WO2022116939A1 - 数据传输方法、接入网设备、用户面功能网元和存储介质 - Google Patents

数据传输方法、接入网设备、用户面功能网元和存储介质 Download PDF

Info

Publication number
WO2022116939A1
WO2022116939A1 PCT/CN2021/134017 CN2021134017W WO2022116939A1 WO 2022116939 A1 WO2022116939 A1 WO 2022116939A1 CN 2021134017 W CN2021134017 W CN 2021134017W WO 2022116939 A1 WO2022116939 A1 WO 2022116939A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
data
delay
time stamp
qos flow
Prior art date
Application number
PCT/CN2021/134017
Other languages
English (en)
French (fr)
Inventor
景晓玺
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022116939A1 publication Critical patent/WO2022116939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • H04L47/625Queue scheduling characterised by scheduling criteria for service slots or service orders
    • H04L47/6275Queue scheduling characterised by scheduling criteria for service slots or service orders based on priority

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method, an access network device, a user plane functional network element, and a storage medium.
  • the 3GPP protocol introduces the 5G system into the Time Sensitive Network (TSN) architecture.
  • TSN Time Sensitive Network
  • the 5G system can realize the data or message forwarding function in the TSN.
  • the 5G system only supports the mapping of TSN data packets to 5G Quality of Service (QoS) flows, and the Data Radio Bearer (DRB) to which the QoS flows corresponding to TSN data packets are mapped can only be associated with QoS flows.
  • the 5G QoS indicator (5G QoS indicator, 5QI) is determined.
  • the delay on the side is jittered, and there is uncertainty.
  • Embodiments of the present application provide a data transmission method, an access network device, a user plane functional network element, and a storage medium.
  • an embodiment of the present application provides a data transmission method, including: determining a quality of service QoS flow corresponding to a TSN data packet and a delay requirement of the data packet; determining the QoS flow according to the delay requirement The mapped target data radio bearer DRB; the data packet is sent to the user equipment UE through the target DRB.
  • an embodiment of the present application provides a data transmission method, comprising: determining a QoS flow identifier corresponding to the data packet and time stamp information for transmitting the data packet according to forwarding policy information of the data packet, wherein the The time stamp information includes the time stamp of the UE receiving the data packet and the time stamp of the user plane function network element sending the data packet; the QoS flow identifier corresponding to the data packet and the time stamp of the transmission of the data packet are identified.
  • the access network device determines the QoS flow corresponding to the data packet according to the QoS flow identifier and determines the target data radio bearer DRB mapped by the QoS flow according to the timestamp information, and send the data packet to the UE through the target DRB.
  • an embodiment of the present application provides an access network device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implements the computer program when the processor executes the computer program
  • the data transmission method provided by the above first aspect.
  • an embodiment of the present application provides a user plane functional network element, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • a user plane functional network element including: a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above-described data transmission method is implemented.
  • Figure 1 is a schematic diagram of a network architecture that integrates the 5G system and the TSN system;
  • FIG. 2 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • Fig. 3 is a schematic flow chart of sub-steps of step S120 in Fig. 2;
  • 5a to 5c are schematic diagrams of scheduling policies for data packets provided by embodiments of the present application.
  • FIG. 6 is a flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a user plane functional network element provided by an embodiment of the present application.
  • a, b, and c may represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c may be single, or Can be multiple.
  • FIG. 1 shows a schematic diagram of a network architecture that integrates the 5G system with the TSN system.
  • the 5G system acts as a logical bridge node in the TSN network and can implement the data or message forwarding function in the TSN.
  • the user plane function (User Plane Function, UPF) network element, (radio) access network ((Radio) Access Network, (R)AN) and user equipment ((User Equipment, UE) constitute the transmission channel of user plane data.
  • UPF User Plane Function
  • R Radio Access Network
  • UE user equipment
  • the RAN needs to allocate appropriate DRBs for the data packets for data scheduling transmission, but the RAN cannot know the timestamp information of the TSN data packets, so it can only be allocated according to the 5QI DRB, scheduling optimization cannot be performed according to the delay requirements of data packets.
  • TSN low-latency services and other latency-insensitive services have the same QoS level, it cannot guarantee that TSN low-latency services can get priority scheduling opportunities. In this way, the delay of the TSN low-latency service on the wireless network side is jittered, and there is uncertainty.
  • the access network device involved in the embodiments of the present application refers to a RAN node (or device) that accesses the UE to the wireless network, and may also be referred to as a base station.
  • the RAN device may be a further evolved Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB), a radio network controller (radio network controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, home evolved NodeB, or home Node B, HNB) , base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • gNB further evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • HNB home evolved
  • the access network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node splits the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled by the CU, and some or all of the functions of the protocol layer are left. It is distributed in the DU, and the DU is centrally controlled by the CU.
  • LTE long term evolution
  • the UE involved in the embodiments of this application includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a wireless computer.
  • the UE may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, Wireless terminals in smart grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • VR virtual reality
  • AR augmented reality
  • Embodiments of the present application provide a data transmission method, access network equipment, user plane functional network element, and storage medium, so as to realize deterministic transmission of TSN data in a 5G system.
  • FIG. 2 a data transmission method provided by an embodiment of the present application is shown.
  • the data transmission method shown in FIG. 2 may be performed by an access network device (RAN) in the network architecture shown in FIG. 1 , where the RAN device may also be referred to as a base station.
  • the method includes but is not limited to the following steps.
  • Step S110 Determine the quality of service QoS flow corresponding to the data packet and the delay requirement of the data packet.
  • the QoS flow corresponding to the data packet may be determined according to the QoS flow identifier corresponding to the received data packet from the user plane function network element.
  • the user plane function network element here may refer to the UPF network element in the TSN network architecture shown in FIG. 1 .
  • the data packet may also be called as TSN packets.
  • the TSN system may include a centralized network configuration (CNC) network element and a centralized user configuration (CUC) network. Yuan. After receiving the TSN data packet creation request sent by the data terminal, the CUC network element requests the CNC network element to create a TSN data packet.
  • CNC centralized network configuration
  • CRC centralized user configuration
  • Time delay calculate the time stamp of receiving TSN data packets and the time stamp of sending data packets of each switching node on the TSN data packet forwarding path, generate the forwarding policy information of each switching node, and deliver the corresponding forwarding to each switching node Policy information, so that each switching node can receive and send the specified TSN data packet within a certain time, thereby ensuring that the time and delay of transmitting the data packet on the entire forwarding path are determined.
