110 is rotated by 90 degrees between the first round trip and the second round trip. In this way, the orientation of the microphone array 110 in the horizontal plane is changed each time the elevator car 122 is reciprocated.
  • the synchronization unit 132 performs synchronization processing for aligning the start points of the respective sound data when the microphone array 110 is placed on the elevator car 122 and reciprocates in the hoistway a plurality of times.
  • the acceleration data obtained from the acceleration sensor, or the image data or the moving image data obtained from the image sensor is used.
  • the synchronization unit 132 obtains the mutual correlation coefficient from the acceleration data acquired for each of the first and second round trips. By applying the shift amount having the highest mutual correlation coefficient to the sound data, synchronization can be achieved even between the sound data.
  • the synchronization unit 132 obtains, for example, an optical flow. Then, the synchronization unit 132 obtains the mutual correlation coefficient between the first round trip and the second round trip with respect to the time change of the optical flow, and applies the shift amount at which the mutual correlation coefficient becomes the highest to the sound data. It is possible to synchronize between sound data.
  • the synchronization unit 132 may directly calculate the mutual correlation coefficient from the sound data and shift one of the sound data by the shift amount at which the mutual correlation coefficient is the highest to achieve synchronization. Further, the synchronization unit 132 may receive input of a shift amount of sound data from the user via the input device 111 so that the sound data for two round trips are synchronized.
  • the guideline for the accuracy of synchronization is about the duration of the target sound, which is the target sound for which the sound source direction is estimated. For example, when the duration of the target sound is 0.1 second, it is necessary to synchronize so that the target sound is generated at the same timing in the sound data of the first round trip and the second round trip. In this case, it is necessary to synchronize the sound data of the first round trip and the second round trip with an accuracy of about 0.01 to 0.05 seconds.
  • the data storage unit 133 stores data necessary for processing in the sound source direction estimation device 130.
  • the data storage unit 133 includes sound data acquired when the elevator car 122 reciprocates in the hoistway a plurality of times, acceleration data or image data from the sensor 113, and orientation information indicating the orientation of the microphone array 110.
  • the data storage unit 133 stores parameters such as the relationship between the positions of the microphones required for the score calculation process in the score calculation unit 134.
  • the score calculation unit 134 calculates the score of the target sound acquired by the microphone array 110 in the target direction. For example, the score calculation unit 134 identifies target directions that are a plurality of directions on a horizontal plane in which the microphone array 110 is arranged, and scores indicating that each of the plurality of target directions may be a sound source of the target sound. Is calculated. Specifically, when the range of the horizontal angle of the sound acquired by the microphone array 110 is 180 degrees and the resolution in the horizontal direction is 10 degrees, the score calculation unit 134 calculates the score in 19 directions. In this way, the score calculation unit 134 calculates the scores in the plurality of target directions.
  • the horizontal angle is an angle in the horizontal plane with respect to the direction in which the microphone array 110 is facing.
  • the score calculation unit 134 makes an angle with respect to the first direction, which is the direction in which the microphone array 110 is facing in the horizontal plane in the first round trip. For each, a plurality of first scores, which are a plurality of scores indicating the possibility of being the sound source direction of the target sound included in the first sound, which is the sound indicated by the first sound data, are set to the first. It is calculated from the first sound indicated by the sound data. Further, in the second round trip, the score calculation unit 134 converts the second sound, which is the sound indicated by the second sound data, into the second sound for each angle with respect to the second direction, which is the direction in which the microphone array 110 is facing in the horizontal plane. A plurality of second scores, which are a plurality of scores indicating the possibility of being the sound source direction of the included target sound, are calculated.
  • Beamforming, delay sum method, maximum likelihood method, minimum variance method, MUSIC (Multiple SIgnal Classification) method, root-MUSIC method, minimum norm method, CSP (CSP) are used to calculate the score.
  • the Power Spectram Phase Analysis) method or the trained model may be used.
  • the values calculated by these methods may be used as they are as scores, or may be converted into probability densities so that the total value of the scores in the 19 directions becomes 1.0.
  • the calculated score is stored in the data storage unit 133.
  • the sound source direction estimation unit 135 When the car 122 is in a specific position in the hoistway, the sound source direction estimation unit 135 includes a target sound included in the first sound, which is a sound indicated by the first sound data, and a second sound source direction estimation unit 135. The sound source direction of the target sound included in the second sound indicated by the sound data is estimated.
  • the sound source direction estimation unit 135 draws a first straight line extending from the microphone array 110 at an angle corresponding to the first selection score, which is one score selected from the plurality of first scores in the horizontal plane.
  • a second straight line extending from the microphone array 110 at an angle corresponding to the second selection score, which is one score selected from the two scores, is rotated about an axis orthogonal to the second direction in the horizontal plane.
  • the sound source direction estimation unit 135 may select the maximum value of the plurality of first scores as the first selection score and the maximum value of the plurality of second scores as the second selection score. However, when the sound source direction estimation unit 135 selects the maximum value of the plurality of first scores as the first selection score and selects the maximum value of the plurality of second scores as the second selection score, the first When the locus of 1 and the second locus do not intersect, the first selection score is selected in order from the one having the largest first score until the first locus and the second locus intersect. May be good.
  • the sound source direction estimation unit 135 selects the maximum value of the plurality of first scores as the first selection score, and selects the maximum value of the plurality of second scores as the second selection score. When the locus of 1 and the second locus do not intersect, the second locus is selected as the second selection score in order from the one having the largest second score until the first locus and the second locus intersect. May be good.
  • the sound source direction estimation unit 135 includes an intersection calculation unit 136 and a change unit 137.
  • the intersection calculation unit 136 estimates the sound source direction by integrating the sound source direction candidates specified from the scores calculated when the elevator car 122 reciprocates in the hoistway a plurality of times.
  • the integration method when the microphone array 110 is installed on the elevator car 122 and reciprocates twice will be described.
  • the microphone array 110 faces the door direction as shown in FIG. 4 on the first round trip, and faces the right direction where the counterweight 126 exists as shown in FIG. 5 on the second round trip. Since the sound data for two round trips is synchronized by the synchronization unit 132, for example, when the elevator car 122 passes through a specific place in the hoistway for each of the two round trips, a target sound which is some kind of sound is generated. If so, the target sound is recorded at the same time on the sound data for each of the two round trips.
  • the score calculation unit 134 When the score calculation unit 134 performs the score calculation process at the timing when the target sound is recorded, the score in the direction in which the target sound exists in each sound data is output as shown in FIGS. 6 and 7.
  • the horizontal axis of FIGS. 6 and 7 is 0 degrees in front of the microphone array 110, ⁇ 90 degrees to the right, and 90 degrees to the left.
  • the scores estimated by the score calculation unit 134 show different transitions because the directions in which the microphone array 110 is facing are different.
  • FIG. 8 and 9 are perspective views showing a unit sphere centered on the center point 150 of the microphone array 110.
  • FIG. 8 shows the direction of the microphone array 110 in the first round trip and the solid arrow 151 indicating the sound source direction candidate.
  • the intersection calculation unit 136 sets the target direction having the highest score estimated from the sound acquired by the microphone array 110 at the specific time of the first round trip as the sound source direction candidate among the plurality of target directions.
  • FIG. 9 shows the direction of the microphone array 110 in the second round trip and the solid arrow 152 indicating the sound source direction candidate.
  • the intersection calculation unit 136 sets the target direction having the highest score estimated from the sound acquired by the microphone array 110 at the specific time of the second round trip among the plurality of target directions as the sound source direction candidate.
  • the locus 153 is obtained.
  • the straight line L1 is a straight line orthogonal to the horizontal plane in the direction in which the microphone array 110 faces.
  • the locus 154 is obtained.
  • the straight line L2 is a straight line orthogonal to the horizontal plane in the direction in which the microphone array 110 faces.
  • the locus 153 and the locus 154 are directions in which an actual sound source can exist.
  • the score calculation unit 134 calculates a score used for estimating the sound source direction based on the difference in distance between each microphone of the microphone array 110 and the actual sound source position.
  • the locus 153 and the locus 154 are loci of sound source position candidates in which the difference in distance between the microphone and the sound source position is equal. Therefore, as shown in FIG. 10, the intersection 155 between the locus 153 and the locus 154 is the sound source position. That is, the direction of the sound source position indicated by the intersection 155 is estimated as the sound source direction.
  • intersection point 158 When considering three-dimensional Cartesian coordinates with the center point 150 as the origin, the intersection point 158 between the line segment 156 and the line segment 157 is used.
  • the coordinates of the intersection point 158 are (x, y)
  • the horizontal angle ⁇ and the elevation angle ⁇ of the intersection point 155 which is the actual sound source position, can be obtained by the following equations (1) and (2).
  • arctan2 is represented by the following equation (3) based on the inverse function tan -1 of the tan function, and arccos indicates the inverse function of the cos function.
  • the direction indicated by the horizontal angle ⁇ and the elevation angle ⁇ as seen from the center point 150 is the sound source direction, and is the direction of the intersection 155 of the locus 153 and the locus 154.
  • the intersection calculation unit 136 gives the calculation results of the horizontal angle ⁇ and the elevation angle ⁇ to the output unit 141 as the sound source direction.
  • the intersection calculation unit 136 gives information to the change unit 137 that the line segment 156 and the line segment 157 do not intersect when they do not intersect.
  • the change unit 137 changes the sound source direction candidate when the line segment 156 and the line segment 157 do not intersect in the intersection calculation unit 136.
  • FIG. 11 is a schematic view showing an example in which the line segment 156 and the line segment 157 do not intersect.
  • the score calculation unit 134 cannot calculate an accurate score. If the score is not calculated correctly on the first round trip, the second round trip, or both, there is a possibility that the line segment 156 and the line segment 157 do not intersect as shown in FIG. In this case, the intersection calculation unit 136 cannot estimate the sound source direction. Therefore, the change unit 137 changes the sound source direction candidate so that the intersection calculation unit 136 can estimate the sound source direction.
  • the change unit 137 extracts a plurality of scores calculated for each of the first round trip and the second round trip in descending order, and gives an angle corresponding to the extracted score to the intersection calculation unit 136 as a new sound source direction candidate.
  • the intersection calculation unit 136 calculates the intersection with a new sound source direction candidate.
  • the change unit 137 may set the angle corresponding to the score in descending order of the score as a new sound source direction candidate only for the score of the first round trip. In this case, for the second round trip, the angle corresponding to the highest score is fixed as a sound source direction candidate. Further, the change unit 137 may set the angle corresponding to the score in descending order of the score as a new sound source direction candidate only for the score of the second round trip. In this case, for the first round trip, the angle corresponding to the highest score is fixed as a sound source direction candidate. Further, the changing unit 137 may set the corresponding angles as new sound source direction candidates in descending order of the scores for both the score of the first round trip and the score of the second round trip.
  • the score of the first round trip calculated by the score calculation unit 134 and 2 by repeating the process of calculating the intersection point by the intersection calculation unit 136 using the new sound source direction candidate specified by the change unit 137. Based on the score of the round trip, the sound source direction can be reliably estimated in the range of the horizontal angle of 0 to 360 degrees and the elevation angle of 0 to 90 degrees.
  • the input unit 140 receives the input of information necessary for processing in the sound source direction estimation device 130 via the input device 111.
  • the input information is, for example, in which direction the microphone array 110 is rotated 90 degrees in the second round trip, or the rotation angle of the microphone array 110.
  • the information input by the input unit 140 is stored in the data storage unit 133.
  • the output unit 141 outputs information indicating the sound source direction to the output device 112. For example, when the output device 112 is a display, the output unit 141 outputs information indicating the sound source direction to the display. As a result, the display displays information indicating the direction of the sound source. Further, for example, when the output device 112 is a speaker, the output unit 141 outputs information indicating the sound source direction to the speaker. As a result, the speaker outputs information indicating the direction of the sound source by voice.
  • the sound source direction estimation device 130 described above can be realized by the computer 101 shown in FIG.
  • the acquisition unit 131 can be realized by the I / F 106.
  • the data storage unit 133 can be realized by the main storage device 103 or the auxiliary storage device 104.
  • a part or all of the synchronization unit 132, the score calculation unit 134, the intersection calculation unit 136, the change unit 137, the input unit 140, and the output unit 141 read the program stored in the auxiliary storage device 104 into the main storage device 103. , It can be realized by executing the program by the processor 102.
  • the program executed by the processor 102 is also referred to as a sound source specifying program.
  • the sound source specifying program is recorded on a recording medium.
  • a program may be provided through a network, or may be recorded and provided on a recording medium. That is, such a program may be provided, for example, as a program product.
  • a part or all of the synchronization unit 132, the score calculation unit 134, the intersection calculation unit 136, the change unit 137, the input unit 140, and the output unit 141 may be realized by a processing circuit (not shown). That is, these may be realized by a processing network.
  • FIG. 12 is a flowchart showing a process for acquiring sound data in the sound source direction estimation system 100.
  • the flowchart here assumes that the user has installed the microphone array 110 on the car 122.
  • the microphone array 110 starts recording the sound data of the first round trip (S10). Then, while the car 122 is moving on the hoistway, the microphone array 110 acquires sound data (S11). Here, the car 122 reciprocates in the hoistway by descending after ascending or ascending after descending. Then, the sound in the hoistway is input to the microphone array 110.
  • the microphone array 110 finishes recording the sound data of the first round trip (S12).
  • the recorded sound data is input to the sound source direction estimation device 130 via the acquisition unit 131 and stored in the data storage unit 133.
  • the user rotates the microphone array 110 horizontally by 90 degrees (S13).
  • the user inputs the rotation angle
  • the user inputs the rotation direction and the rotation angle (here, 90 degrees) of the microphone array 110 via the input device 111.
  • Such information is acquired by the input unit 140 and stored in the data storage unit 133.
  • the microphone array 110 starts recording the sound data for the second round trip (S14). Then, while the car 122 is moving on the hoistway, the microphone array 110 acquires sound data (S15). The car 122 moves in the same direction as in step S11 and at the same speed.
  • the microphone array 110 ends the recording of the sound data for the second round trip (S16).
  • the recorded sound data is input to the sound source direction estimation device 130 via the acquisition unit 131 and stored in the data storage unit 133.
  • FIG. 13 is a flowchart showing a process of estimating the sound source direction by the sound source direction estimation device 130 in the first embodiment.
  • the flowchart here is based on the premise that the sound data for two round trips is stored in the data storage unit 133.
  • the synchronization unit 132 synchronizes the sound data for two round trips (S20).
  • the score calculation unit 134 calculates a score from each of the synchronized sound data for two round trips (S21).
  • the intersection calculation unit 136 identifies a sound source direction candidate using the score calculated by the score calculation unit 134 (S22).
  • the intersection calculation unit 136 sets the target direction corresponding to the highest score from the plurality of scores calculated for the plurality of target directions of the first round trip as the sound source direction candidate, and the plurality of second round trips.
  • the target direction corresponding to the highest score from the plurality of scores calculated for the target direction of is set as the sound source direction candidate.
  • intersection calculation unit 136 refers to the locus of the two sound source position candidates specified from the two sound source direction candidates with respect to the horizontal plane of the microphone array 110 in the unit sphere centered on the center point 150 of the microphone array 110.
  • the two line segments projected by the above are specified (S23).
  • the intersection calculation unit 136 determines whether or not there is an intersection in the two line segments specified in step S23 (S24). If the two line segments have an intersection (Yes in S24), the process proceeds to step S25, and if the two line segments do not have an intersection (No in S24), the process proceeds to step S27.
  • step S25 the intersection calculation unit 136 estimates the sound source direction from the intersection of the two line segments.
  • the information indicating the sound source direction estimated in this way is given to the output unit 141.
  • the output unit 141 performs a process of outputting the sound source direction based on the given information (S26).
  • step S27 the changing unit 137 changes at least one sound source direction candidate among the two sound source direction candidates. Then, the process returns to step S23.
  • step S23 the intersection calculation unit 136 identifies two line segments using the changed sound source direction candidates.
  • the sound source direction estimation device 130 uses a 2ch microphone array 110 to generate a sound source in the range of 0 to 360 degrees in the horizontal direction and 0 to 90 degrees in the elevation direction from the sound data indicating the sound in the hoistway.
  • the direction can be estimated with certainty.
  • the sound source direction candidate is changed and the first round trip and the second round trip are performed.
  • the final sound source direction can be estimated by integrating the sound source direction candidates.
  • Embodiment 2 Next, the second embodiment will be described. In the second embodiment, the matters different from the first embodiment will be mainly described. Then, in the second embodiment, the description of the matters common to the first embodiment will be omitted.
  • the change unit 137 changes the sound source direction candidate. There is.
  • a method of estimating the sound source direction by a method different from that of the first embodiment will be described.
  • the sound source direction estimation system 200 includes a computer 101 functioning as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 113. And prepare.
  • the sound source direction estimation system 200 according to the second embodiment is different from the sound source direction estimation system 100 according to the first embodiment in the processing by the computer 101.
  • FIG. 14 is a block diagram showing an example of the sound source direction estimation device according to the second embodiment.
  • the sound source direction estimation device 230 includes an acquisition unit 131, a synchronization unit 132, a data storage unit 133, a score calculation unit 134, a sound source direction estimation unit 235, and an input unit 140.
  • the output unit 141 is provided.
  • the acquisition unit 131, synchronization unit 132, data storage unit 133, score calculation unit 134, input unit 140, and output unit 141 of the sound source direction estimation device 230 according to the second embodiment acquire the sound source direction estimation device 130 according to the first embodiment. This is the same as the unit 131, the synchronization unit 132, the data storage unit 133, the score calculation unit 134, the input unit 140, and the output unit 141.
  • the sound source direction estimation unit 235 When the car 122 is in a specific position in the hoistway, the sound source direction estimation unit 235 includes a target sound included in the first sound, which is a sound indicated by the first sound data, and a second sound source direction estimation unit 235. The sound source direction of the target sound included in the second sound indicated by the sound data is estimated.
  • the sound source direction estimation unit 235 selects the maximum value of the plurality of first scores as the first selection score, and selects the maximum value of the plurality of second scores as the second selection score.
  • a plurality of angles in the range from the first direction to 360 ° with respect to the first direction in the horizontal plane and a range in which a plurality of first scores are not calculated are obtained.
  • a plurality of first complementary scores are calculated.
  • the sound source direction estimation unit 235 has a plurality of positions for each angle in a range from the second direction to 360 ° with respect to the second direction in the horizontal plane and in a range in which a plurality of second scores have not been calculated.
  • a plurality of second complementary scores are calculated. Then, the sound source direction estimation unit 235 corrects the angle with respect to the second direction so that the angle with respect to the second direction matches the angle with respect to the first direction, and the plurality of first scores and the plurality of firsts are corrected.
  • the direction in the horizontal plane corresponding to the angle in which the value obtained by averaging the complementary score, the plurality of second scores, and the plurality of second complementary scores for each modified angle is the largest is defined as the sound source direction.
  • the sound source direction estimation unit 235 includes an intersection calculation unit 136 and an estimation unit 238.
  • the intersection calculation unit 136 of the sound source direction estimation unit 235 in the second embodiment is the same as the intersection calculation unit 136 of the sound source direction estimation unit 135 in the first embodiment. However, as shown in FIG. 11, when the line segment 156 and the line segment 157 do not intersect, the intersection calculation unit 136 gives information to the estimation unit 238 that the line segment 156 and the line segment 157 do not intersect.
  • the estimation unit 238 estimates the sound source direction in the intersection calculation unit 136 when the intersection 158 as shown in FIG. 10 cannot be obtained.
  • the score for the first round trip is [A -90 , A- 80 , ..., A - 10 , A0 , A10, ..., A80 , A90 ], and the score for the second round trip. Is [B -90 , B- 80 , ..., B - 10 , B0 , B10, ..., B80 , B90 ].
  • “A 0 " indicates a score of a horizontal angle of 0 degrees for the first round trip.
  • B 0 indicates a score of a horizontal angle of 0 degrees for the second round trip.
  • the estimation unit 238 sets the score of the first round trip to [A 0 , A- 10 , A- 20 , ..., A- 60 , A- 70 , A - 80 , A-. 90 , A - 80 , ..., A - 10 , A0 , A10 , ..., A80 , A90 , A80, A70, A60 , ..., A20 , A10 , A [ 0 ], so that it is folded back at each of A -90 and A90 , [A- 180 , A- 170 , A- 160 , ..., A- 130 , A -120 , A -110 , A.
  • the score of [A 0 , A- 10 , A- 20 , ..., A- 60 , A- 70 , A- 80 ] is assigned, and the score of [A 100 , A 110 , A 120 , ..., A 160 , A 170 , A 180 ] are assigned the scores of [A 80 , A 70 , A 60 , ..., A 20 , A 10 , A 0 ].
  • the estimation unit 238 expands the score from ⁇ 90 degrees to 90 degrees to the score from ⁇ 180 degrees to 180 degrees. That is, the estimation unit 238 complements the score by inverting the score so that the straight line passing through the two microphones is symmetrical.
  • FIG. 15 is a perspective view schematically showing how the score of the first round trip is inverted as described above.
  • the line SL1 showing the score of 90 ° to ⁇ 90 ° is symmetrical with respect to the straight line L1 passing through the two microphones constituting the microphone array 110 from ⁇ 90 ° to ⁇ 90 °. It is extended like the line SL2 showing a score of 90 °.
  • the estimation unit 238 also describes the score for the second round trip as [B 0 , B- 10 , B- 20 , ..., B- 60 , B- 70 , B- 80 , B -90 , B- 80 . , ..., B -10 , B 0 , B 10 , ..., B 80 , B 90 , B 80 , B 70 , B 60 , ..., B 20 , B 10 , B 0 ] and so on.
  • the score from -90 degrees to 90 degrees is expanded to the score from -180 degrees to 180 degrees to perform complementation.
  • FIG. 16 is a perspective view schematically showing how the score of the second round trip is inverted as described above.
  • the line SL3 showing the score of 90 degrees to ⁇ 90 degrees is symmetrical with respect to the straight line L2 passing through the two microphones constituting the microphone array 110 from ⁇ 90 degrees to ⁇ 90 degrees. It is extended like the line SL4 showing a score of 90 degrees.
  • the estimation unit 238 shifts the angle of the second round trip by 90 degrees so that the horizontal angle of the score of the second round trip matches the horizontal angle of the score of the first round trip.
  • the angle arrangements are different in FIGS. 15 and 16, by performing such processing, as shown in FIG. 17, the angle arrangement corresponding to the score of the second round trip is obtained in FIG. Consistent with the angular arrangement shown in.
  • FIG. 18 (A) to 18 (E) are tables showing the relationship between the angle processed as described above and the score.
  • FIG. 18A is a table showing the relationship between the score and the angle of the first round trip inverted by the estimation unit 238. As shown in FIG. 18A, the score of the first round trip horizontal angle of 90 degrees to ⁇ 90 degrees is expanded from the horizontal angle of ⁇ 180 degrees to 170 degrees.
  • FIG. 18B is a table showing the relationship between the score and the angle of the second round trip inverted by the estimation unit 238. As shown in FIG. 18B, the score of the second round trip horizontal angle of 90 degrees to ⁇ 90 degrees is expanded from the horizontal angle of ⁇ 180 degrees to 170 degrees.
  • FIG. 18C is a table showing the relationship between the score and the angle of the second round trip when the angle shown in FIG. 18B is shifted by 90 degrees.
  • FIG. 18 (D) is a table in which the relationship between the angle and the score shown in FIG. 18 (C) is rearranged so as to be similar to the arrangement of the angles in FIG. 18 (A).
  • FIG. 18E shows a table showing the relationship between the angle shown in FIG. 18A and the score of the first round trip, and the angle shown in FIG. 18C and the second round trip. It is a table that summarizes the table showing the relationship with the score.
  • the estimation unit 238 averages the score of the first round trip and the score of the second round trip for each corresponding angle in FIG. 18 (E). For example, the estimation unit 238 calculates an average value by a synergistic average or an arithmetic mean, and sets the horizontal angle having the highest average value as the horizontal angle in the sound source direction and the elevation angle in the sound source direction as 0 degree. Based on the above, the estimation unit 238 estimates the sound source direction. The estimation result of the sound source direction is given to the output unit 141.
  • the horizontal angle is divided every 10 degrees, but even if the division angle is different, the range of the horizontal angle can be expanded by folding back at -90 degrees and 90 degrees in the same manner. ..
  • the score is calculated for either the first round trip, the second round trip, or both the first round trip and the second round trip, as in the first round trip. Even if there is an error, the sound source direction can be estimated.
  • Embodiment 3 Next, the third embodiment will be described.
  • the matters different from the first and second embodiments will be mainly described.
  • the description of the matters common to the first and second embodiments will be omitted.
  • the change unit 137 changes the sound source direction candidate.
  • the sound source direction is estimated by processing the score for two round trips.
  • the method of estimating the sound source direction is different when the intersection 158 in FIG. 10 cannot be obtained from the scores for two round trips by the intersection calculation unit 136.
  • a method of determining which of the sound source directions calculated by the methods described in the first embodiment and the second embodiment is selected in such a case will be described.
  • the sound source direction estimation system 300 includes a computer 101 functioning as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 113. And prepare.
  • the sound source direction estimation system 300 according to the third embodiment is different from the sound source direction estimation system 100 according to the first embodiment in the processing by the computer 101.
  • FIG. 19 is a block diagram showing an example of the sound source direction estimation device according to the third embodiment.
  • the sound source direction estimation device 330 includes an acquisition unit 131, a synchronization unit 132, a data storage unit 133, a score calculation unit 334, a sound source direction estimation unit 335, and an input unit 140.
  • the acquisition unit 131, synchronization unit 132, data storage unit 133, and input unit 140 of the sound source direction estimation device 330 according to the third embodiment are the acquisition unit 131, synchronization unit 132, and data storage of the sound source direction estimation device 130 according to the first embodiment. This is the same as the unit 133 and the input unit 140.
  • the score calculation unit 334 cuts out a section for performing sound source direction estimation from the sound data for two round trips synchronized by the synchronization unit 132. At this time, the score calculation unit 334 specifies the section information including the start time, the end time, and the cutout length for cutting out the section, and cuts out the section sound data which is the sound data of the section. The score calculation unit 334 calculates the score in the target direction of the sound acquired by the microphone array 110 for each section sound data cut out. The score calculated here is stored in the data storage unit 133.
  • the sound source direction estimation unit 335 includes a sound source direction candidate specified from the sound data acquired by the microphone array 110 on the first round trip of the elevator car 122 and sound data acquired by the microphone array 110 on the first round trip of the elevator car 122. Combine with the sound source direction candidates specified from. For example, the sound source direction estimation unit 335 has a sound source direction candidate specified from the score calculated from the sound data acquired by the microphone array 110 in the first round trip of the elevator car 122, and the microphone array 110 is 2 of the elevator car 122. The sound source direction is estimated by integrating with the sound source direction candidate specified from the score calculated from the sound data acquired on the round trip.
  • the sound source direction estimation unit 335 in the third embodiment both estimates the sound source direction in the first embodiment and estimates the sound source direction in the second embodiment. Therefore, the sound source direction estimation unit 335 includes an intersection calculation unit 136 that performs the same processing as the intersection calculation unit 136 of the first embodiment, and a change unit 137 that performs the same processing as the change unit 137 of the first embodiment.
  • the estimation unit 238 that performs the same processing as the estimation unit 238 of the second embodiment is provided. Specifically, when the intersection point 158 in FIG. 10 cannot be obtained from the scores for two round trips by the intersection calculation unit 136, the sound source direction candidate is changed by the change unit 137, and the intersection calculation unit 136 is changed. The sound source direction is estimated from the sound source direction candidates.
  • the estimation unit 238 estimates the sound source direction by processing the scores for the two round trips. .. As a result, two estimation results in the sound source direction can be obtained in the same section.
  • the two sound source direction estimation results are recorded in the data storage unit 133.
  • the car position estimation unit 342 estimates the car position, which is the position of the car 122 in the hoistway, based on the data from the sensor 113 acquired by the acquisition unit 131. For example, when the sensor 113 is an acceleration sensor, the car position can be obtained by integrating the acceleration in the vertical direction twice. Further, when the sensor 113 is an image sensor, the car position can be estimated from the amount of change in the image data at each time. The existing method may be used for these calculations.
  • the priority order specifying unit 343 specifies the priority in the two sound source directions.
  • the priority specifying unit 343 is the same as that of the first embodiment by comparing the direction in which the car 122 is advancing with the first sound source direction obtained by the same method as that of the first embodiment.
  • the priority order between the first sound source direction obtained by the method and the second sound source direction obtained by the same method as in the second embodiment is specified.
  • the priority order specifying unit 343 specifies the priority by comparing the sound source direction in the section where the two sound source directions are estimated with the car position.
  • the priority specifying unit 343 specifies the car moving direction, which is the moving direction of the car in the section where the two sound source directions are estimated, from the car position obtained from the car position estimation unit 342. Since the elevation angle direction of the sound source is obtained in the sound source direction obtained by the same method as in the first embodiment, the priority specifying unit 343 is in a section in which two sound source directions are estimated from the elevation angle direction. Specify the elevation angle change direction, which is the direction in which the elevation angle direction changes.
  • the priority specifying unit 343 compares the car moving direction with the elevation angle changing direction. Specifically, when the car moving direction is upward and the elevation angle changing direction is also upward, there is no object that moves upward faster than the car, so it is estimated by the same method as in the first embodiment. There is a contradiction in the direction of the sound source. In this case, the priority specifying unit 343 raises the priority of the sound source direction estimated by the same method as in the second embodiment to higher than the priority of the sound source direction estimated by the same method as the first embodiment. To.
  • the priority order specifying unit 343 sets the priority of the sound source direction estimated by the same method as in the second embodiment to the first embodiment. It should be higher than the priority of the sound source direction estimated by the same method.
  • the priority order specifying unit 343 when the car moving direction and the elevation angle changing direction are different, in other words, the car moving direction is upward and the elevation angle changing direction is downward, or the car moving direction is downward.
  • the elevation angle change direction is upward, the priority of the sound source direction estimated by the same method as in the first embodiment is higher than the priority of the sound source direction estimated by the same method as the second embodiment. Also on top.
  • the priority specifying unit 343 gives the output unit 341 priority information indicating the priority specified as described above.
  • the output unit 341 outputs information indicating the sound source direction to the output device 112.
  • the sound source direction is such that the priority order specified by the priority specifying unit 343 can be known as the upper sound source direction. Is output to the output device 112. This allows the user to know which sound source direction has the higher priority.
  • FIG. 20 is a flowchart showing a process of estimating the sound source direction by the sound source direction estimation device 330 in the third embodiment.
  • the flowchart here is based on the premise that the sound data for two round trips is stored in the data storage unit 133.
  • the synchronization unit 132 synchronizes the sound data for two round trips (S30).
  • the score calculation unit 334 cuts out the section sound data to be processed in order from the beginning of the synchronized sound data for two round trips (S31). Next, the score calculation unit 334 calculates the score from the section sound data (S32).
  • the sound source direction estimation unit 335 estimates the sound source direction using the score calculated by the score calculation unit 334 (S33).
  • the sound source direction estimation unit 335 estimates the sound source direction by the same method as in the first embodiment when the intersection point 158 in FIG. 10 cannot be obtained from the scores for two round trips by the intersection calculation unit 136.
  • the sound source direction is estimated by the same method as in the second embodiment.
  • the sound source direction estimated by the same method as in the first embodiment is also referred to as a first sound source direction
  • the sound source direction estimated by the same method as in the second embodiment is also referred to as a second sound source direction.
  • the car position estimation unit 342 estimates the car position (S34). Then, the score calculation unit 334 determines whether or not the section in which the sound source direction is estimated is the last section (S35). For example, the score calculation unit 334 may make such a determination depending on whether or not the section sound data has reached the end time. Then, when the section in which the sound source direction is estimated is the last section (Yes in S35), the process proceeds to step S36. On the other hand, when the section in which the sound source direction is estimated is not the last section (No in S35), the process returns to step S31, and the score calculation unit 334 cuts out the sound data of the next section as the section sound data. , Calculate the score.
  • step S36 the priority order specifying unit 343 specifies the priority of the first sound source direction and the second sound source direction for each section in which the first sound source direction and the second sound source direction are estimated.
  • the output unit 341 outputs information indicating the estimated sound source direction (S37).
  • the output unit 341 outputs so that the priority order of the first sound source direction and the second sound source direction can be known.
  • the third embodiment by specifying the priority order in the sound source direction estimated by a plurality of methods, it is possible to present a more reliable sound source direction estimation result to the user.
  • Embodiment 4 Next, the fourth embodiment will be described.
  • the matters different from the first and second embodiments will be mainly described.
  • the description of the matters common to the first and second embodiments will be omitted.
  • the user inputs the angle and direction in which the microphone array 110 is rotated to the input unit 140.
  • the orientation of the microphone array 110 is estimated so that the user's input can be omitted.
  • the sound source direction estimation system 400 includes a computer 101 functioning as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 413. And prepare.
  • the computer 101, microphone array 110, input device 111 and output device 112 of the sound source direction estimation system 400 according to the fourth embodiment are the computer 101, microphone array 110, input device 111 and output of the sound source direction estimation system 100 according to the first embodiment. It is the same as the device 112.
  • the processing by the computer 101 is different from the sound source direction estimation system 100 in the first embodiment.
  • the sensor 413 in the fourth embodiment may include a geomagnetic sensor or an angular velocity sensor.
  • FIG. 21 is a block diagram showing an example of the sound source direction estimation device according to the fourth embodiment.
  • the sound source direction estimation device 430 includes an acquisition unit 431, a synchronization unit 132, a data storage unit 133, a score calculation unit 134, a sound source direction estimation unit 135, and an input unit 140.
  • the output unit 141 and the microphone array direction estimation unit 444 are provided.
  • the synchronization unit 132, the data storage unit 133, the score calculation unit 134, the sound source direction estimation unit 135, the input unit 140, and the output unit 141 of the sound source direction estimation device 430 according to the fourth embodiment are the sound source direction estimation device 130 according to the first embodiment. This is the same as the synchronization unit 132, the data storage unit 133, the score calculation unit 134, the sound source direction estimation unit 135, the input unit 140, and the output unit 141. However, the sound source direction estimation unit 135 uses the direction of the microphone array 110 estimated by the microphone array direction estimation unit 444 instead of the angle and direction in which the microphone array 110 input by the input unit 140 is rotated. Estimate.
  • the acquisition unit 431 acquires sound data and synchronization data as in the first embodiment. Further, the acquisition unit 431 acquires estimation data for estimating the direction of the microphone array 110. For example, the acquisition unit 431 may acquire data as estimation data from at least one of the geomagnetic sensor, the angular acceleration sensor, and the image sensor included in the sensor 413. Then, the acquired estimation data is stored in the data storage unit 133. The estimation data is acquired every time the car is reciprocated along the hoistway.
  • the microphone array direction estimation unit 444 is a direction estimation unit that estimates the direction in which the microphone array 110 as a sound collecting unit is facing. For example, the microphone array direction estimation unit 444 estimates the direction of the microphone array using the estimation data. First, a method of estimating the orientation of the microphone array 110 when the sensor 413 is an image sensor will be described.
  • the image sensor When installing the microphone array 110, for example, the image sensor is fixedly installed on the microphone array 110 so as to face upward in the hoistway. In this state, the image data in the first round trip is acquired. In the second round trip, the user manually rotates the microphone array 110 around 90 degrees. In this state, the image data in the second round trip is acquired.
  • the microphone array direction estimation unit 444 uses the intercorrelation function between the image shown by the image data of the first round trip and the image shown by the image data of the second round trip, and the image shown by the image data of the first round trip. And the rotation angle with the image shown by the image data of the second round trip can be obtained. As a result, the microphone array direction estimation unit 444 can determine how much the second round trip has rotated in which direction with respect to the first round trip.
  • the actual angle is calculated by integrating the angular acceleration twice when the user rotates and installs the microphone array 110 to which the angular acceleration sensor is fixed. Can be done. Thereby, the microphone array direction estimation unit 444 can obtain the angle and the rotation direction of the first round trip and the second round trip.
  • the microphone array direction estimation unit 444 directs the microphone array 110 from the X-axis magnetic field and the Y-axis magnetic field output from the geomagnetic sensor from the following equation (4). You can ask. (4)
  • Y is a magnetic value on the Y axis
  • X is a magnetic value on the X axis.
  • intersection calculation unit 136 performs the same processing described in the first embodiment. However, the difference between the angle of the first round-trip microphone array and the angle of the second round-trip microphone array 110 is not set to 90 degrees, but the angle difference estimated by the microphone array direction estimation unit 444.
  • the rotation direction of the second round-trip microphone array 110 when viewed from the first round-trip microphone array 110 is clockwise, but in the fourth embodiment, the microphone array 110 The rotation direction is also set to match the rotation direction estimated by the microphone array direction estimation unit 444.
  • the user does not need to input the rotation angle of the microphone array 110, and the sound source direction can be estimated more easily. Further, by calculating the rotation angle of the microphone array 110 by the microphone array direction estimation unit 444, the actual rotation angle when the microphone array 110 is manually rotated can be accurately reflected in the intersection calculation unit 136. , It will be possible to estimate the sound source direction more accurately.
  • the fourth embodiment an example in which the microphone array direction estimation unit 444 is provided in the sound source direction estimation device 130 in the first embodiment is shown, but the fourth embodiment is not limited to such an example.
  • the sound source direction estimation device 230 in the second embodiment or the sound source direction estimation device 330 in the third embodiment may be provided with the microphone array direction estimation unit 444.
  • the angle ⁇ has been described as an elevation angle, but the angle ⁇ may be a depression angle. Therefore, the sound source direction estimation units 135 to 335 may treat the angle ⁇ calculated as described above as the elevation angle and the depression angle, and may estimate the two upper and lower directions as the sound source direction. Further, the sound source direction estimation units 135 to 335 may treat the angle ⁇ as a depression angle and estimate the sound source direction.
  • 100, 200, 300, 400 sound source direction estimation system 101 computer, 110 microphone array, 111 input device, 112 output device, 113 sensor, 120 wall surface, 121 car guide rail, 122 car, 123 car top guide shoe, 124 car bottom Guide shoe, 125 counter weight guide rail, 126 counter weight, 127 counter weight upper guide shoe, 128 counter weight lower guide shoe, 130, 230, 330, 430 sound source direction estimation device, 131, 431 acquisition unit, 132 synchronization unit, 133 Data storage unit, 134,334 score calculation unit, 135,235,335 sound source direction estimation unit, 136 intersection point calculation unit, 137 change unit, 238 estimation unit, 140 input unit, 141 output unit, 342 car position estimation unit, 343 priority Ranking identification unit, 444 microphone array direction estimation unit.

