WO2022117034A1 - 天线组件和电子装置 - Google Patents

天线组件和电子装置 Download PDF

Info

Publication number
WO2022117034A1
WO2022117034A1 PCT/CN2021/135066 CN2021135066W WO2022117034A1 WO 2022117034 A1 WO2022117034 A1 WO 2022117034A1 CN 2021135066 W CN2021135066 W CN 2021135066W WO 2022117034 A1 WO2022117034 A1 WO 2022117034A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
branch
dipole antenna
point
radiating sheet
Prior art date
Application number
PCT/CN2021/135066
Other languages
English (en)
French (fr)
Inventor
张琛
李肖峰
王兴
关蕊
莫正
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21900060.1A priority Critical patent/EP4243204A4/en
Priority to US18/255,915 priority patent/US20240039163A1/en
Publication of WO2022117034A1 publication Critical patent/WO2022117034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present application relates to the field of antenna technology, and in particular, to an antenna assembly and an electronic device.
  • two electric dipole antennas are crossed to form a dual-band Wi-Fi antenna, as shown in Figures 1-3. Complementarity can ensure horizontal coverage.
  • the two curves in the corresponding antenna pattern are perpendicular to each other, resulting in poor unbalance at multiple frequency points. Unbalance refers to the direction of the antenna. In the figure, the maximum difference between the two curves corresponding to the two dipoles, the larger the difference, the worse the unbalance of the antenna, and the smaller the difference, the better the unbalance of the antenna.
  • Figure 2 IF point 1
  • the difference between and frequency point 2 is 7.7dB, that is, the unbalance of the two antennas in Figure 1 is poor, and poor unbalance will lead to poor antenna performance. For example, in some scenarios, the throughput rate is higher. Low.
  • the technical solution of the present application provides an antenna assembly and an electronic device, which can improve the unbalance degree on the premise of improving the isolation degree, thereby improving the antenna performance.
  • an antenna assembly including:
  • the first electric dipole antenna, the radiator of the first electric dipole antenna and the radiator of the first magnetic dipole antenna are welded to the first feeding point, and the radiator of the first magnetic dipole antenna is perpendicular to the first feeding point.
  • the radiator of the first electric dipole antenna has a second feeding point, and on the radiator of the first electric dipole antenna, the first feeding point and the second feeding point are connected.
  • the first feed point includes a first end and a second end
  • the second feed point includes a first end and a second end
  • the radiator of the first electric dipole antenna includes a first radiating sheet, and the first radiating sheet includes:
  • first stub having a first end of a first feed point
  • the third stub having a first end of the second feed point
  • the fourth branch having a second end of the second feed point
  • balun structure is connected to the second branch, the third branch and the fourth branch;
  • the short-circuit branch, the first branch is connected to the balun structure through the short-circuit branch.
  • the third branch includes a first strip portion and a second strip portion that are perpendicular to each other, one end of the first strip portion is the first end of the second feeding point, and the first the other end of the strip is connected to the end of the second strip;
  • the fourth branch includes a third strip part, a fourth strip part and a fifth strip part, the third strip part and the first strip part are located on the same straight line, and the third strip part is close to one of the first strip parts
  • the end is the second end of the second feeding point, one end of the third strip part away from the first strip part is connected to one end of the fourth strip part, the fourth strip part and the fifth strip part are both vertical on the third strip portion, the third strip portion is perpendicular to the radiator of the first magnetic dipole antenna;
  • the balun structure includes a sixth strip part, a seventh strip part and an eighth strip part which are connected end to end in sequence, one end of the sixth strip part is connected to the third strip part, and the other end of the sixth strip part is connected to the third strip part.
  • One end is connected to one end of the seventh strip, the other end of the seventh strip is connected to one end of the eighth strip, and the other end of the eighth strip is connected to the second feeding point.
  • the sixth strip part and the eighth strip part are perpendicular to the first strip part, and the seventh strip part is parallel to the first strip part;
  • balun structure, the second strip part, the fourth strip part and the fifth strip part are all on the same side as the first strip part and the third strip part;
  • the fifth strip part and the balun structure are located between the second strip part and the fourth strip part, and the fifth strip part is located between the fourth strip part and the balun structure;
  • connection between the seventh strip portion and the eighth strip portion is connected to the first branch through the short-circuit branch.
  • the first radiating sheet further includes a fifth branch located between the eighth strip portion and the second strip portion, and the fifth branch is connected to the eighth strip portion.
  • the radiator of the first electric dipole antenna further includes a second radiation plate parallel to the first radiation plate, and the second radiation plate includes:
  • the ninth branch is opposite to the part of the first branch, and the ninth branch is connected to the first end of the first feeding point;
  • the tenth branch, the tenth branch is opposite to the part of the sixth strip part and the third strip part, and the tenth branch is floating;
  • a first dielectric layer is disposed between the first radiation sheet and the second radiation sheet.
  • the radiator of the first magnetic dipole antenna includes a third radiating sheet and a fourth radiating sheet that are parallel to each other, and a second dielectric layer is disposed between the third radiating sheet and the fourth radiating sheet ;
  • the third radiating sheet is welded to the first end of the first feeding point of the first branch, and the fourth radiating sheet is welded to the second end of the first feeding point of the first branch.
  • the third radiating sheet includes a first linear extension, one end of the first linear extension is connected to the first arc extension, and the other end of the first linear extension is connected
  • the first arc extension part and the second arc extension part are respectively located on opposite sides of the center of the first linear extension part, and the middle part of the first linear extension part is welded to the first branch the first end of the first feeding point of the section;
  • the fourth radiating sheet includes a second linear extension, one end of the second linear extension is connected to the third arc extension, the other end of the second linear extension is connected to the fourth arc extension, and the third arc
  • the extension part and the fourth arc extension part are respectively located on opposite sides of the center of the second linear extension part, and the middle part of the second linear extension part is welded to the second end of the first feeding point of the second branch;
  • the extension direction of the first linear extension portion is parallel to the extension direction of the second linear extension portion
  • the orthographic projection of the first arc extension extends from the first point to the second point
  • the orthographic projection of the third arc extension extends from the first point to the third point
  • the second point and the third point are respectively located on opposite sides of the first straight line extension
  • the orthographic projection of the second arc extension extends from the fourth point to the fifth point
  • the orthographic projection of the fourth arc extension extends from The fourth point extends to the sixth point
  • the fifth point and the sixth point are respectively located on opposite sides of the first straight line extension
  • the orthographic projection of the fourth arc extension forms at least part of the edge of the first circle.
  • the antenna assembly further includes: a second electric dipole antenna, and the radiator of the first electric dipole antenna is perpendicular to the radiator of the second electric dipole antenna.
  • the antenna assembly further includes: a second magnetic dipole antenna, the radiator of the second magnetic dipole antenna is parallel to the radiator of the first magnetic dipole antenna.
  • the radiator of the first magnetic dipole antenna includes a third radiating sheet and a fourth radiating sheet that are parallel to each other, and a second dielectric layer is disposed between the third radiating sheet and the fourth radiating sheet , in the direction perpendicular to the plane where the third radiating sheet is located, the orthographic projection of the edges of the third radiating sheet and the fourth radiating sheet forms at least part of the edge of the first circle;
  • the radiator of the second magnetic dipole antenna includes a fifth radiating sheet and a sixth radiating sheet parallel to each other, a third dielectric layer is arranged between the fifth radiating sheet and the sixth radiating sheet, and the fifth radiating sheet and the sixth radiating sheet
  • Each of the sheets includes an arc extension, and in a direction perpendicular to the fifth radiating sheet, the orthographic projection of the arc extension of the fifth radiating sheet and the sixth radiating sheet forms at least part of the edge of the second circle, and the second circular is smaller than the diameter of the first circle.
  • the radiator of the second magnetic dipole antenna has a third feeding point, and the third feeding point is located in the middle part of the second circle;
  • the radiator of the first electric dipole antenna includes a first radiating sheet and a second radiating sheet parallel to the first radiating sheet, a first dielectric layer is arranged between the first radiating sheet and the second radiating sheet, and the second radiating sheet is It includes a welding part, the welding part extends from the first feeding point to the third feeding point, and the second magnetic dipole antenna and the welding part are welded at the third feeding point.