  • the CNC network element sends the forwarding policy information of the TSN data packet to the UPF network element, and the UPF network element determines the QoS flow identifier corresponding to the TSN data packet according to the received forwarding policy information.
  • the forwarding policy information includes the port identifier for transmitting the TSN data packet.
  • the UPF network element can directly determine the PDU session corresponding to the TSN data packet according to the port identifier for transmitting the TSN data packet, and then determine the TSN data from the QoS flow corresponding to the PDU session.
  • the QoS flow corresponding to the packet For example, the forwarding policy information includes flow information of the TSN data packet, and the flow information includes the destination MAC address of the TSN data packet.
  • the UPF network element filters out the existing QoS flows corresponding to the PDU session from the existing QoS flows corresponding to the TSN data packet.
  • the QoS flow with the same MAC address is regarded as the QoS flow corresponding to the TSN data packet. It should be understood that the above is only an example of how to determine the QoS flow identifier corresponding to the TSN data packet, and other methods may also be used to determine the QoS flow corresponding to the TSN data packet during specific implementation, which is not limited in this embodiment of the present application.
  • the delay requirement of the data packet may be determined according to the received timestamp information from the UPF network element.
  • the timestamp information here indicates the timestamp information of the transmission packet.
  • the time stamp information includes the time stamp of the sent data packet and the time stamp of the received data packet.
  • the time stamp of sending the data packet refers to the time stamp of the data packet sent by the UPF port, which is represented by T0 here for the convenience of description;
  • the time stamp of the received data packet refers to the time stamp of the UE port to calculate the data packet, and for the convenience of description, here is T1 express.
  • the delay requirement of the data packet is represented by ⁇ T1.
  • ⁇ T1 is used to indicate the maximum transmission delay of the data packet on the switching node, that is, the transmission delay allowed when the data packet is transmitted from the UPF to the UE.
  • Step S120 determine the target DRB mapped to the QoS flow corresponding to the data packet.
  • Step S120 may be specifically implemented through the following sub-steps shown in FIG. 3 .
  • Step S121 determine the delay requirement interval to which the QoS flow corresponding to the data packet belongs.
  • the QoS flow corresponding to the data packet is the QoS flow used by the TSN data packet, so the QoS flow should be limited by the delay requirement of the TSN data packet, and deterministic transmission should be performed within the maximum transmission delay ⁇ T1.
  • multiple delay requirement intervals may be preset in the base station, and each delay interval has a corresponding numerical range. After the delay requirement ⁇ T1 of the TSN data packet is determined, it can be directly determined in which delay requirement interval ⁇ T1 is located, so as to determine the delay requirement interval to which the QoS flow corresponding to the TSN data packet belongs. It should be noted that, the value range of each delay requirement interval is not specifically limited in this embodiment of the present application.
  • step S122 the mapping relationship between the delay requirement interval and the DRB is acquired, and the DRB matching the delay requirement interval to which the QoS flow belongs is determined as the target DRB.
  • a mapping relationship between delay requirement intervals and DRBs may be established in advance at the base station, and each DRB corresponds to a delay requirement interval.
  • DRB#1 corresponds to the QoS flow in the delay requirement interval #1
  • DRB#2 corresponds to the QoS flow in the delay requirement interval #2
  • DRB#3 corresponds to the QoS flow in the delay requirement interval #3.
  • DRBs corresponding to different delay requirement intervals have different transmission capabilities.
  • DRB#1 has the largest data transmission rate and can be used to transmit data packets of low-latency services;
  • DRB#2 has medium data transmission.
  • DRB#3 has the lowest data transmission rate and can be used to transmit data packets of services that are not sensitive to delay. In this way, different transmission delay requirements of QoS flows are met through different DRBs.
  • a DRB matching the delay requirement interval is determined from the established DRBs. It is understandable that each delay requirement interval may have one Or multiple corresponding DRBs, when there are multiple DRBs matching the delay requirement interval, select one of the multiple determined DRBs as the target DRB corresponding to the QoS flow.
  • Step S123 map the QoS flow to the target DRB.
  • the QoS flow is mapped to the target DRB to transmit data packets through the target DRB.
  • step S130 the data packet is sent to the UE through the target DRB.
  • the data packet is sent to the UE through the target DRB.
  • the DRB is a bearer established between the base station and the UE, and one DRB corresponds to one UE, so as long as the target DRB is determined, the UE corresponding to the data packet can be determined.
  • the method before step S110, further includes determining the UE corresponding to the data packet.
  • the base station may determine the UE corresponding to the data packet according to the received UE identifier sent from the UPF network element.
  • the UPF network element may determine the UE identifier corresponding to the data packet by determining the PDU session corresponding to the data packet, and then send the UE identifier to the base station.
  • the QoS flows corresponding to the data packets are classified and allocated to appropriate DRBs for scheduling, so as to achieve the purpose of scheduling and optimizing the data packets according to the delay requirements, and ensure that the data packets
  • the transmission delay meets the requirements of the maximum data delay and realizes end-to-end deterministic transmission under the 5G system.
  • the data transmission method shown in FIG. 4 may be performed by an access network device (RAN) in the network architecture shown in FIG. 1 , and the RAN device here may also be referred to as a base station. As shown in FIG. 4 , the method includes but is not limited to the following steps.
  • RAN access network device
  • Step S210 Determine the QoS flow corresponding to the data packet and the delay requirement of the data packet.
  • Step S220 Determine the target data radio bearer DRB mapped by the QoS flow according to the time delay requirement.
  • Step S230 determining the delay margin of the data packet.
  • the delay margin of the data packet indicates the transmission delay between the RAN (ie, the base station) and the UE.
  • ⁇ T2 represents the delay margin of the data packet.
  • the delay margin ⁇ T2 can be obtained as follows:
  • T2 is used to represent the time stamp of the data packet received by the access network device; when the base station receives the data packet, the time stamp of the received data packet is recorded, as follows get T2;
  • Step S240 Determine the scheduling priority of the data packet according to the delay margin.
  • the scheduling priorities include high priority, medium priority, and low priority.
  • Each scheduling priority corresponds to a range of delay margin values. For example, the value range of delay margin corresponding to high priority is less than the first threshold, the value range of delay margin corresponding to medium priority is greater than or equal to the first threshold and less than the second threshold, and the delay margin corresponding to low priority The magnitude value range is greater than or equal to the second threshold. In this way, the scheduling priority of the data packet can be determined by judging in which delay margin value range the delay margin ⁇ T2 is located.