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Abstract

A sound source direction estimation device (130) comprises: an acquisition unit (131) that acquires first sound data in which the sound inside an elevator shaft through which an elevator car travels a first time is acquired by a sound collection unit pointed in a first direction on a predetermined plane, and second sound data in which the sound inside the elevator shaft through which the elevator car travels a second time is acquired by the sound collection unit pointed in a second direction on the plane; a score calculation unit (134) that calculates, from the first sound, a plurality of first scores, which are a plurality of scores indicating the possibility of being a sound source direction for each angle relative to the first direction in the plane, and calculates, from the second sound, a plurality of second scores, which are a plurality of scores indicating the possibility of being a sound source direction for each angle relative to the second direction in the plane; and a sound source direction estimation unit (135) that uses the first scores and the second scores to estimate the sound source direction of a target sound when the car is in a particular location in the elevator shaft.

Description

音源方向推定装置、プログラム及び音源方向推定方法Sound source direction estimation device, program and sound source direction estimation method
 本開示は、音源方向推定装置、プログラム及び音源方向推定方法に関する。 The present disclosure relates to a sound source direction estimation device, a program, and a sound source direction estimation method.
 従来から、エレベータの昇降路内において2ch(channel)マイクロホンアレイを用いて異常音の音源方向を推定する技術がある(例えば、特許文献1を参照)。しかしながら、2chマイクロホンアレイでは基本的に水平方向180度の範囲までしか音源方向を推定することしかできない。
 このため、マイクアレイの方向を変更することで、音源方向を推定する技術がある。例えば、1往復目と、2往復目とで、2chマイクロホンアレイの向きを変更して、一往復目の音源推定結果と、2往復目の音源推定結果とを統合する技術がある。
Conventionally, there is a technique of estimating the sound source direction of abnormal sound using a 2ch (channel) microphone array in the hoistway of an elevator (see, for example, Patent Document 1). However, with the 2ch microphone array, basically, the sound source direction can only be estimated up to the range of 180 degrees in the horizontal direction.
Therefore, there is a technique for estimating the sound source direction by changing the direction of the microphone array. For example, there is a technique of changing the direction of the 2ch microphone array between the first round trip and the second round trip to integrate the sound source estimation result of the first round trip and the sound source estimation result of the second round trip.
特開2013-060295号公報Japanese Unexamined Patent Publication No. 2013-060295
 しかしながら、エレベータ昇降路のような音の反射が多く発生し、音源方向推定の誤差が発生しやすい環境にて2chマイクロホンアレイを用いて音源位置を推定する場合、音源方向推定の誤差によって、1往復目の音源方向推定結果と、2往復目の音源方向推定結果とを統合できない場合がある。 However, when estimating the sound source position using a 2ch microphone array in an environment where a lot of sound reflection occurs such as an elevator hoistway and an error in sound source direction estimation is likely to occur, one round trip is caused by the error in sound source direction estimation. It may not be possible to integrate the sound source direction estimation result of the eye and the sound source direction estimation result of the second round trip.
 そこで、本開示の一又は複数の態様は、1往復目の音源方向推定結果と、2往復目の音源方向推定結果とを確実に統合できるようにすることを目的とする。 Therefore, one or more aspects of the present disclosure are intended to ensure that the sound source direction estimation result of the first round trip and the sound source direction estimation result of the second round trip can be integrated.
 本開示の一態様に係る音源方向推定装置は、エレベータのかごが一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部で取得した第1の音データと、前記かごが二回目に移動する前記昇降路内の音を、前記平面における第2の方向に向けられた前記集音部で取得した第2の音データとを取得する取得部と、前記昇降路内において前記かごが特定の位置にある場合に、前記平面における前記第1の方向に対する角度毎に、前記第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、前記第1の音から算出し、前記平面における前記第2の方向に対する角度毎に、前記第2の音データで示される音である第2の音に含まれている前記対象音の前記音源方向である可能性を示す複数のスコアである複数の第2のスコアを、前記第2の音から算出するスコア算出部と、前記音源方向を、前記第1のスコア及び前記第2のスコアを用いて推定する音源方向推定部と、を備え、前記音源方向推定部は、前記平面において前記複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度で前記集音部から伸びる直線である第1の直線を、前記平面において前記第1の方向に直交する軸を中心に回転させることで、前記第1の直線が前記集音部を中心とする単位球と接触する点が移動する第1の軌跡と、前記平面において前記複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度で前記集音部から伸びる直線である第2の直線を、前記平面において前記第2の方向に直交する軸を中心に回転させることで、前記第2の直線が前記単位球と接触する点が移動する第2の軌跡との交点を、前記音源方向とすることを特徴とする。 In the sound source direction estimation device according to one aspect of the present disclosure, the sound in the hoistway where the elevator car moves for the first time is acquired by the sound collecting unit directed in the first direction on a predetermined plane. Acquisition of acquiring the sound data of 1 and the second sound data acquired by the sound collecting unit directed in the second direction in the plane for the sound in the hoistway where the car moves for the second time. When the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane. A plurality of first scores, which are a plurality of scores indicating the possibility of the sound source direction of the target sound being recorded, are calculated from the first sound, and the above-mentioned is performed for each angle with respect to the second direction in the plane. A plurality of second scores, which are a plurality of scores indicating the possibility of the target sound included in the second sound, which is the sound indicated by the second sound data, in the direction of the sound source, are referred to as the second score. A score calculation unit calculated from sound and a sound source direction estimation unit that estimates the sound source direction using the first score and the second score are provided, and the sound source direction estimation unit is described in the plane. A first straight line extending from the sound collecting unit at an angle corresponding to the first selected score, which is one score selected from the plurality of first scores, is orthogonal to the first direction in the plane. From the first locus in which the point where the first straight line comes into contact with the unit sphere centered on the sound collecting portion moves by rotating the axis around the sound, and from the plurality of second scores in the plane. A second straight line extending from the sound collecting unit at an angle corresponding to the second selected score, which is one selected score, is rotated about an axis orthogonal to the second direction in the plane. This is characterized in that the intersection of the second straight line with the second locus on which the point of contact with the unit sphere moves is set to the sound source direction.
 本開示の一態様に係るプログラムは、コンピュータを、エレベータのかごが一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部で取得した第1の音データと、前記かごが二回目に移動する前記昇降路内の音を、前記平面における第2の方向に向けられた前記集音部で取得した第2の音データとを取得する取得部、前記昇降路内において前記かごが特定の位置にある場合に、前記平面における前記第1の方向に対する角度毎に、前記第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、前記第1の音から算出し、前記平面における前記第2の方向に対する角度毎に、前記第2の音データで示される音である第2の音に含まれている前記対象音の前記音源方向である可能性を示す複数のスコアである複数の第2のスコアを、前記第2の音から算出するスコア算出部、及び、前記音源方向を、前記第1のスコア及び前記第2のスコアを用いて推定する音源方向推定部、として機能させ、前記音源方向推定部は、前記平面において前記複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度で前記集音部から伸びる直線である第1の直線を、前記平面において前記第1の方向に直交する軸を中心に回転させることで、前記第1の直線が前記集音部を中心とする単位球と接触する点が移動する第1の軌跡と、前記平面において前記複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度で前記集音部から伸びる直線である第2の直線を、前記平面において前記第2の方向に直交する軸を中心に回転させることで、前記第2の直線が前記単位球と接触する点が移動する第2の軌跡との交点を、前記音源方向とすることを特徴とする。 In the program according to one aspect of the present disclosure, the computer acquires the sound in the hoistway where the elevator car moves for the first time at the sound collecting unit directed in the first direction in a predetermined plane. Acquisition of acquiring the sound data of 1 and the second sound data acquired by the sound collecting unit directed in the second direction in the plane for the sound in the hoistway where the car moves for the second time. A unit, when the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane. A plurality of first scores, which are a plurality of scores indicating the possibility of being the sound source direction of the target sound, are calculated from the first sound, and the first score is calculated for each angle with respect to the second direction in the plane. A plurality of second scores, which are a plurality of scores indicating the possibility of the target sound being directed to the sound source, included in the second sound, which is the sound indicated by the sound data of 2, are obtained from the second sound. The score calculation unit calculated from the above and the sound source direction are made to function as a sound source direction estimation unit estimated by using the first score and the second score, and the sound source direction estimation unit is the above-mentioned in the plane. A first straight line extending from the sound collecting unit at an angle corresponding to the first selected score, which is one score selected from the plurality of first scores, is orthogonal to the first direction in the plane. From the first locus in which the point where the first straight line comes into contact with the unit sphere centered on the sound collecting portion moves by rotating the axis around the sound, and from the plurality of second scores in the plane. A second straight line extending from the sound collecting unit at an angle corresponding to the second selected score, which is one selected score, is rotated about an axis orthogonal to the second direction in the plane. This is characterized in that the intersection of the second straight line with the second locus on which the point of contact with the unit sphere moves is set to the sound source direction.
 本開示の一態様に係る音源方向推定方法は、エレベータのかごが一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部で取得した第1の音データと、前記かごが二回目に移動する前記昇降路内の音を、前記平面における第2の方向に向けられた前記集音部で取得した第2の音データとを取得し、前記昇降路内において前記かごが特定の位置にある場合に、前記平面における前記第1の方向に対する角度毎に、前記第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、前記第1の音から算出し、前記平面における前記第2の方向に対する角度毎に、前記第2の音データで示される音である第2の音に含まれている前記対象音の前記音源方向である可能性を示す複数のスコアである複数の第2のスコアを、前記第2の音から算出し、前記音源方向を、前記第1のスコア及び前記第2のスコアを用いて推定する音源方向推定方法であって、前記平面において前記複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度で前記集音部から伸びる直線である第1の直線を、前記平面において前記第1の方向に直交する軸を中心に回転させることで、前記第1の直線が前記集音部を中心とする単位球と接触する点が移動する第1の軌跡と、前記平面において前記複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度で前記集音部から伸びる直線である第2の直線を、前記平面において前記第2の方向に直交する軸を中心に回転させることで、前記第2の直線が前記単位球と接触する点が移動する第2の軌跡との交点を、前記音源方向とすることを特徴とする。 In the sound source direction estimation method according to one aspect of the present disclosure, the sound in the hoistway where the elevator car moves for the first time is acquired by a sound collecting unit directed in the first direction on a predetermined plane. The sound data of 1 and the second sound data acquired by the sound collecting unit in which the sound in the hoistway where the car moves for the second time is directed to the second direction in the plane are acquired. When the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane. A plurality of first scores, which are a plurality of scores indicating the possibility of the sound source direction of the target sound, are calculated from the first sound, and the second score is calculated for each angle with respect to the second direction in the plane. A plurality of second scores, which are a plurality of scores indicating the possibility of the target sound included in the second sound, which is the sound indicated by the sound data, in the direction of the sound source, are calculated from the second sound. It is a sound source direction estimation method that estimates the sound source direction using the first score and the second score, and is one score selected from the plurality of first scores in the plane. The first straight line, which is a straight line extending from the sound collecting portion at an angle corresponding to the first selection score, is rotated around an axis orthogonal to the first direction in the plane. Corresponds to the first locus in which the point of contact with the unit sphere centered on the sound collecting unit moves, and the second selection score, which is one score selected from the plurality of second scores in the plane. By rotating the second straight line, which is a straight line extending from the sound collecting portion at an angle, about an axis orthogonal to the second direction in the plane, the second straight line comes into contact with the unit sphere. It is characterized in that the intersection with the second locus on which the point moves is the sound source direction.
 本開示の一又は複数の態様によれば、1往復目の音源方向推定結果と、2往復目の音源方向推定結果とを確実に統合することができる。 According to one or more aspects of the present disclosure, the sound source direction estimation result of the first round trip and the sound source direction estimation result of the second round trip can be reliably integrated.
実施の形態1~4における音源方向推定システムの構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the sound source direction estimation system in Embodiments 1 to 4. マイクアレイの設置例を示す概略図である。It is a schematic diagram which shows the installation example of the microphone array. 実施の形態1における音源方向推定装置の一例を示すブロック図である。It is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 1. FIG. マイクアレイを、エレベータのかごの上に乗せた第1の例を示す上面図である。It is a top view which shows the 1st example which put the microphone array on the car of an elevator. マイクアレイを、エレベータのかごの上に乗せた第2の例を示す上面図である。It is a top view which shows the 2nd example which put the microphone array on the car of an elevator. スコアと、角度との関係を示す第1のグラフである。It is the first graph which shows the relationship between a score and an angle. スコアと、角度との関係を示す第2のグラフである。It is a second graph which shows the relationship between a score and an angle. マイクアレイと、マイクアレイの中心点を中心とした単位球と、スコアとの関係を示す第1の斜視図である。It is a first perspective view which shows the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. マイクアレイと、マイクアレイの中心点を中心とした単位球と、スコアとの関係を示す第2の斜視図である。2 is a second perspective view showing the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. マイクアレイと、マイクアレイの中心点を中心とした単位球と、スコアとの関係を示す第3の斜視図である。It is a third perspective view which shows the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. マイクアレイと、マイクアレイの中心点を中心とした単位球と、スコアとの関係を示す第4の斜視図である。It is a fourth perspective view which shows the relationship between the microphone array, the unit sphere centered on the center point of the microphone array, and the score. 音源方向推定システムにおいて、音データを取得する際の処理を示すフローチャートである。It is a flowchart which shows the process at the time of acquiring a sound data in a sound source direction estimation system. 実施の形態1において音源方向推定装置が音源方向を推定する処理を示すフローチャートである。It is a flowchart which shows the process of estimating the sound source direction by the sound source direction estimation apparatus in Embodiment 1. FIG. 実施の形態2における音源方向推定装置の一例を示すブロック図である。It is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 2. 1往復目のスコアを反転させた様子を概略的に示す斜視図である。It is a perspective view which shows the state which the score of the 1st round trip was reversed. 2往復目のスコアを反転させた様子を概略的に示す斜視図である。It is a perspective view which shows the state which the score of the 2nd round trip was reversed. 2往復目のスコアにおける角度をシフトした例を示す斜視図である。It is a perspective view which shows the example which shifted the angle in the score of the 2nd round trip. (A)~(E)は、角度と、スコアとの関係を示す表である。(A) to (E) are tables showing the relationship between the angle and the score. 実施の形態3における音源方向推定装置の一例を示すブロック図である。It is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 3. FIG. 実施の形態3において音源方向推定装置が音源方向を推定する処理を示すフローチャートである。It is a flowchart which shows the process of estimating the sound source direction by the sound source direction estimation apparatus in Embodiment 3. FIG. 実施の形態4における音源方向推定装置の一例を示すブロック図である。It is a block diagram which shows an example of the sound source direction estimation apparatus in Embodiment 4.
 以下、図面を参照しながら実施の形態を説明する。以下の実施の形態は、例にすぎず、本開示の範囲内で種々の変更が可能である。 Hereinafter, embodiments will be described with reference to the drawings. The following embodiments are merely examples, and various modifications can be made within the scope of the present disclosure.
実施の形態1.
 図1は、実施の形態1における音源方向推定システム100の構成を概略的に示すブロック図である。
 音源方向推定システム100は、音源方向推定装置として機能するコンピュータ101と、マイクアレイ110と、入力装置111と、出力装置112と、センサ113とを備える。
Embodiment 1.
FIG. 1 is a block diagram schematically showing the configuration of the sound source direction estimation system 100 according to the first embodiment.
The sound source direction estimation system 100 includes a computer 101 that functions as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 113.
 コンピュータ101により実現される音源方向推定装置は、音源方向推定方法を実行する装置である。例えば、コンピュータ101は、スマートフォン等の携帯型端末装置であってもよい。 The sound source direction estimation device realized by the computer 101 is a device that executes the sound source direction estimation method. For example, the computer 101 may be a portable terminal device such as a smartphone.
 マイクアレイ110は、複数のマイクロホンを含む装置である。マイクアレイ110では、複数のマイクロホンのそれぞれから出力された音データが完全に同期した状態で出力される。
 マイクアレイ110は、コンピュータ101と分離していても、コンピュータ101に組み込まれて一体型となっていてもよい。また、マイクアレイ110は、加速度センサ又はイメージセンサを搭載してもよい。これらのセンサは、マイクアレイ110の付近に設置されてもよい。
The microphone array 110 is a device including a plurality of microphones. In the microphone array 110, the sound data output from each of the plurality of microphones is output in a completely synchronized state.
The microphone array 110 may be separated from the computer 101 or may be incorporated into the computer 101 to be integrated. Further, the microphone array 110 may be equipped with an acceleration sensor or an image sensor. These sensors may be installed in the vicinity of the microphone array 110.
 入力装置111は、ユーザからの入力を受け付ける装置である。入力装置111は、コンピュータ101と分離していても、コンピュータ101に組み込まれて一体型となっていてもよい。 The input device 111 is a device that receives input from the user. The input device 111 may be separated from the computer 101 or may be incorporated into the computer 101 to be integrated.
 出力装置112は、コンピュータ101での処理結果を出力する装置である。出力装置112は、コンピュータ101と分離していても、コンピュータ101に組み込まれて一体型となっていてもよい。例えば、出力装置112は、ディスプレイであるが、スピーカでもよい。 The output device 112 is a device that outputs the processing result of the computer 101. The output device 112 may be separated from the computer 101 or may be incorporated into the computer 101 to be integrated. For example, the output device 112 is a display, but may be a speaker.
 入力装置111及び出力装置112は、例えば、タッチパネルにより構成されてもよい。 The input device 111 and the output device 112 may be configured by, for example, a touch panel.
 センサ113は、マイクアレイ110で取得される音データの同期をとるための同期信号を取得するセンサである。例えば、センサ113は、加速度センサ又はイメージセンサである。 The sensor 113 is a sensor that acquires a synchronization signal for synchronizing the sound data acquired by the microphone array 110. For example, the sensor 113 is an acceleration sensor or an image sensor.
 図1に示されているように、コンピュータ101は、プロセッサ102と、主記憶装置103と、補助記憶装置104と、通信装置105と、インタフェース(I/F)106とを備える。 As shown in FIG. 1, the computer 101 includes a processor 102, a main storage device 103, an auxiliary storage device 104, a communication device 105, and an interface (I / F) 106.
 プロセッサ102は、コンピュータ101の全体を制御する。例えば、プロセッサ102は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)又はFPGA(Field Programmable Gate Array)等である。プロセッサ102は、マルチプロセッサでもよい。コンピュータ101は、プロセッサ102に変えて、処理回路を有してもよい。処理回路は、単一回路又は複合回路でもよい。言い換えると、コンピュータは、処理回路網により構成することができる。 The processor 102 controls the entire computer 101. For example, the processor 102 is a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), or the like. The processor 102 may be a multiprocessor. The computer 101 may have a processing circuit instead of the processor 102. The processing circuit may be a single circuit or a composite circuit. In other words, the computer can be configured by a processing network.
 主記憶装置103は、例えば、RAM(Random Access Memory)である。
 補助記憶装置104は、例えば、ROM(Read Only Memory)、HDD(Hard Disk Drive)又はSSD(Solid State Drive)である。
 主記憶装置103及び補助記憶装置104は、コンピュータ101での処理に必要な、様々なデータ及びプログラムを記憶する。
The main storage device 103 is, for example, a RAM (Random Access Memory).
The auxiliary storage device 104 is, for example, a ROM (Read Only Memory), an HDD (Hard Disk Drive), or an SSD (Solid State Drive).
The main storage device 103 and the auxiliary storage device 104 store various data and programs necessary for processing by the computer 101.
 通信装置105は、ネットワークを介した通信を実行する。通信装置105は、例えば、有線LAN(Local Area Network)アダプター、無線LANアダプター又はBluetooth(登録商標)アダプターである。なお、通信装置105は、通信インタフェースと呼んでもよい。通信装置105は、外部装置と通信する。 The communication device 105 executes communication via the network. The communication device 105 is, for example, a wired LAN (Local Area Network) adapter, a wireless LAN adapter, or a Bluetooth (registered trademark) adapter. The communication device 105 may be referred to as a communication interface. The communication device 105 communicates with an external device.
