WO2022116855A1 - 协议数据单元pdu会话的管理方法和装置 - Google Patents

协议数据单元pdu会话的管理方法和装置 Download PDF

Info

Publication number
WO2022116855A1
WO2022116855A1 PCT/CN2021/131573 CN2021131573W WO2022116855A1 WO 2022116855 A1 WO2022116855 A1 WO 2022116855A1 CN 2021131573 W CN2021131573 W CN 2021131573W WO 2022116855 A1 WO2022116855 A1 WO 2022116855A1
Authority
WO
WIPO (PCT)
Prior art keywords
upf
tunnel
data transmission
satellite
terminal
Prior art date
Application number
PCT/CN2021/131573
Other languages
English (en)
French (fr)
Inventor
刘险峰
王胡成
徐晖
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011540381.4A external-priority patent/CN114666393B/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/255,422 priority Critical patent/US11968127B2/en
Priority to JP2023534198A priority patent/JP2023552429A/ja
Priority to KR1020237022690A priority patent/KR20230113389A/ko
Priority to EP21899889.6A priority patent/EP4258569A1/en
Publication of WO2022116855A1 publication Critical patent/WO2022116855A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18589Arrangements for controlling an end to end session, i.e. for initialising, synchronising or terminating an end to end link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present disclosure relates to the technical field of mobile communications, and in particular, to a method and device for managing a Protocol Data Unit (PDU) session.
  • PDU Protocol Data Unit
  • the current fifth-generation mobile communication 5G (5th Generation) core network system including the user plane function UPF (User Plane Function), are deployed on the ground.
  • UPF User Plane Function
  • the satellite terminals access the 5G core network through the on-board access network AN (Access Network) to achieve mutual access, the user service data flow needs to be routed from the satellite to the ground UPF to realize communication between satellite terminals.
  • AN Access Network
  • the management method, device and storage medium of protocol data unit PDU session proposed in the present disclosure are used to solve the problem in the related art, by routing the user service data stream from the satellite to the ground UPF, so as to realize the communication between satellite terminals. Large delay problem.
  • a method for managing a protocol data unit PDU session proposed by an embodiment of the present disclosure includes: receiving a session management SM (Session Management) policy modification request for the PDU session, the request triggering establishment of a first quality of service in the PDU session QoS (Quality of Service) flow, wherein the PDU session is established for the first terminal; in response to the first UPF of the first satellite and the second UPF of the second satellite, there is no flow with the first QoS flow Identify the same data transmission tunnel, create a data transmission tunnel between a first UPF and a second UPF, the first satellite serving the first terminal, and the second satellite serving the second terminal satellite, the second terminal is determined according to the application layer information; the first UPF is instructed to transmit the data of the first QoS flow through the data transmission tunnel.
  • Session Management Session Management
  • the method further includes:
  • the data of the second QoS flow of the PDU session is transmitted through a data transmission tunnel between the first AN of the first satellite and the terrestrial UPF.
  • the method further includes:
  • the third UPF is a UPF on a third satellite serving the first terminal after the handover;
  • Inserting the third UPF for the PDU session creates a data transmission tunnel between the second UPF and the third UPF.
  • the method further includes:
  • the data of the first QoS flow is processed through the existing data transmission tunnel. transmission;
  • the existing data transmission tunnel for transmission is created after receiving the PDU session establishment request and determining that there is a second identifier of the second terminal corresponding to the first identifier of the first terminal, the The second terminal is the terminal to which the second identifier belongs.
  • the method before the receiving the SM policy modification request for the PDU session, the method further includes:
  • the creating a data transmission tunnel between the first UPF and the second UPF includes:
  • a data transmission tunnel between the first UPF and the second UPF is created in response to the existence of a second identification of the second terminal corresponding to the first identification of the first terminal.
  • the method before the creating a data transmission tunnel between the first UPF and the second UPF, the method further includes:
  • Inserting the first UPF in the PDU session creates an N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • the creating a data transmission tunnel between the first UPF and the second UPF includes:
  • the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the method before the creating a data transmission tunnel between the first UPF and the second UPF, the method further includes:
  • a transmission tunnel association rule for the first QoS flow is established, and the data transmission tunnel is associated with the flow identifier.
  • the method further includes:
  • the target offloading manner is on-board AN offloading or on-board UPF offloading.
  • the method further includes:
  • a flow forwarding rule is delivered to the first UPF, so that the uplink data received from the N3 interface tunnel is transmitted through the data transmission tunnel, and from The downlink data received by the data transmission tunnel is transmitted through the N3 interface tunnel;
  • a traffic forwarding rule is issued to the first AN, so that the uplink data received from the first AN is transmitted through the data transmission tunnel, and the data is sent from the first AN.
  • the downlink data received by the data transmission tunnel is transmitted through the first AN.
  • the establishing according to the target offloading manner including:
  • establishing a transmission tunnel association rule for the first QoS flow according to the target offloading mode including:
  • the N9 tunnel information of the terrestrial UPF and the flow identifier of the first QoS flow are sent to the first UPF, and a transmission tunnel association rule of the first QoS flow is established in the first UPF.
  • the method further includes:
  • the N9 tunnel information of the terrestrial UPF corresponding to the flow identifier of the first QoS flow in the transport tunnel association rule is updated.
  • the creating a data transmission tunnel between the second UPF and the third UPF includes:
  • the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the method further includes:
  • the second AN in the third satellite forwards the target message, where the target message is used to instruct the first AN to stop sending the first QoS flow to the second UPF.
  • the device includes: a memory, a transceiver, and a processor; a memory, used for storing a computer program; a transceiver, used for sending and receiving data under the control of the processor; a processor, used for Read the computer program in the memory and do the following:
  • the first satellite is a satellite serving the first terminal
  • the second satellite is a satellite serving the second terminal
  • the second terminal is determined according to application layer information
  • the processor is further configured to perform the following operations:
  • the data of the second QoS flow of the PDU session is transmitted through a data transmission tunnel between the first AN of the first satellite and the terrestrial UPF.
  • the method further includes:
  • the third UPF is a UPF on a third satellite serving the first terminal after the handover;
  • Inserting the third UPF for the PDU session creates a data transmission tunnel between the second UPF and the third UPF.
  • the method further includes:
  • the data of the first QoS flow is processed through the existing data transmission tunnel. transmission;
  • the existing data transmission tunnel for transmission is created after receiving the PDU session establishment request and determining that there is a second identifier of the second terminal corresponding to the first identifier of the first terminal, the The second terminal is the terminal to which the second identifier belongs.
  • the method before the receiving the SM policy modification request for the PDU session, the method further includes:
  • the creating a data transmission tunnel between the first UPF and the second UPF includes:
  • a data transmission tunnel between the first UPF and the second UPF is created in response to the existence of a second identification of the second terminal corresponding to the first identification of the first terminal.
  • the method before the creating a data transmission tunnel between the first UPF and the second UPF, the method further includes:
  • Inserting the first UPF in the PDU session creates an N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • the creating a data transmission tunnel between the first UPF and the second UPF includes:
  • the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the method before creating a data transmission tunnel between the first UPF and the second UPF, the method further includes:
  • a transmission tunnel association rule for the first QoS flow is established, and the data transmission tunnel is associated with the flow identifier.
  • the target offloading manner is on-board AN offloading or on-board UPF offloading.
  • the method further includes:
  • a flow forwarding rule is delivered to the first UPF, so that the uplink data received from the N3 interface tunnel is transmitted through the data transmission tunnel, and from The downlink data received by the data transmission tunnel is transmitted through the N3 interface tunnel;
  • a traffic forwarding rule is issued to the first AN, so that the uplink data received from the first AN is transmitted through the data transmission tunnel, and the data is sent from the first AN.
  • the downlink data received by the data transmission tunnel is transmitted through the first AN.
  • the establishing according to the target offloading manner including:
  • establishing a transmission tunnel association rule for the first QoS flow according to the target offloading mode including:
  • the N9 tunnel information of the terrestrial UPF and the flow identifier of the first QoS flow are sent to the first UPF, and a transmission tunnel association rule of the first QoS flow is established in the first UPF.
  • the method further includes:
  • the N9 tunnel information of the terrestrial UPF corresponding to the flow identifier of the first QoS flow in the transport tunnel association rule is updated.
  • the creating a data transmission tunnel between the second UPF and the third UPF includes:
  • the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the processor is further configured to perform the following operations:
  • the target message is forwarded to the second AN in the third satellite, the target message being used to instruct the first AN to stop sending the first QoS flow to the second UPF.
  • the apparatus for managing a protocol data unit PDU session proposed by another embodiment of the present disclosure includes: a receiving unit configured to receive an SM policy modification request for the PDU session, where the request triggers establishment of a first QoS flow in the PDU session , wherein the PDU session is established for the first terminal; the first creation unit is configured to have no flow identifier with the first QoS flow between the first UPF of the first satellite and the second UPF of the second satellite When the same data transmission tunnel is used, a data transmission tunnel is created between the first UPF and the second UPF, the first satellite is the satellite serving the first terminal, and the second satellite is the satellite serving the second terminal , the second terminal is determined according to the application layer information; the first transmission unit is used to instruct the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • a processor-readable storage medium provided by an embodiment of the present disclosure stores a computer program thereon, wherein the computer program is used to cause the processor to execute the foregoing protocol data unit PDU session management method .
  • the SM policy for the PDU session established by the first terminal is received by the session management function SMF (Session Management Function) network element. Modify the request, and when there is no data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite that has the same flow ID as the flow ID of the first QoS flow established in the PDU session, create a data transmission tunnel located between the first UPF and the second UPF of the second satellite. The data transmission tunnel between the second UPFs further instructs the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • SMF Session Management Function
  • a data transmission tunnel between the first satellite and the second satellite is established, so as to realize the data transmission between the first terminal and the second terminal through the data transmission tunnel, so that there is no need to route the data through the satellite.
  • the service data of the satellite terminal is sent to the ground, which reduces the transmission delay.
  • the computer program product provided by the embodiments of another aspect of the present disclosure includes a computer program that, when executed by a processor, implements the protocol data unit PDU session management method provided by the above-mentioned embodiments of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for managing a protocol data unit (PDU) session according to an embodiment of the present disclosure.
  • PDU protocol data unit
  • FIG. 2 is a schematic flowchart of another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an apparatus provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an apparatus for managing a protocol data unit (PDU) session according to an embodiment of the present disclosure.
  • PDU protocol data unit
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiments of the present disclosure provide a method and device for managing a PDU session of a protocol data unit, which are used to implement communication between satellite terminals by routing user service data streams from satellites to ground UPFs in the related art. longer problems.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving the SM policy modification request for the PDU session established by the first terminal in response to the SMF, and executing the SM policy modification request on the first UPF of the first satellite and the first UPF of the second satellite in response to the SMF
  • There is no data transmission tunnel with the same flow ID as the first QoS flow established in the PDU session between the two UPFs create a data transmission tunnel between the first UPF and the second UPF, and instruct the first UPF to transfer the first QoS flow to the first UPF.
  • the data of the stream is transmitted through the data transmission tunnel.
  • a data transmission tunnel between the first satellite and the second satellite is established, so as to realize the data transmission between the first terminal and the second terminal through the data transmission tunnel, so that there is no need to route the data through the satellite.
  • the service data of the satellite terminal is sent to the ground, which reduces the transmission delay.
  • FIG. 1 is a schematic flowchart of a method for managing a protocol data unit (PDU) session according to an embodiment of the present disclosure.
  • PDU protocol data unit
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 101 Receive an SM policy modification request for the PDU session, and request to trigger the establishment of a first QoS flow in the PDU session, where the PDU session is established for the first terminal.
  • the current 5G core network system including the UPF
  • the UPF is deployed on the ground.
  • the user service data flow needs to be routed from the satellite to the ground UPF to realize communication between satellite terminals.
  • the transmission delay is relatively large. Therefore, in the embodiment of the present disclosure, a data transmission tunnel between satellites can be established through the on-board UPF, so that direct communication between satellites can be realized without using the ground UPF, so as to reduce the transmission delay.
  • IP Multimedia System IMS IP Multimedia Subsystem
  • the establishment of the data transmission tunnel between the first satellite and the second satellite may be implemented through the SMF or other network elements in the 5G core network, which is not limited in this embodiment of the present disclosure.
  • SMF is taken as an example for specific description, wherein SMF is a functional unit of 5G service-based architecture, and is mainly responsible for interacting with the separated data plane, creating, updating and deleting PDU sessions, and managing sessions with UPF. surroundings.
  • the first terminal may initiate an IMS session establishment process when necessary, that is, send a session initiation protocol invitation SIP Invite (Session initialization Protocol) to a proxy call session control P-CSCF (Proxy Call Session Control Function), the The SIP Invite message is transmitted to the second terminal through the IMS network and the terrestrial UPF.
  • SIP Invite Session initialization Protocol
  • P-CSCF Proxy Call Session Control Function
  • the P-CSCF After receiving the SIP 183Progress message replied by the second terminal, the P-CSCF sends an AA request message AAR (AA-Request) to the policy control function PCF (Policy Control function). QoS policies etc. are sent to SMF.
  • the SMF When acquiring the SM policy modification process initiated by the PCF, the SMF determines that it has received the SM policy modification request for the PDU session, and establishes a first QoS flow in the PDU session.
  • Step 102 in response to that there is no data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite that has the same data transmission tunnel as the flow identifier of the first QoS flow, create a data transmission tunnel between the first UPF and the second UPF.
  • the first satellite is the satellite serving the first terminal
  • the second satellite is the satellite serving the second terminal
  • the second terminal is determined according to application layer information.
  • the second terminal refers to a terminal currently performing data transmission with the first satellite. For example, if the first terminal is the calling satellite terminal, the second terminal is the called satellite terminal.
  • the flow identifier may be the 5QI parameter of the QoS flow, where the 5QI is a scalar that points to a 5G QoS feature.
  • the SMF may determine, through DNN or application layer information, that the data of the first QoS flow needs to be transmitted between the first satellite serving the first terminal and the second satellite serving the second terminal. For example, in the IMS service, when the data in the first QoS flow is voice data, it may be determined that the data of the first QoS flow needs to be transmitted between the serving first satellite and the second satellite. Then, when there is no data transmission tunnel between the first UPF and the second UPF that has the same flow identifier as the flow identification of the first QoS flow, a data transmission tunnel between the first satellite and the second satellite is established.
  • the second terminal performing data transmission with the first terminal may have triggered the establishment process of the data transmission tunnel. Therefore, according to the PDU session for the first terminal Before the SM policy modification request for establishing the data transmission tunnel, it may also be judged first whether the data transmission tunnel between the first UPF and the second UPF has been established. That is, in a possible implementation manner of the embodiment of the present disclosure, after the above step 101, it may further include:
  • the data of the first QoS flow is transmitted through the existing data transmission tunnel.