  • the scheduling priority of the data packet is determined to be a high priority ; when the delay margin is greater than or equal to the first threshold and less than the second threshold, determine that the scheduling priority of the data packet is a medium priority; when the delay margin is greater than or equal to the second threshold, determine that the scheduling priority of the data packet is a low priority.
  • the scheduling priorities in this embodiment of the present application are not limited to three priorities of high, medium, and low, and more priorities may be divided in practical applications, which are not limited in this embodiment of the present application.
  • the base station determines the delay margin of the data packet according to the timestamp of the actual received data packet, and further determines the scheduling priority of the data packet according to the delay margin, so as to determine the scheduling priority of the data packet according to the actual delay.
  • Scheduling is optimized to avoid delay jitter of low-latency services on the wireless network side, ensuring that the 5G system can achieve end-to-end deterministic transmission within the delay requirement ⁇ T1.
  • Step S250 according to the scheduling policy corresponding to the scheduling priority, send the data packet to the UE through the target DRB.
  • the data packet After the base station determines the target DRB for transmitting the data packet, under normal circumstances, the data packet enters the QoS queue corresponding to the target DRB for queuing, and is temporarily stored in the buffer in the form of a queue for scheduling, which is understandable. Yes, there can be multiple QoS queues corresponding to each DRB.
  • the data packets in the QoS queue are usually queued according to the principle of first in, first out, and are dequeued in order from front to back, that is, the data packets in the first queue will be out of the queue before the data packets in the back. After the data packet is dequeued from the QoS queue, it will enter the DRB queue and be transmitted to the UE through the DRB.
  • priority is used to indicate the urgency of data packet scheduling
  • the base station adopts different scheduling strategies for data packets with different scheduling priorities, so as to optimize the scheduling of data packets according to the actual delay.
  • the data packet may be directly scheduled to the target DRB queue, and the data packet may be sent to the UE through the target DRB.
  • the embodiment of the present application adopts the strategy of directly placing the data packets in the target DRB queue, that is, the high-priority data packets will skip the buffering process originally queued in the QoS queue, and directly enter the target DRB queue middle. In this way, the high-priority data packets are immediately transmitted to the UE through the DRB, ensuring that the low-latency service data can be transmitted deterministically within the time-delay requirement.
  • the ordering of the data packets in the target DRB queue may be determined according to the delay margin. It should be understood that the higher the ordering of the data packets in the DRB queue, the faster they arrive at the UE.
  • the delay headroom of the currently scheduled data packet can be compared with the delay headroom of the data packet already existing in the target DRB queue. If there is a packet with a smaller delay margin, the currently scheduled data packet will be placed after the packet with the smaller delay margin; if there is no data packet that exists in the target DRB queue more than the currently scheduled data packet If the number of delays is smaller, the currently scheduled data packet will be placed at the top of the target DRB queue.
  • the order of the data packets in the QoS queue is adjusted so that the data packets are queued before all low-priority data packets; the queue is dequeued from the QoS queue Enter the target DRB, and send the data packet to the UE through the target DRB.
  • the scheduling priority of the data packet is the medium priority, it means that the delay margin of the data packet is small, and the scheduling priority is relatively urgent.
  • the embodiment of the present application adopts a policy of forwarding the sorting of the data packet in the QoS queue, so that the data packet with the medium priority is ranked before all the low priority data packets. It should be understood that the higher the order of the data packets in the QoS queue, the faster the data packets can be dequeued into the target DRB, and then transmitted to the UE through the target DRB.
  • the delay margin of the currently adjusted data packet and other data packets in the same QoS queue can be compared. If there are other data packets with a smaller delay margin than the currently adjusted data packet, the currently adjusted data packet The data packet is queued after the data packet with the smaller delay margin; if there is no data packet with a smaller delay margin than the currently adjusted data packet, the currently adjusted data packet is queued to the top of the QoS queue. In this way, the medium-priority data packets are not queued according to the original first-in-first-out principle, but a queue-cutting method is adopted so that the data packets can be scheduled faster, so as to meet the delay requirement of the medium-priority data packets.
  • the scheduling priority when it is determined that the scheduling priority is a low priority, the data packets are normally queued in the QoS queue, waiting to be scheduled into the target DRB queue for transmission. It can be understood that, if the scheduling priority of the data packet is a low priority, it means that the delay margin of the data packet is sufficient, and the scheduling priority is normal. For low-priority data packets, this embodiment of the present application will not perform special processing, and low-priority data packets are normally queued in the QoS queue, waiting to be scheduled to enter the target DRB queue for transmission.
  • the scheduling priority of the data packet P10 is a high priority, and it is determined that there is no data packet in the target DRB (DRB#1) that is smaller than the delay margin of the data packet P10 , then place P10 directly at the top of the target DRB#1; as shown in Figure 5b, if it is determined that the scheduling priority of the data packet P10 is medium priority, the QoS queue corresponding to P10 is QoS#1, and the others in QoS#1 The delay margin of the data packet is larger than that of the data packet P10, then P10 is placed at the top of the QoS#1 queue; as shown in Figure 5c, if the scheduling priority of the data packet P10 is determined to be low priority , then do not make any adjustment to the position of P10 in QoS#1, and queue according to the principle of first-in, first-out.
  • the scheduling priority of the data packet is determined according to the delay margin of the data packet, and different scheduling strategies are adopted for the data packets with different scheduling priorities, so as to optimize the scheduling of the data packet according to the actual delay. Purpose.
  • FIG. 6 another data transmission method provided by an embodiment of the present application is shown.
  • the data transmission method shown in FIG. 6 may be performed by the UPF network element in the network architecture shown in FIG. 1 .
  • the method includes but is not limited to the following steps.
  • the CNC network element sends the forwarding policy information of the TSN data packet to the UPF network element, and the UPF network element determines the QoS flow identifier corresponding to the TSN data packet according to the received forwarding policy information.
  • the forwarding policy information includes the port identifier for transmitting the TSN data packet.
  • the UPF network element can directly determine the PDU session corresponding to the TSN data packet according to the port identifier for transmitting the TSN data packet, and then determine the TSN data from the QoS flow corresponding to the PDU session.
  • the QoS flow corresponding to the packet For example, the forwarding policy information includes flow information of the TSN data packet, and the flow information includes the destination MAC address of the TSN data packet.
  • the UPF network element filters out the existing QoS flows corresponding to the PDU session from the existing QoS flows corresponding to the TSN data packet.