 マイクアレイ110は、エレベータの昇降路に設置される集音部として機能する集音装置である。例えば、マイクアレイ110は、かごの上、かごの下、カウンターウェイトの上又はカウンターウェイトの下に設置される。
 なお、マイクアレイ110がかごの上に設置されている場合、マイクアレイ110は、かごと連動する。ここで、かごは、エレベータかごと呼んでもよい。昇降路は、エレベータ昇降路と呼んでもよい。
 また、マイクアレイ110は、ピット部分、巻き上げ機付近又はエレベータの昇降運転によって位置が変わらない場所に設置されてもよい。マイクアレイ110は、昇降路に固定されてもよい。また、ユーザが持参したマイクアレイ110が、ユーザによって、昇降路に設置されてもよい。
The microphone array 110 is a sound collecting device that functions as a sound collecting unit installed in the hoistway of an elevator. For example, the microphone array 110 is installed above the cage, below the cage, above the counterweight, or below the counterweight.
When the microphone array 110 is installed on the car, the microphone array 110 is interlocked with the car. Here, the car may be referred to as an elevator car. The hoistway may be referred to as an elevator hoistway.
Further, the microphone array 110 may be installed in a pit portion, near a hoist, or in a place where the position does not change due to the elevator operation. The microphone array 110 may be fixed to the hoistway. Further, the microphone array 110 brought by the user may be installed in the hoistway by the user.
 図2は、マイクアレイ110の設置例を示す概略図である。
 図2は、実施の形態1において、マイクアレイ110がかごの上に設置されている場合を示している。
FIG. 2 is a schematic view showing an installation example of the microphone array 110.
FIG. 2 shows a case where the microphone array 110 is installed on a car in the first embodiment.
 図2には、壁面120と、かごガイドレール121と、かご122と、かご上ガイドシュー123と、かご下ガイドシュー124と、カウンターウェイトガイドレール125と、カウンターウェイト126と、カウンターウェイト上ガイドシュー127と、カウンターウェイト下ガイドシュー128とが示されている。 FIG. 2 shows a wall surface 120, a car guide rail 121, a car 122, a car upper guide shoe 123, a car lower guide shoe 124, a counterweight guide rail 125, a counterweight 126, and a counterweight upper guide shoe. 127 and a counterweight lower guide shoe 128 are shown.
 壁面120は、コンクリートの壁面である。
 かごガイドレール121は、かご122を上下に移動させるためのレールである。かご122は、かごガイドレール121を沿って、上下に移動する。このため、かごガイドレール121が、エレベータの昇降路となる。
 かご上ガイドシュー123及びかご下ガイドシュー124は、かごガイドレール121と、かご122との接合部である。
The wall surface 120 is a concrete wall surface.
The car guide rail 121 is a rail for moving the car 122 up and down. The car 122 moves up and down along the car guide rail 121. Therefore, the car guide rail 121 serves as a hoistway for the elevator.
The car upper guide shoe 123 and the car lower guide shoe 124 are joints between the car guide rail 121 and the car 122.
 カウンターウェイトガイドレール125は、カウンターウェイト126を上下に移動させるためのレールである。
 カウンターウェイト上ガイドシュー127及びカウンターウェイト下ガイドシュー128は、カウンターウェイトガイドレール125と、カウンターウェイト126との接合部である。
The counterweight guide rail 125 is a rail for moving the counterweight 126 up and down.
The counterweight upper guide shoe 127 and the counterweight lower guide shoe 128 are joints between the counterweight guide rail 125 and the counterweight 126.
 図3は、実施の形態1における音源方向推定装置の一例を示すブロック図である。
 図3に示されているように、音源方向推定装置130は、取得部131と、同期部132と、データ記憶部133と、スコア算出部134と、音源方向推定部135と、入力部140と、出力部141とを備える。
FIG. 3 is a block diagram showing an example of the sound source direction estimation device according to the first embodiment.
As shown in FIG. 3, the sound source direction estimation device 130 includes an acquisition unit 131, a synchronization unit 132, a data storage unit 133, a score calculation unit 134, a sound source direction estimation unit 135, and an input unit 140. , The output unit 141 is provided.
 取得部131は、音データを取得する。例えば、取得部131は、音データをマイクアレイ110から取得する。また、例えば、取得部131は、音データが記録されている記録媒体からその音データを取得してもよい。
 なお、音データは、エレベータのかご122が移動する昇降路内の音を示すデータである。また、音データは、複数チャンネルの音データである。
The acquisition unit 131 acquires sound data. For example, the acquisition unit 131 acquires sound data from the microphone array 110. Further, for example, the acquisition unit 131 may acquire the sound data from a recording medium in which the sound data is recorded.
The sound data is data showing the sound in the hoistway where the elevator car 122 moves. Further, the sound data is sound data of a plurality of channels.
 具体的には、取得部131は、エレベータのかご122が一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部であるマイクアレイ110で取得された音データである第1の音データと、かご122が二回目に移動する昇降路内の音を、その平面における第2の方向に向けられたマイクアレイ110で取得された音データである第2の音データとを取得する。本実施の形態では、予め定められた平面は、水平面であるが、このような例に限定されない。 Specifically, the acquisition unit 131 is a microphone array 110 which is a sound collection unit in which the sound in the hoistway where the elevator car 122 moves for the first time is directed to the first direction in a predetermined plane. The first sound data, which is the acquired sound data, and the sound in the hoistway where the car 122 moves for the second time are the sound data acquired by the microphone array 110 directed in the second direction on the plane. Acquire a certain second sound data. In the present embodiment, the predetermined plane is a horizontal plane, but the present invention is not limited to such an example.
 また、取得部131は、同期部132にて実施する同期処理向けの信号等を示す同期用データを取得する。同期用データは、例えば、加速度センサ又はイメージセンサ等のセンサ113から取得する。 Further, the acquisition unit 131 acquires synchronization data indicating a signal or the like for synchronization processing performed by the synchronization unit 132. The synchronization data is acquired from, for example, a sensor 113 such as an acceleration sensor or an image sensor.
 なお、マイクアレイ110及びセンサ113は、例えばエレベータのかご122の上に搭載され、エレベータのかご122を複数回往復させた場合に、音データ及び同期用データを出力する。 The microphone array 110 and the sensor 113 are mounted on the elevator car 122, for example, and output sound data and synchronization data when the elevator car 122 is reciprocated a plurality of times.
 図4及び図5は、マイクアレイ110を、エレベータのかご122の上に乗せて2往復した場合の例を示す上面図を示す。
 図4において、マイクアレイ110からドア129に向かう方向をドア方向という。図4に示されているように、マイクアレイ110は、一回目の移動である1往復目でドア方向に向けられている。
4 and 5 show a top view showing an example of a case where the microphone array 110 is placed on the elevator car 122 and reciprocated twice.
In FIG. 4, the direction from the microphone array 110 toward the door 129 is referred to as the door direction. As shown in FIG. 4, the microphone array 110 is directed toward the door in the first round trip, which is the first movement.
 また、図5に示されているように、二回目の移動である2往復目では、マイクアレイ110は、カウンターウェイト126が存在する右方向に向けられている。
 以上のように、マイクアレイ110の向きは、1往復目と2往復目とで90度回転している。このようにエレベータのかご122を往復させるごとにマイクアレイ110の水平面における向きが変更される。
Further, as shown in FIG. 5, in the second round trip, which is the second movement, the microphone array 110 is directed to the right where the counterweight 126 is present.
As described above, the orientation of the microphone array 110 is rotated by 90 degrees between the first round trip and the second round trip. In this way, the orientation of the microphone array 110 in the horizontal plane is changed each time the elevator car 122 is reciprocated.
 図3に戻り、同期部132は、マイクアレイ110をエレベータのかご122に載せた状態で昇降路内を複数回往復した場合に、それぞれの音データの開始地点をそろえる同期処理を行う。ここでの同期処理では、加速度センサから得られた加速度データ、又は、イメージセンサから得られたイメージデータ若しくは動画データが用いられる。 Returning to FIG. 3, the synchronization unit 132 performs synchronization processing for aligning the start points of the respective sound data when the microphone array 110 is placed on the elevator car 122 and reciprocates in the hoistway a plurality of times. In the synchronization process here, the acceleration data obtained from the acceleration sensor, or the image data or the moving image data obtained from the image sensor is used.
 例えば、エレベータのかご122を2往復させた場合、同期部132は、1往復目と2往復目とのそれぞれで取得された加速度データで相互相関係数を求める。その相互相関係数が最も高くなるシフト量を音データにも適用することで、音データ間でも同期をとることができる。 For example, when the elevator car 122 is reciprocated twice, the synchronization unit 132 obtains the mutual correlation coefficient from the acceleration data acquired for each of the first and second round trips. By applying the shift amount having the highest mutual correlation coefficient to the sound data, synchronization can be achieved even between the sound data.
 また、動画データの場合、同期部132は、例えば、オプティカルフローを求める。そして、同期部132は、オプティカルフローの時間変化について、1往復目と2往復目とで相互相関係数を求め、その相互相関係数が最も高くなるシフト量を音データに適用することで、音データ間でも同期をとることができる。 Further, in the case of moving image data, the synchronization unit 132 obtains, for example, an optical flow. Then, the synchronization unit 132 obtains the mutual correlation coefficient between the first round trip and the second round trip with respect to the time change of the optical flow, and applies the shift amount at which the mutual correlation coefficient becomes the highest to the sound data. It is possible to synchronize between sound data.
 なお、同期部132は、音データで直接相互相関係数を算出し、相互相関係数が最も高くなるシフト量にて片方の音データをシフトすることで同期をとってもよい。
 また、同期部132は、入力装置111を介してユーザから2往復分の音データが同期するように音データのシフト量の入力を受けてもよい。
The synchronization unit 132 may directly calculate the mutual correlation coefficient from the sound data and shift one of the sound data by the shift amount at which the mutual correlation coefficient is the highest to achieve synchronization.
Further, the synchronization unit 132 may receive input of a shift amount of sound data from the user via the input device 111 so that the sound data for two round trips are synchronized.
 なお、同期部132での同期精度については、1往復目と2往復目の音データが完全に同期する必要はない。同期の精度の目安は、音源方向を推定する対象となる音である対象音の継続時間程度となる。例えば、対象音の継続時間が0.1秒の場合、この対象音が1往復目と2往復目の音データで同タイミングに発生するように、同期をとる必要がある。この場合、0.01~0.05秒程度の精度で1往復目と2往復目の音データを同期する必要がある。 Regarding the synchronization accuracy of the synchronization unit 132, it is not necessary that the sound data of the first round trip and the second round trip are completely synchronized. The guideline for the accuracy of synchronization is about the duration of the target sound, which is the target sound for which the sound source direction is estimated. For example, when the duration of the target sound is 0.1 second, it is necessary to synchronize so that the target sound is generated at the same timing in the sound data of the first round trip and the second round trip. In this case, it is necessary to synchronize the sound data of the first round trip and the second round trip with an accuracy of about 0.01 to 0.05 seconds.
 データ記憶部133は、音源方向推定装置130での処理に必要なデータを記憶する。例えば、データ記憶部133は、エレベータのかご122が複数回昇降路内を往復したときに取得された音データ、センサ113からの加速度データ又はイメージデータ、及び、マイクアレイ110の向きを示す向き情報を記憶する。
 また、データ記憶部133は、スコア算出部134でのスコア算出処理に必要な各マイク位置の関係等のパラメーターを記憶する。
The data storage unit 133 stores data necessary for processing in the sound source direction estimation device 130. For example, the data storage unit 133 includes sound data acquired when the elevator car 122 reciprocates in the hoistway a plurality of times, acceleration data or image data from the sensor 113, and orientation information indicating the orientation of the microphone array 110. Remember.
Further, the data storage unit 133 stores parameters such as the relationship between the positions of the microphones required for the score calculation process in the score calculation unit 134.
 スコア算出部134は、マイクアレイ110で取得された対象音の対象方向におけるスコアを算出する。例えば、スコア算出部134は、マイクアレイ110が配置されている水平面上に、複数の方向である対象方向を特定し、その複数の対象方向の各々が対象音の音源である可能性を示すスコアを算出する。具体的には、マイクアレイ110が取得する音の水平角の範囲が180度であり、水平方向の分解能が10度である場合、スコア算出部134は、19方向のスコアを算出する。このように、スコア算出部134は、複数の対象方向のスコアを算出する。水平角は、マイクアレイ110が向いている方向に対する水平面における角度である。 The score calculation unit 134 calculates the score of the target sound acquired by the microphone array 110 in the target direction. For example, the score calculation unit 134 identifies target directions that are a plurality of directions on a horizontal plane in which the microphone array 110 is arranged, and scores indicating that each of the plurality of target directions may be a sound source of the target sound. Is calculated. Specifically, when the range of the horizontal angle of the sound acquired by the microphone array 110 is 180 degrees and the resolution in the horizontal direction is 10 degrees, the score calculation unit 134 calculates the score in 19 directions. In this way, the score calculation unit 134 calculates the scores in the plurality of target directions. The horizontal angle is an angle in the horizontal plane with respect to the direction in which the microphone array 110 is facing.
 本実施の形態では、スコア算出部134は、昇降路内においてかご122が特定の位置にある場合に、1往復目で、水平面においてマイクアレイ110が向いている方向である第1の方向に対する角度毎に、第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、第1の音データで示される第1の音から算出する。
 また、スコア算出部134は、2往復目で、水平面においてマイクアレイ110が向いている方向である第2の方向に対する角度毎に、第2の音データで示される音である第2の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第2のスコアを算出する。
In the present embodiment, when the car 122 is in a specific position in the hoistway, the score calculation unit 134 makes an angle with respect to the first direction, which is the direction in which the microphone array 110 is facing in the horizontal plane in the first round trip. For each, a plurality of first scores, which are a plurality of scores indicating the possibility of being the sound source direction of the target sound included in the first sound, which is the sound indicated by the first sound data, are set to the first. It is calculated from the first sound indicated by the sound data.
Further, in the second round trip, the score calculation unit 134 converts the second sound, which is the sound indicated by the second sound data, into the second sound for each angle with respect to the second direction, which is the direction in which the microphone array 110 is facing in the horizontal plane. A plurality of second scores, which are a plurality of scores indicating the possibility of being the sound source direction of the included target sound, are calculated.
 スコアの算出には、ビームフォーミング、遅延和法、最尤(Maximum Likelihood)法、最小分散(Minimum Variance)法、MUSIC(MUltiple SIgnal Classification)法、root-MUSIC法、最小ノルム法、CSP(Cross-Power Spectrum Phase Analysis)法又は学習済モデルが使用されればよい。これらの手法にて算出された値は、そのままスコアとして用いられてもよく、19方向のスコアの合計値が1.0となるように確率密度に変換されてもよい。算出されたスコアは、データ記憶部133に記憶される。 Beamforming, delay sum method, maximum likelihood method, minimum variance method, MUSIC (Multiple SIgnal Classification) method, root-MUSIC method, minimum norm method, CSP (CSP) are used to calculate the score. The Power Spectram Phase Analysis) method or the trained model may be used. The values calculated by these methods may be used as they are as scores, or may be converted into probability densities so that the total value of the scores in the 19 directions becomes 1.0. The calculated score is stored in the data storage unit 133.
 音源方向推定部135は、昇降路内においてかご122が特定の位置にある場合に、第1の音データで示される音である第1の音に含まれている対象音、及び、第2の音データで示される第2の音に含まれている対象音の音源方向を推定する。 When the car 122 is in a specific position in the hoistway, the sound source direction estimation unit 135 includes a target sound included in the first sound, which is a sound indicated by the first sound data, and a second sound source direction estimation unit 135. The sound source direction of the target sound included in the second sound indicated by the sound data is estimated.
 例えば、音源方向推定部135は、水平面において複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度でマイクアレイ110から伸びる直線である第1の直線を、水平面において第1の方向に直交する軸を中心に回転させることで、第1の直線がマイクアレイ110を中心とする単位球と接触する点が移動する第1の軌跡と、水平面において複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度でマイクアレイ110から伸びる直線である第2の直線を、水平面において第2の方向に直交する軸を中心に回転させることで、第2の直線が単位球と接触する点が移動する第2の軌跡との交点を、音源方向とする。 For example, the sound source direction estimation unit 135 draws a first straight line extending from the microphone array 110 at an angle corresponding to the first selection score, which is one score selected from the plurality of first scores in the horizontal plane. A first locus in which the point where the first straight line contacts the unit sphere centered on the microphone array 110 moves by rotating around an axis orthogonal to the first direction in the horizontal plane, and a plurality of first trajectories in the horizontal plane. A second straight line extending from the microphone array 110 at an angle corresponding to the second selection score, which is one score selected from the two scores, is rotated about an axis orthogonal to the second direction in the horizontal plane. By doing so, the intersection with the second locus where the point where the second straight line contacts the unit sphere moves is set as the sound source direction.
 ここで、音源方向推定部135は、複数の第1のスコアの最大値を第1の選択スコアとして選択し、複数の第2のスコアの最大値を第2の選択スコアとして選択すればよい。
 但し、音源方向推定部135は、複数の第1のスコアの最大値を第1の選択スコアとして選択し、複数の第2のスコアの最大値を第2の選択スコアとして選択した場合に、第1の軌跡と、第2の軌跡とが交わらないときには、第1の軌跡と、第2の軌跡とが交わるまで、複数の第1のスコアの大きいものから順に第1の選択スコアとして選択してもよい。
Here, the sound source direction estimation unit 135 may select the maximum value of the plurality of first scores as the first selection score and the maximum value of the plurality of second scores as the second selection score.
However, when the sound source direction estimation unit 135 selects the maximum value of the plurality of first scores as the first selection score and selects the maximum value of the plurality of second scores as the second selection score, the first When the locus of 1 and the second locus do not intersect, the first selection score is selected in order from the one having the largest first score until the first locus and the second locus intersect. May be good.
 また、音源方向推定部135は、複数の第1のスコアの最大値を第1の選択スコアとして選択し、複数の第2のスコアの最大値を第2の選択スコアとして選択した場合に、第1の軌跡と、第2の軌跡とが交わらないときには、第1の軌跡と、第2の軌跡とが交わるまで、複数の第2のスコアの大きいものから順に第2の選択スコアとして選択してもよい。
 ここで、音源方向推定部135は、交点算出部136と、変更部137とを備える。
Further, the sound source direction estimation unit 135 selects the maximum value of the plurality of first scores as the first selection score, and selects the maximum value of the plurality of second scores as the second selection score. When the locus of 1 and the second locus do not intersect, the second locus is selected as the second selection score in order from the one having the largest second score until the first locus and the second locus intersect. May be good.
Here, the sound source direction estimation unit 135 includes an intersection calculation unit 136 and a change unit 137.
 交点算出部136は、エレベータのかご122が複数回昇降路内を往復した際に算出されたスコアから特定される音源方向候補を統合することで、音源方向を推定する。ここでは、エレベータのかご122の上にマイクアレイ110を設置し、2往復した場合の統合方法について説明する。 The intersection calculation unit 136 estimates the sound source direction by integrating the sound source direction candidates specified from the scores calculated when the elevator car 122 reciprocates in the hoistway a plurality of times. Here, the integration method when the microphone array 110 is installed on the elevator car 122 and reciprocates twice will be described.
 マイクアレイ110は、1往復目では図4に示されているようにドア方向を向き、2往復目では図5に示されているようにカウンターウェイト126が存在する右方向を向いていたとする。
 2往復分の音データは、同期部132によって同期されているため、例えば、2往復分それぞれでエレベータのかご122が昇降路内の特定個所を通過する際に何らかの音である対象音が発生していた場合、2往復分それぞれの音データ上でも同時刻に対象音が記録されている。
It is assumed that the microphone array 110 faces the door direction as shown in FIG. 4 on the first round trip, and faces the right direction where the counterweight 126 exists as shown in FIG. 5 on the second round trip.
Since the sound data for two round trips is synchronized by the synchronization unit 132, for example, when the elevator car 122 passes through a specific place in the hoistway for each of the two round trips, a target sound which is some kind of sound is generated. If so, the target sound is recorded at the same time on the sound data for each of the two round trips.
 この対象音が記録されているタイミングで、スコア算出部134がスコア算出処理を実施した場合、それぞれの音データにおいて対象音が存在する方向におけるスコアが図6及び図7のように出力される。 When the score calculation unit 134 performs the score calculation process at the timing when the target sound is recorded, the score in the direction in which the target sound exists in each sound data is output as shown in FIGS. 6 and 7.
 図6及び図7の横軸は、マイクアレイ110の正面を0度とし、その右方向を-90度、その左方向を90度としている。
 図6及び図7に示されているように、スコア算出部134で推定されたスコアは、マイクアレイ110が向いている方向が異なるため、異なる推移を示している。
The horizontal axis of FIGS. 6 and 7 is 0 degrees in front of the microphone array 110, −90 degrees to the right, and 90 degrees to the left.
As shown in FIGS. 6 and 7, the scores estimated by the score calculation unit 134 show different transitions because the directions in which the microphone array 110 is facing are different.
 図8及び図9は、マイクアレイ110の中心点150を中心とした単位球を示す斜視図である。
 図8は、1往復目におけるマイクアレイ110の向きと、音源方向候補を示す実線の矢印151とを示している。
 交点算出部136は、複数の対象方向の内、1往復目の特定の時刻におけるマイクアレイ110で取得された音から推定されたスコアが最も高い対象方向を、音源方向候補とする。
8 and 9 are perspective views showing a unit sphere centered on the center point 150 of the microphone array 110.
FIG. 8 shows the direction of the microphone array 110 in the first round trip and the solid arrow 151 indicating the sound source direction candidate.
The intersection calculation unit 136 sets the target direction having the highest score estimated from the sound acquired by the microphone array 110 at the specific time of the first round trip as the sound source direction candidate among the plurality of target directions.