  • the existing data transmission tunnel for transmission is created after receiving the PDU session establishment request and determining that there is a second identification of the second terminal corresponding to the first identification of the first terminal, and the second terminal is the The terminal to which the second identifier belongs.
  • the flow identifier of the QoS flow to be transmitted is associated with the data transmission tunnel, so if the SMF determines that the first UPF is A data transmission tunnel with the same flow ID as the flow ID of the first QoS flow established in the PDU session of the first terminal already exists between the second UPFs, and it can be determined that the second terminal has initiated the establishment of transmission of the first terminal before the first terminal.
  • the process of the data transmission tunnel of the QoS flow so that the data on the first QoS flow can be directly transmitted through the established data transmission tunnel between the first UPF and the second UPF without re-establishing the relationship between the first UPF and the second UPF. and the subsequent steps in the embodiments of the present disclosure may not be performed continuously.
  • the relationship between the calling and called users may be fixed or not. Therefore, the management method of the protocol data unit PDU session in the embodiment of the present disclosure can support the existence of a fixed relationship
  • a data transmission tunnel can be established between the first terminal and the second terminal, and the establishment of a data transmission tunnel between the first terminal and the second terminal that does not have a fixed relationship can also be supported.
  • the second type is that when there is a fixed relationship between the first terminal and the second terminal, that is, there is a second terminal corresponding to the first terminal, when the PDU session is initially established, the first terminal and the second terminal are not established.
  • a data transmission tunnel between terminals that is, there is no data transmission tunnel between the first terminal and the second terminal
  • the embodiment of the present disclosure can also support triggering according to the SM policy modification request for the PDU session after the PDU session is established establishing a data transmission tunnel between the first terminal and the second terminal;
  • the establishment of the relationship between the first terminal and the second terminal may be triggered according to the SM policy modification request for the PDU session. data transfer tunnel.
  • the embodiments of the present disclosure do not limit the above three manners of establishing a data transmission tunnel.
  • the manner of establishing a data transmission tunnel can be flexibly adjusted according to actual PDU session control requirements.
  • the correspondence between the first terminal and the second terminal may be pre-configured in the SMF. Therefore, when the first terminal initiates a PDU session, the PDU session request carries the unique identifier of the second terminal. (for example, a general public user identifier GPSI (Generic Public Subscription Identifier)), so that the SMF can determine whether there is a corresponding relationship with the first terminal according to the unique identifier of the second terminal and the locally configured correspondence between the first terminal and the second terminal. the second terminal.
  • GPSI Global System for Mobile Communications Service
  • the SMF can determine whether there is a corresponding relationship with the first terminal according to the unique identifier of the second terminal and the locally configured correspondence between the first terminal and the second terminal. the second terminal.
  • the locally configured correspondence between the first terminal and the second terminal including the correspondence between the unique identifier of the first terminal and the unique identifier of the second terminal, it can be determined that there is a second terminal corresponding to the first terminal ; otherwise, it may be determined that there is no second terminal corresponding to the first terminal.
  • the PDU in response to a service requirement for establishing a data transmission tunnel between the first terminal and the second terminal when the PDU session is established, and there is a second terminal corresponding to the first terminal, the PDU can be executed in the first manner described above.
  • a data transmission tunnel between the first terminal and the second terminal is directly established. That is, in a possible implementation manner of the embodiment of the present disclosure, before the above step 101, it may further include:
  • a data transmission tunnel between the first terminal and the second terminal can be directly established. That is, in a possible implementation manner of the embodiment of the present disclosure, before the above step 101, it may further include:
  • step 102 may include:
  • Step 103 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the SMF may establish a data transmission tunnel between the first satellite and the second satellite.
  • the SMF can obtain the user plane context of the second terminal according to the unique second identifier of the second terminal (such as the user permanent identifier SUPI (Subscription Permanent Identifier)/GPSI);
  • the tunnel information corresponding to the user plane context of the second terminal is determined as the tunnel information of the second UPF.
  • the tunnel information may include the tunnel endpoint information of the local end and the tunnel endpoint information of the opposite end.
  • a data transmission tunnel can be created between the first UPF of the first satellite and the second UPF of the second satellite.
  • the SMF can update the peer endpoint information included in the tunnel information of the first UPF according to the tunnel endpoint information of the second UPF, so as to realize the connection between the first UPF and the second UPF. direct communication, thereby completing the establishment of a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite.
  • the transmission of the first QoS flow between the first terminal and the second terminal may be implemented by using the data transmission tunnel.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second
  • create a data transmission tunnel between the first UPF and the second UPF and further instruct the first UPF to add the QoS flow to the data transmission tunnel.
  • the data is transmitted through the data transmission tunnel.
  • a data transmission tunnel between the first satellite and the second satellite is established, so as to realize the data transmission between the first terminal and the second terminal through the data transmission tunnel, so that there is no need to route the data through the satellite.
  • the service data of the satellite terminal is sent to the ground, which reduces the transmission delay.
  • the QoS data stream can also be offloaded to transmit specific service data through the data transmission tunnel between the first satellite and the second satellite, so as to reduce the transmission delay of the specific service.
  • the following describes the management method of the protocol data unit PDU session provided by the embodiment of the present disclosure with reference to FIG. 2 .
  • FIG. 2 is a schematic flowchart of another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 201 Receive an SM policy modification request for the PDU session, and request to trigger the establishment of a first QoS flow in the PDU session, where the PDU session is established for the first terminal.
  • Step 202 in response to that there is no data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite that has the same data transmission tunnel as the flow identifier of the first QoS flow, create a data transmission tunnel between the first UPF and the second UPF.
  • the first satellite is the satellite serving the first terminal
  • the second satellite is the satellite serving the second terminal
  • the second terminal is determined according to application layer information.
  • Step 203 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • steps 201 to 203 may be implemented in any of the various embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described repeatedly.
  • Step 204 transmit the data of the second QoS flow of the PDU session through the data transmission tunnel located between the first AN of the first satellite and the ground UPF.
  • the second QoS flow refers to a QoS flow carrying other data other than the specific service data.
  • the specific service data may be IMS voice data
  • the second QoS flow may be a QoS flow for carrying IMS signaling data.
  • the SMF acquires the SM policy modification process initiated by the PCF, it determines that a request for transmitting a new first QoS flow is received, and can trigger the process of establishing a data transmission tunnel between the first UPF and the second UPF.
  • the QoS flow is divided according to actual service requirements, so as to determine the first QoS flow to be transmitted in the data transmission tunnel between the first UPF and the second UPF, and the first QoS flow to be transmitted in the data transmission tunnel between the first UPF and the second UPF.
  • the second QoS flow is transmitted in the data transmission tunnel between the first AN and the terrestrial UPF.
  • the IMS signaling data is transmitted to the first AN of the first satellite.
  • the first QoS flow carrying IMS voice data can be transmitted in the data transmission tunnel between the first UPF and the second UPF, and the QoS flow carrying IMS signaling data can be transmitted It is determined as the second QoS flow, and is transmitted through the data transmission tunnel between the first AN of the first satellite and the ground UPF.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second
  • create a data transmission tunnel between the first UPF and the second UPF and further instruct the first UPF to add the QoS flow to the data transmission tunnel.
  • the data of the first satellite is transmitted through the data transmission tunnel, and the second QoS flow is transmitted to the second satellite through the data transmission tunnel between the first AN of the first satellite and the ground UPF.
  • the AN accessed by the first terminal may also undergo unilateral handover, so that the data after the AN handover needs to be re-established Transmission tunnel to improve the stability of the data transmission tunnel.
  • the following describes the management method of the protocol data unit PDU session provided by the embodiment of the present disclosure with reference to FIG. 3 .
  • FIG. 3 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 301 Receive an SM policy modification request for a PDU session, where the request triggers establishment of a first QoS flow in the PDU session, where the PDU session is established for a first terminal.
  • Step 302 in response to the fact that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, create a data transmission tunnel located between the first UPF and the second UPF.
  • the first satellite is the satellite serving the first terminal
  • the second satellite is the satellite serving the second terminal
  • the second terminal is determined according to the application layer information.
  • Step 303 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • Step 304 Transmit the data of the second QoS flow of the PDU session through the data transmission tunnel located between the first AN of the first satellite and the ground UPF.
  • steps 301 to 304 may be implemented in any one of the embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • Step 305 in response to determining that the first terminal is handed over, select a third UPF for the PDU session, where the third UPF is a UPF on a third satellite serving the first terminal after the handover.
  • the first terminal may also switch the first AN to which it accesses, that is, the satellite to which the first terminal accesses, according to actual service requirements. and AN changes, so that the previously established data transmission tunnel cannot continue to implement data transmission between the first terminal and the second terminal. Therefore, after the establishment of the data transmission tunnel between the first satellite and the second satellite is completed, the SMF can monitor in real time whether the first AN accessed by the first terminal changes, and update the data transmission tunnel in time.
  • the third satellite refers to the satellite to which the first terminal accesses after the AN to which the first terminal accesses is switched.
  • the first AN accessed by the first terminal before the AN is switched is the AN configured in the satellite A
  • the AN accessed by the first terminal after the AN is switched is the AN configured in the satellite B
  • the satellite B is the AN configured in the satellite B.
  • the third satellite accessed after the AN accessed by the first terminal is switched may be obtained; and the third satellite may be obtained.
  • Step 306 insert a third UPF for the PDU session, and create a data transmission tunnel between the second UPF and the third UPF.
  • the third UPF of the third satellite accessed by the first terminal after the switch can be inserted into the PDU session to establish a relationship between the second UPF and the third UPF data transfer tunnel between them.
  • the peer endpoint information included in the tunnel information of the third UPF may be updated according to the tunnel endpoint information of the second UPF included in the tunnel information of the second UPF; and the third UPF included in the tunnel information of the third UPF may be updated according to the The tunnel endpoint information of the UPF updates the peer endpoint information contained in the tunnel information of the second UPF, so that the third UPF and the second UPF can learn the peer endpoint information communicated with them, so as to realize the communication between the third UPF and the second UPF. Therefore, the establishment of the data transmission tunnel between the second UPF and the third UPF is completed, so as to continue to realize the transmission of the first QoS flow of the PDU session between the first terminal and the second terminal.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second When there is no data transmission tunnel between the UPFs that has the same flow ID as the flow ID of the first QoS flow established in the PDU session, create a data transmission tunnel between the first UPF and the second UPF, and further instruct the first UPF to add the QoS flow to the data transmission tunnel.
  • the data is transmitted through the data transmission tunnel, and the second QoS flow is transmitted to the second satellite through the data transmission tunnel between the first AN of the first satellite and the ground UPF, and when the AN accessed by the first terminal switches , to update the data transfer tunnel. Therefore, by setting the UPF on the satellite, the data transmission tunnel between the first satellite and the second satellite is established, and the data transmission tunnel is updated when the AN connected by the satellite terminal is switched, and the QoS flow is performed according to the actual service requirements.
  • the offload processing is used to realize the transmission of specific service data between the first terminal and the second terminal through the data transmission tunnel, so that it is not necessary to send the service data of the satellite terminal to the ground through satellite routing, and the transmission delay of the specific service data is reduced. Moreover, the stability of the data transmission tunnel is ensured, and the reliability of direct data transmission on the satellite is further improved.
  • an association relationship between the identifier of the satellite terminal and the corresponding user plane context may also be pre-established in the SMF, so that when establishing a data transmission tunnel between the first UPF and the second UPF, Improve the convenience of obtaining tunnel information.
  • the following describes the management method of the protocol data unit PDU session provided by the embodiment of the present disclosure with reference to FIG. 4 .
  • FIG. 4 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 401 Receive an SM policy modification request for the PDU session, and request to trigger the establishment of a first QoS flow in the PDU session, where the PDU session is established for the first terminal.
  • step 401 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • Step 402 in response to the fact that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, insert the first UPF into the PDU session to create the first UPF.
  • N3 interface tunnel between the first AN of the satellite and the first UPF.
  • the SMF may determine that data on the first QoS flow needs to be transmitted between the first satellite serving the first terminal and the second satellite serving the second terminal, and the difference between the first UPF and the second UPF When there is no data transmission tunnel with the same flow ID as the first QoS flow, insert the first UPF associated with the first satellite in the PDU session of the first terminal to create the first AN of the first satellite and the first N3 interface tunnel between UPFs.
  • Step 403 Determine the user plane context of the second terminal from the SMF according to the second identifier of the second terminal.
  • Step 404 Determine a second UPF serving the second terminal according to the user plane context.
  • the SMF when the SMF establishes a data transmission tunnel between the first UPF and the second UPF, the SMF may, according to the association relationship between the second identifier and the user plane context stored in the SMF, communicate with the second terminal of the second terminal.
  • the user plane context associated with the identification eg, SUPI/GPSI
  • the tunnel information corresponding to the user plane context of the second terminal may be determined as the tunnel information of the second UPF, thereby determining the first terminal serving the second terminal.
  • Step 405 Execute the N4 session modification process of the first UPF, and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF to create data between the first UPF and the second UPF The transmission tunnel, wherein the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the SMF may initiate a Namf_Communication_N1N2MessageTransfer request to an access and mobility management function AMF (Access and Mobility Management Function), and the N2 SM Information carried therein includes the tunnel information of the first UPF and the related information of the QoS flow.
  • AMF Access and Mobility Management Function
  • the AMF forwards the tunnel information of the first UPF and the related information of the QoS flow to the on-board AN of the first satellite.
  • a voice data bearer is established between the on-board AN of the first satellite and the first terminal; further, the on-board AN of the first satellite replies to the AMF with an N2 message, which includes the access network tunnel information of the on-board AN of the first satellite .
  • the AMF forwards the access network tunnel information of the on-board AN of the first satellite to the SMF. Further, the SMF executes the N4 interface session update process of the first UPF, so as to update the peer endpoint information in the tunnel information of the first UPF by using the tunnel information of the second UPF, so that the first UPF learns the tunnel information of the second UPF , to establish a data transmission tunnel between the first UPF and the second UPF.
  • Step 406 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • step 406 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second
  • create a data transmission tunnel between the first UPF and the second UPF and further instruct the first UPF to add the QoS flow to the data transmission tunnel.
  • the data is transmitted through the data transmission tunnel.
  • the first The data transmission tunnel between the satellite and the second satellite is used to realize the transmission of specific service data between the first terminal and the second terminal through the data transmission tunnel, so that it is not necessary to send the service data of the satellite terminal to the ground through satellite routing, reducing the It reduces the transmission delay of specific service data, and ensures the reliability of other data transmission and the convenience of UPF tunnel information acquisition.
  • the flow identifier of the QoS flow bearing specific service data may be associated with the data transmission tunnel between the first UPF and the second UPF, so as to pass The data transmission tunnel between the first UPF and the second UPF transmits the offloaded QoS flow.