  • the QoS flow with the same MAC address is regarded as the QoS flow corresponding to the TSN data packet. It should be understood that the above is only an example of how to determine the QoS flow identifier corresponding to the TSN data packet, and other methods may also be used to determine the QoS flow corresponding to the TSN data packet during specific implementation, which is not limited in this embodiment of the present application.
  • the forwarding policy information includes time stamp information of the data packet, the time stamp information includes the time stamp of the received data packet and the time stamp of the transmitted data packet, and the time stamp of the received data packet refers to the time stamp of the UE port receiving the data packet;
  • the time stamp of the sent data packet refers to the time stamp of the data packet sent by the UPF port.
  • S320 send the QoS flow identifier corresponding to the data packet and the time stamp information of the transmission data packet to the access network device, so that the access network device determines the QoS flow corresponding to the data packet according to the QoS flow identifier and determines according to the time stamp information
  • the target data radio bearer DRB mapped by the QoS flow, and the TSN data packet is sent to the UE through the target DRB.
  • the UPF network element determines the UE identifier corresponding to the data packet according to the forwarding policy information of the data packet, and sends the UE identifier to the access network device.
  • an access network device provided by an embodiment of the present application is shown, including: a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor and memory may be connected by a bus or otherwise.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may include memory located remotely from the processor, which may be connected to the processor through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the access network device in this embodiment may be applied to the RAN in the network architecture shown in FIG. 1 .
  • the non-transitory software programs and instructions required to implement the data transmission method of the above embodiment are stored in the memory, and when executed by the processor, the data transmission method in the above embodiment is executed, for example, the execution shown in FIG. 2 or FIG. 4 is performed. steps in the examples.
  • a user plane functional network element provided by an embodiment of the present application is shown, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor and memory may be connected by a bus or otherwise.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may include memory located remotely from the processor, which may be connected to the processor through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the user plane function network element in this embodiment may be applied to the UPF network element in the network architecture shown in FIG. 1 .
  • the non-transitory software programs and instructions required to implement the data transmission method in the above-mentioned embodiment are stored in the memory, and when executed by the processor, the data transmission method in the above-mentioned embodiment is executed, for example, in the embodiment shown in FIG. 6 is executed. A step of.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Executed by a processor in the embodiment of the access network device, the above-mentioned processor may execute the data transmission method in the above-mentioned embodiment, for example, perform the steps in the above-described embodiment shown in FIG. 2 or FIG. 4 .
  • the above-mentioned processor can execute the data transmission method in the above-mentioned embodiment, for example, execute the steps in the above-described embodiment shown in FIG. 6 .