 図9は、2往復目におけるマイクアレイ110の向きと、音源方向候補を示す実線の矢印152とを示している。
 交点算出部136は、複数の対象方向の内、2往復目の特定の時刻におけるマイクアレイ110で取得された音から推定されたスコアが最も高い対象方向を、音源方向候補とする。
FIG. 9 shows the direction of the microphone array 110 in the second round trip and the solid arrow 152 indicating the sound source direction candidate.
The intersection calculation unit 136 sets the target direction having the highest score estimated from the sound acquired by the microphone array 110 at the specific time of the second round trip among the plurality of target directions as the sound source direction candidate.
 図8において、音源方向候補を示す矢印151を、マイクアレイ110を構成する2つのマイクを通る直線L1を軸として360度回転させると、その軌跡153が求められる。図8に示されているように、直線L1は、マイクアレイ110が向いている方向に、水平面において直交する直線である。
 同様に、図9において、音源方向候補を示す矢印152を、マイクアレイ110を構成する2つのマイクを通る直線L2を軸として360度回転させると、その軌跡154が求められる。図9に示されているように、直線L2は、マイクアレイ110が向いている方向に、水平面において直交する直線である。
 軌跡153及び軌跡154は、実際の音源が存在し得る方向となる。
In FIG. 8, when the arrow 151 indicating the sound source direction candidate is rotated 360 degrees about the straight line L1 passing through the two microphones constituting the microphone array 110, the locus 153 is obtained. As shown in FIG. 8, the straight line L1 is a straight line orthogonal to the horizontal plane in the direction in which the microphone array 110 faces.
Similarly, in FIG. 9, when the arrow 152 indicating the sound source direction candidate is rotated 360 degrees about the straight line L2 passing through the two microphones constituting the microphone array 110, the locus 154 is obtained. As shown in FIG. 9, the straight line L2 is a straight line orthogonal to the horizontal plane in the direction in which the microphone array 110 faces.
The locus 153 and the locus 154 are directions in which an actual sound source can exist.
 スコア算出部134では、マイクアレイ110のそれぞれのマイクロホンと、実際の音源位置との距離の差をもとに音源方向の推定する際に用いられるスコアを算出する。軌跡153と、軌跡154とは、マイクロホンと、音源位置との距離の差が等しくなる、音源位置候補の軌跡となる。
 このため、図10に示されているように、軌跡153と、軌跡154との交点155が、音源位置となる。即ち、交点155により示される音源位置の方向が、音源方向として推定される。
The score calculation unit 134 calculates a score used for estimating the sound source direction based on the difference in distance between each microphone of the microphone array 110 and the actual sound source position. The locus 153 and the locus 154 are loci of sound source position candidates in which the difference in distance between the microphone and the sound source position is equal.
Therefore, as shown in FIG. 10, the intersection 155 between the locus 153 and the locus 154 is the sound source position. That is, the direction of the sound source position indicated by the intersection 155 is estimated as the sound source direction.
 ここで、図8に示されているように、軌跡153を、マイクアレイ110を含む単位球の水平面にその水平面に垂直な方向から投影すると、線分156が求まる。
 また、図9に示されているように、軌跡154を、マイクアレイ110を含む単位球の水平面にその水平面に垂直な方向から投影すると、線分157が求まる。
Here, as shown in FIG. 8, when the locus 153 is projected onto the horizontal plane of the unit sphere including the microphone array 110 from the direction perpendicular to the horizontal plane, the line segment 156 is obtained.
Further, as shown in FIG. 9, when the locus 154 is projected onto the horizontal plane of the unit sphere including the microphone array 110 from the direction perpendicular to the horizontal plane, the line segment 157 is obtained.
 中心点150を原点とする3次元直交座標を考えるとき、線分156と、線分157との交点158とする。
 交点158の座標を(x、y)とするとき、実際の音源位置となる交点155の水平角θ及び仰角φは、下記(1)式及び(2)式にて求められる。
Figure JPOXMLDOC01-appb-M000001
                              (1)
Figure JPOXMLDOC01-appb-M000002
                              (2)
When considering three-dimensional Cartesian coordinates with the center point 150 as the origin, the intersection point 158 between the line segment 156 and the line segment 157 is used.
When the coordinates of the intersection point 158 are (x, y), the horizontal angle θ and the elevation angle φ of the intersection point 155, which is the actual sound source position, can be obtained by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
(1)
Figure JPOXMLDOC01-appb-M000002
(2)
 ここで、arctan2は、tan関数の逆関数tan-1をもとにした下記の(3)式で表され、arccosは、cos関数の逆関数を示す。
Figure JPOXMLDOC01-appb-M000003
                              (3)
Here, arctan2 is represented by the following equation (3) based on the inverse function tan -1 of the tan function, and arccos indicates the inverse function of the cos function.
Figure JPOXMLDOC01-appb-M000003
(3)
 中心点150から見た水平角θ及び仰角φが示す方向は、音源方向であり、軌跡153及び軌跡154の交点155の方向となる。
 ここで、交点算出部136は、線分156及び線分157が交差する場合は、水平角θ及び仰角φの算出結果を音源方向として出力部141に与える。一方、交点算出部136は、線分156及び線分157が交差しない場合は、交差しないという情報を変更部137に与える。
The direction indicated by the horizontal angle θ and the elevation angle φ as seen from the center point 150 is the sound source direction, and is the direction of the intersection 155 of the locus 153 and the locus 154.
Here, when the line segment 156 and the line segment 157 intersect, the intersection calculation unit 136 gives the calculation results of the horizontal angle θ and the elevation angle φ to the output unit 141 as the sound source direction. On the other hand, the intersection calculation unit 136 gives information to the change unit 137 that the line segment 156 and the line segment 157 do not intersect when they do not intersect.
 変更部137は、交点算出部136で線分156及び線分157が交差しない場合において、音源方向候補を変更する。
 図11は、線分156及び線分157が交差しない例を示す概略図である。
 昇降路内は残響があり、スコア算出部134で正確なスコアを算出することができない可能性がある。1往復目若しくは2往復目、又は、それらの両方でスコアの算出が正しく行われなかった場合、図11に示されているように、線分156及び線分157が交差しない可能性がある。この場合、交点算出部136では、音源方向を推定することができない。そこで、変更部137では音源方向候補を変更し、交点算出部136が音源方向を推定できるようにする。
The change unit 137 changes the sound source direction candidate when the line segment 156 and the line segment 157 do not intersect in the intersection calculation unit 136.
FIG. 11 is a schematic view showing an example in which the line segment 156 and the line segment 157 do not intersect.
There is reverberation in the hoistway, and there is a possibility that the score calculation unit 134 cannot calculate an accurate score. If the score is not calculated correctly on the first round trip, the second round trip, or both, there is a possibility that the line segment 156 and the line segment 157 do not intersect as shown in FIG. In this case, the intersection calculation unit 136 cannot estimate the sound source direction. Therefore, the change unit 137 changes the sound source direction candidate so that the intersection calculation unit 136 can estimate the sound source direction.
 変更部137は、1往復目及び2往復目のそれぞれで算出された複数個のスコアを高い順に抽出し、抽出したスコアに対応する角度を新たな音源方向候補として交点算出部136に与える。交点算出部136は、新たな音源方向候補にて交点を算出する。 The change unit 137 extracts a plurality of scores calculated for each of the first round trip and the second round trip in descending order, and gives an angle corresponding to the extracted score to the intersection calculation unit 136 as a new sound source direction candidate. The intersection calculation unit 136 calculates the intersection with a new sound source direction candidate.
 具体的には、変更部137は、1往復目のスコアについてのみ、スコアが高い順に対応する角度を新たな音源方向候補としてもよい。この場合、2往復目については、最も高いスコアに対応する角度が音源方向候補として固定される。
 また、変更部137は、2往復目のスコアについてのみ、スコアが高い順に対応する角度を新たな音源方向候補としてもよい。この場合、1往復目については、最も高いスコアに対応する角度が音源方向候補として固定される。
 さらに、変更部137は、1往復目のスコア及び2往復目のスコアの両方について、スコアが高い順に、対応する角度を新たな音源方向候補としてもよい。
Specifically, the change unit 137 may set the angle corresponding to the score in descending order of the score as a new sound source direction candidate only for the score of the first round trip. In this case, for the second round trip, the angle corresponding to the highest score is fixed as a sound source direction candidate.
Further, the change unit 137 may set the angle corresponding to the score in descending order of the score as a new sound source direction candidate only for the score of the second round trip. In this case, for the first round trip, the angle corresponding to the highest score is fixed as a sound source direction candidate.
Further, the changing unit 137 may set the corresponding angles as new sound source direction candidates in descending order of the scores for both the score of the first round trip and the score of the second round trip.
 以上のように、変更部137で特定される新たな音源方向候補を用いて交点算出部136が交点を算出する処理を繰り返すことにより、スコア算出部134が算出した1往復目のスコアと、2往復目のスコアとに基づいて、確実に水平角度0~360度、仰角0~90度の範囲で音源方向を推定することができる。 As described above, the score of the first round trip calculated by the score calculation unit 134 and 2 by repeating the process of calculating the intersection point by the intersection calculation unit 136 using the new sound source direction candidate specified by the change unit 137. Based on the score of the round trip, the sound source direction can be reliably estimated in the range of the horizontal angle of 0 to 360 degrees and the elevation angle of 0 to 90 degrees.
 入力部140は、音源方向推定装置130での処理に必要な情報の入力を、入力装置111を介して、受け付ける。
 入力される情報は、例えば、2往復目でどの方向にマイクアレイ110を90度回転させたか、又は、マイクアレイ110の回転角度等である。入力部140で入力された情報はデータ記憶部133に記憶される。
The input unit 140 receives the input of information necessary for processing in the sound source direction estimation device 130 via the input device 111.
The input information is, for example, in which direction the microphone array 110 is rotated 90 degrees in the second round trip, or the rotation angle of the microphone array 110. The information input by the input unit 140 is stored in the data storage unit 133.
 出力部141は、音源方向を示す情報を出力装置112に出力する。例えば、出力装置112がディスプレイである場合、出力部141は、音源方向を示す情報をディスプレイに出力する。これにより、ディスプレイは、音源方向を示す情報を表示する。また、例えば、出力装置112がスピーカである場合、出力部141は、音源方向を示す情報をスピーカに出力する。これにより、スピーカは、音源方向を示す情報を音声で出力する。 The output unit 141 outputs information indicating the sound source direction to the output device 112. For example, when the output device 112 is a display, the output unit 141 outputs information indicating the sound source direction to the display. As a result, the display displays information indicating the direction of the sound source. Further, for example, when the output device 112 is a speaker, the output unit 141 outputs information indicating the sound source direction to the speaker. As a result, the speaker outputs information indicating the direction of the sound source by voice.
 以上に記載された音源方向推定装置130は、図1に示されているコンピュータ101により実現することができる。
 例えば、取得部131は、I/F106により実現することができる。
 また、データ記憶部133は、主記憶装置103又は補助記憶装置104により実現することができる。
The sound source direction estimation device 130 described above can be realized by the computer 101 shown in FIG.
For example, the acquisition unit 131 can be realized by the I / F 106.
Further, the data storage unit 133 can be realized by the main storage device 103 or the auxiliary storage device 104.
 同期部132、スコア算出部134、交点算出部136、変更部137、入力部140、出力部141の一部又は全部は、補助記憶装置104に記憶されているプログラムを主記憶装置103に読み出して、プロセッサ102によりそのプログラムを実行することで実現することができる。 A part or all of the synchronization unit 132, the score calculation unit 134, the intersection calculation unit 136, the change unit 137, the input unit 140, and the output unit 141 read the program stored in the auxiliary storage device 104 into the main storage device 103. , It can be realized by executing the program by the processor 102.
 例えば、プロセッサ102が実行するプログラムは、音源特定プログラムとも言う。例えば、音源特定プログラムは、記録媒体に記録されている。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。
 なお、同期部132、スコア算出部134、交点算出部136、変更部137、入力部140、出力部141の一部又は全部は、図示されていない処理回路によって実現されてもよい。
 即ち、これらは、処理回路網により実現されてもよい。
For example, the program executed by the processor 102 is also referred to as a sound source specifying program. For example, the sound source specifying program is recorded on a recording medium. Such a program may be provided through a network, or may be recorded and provided on a recording medium. That is, such a program may be provided, for example, as a program product.
A part or all of the synchronization unit 132, the score calculation unit 134, the intersection calculation unit 136, the change unit 137, the input unit 140, and the output unit 141 may be realized by a processing circuit (not shown).
That is, these may be realized by a processing network.
 図12は、音源方向推定システム100において、音データを取得する際の処理を示すフローチャートである。
 ここでのフローチャートは、ユーザがマイクアレイ110をかご122の上に設置していることを前提とする。
FIG. 12 is a flowchart showing a process for acquiring sound data in the sound source direction estimation system 100.
The flowchart here assumes that the user has installed the microphone array 110 on the car 122.
 まず、マイクアレイ110は、1往復目の音データの収録を開始する(S10)。
 そして、かご122が昇降路を移動している間、マイクアレイ110は、音データを取得する(S11)。ここで、かご122は、上昇の後に降下、又は、下降の後に上昇することで、昇降路を往復する。そして、マイクアレイ110には、昇降路内の音が入力される。
First, the microphone array 110 starts recording the sound data of the first round trip (S10).
Then, while the car 122 is moving on the hoistway, the microphone array 110 acquires sound data (S11). Here, the car 122 reciprocates in the hoistway by descending after ascending or ascending after descending. Then, the sound in the hoistway is input to the microphone array 110.
 マイクアレイ110は、1往復目の音データの収録を終了する(S12)。収録された音データは、取得部131を介して音源方向推定装置130に入力されて、データ記憶部133に記憶される。 The microphone array 110 finishes recording the sound data of the first round trip (S12). The recorded sound data is input to the sound source direction estimation device 130 via the acquisition unit 131 and stored in the data storage unit 133.
 次に、ユーザは、マイクアレイ110を水平方向に90度回転させる(S13)。なお、ユーザが回転角を入力する場合、ユーザは、マイクアレイ110を回転させた向き及び回転角(ここでは、90度)を、入力装置111を介して入力する。このような情報は、入力部140が取得して、データ記憶部133に記憶させる。 Next, the user rotates the microphone array 110 horizontally by 90 degrees (S13). When the user inputs the rotation angle, the user inputs the rotation direction and the rotation angle (here, 90 degrees) of the microphone array 110 via the input device 111. Such information is acquired by the input unit 140 and stored in the data storage unit 133.
 マイクアレイ110は、2往復目の音データの収録を開始する(S14)。
 そして、かご122が昇降路を移動している間、マイクアレイ110は、音データを取得する(S15)。かご122は、上記のステップS11と同じ方向に、同程度の速度で移動する。
The microphone array 110 starts recording the sound data for the second round trip (S14).
Then, while the car 122 is moving on the hoistway, the microphone array 110 acquires sound data (S15). The car 122 moves in the same direction as in step S11 and at the same speed.
 マイクアレイ110は、2往復目の音データの収録を終了する(S16)。収録された音データは、取得部131を介して音源方向推定装置130に入力されて、データ記憶部133に記憶される。 The microphone array 110 ends the recording of the sound data for the second round trip (S16). The recorded sound data is input to the sound source direction estimation device 130 via the acquisition unit 131 and stored in the data storage unit 133.
 図13は、実施の形態1において音源方向推定装置130が音源方向を推定する処理を示すフローチャートである。
 なお、ここでのフローチャートは、2往復分の音データがデータ記憶部133に記憶されていることを前提とする。
FIG. 13 is a flowchart showing a process of estimating the sound source direction by the sound source direction estimation device 130 in the first embodiment.
The flowchart here is based on the premise that the sound data for two round trips is stored in the data storage unit 133.
 まず、同期部132は、2往復分の音データの同期をとる(S20)。
 次に、スコア算出部134は、同期された2往復分の音データのそれぞれからスコアを算出する(S21)。
First, the synchronization unit 132 synchronizes the sound data for two round trips (S20).
Next, the score calculation unit 134 calculates a score from each of the synchronized sound data for two round trips (S21).
 次に、交点算出部136は、スコア算出部134で算出されたスコアを用いて音源方向候補を特定する(S22)。ここでは、交点算出部136は、1往復目の複数の対象方向に対して算出された複数のスコアから最も値の高いスコアに対応する対象方向を音源方向候補とするとともに、2往復目の複数の対象方向に対して算出された複数のスコアから最も値の高いスコアに対応する対象方向を音源方向候補とする。 Next, the intersection calculation unit 136 identifies a sound source direction candidate using the score calculated by the score calculation unit 134 (S22). Here, the intersection calculation unit 136 sets the target direction corresponding to the highest score from the plurality of scores calculated for the plurality of target directions of the first round trip as the sound source direction candidate, and the plurality of second round trips. The target direction corresponding to the highest score from the plurality of scores calculated for the target direction of is set as the sound source direction candidate.
 次に、交点算出部136は、マイクアレイ110の中心点150を中心とした単位球において、二つの音源方向候補から特定される二つの音源位置候補の軌跡から、マイクアレイの110の水平面に対して投影された二つの線分を特定する(S23)。 Next, the intersection calculation unit 136 refers to the locus of the two sound source position candidates specified from the two sound source direction candidates with respect to the horizontal plane of the microphone array 110 in the unit sphere centered on the center point 150 of the microphone array 110. The two line segments projected by the above are specified (S23).
 次に、交点算出部136は、ステップS23で特定された二つの線分に交点があるか否かを判断する(S24)。その二つの線分に交点がある場合(S24でYes)には、処理はステップS25に進み、その二つの線分に交点がない場合(S24でNo)には、処理はステップS27に進む。 Next, the intersection calculation unit 136 determines whether or not there is an intersection in the two line segments specified in step S23 (S24). If the two line segments have an intersection (Yes in S24), the process proceeds to step S25, and if the two line segments do not have an intersection (No in S24), the process proceeds to step S27.
 ステップS25では、交点算出部136は、その二つの線分の交点から音源方向を推定する。このようにして推定された音源方向を示す情報は、出力部141に与えられる。
 そして、出力部141は、与えられた情報に基づいて、音源方向を出力する処理を行う(S26)。
In step S25, the intersection calculation unit 136 estimates the sound source direction from the intersection of the two line segments. The information indicating the sound source direction estimated in this way is given to the output unit 141.
Then, the output unit 141 performs a process of outputting the sound source direction based on the given information (S26).
 ステップS27では、変更部137は、二つの音源方向候補の内、少なくとも一つの音源方向候補を変更する。そして、処理はステップS23に戻る。ステップS23では、交点算出部136は、変更された音源方向候補を用いて、二つの線分を特定する。 In step S27, the changing unit 137 changes at least one sound source direction candidate among the two sound source direction candidates. Then, the process returns to step S23. In step S23, the intersection calculation unit 136 identifies two line segments using the changed sound source direction candidates.
 実施の形態1によれば、音源方向推定装置130は、2chのマイクアレイ110を用いて昇降路内の音を示す音データから水平方向0~360度、仰角方向0~90度の範囲の音源方向を確実に推定することができる。 According to the first embodiment, the sound source direction estimation device 130 uses a 2ch microphone array 110 to generate a sound source in the range of 0 to 360 degrees in the horizontal direction and 0 to 90 degrees in the elevation direction from the sound data indicating the sound in the hoistway. The direction can be estimated with certainty.
 また、1往復目若しくは2往復目、又は、1往復目及び2往復目の両方のスコアの算出に誤差が生じている場合でも、音源方向候補を変更し、1往復目と2往復目との音源方向候補を統合して、最終的な音源方向を推定することができる。 Further, even if there is an error in the calculation of the scores of the first round trip or the second round trip, or both the first round trip and the second round trip, the sound source direction candidate is changed and the first round trip and the second round trip are performed. The final sound source direction can be estimated by integrating the sound source direction candidates.
実施の形態2.
 次に、実施の形態2を説明する。実施の形態2では、実施の形態1と相違する事項を主に説明する。そして、実施の形態2では、実施の形態1と共通する事項の説明を省略する。
Embodiment 2.
Next, the second embodiment will be described. In the second embodiment, the matters different from the first embodiment will be mainly described. Then, in the second embodiment, the description of the matters common to the first embodiment will be omitted.
 実施の形態1では、交点算出部136において、2往復分のスコアから、図10に示されているような交点158が求まらない場合に、変更部137にて音源方向候補を変更している。実施の形態2では、実施の形態1とは異なる方法で音源方向を推定する方法について述べる。 In the first embodiment, when the intersection 158 as shown in FIG. 10 cannot be obtained from the scores for two round trips in the intersection calculation unit 136, the change unit 137 changes the sound source direction candidate. There is. In the second embodiment, a method of estimating the sound source direction by a method different from that of the first embodiment will be described.
 図1に示されているように、実施の形態2における音源方向推定システム200は、音源方向推定装置として機能するコンピュータ101と、マイクアレイ110と、入力装置111と、出力装置112と、センサ113とを備える。
 実施の形態2における音源方向推定システム200は、コンピュータ101での処理が、実施の形態1における音源方向推定システム100とは異なっている。
As shown in FIG. 1, the sound source direction estimation system 200 according to the second embodiment includes a computer 101 functioning as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 113. And prepare.
The sound source direction estimation system 200 according to the second embodiment is different from the sound source direction estimation system 100 according to the first embodiment in the processing by the computer 101.
 図14は、実施の形態2における音源方向推定装置の一例を示すブロック図である。
 図14に示されているように、音源方向推定装置230は、取得部131と、同期部132と、データ記憶部133と、スコア算出部134と、音源方向推定部235と、入力部140と、出力部141とを備える。
 実施の形態2における音源方向推定装置230の取得部131、同期部132、データ記憶部133、スコア算出部134、入力部140及び出力部141は、実施の形態1における音源方向推定装置130の取得部131、同期部132、データ記憶部133、スコア算出部134、入力部140及び出力部141と同様である。