  • the following describes the management method of the protocol data unit PDU session provided by the embodiment of the present disclosure with reference to FIG. 5 .
  • FIG. 5 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 501 Receive an SM policy modification request for the PDU session, and request to trigger the establishment of a first QoS flow in the PDU session, where the PDU session is established for the first terminal.
  • step 501 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • Step 502 Determine the flow identifier of the first QoS flow.
  • the flow identifier may be the 5QI parameter of the QoS flow.
  • the policy control function PCF Policy Control Function
  • PCF Policy Control Function
  • Step 503 in response to the fact that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, insert the first UPF into the PDU session, and create the first UPF.
  • N3 interface tunnel between the first AN of a satellite and the first UPF.
  • Step 504 Determine the user plane context of the second terminal from the SMF according to the second identifier of the second terminal.
  • Step 505 Determine a second UPF serving the second terminal according to the user plane context.
  • Step 506 Execute the N4 session modification process of the first UPF, and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF to create data between the first UPF and the second UPF The transmission tunnel, wherein the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • steps 503 to 506 may be implemented in any of the various embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described again.
  • Step 507 Establish a transmission tunnel association rule for the first QoS flow, and associate the data transmission tunnel with the flow identifier.
  • a transport tunnel association rule may be established, that is, the flow identifier of the first QoS flow is associated with the tunnel information of the first UPF or the tunnel information of the second UPF.
  • the flow identifier of the second QoS flow can also be determined, and an association relationship between the flow identifier of the second QoS flow and the ground transmission path is established in the transmission tunnel association rule, that is, the flow identifier of the second QoS flow is associated with the terrestrial transmission path.
  • Step 508 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the transmission of the second QoS stream between the first terminal and the second terminal may be implemented directly by using the ground transmission path.
  • step 505 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second
  • receives an SM policy modification request for a PDU session established by a first terminal at the SMF and sending a request to the first UPF of the first satellite and the second
  • create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite
  • a transmission tunnel association rule of the first QoS flow is established to associate the data transmission tunnel with the flow identifier of the first QoS flow, thereby instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the offloading processing can be performed on the QoS flow in the AN configured in the satellite, or the QoS flow can be offloaded in the UPF associated with the satellite. processing to improve the flexibility and applicability of PDU session management.
  • the following describes the management method of the protocol data unit PDU session provided by the embodiment of the present disclosure with reference to FIG. 6 .
  • FIG. 6 is a schematic flowchart of another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 601 Receive an SM policy modification request for a PDU session, and request to trigger the establishment of a first QoS flow in a PDU session, where the PDU session is established for a first terminal.
  • Step 602 Determine the flow identifier of the first QoS flow.
  • steps 601 to 602 may be implemented in any of the various embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described again.
  • Step 603 Determine the target distribution mode.
  • the target offloading method may include on-board AN offload or on-board UPF offload.
  • the on-board AN offloading refers to using the first AN configured in the first satellite to perform offloading processing on the QoS flow.
  • the first QoS flow transmitted between the UPFs is transmitted to the second UPF associated with the second satellite through the data transmission tunnel between the first UPF and the second UPF; correspondingly, the second QoS flow directly passes through the first satellite.
  • the configured first AN is sent to the UPFs of the other transport tunnels and to the third AN configured in the second satellite via the terrestrial UPF, ie the second QoS flow does not have to be transmitted via the first UPF associated with the first satellite.
  • On-satellite UPF offloading refers to sending the QoS stream to the first UPF associated with the first satellite through the first AN configured in the first satellite, and then using the first UPF associated with the first satellite to perform offload processing on the QoS stream, and transmit the first QoS flow in the PDU session through the data transmission tunnel between the first UPF and the second UPF to the second UPF associated with the second satellite, and transmit the second QoS flow through the terrestrial transmission tunnel to the second UPF associated with the second satellite. Satellite associated second UPF.
  • the operator may set the target traffic distribution mode according to actual service requirements. Therefore, the SMF can determine the current target offloading mode according to the setting information of the operator.
  • Step 604 in response to the fact that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, insert the first UPF into the PDU session, and create a N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • Step 605 Determine the user plane context of the second terminal from the SMF according to the second identifier of the second terminal.
  • Step 606 Determine a second UPF serving the second terminal according to the user plane context.
  • Step 607 Execute the N4 session modification process of the first UPF, and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF to create data between the first UPF and the second UPF The transmission tunnel, wherein the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the SMF may deliver the data to the first UPF.
  • Stream forwarding rules so that the uplink data received from the N3 interface tunnel is transmitted through the data transmission tunnel, and the downlink data received from the data transmission tunnel is transmitted through the N3 interface tunnel;
  • the SMF may issue a flow forwarding rule to the first AN, so that the uplink data received from the first AN is transmitted through the data transmission tunnel, and the downlink data received from the data transmission tunnel is transmitted through the first AN.
  • An AN transmits.
  • steps 604 to 607 may be implemented in any of the various embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described again.
  • Step 608 Establish a transmission tunnel association rule for the first QoS flow according to the target traffic distribution mode.
  • the SMF after the SMF determines the target offloading mode, it can send the data required for establishing the transmission tunnel association rule to the first AN configured in the first satellite or the first UPF associated with the first satellite, so that the The first AN configured in the first satellite or the first UPF associated with the first satellite establishes a transmission tunnel association rule.
  • the target offload mode being on-board AN offload
  • it can be sent to the first AN configured in the first satellite
  • the target offload mode being on-board UPF offload
  • it in response to the target offload mode being on-board UPF offload, it can be sent to the first UPF associated with the first satellite .
  • the first AN configured in the first satellite or the first UPF associated with the first satellite may associate the flow identifier of the first QoS flow with the first UPF tunnel information or the first UPF
  • the two UPF tunnel information is associated to associate the first QoS flow with the data transmission tunnel between the first UPF and the second UPF.
  • the flow identifier of the second QoS flow can also be determined, and an association relationship between the flow identifier of the second QoS flow and its ground transmission path is established in the transmission tunnel association rule, that is, the flow identifier of the second QoS flow is associated with the ground transmission path.
  • the tunnel information of the terrestrial UPF is correlated.
  • Step 609 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the transmission of the second QoS flow between the first terminal and the second terminal may be implemented directly by using the ground transmission path.
  • step 609 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second
  • receives an SM policy modification request for a PDU session established by a first terminal at the SMF and sending a request to the first UPF of the first satellite and the second
  • create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite A QoS flow transmission tunnel association rule is established according to the target distribution mode to associate the data transmission tunnel with the flow identifier of the first QoS flow, and further instruct the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • a data transmission tunnel between the first satellite and the second satellite is established, and an appropriate offloading method is used to perform offloading processing on the QoS flow according to the actual service requirements, so as to realize the first channel through the data transmission tunnel.
  • the specific service data transmission between the terminal and the second terminal not only does not need to send the service data of the satellite terminal to the ground through satellite routing, reduces the transmission delay of the specific service data, and ensures the reliability of other data transmissions, and further Improves the flexibility and applicability of PDU session management.
  • FIG. 7 and FIG. 8 respectively specifically describe the process of establishing a data transmission tunnel between the first UPF and the second UPF when the on-board UPF offloads and the on-board AN offload.
  • FIG. 7 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 701 Receive an SM policy modification request for a PDU session, and request to trigger the establishment of a first QoS flow in a PDU session, where the PDU session is established for a first terminal.
  • Step 702 Determine the flow identifier of the first QoS flow.
  • Step 703 Determine the target distribution mode.
  • Step 704 in response to that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, insert the first UPF into the PDU session, and create a N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • Step 705 Determine the user plane context of the second terminal from the SMF according to the second identifier of the second terminal.
  • Step 706 Determine a second UPF serving the second terminal according to the user plane context.
  • Step 707 Execute the N4 session modification process of the first UPF, and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF to create data between the first UPF and the second UPF The transmission tunnel, wherein the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • steps 701 to 707 may be implemented in any one of the embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described again.
  • Step 708 in response to the target offload mode being on-board UPF offload, send the N9 tunnel information of the ground UPF and the flow identifier of the first QoS flow to the first UPF, and establish a transmission tunnel association of the first QoS flow in the first UPF rule.
  • the SMF may initiate an N4 session establishment process to the first UPF, which includes the packet detection rule PDR (Packet Detection Rule) and the forwarding action rule FAR (Forwarding Action Rules) related to the first QoS flow, etc., that is,
  • the N9 tunnel information of the terrestrial UPF and the flow identifier of the first QoS flow may be sent to the first UPF, so that the first UPF establishes a transmission tunnel association rule of the first QoS flow.
  • the SMF may simultaneously send the N9 tunnel information of the terrestrial UPF and the flow identifier of the second QoS flow to the first UPF during the N4 session establishment process, so that the first UPF establishes the second QoS flow. transport tunnel association rules.
  • the first UPF may associate the flow identifier of the first QoS flow with the N9 tunnel information of the terrestrial UPF to establish the first UPF.
  • a transport tunnel association rule for a QoS flow may be associated.
  • the first UPF can associate the flow identifier of the second QoS flow with the N9 tunnel information of the terrestrial UPF to establish the flow identifier of the second QoS flow.
  • Transport tunnel association rules At this time, both the first QoS flow and the second QoS flow are associated with the terrestrial transmission path.
  • Step 709 Using the tunnel information of the second UPF, update the N9 tunnel information of the terrestrial UPF corresponding to the flow identifier of the first QoS flow in the transport tunnel association rule.
  • the transmission tunnel association rule associates the flow identifier of the first QoS flow with the N9 tunnel information of the terrestrial UPF, that is, the first QoS flow is transmitted through the terrestrial transmission path, therefore, in the first UPF
  • the transmission tunnel association rule of the first QoS flow may be updated, that is, the flow identifier of the first QoS flow is associated with the tunnel information of the second UPF, so that the first UPF can communicate with the second UPF through the first UPF.
  • the data transmission tunnel between the UPFs transmits the first QoS flow.
  • Step 710 Instruct the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the updated transport tunnel association rule already includes the association relationship between the flow identifier of the first QoS flow and the tunnel information of the second UPF, the relationship between the first UPF and the second UPF is After the data transmission tunnel is established, the first UPF can use the data transmission tunnel between the first UPF and the second UPF to realize the Transmission of a first QoS flow between a terminal and a second terminal.
  • step 710 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second When there is no data transmission tunnel between the UPFs that has the same flow identifier as the flow ID of the first QoS flow established in the PDU session, create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite, And when the target offloading mode is onboard UPF offloading, a transmission tunnel association rule of the first QoS flow is established in the first UPF to instruct the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • a data transmission tunnel between the first satellite and the second satellite is established, and an appropriate distribution method is used to distribute the QoS data flow according to the actual service requirements, so as to realize the first and second transmission through the data transmission tunnel.
  • the transmission of specific service data between a terminal and a second terminal not only eliminates the need to send the service data of the satellite terminal to the ground through satellite routing, reduces the transmission delay of specific service data, and ensures the reliability of other data transmissions, but also The flexibility and applicability of PDU session management are further improved.
  • FIG. 8 specifically describes the establishment process of the data transmission tunnel between the first UPF and the second UPF when the on-board AN is offloaded.
  • FIG. 8 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 801 Receive an SM policy modification request for a PDU session, and request to trigger the establishment of a first QoS flow in a PDU session, where the PDU session is established for a first terminal.
  • Step 802 Determine the flow identifier of the first QoS flow.
  • Step 803 Determine the target distribution mode.
  • Step 804 in response to that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, insert the first UPF into the PDU session, and create a N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • Step 805 Determine the user plane context of the second terminal from the SMF according to the second identifier of the second terminal.
  • Step 806 Determine a second UPF serving the second terminal according to the user plane context.
  • Step 807 Execute the N4 session modification process of the first UPF, and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF to create data between the first UPF and the second UPF The transmission tunnel, wherein the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • steps 801 to 807 may be implemented in any of the various embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described again.
  • Step 808 in response to the target offload mode being on-board AN offload, send the N3 tunnel information of the first UPF and the flow identifier of the first QoS flow to the first AN, and establish a transmission tunnel of the first QoS flow in the first AN Association rules.
  • the SMF may initiate an N4 session establishment process to the first UPF, including the PDR and FAR related to the first QoS flow, that is, the flow identifier of the first QoS flow may be sent to the first UPF to The first UPF is caused to allocate the tunnel information of the first UPF.
  • the SMF may initiate a Namf_Communication_N1N2MessageTransfer request to the AMF, where the carried N2SM Information includes the tunnel information of the first UPF and the related information of the first QoS flow.
  • the AMF forwards the tunnel information of the first UPF and the related information of the first QoS flow to the first AN of the first satellite, so that the first AN of the first satellite establishes a transmission tunnel association rule of the first QoS flow, namely, the first AN of the first satellite.
  • the flow identifier of a QoS flow is associated with the tunnel information of the first UPF.
  • Step 809 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the association rule of the transmission tunnel already includes the association relationship between the flow identifier of the first QoS flow and the tunnel information of the first UPF, the data transmission tunnel between the first UPF and the second UPF has After the establishment, the first AN can use the data transmission tunnel between the first UPF and the second UPF to realize the connection between the first terminal and the Transmission of the first QoS flow between the second terminals.
  • step 809 may be implemented in any of the various embodiments of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second When there is no data transmission tunnel between the UPFs that has the same flow identifier as the flow ID of the first QoS flow established in the PDU session, create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite, And when the target offloading mode is on-board AN offloading, a transmission tunnel association rule of the first QoS flow is established in the first AN to associate the data transmission tunnel with the flow identifier of the first QoS flow to instruct the first AN to The data of the first QoS flow is transmitted through the data transmission tunnel.
  • a data transmission tunnel between the first satellite and the second satellite is established, and an appropriate distribution method is used to distribute the QoS data flow according to the actual service requirements, so as to realize the first and second transmission through the data transmission tunnel.
  • the transmission of specific service data between a terminal and a second terminal not only eliminates the need to send the service data of the satellite terminal to the ground through satellite routing, reduces the transmission delay of specific service data, and ensures the reliability of other data transmissions, but also The flexibility and applicability of PDU session management are further improved.
  • the AN accessed by the first terminal may also undergo unilateral handover, so that the data after the AN handover needs to be re-established Transmission tunnel to improve the stability of the data transmission tunnel.
  • the following describes the management method of the protocol data unit PDU session provided by the embodiment of the present disclosure with reference to FIG. 9 .
  • FIG. 9 is a schematic flowchart of still another protocol data unit PDU session management method provided by an embodiment of the present disclosure.
  • the management method of the protocol data unit PDU session includes the following steps:
  • Step 901 Receive an SM policy modification request for a PDU session, and request to trigger the establishment of a new first QoS flow in the PDU session, where the PDU session is established for the first terminal.