  • the technical solution of the present application provides an electronic device including the above-mentioned antenna assembly.
  • the magnetic dipole antenna and the electric dipole antenna are vertically crossed, and the radiators of the two antennas are welded at the first feeding point by welding to form a common At the same time, the first feeding point and the second feeding point communicate with each other, thereby improving the unbalance and improving the performance of the antenna on the premise of improving the isolation.
  • FIG. 1 is a schematic diagram of an antenna structure in the prior art
  • FIG. 2 is a pattern of the antenna structure in FIG. 1 at 2.4 GHz;
  • FIG. 3 is a composite pattern of the antenna structure in FIG. 2;
  • FIG. 4 is a schematic structural diagram of an antenna assembly in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the first radiating sheet of the antenna assembly in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the second radiating sheet of the antenna assembly in FIG. 4;
  • FIG. 7 is a schematic structural diagram of the first electric dipole antenna of the antenna assembly in FIG. 4;
  • FIG. 8 is a schematic structural diagram of the third radiating sheet of the antenna assembly in FIG. 4;
  • FIG. 9 is a schematic structural diagram of the fourth radiating sheet of the antenna assembly in FIG. 4;
  • FIG. 10 is a schematic structural diagram of the second dielectric layer of the antenna assembly in FIG. 4;
  • FIG. 11 is a schematic structural diagram of the first magnetic dipole antenna of the antenna assembly in FIG. 4;
  • FIGS. 4 to 11 are schematic diagrams of a current simulation of the first magnetic dipole antenna in FIGS. 4 to 11 at 2.45 GHz;
  • FIGS. 4 to 11 are schematic diagrams of a current simulation of the first electric dipole antenna in FIGS. 4 to 11 at 5 GHz;
  • FIGS. 4 to 11 are schematic diagrams of a current simulation of the first magnetic dipole antenna in FIGS. 4 to 11 at 5.6 GHz;
  • FIG. 15 is a schematic diagram of current simulation of the first electric dipole antenna in FIGS. 4 to 11 at 2.45 GHz;
  • FIG. 16 is a schematic diagram of current simulation of the first electric dipole antenna in FIGS. 4 to 11 at 5.5 GHz;
  • FIG. 17 is a schematic diagram of the current simulation of the first electric dipole antenna in FIGS. 4 to 11 at 6 GHz;
  • FIG. 18 is the directional diagram of the first magnetic dipole in FIGS. 4 to 11 at 2.45 GHz;
  • Fig. 19 is a pattern of the first magnetic dipole in Figs. 4-11 at 5 GHz;
  • Fig. 20 is the directional diagram of the first electric dipole in Figs. 4-11 at 2.45 GHz;
  • Fig. 21 is a pattern of the first electric dipole in Figs. 4-11 at 5 GHz;
  • Fig. 22 is a combined pattern of the antenna components in Figs. 4-11 at 2.4 GHz;
  • FIG. 23 is a schematic diagram of the S-parameter curve of the antenna assembly in FIGS. 4-11;
  • FIG. 24 is a schematic structural diagram of another antenna assembly in an embodiment of the application.
  • FIG. 25 is a schematic structural diagram of the first electric dipole antenna of the antenna assembly in FIG. 24;
  • FIG. 26 is a schematic structural diagram of the second electric dipole antenna of the antenna assembly in FIG. 24;
  • FIG. 27 is a schematic structural diagram of another antenna assembly in an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of the antenna assembly in FIG. 27 at another angle
  • FIG. 29 is a schematic structural diagram of the first electric dipole antenna of the antenna assembly in FIG. 27;
  • FIG. 30 is a schematic structural diagram of the second magnetic dipole antenna of the antenna assembly in FIG. 27;
  • FIG. 31 is a schematic structural diagram of the fifth radiator of the second magnetic dipole antenna in FIG. 30;
  • FIG. 32 is a schematic structural diagram of the sixth radiator of the second magnetic dipole antenna in FIG. 30 .
  • an embodiment of the present application provides an antenna assembly, including: a first magnetic dipole antenna 11 ; a first electric dipole antenna 21 , and a radiator of the first electric dipole antenna 21
  • the radiator of the first magnetic dipole antenna 11 is welded to the first feeding point A1, and the radiator of the first magnetic dipole antenna 11 and the radiator of the first electric dipole antenna 21 are sheet-shaped radiators , the radiator of the first magnetic dipole antenna 11 is perpendicular to the radiator of the first electric dipole antenna 21; the radiator of the first electric dipole antenna 21 has a second feeding point A2 on the first electric dipole antenna 21.
  • the first feeding point A1 and the second feeding point A2 are connected.
  • the first magnetic dipole antenna 11 forms a loop current in the horizontal direction, similar to a magnetic current loop.
  • the radiator of the first magnetic dipole antenna 11 and the radiator of the first electric dipole antenna 21 are combined into one by welding. Electrical connection, that is, the common ground design of the two antennas is realized.
  • the common ground design can make the two antennas have a small headroom, and at the same time cooperate to make the connection between the first feeding point A1 and the second feeding point A2, so as to ensure The two antennas have better balance.
  • the radiator of the first magnetic dipole antenna 11 is perpendicular to the radiator of the first electric dipole antenna 21. the performance of the antenna.
  • the magnetic dipole antenna and the electric dipole antenna are vertically crossed, and the radiators of the two antennas are welded at the first feeding point by welding to form a common ground structure, At the same time, the first feeding point and the second feeding point communicate with each other, thereby improving the unbalance degree and improving the performance of the antenna on the premise of improving the isolation degree.
  • the first feed point A1 includes a first end F and a second end G
  • the second feed point A2 includes a first end F and a second end G
  • the radiator of the first electric dipole antenna 21 includes a first radiating sheet 31, the first radiating sheet 31 includes: a first branch 41, the first branch 41 has the first end F of the first feeding point A1;
  • the second branch 42, the second branch 42 has the second end G of the first feeding point A1;
  • the third branch 43, the third branch 43 has the first end F of the second feeding point A2;
  • the fourth branch 44 has the second end G of the second feeding point A2;
  • the balun structure 5, the balun structure 5 is connected to the second branch 42, the third branch 43 and the fourth branch 44;
  • the short-circuit branch 6 the first branch A branch 41 is connected to the balun structure 5 through the short-circuit branch 6 .
  • the antenna in this embodiment of the present application may be fed through, for example, a coaxial line or other forms of transmission lines, wherein the transmission lines include a signal line and a ground line, and the signal line is connected to the first end F and the second end G.
  • the ground wire is connected to the other of the first end F and the second end G.
  • the first branch 41 can be used to realize radiation in the 5G frequency band, and the short-circuit branch 6 between the first branch 41 and the balun structure 5 can be used to ensure the connection between the first feeding point A1 and the second feeding point A2.
  • the length of the current path is about 1/4 wavelength, so that the current of the second feeding point A2 is smaller when the first feeding point A1 feeds, thereby improving the isolation of the two antennas in the 5G part. According to the simulation analysis, comparing the antenna structures without short-circuit branch 6 and with short-circuit branch 6, after adding short-circuit branch 6, the isolation of the two antennas in the 5G part is improved by about 5dB.
  • the third branch 43 includes a first strip portion 71 and a second strip portion 72 that are perpendicular to each other, and one end of the first strip portion 71 is The first end F of the second feeding point A2 and the other end of the first strip portion 71 are connected to the end of the second strip portion 72 ;
  • the fourth branch 44 includes a third strip portion 73 and a fourth strip portion 74 and the fifth strip part 75, the third strip part 73 and the first strip part 71 are located on the same straight line, and one end of the third strip part 73 close to the first strip part 71 is the second feeding point A2.
  • one end of the third strip part 73 away from the first strip part 71 is connected to one end of the fourth strip part 74 , and the fourth strip part 74 and the fifth strip part 75 are both perpendicular to the first strip part 74 .
  • the balun structure 5 includes a sixth strip-shaped part 76, a seventh strip-shaped part 77 and The eighth strip portion 78, one end of the sixth strip portion 76 is connected to the third strip portion 73, the other end of the sixth strip portion 76 is connected to one end of the seventh strip portion 77, the seventh strip The other end of the strip 77 is connected to one end of the eighth strip 78, the other end of the eighth strip 78 is connected to the second end G of the second feeding point A2, the sixth strip 76 and The eighth strip part 78 is perpendicular to the first strip part 71, and the seventh strip part 77 is parallel to the first strip part 71; the balun structure 5, the second strip part 72, the fourth strip part 74 and the first strip part 71;
  • the five strip-shaped parts 75 are all on the same side as the first strip-shaped part 71 and the third strip-shaped part 73 ; the
  • the first radiating sheet 31 further includes a fifth branch 45 located between the eighth strip portion 78 and the second strip portion 72 , and the fifth branch 45 Connected to the eighth strip portion 78 .
  • the fifth branch 45 is used to implement capacitive loading to adjust impedance.
  • the radiator of the first electric dipole antenna 21 further includes a second radiation plate 32 parallel to the first radiation plate 31 , and the second radiation plate 32 includes : the ninth branch 49, the ninth branch 49 is opposite to the part of the first branch 41, the ninth branch 49 is connected to the first end F of the first feeding point A1; the tenth branch 410, the tenth branch 410 and the sixth branch
  • the strip portion 76 and the third strip portion 73 are opposite to each other, and the tenth branch 410 is floated, that is, there is no electrical connection between the tenth branch 410 and other radiators;
  • a first dielectric layer 301 is disposed therebetween.