FIG. 14 is a block diagram showing an example of the sound source direction estimation device according to the second embodiment.
As shown in FIG. 14, the sound source direction estimation device 230 includes an acquisition unit 131, a synchronization unit 132, a data storage unit 133, a score calculation unit 134, a sound source direction estimation unit 235, and an input unit 140. , The output unit 141 is provided.
The acquisition unit 131, synchronization unit 132, data storage unit 133, score calculation unit 134, input unit 140, and output unit 141 of the sound source direction estimation device 230 according to the second embodiment acquire the sound source direction estimation device 130 according to the first embodiment. This is the same as the unit 131, the synchronization unit 132, the data storage unit 133, the score calculation unit 134, the input unit 140, and the output unit 141.
 音源方向推定部235は、昇降路内においてかご122が特定の位置にある場合に、第1の音データで示される音である第1の音に含まれている対象音、及び、第2の音データで示される第2の音に含まれている対象音の音源方向を推定する。 When the car 122 is in a specific position in the hoistway, the sound source direction estimation unit 235 includes a target sound included in the first sound, which is a sound indicated by the first sound data, and a second sound source direction estimation unit 235. The sound source direction of the target sound included in the second sound indicated by the sound data is estimated.
 音源方向推定部235は、複数の第1のスコアの最大値を第1の選択スコアとして選択し、複数の第2のスコアの最大値を第2の選択スコアとして選択した場合に、第1の軌跡と、第2の軌跡とが交わらないときには、水平面において第1の方向から第1の方向に対する360°までの範囲で、複数の第1のスコアが算出されていない範囲における角度毎に、複数の第1のスコアから補完することで、複数の第1の補完スコアを算出する。また、音源方向推定部235は、水平面において第2の方向から第2の方向に対して360°までの範囲で、複数の第2のスコアが算出されていない範囲における角度毎に、複数の第2のスコアから補完することで、複数の第2の補完スコアを算出する。そして、音源方向推定部235は、第2の方向に対する角度が、第1の方向に対する角度と一致するように、第2の方向に対する角度を修正し、複数の第1のスコア及び複数の第1の補完スコアと、複数の第2のスコア及び複数の第2の補完スコアとを、修正された角度毎に平均した値が最も大きい角度に対応する、水平面における方向を、音源方向とする。 The sound source direction estimation unit 235 selects the maximum value of the plurality of first scores as the first selection score, and selects the maximum value of the plurality of second scores as the second selection score. When the locus and the second locus do not intersect, a plurality of angles in the range from the first direction to 360 ° with respect to the first direction in the horizontal plane and a range in which a plurality of first scores are not calculated are obtained. By complementing from the first score of, a plurality of first complementary scores are calculated. Further, the sound source direction estimation unit 235 has a plurality of positions for each angle in a range from the second direction to 360 ° with respect to the second direction in the horizontal plane and in a range in which a plurality of second scores have not been calculated. By complementing from the score of 2, a plurality of second complementary scores are calculated. Then, the sound source direction estimation unit 235 corrects the angle with respect to the second direction so that the angle with respect to the second direction matches the angle with respect to the first direction, and the plurality of first scores and the plurality of firsts are corrected. The direction in the horizontal plane corresponding to the angle in which the value obtained by averaging the complementary score, the plurality of second scores, and the plurality of second complementary scores for each modified angle is the largest is defined as the sound source direction.
 音源方向推定部235は、交点算出部136と、推定部238とを備える。
 実施の形態2における音源方向推定部235の交点算出部136は、実施の形態1における音源方向推定部135の交点算出部136と同様である。
 但し、交点算出部136は、図11に示されているように、線分156及び線分157が交差しない場合は、交差しないという情報を推定部238に与える。
The sound source direction estimation unit 235 includes an intersection calculation unit 136 and an estimation unit 238.
The intersection calculation unit 136 of the sound source direction estimation unit 235 in the second embodiment is the same as the intersection calculation unit 136 of the sound source direction estimation unit 135 in the first embodiment.
However, as shown in FIG. 11, when the line segment 156 and the line segment 157 do not intersect, the intersection calculation unit 136 gives information to the estimation unit 238 that the line segment 156 and the line segment 157 do not intersect.
 推定部238は、交点算出部136において、図10に示されているような交点158が求まらない場合に、音源方向を推定する。
 具体的には、1往復目のスコアを[A-90,A-80,・・・,A-10,A,A10,・・・,A80,A90]、2往復目のスコアを[B-90,B-80,・・・,B-10,B,B10,・・・,B80,B90]とする。ここで、例えば、「A」は、1往復目の水平角0度のスコアを示す。また、「B」は、2往復目の水平角0度のスコアを示す。
The estimation unit 238 estimates the sound source direction in the intersection calculation unit 136 when the intersection 158 as shown in FIG. 10 cannot be obtained.
Specifically, the score for the first round trip is [A -90 , A- 80 , ..., A - 10 , A0 , A10, ..., A80 , A90 ], and the score for the second round trip. Is [B -90 , B- 80 , ..., B - 10 , B0 , B10, ..., B80 , B90 ]. Here, for example, "A 0 " indicates a score of a horizontal angle of 0 degrees for the first round trip. Further, "B 0 " indicates a score of a horizontal angle of 0 degrees for the second round trip.
 このようなスコアに対して、推定部238は、1往復目のスコアを、[A,A-10,A-20,・・・,A-60,A-70,A-80,A-90,A-80,・・・,A-10,A, A10,・・・,A80,A90,A80,A70,A60,・・・,A20,A10,A]といったように、A-90及びA90のそれぞれで折り返されるように、[A-180,A-170,A-160,・・・,A-130,A-120,A-110,A-100]のスコアとして、[A,A-10,A-20,・・・,A-60,A-70,A-80]のスコアを割り当て、[A100,A110,A120,・・・,A160,A170,A180]のスコアとして、[A80,A70,A60,・・・,A20,A10,A]のスコアを割り当てる。これにより、推定部238は、-90度から90度までのスコアを、-180度から180度までのスコアに拡張する。つまり、推定部238は、2つのマイクを通る直線で対称となるようにスコアを反転させることで、補完を行っている。 For such a score, the estimation unit 238 sets the score of the first round trip to [A 0 , A- 10 , A- 20 , ..., A- 60 , A- 70 , A - 80 , A-. 90 , A - 80 , ..., A - 10 , A0 , A10 , ..., A80 , A90 , A80, A70, A60 , ..., A20 , A10 , A [ 0 ], so that it is folded back at each of A -90 and A90 , [A- 180 , A- 170 , A- 160 , ..., A- 130 , A -120 , A -110 , A. As the score of [ -100 ], the score of [A 0 , A- 10 , A- 20 , ..., A- 60 , A- 70 , A- 80 ] is assigned, and the score of [A 100 , A 110 , A 120 , ..., A 160 , A 170 , A 180 ] are assigned the scores of [A 80 , A 70 , A 60 , ..., A 20 , A 10 , A 0 ]. As a result, the estimation unit 238 expands the score from −90 degrees to 90 degrees to the score from −180 degrees to 180 degrees. That is, the estimation unit 238 complements the score by inverting the score so that the straight line passing through the two microphones is symmetrical.
 図15は、以上のようにして1往復目のスコアを反転させた様子を概略的に示す斜視図である。
 図15に示されているように、90度~-90度のスコアを示す線SL1が、マイクアレイ110を構成する2つのマイクを通る直線L1に対して対称となるように、-90°~90°のスコアを示す線SL2のように拡張されている。
FIG. 15 is a perspective view schematically showing how the score of the first round trip is inverted as described above.
As shown in FIG. 15, the line SL1 showing the score of 90 ° to −90 ° is symmetrical with respect to the straight line L1 passing through the two microphones constituting the microphone array 110 from −90 ° to −90 °. It is extended like the line SL2 showing a score of 90 °.
 また、推定部238は、2往復目のスコアについても、[B,B-10,B-20,・・・,B-60,B-70,B-80,B-90,B-80,・・・,B-10,B,B10,・・・,B80,B90,B80,B70,B60,・・・,B20,B10,B]といったように、-90度から90度までのスコアを、-180度から180度までのスコアに拡張することで、補完を行う。 In addition, the estimation unit 238 also describes the score for the second round trip as [B 0 , B- 10 , B- 20 , ..., B- 60 , B- 70 , B- 80 , B -90 , B- 80 . , ..., B -10 , B 0 , B 10 , ..., B 80 , B 90 , B 80 , B 70 , B 60 , ..., B 20 , B 10 , B 0 ] and so on. , The score from -90 degrees to 90 degrees is expanded to the score from -180 degrees to 180 degrees to perform complementation.
 図16は、以上のようにして二往復目のスコアを反転させた様子を概略的に示す斜視図である。
 図16に示されているように、90度~-90度のスコアを示す線SL3が、マイクアレイ110を構成する2つのマイクを通る直線L2に対して対称となるように、-90度~90度のスコアを示す線SL4のように拡張されている。
FIG. 16 is a perspective view schematically showing how the score of the second round trip is inverted as described above.
As shown in FIG. 16, the line SL3 showing the score of 90 degrees to −90 degrees is symmetrical with respect to the straight line L2 passing through the two microphones constituting the microphone array 110 from −90 degrees to −90 degrees. It is extended like the line SL4 showing a score of 90 degrees.
 さらに、推定部238は、2往復目のスコアについては、その水平角が1往復目のスコアの水平角と一致するように、2往復目の角度を90度分シフトさせる。図15及び図16では、角度の配置が異なっているが、このような処理を行うことで、図17に示されているように、2往復目のスコアに対応する角度の配置が、図15に示されている角度の配置と一致する。 Further, the estimation unit 238 shifts the angle of the second round trip by 90 degrees so that the horizontal angle of the score of the second round trip matches the horizontal angle of the score of the first round trip. Although the angle arrangements are different in FIGS. 15 and 16, by performing such processing, as shown in FIG. 17, the angle arrangement corresponding to the score of the second round trip is obtained in FIG. Consistent with the angular arrangement shown in.
 図18(A)~(E)は、以上のようにして処理された角度とスコアとの関係を示す表である。
 図18(A)は、推定部238により反転された1往復目のスコアと角度との関係を示す表である。図18(A)に示されているように、1往復目の水平角90度~-90度のスコアが、水平角-180度から170度に拡張されている。
18 (A) to 18 (E) are tables showing the relationship between the angle processed as described above and the score.
FIG. 18A is a table showing the relationship between the score and the angle of the first round trip inverted by the estimation unit 238. As shown in FIG. 18A, the score of the first round trip horizontal angle of 90 degrees to −90 degrees is expanded from the horizontal angle of −180 degrees to 170 degrees.
 図18(B)は、推定部238により反転された2往復目のスコアと角度との関係を示す表である。図18(B)に示されているように、2往復目の水平角90度~-90度のスコアが、水平角-180度から170度に拡張されている。 FIG. 18B is a table showing the relationship between the score and the angle of the second round trip inverted by the estimation unit 238. As shown in FIG. 18B, the score of the second round trip horizontal angle of 90 degrees to −90 degrees is expanded from the horizontal angle of −180 degrees to 170 degrees.
 図18(C)は、図18(B)に示されている角度を90度分シフトした際の、二往復目のスコアと角度との関係を示す表である。
 そして、図18(D)は、図18(C)に示されている角度とスコアとの関係を、図18(A)の角度の配置と同様となるように並べ替えた表である。
 さらに、図18(E)は、図18(A)に示されている角度と1往復目のスコアとの関係を示す表と、図18(C)に示されている角度と2往復目のスコアとの関係を示す表とをまとめた表である。
FIG. 18C is a table showing the relationship between the score and the angle of the second round trip when the angle shown in FIG. 18B is shifted by 90 degrees.
Then, FIG. 18 (D) is a table in which the relationship between the angle and the score shown in FIG. 18 (C) is rearranged so as to be similar to the arrangement of the angles in FIG. 18 (A).
Further, FIG. 18E shows a table showing the relationship between the angle shown in FIG. 18A and the score of the first round trip, and the angle shown in FIG. 18C and the second round trip. It is a table that summarizes the table showing the relationship with the score.
 ここで、推定部238は、図18(E)において、1往復目のスコアと、2往復目のスコアとを、対応する角度毎に平均する。例えば、推定部238は、相乗平均又は相加平均により、平均値を算出し、平均値が最も高い水平角を、音源方向の水平角とし、音源方向の仰角を0度とする。
 以上により、推定部238は、音源方向を推定する。音源方向の推定結果については、出力部141に与えられる。
Here, the estimation unit 238 averages the score of the first round trip and the score of the second round trip for each corresponding angle in FIG. 18 (E). For example, the estimation unit 238 calculates an average value by a synergistic average or an arithmetic mean, and sets the horizontal angle having the highest average value as the horizontal angle in the sound source direction and the elevation angle in the sound source direction as 0 degree.
Based on the above, the estimation unit 238 estimates the sound source direction. The estimation result of the sound source direction is given to the output unit 141.
 なお、この例では、水平角は、10度毎に分割されているが、分割する角度が異なる場合でも同様に-90度及び90度で折り返すことにより、水平角の範囲を拡張することができる。 In this example, the horizontal angle is divided every 10 degrees, but even if the division angle is different, the range of the horizontal angle can be expanded by folding back at -90 degrees and 90 degrees in the same manner. ..
 実施の形態2では仰角を0度に固定することで、実施の形態1と同様に1往復目、2往復目、又は、1往復目及び2往復目の両方の何れかに、スコアを算出する際に誤差が生じていても、音源方向を推定することができる。 In the second embodiment, by fixing the elevation angle to 0 degrees, the score is calculated for either the first round trip, the second round trip, or both the first round trip and the second round trip, as in the first round trip. Even if there is an error, the sound source direction can be estimated.
実施の形態3.
 次に、実施の形態3を説明する。実施の形態3では、実施の形態1及び2と相違する事項を主に説明する。そして、実施の形態3では、実施の形態1及び2と共通する事項の説明を省略する。
Embodiment 3.
Next, the third embodiment will be described. In the third embodiment, the matters different from the first and second embodiments will be mainly described. Then, in the third embodiment, the description of the matters common to the first and second embodiments will be omitted.
 実施の形態1では、交点算出部136にて2往復分のスコアから図10における交点158が求まらない場合に、変更部137にて音源方向候補を変更している。一方、実施の形態2では、そのような場合に、2往復分のスコアを処理することで、音源方向を推定している。言い換えると、実施の形態1及び2では、交点算出部136にて2往復分のスコアから図10における交点158が求まらない場合において、音源方向を推定する方法が異なっている。ここで、実施の形態3では、そのような場合に、実施の形態1及び実施の形態2で述べた方法で算出された音源方向の何れを選択するかを決定する方法について説明する。 In the first embodiment, when the intersection point calculation unit 136 does not obtain the intersection point 158 in FIG. 10 from the scores for two round trips, the change unit 137 changes the sound source direction candidate. On the other hand, in the second embodiment, in such a case, the sound source direction is estimated by processing the score for two round trips. In other words, in the first and second embodiments, the method of estimating the sound source direction is different when the intersection 158 in FIG. 10 cannot be obtained from the scores for two round trips by the intersection calculation unit 136. Here, in the third embodiment, a method of determining which of the sound source directions calculated by the methods described in the first embodiment and the second embodiment is selected in such a case will be described.
 図1に示されているように、実施の形態3における音源方向推定システム300は、音源方向推定装置として機能するコンピュータ101と、マイクアレイ110と、入力装置111と、出力装置112と、センサ113とを備える。
 実施の形態3における音源方向推定システム300は、コンピュータ101での処理が、実施の形態1における音源方向推定システム100とは異なっている。
As shown in FIG. 1, the sound source direction estimation system 300 according to the third embodiment includes a computer 101 functioning as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 113. And prepare.
The sound source direction estimation system 300 according to the third embodiment is different from the sound source direction estimation system 100 according to the first embodiment in the processing by the computer 101.
 図19は、実施の形態3における音源方向推定装置の一例を示すブロック図である。
 図19に示されているように、音源方向推定装置330は、取得部131と、同期部132と、データ記憶部133と、スコア算出部334と、音源方向推定部335と、入力部140と、出力部341と、かご位置推定部342と、優先順位特定部343とを備える。
 実施の形態3における音源方向推定装置330の取得部131、同期部132、データ記憶部133及び入力部140は、実施の形態1における音源方向推定装置130の取得部131、同期部132、データ記憶部133及び入力部140と同様である。
FIG. 19 is a block diagram showing an example of the sound source direction estimation device according to the third embodiment.
As shown in FIG. 19, the sound source direction estimation device 330 includes an acquisition unit 131, a synchronization unit 132, a data storage unit 133, a score calculation unit 334, a sound source direction estimation unit 335, and an input unit 140. , An output unit 341, a car position estimation unit 342, and a priority order specifying unit 343.
The acquisition unit 131, synchronization unit 132, data storage unit 133, and input unit 140 of the sound source direction estimation device 330 according to the third embodiment are the acquisition unit 131, synchronization unit 132, and data storage of the sound source direction estimation device 130 according to the first embodiment. This is the same as the unit 133 and the input unit 140.
 スコア算出部334は、同期部132で同期された2往復分の音データから、音源方向推定を実施する区間を切り出す。この際に、スコア算出部334は、区間を切り出す開始時刻、終了時刻及び切り出し長を含む区間情報を特定して、その区間の音データである区間音データを切り出す。
 スコア算出部334は、切り出された区間音データ毎に、マイクアレイ110で取得された音の対象方向のスコアを算出する。ここで算出されたスコアは、データ記憶部133に記憶される。
The score calculation unit 334 cuts out a section for performing sound source direction estimation from the sound data for two round trips synchronized by the synchronization unit 132. At this time, the score calculation unit 334 specifies the section information including the start time, the end time, and the cutout length for cutting out the section, and cuts out the section sound data which is the sound data of the section.
The score calculation unit 334 calculates the score in the target direction of the sound acquired by the microphone array 110 for each section sound data cut out. The score calculated here is stored in the data storage unit 133.
 音源方向推定部335は、マイクアレイ110がエレベータのかご122の1往復目に取得した音データから特定される音源方向候補と、マイクアレイ110がエレベータのかご122の1往復目に取得した音データから特定される音源方向候補とを結合する。例えば、音源方向推定部335は、マイクアレイ110がエレベータのかご122の1往復目に取得した音データから算出されたスコアから特定される音源方向候補と、マイクアレイ110がエレベータのかご122の2往復目に取得した音データから算出されたスコアから特定される音源方向候補とを統合することで、音源方向を推定する。 The sound source direction estimation unit 335 includes a sound source direction candidate specified from the sound data acquired by the microphone array 110 on the first round trip of the elevator car 122 and sound data acquired by the microphone array 110 on the first round trip of the elevator car 122. Combine with the sound source direction candidates specified from. For example, the sound source direction estimation unit 335 has a sound source direction candidate specified from the score calculated from the sound data acquired by the microphone array 110 in the first round trip of the elevator car 122, and the microphone array 110 is 2 of the elevator car 122. The sound source direction is estimated by integrating with the sound source direction candidate specified from the score calculated from the sound data acquired on the round trip.
 実施の形態3における音源方向推定部335は、実施の形態1における音源方向の推定と、実施の形態2における音源方向の推定との両方を行う。このため、音源方向推定部335は、実施の形態1の交点算出部136と同様の処理を行う交点算出部136と、実施の形態1の変更部137と同様の処理を行う変更部137と、実施の形態2の推定部238と同様の処理を行う推定部238とを備える。
 具体的には、交点算出部136にて2往復分のスコアから図10における交点158が求まらない場合に、変更部137にて音源方向候補を変更して、交点算出部136が変更された音源方向候補から音源方向を推定する。また、交点算出部136にて2往復分のスコアから図10における交点158が求まらない場合に、推定部238は、2往復分のスコアを処理することで、音源方向を推定している。
 これによって、同一の区間において、音源方向の推定結果が2つ得られる。2つの音源方向推定結果は、データ記憶部133に記録される。
The sound source direction estimation unit 335 in the third embodiment both estimates the sound source direction in the first embodiment and estimates the sound source direction in the second embodiment. Therefore, the sound source direction estimation unit 335 includes an intersection calculation unit 136 that performs the same processing as the intersection calculation unit 136 of the first embodiment, and a change unit 137 that performs the same processing as the change unit 137 of the first embodiment. The estimation unit 238 that performs the same processing as the estimation unit 238 of the second embodiment is provided.
Specifically, when the intersection point 158 in FIG. 10 cannot be obtained from the scores for two round trips by the intersection calculation unit 136, the sound source direction candidate is changed by the change unit 137, and the intersection calculation unit 136 is changed. The sound source direction is estimated from the sound source direction candidates. Further, when the intersection point calculation unit 136 does not obtain the intersection point 158 in FIG. 10 from the scores for two round trips, the estimation unit 238 estimates the sound source direction by processing the scores for the two round trips. ..
As a result, two estimation results in the sound source direction can be obtained in the same section. The two sound source direction estimation results are recorded in the data storage unit 133.
 かご位置推定部342は、取得部131にて取得されたセンサ113からのデータに基づいて、昇降路におけるかご122の位置であるかご位置を推定する。
 例えば、センサ113が加速度センサである場合には、垂直方向の加速度を2回積分することでかご位置を求めることができる。
 また、センサ113がイメージセンサである場合には、各時刻におけるイメージデータの変化量からかご位置を推定することができる。
 なお、これらの計算には既存の方法を用いればよい。
The car position estimation unit 342 estimates the car position, which is the position of the car 122 in the hoistway, based on the data from the sensor 113 acquired by the acquisition unit 131.
For example, when the sensor 113 is an acceleration sensor, the car position can be obtained by integrating the acceleration in the vertical direction twice.
Further, when the sensor 113 is an image sensor, the car position can be estimated from the amount of change in the image data at each time.
The existing method may be used for these calculations.
 優先順位特定部343は、ある区間において、音源方向推定部335が2つの音源方向を推定した場合に、その2つの音源方向に優先順位を特定する。ここでは、優先順位特定部343は、かご122が進んでいる方向と、実施の形態1と同様の方法で求められた第1の音源方向とを比較することで、実施の形態1と同様の方法で求められた第1の音源方向と、実施の形態2と同様の方法で求められた第2の音源方向との優先順位を特定する。
 例えば、優先順位特定部343は、2つの音源方向が推定された区間における音源方向と、かご位置とを比較することで、優先順位を特定する。