  • Step 902 in response to the fact that the first UPF of the first satellite and the second UPF of the second satellite do not have the same data transmission tunnel as the flow identifier of the first QoS flow, create a data transmission tunnel located between the first UPF and the second UPF.
  • the first satellite is the satellite serving the first terminal
  • the second satellite is the satellite serving the second terminal
  • the second terminal is determined according to the application layer information.
  • Step 903 instructing the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • Step 904 transmit the data of the second QoS flow of the PDU session through the data transmission tunnel located between the first AN of the first satellite and the ground UPF.
  • Step 905 in response to determining that the first terminal is handed over, select a third UPF for the PDU session, where the third UPF is the UPF on the third satellite serving the first terminal after the handover.
  • steps 901 to 905 may be implemented in any one of the embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be described again.
  • Step 906 Execute the N4 session modification process of the second UPF, and update the peer endpoint information in the tunnel information of the second UPF according to the tunnel information of the third UPF, so as to create the described connection between the second UPF and the third UPF.
  • the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the data transmission tunnel may be updated according to the tunnel information of the third UPF of the third satellite
  • the peer endpoint information in the tunnel information of the second UPF may be updated according to the tunnel information of the third UPF of the third satellite.
  • the first terminal may initiate an N4 interface session modification process to the second UPF, so as to update the peer endpoint information included in the tunnel information of the second UPF according to the tunnel information of the third UPF, to create The data transmission tunnel between the second UPF and the third UPF.
  • Step 907 control the second UPF to send a target message to the first AN in the first satellite, and the target message carries the flow identifier of the first QoS flow, so that the first AN in the first satellite sends the second AN in the third satellite to the second AN in the third satellite.
  • a target message is forwarded, where the target message is used to instruct the first AN to stop sending the first QoS flow to the second UPF.
  • the target message may be an End Marker message sent by the second UPF to the first AN of the first satellite
  • the second UPF may be controlled to send a target message carrying the flow identifier of the first QoS flow to the first AN in the first satellite , to notify the first AN not to send the first QoS flow to it; and control the first AN in the first satellite to forward the target message to the second AN in the third satellite to release the source path (that is, the previously established first AN data transfer tunnel between a satellite and a second satellite).
  • the duration of the N4 session modification procedure of the second UPF may be timed, so as to determine according to the obtained timing time. Is it possible to free the source path.
  • a time threshold may be preset to control the second UPF to send a target message to the first AN in the first satellite when the timing time reaches the time threshold, so as to notify the first AN that it will not send a message to the first AN. It sends the first QoS flow; and controls the first AN in the first satellite to forward the target message to the second AN in the third satellite to release the source path.
  • the SMF may also send the N4 interface session modification procedure to the ground UPF, carry the tunnel information of the third UPF to the ground UPF, and inform the ground UPF of the first AN
  • a handover occurs to trigger the terrestrial UPF to send a second target message to the first AN in the first satellite.
  • the second target message carries the flow identifier of the second QoS flow, and notifies the first AN not to send the second QoS flow to it. and controlling the first AN in the first satellite to forward the second target message to the second AN in the third satellite to notify the second AN that the second QoS flow will not be sent through the first AN subsequently.
  • the second target message may be an End Marker message sent by the ground UPF to the first AN.
  • the method for managing a PDU session of a protocol data unit provided by an embodiment of the present disclosure, by receiving an SM policy modification request for a PDU session established by a first terminal at the SMF, and sending a request to the first UPF of the first satellite and the second When there is no data transmission tunnel between the UPFs that has the same flow identifier as the flow ID of the first QoS flow established in the PDU session, create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite, Further instruct the first UPF to transmit the data of the first QoS flow through the data transmission tunnel, and to transmit the second QoS flow to the second satellite through the data transmission tunnel between the first AN of the first satellite and the ground UPF, and then in When the AN accessed by the first terminal is switched, the data transmission tunnel is updated.
  • a data transmission tunnel between the first satellite and the second satellite is established, and the data transmission tunnel is updated when the AN accessed by the first terminal is switched, and the QoS flow is adjusted according to actual service requirements.
  • the present disclosure also proposes a device.
  • FIG. 10 is a schematic structural diagram of an apparatus provided by an embodiment of the present disclosure.
  • the apparatus includes: a transceiver 1000 , a processor 1010 , and a memory 1020 .
  • the memory 1020 is used to store computer programs; the transceiver 1000 is used to send and receive data under the control of the processor 1010; the processor 1010 is used to read the computer program in the memory 1020 and perform the following operations:
  • the first satellite is a satellite serving the first terminal
  • the second satellite is a satellite serving the second terminal
  • the second terminal is determined according to application layer information
  • the first UPF is instructed to transmit the data on the first QoS flow through the data transmission tunnel.
  • the transceiver 1000 is used for receiving and transmitting data under the control of the processor 1010 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 1010 and various circuits of memory represented by memory 1020 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1000 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 1010 is responsible for managing the bus architecture and general processing, and the memory 1020 may store data used by the processor 1010 in performing operations.
  • the processor 1010 can be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (CPLD). Logic Device), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor can also use a multi-core architecture.
  • processor 1010 is further configured to perform the following operations:
  • the data of the second QoS flow of the PDU session is transmitted through a data transmission tunnel between the first AN of the first satellite and the terrestrial UPF.
  • the method further includes:
  • the third UPF is a UPF on a third satellite serving the first terminal after the handover;
  • Inserting the third UPF for the PDU session creates a data transmission tunnel between the second UPF and the third UPF.
  • the above further includes:
  • the data of the first QoS flow is transmitted through the existing data transmission tunnel.
  • the method before creating the data transmission tunnel between the first UPF and the second UPF, the method further includes:
  • a first UPF is inserted in the PDU session, creating an N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • the above-mentioned creating a data transmission tunnel between the first UPF and the second UPF includes:
  • Execute the N4 session modification process of the first UPF and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF to create a data transmission tunnel between the first UPF and the second UPF.
  • the method before creating the data transmission tunnel between the first UPF and the second UPF, the method further includes:
  • a transmission tunnel association rule for the first QoS flow is established, and the data transmission tunnel is associated with the flow identifier.
  • processor 1010 is further configured to perform the following operations:
  • a transmission tunnel association rule for the first QoS flow is established according to the target offloading manner.
  • the above-mentioned target offloading manner is on-board AN offload or on-board UPF offload.
  • the method further includes:
  • the flow forwarding rule is issued to the first UPF, so that the uplink data received from the N3 interface tunnel is transmitted through the data transmission tunnel, and the downlink data received from the data transmission tunnel is transmitted through the N3 interface tunnel for transmission;
  • a traffic forwarding rule is issued to the first AN, so that the uplink data received from the first AN is transmitted through the data transmission tunnel, and the downlink data received from the data transmission tunnel is transmitted through the first AN to transmit.
  • the above-mentioned establishing a transmission tunnel association rule for the first QoS flow according to the target offloading mode includes:
  • the N9 tunnel information of the terrestrial UPF and the flow identifier of the first QoS flow are sent to the first UPF, and a transmission tunnel association rule of the first QoS flow is established in the first UPF.
  • the method further includes:
  • the N9 tunnel information of the terrestrial UPF corresponding to the flow identifier of the first QoS flow in the transport tunnel association rule is updated.
  • the above-mentioned creating a data transmission tunnel between the second UPF and the third UPF includes:
  • Execute the N4 session modification procedure of the second UPF and update the peer endpoint information in the tunnel information of the second UPF according to the tunnel information of the third UPF, so as to create a data transmission tunnel between the second UPF and the third UPF.
  • processor 1010 is further configured to perform the following operations:
  • the present disclosure also provides an apparatus for managing a PDU session of a protocol data unit.
  • FIG. 11 is a schematic structural diagram of an apparatus for managing a protocol data unit (PDU) session according to an embodiment of the present disclosure.
  • PDU protocol data unit
  • the management apparatus 1100 of the protocol data unit PDU session includes:
  • a receiving unit 1101 configured to receive an SM policy modification request for a PDU session, and request to trigger the establishment of a first QoS flow in the PDU session, where the PDU session is established for the first terminal;
  • the first creation unit 1102 is configured to create a data transmission tunnel between the first UPF of the first satellite and the second UPF of the second satellite that has the same data transmission tunnel as the flow identifier of the first QoS flow, and create a channel between the first UPF and the second UPF of the second satellite.
  • the first satellite is the satellite serving the first terminal
  • the second satellite is the satellite serving the second terminal
  • the second terminal is determined according to application layer information
  • the first transmission unit 1103 is configured to instruct the first UPF to transmit the data of the first QoS flow through the data transmission tunnel.
  • the above-mentioned protocol data unit PDU session management apparatus 1100 further includes:
  • the second transmission unit is configured to transmit the data of the second QoS flow of the PDU session through the data transmission tunnel located between the first AN of the first satellite and the ground UPF.
  • the above-mentioned apparatus 1100 for managing the PDU session of the protocol data unit further includes:
  • a selection unit configured to select a third UPF for the PDU session in response to determining that the first terminal is handed over, where the third UPF is a UPF on a third satellite serving the first terminal after the handover;
  • the second creation unit is configured to insert a third UPF for the PDU session, and create a data transmission tunnel between the second UPF and the third UPF.
  • the above-mentioned protocol data unit PDU session management apparatus 1100 further includes:
  • a third transmission unit configured to transmit the data of the first QoS flow through the existing data transmission tunnel when a data transmission tunnel with the same flow identifier as the flow identification of the first QoS flow already exists between the first UPF and the second UPF .
  • the apparatus 1100 for managing the protocol data unit PDU session further includes:
  • the first inserting unit is configured to insert the first UPF in the PDU session, and create an N3 interface tunnel between the first AN of the first satellite and the first UPF.
  • the above-mentioned first creation unit 1103 includes:
  • a first determining subunit configured to determine the user plane context of the second terminal from the SMF according to the second identifier of the second terminal;
  • a second determining subunit for determining a second UPF serving the second terminal according to the user plane context
  • the first execution subunit is configured to execute the N4 session modification process of the first UPF, and update the peer endpoint information in the tunnel information of the first UPF according to the tunnel information of the second UPF, so as to create the first UPF and the second UPF.
  • the peer endpoint information is tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the above-mentioned apparatus 1100 for managing the PDU session of the protocol data unit further includes:
  • a second determining unit configured to determine the flow identifier of the first QoS flow
  • the first establishing unit is configured to establish a transmission tunnel association rule of the first QoS flow, and associate the data transmission tunnel with the flow identifier.
  • the above-mentioned protocol data unit PDU session management apparatus 1100 further includes:
  • a third determining unit configured to determine the target distribution mode
  • the second establishing unit is configured to establish a transmission tunnel association rule of the first QoS flow according to the target offloading manner.
  • the above-mentioned target offloading manner is on-board AN offload or on-board UPF offload.
  • the apparatus 1100 for managing the protocol data unit PDU session further includes:
  • the first issuing unit is configured to issue a flow forwarding rule to the first UPF when the target offloading mode is on-board UPF offloading, so that the uplink data received from the N3 interface tunnel is transmitted through the data transmission tunnel, and the data is transmitted from the data transmission tunnel.
  • the downlink data received by the tunnel is transmitted through the N3 interface tunnel;
  • the second distribution unit is configured to distribute the flow forwarding rule to the first AN when the target distribution mode is the on-board AN distribution, so that the uplink data received from the first AN is transmitted through the data transmission tunnel, and the data transmission tunnel is transmitted from the data transmission tunnel.
  • the received downlink data is transmitted through the first AN.
  • the above-mentioned second establishment unit in response to the above-mentioned target offloading method being on-board AN offloading, includes:
  • a first sending subunit configured to send the N3 tunnel information of the first UPF and the flow identifier of the first QoS flow to the first AN, and establish a transmission tunnel association rule of the first QoS flow in the first AN;
  • the above-mentioned second establishment unit includes:
  • the second sending subunit is configured to send the N9 tunnel information of the terrestrial UPF and the flow identifier of the first QoS flow to the first UPF, and establish a transmission tunnel association rule of the first QoS flow in the first UPF.
  • the above-mentioned second establishment unit further includes:
  • the updating subunit is configured to use the tunnel information of the second UPF to update the N9 tunnel information of the terrestrial UPF corresponding to the flow identifier of the first QoS flow in the transport tunnel association rule.
  • the above-mentioned second creation unit includes:
  • the second execution subunit is configured to execute the N4 session modification process of the second UPF, and update the peer endpoint information in the tunnel information of the second UPF according to the tunnel information of the third UPF, and create a connection between the second UPF and the third UPF.
  • the data transmission tunnel between the two, wherein the peer endpoint information is the tunnel information related to the peer endpoint connected to the data transmission tunnel.
  • the apparatus 1100 for managing the protocol data unit PDU session further includes:
  • a control unit configured to control the second UPF of the satellite to send a target message to the first AN in the first satellite, where the target message carries the flow identifier of the first QoS flow, so that the first AN in the first satellite sends a message to the third satellite
  • the second AN forwards the target message, where the target message is used to instruct the first AN to stop sending the first QoS flow to the second UPF.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure essentially or the parts that contribute to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory ROM (Read-Only Memory), random access memory RAM (Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
  • the present disclosure also proposes a processor-readable storage medium.
  • the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the protocol data unit PDU session management method described in the embodiments of the present disclosure.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk, etc.), optical memory, and semiconductor memory, Solid state drives, etc.
  • magnetic memory eg, floppy disk, hard disk, magnetic tape, magneto-optical disk, etc.
  • optical memory e.g., compact disc, DVD, etc.
  • semiconductor memory e.g, solid state drives, etc.