  • a first insertion slot 310 may be provided on the first dielectric layer 301 , the extension direction of the first insertion slot 310 may be perpendicular to the first strip portion 71 , and the first insertion slot 310 extends from the first dielectric layer
  • the edge of the side away from the first strip portion 71 301 extends inward, and passes through the first feeding point A, and extends to a position close to the second branch 42 , and the first insertion slot 310 is located at the first feeding point A. between the first end F and the second end G, so that the first magnetic dipole antenna 11 can be inserted and welded at the first end F and the second end G of the first feeding point A, respectively.
  • the radiator of the first magnetic dipole antenna 11 includes a third radiating sheet 33 and a fourth radiating sheet 34 that are parallel to each other, and the third radiating sheet A second dielectric layer 320 is arranged between 33 and the fourth radiating sheet 34; the third radiating sheet 33 is welded to the first end F of the first feeding point A1 of the first branch 41, and the fourth radiating sheet 34 is welded to the first end F of the first feeding point A1 of the first branch 41.
  • the second end G of the first feeding point A1 of a branch 41 is shown in FIGS. 4 , 8 to 11 .
  • the third radiating sheet 33 includes a first linear extension 81 , and one end of the first linear extension 81 is connected to the first arc extension part 91 , the other end of the first linear extension part 81 is connected to the second arc extension part 92 , the first arc extension part 91 and the second arc extension part 92 are respectively located in the center of the first linear extension part 81
  • the middle part of the first linear extension 81 is welded to the first end F of the first feeding point A1 of the first branch 41, and the ninth branch 49 can be welded to the first linear extension 81, so that the ninth branch 49 communicates with the first end F of the first feeding point A1 through the first linear extension 81
  • the fourth radiating sheet 34 includes a second linear extension 82, One end of the second linear extension 82 is connected to the third arc extension 93 , the other end of the second linear extension 82 is connected to the fourth arc
  • the third point B3 and the fifth point B5 may overlap, or may be separated by a distance, and the extending direction of the first linear extension portion 81 may be perpendicular to the first strip portion 71 .
  • a second insertion slot 320 may be disposed on the second dielectric layer 302 , the extending direction of the second insertion slot 320 may be perpendicular to the extending direction of the first linear extension 81 , and the second insertion slot 320 extends from the second medium
  • the edge of the layer 302 extends inwardly to the middle portion of the first linear extension 81 and the second linear extension 82, and the first magnetic dipole antenna 11 and the first electric dipole antenna 21 can pass through the first insertion slot 310 and the second insertion slot 320 are inserted into each other, and after the insertion, the first end F of the first feeding point A1 of the first branch 41 in the first electric dipole antenna 21 is connected to the first magnetic dipole antenna 11 .
  • the middle part of the first linear extension part 81 is adjacent to the second end of the first feeding point A1 of the second branch 42 in the first electric dipole antenna 21 after plugging, so that the two are welded together.
  • G is adjacent to the middle portion of the second linear extension 82 in the first magnetic dipole antenna 11 so that the two are welded together.
  • FIG. 12 is a schematic diagram of the current simulation of the first magnetic dipole antenna in Figures 4 to 11 at 2.45 GHz
  • Figure 13 4-11 is a schematic diagram of the current simulation of the first electric dipole antenna at 5 GHz
  • FIG. 14 is a schematic diagram of the current simulation of the first magnetic dipole antenna in FIGS. 4-11 at 5.6 GHz
  • FIG. 15 is FIG.
  • FIG. 4 Schematic diagram of the current simulation of the first electric dipole antenna at 2.45GHz in ⁇ 11
  • Figure 16 is a schematic diagram of the current simulation of the first electric dipole antenna in Figures 4 ⁇ 11 at 5.5GHz
  • Figure 17 is Figure 4 ⁇ 11
  • the schematic diagram of each current simulation shows that most of the current of the first magnetic dipole antenna flows in the horizontal direction, and most of the current of the first electric dipole antenna flows in the vertical direction, which ensures the vertical direction of the two antennas. polarization.
  • Figure 18 is the directional diagram of the first magnetic dipole in Figures 4 to 11 at 2.45 GHz
  • Figure 19 is the directional diagram of the first magnetic dipole in Figures 4 to 11 at 5 GHz
  • FIG. 20 is the directional diagram of the first electric dipole in FIGS. 4-11 at 2.45 GHz
  • FIG. 21 is the directional diagram of the first electric dipole in FIGS. 4-11 under 5 GHz.
  • Figure 22 and 23 Figure 22 is the combined pattern of the antenna assembly in Figures 4 to 11 at 2.4 GHz
  • Figure 23 is a schematic diagram of the S-parameter curve of the antenna assembly in Figures 4 to 11.
  • the line and the dashed line are the directional diagram curves of the two antennas respectively.
  • the frequency point 1 and the frequency point 2 are the positions where the two curves have the largest distance.
  • the difference between the two is the unbalance of the antenna, which reaches 3.6dB.
  • the horizontal plane of the antenna is out of round.
  • the out-of-roundness refers to the difference between the maximum value and the minimum value in the horizontal plane direction of the antenna;
  • Each antenna can cover 2.4GHz and 5GHz dual-band resonance to achieve dual-band coverage.
  • the antenna assembly further includes: a second electric dipole antenna 22, and the radiator of the first electric dipole antenna 21 is perpendicular to the second electric dipole The radiator of the antenna 22 .
  • a second electric dipole antenna 22 For example, two electric dipole antennas can be placed crosswise, and when they are placed crosswise with the magnetic dipole antennas, any two of the three antennas can be perpendicular to each other, so as to achieve high isolation between the three antennas.
  • the specific structure of the first electric dipole antenna 21 may be similar to the above-mentioned embodiment, and the specific structure of the first magnetic dipole antenna 11 may be similar to that of the above-mentioned embodiment, which will not be repeated here.
  • the antenna 11 forms a common ground structure; in FIG. 26, the second electric dipole antenna 22 has a third welding point C3 and a fourth welding point C4, and the second electric dipole antenna 22 is at the third welding point C3 and the fourth welding point.
  • the pole antenna 11 forms a common ground structure.
  • the radiator of the first magnetic dipole antenna 11 includes a third radiating sheet and a fourth radiating sheet that are parallel to each other, and the third radiating sheet and the A second dielectric layer is arranged between the four radiating sheets, and in the direction perpendicular to the plane where the third radiating sheet is located, the orthographic projection of the edges of the third radiating sheet and the fourth radiating sheet forms at least part of the edge of the first circle O1,
  • the specific structure of the first magnetic dipole antenna 11 can refer to the structures shown in FIGS. 8 to 11 and related descriptions;
  • the radiator of the second magnetic dipole antenna 12 includes a fifth radiating sheet 35 and a sixth radiating sheet that are parallel to each other 36.
  • a third dielectric layer is arranged between the fifth radiation sheet 35 and the sixth radiation sheet 36, and both the fifth radiation sheet 35 and the sixth radiation sheet 36 include arc extensions, in the direction perpendicular to the fifth radiation sheet 35
  • the orthographic projection of the arc extension of the fifth radiating sheet 35 and the sixth radiating sheet 36 forms at least part of the edge of the second circle O2, the diameter of the second circle O2 is smaller than the diameter of the first circle O1.
  • the radiator of the second magnetic dipole antenna 12 has a third feeding point A3, and the third feeding point A3 is located at the edge of the second circle O2.
  • the middle part; the radiator of the first electric dipole antenna 21 includes a first radiation sheet 31 and a second radiation sheet 32 parallel to the first radiation sheet 31, and between the first radiation sheet 31 and the second radiation sheet 32 a
  • the first dielectric layer 301 and the second radiating sheet 32 include a welding part, the welding part extends from the first feeding point A1 to the third feeding point A3, and the second magnetic dipole antenna 12 and the welding part are welded to the third feeding point Click on A3.
  • the first electric dipole antenna 21 and the first magnetic dipole antenna 11 are welded to the first feeding point A1 to form a common ground structure.
  • the first electric dipole antenna 21 and the second magnetic dipole antenna 11 The sub-antenna 12 is welded to the third feeding point A3 to form a common ground structure of the two.
  • the specific structure of the first electric dipole antenna 21 may be the same as the structure in the above-mentioned embodiment, or may be slightly different.
  • 5G single-frequency vertical polarization can be realized through the first electric dipole antenna 21 to cover the horizontal plane
  • 2.4G single-frequency horizontal polarization can be realized through the first magnetic dipole antenna 11 .
  • 5G single-frequency horizontal polarization is realized through the second magnetic dipole antenna 12, and the three are designed in a dislocated body to achieve high isolation.
  • Embodiments of the present application further provide an electronic device, including the antenna assembly in the above-mentioned embodiments, the specific structure and principle of the antenna assembly will not be repeated, and the electronic device may specifically be a wireless router or the like.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can indicate the existence of A alone, the existence of A and B at the same time, and the existence of B alone. where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供一种天线组件和电子装置,涉及天线技术领域,可以在提高隔离度的前提下改善不平衡度,从而提高天线性能。天线组件,包括:第一磁偶极子天线;第一电偶极子天线,第一电偶极子天线的辐射体与第一磁偶极子天线的辐射体焊接于第一馈电点,第一磁偶极子天线的辐射体垂直于第一电偶极子天线的辐射体;第一电偶极子天线的辐射体上具有第二馈电点,在第一电偶极子天线的辐射体上,第一馈电点和第二馈电点之间连通。