  • the embodiments of the present application include: determining a quality of service QoS flow corresponding to a data packet and a delay requirement of the data packet; determining a target data radio bearer DRB mapped by the QoS flow according to the delay requirement; The DRB sends the data packet to the user equipment UE.
  • the QoS flows corresponding to the data packets are classified and allocated to appropriate DRBs for scheduling, so as to achieve the purpose of scheduling and optimizing the data packets according to the delay requirements, and ensure that the data packets
  • the transmission delay meets the requirements of the maximum data delay and realizes end-to-end deterministic transmission under the 5G system.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、接入网设备、用户面功能网元和存储介质,该方法包括,确定时延敏感网络数据包对应的服务质量QoS流和所述数据包的时延要求;根据所述时延要求,确定所述QoS流所映射的目标数据无线承载DRB;通过所述目标DRB将所述数据包发送给用户设备UE。

Description

数据传输方法、接入网设备、用户面功能网元和存储介质
相关申请的交叉引用
本申请基于申请号为202011399795.X、申请日为2020年12月4日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,具体涉及一种数据传输方法、接入网设备、用户面功能网元和存储介质。
背景技术
3GPP协议将5G系统引入到时延敏感网络(Time Sensitive Network,TSN)的架构中,5G系统作为TSN中的逻辑网桥节点,能够实现TSN中数据或报文转发功能。
目前5G系统只支持TSN数据包到5G服务质量(Quality of Service,QoS)流的映射,而TSN数据包对应的QoS流要映射的数据无线承载(Data Radio Bearer,DRB)只能根据QoS流关联的5G QoS指示符(5G QoS indicator,5QI)来确定。如此,当TSN低时延业务与其它时延不敏感业务具有相同的QoS等级时,并不能保证TSN的低时延业务可得到优先调度的机会,这样就造成了TSN低时延业务在无线网络侧的时延发生抖动,存在不确定性。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种数据传输方法、接入网设备、用户面功能网元和存储介质。
第一方面,本申请实施例提供了一种数据传输方法,包括:确定TSN数据包对应的服务质量QoS流和所述数据包的时延要求;根据所述时延要求,确定所述QoS流所映射的目标数据无线承载DRB;通过所述目标DRB将所述数据包发送给用户设备UE。
第二方面,本申请实施例提供了一种数据传输方法,包括:根据数据包的转发策略信息,确定所述数据包对应的QoS流标识和传输所述数据包的时间戳信息,其中,所述时间戳信息包括UE接收所述数据包的时间戳和用户面功能网元发送所述数据包的时间戳;将所述数据包对应的所述QoS流标识和传输所述数据包的时间戳信息发送给接入网设备,以由所述接入网设备根据所述QoS流标识确定数据包对应的QoS流和根据所述时间戳信息确定所述QoS流所映射的目标数据无线承载DRB,并通过所述目标DRB将所述数据包发送给UE。
第三方面,本申请实施例提供了一种接入网设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第一方面提供的数据传输方法。
第四方面,本申请实施例提供了一种用户面功能网元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第二方面提供的数据传输方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的数据传输方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是一种将5G系统与TSN系统融合的网络架构示意图;
图2是本申请实施例提供的一种数据传输方法的流程图;
图3是图2中步骤S120的子步骤流程示意图;
图4是本申请实施例提供的另一种数据传输方法的流程图;
图5a至图5c是本申请实施例提供的数据包的调度策略的示意图;
图6是本申请实施例提供的另一种数据传输方法的流程图;
图7是本申请实施例提供的一种接入网设备的结构示意图;
图8是本申请实施例提供的一种用户面功能网元的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为了便于理解,首先对本申请实施例的应用场景作一介绍。
图1示出了一种将5G系统与TSN系统融合的网络架构示意图。如图1所示,在该网络架构中,5G系统作为TSN网络中的逻辑网桥节点,能够实现TSN中数据或报文转发功能。其中,用户面功能(User Plane Function,UPF)网元、(无线)接入网((Radio)Access Network,(R)AN)和用户设备((User Equipment,UE)构成用户面数据的传输通道。当TSN系统(A)中的数据包到达5G网络时,RAN需要为数据包分配合适的DRB进行数据调度传输,然而RAN 并不能获知TSN数据包的时间戳信息,故只能根据5QI来分配DRB,无法根据数据包的时延要求做调度优化,当TSN低时延业务与其它时延不敏感业务具有相同的QoS等级时,并不能保证TSN的低时延业务可得到优先调度的机会,这样就造成了TSN低时延业务在无线网络侧的时延发生抖动,存在不确定性。
本申请实施例涉及的接入网设备是指将UE接入到无线网络的RAN节点(或设备),又可以称为基站。在一些示例中,RAN设备可以是继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例涉及的UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。在一些示例中,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。UE还可以是虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请实施例提供一种数据传输方法、接入网设备、用户面功能网元和存储介质,以实现5G系统下TSN数据的确定性传输。
请参见图2,示出了本申请实施例提供的一种数据传输方法。图2所示的数据传输方法可由图1所示的网络架构中的接入网设备(RAN)执行,这里的RAN设备又可称为基站。如图2所示,该方法包括但不限于如下步骤。
步骤S110,确定数据包对应的服务质量QoS流和数据包的时延要求。
作为示例,数据包对应的QoS流可以根据接收到的来自用户面功能网元的数据包对应的QoS流标识确定。这里的用户面功能网元可以指图1所示的TSN网络架构中的UPF网元,当本申请实施例的数据传输方法应用至图1所示的TSN网络架构时,数据包又可以称为TSN数据包。
可理解的是,图1中未对TSN系统展开说明,在实际应用中TSN系统(A)可以包括集中网络配置(centralized network configuration,CNC)网元和集中用户配置(centralized user configuration,CUC)网元。CUC网元在收到数据终端发送的TSN数据包创建请求之后,向CNC网元请求创建TSN数据包,CNC网元根据各交换节点(也可称为网桥节点)的发送时延和内部处理时延,计算出TSN数据包转发路径上的各交换节点的接收TSN数据包的时间戳以及发送数据包的时间戳,生成各交换节点的转发策略信息,并向各交换节点下发对应的转发策略信息,从而实现各交换节点上在确定的时间内接收和发送指定的TSN数据包,进而保 证整个转发路径上传输该数据包的时间和时延是确定的。
在一种可能的实现方式中,CNC网元将TSN数据包的转发策略信息发送给UPF网元,UPF网元根据接收到的转发策略信息确定TSN数据包对应的QoS流标识。具体的,转发策略信息包括传输TSN数据包的端口标识,UPF网元可直接根据传输TSN数据包的端口标识确定TSN数据包对应的PDU会话,再从PDU会话对应的QoS流中,确定TSN数据包对应的QoS流。例如,转发策略信息包括TSN数据包的流信息,该流信息包括TSN数据包的目的MAC地址,UPF网元根据TSN目的MAC地址,从PDU会话对应的已有QoS流中,筛选出与该目的MAC地址相同的QoS流,将其作为TSN数据包对应的QoS流。应当理解的是,以上只是对如何确定TSN数据包对应的QoS流标识的举例说明,具体实现时还可以采用其它方式确定TSN数据包对应的QoS流,本申请实施例对此不作限定。