  • the present disclosure also provides a computer program product, when instructions in the computer program product are executed by a processor, a method for managing a protocol data unit PDU session is executed.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开提出一种协议数据单元PDU会话的管理方法和装置,属于移动通信技术领域。其中,该方法包括:接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立;响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的;指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。由此,通过这种协议数据单元PDU会话的管理方法,无需通过卫星路由将卫星终端的业务数据发送至地面,降低了传输时延。

Description

协议数据单元PDU会话的管理方法和装置
相关申请的交叉引用
本公开基于申请号为202011407142.1、申请日为2020年12月04日的中国专利申请,和申请号为202011540381.4、申请日为2020年12月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及移动通信技术领域,尤其涉及一种协议数据单元PDU(Protocol Data Unit)会话的管理方法和装置。
背景技术
当前第五代移动通信5G(5th Generation)核心网系统,包括用户面功能UPF(User Plane Function)均部署在地面。当卫星终端通过星上接入网AN(Access Network)接入5G核心网实现互访时,用户业务数据流需要从卫星路由发送至地面UPF,以实现卫星终端之间的通信。
然而,将用户业务数据流从卫星路由发送至地面UPF,以实现卫星终端之间的通信时,由于卫星需要将用户业务数据发送至地面UPF,从而导致传输时延较大。
发明内容
本公开提出的协议数据单元PDU会话的管理方法、装置及存储介质,用于解决相关技术中,通过将用户业务数据流从卫星路由发送至地面UPF,以实现卫星终端之间的通信时,传输时延较大的问题。
本公开一方面实施例提出的协议数据单元PDU会话的管理方法,包括:接收针对PDU会话的会话管理SM(Session Management)策略修改请求,所述请求触发在所述PDU会话中建立第一服务质量QoS(Quality of Service)流,其中,所述PDU会话为第一终端建立;响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和位于第二UPF之间的数据传输隧道,所述第一卫星是服务所述第一终端的卫星,所述第二卫星是服务第二终端的卫星,所述第二终端是根据应用层信息确定的;指示第一UPF将所述第一QoS流的数据通过所述数据传输隧道进行传输。
在一些实施例中,在本公开第一方面实施例一种可能的实现方式中,所述方法,还包括:
将所述PDU会话的第二QoS流的数据通过位于所述第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
在一些实施例中,在本公开第一方面实施例另一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道后,还包括:
响应于确定所述第一终端发生切换,为所述PDU会话选择第三UPF,其中,所述第三UPF为切换后服务所述第一终端的第三卫星上的UPF;
为所述PDU会话插入所述第三UPF,创建所述第二UPF和所述第三UPF之间的数据传输隧道。
在一些实施例中,在本公开第一方面实施例再一种可能的实现方式中,在所述接收针对PDU会话的SM策略修改请求之后,还包括:
响应于所述第一UPF和所述第二UPF之间已存在与所述第一QoS流的流标识相同的数据传输隧道,将所述第一QoS流的数据通过已存在的数据传输隧道进行传输;
其中,所述已存在的数据传输隧道进行传输,是在接收到PDU会话建立请求,且确定存在与所述第一终端的第一标识对应的第二终端的第二标识之后创建的,所述第二终端是所述第二标识所属的终端。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,在所述接收针对PDU会话的SM策略修改请求之前,还包括:
接收所述PDU会话建立请求,其中,所述PDU会话由所述第一终端建立;
所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
响应于存在与所述第一终端的第一标识对应的第二终端的第二标识,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道前,还包括:
在所述PDU会话中插入所述第一UPF,创建所述第一卫星的第一AN与所述第一UPF之间的N3接口隧道。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
根据所述第二终端的第二标识,从所述SMF中确定所述第二终端的用户面上下文;
根据所述用户面上下文确定为所述第二终端服务的第二UPF;
执行所述第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新所述第一UPF的隧道信息之中的对端端点信息,以创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在一些实施例中,在本公开第一方面实施例另一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之前,还包括:
确定所述第一QoS流的流标识;
建立所述第一QoS流的传输隧道关联规则,并将所述数据传输隧道与所述流标识进行关联。
在一些实施例中,在本公开第一方面实施例再一种可能的实现方式中,所述方法,还包括:
确定目标分流方式;
根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,所述目标分流方式是星上AN分流或星上UPF分流。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之后,还包括:
响应于所述目标分流方式是所述星上UPF分流,向所述第一UPF下发流转发规则,使得从所述N3接口隧道上接收的上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述N3接口隧道进行传输;
响应于所述目标分流方式是所述星上AN分流,向所述第一AN下发流转发规则,使得从第一AN接收的所述上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述第一AN进行传输。
在一些实施例中,在本公开第一方面实施例另一种可能的实现方式中,其中,响应于所述目标分流方式是所述星上AN分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
将所述第一UPF的N3隧道信息、所述第一QoS流的流标识发送至第一AN,并在所述第一AN中建立所述第一QoS流的传输隧道关联规则;
响应于所述目标分流方式是所述星上UPF分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
将地面UPF的N9隧道信息、所述第一QoS流的流标识发送至所述第一UPF,并在所述第一UPF中,建立所述第一QoS流的传输隧道关联规则。
在一些实施例中,在本公开第一方面实施例再一种可能的实现方式中,所述在所述第一UPF中建立所述第一QoS流的传输隧道关联规则之后,还包括:
采用所述第二UPF的隧道信息,更新所述传输隧道关联规则中与所述第一QoS流的流标识对应的地面UPF的N9隧道信息。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,所述创建所述第二UPF和所 述第三UPF之间的数据传输隧道,包括:
执行所述第二UPF的N4会话修改流程,并根据所述第三UPF的隧道信息,更新所述第二UPF的隧道信息之中的对端端点信息,以创建所述第二UPF和所述第三UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在一些实施例中,在本公开第一方面实施例又一种可能的实现方式中,所述方法,还包括:
控制所述第二UPF向所述第一卫星中的第一AN发送目标消息,所述目标消息中携带所述QoS流的流标识,使得所述第一卫星中的所述第一AN向所述第三卫星中的第二AN转发所述目标消息,所述目标消息用于指示所述第一AN停止向所述第二UPF发送所述第一QoS流。
本公开另一方面实施例提出的装置,包括:存储器,收发机,处理器;存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收针对PDU会话的SM策略修改请求,所述请求触发在所述PDU会话中建立第一QoS流,其中,所述PDU会话为第一终端建立;
响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,则创建位于第一UPF和位于第二UPF之间的数据传输隧道,所述第一卫星是服务所述第一终端的卫星,所述第二卫星是服务第二终端的卫星,所述第二终端是根据应用层信息确定的;
指示第一UPF将所述第一QoS流的数据通过所述数据传输隧道进行传输。
在一些实施例中,在本公开第二方面实施例一种可能的实现方式中,所述处理器还用于执行以下操作:
将所述PDU会话的第二QoS流的数据通过位于所述第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
在一些实施例中,在本公开第二方面实施例另一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道后,还包括:
响应于确定所述第一终端发生切换,为所述PDU会话选择第三UPF,其中,所述第三UPF为切换后服务所述第一终端的第三卫星上的UPF;
为所述PDU会话插入所述第三UPF,创建所述第二UPF和所述第三UPF之间的数据传输隧道。
在一些实施例中,在本公开第二方面实施例再一种可能的实现方式中,在所述接收针对PDU会话的SM策略修改请求之后,还包括:
响应于所述第一UPF和所述第二UPF之间已存在与所述第一QoS流的流标识相同的数据传输隧道,将所述第一QoS流的数据通过已存在的数据传输隧道进行传输;
其中,所述已存在的数据传输隧道进行传输,是在接收到PDU会话建立请求,且确定存在与所述第一终端的第一标识对应的第二终端的第二标识之后创建的,所述第二终端是所述第二标识所属的终端。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,在所述接收针对PDU会话的SM策略修改请求之前,还包括:
接收所述PDU会话建立请求,其中,所述PDU会话由所述第一终端建立;
所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
响应于存在与所述第一终端的第一标识对应的第二终端的第二标识,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道前,还包括:
在所述PDU会话中插入所述第一UPF,创建所述第一卫星的第一AN与所述第一UPF之间的N3接口隧道。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
根据所述第二终端的第二标识,从所述SMF中确定所述第二终端的用户面上下文;
根据所述用户面上下文确定为所述第二终端服务的第二UPF;
执行所述第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新所述第一UPF的隧道信息之中的对端端点信息,以创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在一些实施例中,在本公开第二方面实施例另一种可能的实现方式中,在创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之前,还包括:
确定所述第一QoS流的流标识;
建立所述第一QoS流的传输隧道关联规则,并将所述数据传输隧道与所述流标识进行关联。
在一些实施例中,在本公开第二方面实施例再一种可能的实现方式中,还包括:
确定目标分流方式;
根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,所述目标分流方式是星上AN分流或星上UPF分流。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之后,还包括:
响应于所述目标分流方式是所述星上UPF分流,向所述第一UPF下发流转发规则,使得从所述N3接口隧道上接收的上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述N3接口隧道进行传输;
响应于所述目标分流方式是所述星上AN分流,向所述第一AN下发流转发规则,使得从第一AN接收的所述上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述第一AN进行传输。
在一些实施例中,在本公开第二方面实施例另一种可能的实现方式中,其中,响应于所述目标分流方式是所述星上AN分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
将所述第一UPF的N3隧道信息、所述第一QoS流的流标识发送至第一AN,并在所述第一AN中建立所述第一QoS流的传输隧道关联规则;
响应于所述目标分流方式是所述星上UPF分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
将地面UPF的N9隧道信息、所述第一QoS流的流标识发送至所述第一UPF,并在所述第一UPF中建立所述第一QoS流的传输隧道关联规则。
在一些实施例中,在本公开第二方面实施例再一种可能的实现方式中,所述在所述第一UPF中建立所述第一QoS流的传输隧道关联规则之后,还包括:
采用所述第二UPF的隧道信息,更新所述传输隧道关联规则中与所述第一QoS流的流标识对应的地面UPF的N9隧道信息。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,所述创建所述第二UPF和所述第三UPF之间的数据传输隧道,包括:
执行所述第二UPF的N4会话修改流程,并根据所述第三UPF的隧道信息更新所述第二UPF的隧道信息之中的对端端点信息,以创建所述第二UPF和所述第三UPF之间的所述数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在一些实施例中,在本公开第二方面实施例又一种可能的实现方式中,所述处理器还用于执行以下操作:
控制所述第二UPF向所述第一卫星中的第一AN发送目标消息,所述目标消息中携带所述第一QoS流的流标识,使得所述第一卫星中的所述第一AN向所述第三卫星中的第二AN转发所述目标消息,所述目标消息用于指示所述第一AN停止向所述第二UPF发送所述第一QoS流。
本公开再一方面实施例提出的协议数据单元PDU会话的管理装置,包括:接收单元,用于接收针对PDU会话的SM策略修改请求,所述请求触发在所述PDU会话中建立第一QoS流,其中,所述PDU会话为第一终端建立;第一创建单元,用于在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所 述第一QoS流的流标识相同的数据传输隧道时,创建位于第一UPF和第二UPF之间的数据传输隧道,所述第一卫星是服务所述第一终端的卫星,所述第二卫星是服务第二终端的卫星,所述第二终端是根据应用层信息确定的;第一传输单元,用于指示第一UPF将所述第一QoS流的数据通过所述数据传输隧道进行传输。
本公开又一方面实施例提出的处理器可读存储介质,其上存储有计算机程序,其中,所述计算机程序用于使所述处理器执行如前所述的协议数据单元PDU会话的管理方法。
本公开实施例提供的协议数据单元PDU会话的管理方法、装置及处理器可读存储介质,通过在会话管理功能SMF(Session Management Function)网元接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一UPF和第二UPF之间的数据传输隧道,进而指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,以通过数据传输隧道实现第一终端与第二终端之间的数据传输,从而无需通过卫星路由将卫星终端的业务数据发送至地面,降低了传输时延。
本公开又一方面实施例提出的计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现本公开上述实施例提出的协议数据单元PDU会话的管理方法。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种协议数据单元PDU会话的管理方法的流程示意图。
图2为本公开实施例所提供的另一种协议数据单元PDU会话的管理方法的流程示意图。
图3为本公开实施例所提供的再一种协议数据单元PDU会话的管理方法的流程示意图。
图4为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
图5为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
图6为本公开实施例所提供的另一种协议数据单元PDU会话的管理方法的流程示意图。
图7为本公开实施例所提供的再一种协议数据单元PDU会话的管理方法的流程示意图。
图8为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
图9为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
图10为本公开实施例提供的装置的结构示意图。
图11为本公开实施例提供的一种协议数据单元PDU会话的管理装置的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了协议数据单元PDU会话的管理方法及装置,用以针对相关技术中,通过将用户业务数据流从卫星路由发送至地面UPF,以实现卫星终端之间的通信时,传输时延较大的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过响应于SMF接收到针对第一终端建 立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,进而指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,以通过数据传输隧道实现第一终端与第二终端之间的数据传输,从而无需通过卫星路由将卫星终端的业务数据发送至地面,降低了传输时延。
下面参考附图对本公开提供的协议数据单元PDU会话的管理方法、装置、电子设备、存储介质及计算机程序进行详细描述。
图1为本公开实施例所提供的一种协议数据单元PDU会话的管理方法的流程示意图。
如图1所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤101,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