Description

天线组件和电子装置
本申请要求于2020年12月4日提交中国专利局、申请号为202011412536.6、申请名称为“天线组件和电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种天线组件和电子装置。
背景技术
目前的无线路由器等产品,为了提高无线保真(wireless fidelity,Wi-Fi)性能,会使用两个电偶极子天线交叉放置形成双频Wi-Fi天线,如图1~3所示,利用互补性可保证水平面覆盖,但是,为了提高天线隔离度,对应的天线方向图中的两条曲线相互垂直,导致在多个频点处的不平衡度较差,不平衡度是指在天线方向图中,两个偶极子所对应的两条曲线的最大差值,差值越大则天线的不平衡度越差,差值越小则天线的不平衡度较好,图2中频点1和频点2之间的差值为7.7dB,即图1中两个天线的不平衡度较差,而较差的不平衡度会导致天线性能较差,例如在某些场景下吞吐率较低。
发明内容
本申请技术方案提供了一种天线组件和电子装置,可以在提高隔离度的前提下改善不平衡度,从而提高天线性能。
第一方面,本申请技术方案提供了一种天线组件,包括:
第一磁偶极子天线;
第一电偶极子天线,第一电偶极子天线的辐射体与第一磁偶极子天线的辐射体焊接于第一馈电点,第一磁偶极子天线的辐射体垂直于第一电偶极子天线的辐射体;
第一电偶极子天线的辐射体上具有第二馈电点,在第一电偶极子天线的辐射体上,第一馈电点和第二馈电点之间连通。
在一种可能的实施方式中,第一馈电点包括第一端和第二端,第二馈电点包括第一端和第二端;
第一电偶极子天线的辐射体包括第一辐射片,第一辐射片包括:
第一枝节,第一枝节具有第一馈电点的第一端;
第二枝节,第二枝节具有第一馈电点的第二端;
第三枝节,第三枝节具有第二馈电点的第一端;
第四枝节,第四枝节具有第二馈电点的第二端;
巴伦结构,巴伦结构连接于第二枝节、第三枝节和第四枝节;
短路枝节,第一枝节通过短路枝节连接于巴伦结构。
在一种可能的实施方式中,第三枝节包括相互垂直的第一条状部和第二条状部,第一条状部的一个末端为第二馈电点的第一端,第一条状部的另一个末端连接于第二条状部的末端;
第四枝节包括第三条状部、第四条状部和第五条状部,第三条状部和第一条状部位于同一直线,第三条状部靠近第一条状部的一个末端为第二馈电点的第二端,第三条状部远离第一条状部的一个末端连接于第四条状部的一个末端,第四条状部和第五条状部均垂直于第三条状部,第三条状部垂直于第一磁偶极子天线的辐射体;
巴伦结构包括依次首尾相接的第六条状部、第七条状部和第八条状部,第六条状部的一个末端连接于第三条状部,第六条状部的另一个末端连接于第七条状部的一个末端,第七条状部的另一个末端连接于第八条状部的一个末端,第八条状部的另一个末端连接于第二馈电点的第二端,第六条状部和第八条状部垂直于第一条状部,第七条状部平行于第一条状部;
巴伦结构、第二条状部、第四条状部和第五条状部均为与第一条状部和第三条状部的同一侧;
第五条状部和巴伦结构位于第二条状部和第四条状部之间,第五条状部位于第四条状部和巴伦结构之间;
第七条状部和第八条状部的连接处通过短路枝节连接于第一枝节。
在一种可能的实施方式中,第一辐射片还包括位于第八条状部和第二条状部之间的第五枝节,第五枝节连接于第八条状部。
在一种可能的实施方式中,第一电偶极子天线的辐射体还包括平行于第一辐射片的第二辐射片,第二辐射片包括:
第九枝节,第九枝节与第一枝节的部分相对,第九枝节连通于第一馈电点的第一端;
第十枝节,第十枝节与第六条状部和第三条状部的部分相对,第十枝节浮空设置;
第一辐射片和第二辐射片之间设置有第一介质层。
在一种可能的实施方式中,第一磁偶极子天线的辐射体包括相互平行的第三辐射片和第四辐射片,第三辐射片和第四辐射片之间设置有第二介质层;
第三辐射片焊接于第一枝节的第一馈电点的第一端,第四辐射片焊接于第一枝节的第一馈电点的第二端。
在一种可能的实施方式中,第三辐射片包括第一直线延伸部,第一直线延伸部的一个末端连接于第一弧线延伸部,第一直线延伸部的另一个末端连接于第二弧线延伸部,第一弧线延伸部和第二弧线延伸部分别位于第一直线延伸部的中心的相对两侧,第一直线延伸部的中间部分焊接于第一枝节的第一馈电点的第一端;
第四辐射片包括第二直线延伸部,第二直线延伸部的一个末端连接于第三弧线延伸部,第二直线延伸部的另一个末端连接于第四弧线延伸部,第三弧线延伸部和第四弧线延伸部分别位于第二直线延伸部的中心的相对两侧,第二直线延伸部的中间部分焊接于第二枝节的第一馈电点的第二端;
第一直线延伸部的延伸方向平行于第二直线延伸部的延伸方向;
在垂直于第三辐射片所在平面的方向上,第一弧线延伸部的正投影从第一点延伸至第二点,第三弧线延伸部的正投影从第一点延伸至第三点,第二点和第三点分别位于第一直线延伸部的相对两侧,第二弧线延伸部的正投影从第四点延伸至第五点,第四弧线延伸部的正投影从第四点延伸至第六点,第五点和第六点分别位于第一直线延伸部的相对两侧,第一弧线延伸部、第二弧线延伸部、第三弧线延伸部和第四弧线延伸部的正投影形成第一圆形的至少部分边缘。
在一种可能的实施方式中,天线组件还包括:第二电偶极子天线,第一电偶极子天线的辐射体垂直于第二电偶极子天线的辐射体。
在一种可能的实施方式中,天线组件还包括:第二磁偶极子天线,第二磁偶极子天线的辐射体平行于第一磁偶极子天线的辐射体。
在一种可能的实施方式中,第一磁偶极子天线的辐射体包括相互平行的第三辐射片和第四辐射片,第三辐射片和第四辐射片之间设置有第二介质层,在垂直于第三辐射片所在平面的方向上,第三辐射片和第四辐射片的边缘的正投影形成第一圆形的至少部分边缘;
第二磁偶极子天线的辐射体包括相互平行的第五辐射片和第六辐射片,第五辐射片和第六辐射片之间设置有第三介质层,第五辐射片和第六辐射片均包括弧线延伸部,在垂直于第五辐射片的方向上,第五辐射片和第六辐射片的弧线延伸部的正投影形成第二圆形的至少部分边缘,第二圆形的直径小于第一圆形的直径。
在一种可能的实施方式中,第二磁偶极子天线的辐射体上具有第三馈电点,第三馈电点位于第二圆形的中间部分;
第一电偶极子天线的辐射体包括第一辐射片和平行于第一辐射片的第二辐射片,第一辐射片和第二辐射片之间设置有第一介质层,第二辐射片包括焊接部,焊接部从第一馈电点延伸至第三馈电点,第二磁偶极子天线与焊接部焊接于第三馈电点。
第二方面,本申请技术方案提供了一种电子装置,包括上述的天线组件。
本申请实施例中的天线组件和电子装置,将磁偶极子天线和电偶极子天线垂直交叉设置,且通过焊接的方式使两个天线的辐射体在第一馈电点焊接,形成共地结构,同时配合使第一馈电点和第二馈电点之间连通,从而在提高隔离度的前提下改善了不平衡度,提高了天线性能。
附图说明
图1为现有技术中一种天线结构示意图;
图2为图1中天线结构在2.4GHz的一种方向图;
图3为图2中天线结构的一种合成方向图;
图4为本申请实施例中一种天线组件的结构示意图;
图5为图4中天线组件的第一辐射片的一种结构示意图;
图6为图4中天线组件的第二辐射片的一种结构示意图;
图7为图4中天线组件的第一电偶极子天线的一种结构示意图;
图8为图4中天线组件的第三辐射片的一种结构示意图;
图9为图4中天线组件的第四辐射片的一种结构示意图;
图10为图4中天线组件的第二介质层的一种结构示意图;
图11为图4中天线组件的第一磁偶极子天线的一种结构示意图;
图12为图4~11中第一磁偶极子天线在2.45GHz下的电流仿真示意图;
图13为图4~11中第一电偶极子天线在5GHz下的电流仿真示意图;