作为示例,数据包的时延要求可以根据接收到的来自UPF网元的时间戳信息确定。这里的时间戳信息指示传输数据包的时间戳信息。具体的,时间戳信息包括发送数据包的时间戳和接收数据包的时间戳。其中,发送数据包的时间戳指UPF端口发送数据包的时间戳,为便于说明,这里以T0表示;接收数据包的时间戳指UE端口计算数据包的时间戳,为便于说明,这里以T1表示。
为便于描述,以ΔT1表示数据包的时延要求。数据包的时延要求ΔT1可通过将UE接收数据包的时间戳T1与UPF发送数据包的时间戳T0进行相减得到,即:ΔT1=T1-T0。ΔT1用于指示数据包在交换节点上的最大传输时延,即数据包从UPF传输至UE时所允许的传输时延。
步骤S120,根据时延要求,确定数据包对应的QoS流所映射的目标DRB。
本申请实施例,以数据包的时延要求为依据,对数据包对应的QoS流进行分类,进而根据分类,为QoS流分配合适的DRB进行数据包的传输。步骤S120具体可以通过图3所示的如下子步骤实现。
步骤S121,根据时延要求,确定数据包对应的QoS流所属的时延要求区间。
数据包对应的QoS流,为TSN数据包所作用的QoS流,故该QoS流应当受TSN数据包的时延要求限制,在最大传输时延ΔT1内进行确定性的传输。为了使QoS流的传输满足TSN数据包的时延要求,具体实现时可以在基站预先设置多个时延要求区间,每个时延区间分别具有对应的数值范围。在确定出该TSN数据包的时延要求ΔT1之后,可直接确定ΔT1位于哪个时延要求区间的数值范围内,从而确定TSN数据包对应的QoS流所属的时延要求区间。需说明的是,对于各个时延要求区间的取值范围,本申请实施例不作具体限定。
步骤S122,获取时延要求区间与DRB之间的映射关系,将与QoS流所属的时延要求区间匹配的DRB确定为目标DRB。
作为示例,可以在基站预先建立时延要求区间到DRB的映射关系,每一个DRB对应一个时延要求区间。例如,DRB#1对应时延要求区间#1的QoS流,DRB#2对应时延要求区间#2的QoS流,DRB#3对应时延要求区间#3的QoS流。可理解的是,对应不同时延要求区间的DRB具备不同的传输能力,例如,DRB#1具有最大的数据传输速率,可用于传输低时延业务的数据包;DRB#2具有中等的数据传输速率,可用于传输中等时延业务的数据包;DRB#3的数据传输速率最低,可用于传输对时延不敏感的业务的数据包。如此,通过不同的DRB满足QoS流不同的传输时延需求。
在具体实现时,根据步骤S121确定的QoS流所属的时延要求区间,从已建立的DRB中确 定与该时延要求区间匹配的DRB,可理解的是,每个时延要求区间可以有一个或者多个对应的DRB,当与该时延要求区间匹配的DRB有多个时,从确定出的多个DRB中选择一个作为与该QoS流对应的目标DRB。
步骤S123,将QoS流映射至目标DRB。
在确定出目标DRB之后,将该QoS流映射至该目标DRB,以通过目标DRB对数据包进行传输。
步骤S130,通过目标DRB将数据包发送给UE。
在确定出目标DRB之后,通过该目标DRB将数据包发送给UE。可理解的是,DRB是建立在基站和UE之间的承载,一个DRB对应一个UE,故只要确定出目标DRB,即可确定数据包对应的UE。
在一些实施例中,在步骤S110之前,还包括确定数据包对应的UE。在一些示例中,基站可以根据接收到的来自UPF网元发送的UE标识确定数据包对应的UE。UPF网元可通过确定数据包对应的PDU会话来确定数据包对应的UE标识,然后将该UE标识发送给基站。
本申请实施例的方案,根据数据包的时延要求,对数据包对应的QoS流进行分类,分配至合适的DRB进行调度,达到根据时延要求对数据包做调度优化的目的,保证数据包的传输时延满足数据最大时延的要求,实现5G系统下端到端确定性传输。
请参见图4,示出了本申请实施例提供的一种数据传输方法。图4所示的数据传输方法可由图1所示的网络架构中的接入网设备(RAN)执行,这里的RAN设备又可称为基站。如图4所示,该方法包括但不限于如下步骤。
步骤S210,确定数据包对应的服务质量QoS流和数据包的时延要求。
步骤S220,根据时延要求,确定QoS流所映射的目标数据无线承载DRB。
这里,步骤S210至步骤S220的具体实现过程,可参见前面步骤S110至步骤S120的具体描述,此处不再赘述。
步骤S230,确定数据包的时延余量。
可理解的是,数据包的时延余量指示RAN(即基站)至UE之间的传输时延,为便于描述,以ΔT2表示数据包的时延余量。该时延余量ΔT2可通过如下方式获得:
获取接入网设备接收数据包的时间戳,为便于说明,以T2表示接入网设备接收数据包的时间戳;当基站接收到数据包时,对接收该数据包的时间戳进行记录,如此得到T2;
将UE接收数据包的时间戳T1与接入网设备接收数据包的时间戳T2进行相减,得到数据包的时延余量ΔT2,即:ΔT2=T1-T2。
步骤S240,根据时延余量,确定数据包的调度优先级。
在一种可能的实现方式中,调度优先级包括高优先级、中优先级和低优先级。每个调度优先级对应一个时延余量数值范围。例如,高优先级对应的时延余量数值范围为小于第一阈值,中优先级对应的时延余量数值范围为大于等于第一阈值且小于第二阈值,低优先级对应的时延余量数值范围为大于等于第二阈值。如此,数据包的调度优先级可通过判断时延余量ΔT2位于哪个时延余量数值范围内确定,具体的,当时延余量小于第一阈值,确定数据包的调度优先级为高优先级;当时延余量大于等于第一阈值且小于第二阈值,确定数据包的调度优先级为中优先级;当时延余量大于等于第二阈值,确定数据包的调度优先级为低优先级。可理解的是,本申请实施例的调度优先级不限于高、中、低三个优先级,实际应用时可划分 出更多的优先级,本申请实施例对此不作限定。
本申请实施例,基站根据实际接收到数据包的时间戳,确定数据包的时延余量,并进一步根据时延余量,确定数据包的调度优先级,以根据实际时延对数据包的调度进行优化,避免低时延业务在无线网络侧的时延发生抖动,保证5G系统能在时延要求ΔT1范围内实现端到端的确定性传输。
步骤S250,根据与调度优先级对应的调度策略,通过目标DRB将所述数据包发送给UE。
可以理解的是,基站在确定出用于传输该数据包的目标DRB后,正常情况下,数据包进入目标DRB对应的QoS队列进行排队,以队列的形式暂存在缓存中等待调度,可理解的是,每个DRB对应的QoS队列可以有多个。QoS队列中的数据包通常按照先进先出的原则进行排队,按照从前到后的顺序依次出队,即排在首位的数据包会先于排在后面的数据包出队。当数据包从QoS队列出队后,会进入DRB队列中,经过DRB传输至UE。
本申请实施例通过优先级表示数据包调度的缓急程度,基站对于不同调度优先级的数据包,采用不同的调度策略,以达到根据实际时延对数据包的调度进行优化的目的。
作为示例,当确定调度优先级为高优先级,可以直接将所述数据包调度至目标DRB队列中,通过所述目标DRB将所述数据包发送给UE。
可以理解的是,若数据包的调度优先级为高优先级,说明该数据包的时延余量很小,需要被紧急调度。对于高优先级的数据包,本申请实施例采用直接将数据包放置于目标DRB队列的策略,即高优先级的数据包将跳过原来在QoS队列排队的缓存流程,而直接进入目标DRB队列中。如此,实现立即通过DRB将高优先级的数据包传输至UE,保证低时延的业务数据可在时延要求内进行确定性传输。
具体实现过程中,数据包在该目标DRB队列中的排序可以根据时延余量确定。应理解,数据包在DRB队列中的排序越靠前越快到达UE。
例如,可以比较当前调度的数据包的时延余量与已存在于目标DRB队列的数据包的时延余量,若已存在于目标DRB队列的数据包中具有比当前调度的数据包的时延余量更小的数据包,则将当前调度的数据包排在该时延余量更小的数据包之后的位置;若已存在于目标DRB队列的数据包中没有比当前调度的数据包的时延数量更小的数据包,则将当前调度的数据包排在目标DRB队列的首位。
作为示例,当确定所述调度优先级为中优先级,调整所述数据包在QoS队列中的排序,使所述数据包排在所有低优先级数据包之前;从所述QoS队列出队进入所述目标DRB,通过所述目标DRB将所述数据包发送给所述UE。
可以理解的是,若数据包的调度优先级为中优先级,说明该数据包的时延余量较小,被调度的缓急程度为较急。对于中优先级的数据包,本申请实施例采用将数据包在QoS队列的排序向前调整的策略,使该中优先级数据包排在所有低优先级数据包之前。应理解,数据包在QoS队列中的排序越靠前能越快出队进入到目标DRB中,然后通过目标DRB传输至UE。
具体实现过程中,可以比较当前调整的数据包与同一QoS队列的其他数据包的时延余量,若具有比当前调整的数据包的时延余量更小的其他数据包,将当前调整的数据包排在该时延余量更小的数据包之后;若没有比当前调整的数据包的时延余量更小的数据包,将当前调整的数据包排至QoS队列的首位。如此,中优先级的数据包不按照原来的先进先出的原则进行排队,而是采用插队方式使数据包可以更快被调度,以满足中优先级的数据包的时延要求。