需要说明的是,当前5G核心网系统,包括UPF均部署在地面。当卫星终端通过星上AN接入5G核心网实现互访时,用户业务数据流需要从卫星路由发送至地面UPF,以实现卫星终端之间的通信。然而,由于卫星需要将用户业务数据发送至地面UPF,从而导致传输时延较大。因此,在本公开实施例中,可以通过星上UPF建立卫星之间的数据传输隧道,从而使得卫星之间可以不必通过地面UPF即可实现直接通信,以降低传输时延。以下以将本公开实施例的协议数据单元PDU会话的管理方法应用在IP多媒体系统IMS(IP Multimedia Subsystem)业务中为例,进行具体说明。
作为一种可能的实现方式,可以通过5G核心网中的SMF或其他网元实现第一卫星与第二卫星之间的数据传输隧道的建立,本公开实施例对此不做限定。在本公开实施例中以SMF为例进行具体说明,其中,SMF是5G基于服务架构的一个功能单元,主要负责与分离的数据面交互,创建、更新和删除PDU会话,并管理与UPF的会话环境。
在本公开实施例中,第一终端可以在需要时发起IMS会话建立过程,即发送会话初始协议邀请SIP Invite(Session initialization Protocol)到代理呼叫会话控制P-CSCF(Proxy Call Session Control Function),该SIP Invite消息通过IMS网络、地面UPF传送给第二终端。P-CSCF接收到第二终端回复的SIP 183Progress消息后,向策略控制功能PCF(Policy Control function)发送AA请求消息AAR(AA-Request),PCF向SMF发起SM策略修改过程,将IMS语音相关的QoS策略等发送给SMF。
SMF在获取到PCF发起的SM策略修改过程时,确定接收到针对PDU会话的SM策略修改请求,并在PDU会话中建立第一QoS流。
步骤102,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的。
其中,第二终端,是指当前与第一卫星进行数据传输的终端。比如,第一终端为主叫卫星终端,则第二终端为被叫卫星终端。
其中,流标识,可以是QoS流的5QI参数,其中,5QI是一个标量,用于指向一个5G QoS特性。
在本公开实施例中,PCF向SMF发起的SM策略修改过程时,可以将IMS语音相关的QoS策略等发送给SMF,以触发SMF建立第一终端侧5QI=1的第一QoS流,即确定第一QoS流的流标识为1。
在本公开实施例中,SMF可以通过DNN或应用层信息确定第一QoS流的数据需在服务第一终端的第一卫星和服务第二终端的第二卫星之间传输。比如,在IMS业务中,可以在第一QoS流中的数据为语音数据时,确定第一QoS流的数据需在服务第一卫星和第二卫星之间传输。之后在第一UPF与第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道时,建立第一卫星与第二卫星之间的数据传输隧道。
作为一种可能的实现方式,在第一终端建立数据传输隧道之前,与第一终端进行数据传输的第二终端可能已经触发了数据传输隧道的建立过程,因此在根据针对第一终端的PDU会话的SM策略修改请求建立数据传输隧道之前,还可以首先判断是否已经建立了第一UPF与第二UPF之间的数据传输隧道。即在本公开实施例一种可能的实现方式中,上述步骤101之后,还可以包括:
响应于第一UPF和第二UPF之间已存在与第一QoS流的流标识相同的数据传输隧道,将第一QoS 流的数据通过已存在的数据传输隧道进行传输。
其中,已存在的数据传输隧道进行传输,是在接收到PDU会话建立请求,且确定存在与第一终端的第一标识对应的第二终端的第二标识之后创建的,第二终端是所述第二标识所属的终端。
在本公开实施例中,由于在第一UPF与第二UPF之间的数据传输隧道建立之后,会将需要传输的QoS流的流标识与该数据传输隧道关联,因此若SMF确定第一UPF与第二UPF之间已经存在流标识与在第一终端的PDU会话中建立的第一QoS流的流标识相同的数据传输隧道,可以确定第二终端已经在第一终端之前发起了建立传输第一QoS流的数据传输隧道的过程,从而可以直接利用已建立的第一UPF与第二UPF之间的数据传输隧道传输第一QoS流上的数据,而无需重新建立第一UPF与第二UPF之间的数据传输隧道,并且可以不继续执行本公开实施例中的后续步骤。
在本公开实施例中,主被叫用户之间的关系可以是固定的,也可以是不固定的,因此,本公开实施例中的协议数据单元PDU会话的管理方法,能够支持在存在固定关系的第一终端和第二终端建立数据传输隧道,也可以支持在不存在固定关系的第一终端和第二终端之间建立数据传输隧道。举例而言:
第一种,在第一终端和第二终端之间存在固定关系的情况下,即存在与第一终端对应的第二终端,可以直接建立第一终端和第二终端之间的数据传输隧道;
第二种,在第一终端和第二终端之间存在固定关系的情况下,即存在与第一终端对应的第二终端,在初始建立PDU会话的情况下,没有建立第一终端和第二终端之间的数据传输隧道(即不存在第一终端和第二终端之间的数据传输隧道),本公开实施例也可以支持在PDU会话建立之后,根据针对PDU会话的SM策略修改请求来触发建立第一终端和第二终端之间的数据传输隧道;
第三种,在第一终端和第二终端之间不存在固定关系的情况下,可以在PDU会话建立之后,根据针对PDU会话的SM策略修改请求来触发建立第一终端和第二终端之间的数据传输隧道。
本公开实施例对上述三种建立数据传输隧道的方式并不作出限制,在实际应用当中,可以根据实际PDU会话控制的需求灵活调整建立数据传输隧道的方式。
作为一种可能的实现方式,可以在SMF中预先配置第一终端与第二终端之间的对应关系,因此,第一终端在发起PDU会话时,在PDU会话请求中携带第二终端的唯一标识(如通用公共用户标识符GPSI(Generic Public Subscription Identifier)),从而SMF可以根据第二终端的唯一标识,以及本地配置的第一终端与第二终端的对应关系,确定是否存在与第一终端对应的第二终端。具体的,响应于本地配置的第一终端与第二终端的对应关系中,包含第一终端的唯一标识与第二终端的唯一标识的对应关系,可以确定存在与第一终端对应的第二终端;否则,可以确定不存在与第一终端对应的第二终端。
进一步的,响应于存在PDU会话建立时就建立第一终端与第二终端之间的数据传输隧道的业务需求,且存在与第一终端对应的第二终端,可以按照上述第一种方式在PDU会话建立时直接建立第一终端与第二终端之间的数据传输隧道。即在本公开实施例一种可能的实现方式中,上述步骤101之前,还可以包括:
并且在第一终端和第二终端存在固定关系时,可以直接建立第一终端和第二终端之间的数据传输隧道。即在本公开实施例一种可能的实现方式中,上述步骤101之前,还可以包括:
接收PDU会话建立请求,其中,PDU会话由所述第一终端建立;
相应的,上述步骤102,可以包括:
响应于存在与第一终端的第一标识对应的第二终端的第二标识,创建位于第一UPF和第二UPF之间的数据传输隧道。
步骤103,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开实施例中,SMF在确定第一QoS流中的数据需要在第一卫星与第二卫星之间进行直接传输时,可以建立第一卫星与第二卫星之间的数据传输隧道。SMF可以根据第二终端的唯一第二标识(如用户永久标识符SUPI(Subscription Permanent Identifier)/GPSI),获取第二终端的用户面上下文;并根据用户面上下文与隧道信息的映射关系,将与第二终端的用户面上下文对应的隧道信息确定为第二UPF的隧道信息。其中,隧道信息中可以包括本端的隧道端点信息与对端的隧道端点信息。进而,可以根据第二UPF的隧道信息,创建位于第一卫星的第一UPF和位于第二卫星的第二UPF之间的数据传输隧道。
具体的,SMF确定出第二UPF的隧道信息之后,可以根据第二UPF的隧道端点信息,更新第一UPF 的隧道信息中包含的对端端点信息,以实现第一UPF与第二UPF之间的直接通信,从而完成了第一卫星的第一UPF与第二卫星的第二UPF之间的数据传输隧道的建立。在数据传输隧道建立之后,可以利用数据传输隧道实现第一终端与第二终端之间的第一QoS流的传输。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一UPF和第二UPF之间的数据传输隧道,进而指示第一UPF将QoS流上的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,以通过数据传输隧道实现第一终端与第二终端之间的数据传输,从而无需通过卫星路由将卫星终端的业务数据发送至地面,降低了传输时延。
在本公开一种可能的实现形式中,还可以对QoS数据流进行分流处理,以通过第一卫星与第二卫星之间的数据传输隧道传输特定业务数据,以降低特定业务的传输延时。
下面结合图2,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图2为本公开实施例所提供的另一种协议数据单元PDU会话的管理方法的流程示意图。
如图2所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤201,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
步骤202,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的。
步骤203,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开的实施例中,步骤201-203可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤204,将PDU会话的第二QoS流的数据通过位于第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
其中,第二QoS流,是指承载特定业务数据之外的其他数据的QoS流。比如,在IMS业务中,响应于特定业务数据可以是IMS语音数据,第二QoS流可以为用于承载IMS信令数据的QoS流。
在本公开实施例中,为提升特定业务数据的数据传输速率,降低传输延时,可以通过第一UPF与第二UPF之间的数据传输隧道仅传输用于承载特定业务数据的QoS流。因此,SMF在获取到PCF发起的SM策略修改过程时,确定接收到传输新的第一QoS流的请求,并可以触发建立第一UPF与第二UPF之间的数据传输隧道的过程。进而在建立数据传输隧道的过程中,根据实际业务需求对QoS流进行分流处理,以确定在第一UPF与第二UPF之间的数据传输隧道进行传输的第一QoS流,以及在第一卫星的第一AN与地面UPF之间的数据传输隧道中进行传输的第二QoS流。
举例来说,在IMS业务中,响应于根据实际业务需求需要将IMS语音数据在第一卫星与第二卫星之间的数据传输隧道进行传输,将IMS信令数据在第一卫星的第一AN与地面UPF之间的数据传输隧道中进行传输,可以将承载IMS语音数据的第一QoS流在第一UPF与第二UPF之间的数据传输隧道进行传输,将承载IMS信令数据的QoS流确定为第二QoS流,并通过第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一UPF和第二UPF之间的数据传输隧道,进而指示第一UPF将QoS流上的数据通过数据传输隧道进行传输,以及将第二QoS流通过第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输至第二卫星。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并根据实际业务需求对QoS流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,而且保证了其他数据传输的可靠性。
在本公开一种可能的实现形式中,第一卫星与第二卫星之间的数据传输隧道建立之后,第一终端接 入的AN还可能发生单侧切换,从而需要重新建立AN切换后的数据传输隧道,以提升数据传输隧道的稳定性。
下面结合图3,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图3为本公开实施例所提供的再一种协议数据单元PDU会话的管理方法的流程示意图。
如图3所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤301,接收针对PDU会话的SM策略修改请求,所述请求触发在所述PDU会话中建立第一QoS流,其中,所述PDU会话为第一终端建立。
步骤302,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的。
步骤303,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
步骤304,将PDU会话的第二QoS流的数据通过位于第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
在本公开的实施例中,步骤301-304可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤305,响应于确定第一终端发生切换,为PDU会话选择第三UPF,其中,第三UPF为切换后服务第一终端的第三卫星上的UPF。
在本公开实施例中,第一卫星与第二卫星之间的数据传输隧道建立完成之后,第一终端还可能根据实际业务需要切换其接入的第一AN,即第一终端接入的卫星和AN发生变化,从而使得之前建立的数据传输隧道无法继续实现第一终端与第二终端之间的数据传输。因此,在第一卫星与第二卫星之间的数据传输隧道建立完成之后,SMF可以实时监测第一终端接入的第一AN是否发生变化,以及时更新数据传输隧道。
其中,第三卫星,是指第一终端接入的AN发生切换后,第一终端接入的卫星。比如,第一终端接入的AN发生切换之前接入的第一AN为卫星A中配置的AN,AN发生切换之后第一终端接入的AN为卫星B中配置的AN,则卫星B为第三卫星。
在本公开实施例中,响应于监测到第一终端接入的第一AN发生切换,可以获取第一终端接入的AN发生切换后,接入的第三卫星;并获取第三卫星上的第三UPF的隧道信息,以根据第三UPF更新数据传输隧道。
步骤306,为PDU会话插入第三UPF,创建第二UPF和第三UPF之间的数据传输隧道。
在本公开实施例中,在第一终端接入的AN发生切换时,可以将第一终端切换后接入的第三卫星的第三UPF插入PDU会话,以建立第二UPF与第三UPF之间的数据传输隧道。具体的,可以根据第二UPF的隧道信息中包含的第二UPF的隧道端点信息,更新第三UPF的隧道信息中包含的对端端点信息;以及根据第三UPF的隧道信息中包含的第三UPF的隧道端点信息,更新第二UPF的隧道信息中包含的对端端点信息,从而使得第三UPF与第二UPF可以获知与其通信的对端端点信息,以实现第三UPF与第二UPF之间的直接通信,从而完成了第二UPF与第三UPF之间的数据传输隧道的建立,以继续实现第一终端与第二终端之间的PDU会话的第一QoS流的传输。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一UPF和第二UPF之间的数据传输隧道,进而指示第一UPF将QoS流上的数据通过数据传输隧道进行传输,以及将第二QoS流通过第一卫星的第一AN与地面UPF之间的数据传输隧道传输至第二卫星,并在第一终端接入的AN发生切换时,更新数据传输隧道。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并在卫星终端接入的AN发生切换时更新数据传输隧道,以及根据实际业务需求对QoS流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,而且保证了数据传输隧道的稳定性,进一步提升了星上直接数据传输的可靠性。
在本公开一种可能的实现形式中,还可以在SMF中预先建立卫星终端的标识与相应的用户面上下文的关联关系,以在建立第一UPF和第二UPF之间的数据传输隧道时,提升隧道信息获取的便捷性。
下面结合图4,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图4为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
如图4所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤401,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
在本公开的实施例中,步骤401可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤402,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道,在PDU会话中插入第一UPF,创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
在本公开实施例中,SMF可以在确定第一QoS流上的数据需要在服务第一终端的第一卫星和服务第二终端的第二卫星之间传输,且第一UPF和第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道时,在第一终端的PDU会话中插入与第一卫星相关联的第一UPF,以创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
步骤403,根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文。
步骤404,根据用户面上下文确定为第二终端服务的第二UPF。
在本公开实施例中,SMF在建立第一UPF与第二UPF之间的数据传输隧道时,可以根据SMF中存储的第二标识与用户面上下文的关联关系,将与第二终端的第二标识(如SUPI/GPSI)关联的用户面上下文,确定为第二终端的用户面上下文。进而,可以根据SMF中存储的用户面上下文与隧道信息的映射关系,将与第二终端的用户面上下文对应的隧道信息确定为第二UPF的隧道信息,从而确定出为第二终端服务的第二UPF。
步骤405,执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在本公开实施例中,SMF可以向接入和移动性管理功能AMF(Access and Mobility Management Function)发起Namf_Communication_N1N2MessageTransfer请求,其中携带的N2 SM Information中包含第一UPF的隧道信息与QoS流的相关信息。之后,AMF将第一UPF的隧道信息与QoS流的相关信息转发给第一卫星的星上AN。之后,第一卫星的星上AN与第一终端之间建立语音数据承载;进而,第一卫星的星上AN向AMF回复N2消息,其中包含第一卫星的星上AN的接入网隧道信息。之后,AMF将第一卫星的星上AN的接入网隧道信息转发给SMF。进而,SMF执行第一UPF的N4接口会话更新过程,以利用第二UPF的隧道信息更新所述第一UPF的隧道信息之中的对端端点信息,使得第一UPF获知第二UPF的隧道信息,以建立位于第一UPF和第二UPF之间的数据传输隧道。
步骤406,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开的实施例中,步骤406可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一UPF和第二UPF之间的数据传输隧道,进而指示第一UPF将QoS流上的数据通过数据传输隧道进行传输。由此,通过在SMF中预先建立卫星终端的第二标识与相应的用户面上下文的关联关系,并在用户面上下文中添加卫星关联的UPF的隧道信息,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,而且保证了其他数据传输的可靠性和UPF隧道信息获取的便捷性。