图14为图4~11中第一磁偶极子天线在5.6GHz下的电流仿真示意图;
图15为图4~11中第一电偶极子天线在2.45GHz下的电流仿真示意图;
图16为图4~11中第一电偶极子天线在5.5GHz下的电流仿真示意图;
图17为图4~11中第一电偶极子天线在6GHz下的电流仿真示意图;
图18为图4~11中第一磁偶极子在2.45GHz下的方向图;
图19为图4~11中第一磁偶极子在5GHz下的方向图;
图20为图4~11中第一电偶极子在2.45GHz下的方向图;
图21为图4~11中第一电偶极子在5GHz下的方向图;
图22为图4~11中天线组件在2.4GHz下的组合方向图;
图23为图4~11中天线组件的S参数曲线示意图;
图24为本申请实施例中另一种天线组件的结构示意图;
图25为图24中天线组件的第一电偶极子天线的结构示意图;
图26为图24中天线组件的第二电偶极子天线的结构示意图;
图27为本申请实施例中另一种天线组件的结构示意图;
图28为图27中天线组件在另一个角度的结构示意图;
图29为图27中天线组件的第一电偶极子天线的结构示意图;
图30为图27中天线组件的第二磁偶极子天线的结构示意图;
图31为图30中第二磁偶极子天线的第五辐射体的一种结构示意图;
图32为图30中第二磁偶极子天线的第六辐射体的一种结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
如图4~11所示,本申请实施例提供了一种天线组件,包括:第一磁偶极子天线11;第一电偶极子天线21,第一电偶极子天线21的辐射体与第一磁偶极子天线11的辐射体焊接于第一馈电点A1,第一磁偶极子天线11的辐射体和第一电偶极子天线21的辐射体为片状的辐射体,第一磁偶极子天线11的辐射体垂直于第一电偶极子天线21的辐射体;第一电偶极子天线21的辐射体上具有第二馈电点A2,在第一电偶极子天线21的辐射体上,第一馈电点A1和第二馈电点A2之间连通。
具体地,第一磁偶极子天线11在水平方向上形成环形电流,类似磁流环。第一磁偶极子天线11的辐射体和第一电偶极子天线21的辐射体通过焊接的方式结合为一体,一方面实现了两者之间的固定,另一方面使两者之间电连接,即实现了两个天线的共地设计,共地设计可以使两个天线具有较小的净空,同时配合使第一馈电点A1和第二馈电点A2之间连通,从而保证了两个天线具有较佳的平衡度,另外,第一磁 偶极子天线11的辐射体垂直于第一电偶极子天线21的辐射体,即利用了天线极化相互垂直的特性,提高了天线的性能。
本申请实施例中的天线组件,将磁偶极子天线和电偶极子天线垂直交叉设置,且通过焊接的方式使两个天线的辐射体在第一馈电点焊接,形成共地结构,同时配合使第一馈电点和第二馈电点之间连通,从而在提高隔离度的前提下改善了不平衡度,提高了天线性能。
在一种可能的实施方式中,如图4~7所示,第一馈电点A1包括第一端F和第二端G,第二馈电点A2包括第一端F和第二端G;第一电偶极子天线21的辐射体包括第一辐射片31,第一辐射片31包括:第一枝节41,第一枝节41具有第一馈电点A1的第一端F;第二枝节42,第二枝节42具有第一馈电点A1的第二端G;第三枝节43,第三枝节43具有第二馈电点A2的第一端F;第四枝节44,第四枝节44具有第二馈电点A2的第二端G;巴伦结构5,巴伦结构5连接于第二枝节42、第三枝节43和第四枝节44;短路枝节6,第一枝节41通过短路枝节6连接于巴伦结构5。
具体地,本申请实施例中的天线可以通过例如同轴线或其他形式的传输线进行馈电,其中,传输线包括信号线和接地线,信号线连接于第一端F和第二端G中的一者,接地线连接于第一端F和第二端G中的另一者。通过巴伦结构5和短路枝节6,可以使第一馈电点A1和第二馈电点A2之间相同连通,可以使第一磁偶极子天线11和第一电偶极子天线21共地,且降低两个天线的天线方向性系数,提升天线的隔离度,且第一电偶极子天线21的巴伦结构5末端增加了单支节的第一枝节41,增强了水平辐射。第一枝节41可以用于实现5G频段的辐射,第一枝节41和巴伦结构5之间的短路枝节6可以用于保证第一馈电点A1和第二馈电点A2之间的电流路径长度约为1/4波长,使得第一馈电点A1馈电时第二馈电点A2的电流较小,从而提高两个天线在5G部分的隔离度。根据仿真分析,比较不设置短路枝节6和设置短路枝节6的天线结构,在增加短路枝节6之后,两个天线在5G部分的隔离度提升约为5dB。
在一种可能的实施方式中,如图4~7所示,第三枝节43包括相互垂直的第一条状部71和第二条状部72,第一条状部71的一个末端为第二馈电点A2的第一端F,第一条状部71的另一个末端连接于第二条状部72的末端;第四枝节44包括第三条状部73、第四条状部74和第五条状部75,第三条状部73和第一条状部71位于同一直线,第三条状部73靠近第一条状部71的一个末端为第二馈电点A2的第二端G,第三条状部73远离第一条状部71的一个末端连接于第四条状部74的一个末端,第四条状部74和第五条状部75均垂直于第三条状部73,第三条状部73垂直于第一磁偶极子天线11的辐射体;巴伦结构5包括依次首尾相接的第六条状部76、第七条状部77和第八条状部78,第六条状部76的一个末端连接于第三条状部73,第六条状部76的另一个末端连接于第七条状部77的一个末端,第七条状部77的另一个末端连接于第八条状部78的一个末端,第八条状部78的另一个末端连接于第二馈电点A2的第二端G,第六条状部76和第八条状部78垂直于第一条状部71,第七条状部77平行于第一条状部71;巴伦结构5、第二条状部72、第四条状部74和第五条状部75均为与第一条状部71和第三条状部73的同一侧;第五条状部75和巴伦结构5位 于第二条状部72和第四条状部74之间,第五条状部75位于第四条状部74和巴伦结构5之间;第七条状部77和第八条状部78的连接处通过短路枝节6连接于第一枝节4。
在一种可能的实施方式中,如图4~7所示,第一辐射片31还包括位于第八条状部78和第二条状部72之间的第五枝节45,第五枝节45连接于第八条状部78。第五枝节45用于实现电容加载,以调节阻抗。
在一种可能的实施方式中,如图4~7所示,第一电偶极子天线21的辐射体还包括平行于第一辐射片31的第二辐射片32,第二辐射片32包括:第九枝节49,第九枝节49与第一枝节41的部分相对,第九枝节49连通于第一馈电点A1的第一端F;第十枝节410,第十枝节410与第六条状部76和第三条状部73的部分相对,第十枝节410浮空设置,即第十枝节410与其他辐射体之间无电连接;第一辐射片31和第二辐射片32之间设置有第一介质层301。
具体地,第一介质层301上可以设置有第一插接槽310,第一插接槽310的延伸方向可以为垂直于第一条状部71,第一插接槽310从第一介质层301远离第一条状部71的一侧边缘向内延伸,并穿过第一馈电点A,延伸至靠近第二枝节42的位置,第一插接槽310位于第一馈电点A的第一端F和第二端G之间,以便于第一磁偶极子天线11插入以及分别在第一馈电点A的第一端F和第二端G处分别进行焊接。
在一种可能的实施方式中,如图4、8~11所示,第一磁偶极子天线11的辐射体包括相互平行的第三辐射片33和第四辐射片34,第三辐射片33和第四辐射片34之间设置有第二介质层320;第三辐射片33焊接于第一枝节41的第一馈电点A1的第一端F,第四辐射片34焊接于第一枝节41的第一馈电点A1的第二端G。