作为示例,当确定调度优先级为低优先级,数据包在QoS队列中正常排队,等待调度进入目标DRB队列中进行传输。可以理解的是,若数据包的调度优先级为低优先级,说明该数据包的时延余量较充裕,被调度的缓急程度为普通。对于低优先级的数据包,本申请实施例将不做特殊的处理,低优先级的数据包在QoS队列中正常排队,等待调度进入目标DRB队列中进行传输。
举例来说,如图5a所示,若确定数据包P10的调度优先级为高优先级,且确定目标DRB(DRB#1)中不存在比数据包P10的时延余量更小的数据包,则将P10直接放置在目标DRB#1的首位;如图5b所示,若确定数据包P10的调度优先级为中优先级,P10对应的QoS队列为QoS#1,QoS#1中的其他数据包的时延余量均比数据包P10的时延余量大,则将P10放置在QoS#1队列的首位;如图5c所示,若确定数据包P10的调度优先级为低优先级,则不对P10放在QoS#1的位置做任何调整,按照先进先出原则排队。
本申请实施例的方案,根据数据包的时延余量确定数据包的调度优先级,对于不同调度优先级的数据包采用不同的调度策略,达到根据实际时延对数据包的调度进行优化的目的。
请参见图6,示出了本申请实施例提供的另一种数据传输方法,图6所示的数据传输方法可由图1所示的网络架构中的UPF网元执行。如图6所示,该方法包括但不限于如下步骤。
S310,根据数据包的转发策略信息,确定数据包对应的QoS流标识和传输数据包的时间戳信息,其中,时间戳信息包括UE接收数据包的时间戳和UPF发送数据包的时间戳。
在一些示例中,CNC网元将TSN数据包的转发策略信息发送给UPF网元,UPF网元根据接收到的转发策略信息确定TSN数据包对应的QoS流标识。具体的,转发策略信息包括传输TSN数据包的端口标识,UPF网元可直接根据传输TSN数据包的端口标识确定TSN数据包对应的PDU会话,再从PDU会话对应的QoS流中,确定TSN数据包对应的QoS流。例如,转发策略信息包括TSN数据包的流信息,该流信息包括TSN数据包的目的MAC地址,UPF网元根据TSN目的MAC地址,从PDU会话对应的已有QoS流中,筛选出与该目的MAC地址相同的QoS流,将其作为TSN数据包对应的QoS流。应当理解的是,以上只是对如何确定TSN数据包对应的QoS流标识的举例说明,具体实现时还可以采用其它方式确定TSN数据包对应的QoS流,本申请实施例对此不作限定。
在一些示例中,转发策略信息包括数据包的时间戳信息,时间戳信息包括接收数据包的时间戳和发送数据包的时间戳,接收数据包的时间戳指UE端口接收数据包的时间戳;发送数据包的时间戳指UPF端口发送数据包的时间戳。
S320,将数据包对应的QoS流标识和传输数据包的时间戳信息发送给接入网设备,以由接入网设备根据所述QoS流标识确定数据包对应的QoS流和根据时间戳信息确定QoS流所映射的目标数据无线承载DRB,并通过目标DRB将TSN数据包发送给UE。
在一些实施例中,UPF网元根据数据包的转发策略信息,确定数据包对应的UE标识;将UE标识发送给接入网设备。
请参见图7,示出了本申请实施例提供的一种接入网设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器, 例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
需要说明的是,本实施例中的接入网设备,可以应用在如图1所示的网络架构中的RAN。
实现上述实施例的数据传输方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的数据传输方法,例如,执行图2或者图4所示实施例中的步骤。
请参见图8,示出了本申请实施例提供的一种用户面功能网元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
需要说明的是,本实施例中的用户面功能网元,可以应用在如图1所示的网络架构中的UPF网元。
实现上述实施例的数据传输方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的数据传输方法,例如,执行图6所示实施例中的步骤。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述接入网设备实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的数据传输方法,例如,执行以上描述的图2或者图4所示实施例中的步骤。或者,被上述用户面功能网元实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的数据传输方法,例如,执行以上描述的图6所示实施例中的步骤。
本申请实施例包括:确定数据包对应的服务质量QoS流和所述数据包的时延要求;根据所述时延要求,确定所述QoS流所映射的目标数据无线承载DRB;通过所述目标DRB将所述数据包发送给用户设备UE。本申请实施例的方案,根据数据包的时延要求,对数据包对应的QoS流进行分类,分配至合适的DRB进行调度,达到根据时延要求对数据包做调度优化的目的,保证数据包的传输时延满足数据最大时延的要求,实现5G系统下端到端确定性传输。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据 结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种数据传输方法,包括:
    确定数据包对应的服务质量QoS流和所述数据包的时延要求;
    根据所述时延要求,确定所述QoS流所映射的目标数据无线承载DRB;
    通过所述目标DRB将所述数据包发送给用户设备UE。
  2. 根据权利要求1所述的方法,其中,所述根据所述时延要求,确定所述QoS流所映射的目标数据无线承载DRB,包括:
    根据所述时延要求,确定所述QoS流所属的时延要求区间;
    获取所述时延要求区间与DRB之间的映射关系,将与所述QoS流所属的时延要求区间匹配的DRB确定为所述目标DRB;
    将所述QoS流映射至所述目标DRB。
  3. 根据权利要求1所述的方法,其中,所述通过所述目标DRB将所述数据包发送给用户设备UE,包括:
    确定所述数据包的时延余量;
    根据所述时延余量,确定所述数据包的调度优先级;
    根据与所述调度优先级对应的调度策略,通过所述目标DRB将所述数据包发送给所述UE。
  4. 根据权利要求3所述的方法,其中,所述根据所述时延余量,确定所述数据包的调度优先级,包括:
    当所述时延余量小于第一阈值,确定所述数据包的调度优先级为高优先级;
    所述根据与所述调度优先级对应的调度策略,通过所述目标DRB将所述数据包发送给所述UE,包括:
    当确定所述调度优先级为高优先级,直接将所述数据包调度至目标DRB队列中,通过所述目标DRB将所述数据包发送给用户设备UE;
    其中,所述数据包在所述目标DRB队列中的排序根据所述时延余量确定。
  5. 根据权利要求3所述的方法,其中,所述根据所述时延余量,确定所述数据包的调度优先级,包括:
    当所述时延余量大于等于第一阈值且小于第二阈值,确定所述数据包的调度优先级为中优先级;
    所述根据与所述调度优先级对应的调度策略,通过所述目标DRB将所述数据包发送给所述UE,包括:
    当确定所述调度优先级为中优先级,调整所述数据包在QoS队列中的排序,使所述数据包排在所有低优先级数据包之前,其中,所述低优先级数据包的所述时延余量大于等于所述第二阈值;
    当所述数据包从所述QoS队列出队进入所述目标DRB,通过所述目标DRB将所述数据包发送给所述UE。
  6. 根据权利要求3所述的方法,其中,所述确定时延敏感网络数据包对应的服务质量QoS流和所述数据包的时延要求,包括:
    接收来自用户面功能网元的所述数据包对应的QoS流标识和传输所述数据包的时间戳信 息,其中,所述时间戳信息包括所述UE接收所述数据包的时间戳和所述用户面功能网元发送所述数据包的时间戳;
    根据所述QoS流标识,确定所述数据包对应的所述QoS流;
    根据所述UE接收所述数据包的时间戳和所述用户面功能网元发送所述数据包的时间戳,得到所述数据包的时延要求。
  7. 根据权利要求6所述的方法,其中,所述确定所述数据包的时延余量,包括:
    获取接入网设备接收所述数据包的时间戳;
    根据所述UE接收所述数据包的时间戳和所述接入网设备接收所述数据包的时间戳,得到所述数据包的时延余量。
  8. 一种数据传输方法,包括:
    根据数据包的转发策略信息,确定所述数据包对应的QoS流标识和传输所述数据包的时间戳信息,其中,所述时间戳信息包括UE接收所述数据包的时间戳和用户面功能网元发送所述数据包的时间戳;
    将所述数据包对应的所述QoS流标识和传输所述数据包的时间戳信息发送给接入网设备,以由所述接入网设备根据所述QoS流标识确定数据包对应的QoS流和根据所述时间戳信息确定所述QoS流所映射的目标数据无线承载DRB,并通过所述目标DRB将所述数据包发送给UE。
  9. 一种接入网设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至7中任意一项所述的数据传输方法。
  10. 一种用户面功能网元,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求8所述的数据传输方法。