在本公开一种可能的实现形式中,通过分流的方式传输QoS流时,可以将承载特定业务数据的QoS流的流标识与第一UPF与第二UPF之间的数据传输隧道关联,以通过第一UPF与第二UPF之间的数据传输隧道进行传输分流后的QoS流。
下面结合图5,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图5为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
如图5所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤501,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
在本公开的实施例中,步骤501可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤502,确定第一QoS流的流标识。
其中,流标识,可以是QoS流的5QI参数。
在本公开实施例中,控制策略功能PCF(Policy Control Function)向SMF发起的SM策略修改过程时,可以将IMS语音相关的QoS策略等发送给SMF,以触发SMF建立第一终端侧5QI=1的第一QoS流,即确定第一QoS流的流标识为1。
步骤503,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与第一QoS流的流标识相同的的数据传输隧道,在PDU会话中插入第一UPF,创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
步骤504,根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文。
步骤505,根据用户面上下文确定为第二终端服务的第二UPF。
步骤506,执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在本公开的实施例中,步骤503-506可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤507,建立第一QoS流的传输隧道关联规则,并将数据传输隧道与流标识进行关联。
在本公开实施例中,确定出PDU会话中第一QoS流的流标识之后,可以建立传输隧道关联规则,即将第一QoS流的流标识与第一UPF的隧道信息或第二UPF的隧道信息进行关联,以将流标识为第一QoS流的流标识(即5QI=1)的QoS流与第一UPF与第二UPF之间的数据传输隧道关联。
在本公开实施例中,还可以确定第二QoS流的流标识,并在传输隧道关联规则中建立第二QoS流的流标识与地面传输路径的关联关系,即将第二QoS流的流标识与地面UPF的隧道信息进行关联,以将第二QoS流的流标识(即5QI=5)与地面传输路径关联。
步骤508,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开实施例中,由于已经将第一QoS流的流标识与第一UPF和第二UPF之间的数据传输隧道关联,因此,在第一UPF和第二UPF之间的数据传输隧道建立之后,第一卫星与第二卫星可以在获取到流标识为第一QoS流的流标识(即5QI=1)的QoS流时,利用第一UPF和第二UPF之间的数据传输隧道实现第一终端与第二终端之间的第一QoS流的传输。
相应的,由于已经将第二QoS流的流标识与地面传输路径关联,因此,当第一卫星与第二卫星在获取到流标识为第二QoS流的流标识(即5QI=5)的QoS流时,可以直接利用地面传输路径实现第一终端与第二终端之间的第二QoS流的传输。
在本公开的实施例中,步骤505可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一卫星的第一UPF和位于第二卫星的第二UPF之间的数据传输隧道,并建立第一QoS流的传输隧道关联规则,以将数据传输隧道与第一 QoS流的流标识进行关联,进而指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并根据实际业务需求对QoS流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,而且保证了其他数据传输的可靠性。
在本公开一种可能的实现形式中,通过分流的方式传输QoS流时,既可以在卫星中配置的AN中对QoS流进行分流处理,也可以在与卫星关联的UPF中对QoS流进行分流处理,以提升PDU会话管理的灵活性和适用性。
下面结合图6,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图6为本公开实施例所提供的另一种协议数据单元PDU会话的管理方法的流程示意图。
如图6所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤601,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
步骤602,确定第一QoS流的流标识。
在本公开的实施例中,步骤601-602可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤603,确定目标分流方式。
其中,目标分流方式,可以包括星上AN分流或星上UPF分流。
需要说明的是,星上AN分流,是指利用第一卫星中配置的第一AN对QoS流进行分流处理,与第一卫星关联的第一UPF只可以获取到需要在第一UPF与第二UPF之间传输的第一QoS流,并通过第一UPF与第二UPF之间的数据传输隧道传输至与第二卫星关联的第二UPF;相应的,第二QoS流直接通过第一卫星中配置的第一AN发送至其他传输隧道的UPF,并经由地面UPF发送至第二卫星中配置的第三AN,即第二QoS流不必经过与第一卫星关联的第一UPF传输。
星上UPF分流,是指通过第一卫星中配置的第一AN将QoS流发送至与第一卫星关联的第一UPF,之后利用与第一卫星关联的第一UPF对QoS流进行分流处理,并通过第一UPF与第二UPF之间的数据传输隧道传输PDU会话中的第一QoS流至与第二卫星关联的第二UPF,以及通过地面传输隧道将第二QoS流发送至与第二卫星关联的第二UPF。
在本公开实施例中,运营商可以根据实际的业务需求对目标分流方式进行设置。因此,SMF可以根据运营商的设置信息,确定当前的目标分流方式。
步骤604,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,在PDU会话中插入第一UPF,创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
步骤605,根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文。
步骤606,根据用户面上下文确定为第二终端服务的第二UPF。
步骤607,执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在本公开实施例中,确定出目标分流方式以及创建位于第一UPF和第二UPF之间的数据传输隧道之后,响应于目标分流方式是星上UPF分流,则SMF可以向第一UPF下发流转发规则,使得从N3接口隧道上接收的上行数据通过数据传输隧道进行传输,以及从数据传输隧道接收的下行数据通过N3接口隧道进行传输;
响应于目标分流方式是星上AN分流,SMF可以向第一AN下发流转发规则,使得从第一AN接收的上行数据通过数据传输隧道进行传输,以及从数据传输隧道接收的下行数据通过第一AN进行传输。
在本公开的实施例中,步骤604-607可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤608,根据目标分流方式,建立第一QoS流的传输隧道关联规则。
在本公开实施例中,SMF确定出目标分流方式之后,可以将建立传输隧道关联规则所需的数据发送给第一卫星中配置的第一AN或与第一卫星关联的第一UPF,以使第一卫星中配置的第一AN或与第一卫星关联的第一UPF建立传输隧道关联规则。具体的,响应于目标分流方式为星上AN分流,可以发送给第一卫星中配置的第一AN;响应于目标分流方式为星上UPF分流,可以发送给与第一卫星关联的第一UPF。
在本公开实施例中,建立传输隧道关联规则时,第一卫星中配置的第一AN或与第一卫星关联的第一UPF可以将第一QoS流的流标识与第一UPF隧道信息或第二UPF隧道信息进行关联,以将第一QoS流与第一UPF和第二UPF之间的数据传输隧道关联。
在本公开实施例中,还可以确定第二QoS流的流标识,并在传输隧道关联规则中建立第二QoS流的流标识与其地面传输路径的关联关系,即将第二QoS流的流标识与地面UPF的隧道信息进行关联。
步骤609,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开实施例中,由于已经将第一QoS流的流标识与第一UPF和第二UPF之间的数据传输隧道关联,因此,在第一UPF和第二UPF之间的数据传输隧道建立之后,第一卫星与第二卫星可以在获取到流标识为第一QoS流的流标识(即5QI=1)的QoS流时,可以利用第一UPF和第二UPF之间的数据传输隧道实现第一终端与第二终端之间的第一QoS流的传输。
相应的,由于已经将其第二QoS流的流标识与地面传输路径关联,因此,当第一卫星与第二卫星在获取到流标识为第二QoS流的流标识(即5QI=5)的QoS流时,可以直接利用地面传输路径实现第一终端与第二终端之间的第二QoS流的传输。
在本公开的实施例中,步骤609可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一卫星的第一UPF和位于第二卫星的第二UPF之间的数据传输隧道,并根据目标分流方式建立QoS流的传输隧道关联规则,以将数据传输隧道与第一QoS流的流标识进行关联,进而指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并根据实际业务需求采用合适的分流方式对QoS流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,保证了其他数据传输的可靠性,而且进一步提升了PDU会话管理的灵活性和适用性。
下面图7和图8所示的实施例分别对星上UPF分流与星上AN分流时,第一UPF与第二UPF之间的数据传输隧道的建立过程进行具体描述。
下面结合图7,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图7为本公开实施例所提供的再一种协议数据单元PDU会话的管理方法的流程示意图。
如图7所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤701,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
步骤702,确定第一QoS流的流标识。
步骤703,确定目标分流方式。
步骤704,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,在PDU会话中插入第一UPF,创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
步骤705,根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文。
步骤706,根据用户面上下文确定为第二终端服务的第二UPF。
步骤707,执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在本公开的实施例中,步骤701-707可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤708,响应于目标分流方式为星上UPF分流,将地面UPF的N9隧道信息、第一QoS流的流标识发送至第一UPF,并在第一UPF中建立第一QoS流的传输隧道关联规则。
在本公开实施例中,SMF可以向第一UPF发起N4会话建立过程,其中包含与第一QoS流相关的包检测规则PDR(Packet Detection Rule)和转发行为规则FAR(Forwarding Action Rules)等,即可以将地面UPF的N9隧道信息、第一QoS流的流标识发送至第一UPF,以使第一UPF建立第一QoS流的传输隧道关联规则。
相应的,在本公开实施例中,SMF可以同时在N4会话建立过程中将地面UPF的N9隧道信息、第二QoS流的流标识发送至第一UPF,以使第一UPF建立第二QoS流的传输隧道关联规则。
在本公开实施例中,第一UPF在获取到地面UPF的N9隧道信息与第一QoS流的流标识之后,可以将第一QoS流的流标识与地面UPF的N9隧道信息关联,以建立第一QoS流的传输隧道关联规则。
相应的,第一UPF在获取到地面UPF的N9隧道信息与第二QoS流的流标识之后,可以将第二QoS流的流标识与地面UPF的N9隧道信息关联,以建立第二QoS流的传输隧道关联规则。此时,第一QoS流和第二QoS流均与地面传输路径关联。
步骤709,采用第二UPF的隧道信息,更新传输隧道关联规则中与第一QoS流的流标识对应的地面UPF的N9隧道信息。
在本公开实施例中,由于传输隧道关联规则中,是将第一QoS流的流标识与地面UPF的N9隧道信息关联的,即通过地面传输路径传输第一QoS流,因此,在第一UPF第二UPF之间的数据传输隧道建立完成之后,可以更新第一QoS流的传输隧道关联规则,即将第一QoS流的流标识与第二UPF的隧道信息关联,以通过第一UPF与第二UPF之间的数据传输隧道传输第一QoS流。
步骤710,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开实施例中,由于更新后的传输隧道关联规则中已经包括了第一QoS流的流标识与第二UPF的隧道信息的关联关系,因此,在第一UPF与第二UPF之间的数据传输隧道建立之后,第一UPF可以在获取到流标识为第一QoS流的流标识(即5QI=1)的QoS流时,利用第一UPF与第二UPF之间的数据传输隧道实现第一终端与第二终端之间的第一QoS流的传输。
相应的,在本公开实施例中,由于更新后的传输隧道关联规则中并未更新第二QoS流标识与地面UPF的N9隧道信息的关联关系,因此更新后的传输隧道关联规则中也已经包括了第二QoS流的流标识与地面UPF的N9隧道信息的关联关系,因此,当第一UPF可以在获取到流标识为第二QoS流的流标识(即5QI=5)的QoS流时,可以直接利用地面传输路径实现第一终端与第二终端之间的第二QoS流的传输。
在本公开的实施例中,步骤710可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一卫星的第一UPF和位于第二卫星的第二UPF之间的数据传输隧道,并在目标分流方式为星上UPF分流时,在第一UPF中建立第一QoS流的传输隧道关联规则,以指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并根据实际业务需求采用合适的分流方式对QoS数据流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,保证了其他数据传输的可靠性,而且进一步提升了PDU会话管理的灵活性和适用性。
下面图8所示的实施例对星上AN分流时,第一UPF与第二UPF之间的数据传输隧道的建立过程进行具体描述。
下面结合图8,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图8为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
如图8所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤801,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立。
步骤802,确定第一QoS流的流标识。
步骤803,确定目标分流方式。
步骤804,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,在PDU会话中插入第一UPF,创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
步骤805,根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文。
步骤806,根据用户面上下文确定为第二终端服务的第二UPF。
步骤807,执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在本公开的实施例中,步骤801-807可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤808,响应于目标分流方式是星上AN分流,将第一UPF的N3隧道信息、第一QoS流的流标识发送至第一AN,并在第一AN中建立第一QoS流的传输隧道关联规则。
在本公开实施例中,SMF可以向第一UPF发起N4会话建立过程,其中包含与第一QoS流相关的PDR和FAR等,即可以将第一QoS流的流标识发送至第一UPF,以使第一UPF分配第一UPF的隧道信息。
SMF可以向AMF发起Namf_Communication_N1N2MessageTransfer请求,其中携带的N2 SM Information中包含第一UPF的隧道信息与第一QoS流的相关信息。之后,AMF将第一UPF的隧道信息与第一QoS流的相关信息转发给第一卫星的第一AN,以使第一卫星的第一AN建立第一QoS流的传输隧道关联规则,即将第一QoS流的流标识与第一UPF的隧道信息进行关联。
步骤809,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开实施例中,由于传输隧道关联规则中已经包括了第一QoS流的流标识与第一UPF的隧道信息的关联关系,因此,在第一UPF与第二UPF之间的数据传输隧道建立之后,第一AN可以在获取到流标识为第一QoS流的流标识(即5QI=1)的QoS流时,利用第一UPF与第二UPF之间的数据传输隧道实现第一终端与第二终端之间的第一QoS流的传输。
在本公开的实施例中,步骤809可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一卫星的第一UPF和位于第二卫星的第二UPF之间的数据传输隧道,并在目标分流方式为星上AN分流时,在第一AN中建立第一QoS流的传输隧道关联规则,以将数据传输隧道与第一QoS流的流标识进行关联,以指示第一AN将第一QoS流的数据通过数据传输隧道进行传输。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并根据实际业务需求采用合适的分流方式对QoS数据流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,保证了其他数据传输的可靠性,而且进一步提升了PDU会话管理的灵活性和适用性。
在本公开一种可能的实现形式中,第一卫星与第二卫星之间的数据传输隧道建立之后,第一终端接入的AN还可能发生单侧切换,从而需要重新建立AN切换后的数据传输隧道,以提升数据传输隧道的稳定性。
下面结合图9,对本公开实施例提供的协议数据单元PDU会话的管理方法进行进一步说明。