在一种可能的实施方式中,如图4、8~11所示,第三辐射片33包括第一直线延伸部81,第一直线延伸部81的一个末端连接于第一弧线延伸部91,第一直线延伸部81的另一个末端连接于第二弧线延伸部92,第一弧线延伸部91和第二弧线延伸部92分别位于第一直线延伸部81的中心的相对两侧,第一直线延伸部81的中间部分焊接于第一枝节41的第一馈电点A1的第一端F,另外,第九枝节49可以焊接于第一直线延伸部81的中间部分,以使第九枝节49通过第一直线延伸部81实现与第一馈电点A1的第一端F之间的连通;第四辐射片34包括第二直线延伸部82,第二直线延伸部82的一个末端连接于第三弧线延伸部93,第二直线延伸部82的另一个末端连接于第四弧线延伸部94,第三弧线延伸部93和第四弧线延伸部94分别位于第二直线延伸部82的中心的相对两侧,第二直线延伸部82的中间部分焊接于第二枝节42的第一馈电点A1的第二端G;第一直线延伸部81的延伸方向平行于第二直线延伸部82的延伸方向;在垂直于第三辐射片33所在平面的方向上,第一弧线延伸部91的正投影从第一点B1延伸至第二点B2,第三弧线延伸部93的正投影从第一点B1延伸至第三点B3,第二点B2和第三点B3分别位于第一直线延伸部81的相对两侧,第二弧线延伸部92的正投影从第四点B4延伸至第五点B5,第四弧线延伸部94的正投影从第四点B4延伸至第六点B6,第五点B5和第六点B6分别位于第一直线延伸部81的相对两侧,第一弧线延伸部91、第二弧线延伸部92、第三弧线延伸部93和第四弧线延伸部94的正投影形成第一圆形的至少部分边缘。
具体地,第三点B3和第五点B5可以重合,也可以间隔一端距离,第一直线延伸部81的延伸方向可以垂直于第一条状部71。第二介质层302上可以设置有第二插接槽320,第二插接槽320的延伸方向可以为垂直于第一直线延伸部81的延伸方向,第二插接槽320从第二介质层302的边缘向内延伸至第一直线延伸部81和第二直线延伸部82的中间部分,第一磁偶极子天线11和第一电偶极子天线21可以通过第一插接槽310和第二插接槽320相互插接,插接后第一电偶极子天线21中第一枝节41的第一馈电点A1的第一端F与第一磁偶极子天线11中第一直线延伸部81的中间部分相邻,以便于两者被焊接在一起,插接后第一电偶极子天线21中第二枝节42的第一馈电点A1的第二端G与第一磁偶极子天线11中第二直线延伸部82的中间部分相邻,以便于两者被焊接在一起。
以下通过模拟仿真的结果对上述天线组件结构的效果进行说明,如图12~17所示,图12为图4~11中第一磁偶极子天线在2.45GHz下的电流仿真示意图,图13为图4~11中第一电偶极子天线在5GHz下的电流仿真示意图,图14为图4~11中第一磁偶极子天线在5.6GHz下的电流仿真示意图,图15为图4~11中第一电偶极子天线在2.45GHz下的电流仿真示意图,图16为图4~11中第一电偶极子天线在5.5GHz下的电流仿真示意图,图17为图4~11中第一电偶极子天线在6GHz下的电流仿真示意图,在图12~17中,箭头表示电流方向,符号“×”表示电流的反向点,即电流在“×”处反向,根据各电流仿真示意图,可以看出,第一磁偶极子天线的大部分电流流向为水平方向,第一电偶极子天线的大部分电流流向为竖直方向,即保证了两个天线的垂直极化。如图18~21所示,图18为图4~11中第一磁偶极子在2.45GHz下的方向图,图19为图4~11中第一磁偶极子在5GHz下的方向图,图20为图4~11中第一电偶极子在2.45GHz下的方向图,图21为图4~11中第一电偶极子在5GHz下的方向图。如图22和图23所示,图22为图4~11中天线组件在2.4GHz下的组合方向图,图23为图4~11中天线组件的S参数曲线示意图,在图22中,实线和虚线分别为两个天线的方向图曲线,其中频点1和频点2为两条曲线具有最大距离的位置,两者的差值即为天线的不平衡度,达到3.6dB,另外从图22中同一个天线的方向图曲线中,可以看出天线水平面不圆度较好,不圆度是指天线的水平面方向中最大值和最小值之差;从图23中可以看出,两个天线可以覆盖2.4GHz和5GHz双频谐振,实现双频覆盖。
在一种可能的实施方式中,如图24~26所示,天线组件还包括:第二电偶极子天线22,第一电偶极子天线21的辐射体垂直于第二电偶极子天线22的辐射体。例如可以两个电偶极子天线交叉放置,在与磁偶极子天线交叉放置,三个天线中的任意两者之间相互垂直,实现三天线之间的高隔离度。其中,第一电偶极子天线21的具体结构可以与上述实施例类似,第一磁偶极子天线11的具体结构可以与上述实施例类似,在此不再赘述。例如,图25中的第一电偶极子天线21具有第一焊接点C1和第二焊接点C2,第一电偶极子天线21在第一焊接点C1和第二焊接点C2焊接于第一磁偶极子天线11,其中第一焊接点C1和第二焊接点C2中的一者为第一馈电点,通过焊接可以使第一电偶极子天线21和第一磁偶极子天线11形成共地结构;图26中第二电偶极子天线22具有第三焊接点C3和第四焊接点C4,第二电偶极子天线22在 第三焊接点C3和第四焊接点C4焊接于第一磁偶极子天线11,其中第三焊接点C3和第四焊接点C4中的一者为馈电点,通过焊接可以使第二电偶极子天线22和第一磁偶极子天线11形成共地结构。
在一种可能的实施方式中,如图27~31所示,第一磁偶极子天线11的辐射体包括相互平行的第三辐射片和第四辐射片,第三辐射片和所述第四辐射片之间设置有第二介质层,在垂直于第三辐射片所在平面的方向上,第三辐射片和第四辐射片的边缘的正投影形成第一圆形O1的至少部分边缘,第一磁偶极子天线11的具体结构可以参见图8~11所示的结构和相关描述;第二磁偶极子天线12的辐射体包括相互平行的第五辐射片35和第六辐射片36,第五辐射片35和第六辐射片36之间设置有第三介质层,第五辐射片35和第六辐射片36均包括弧线延伸部,在垂直于第五辐射片35的方向上,第五辐射片35和第六辐射片36的弧线延伸部的正投影形成第二圆形O2的至少部分边缘,第二圆形O2的直径小于第一圆形O1的直径。
在一种可能的实施方式中,如图27~31所示,第二磁偶极子天线12的辐射体上具有第三馈电点A3,第三馈电点A3位于第二圆形O2的中间部分;第一电偶极子天线21的辐射体包括第一辐射片31和平行于第一辐射片31的第二辐射片32,第一辐射片31和第二辐射片32之间设置有第一介质层301,第二辐射片32包括焊接部,焊接部从第一馈电点A1延伸至第三馈电点A3,第二磁偶极子天线12与焊接部焊接于第三馈电点A3。即第一电偶极子天线21与第一磁偶极子天线11焊接于第一馈电点A1,以形成两者的共地结构,第一电偶极子天线21与第二磁偶极子天线12焊接于第三馈电点A3,以形成两者的共地结构。对于第一电偶极子天线21的具体结构,可以与上述实施例中的结构相同,也可以略有差异。在如图27~31所示结构中,例如可以通过第一电偶极子天线21实现5G单频垂直极化,覆盖水平面,通过第一磁偶极子天线11实现2.4G单频水平极化,通过第二磁偶极子天线12实现5G单频水平极化,三者错位共体设计,实现高隔离度。
本申请实施例还提供一种电子设备,包括上述各实施例中的天线组件,天线组件的具体结构和原理不再赘述,该电子设备具体可以为无线路由器等。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种天线组件,其特征在于,包括:
    第一磁偶极子天线;
    第一电偶极子天线,所述第一电偶极子天线的辐射体与所述第一磁偶极子天线的辐射体焊接于第一馈电点,所述第一磁偶极子天线的辐射体垂直于所述第一电偶极子天线的辐射体;