  11. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7中任意一项所述的数据传输方法或者如权利要求8所述的数据传输方法。
PCT/CN2021/134017 2020-12-04 2021-11-29 数据传输方法、接入网设备、用户面功能网元和存储介质 WO2022116939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011399795.X 2020-12-04
CN202011399795.XA CN114615206A (zh) 2020-12-04 2020-12-04 数据传输方法、接入网设备、用户面功能网元和存储介质

Publications (1)

Publication Number Publication Date
WO2022116939A1 true WO2022116939A1 (zh) 2022-06-09

Family

ID=81852934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134017 WO2022116939A1 (zh) 2020-12-04 2021-11-29 数据传输方法、接入网设备、用户面功能网元和存储介质

Country Status (2)

Country Link
CN (1) CN114615206A (zh)
WO (1) WO2022116939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550271A (zh) * 2022-09-16 2022-12-30 中国联合网络通信集团有限公司 时间敏感网络数据处理方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117439925A (zh) * 2022-07-15 2024-01-23 华为技术有限公司 一种通信方法、装置及系统
CN116017560B (zh) * 2022-12-27 2024-04-19 深圳市领创星通科技有限公司 数据转发方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645791A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种传输数据流的无线承载处理方法及装置
CN111132223A (zh) * 2018-11-01 2020-05-08 电信科学技术研究院有限公司 一种数据包的传输方法和通信设备
US20200154304A1 (en) * 2017-09-18 2020-05-14 Lg Electronics Inc. Method for performing reflective quality of service in wireless communication system and a device therefor
CN111278049A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 支持时间敏感通信服务质量的方法及通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645791A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种传输数据流的无线承载处理方法及装置
US20200154304A1 (en) * 2017-09-18 2020-05-14 Lg Electronics Inc. Method for performing reflective quality of service in wireless communication system and a device therefor
CN111132223A (zh) * 2018-11-01 2020-05-08 电信科学技术研究院有限公司 一种数据包的传输方法和通信设备
CN111278049A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 支持时间敏感通信服务质量的方法及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA , ALCATEL-LUCENT SHANGHAI BELL , MEDIATEK: "DRB mapping", 3GPP DRAFT; R2-167667 1 TO N MAPPING, vol. RAN WG2, 4 November 2016 (2016-11-04), Reno, USA, pages 1 - 2, XP051192231 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550271A (zh) * 2022-09-16 2022-12-30 中国联合网络通信集团有限公司 时间敏感网络数据处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114615206A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022116939A1 (zh) 数据传输方法、接入网设备、用户面功能网元和存储介质
US20210368386A1 (en) Method of transmitting data, user equipment, network side device and computer readable storage medium
EP3554125B1 (en) Data processing method, apparatus and system
US11432223B2 (en) Methods and apparatuses for selecting a first base station or a second base station to transmit a packet data unit (PDU) to a user equipment (UE)
US10182370B2 (en) System and method for buffer status reporting for multi-stream aggregation
US20190327758A1 (en) Method and Apparatus in a Wireless Communications System
CN108353307B (zh) 在分割承载环境下提供流控制的方法、系统和设备
KR101480598B1 (ko) 무선 네트워크에서 통신을 개시하기 위한 기법
JP7396768B2 (ja) グラントフリー伝送のためのアップリンクデータスケジューリングのためのシステムおよび方法
CN111213403B (zh) 无线通信系统中QoS流的调度方法及装置
US20230139633A1 (en) Data Packet Sending Method and Apparatus
CN105471763B (zh) 控制报文传输方法及装置
US20220150938A1 (en) Bsr triggering method and device, and storage medium and user equipment
WO2010099718A1 (zh) 一种数据传输控制方法、装置及系统
WO2020125573A1 (zh) 通信方法、装置、终端、网络设备及存储介质
US20200252337A1 (en) Data transmission method, device, and computer storage medium
US20230379747A1 (en) Method and apparatus to synchronize radio bearers
JP2023511889A (ja) サービスレベル構成方法および装置
WO2021119675A2 (en) Guaranteed latency based forwarding
CN112543490B (zh) 用户设备准入的方法和装置、以及用户设备切换的方法和装置
CN111756557B (zh) 一种数据传输方法及装置
US7684318B2 (en) Shared-communications channel utilization for applications having different class of service requirements
WO2023165199A1 (zh) 一种通信方法、装置及设备
WO2023116403A1 (zh) 一种缓存状态报告发送方法及通信装置
US20240049043A1 (en) Prioritizing data packets in wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 02/11/2023 )