When the sound source direction estimation unit 335 estimates two sound source directions in a certain section, the priority order specifying unit 343 specifies the priority in the two sound source directions. Here, the priority specifying unit 343 is the same as that of the first embodiment by comparing the direction in which the car 122 is advancing with the first sound source direction obtained by the same method as that of the first embodiment. The priority order between the first sound source direction obtained by the method and the second sound source direction obtained by the same method as in the second embodiment is specified.
For example, the priority order specifying unit 343 specifies the priority by comparing the sound source direction in the section where the two sound source directions are estimated with the car position.
 まず、優先順位特定部343は、かご位置推定部342から得られるかご位置より、2つの音源方向が推定された区間におけるかごの移動方向であるかご移動方向を特定する。そして、実施の形態1と同様の方法で求められた音源方向では、音源の仰角方向が求まっているため、優先順位特定部343は、その仰角方向から、2つの音源方向が推定された区間における仰角方向が変化する方向である仰角変化方向を特定する。 First, the priority specifying unit 343 specifies the car moving direction, which is the moving direction of the car in the section where the two sound source directions are estimated, from the car position obtained from the car position estimation unit 342. Since the elevation angle direction of the sound source is obtained in the sound source direction obtained by the same method as in the first embodiment, the priority specifying unit 343 is in a section in which two sound source directions are estimated from the elevation angle direction. Specify the elevation angle change direction, which is the direction in which the elevation angle direction changes.
 そして、優先順位特定部343は、かご移動方向と、仰角変化方向とを比較する。具体的には、かご移動方向が、上向きである場合に、仰角変化方向も上向きである場合、かごよりも速く上方向に移動する物体はないため、実施の形態1と同様の方法で推定された音源方向では矛盾が生じる。この場合は、優先順位特定部343は、実施の形態2と同様の方法で推定された音源方向の優先順位を、実施の形態1と同様の方法で推定された音源方向の優先順位よりも上にする。 Then, the priority specifying unit 343 compares the car moving direction with the elevation angle changing direction. Specifically, when the car moving direction is upward and the elevation angle changing direction is also upward, there is no object that moves upward faster than the car, so it is estimated by the same method as in the first embodiment. There is a contradiction in the direction of the sound source. In this case, the priority specifying unit 343 raises the priority of the sound source direction estimated by the same method as in the second embodiment to higher than the priority of the sound source direction estimated by the same method as the first embodiment. To.
 同様に、優先順位特定部343は、かご移動方向及び仰角変化方向がともに下向きである場合にも、実施の形態2と同様の方法で推定された音源方向の優先順位を、実施の形態1と同様の方法で推定された音源方向の優先順位よりも上にする。 Similarly, even when the car moving direction and the elevation angle changing direction are both downward, the priority order specifying unit 343 sets the priority of the sound source direction estimated by the same method as in the second embodiment to the first embodiment. It should be higher than the priority of the sound source direction estimated by the same method.
 一方、優先順位特定部343は、かご移動方向と、仰角変化方向とが異なっている場合、言い換えると、かご移動方向が上向きで、仰角変化方向が下向きである場合、又は、かご移動方向が下向きで、仰角変化方向が上向きである場合には、実施の形態1と同様の方法で推定された音源方向の優先順位を、実施の形態2と同様の方法で推定された音源方向の優先順位よりも上にする。 On the other hand, in the priority order specifying unit 343, when the car moving direction and the elevation angle changing direction are different, in other words, the car moving direction is upward and the elevation angle changing direction is downward, or the car moving direction is downward. When the elevation angle change direction is upward, the priority of the sound source direction estimated by the same method as in the first embodiment is higher than the priority of the sound source direction estimated by the same method as the second embodiment. Also on top.
 そして、優先順位特定部343は、以上のようにして特定された優先順位を示す優先順位情報を出力部341に与える。 Then, the priority specifying unit 343 gives the output unit 341 priority information indicating the priority specified as described above.
 出力部341は、音源方向を示す情報を出力装置112に出力する。
 実施の形態3では、音源方向推定部335が、ある区間において2つの音源方向を推定した場合には、優先順位特定部343で特定された優先順位が上の音源方向がわかるように、音源方向を示す情報を出力装置112に出力する。ユーザは、これによってどちらの音源方向の優先順位が上かを知ることができる。
The output unit 341 outputs information indicating the sound source direction to the output device 112.
In the third embodiment, when the sound source direction estimation unit 335 estimates two sound source directions in a certain section, the sound source direction is such that the priority order specified by the priority specifying unit 343 can be known as the upper sound source direction. Is output to the output device 112. This allows the user to know which sound source direction has the higher priority.
 図20は、実施の形態3において音源方向推定装置330が音源方向を推定する処理を示すフローチャートである。
 なお、ここでのフローチャートは、2往復分の音データがデータ記憶部133に記憶されていることを前提とする。
 まず、同期部132は、2往復分の音データの同期をとる(S30)。
FIG. 20 is a flowchart showing a process of estimating the sound source direction by the sound source direction estimation device 330 in the third embodiment.
The flowchart here is based on the premise that the sound data for two round trips is stored in the data storage unit 133.
First, the synchronization unit 132 synchronizes the sound data for two round trips (S30).
 次に、スコア算出部334は、同期された2往復分の音データの最初から順に、処理を行う区間音データを切り出す(S31)。
 次に、スコア算出部334は、区間音データからスコアを算出する(S32)。
Next, the score calculation unit 334 cuts out the section sound data to be processed in order from the beginning of the synchronized sound data for two round trips (S31).
Next, the score calculation unit 334 calculates the score from the section sound data (S32).
 そして、音源方向推定部335は、スコア算出部334で算出されたスコアを用いて、音源方向を推定する(S33)。ここで、音源方向推定部335は、交点算出部136にて2往復分のスコアから図10における交点158が求まらない場合に、実施の形態1と同様の方法で音源方向を推定するととともに、実施の形態2と同様の方法で音源方向を推定する。なお、実施の形態1と同様の方法で推定された音源方向を第1の音源方向ともいい、実施の形態2と同様の方法で推定された音源方向を第2の音源方向ともいう。 Then, the sound source direction estimation unit 335 estimates the sound source direction using the score calculated by the score calculation unit 334 (S33). Here, the sound source direction estimation unit 335 estimates the sound source direction by the same method as in the first embodiment when the intersection point 158 in FIG. 10 cannot be obtained from the scores for two round trips by the intersection calculation unit 136. , The sound source direction is estimated by the same method as in the second embodiment. The sound source direction estimated by the same method as in the first embodiment is also referred to as a first sound source direction, and the sound source direction estimated by the same method as in the second embodiment is also referred to as a second sound source direction.
 次に、かご位置推定部342は、かご位置を推定する(S34)。
 そして、スコア算出部334は、音源方向が推定された区間が最後の区間であるか否かを判断する(S35)。例えば、スコア算出部334は、区間音データが終了時刻に達しているか否かにより、このような判断を行えばよい。そして、音源方向が推定された区間が最後の区間である場合(S35でYes)には、処理はステップS36に進む。一方、音源方向が推定された区間が最後の区間ではない場合(S35でNo)には、処理はステップS31に戻り、スコア算出部334は、次の区間の音データを区間音データとして切り出して、スコアを算出する。
Next, the car position estimation unit 342 estimates the car position (S34).
Then, the score calculation unit 334 determines whether or not the section in which the sound source direction is estimated is the last section (S35). For example, the score calculation unit 334 may make such a determination depending on whether or not the section sound data has reached the end time. Then, when the section in which the sound source direction is estimated is the last section (Yes in S35), the process proceeds to step S36. On the other hand, when the section in which the sound source direction is estimated is not the last section (No in S35), the process returns to step S31, and the score calculation unit 334 cuts out the sound data of the next section as the section sound data. , Calculate the score.
 ステップS36では、優先順位特定部343は、第1の音源方向及び第2の音源方向が推定されている区間毎に、第1の音源方向及び第2の音源方向の優先順位を特定する。 In step S36, the priority order specifying unit 343 specifies the priority of the first sound source direction and the second sound source direction for each section in which the first sound source direction and the second sound source direction are estimated.
 そして、出力部341は、推定された音源方向を示す情報を出力する(S37)。ここで、優先順位が特定されている区間については、出力部341は、第1の音源方向及び第2の音源方向の優先順位がわかるように、出力を行う。 Then, the output unit 341 outputs information indicating the estimated sound source direction (S37). Here, for the section in which the priority order is specified, the output unit 341 outputs so that the priority order of the first sound source direction and the second sound source direction can be known.
 以上のように、実施の形態3によれば、複数の方法で推定された音源方向に優先順位を特定することにより、より信頼性の高い音源方向推定結果をユーザに提示することができる。 As described above, according to the third embodiment, by specifying the priority order in the sound source direction estimated by a plurality of methods, it is possible to present a more reliable sound source direction estimation result to the user.
実施の形態4.
 次に、実施の形態4を説明する。実施の形態4では、実施の形態1及び2と相違する事項を主に説明する。そして、実施の形態4では、実施の形態1及び2と共通する事項の説明を省略する。
Embodiment 4.
Next, the fourth embodiment will be described. In the fourth embodiment, the matters different from the first and second embodiments will be mainly described. Then, in the fourth embodiment, the description of the matters common to the first and second embodiments will be omitted.
 実施の形態1~3では、マイクアレイ110を回転させた角度及び方向をユーザが入力部140に入力している。実施の形態4では、マイクアレイ110の向きを推定することで、ユーザの入力を省略できるようにする。 In the first to third embodiments, the user inputs the angle and direction in which the microphone array 110 is rotated to the input unit 140. In the fourth embodiment, the orientation of the microphone array 110 is estimated so that the user's input can be omitted.
 図1に示されているように、実施の形態4における音源方向推定システム400は、音源方向推定装置として機能するコンピュータ101と、マイクアレイ110と、入力装置111と、出力装置112と、センサ413とを備える。 As shown in FIG. 1, the sound source direction estimation system 400 according to the fourth embodiment includes a computer 101 functioning as a sound source direction estimation device, a microphone array 110, an input device 111, an output device 112, and a sensor 413. And prepare.
 実施の形態4における音源方向推定システム400のコンピュータ101、マイクアレイ110、入力装置111及び出力装置112は、実施の形態1における音源方向推定システム100のコンピュータ101、マイクアレイ110、入力装置111及び出力装置112と同様である。 The computer 101, microphone array 110, input device 111 and output device 112 of the sound source direction estimation system 400 according to the fourth embodiment are the computer 101, microphone array 110, input device 111 and output of the sound source direction estimation system 100 according to the first embodiment. It is the same as the device 112.
 但し、実施の形態4における音源方向推定システム400は、コンピュータ101での処理が、実施の形態1における音源方向推定システム100とは異なっている。
 また、実施の形態4におけるセンサ413は、地磁気センサ又は角速度センサを含む場合がある。
However, in the sound source direction estimation system 400 in the fourth embodiment, the processing by the computer 101 is different from the sound source direction estimation system 100 in the first embodiment.
Further, the sensor 413 in the fourth embodiment may include a geomagnetic sensor or an angular velocity sensor.
 図21は、実施の形態4における音源方向推定装置の一例を示すブロック図である。
 図21に示されているように、音源方向推定装置430は、取得部431と、同期部132と、データ記憶部133と、スコア算出部134と、音源方向推定部135と、入力部140と、出力部141と、マイクアレイ方向推定部444とを備える。
FIG. 21 is a block diagram showing an example of the sound source direction estimation device according to the fourth embodiment.
As shown in FIG. 21, the sound source direction estimation device 430 includes an acquisition unit 431, a synchronization unit 132, a data storage unit 133, a score calculation unit 134, a sound source direction estimation unit 135, and an input unit 140. , The output unit 141 and the microphone array direction estimation unit 444 are provided.
 実施の形態4における音源方向推定装置430の同期部132、データ記憶部133、スコア算出部134、音源方向推定部135、入力部140及び出力部141は、実施の形態1における音源方向推定装置130の同期部132、データ記憶部133、スコア算出部134、音源方向推定部135、入力部140及び出力部141と同様である。
 但し、音源方向推定部135では、入力部140で入力されたマイクアレイ110を回転させた角度及び方向の代わりに、マイクアレイ方向推定部444で推定されたマイクアレイ110の向きを用いて音源方向の推定を行う。
The synchronization unit 132, the data storage unit 133, the score calculation unit 134, the sound source direction estimation unit 135, the input unit 140, and the output unit 141 of the sound source direction estimation device 430 according to the fourth embodiment are the sound source direction estimation device 130 according to the first embodiment. This is the same as the synchronization unit 132, the data storage unit 133, the score calculation unit 134, the sound source direction estimation unit 135, the input unit 140, and the output unit 141.
However, the sound source direction estimation unit 135 uses the direction of the microphone array 110 estimated by the microphone array direction estimation unit 444 instead of the angle and direction in which the microphone array 110 input by the input unit 140 is rotated. Estimate.
 取得部431は、実施の形態1と同様に、音データ及び同期用データを取得する。
 また、取得部431は、マイクアレイ110の方向を推定するための推定用データを取得する。例えば、取得部431は、推定用データとして、センサ413に含まれている地磁気センサ、角加速度センサ及びイメージセンサの少なくとも1つからデータを取得すればよい。そして、取得された推定用データは、データ記憶部133に記憶される。なお、推定用データの取得は、かごを昇降路に沿って往復させる毎に行われる。
The acquisition unit 431 acquires sound data and synchronization data as in the first embodiment.
Further, the acquisition unit 431 acquires estimation data for estimating the direction of the microphone array 110. For example, the acquisition unit 431 may acquire data as estimation data from at least one of the geomagnetic sensor, the angular acceleration sensor, and the image sensor included in the sensor 413. Then, the acquired estimation data is stored in the data storage unit 133. The estimation data is acquired every time the car is reciprocated along the hoistway.
 マイクアレイ方向推定部444は、集音部としてのマイクアレイ110が向いている方向を推定する方向推定部である。
 例えば、マイクアレイ方向推定部444は、推定用データを用いてマイクアレイの向きを推定する。
 まず、センサ413がイメージセンサである場合のマイクアレイ110の向きの推定方法について説明する。
The microphone array direction estimation unit 444 is a direction estimation unit that estimates the direction in which the microphone array 110 as a sound collecting unit is facing.
For example, the microphone array direction estimation unit 444 estimates the direction of the microphone array using the estimation data.
First, a method of estimating the orientation of the microphone array 110 when the sensor 413 is an image sensor will be described.
 マイクアレイ110を設置する際に、イメージセンサは、例えば、昇降路の上方向を向くようにマイクアレイ110に固定して設置される。この状態で1往復目でのイメージデータが取得される。2往復目ではユーザがマイクアレイ110を手動にて90度を目安に回転させる。この状態で2往復目でのイメージデータが取得される。 When installing the microphone array 110, for example, the image sensor is fixedly installed on the microphone array 110 so as to face upward in the hoistway. In this state, the image data in the first round trip is acquired. In the second round trip, the user manually rotates the microphone array 110 around 90 degrees. In this state, the image data in the second round trip is acquired.
 マイクアレイ方向推定部444は、1往復目のイメージデータで示される画像と、2往復目のイメージデータで示される画像との相互相関関数等を用いて、1往復目のイメージデータで示される画像と、2往復目のイメージデータで示される画像との回転角を求めることができる。これによって、マイクアレイ方向推定部444は、2往復目が1往復目に対してどの方向にどれだけ回転したかを求めることができる。 The microphone array direction estimation unit 444 uses the intercorrelation function between the image shown by the image data of the first round trip and the image shown by the image data of the second round trip, and the image shown by the image data of the first round trip. And the rotation angle with the image shown by the image data of the second round trip can be obtained. As a result, the microphone array direction estimation unit 444 can determine how much the second round trip has rotated in which direction with respect to the first round trip.
 また、センサ413が角加速度センサである場合には、角加速度センサが固定されたマイクアレイ110をユーザが回転して設置した際の角加速度を2回積分することで実際の角度を算出することができる。これによって、マイクアレイ方向推定部444は、1往復目と2往復目の角度及び回転方向を求めることができる。 When the sensor 413 is an angular acceleration sensor, the actual angle is calculated by integrating the angular acceleration twice when the user rotates and installs the microphone array 110 to which the angular acceleration sensor is fixed. Can be done. Thereby, the microphone array direction estimation unit 444 can obtain the angle and the rotation direction of the first round trip and the second round trip.
 さらに、センサ413が地磁気センサである場合には、マイクアレイ方向推定部444は、地磁気センサから出力されるX軸の磁気及びY軸の磁気からマイクアレイ110の向きを下記の(4)式から求めることができる。
Figure JPOXMLDOC01-appb-M000004
                              (4)
 ここで、Yは、Y軸の磁気の値であり、Xは、X軸の磁気の値である。
Further, when the sensor 413 is a geomagnetic sensor, the microphone array direction estimation unit 444 directs the microphone array 110 from the X-axis magnetic field and the Y-axis magnetic field output from the geomagnetic sensor from the following equation (4). You can ask.
Figure JPOXMLDOC01-appb-M000004
(4)
Here, Y is a magnetic value on the Y axis, and X is a magnetic value on the X axis.
 なお、交点算出部136では実施の形態1で説明した同様の処理を実施する。但し、1往復目のマイクアレイの角度と、2往復目のマイクアレイ110の角度との差を90度とするのではなく、マイクアレイ方向推定部444で推定した角度差とする。 Note that the intersection calculation unit 136 performs the same processing described in the first embodiment. However, the difference between the angle of the first round-trip microphone array and the angle of the second round-trip microphone array 110 is not set to 90 degrees, but the angle difference estimated by the microphone array direction estimation unit 444.
 また、実施の形態1の交点算出部136では、1往復目のマイクアレイ110から見て2往復目のマイクアレイ110の回転方向は時計回りであったが、実施の形態4ではマイクアレイ110の回転方向についても、マイクアレイ方向推定部444で推定した回転方向と一致するようにする。 Further, in the intersection calculation unit 136 of the first embodiment, the rotation direction of the second round-trip microphone array 110 when viewed from the first round-trip microphone array 110 is clockwise, but in the fourth embodiment, the microphone array 110 The rotation direction is also set to match the rotation direction estimated by the microphone array direction estimation unit 444.
 以上のように、実施の形態4によれば、ユーザがマイクアレイ110の回転角度を入力する必要がなくなり、より容易に音源方向を推定できるようになる。
 また、マイクアレイ方向推定部444にてマイクアレイ110の回転角度を算出することで、人手でマイクアレイ110を回転させたときの実際の回転角度を正確に交点算出部136に反映できるようになり、より正確に音源方向を推定できるようになる。
As described above, according to the fourth embodiment, the user does not need to input the rotation angle of the microphone array 110, and the sound source direction can be estimated more easily.
Further, by calculating the rotation angle of the microphone array 110 by the microphone array direction estimation unit 444, the actual rotation angle when the microphone array 110 is manually rotated can be accurately reflected in the intersection calculation unit 136. , It will be possible to estimate the sound source direction more accurately.
 なお、実施の形態4では、実施の形態1における音源方向推定装置130にマイクアレイ方向推定部444を設ける例を示したが、実施の形態4は、このような例に限定されない。
 例えば、実施の形態2における音源方向推定装置230又は実施の形態3における音源方向推定装置330にマイクアレイ方向推定部444が設けられてもよい。
In the fourth embodiment, an example in which the microphone array direction estimation unit 444 is provided in the sound source direction estimation device 130 in the first embodiment is shown, but the fourth embodiment is not limited to such an example.
For example, the sound source direction estimation device 230 in the second embodiment or the sound source direction estimation device 330 in the third embodiment may be provided with the microphone array direction estimation unit 444.
 なお、以上に記載された実施の形態1~4では、角度φは、仰角であるものとして説明したが、角度φは、俯角であってもよい。
 このため、音源方向推定部135~335は、上記のようにして算出された角度φを、仰角及び俯角として扱い、上下の二つの方向を音源方向として推定してもよい。
 また、音源方向推定部135~335は、角度φを俯角として扱い、音源方向を推定してもよい。
In the above-described embodiments 1 to 4, the angle φ has been described as an elevation angle, but the angle φ may be a depression angle.
Therefore, the sound source direction estimation units 135 to 335 may treat the angle φ calculated as described above as the elevation angle and the depression angle, and may estimate the two upper and lower directions as the sound source direction.
Further, the sound source direction estimation units 135 to 335 may treat the angle φ as a depression angle and estimate the sound source direction.
 100,200,300,400 音源方向推定システム、 101 コンピュータ、 110 マイクアレイ、 111 入力装置、 112 出力装置、 113 センサ、 120 壁面、 121 かごガイドレール、 122 かご、 123 かご上ガイドシュー、 124 かご下ガイドシュー、 125 カウンターウェイトガイドレール、 126 カウンターウェイト、 127 カウンターウェイト上ガイドシュー、 128 カウンターウェイト下ガイドシュー、 130,230,330,430 音源方向推定装置、 131,431 取得部、 132 同期部、 133 データ記憶部、 134,334 スコア算出部、 135,235,335 音源方向推定部、 136 交点算出部、 137 変更部、 238 推定部、 140 入力部、 141 出力部、 342 かご位置推定部、 343 優先順位特定部、 444 マイクアレイ方向推定部。 100, 200, 300, 400 sound source direction estimation system, 101 computer, 110 microphone array, 111 input device, 112 output device, 113 sensor, 120 wall surface, 121 car guide rail, 122 car, 123 car top guide shoe, 124 car bottom Guide shoe, 125 counter weight guide rail, 126 counter weight, 127 counter weight upper guide shoe, 128 counter weight lower guide shoe, 130, 230, 330, 430 sound source direction estimation device, 131, 431 acquisition unit, 132 synchronization unit, 133 Data storage unit, 134,334 score calculation unit, 135,235,335 sound source direction estimation unit, 136 intersection point calculation unit, 137 change unit, 238 estimation unit, 140 input unit, 141 output unit, 342 car position estimation unit, 343 priority Ranking identification unit, 444 microphone array direction estimation unit.