    所述第一电偶极子天线的辐射体上具有第二馈电点,在所述第一电偶极子天线的辐射体上,所述第一馈电点和所述第二馈电点之间连通。
  2. 根据权利要求1所述的天线组件,其特征在于,
    所述第一馈电点包括第一端和第二端,所述第二馈电点包括第一端和第二端;
    所述第一电偶极子天线的辐射体包括第一辐射片,所述第一辐射片包括:
    第一枝节,所述第一枝节具有所述第一馈电点的第一端;
    第二枝节,所述第二枝节具有所述第一馈电点的第二端;
    第三枝节,所述第三枝节具有所述第二馈电点的第一端;
    第四枝节,所述第四枝节具有所述第二馈电点的第二端;
    巴伦结构,所述巴伦结构连接于所述第二枝节、所述第三枝节和所述第四枝节;
    短路枝节,所述第一枝节通过所述短路枝节连接于所述巴伦结构。
  3. 根据权利要求2所述的天线组件,其特征在于,
    所述第三枝节包括相互垂直的第一条状部和第二条状部,所述第一条状部的一个末端为所述第二馈电点的第一端,所述第一条状部的另一个末端连接于所述第二条状部的末端;
    所述第四枝节包括第三条状部、第四条状部和第五条状部,所述第三条状部和所述第一条状部位于同一直线,所述第三条状部靠近所述第一条状部的一个末端为所述第二馈电点的第二端,所述第三条状部远离所述第一条状部的一个末端连接于所述第四条状部的一个末端,所述第四条状部和所述第五条状部均垂直于所述第三条状部,所述第三条状部垂直于所述第一磁偶极子天线的辐射体;
    所述巴伦结构包括依次首尾相接的第六条状部、第七条状部和第八条状部,所述第六条状部的一个末端连接于所述第三条状部,所述第六条状部的另一个末端连接于所述第七条状部的一个末端,所述第七条状部的另一个末端连接于所述第八条状部的一个末端,所述第八条状部的另一个末端连接于所述第二馈电点的第二端,所述第六条状部和所述第八条状部垂直于所述第一条状部,所述第七条状部平行于所述第一条状部;
    所述巴伦结构、所述第二条状部、所述第四条状部和所述第五条状部均为与所述第一条状部和所述第三条状部的同一侧;
    所述第五条状部和所述巴伦结构位于所述第二条状部和所述第四条状部之间,所述第五条状部位于所述第四条状部和所述巴伦结构之间;
    所述第七条状部和所述第八条状部的连接处通过所述短路枝节连接于所述第一枝节。
  4. 根据权利要求3所述的天线组件,其特征在于,
    所述第一辐射片还包括位于所述第八条状部和所述第二条状部之间的第五枝节,所述第五枝节连接于所述第八条状部。
  5. 根据权利要求3所述的天线组件,其特征在于,
    所述第一电偶极子天线的辐射体还包括平行于所述第一辐射片的第二辐射片,所述第二辐射片包括:
    第九枝节,所述第九枝节与所述第一枝节的部分相对,所述第九枝节连通于所述第一馈电点的第一端;
    第十枝节,所述第十枝节与所述第六条状部和所述第三条状部的部分相对,所述第十枝节浮空设置;
    所述第一辐射片和所述第二辐射片之间设置有第一介质层。
  6. 根据权利要求2所述的天线组件,其特征在于,
    所述第一磁偶极子天线的辐射体包括相互平行的第三辐射片和第四辐射片,所述第三辐射片和所述第四辐射片之间设置有第二介质层;
    所述第三辐射片焊接于所述第一枝节的所述第一馈电点的第一端,所述第四辐射片焊接于所述第一枝节的所述第一馈电点的第二端。
  7. 根据权利要求6所述的天线组件,其特征在于,
    所述第三辐射片包括第一直线延伸部,所述第一直线延伸部的一个末端连接于第一弧线延伸部,所述第一直线延伸部的另一个末端连接于第二弧线延伸部,所述第一弧线延伸部和所述第二弧线延伸部分别位于所述第一直线延伸部的中心的相对两侧,所述第一直线延伸部的中间部分焊接于所述第一枝节的所述第一馈电点的第一端;
    所述第四辐射片包括第二直线延伸部,所述第二直线延伸部的一个末端连接于第三弧线延伸部,所述第二直线延伸部的另一个末端连接于第四弧线延伸部,所述第三弧线延伸部和所述第四弧线延伸部分别位于所述第二直线延伸部的中心的相对两侧,所述第二直线延伸部的中间部分焊接于所述第二枝节的所述第一馈电点的第二端;
    所述第一直线延伸部的延伸方向平行于所述第二直线延伸部的延伸方向;
    在垂直于所述第三辐射片所在平面的方向上,所述第一弧线延伸部的正投影从第一点延伸至第二点,所述第三弧线延伸部的正投影从所述第一点延伸至第三点,所述第二点和所述第三点分别位于所述第一直线延伸部的相对两侧,所述第二弧线延伸部的正投影从第四点延伸至第五点,所述第四弧线延伸部的正投影从所述第四点延伸至第六点,所述第五点和所述第六点分别位于所述第一直线延伸部的相对两侧,所述第一弧线延伸部、所述第二弧线延伸部、所述第三弧线延伸部和所述第四弧线延伸部的正投影形成第一圆形的至少部分边缘。
  8. 根据权利要求1所述的天线组件,其特征在于,还包括:
    第二电偶极子天线,所述第一电偶极子天线的辐射体垂直于所述第二电偶极子天线的辐射体。
  9. 根据权利要求1所述的天线组件,其特征在于,还包括:
    第二磁偶极子天线,所述第二磁偶极子天线的辐射体平行于所述第一磁偶极子天线的辐射体。
  10. 根据权利要求9所述的天线组件,其特征在于,
    所述第一磁偶极子天线的辐射体包括相互平行的第三辐射片和第四辐射片,所述第三辐射片和所述第四辐射片之间设置有第二介质层,在垂直于所述第三辐射片所在平面的方向上,所述第三辐射片和所述第四辐射片的边缘的正投影形成第一圆形的至少部分边缘;
    所述第二磁偶极子天线的辐射体包括相互平行的第五辐射片和第六辐射片,所述第五辐射片和所述第六辐射片之间设置有第三介质层,所述第五辐射片和所述第六辐射片均包括弧线延伸部,在垂直于所述第五辐射片的方向上,所述第五辐射片和所述第六辐射片的弧线延伸部的正投影形成第二圆形的至少部分边缘,所述第二圆形的直径小于所述第一圆形的直径。
  11. 根据权利要求10所述的天线组件,其特征在于,
    所述第二磁偶极子天线的辐射体上具有第三馈电点,所述第三馈电点位于所述第二圆形的中间部分;
    所述第一电偶极子天线的辐射体包括第一辐射片和平行于所述第一辐射片的第二辐射片,所述第一辐射片和所述第二辐射片之间设置有第一介质层,所述第二辐射片包括焊接部,所述焊接部从所述第一馈电点延伸至所述第三馈电点,所述第二磁偶极子天线与所述焊接部焊接于所述第三馈电点。
  12. 一种电子装置,其特征在于,包括如权利要求1至11中任意一项所述的天线组件。
PCT/CN2021/135066 2020-12-04 2021-12-02 天线组件和电子装置 WO2022117034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21900060.1A EP4243204A4 (en) 2020-12-04 2021-12-02 ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
US18/255,915 US20240039163A1 (en) 2020-12-04 2021-12-02 Antenna Assembly and Electronic Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011412536.6 2020-12-04
CN202011412536.6A CN114597650B (zh) 2020-12-04 2020-12-04 天线组件和电子装置

Publications (1)

Publication Number Publication Date
WO2022117034A1 true WO2022117034A1 (zh) 2022-06-09

Family

ID=81802357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135066 WO2022117034A1 (zh) 2020-12-04 2021-12-02 天线组件和电子装置

Country Status (4)

Country Link
US (1) US20240039163A1 (zh)
EP (1) EP4243204A4 (zh)
CN (1) CN114597650B (zh)
WO (1) WO2022117034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621717A (zh) * 2022-11-28 2023-01-17 小米汽车科技有限公司 辐射体、天线单元、天线组件、车辆和布置方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515632B1 (en) * 2001-06-06 2003-02-04 Tdk Rf Solutions Multiply-fed loop antenna
CN106410379A (zh) * 2015-08-03 2017-02-15 香港城市大学 一种天线
CN108172989A (zh) * 2017-12-13 2018-06-15 西安电子科技大学 一种新型双极化全向微带天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437750B1 (en) * 1999-09-09 2002-08-20 University Of Kentucky Research Foundation Electrically-small low Q radiator structure and method of producing EM waves therewith
JP4344975B2 (ja) * 2000-11-13 2009-10-14 太洋無線株式会社 広帯域無指向性円偏波アンテナ
CN108172990A (zh) * 2017-12-13 2018-06-15 西安电子科技大学 一种紧凑型高增益全向圆极化天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515632B1 (en) * 2001-06-06 2003-02-04 Tdk Rf Solutions Multiply-fed loop antenna
CN106410379A (zh) * 2015-08-03 2017-02-15 香港城市大学 一种天线
CN108172989A (zh) * 2017-12-13 2018-06-15 西安电子科技大学 一种新型双极化全向微带天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243204A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621717A (zh) * 2022-11-28 2023-01-17 小米汽车科技有限公司 辐射体、天线单元、天线组件、车辆和布置方法
CN115621717B (zh) * 2022-11-28 2023-03-21 小米汽车科技有限公司 辐射体、天线单元、天线组件、车辆和布置方法

Also Published As

Publication number Publication date
CN114597650A (zh) 2022-06-07
CN114597650B (zh) 2023-07-18
EP4243204A4 (en) 2024-04-24
EP4243204A1 (en) 2023-09-13
US20240039163A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
CN106207444B (zh) 双极化高增益及宽带互补天线
CN111403907B (zh) 一种基于非对称偶极子的宽频带低剖面圆极化天线
US20170062940A1 (en) Compact wideband dual polarized dipole
CN107069197A (zh) 一种十六分之一波长超低剖面双极化振子单元及基站天线
US7994985B2 (en) Isolation enhancement technique for dual-polarized probe-fed patch antenna
KR101954819B1 (ko) 1차원 강한 결합 다이폴 배열 안테나
WO2021068852A1 (zh) 基站、宽带双极化滤波磁电偶极子天线及其辐射单元
WO2014009697A1 (en) Antennas
JP2001244731A (ja) アンテナ装置及びこれを用いたアレーアンテナ
WO2019237738A1 (zh) 适用于5g通信的双极化毫米波天线系统及移动终端
US10468783B2 (en) Microstrip patch antenna aperture coupled to a feed line, with circular polarization
CN210897639U (zh) 一种偶极子阵列天线
WO2022117034A1 (zh) 天线组件和电子装置
CN115732902A (zh) 一种宽带双极化基站天线
CN215070414U (zh) 抑制异频散射的低频辐射单元及基站天线
US20080111743A1 (en) Broadband antenna
US8358247B2 (en) Twin-Vee-type dual band antenna
US6577276B2 (en) Low cross-polarization microstrip patch radiator
Vadlamudi et al. Very Low Profile, Wideband, Dual polarized Massive MIMO Antenna Element with High Isolation for 5G Base Station Applications
US10374317B2 (en) Exponentially tapered slot antenna and assembly
CN114639963A (zh) 多频段双圆极化全向天线
CN110649379B (zh) 一种基于铁氧体基板的小型化多频天线
CN110416722B (zh) 一种等边三角环结构缝隙宽带天线
TWI464962B (zh) 複合式多天線系統及其無線通訊裝置
CN209963240U (zh) 天线的辐射单元和具有其的天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255915

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021900060

Country of ref document: EP

Effective date: 20230606

NENP Non-entry into the national phase

Ref country code: DE