Claims (9)

  1.  エレベータのかごが一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部で取得した第1の音データと、前記かごが二回目に移動する前記昇降路内の音を、前記平面における第2の方向に向けられた前記集音部で取得した第2の音データとを取得する取得部と、
     前記昇降路内において前記かごが特定の位置にある場合に、前記平面における前記第1の方向に対する角度毎に、前記第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、前記第1の音から算出し、前記平面における前記第2の方向に対する角度毎に、前記第2の音データで示される音である第2の音に含まれている前記対象音の前記音源方向である可能性を示す複数のスコアである複数の第2のスコアを、前記第2の音から算出するスコア算出部と、
     前記音源方向を、前記第1のスコア及び前記第2のスコアを用いて推定する音源方向推定部と、を備え、
     前記音源方向推定部は、前記平面において前記複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度で前記集音部から伸びる直線である第1の直線を、前記平面において前記第1の方向に直交する軸を中心に回転させることで、前記第1の直線が前記集音部を中心とする単位球と接触する点が移動する第1の軌跡と、前記平面において前記複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度で前記集音部から伸びる直線である第2の直線を、前記平面において前記第2の方向に直交する軸を中心に回転させることで、前記第2の直線が前記単位球と接触する点が移動する第2の軌跡との交点を、前記音源方向とすること
     を特徴とする音源方向推定装置。
    The sound in the hoistway where the elevator car moves for the first time is the first sound data acquired by the sound collector pointed in the first direction on a predetermined plane, and the car moves for the second time. The acquisition unit for acquiring the sound in the hoistway and the second sound data acquired by the sound collecting unit directed in the second direction on the plane, and the acquisition unit.
    When the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane. A plurality of first scores, which are a plurality of scores indicating the possibility of the sound source direction of the target sound, are calculated from the first sound, and the second score is calculated for each angle with respect to the second direction in the plane. A plurality of second scores, which are a plurality of scores indicating the possibility of the target sound included in the second sound, which is the sound indicated by the sound data, in the direction of the sound source, are calculated from the second sound. Score calculation unit and
    A sound source direction estimation unit that estimates the sound source direction using the first score and the second score is provided.
    The sound source direction estimation unit draws a first straight line extending from the sound collecting unit at an angle corresponding to the first selection score, which is one score selected from the plurality of first scores on the plane. The first locus in which the point where the first straight line comes into contact with the unit sphere centered on the sound collecting portion moves by rotating the axis orthogonal to the first direction on the plane. A second straight line extending from the sound collecting unit at an angle corresponding to the second selection score, which is one score selected from the plurality of second scores on the plane, is drawn on the plane. A sound source characterized in that the intersection with the second locus where the point where the second straight line contacts the unit sphere moves by rotating around an axis orthogonal to the direction of is set as the sound source direction. Direction estimation device.
  2.  前記音源方向推定部は、前記複数の第1のスコアの最大値を前記第1の選択スコアとして選択し、前記複数の第2のスコアの最大値を前記第2の選択スコアとして選択すること
     を特徴とする請求項1に記載の音源方向推定装置。
    The sound source direction estimation unit selects the maximum value of the plurality of first scores as the first selection score, and selects the maximum value of the plurality of second scores as the second selection score. The sound source direction estimation device according to claim 1.
  3.  前記音源方向推定部は、前記複数の第1のスコアの最大値を前記第1の選択スコアとして選択し、前記複数の第2のスコアの最大値を前記第2の選択スコアとして選択した場合に、前記第1の軌跡と、前記第2の軌跡とが交わらないときには、前記第1の軌跡と、前記第2の軌跡とが交わるまで、前記複数の第1のスコアの大きいものから順に前記第1の選択スコアとして選択すること
     を特徴とする請求項2に記載の音源方向推定装置。
    When the sound source direction estimation unit selects the maximum value of the plurality of first scores as the first selection score and selects the maximum value of the plurality of second scores as the second selection score. When the first locus and the second locus do not intersect, the first locus has the highest score until the first locus and the second locus intersect. The sound source direction estimation device according to claim 2, wherein the selection score is selected as 1.
  4.  前記音源方向推定部は、前記複数の第1のスコアの最大値を前記第1の選択スコアとして選択し、前記複数の第2のスコアの最大値を前記第2の選択スコアとして選択した場合に、前記第1の軌跡と、前記第2の軌跡とが交わらないときには、前記第1の軌跡と、前記第2の軌跡とが交わるまで、前記複数の第2のスコアの大きいものから順に前記第2の選択スコアとして選択すること
     を特徴とする請求項2に記載の音源方向推定装置。
    When the sound source direction estimation unit selects the maximum value of the plurality of first scores as the first selection score and selects the maximum value of the plurality of second scores as the second selection score. When the first locus and the second locus do not intersect, the first locus has the highest second score until the first locus and the second locus intersect. The sound source direction estimation device according to claim 2, wherein the selection score is selected as 2.
  5.  前記音源方向推定部は、前記複数の第1のスコアの最大値を前記第1の選択スコアとして選択し、前記複数の第2のスコアの最大値を前記第2の選択スコアとして選択した場合に、前記第1の軌跡と、前記第2の軌跡とが交わらないときには、前記平面において前記第1の方向から前記第1の方向に対する360°までの範囲で、前記複数の第1のスコアが算出されていない範囲における角度毎に、前記複数の第1のスコアから補完することで、複数の第1の補完スコアを算出し、前記平面において前記第2の方向から前記第2の方向に対して360°までの範囲で、前記複数の第2のスコアが算出されていない範囲における角度毎に、前記複数の第2のスコアから補完することで、複数の第2の補完スコアを算出し、前記第2の方向に対する角度が、前記第1の方向に対する角度と一致するように、前記第2の方向に対する角度を修正し、前記複数の第1のスコア及び前記複数の第1の補完スコアと、前記複数の第2のスコア及び前記複数の第2の補完スコアとを、前記修正された角度毎に平均した値が最も大きい角度に対応する、前記平面における方向を、前記音源方向とすること
     を特徴とする請求項2に記載の音源方向推定装置。
    When the sound source direction estimation unit selects the maximum value of the plurality of first scores as the first selection score and selects the maximum value of the plurality of second scores as the second selection score. When the first locus and the second locus do not intersect, the plurality of first scores are calculated in the range from the first direction to 360 ° with respect to the first direction on the plane. By complementing from the plurality of first scores for each angle in the range not set, a plurality of first complement scores are calculated, and the second direction to the second direction on the plane. A plurality of second complementary scores are calculated by complementing from the plurality of second scores for each angle in a range up to 360 ° in a range in which the plurality of second scores are not calculated. The angle with respect to the second direction is modified so that the angle with respect to the second direction matches the angle with respect to the first direction, and the plurality of first scores and the plurality of first complementary scores are combined with the plurality of first scores. The direction in the plane corresponding to the angle having the largest value averaged for each of the modified angles of the plurality of second scores and the plurality of second complementary scores is defined as the sound source direction. The sound source direction estimation device according to claim 2, which is characterized.
  6.  前記昇降路における前記かごの位置であるかご位置を推定するかご位置推定部をさらに備え、
     前記音源方向推定部は、前記複数の第1のスコアの最大値を前記第1の選択スコアとして選択し、前記複数の第2のスコアの最大値を前記第2の選択スコアとして選択した場合に、前記第1の軌跡と、前記第2の軌跡とが交わらないときには、前記第1の軌跡と、前記第2の軌跡とが交わるようになるまで、前記複数の第1のスコアの大きいものから順に前記第1の選択スコアとして選択すること、及び、前記複数の第2のスコアの大きいものから順に前記第2の選択スコアとして選択することの少なくとも何れか一方を行うことで推定される前記音源方向である第1の音源方向を特定するとともに、前記平面において前記第1の方向から前記第1の方向に対する360°までの範囲で、前記複数の第1のスコアが算出されていない範囲における角度毎に、前記複数の第1のスコアから補完することで、複数の第1の補完スコアを算出し、前記平面において前記第2の方向から前記第2の方向に対して360°までの範囲で、前記複数の第2のスコアが算出されていない範囲における角度毎に、前記複数の第2のスコアから補完することで、複数の第2の補完スコアを算出し、前記第2の方向に対する角度が、前記第1の方向に対する角度と一致するように、前記第2の方向に対する角度を修正し、前記複数の第1のスコア及び前記複数の第1の補完スコアと、前記複数の第2のスコア及び前記複数の第2の補完スコアとを、前記修正された角度毎に平均した値が最も大きい角度に対応する、前記平面における方向により推定される前記音源方向である第2の音源方向を特定し、
     前記かご位置により特定される前記かごが進んでいる方向と、前記第1の音源方向とを比較することで、前記第1の音源方向と、前記第2の音源方向との間の優先順位を特定する優先順位特定部をさらに備えること
     を特徴とする請求項2に記載の音源方向推定装置。
    Further provided with a car position estimation unit for estimating the car position, which is the position of the car in the hoistway,
    When the sound source direction estimation unit selects the maximum value of the plurality of first scores as the first selection score and selects the maximum value of the plurality of second scores as the second selection score. When the first locus and the second locus do not intersect, the plurality of first trajectories having the highest score until the first locus and the second locus intersect. The sound source estimated by performing at least one of selecting the first selection score in order and selecting the plurality of second selection scores in order from the one having the largest second selection score. While specifying the first sound source direction which is the direction, the angle in the range from the first direction to 360 ° with respect to the first direction in the plane and in the range where the plurality of first scores are not calculated. Each time, by complementing from the plurality of first scores, a plurality of first complement scores are calculated, and in the range from the second direction to 360 ° with respect to the second direction on the plane. , By complementing from the plurality of second scores for each angle in the range in which the plurality of second scores are not calculated, a plurality of second complementary scores are calculated, and the angles with respect to the second direction are calculated. Corrects the angle with respect to the second direction so as to match the angle with respect to the first direction, and the plurality of first scores and the plurality of first complementary scores and the plurality of second The second sound source direction, which is the sound source direction estimated by the direction in the plane, corresponding to the angle at which the average value of the score and the plurality of second complementary scores for each of the modified angles is the largest. Identify and
    By comparing the direction in which the car is advancing, which is specified by the car position, with the first sound source direction, the priority order between the first sound source direction and the second sound source direction can be determined. The sound source direction estimation device according to claim 2, further comprising a priority specifying unit to be specified.
  7.  前記集音部が向いている方向を推定する方向推定部をさらに備えること
     を特徴とする請求項1から6の何れか一項に記載の音源方向推定装置。
    The sound source direction estimation device according to any one of claims 1 to 6, further comprising a direction estimation unit that estimates the direction in which the sound collecting unit is facing.
  8.  コンピュータを、
     エレベータのかごが一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部で取得した第1の音データと、前記かごが二回目に移動する前記昇降路内の音を、前記平面における第2の方向に向けられた前記集音部で取得した第2の音データとを取得する取得部、
     前記昇降路内において前記かごが特定の位置にある場合に、前記平面における前記第1の方向に対する角度毎に、前記第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、前記第1の音から算出し、前記平面における前記第2の方向に対する角度毎に、前記第2の音データで示される音である第2の音に含まれている前記対象音の前記音源方向である可能性を示す複数のスコアである複数の第2のスコアを、前記第2の音から算出するスコア算出部、及び、
     前記音源方向を、前記第1のスコア及び前記第2のスコアを用いて推定する音源方向推定部、として機能させ、
     前記音源方向推定部は、前記平面において前記複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度で前記集音部から伸びる直線である第1の直線を、前記平面において前記第1の方向に直交する軸を中心に回転させることで、前記第1の直線が前記集音部を中心とする単位球と接触する点が移動する第1の軌跡と、前記平面において前記複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度で前記集音部から伸びる直線である第2の直線を、前記平面において前記第2の方向に直交する軸を中心に回転させることで、前記第2の直線が前記単位球と接触する点が移動する第2の軌跡との交点を、前記音源方向とすること
     を特徴とするプログラム。
    Computer,
    The sound in the hoistway where the elevator car moves for the first time is the first sound data acquired by the sound collector pointed in the first direction on a predetermined plane, and the car moves for the second time. Acquiring unit for acquiring the sound in the hoistway and the second sound data acquired by the sound collecting unit directed in the second direction on the plane.
    When the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane. A plurality of first scores, which are a plurality of scores indicating the possibility of the sound source direction of the target sound, are calculated from the first sound, and the second score is calculated for each angle with respect to the second direction in the plane. A plurality of second scores, which are a plurality of scores indicating the possibility of the target sound included in the second sound, which is the sound indicated by the sound data, in the direction of the sound source, are calculated from the second sound. Score calculation unit and
    The sound source direction is made to function as a sound source direction estimation unit that estimates using the first score and the second score.
    The sound source direction estimation unit draws a first straight line extending from the sound collecting unit at an angle corresponding to the first selection score, which is one score selected from the plurality of first scores on the plane. A first locus in which the point where the first straight line comes into contact with the unit sphere centered on the sound collecting portion moves by rotating the axis orthogonal to the first direction on the plane. A second straight line extending from the sound collecting unit at an angle corresponding to the second selection score, which is one score selected from the plurality of second scores on the plane, is drawn on the plane. A program characterized in that the intersection with the second locus where the point where the second straight line contacts the unit sphere moves by rotating around an axis orthogonal to the direction of is set as the sound source direction. ..
  9.  エレベータのかごが一回目に移動する昇降路内の音を、予め定められた平面における第1の方向に向けられた集音部で取得した第1の音データと、前記かごが二回目に移動する前記昇降路内の音を、前記平面における第2の方向に向けられた前記集音部で取得した第2の音データとを取得し、
     前記昇降路内において前記かごが特定の位置にある場合に、前記平面における前記第1の方向に対する角度毎に、前記第1の音データで示される音である第1の音に含まれている対象音の音源方向である可能性を示す複数のスコアである複数の第1のスコアを、前記第1の音から算出し、
     前記平面における前記第2の方向に対する角度毎に、前記第2の音データで示される音である第2の音に含まれている前記対象音の前記音源方向である可能性を示す複数のスコアである複数の第2のスコアを、前記第2の音から算出し、
     前記音源方向を、前記第1のスコア及び前記第2のスコアを用いて推定する音源方向推定方法であって、
     前記平面において前記複数の第1のスコアから選択された1つのスコアである第1の選択スコアに対応する角度で前記集音部から伸びる直線である第1の直線を、前記平面において前記第1の方向に直交する軸を中心に回転させることで、前記第1の直線が前記集音部を中心とする単位球と接触する点が移動する第1の軌跡と、前記平面において前記複数の第2のスコアから選択された1つのスコアである第2の選択スコアに対応する角度で前記集音部から伸びる直線である第2の直線を、前記平面において前記第2の方向に直交する軸を中心に回転させることで、前記第2の直線が前記単位球と接触する点が移動する第2の軌跡との交点を、前記音源方向とすること
     を特徴とする音源方向推定方法。
    The sound in the hoistway where the elevator car moves for the first time is the first sound data acquired by the sound collector pointed in the first direction on a predetermined plane, and the car moves for the second time. The sound in the hoistway is acquired with the second sound data acquired by the sound collecting unit directed in the second direction on the plane.
    When the car is in a specific position in the hoistway, it is included in the first sound, which is the sound indicated by the first sound data, for each angle with respect to the first direction in the plane. A plurality of first scores, which are a plurality of scores indicating the possibility of the sound source direction of the target sound, are calculated from the first sound.
    A plurality of scores indicating the possibility of the sound source direction of the target sound included in the second sound, which is the sound indicated by the second sound data, for each angle with respect to the second direction on the plane. A plurality of second scores are calculated from the second sound.
    A sound source direction estimation method for estimating the sound source direction using the first score and the second score.
    A first straight line extending from the sound collecting unit at an angle corresponding to the first selection score, which is one score selected from the plurality of first scores in the plane, is drawn from the first straight line in the plane. A first locus in which a point where the first straight line comes into contact with a unit sphere centered on the sound collecting portion moves by rotating the axis orthogonal to the direction of A second straight line, which is a straight line extending from the sound collecting unit at an angle corresponding to the second selection score, which is one score selected from the two scores, is an axis orthogonal to the second direction in the plane. A sound source direction estimation method characterized in that the intersection with a second locus where a point where the second straight line comes into contact with the unit sphere moves by rotating the second straight line is the sound source direction.
PCT/JP2020/044623 2020-12-01 2020-12-01 Sound source direction estimation device, program, and sound source direction estimation method WO2022118367A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080107599.2A CN116490451B (en) 2020-12-01 2020-12-01 Sound source direction estimating device, computer-readable recording medium, and sound source direction estimating method
PCT/JP2020/044623 WO2022118367A1 (en) 2020-12-01 2020-12-01 Sound source direction estimation device, program, and sound source direction estimation method
JP2022564726A JP7237255B2 (en) 2020-12-01 2020-12-01 Sound source direction estimation device, program, and sound source direction estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044623 WO2022118367A1 (en) 2020-12-01 2020-12-01 Sound source direction estimation device, program, and sound source direction estimation method

Publications (1)

Publication Number Publication Date
WO2022118367A1 true WO2022118367A1 (en) 2022-06-09

Family

ID=81852999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044623 WO2022118367A1 (en) 2020-12-01 2020-12-01 Sound source direction estimation device, program, and sound source direction estimation method

Country Status (3)

Country Link
JP (1) JP7237255B2 (en)
CN (1) CN116490451B (en)
WO (1) WO2022118367A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208149A (en) * 1996-02-06 1997-08-12 Hitachi Building Syst Co Ltd Abnormality detecting device of equipment in hoistway of elevator
WO2006054599A1 (en) * 2004-11-16 2006-05-26 Nihon University Sound source direction judging device and method
JP2009236688A (en) * 2008-03-27 2009-10-15 Nec Corp Sound source direction detection method, device, and program
JP2013060295A (en) * 2011-09-15 2013-04-04 Hitachi Ltd Device and method for diagnosing abnormality of elevator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832905A (en) * 2012-11-20 2014-06-04 日立电梯(中国)有限公司 Position detection device for elevator cab
CN104777450B (en) * 2015-04-29 2017-03-08 西安电子科技大学 A kind of two-stage MUSIC microphone array direction-finding method
WO2019123633A1 (en) * 2017-12-22 2019-06-27 三菱電機株式会社 Acoustic measurement system and parameter generation device
CN110861988A (en) * 2019-12-23 2020-03-06 江苏省特种设备安全监督检验研究院 Abnormal voiceprint recognition and fault diagnosis monitoring and alarming system for elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208149A (en) * 1996-02-06 1997-08-12 Hitachi Building Syst Co Ltd Abnormality detecting device of equipment in hoistway of elevator
WO2006054599A1 (en) * 2004-11-16 2006-05-26 Nihon University Sound source direction judging device and method
JP2009236688A (en) * 2008-03-27 2009-10-15 Nec Corp Sound source direction detection method, device, and program
JP2013060295A (en) * 2011-09-15 2013-04-04 Hitachi Ltd Device and method for diagnosing abnormality of elevator

Also Published As

Publication number Publication date
CN116490451B (en) 2023-11-03
CN116490451A (en) 2023-07-25
JPWO2022118367A1 (en) 2022-06-09
JP7237255B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
US11238609B2 (en) Point cloud data processing method and point cloud data processing device
CN105283775B (en) Mobile robot and sound source position deduction system
RU2397619C2 (en) Method and system for detection of location with application of multiple selected initial location estimates
US20180374026A1 (en) Work assistance apparatus, work learning apparatus, and work assistance system
CN109508019A (en) A kind of motion planning and robot control method, apparatus and storage medium
WO2019017454A1 (en) Data point group clustering method, guide information display device, and crane
CN107005761B (en) Information processing apparatus, information processing system, control method, and program
WO2019113611A2 (en) Method and system for fingerprinting survey
US20140214427A1 (en) Landmark based positioning with verbal input
US20160299505A1 (en) Autonomous moving device and control method of autonomous moving device
EP2732301B1 (en) Sound source localization using phase spectrum
US10043276B2 (en) Image processing method, image processing apparatus, robot apparatus, program, and recording medium
WO2022118367A1 (en) Sound source direction estimation device, program, and sound source direction estimation method
US9684824B2 (en) Motion estimation device, robot, and method to estimate reaction of a person
JP2009198382A (en) Environment map acquiring device
JP2009236688A (en) Sound source direction detection method, device, and program
JP2019152681A (en) Device and method for inspecting cracks
JP7204998B2 (en) Sound source identification device, sound source identification method, and sound source identification program
TWI838587B (en) Sound source localization device, sound source localization method and recording medium
JP5462597B2 (en) Object measurement system and method
JP5679909B2 (en) Obstacle detection device
JP5973499B2 (en) Pedestrian positioning in highly reflective environments
JP2012181063A (en) Calculation device, calculation method and calculation program
JP5546416B2 (en) Rotary steel pipe placement construction management system and rotary steel pipe placement construction management method
US20200333423A1 (en) Sound source direction estimation device and method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564726

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107599.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964221

Country of ref document: EP

Kind code of ref document: A1