图9为本公开实施例所提供的又一种协议数据单元PDU会话的管理方法的流程示意图。
如图9所示,该协议数据单元PDU会话的管理方法,包括以下步骤:
步骤901,接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立新第一的QoS流,其中,PDU会话为第一终端建立。
步骤902,响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的。
步骤903,指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
步骤904,将PDU会话的第二QoS流的数据通过位于第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
步骤905,响应于确定第一终端发生切换,为PDU会话选择第三UPF,其中,第三UPF为切换后服务第一终端的第三卫星上的UPF。
在本公开的实施例中,步骤901-905可以分别采用本公开的各实施例中的任一种方式实现,本公开实施例并不对此作出限定,也不再赘述。
步骤906,执行第二UPF的N4会话修改流程,并根据第三UPF的隧道信息更新第二UPF的隧道信息之中的对端端点信息,以创建第二UPF和第三UPF之间的所述数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
在本公开实施例中,第一终端接入的第一AN发生变化时,为重新建立第一终端与第二终端之间的数据传输隧道,可以根据第三卫星的第三UPF的隧道信息更新第二UPF的的隧道信息之中的对端端点信息。
具体的,在第一终端发生AN切换时,可以向第二UPF发起N4接口会话修改流程,以根据第三UPF的隧道信息,更新第二UPF的隧道信息中包含的对端端点信息,以创建第二UPF和第三UPF之间的所述数据传输隧道。
步骤907,控制第二UPF向第一卫星中的第一AN发送目标消息,目标消息中携带第一QoS流的流标识,使得第一卫星中的第一AN向第三卫星中的第二AN转发目标消息,目标消息用于指示第一AN停止向第二UPF发送第一QoS流。
其中,目标消息,可以是第二UPF向第一卫星的第一AN发送的End Marker消息
在本公开实施例中,在第二UPF与第三UPF之间的数据传输隧道建立之后,可以控制第二UPF向第一卫星中的第一AN发送携带第一QoS流的流标识的目标消息,以通知第一AN之后不再向其发送第一QoS流;并控制第一卫星中的第一AN向第三卫星中的第二AN转发目标消息,以释放源路径(即之前建立的第一卫星与第二卫星之间的数据传输隧道)。
可以理解的是,若还未可靠建立第三卫星与第二卫星之间的数据传输隧道便释放了源路径,容易出现丢包现象。因此,在本公开实施例一种可能的实现方式中,可以在执行第二UPF的N4会话修改流程之后,对第二UPF的N4会话修改流程的持续时间进行计时,以根据得到的计时时间确定是否可以释放源路径。作为一种可能的实现方式,可以预先设定时间阈值,以在计时时间达到时间阈值时,控制第二UPF向第一卫星中的第一AN发送目标消息,以通知第一AN之后不再向其发送第一QoS流;以及控制第一卫星中的第一AN向第三卫星中的第二AN转发目标消息,以释放源路径。
需要说明的是,在第一终端接入的第一AN产生切换时,SMF还可以向地面UPF发送N4接口会话修改流程,将第三UPF的隧道信息携带给地面UPF,告知地面UPF第一AN发生切换,以触发地面UPF向第一卫星中的第一AN发送第二目标消息,第二目标消息中携带第二QoS流的流标识,通知第一AN之后不再向其发送第二QoS流;以及控制第一卫星中的第一AN向第三卫星中的第二AN转发第二目标消息,以通知第二AN后续将不再通过第一AN发送第二QoS流。
其中,第二目标消息,可以是地面UPF向第一AN发送的End Marker消息。
本公开实施例提供的协议数据单元PDU会话的管理方法,通过在SMF接收到针对第一终端建立的PDU会话的SM策略修改请求,并在第一卫星的第一UPF和第二卫星的第二UPF之间不存在与PDU会话中建立的第一QoS流的流标识相同的数据传输隧道时,创建位于第一卫星的第一UPF和位于第二卫星的第二UPF之间的数据传输隧道,进而指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输,以及将第二QoS流通过第一卫星的第一AN与地面UPF之间的数据传输隧道传输至第二卫星,进而在第 一终端接入的AN发生切换时,更新数据传输隧道。由此,通过在星上设置UPF,建立第一卫星和第二卫星之间的数据传输隧道,并在第一终端接入的AN发生切换时更新数据传输隧道,以及根据实际业务需求对QoS流进行分流处理,以通过数据传输隧道实现第一终端与第二终端之间的特定业务数据传输,从而不仅无需通过卫星路由将卫星终端的业务数据发送至地面,降低了特定业务数据的传输时延,而且保证了数据传输隧道的稳定性,进一步提升了星上直接数据传输的可靠性。
为了实现上述实施例,本公开还提出一种装置。
图10为本公开实施例提供的一种装置的结构示意图。
如图10所示,该装置,包括:收发机1000、处理器1010、存储器1020。
其中,存储器1020,用于存储计算机程序;收发机1000,用于在所述处理器1010的控制下收发数据;处理器1010,用于读取所述存储器1020中的计算机程序并执行以下操作:
接收针对PDU会话的SM策略修改请求,请求触发在所PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立;
响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的;
指示所述第一UPF将第一QoS流上的数据通过数据传输隧道进行传输。
收发机1000,用于在处理器1010的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1010代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1000可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1010负责管理总线架构和通常的处理,存储器1020可以存储处理器1010在执行操作时所使用的数据。
处理器1010可以是中央处埋器CPU(central processing unit)、专用集成电路ASIC(Application Specific Integrated Circuit)、现场可编程门阵列FPGA(Field-Programmable Gate Array)或复杂可编程逻辑器件CPLD(Complex Programmable Logic Device),处理器也可以采用多核架构。
在本公开一种可能的实现形式中,上述处理器1010还用于执行以下操作:
将PDU会话的第二QoS流的数据通过位于第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
进一步的,在本公开另一种可能的实现形式中,上述创建位于第一UPF和第二UPF之间的数据传输隧道后,还包括:
响应于确定所述第一终端发生切换,为所述PDU会话选择第三UPF,其中,所述第三UPF为切换后服务所述第一终端的第三卫星上的UPF;
为所述PDU会话插入所述第三UPF,创建所述第二UPF和所述第三UPF之间的数据传输隧道。
进一步的,在本公开再一种可能的实现形式中,上述在接收针对PDU会话的SM策略修改请求之后,还包括:
响应于第一UPF和第二UPF之间已存在与第一QoS流的流标识相同的数据传输隧道,将第一QoS流的数据通过已存在的数据传输隧道进行传输。
进一步的,在本公开又一种可能的实现形式中,上述在创建位于第一UPF和第二UPF之间的数据传输隧道前,还包括:
在PDU会话中插入第一UPF,创建所述第一卫星的第一AN与所述第一UPF之间的N3接口隧道。
进一步的,在本公开又一种可能的实现形式中,上述创建位于第一UPF和第二UPF之间的数据传输隧道,包括:
根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文;
根据用户面上下文确定为第二终端服务的第二UPF;
执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道。
进一步的,在本公开另一种可能的实现形式中,上述在创建位于第一UPF和第二UPF之间的数据传输隧道之前,还包括:
确定第一QoS流的流标识;
建立第一QoS流的传输隧道关联规则,并将数据传输隧道与流标识进行关联。
进一步的,在本公开再一种可能的实现形式中,上述处理器1010还用于执行以下操作::
确定目标分流方式;
根据目标分流方式,建立第一QoS流的传输隧道关联规则。
进一步的,在本公开又一种可能的实现形式中,上述目标分流方式是星上AN分流或星上UPF分流。
进一步的,在本公开又一种可能的实现形式中,在创建位于第一UPF和第二UPF之间的数据传输隧道之后,还包括:
响应于目标分流方式是星上UPF分流,向第一UPF下发流转发规则,使得从N3接口隧道上接收的上行数据通过数据传输隧道进行传输,以及从数据传输隧道接收的下行数据通过N3接口隧道进行传输;
响应于目标分流方式是星上AN分流,向第一AN下发流转发规则,使得从第一AN接收的上行数据通过数据传输隧道进行传输,以及从数据传输隧道接收的下行数据通过第一AN进行传输。
进一步的,在本公开另一种可能的实现形式中,其中,响应于上述目标分流方式是星上AN分流,根据目标分流方式,建立第一QoS流的传输隧道关联规则,包括:
将第一UPF的N3隧道信息、第一QoS流的流标识发送至第一AN,并在第一AN中建立第一QoS流的传输隧道关联规则;
响应于上述目标分流方式是星上UPF分流,上述根据目标分流方式,建立第一QoS流的传输隧道关联规则,包括:
将地面UPF的N9隧道信息、第一QoS流的流标识发送至第一UPF并在第一UPF中建立第一QoS流的传输隧道关联规则。
进一步的,在本公开再一种可能的实现形式中,上述在第一UPF中建立第一QoS流的传输隧道关联规则之后,还包括:
采用第二UPF的隧道信息,更新传输隧道关联规则中与第一QoS流的流标识对应的地面UPF的N9隧道信息。
进一步的,在本公开又一种可能的实现形式中,上述创建所述第二UPF和所述第三UPF之间的数据传输隧道,包括:
执行第二UPF的N4会话修改流程,并根据第三UPF的的隧道信息更新第二UPF的隧道信息之中的对端端点信息,以创建第二UPF和第三UPF之间的数据传输隧道。
进一步的,在本公开又一种可能的实现形式中,上述处理器1010还用于执行以下操作:
控制第二UPF向第一卫星中的第一AN发送目标消息,目标消息中携带第一QoS流的流标识,使得第一卫星中的第一AN向第三卫星中的第二AN转发目标消息,目标消息用于指示第一AN停止向第二UPF发送第一QoS流。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本公开实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本公开还提出一种协议数据单元PDU会话的管理装置。
图11为本公开实施例提供的一种协议数据单元PDU会话的管理装置的结构示意图。
如图11所示,该协议数据单元PDU会话的管理装置1100,包括:
接收单元1101,用于接收针对PDU会话的SM策略修改请求,请求触发在PDU会话中建立第一QoS流,其中,PDU会话为第一终端建立;
第一创建单元1102,用于响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与第一QoS流的流标识相同的数据传输隧道,创建位于第一UPF和第二UPF之间的数据传输隧道,第一卫星是服务 第一终端的卫星,第二卫星是服务第二终端的卫星,第二终端是根据应用层信息确定的;
第一传输单元1103,用于指示第一UPF将第一QoS流的数据通过数据传输隧道进行传输。
在本公开一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
第二传输单元,用于将PDU会话的第二QoS流的数据通过位于第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
进一步的,在本公开另一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
选择单元,用于响应于确定第一终端发生切换,为PDU会话选择第三UPF,其中,第三UPF为切换后服务第一终端的第三卫星上的UPF;
第二创建单元,用于为PDU会话插入第三UPF,创建第二UPF和第三UPF之间的数据传输隧道。
进一步的,在本公开再一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
第三传输单元,用于在第一UPF和第二UPF之间已存在与第一QoS流的流标识相同的数据传输隧道时,将第一QoS流的数据通过已存在的数据传输隧道进行传输。
进一步的,在本公开又一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
第一插入单元,用于在PDU会话中插入第一UPF,创建第一卫星的第一AN与第一UPF之间的N3接口隧道。
进一步的,在本公开又一种可能的实现形式中,上述第一创建单元1103,包括:
第一确定子单元,用于根据第二终端的第二标识,从SMF中确定第二终端的用户面上下文;
第二确定子单元,根据用户面上下文确定为第二终端服务的第二UPF;
第一执行子单元,用于执行第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新第一UPF的隧道信息之中的对端端点信息,以创建位于第一UPF和第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
进一步的,在本公开另一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
第二确定单元,用于确定第一QoS流的流标识;
第一建立单元,用于建立第一QoS流的传输隧道关联规则,并将数据传输隧道与流标识进行关联。
进一步的,在本公开再一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
第三确定单元,用于确定目标分流方式;
第二建立单元,用于根据目标分流方式,建立第一QoS流的传输隧道关联规则。
进一步的,在本公开又一种可能的实现形式中,上述目标分流方式是星上AN分流或星上UPF分流。
进一步的,在本公开又一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
第一下发单元,用于在目标分流方式是星上UPF分流时,向第一UPF下发流转发规则,使得从N3接口隧道上接收的上行数据通过数据传输隧道进行传输,以及从数据传输隧道接收的下行数据通过N3接口隧道进行传输;
第二下发单元,用于在目标分流方式是星上AN分流时,向第一AN下发流转发规则,使得从第一AN接收的上行数据通过数据传输隧道进行传输,以及从数据传输隧道接收的下行数据通过第一AN进行传输。
进一步的,在本公开另一种可能的实现形式中,响应于上述目标分流方式是星上AN分流,上述第二建立单元,包括:
第一发送子单元,用于将第一UPF的N3隧道信息、第一QoS流的流标识发送至第一AN,并在第一AN中建立第一QoS流的传输隧道关联规则;
响应于上述目标分流方式是星上UPF分流,上述第二建立单元,包括:
第二发送子单元,用于将地面UPF的N9隧道信息、第一QoS流的流标识发送至第一UPF,并在第一UPF中建立第一QoS流的传输隧道关联规则。
进一步的,在本公开再一种可能的实现形式中,上述第二建立单元,还包括:
更新子单元,用于采用第二UPF的隧道信息,更新传输隧道关联规则中与第一QoS流的流标识对应的地面UPF的N9隧道信息。
进一步的,在本公开又一种可能的实现形式中,上述第二创建单元,包括:
第二执行子单元,用于执行第二UPF的N4会话修改流程,并根据第三UPF的隧道信息更新第二UPF的隧道信息之中的对端端点信息,创建第二UPF和第三UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
进一步的,在本公开又一种可能的实现形式中,上述协议数据单元PDU会话的管理装置1100,还包括:
控制单元,用于控制卫星的第二UPF向第一卫星中的第一AN发送目标消息,目标消息中携带第一QoS流的流标识,使得第一卫星中的第一AN向第三卫星中的第二AN转发目标消息,目标消息用于指示第一AN停止向第二UPF发送第一QoS流。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM(Read-Only Memory)、随机存取存储器RAM(Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本公开实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本公开还提出一种处理器可读存储介质。
其中,该处理器可读存储介质存储有计算机程序,该计算机程序用于使该处理器执行本公开实施例所述的协议数据单元PDU会话的管理方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘等)、光学存储器、以及半导体存储器、固态硬盘等。
为了实现上述实施例,本公开还提出一种计算机程序产品,当计算机程序产品中的指令被处理器执行时,执行一种协议数据单元PDU会话的管理方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (33)

  1. 一种协议数据单元PDU会话的管理方法,应用于会话管理功能SMF,其中,所述方法包括:
    接收针对PDU会话的会话管理SM策略修改请求,所述请求触发在所述PDU会话中建立第一服务质量QoS流,其中,所述PDU会话为第一终端建立;
    响应于第一卫星的第一用户面功能UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,所述第一卫星是服务所述第一终端的卫星,所述第二卫星是服务第二终端的卫星,所述第二终端是根据应用层信息确定的;
    指示所述第一UPF将所述第一QoS流的数据通过所述数据传输隧道进行传输。
  2. 如权利要求1所述的方法,其中,所述方法,还包括:
    将所述PDU会话的第二QoS流的数据通过位于所述第一卫星的第一接入网AN与地面UPF之间的数据传输隧道进行传输。
  3. 如权利要求1或2所述的方法,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道后,还包括:
    响应于确定所述第一终端发生切换,为所述PDU会话选择第三UPF,其中,所述第三UPF为切换后服务所述第一终端的第三卫星上的UPF;
    为所述PDU会话插入所述第三UPF,创建所述第二UPF和所述第三UPF之间的数据传输隧道。
  4. 如权利要求1-3任一项所述的方法,其中,在所述接收针对PDU会话的SM策略修改请求之后,还包括:
    响应于所述第一UPF和所述第二UPF之间已存在与所述第一QoS流的流标识相同的数据传输隧道,将所述第一QoS流的数据通过已存在的数据传输隧道进行传输;
    其中,所述已存在的数据传输隧道进行传输,是在接收到PDU会话建立请求,且确定存在与所述第一终端的第一标识对应的第二终端的第二标识之后创建的,所述第二终端是所述第二标识所属的终端。
  5. 如权利要求4所述的方法,其中,在所述接收针对PDU会话的SM策略修改请求之前,还包括:
    接收所述PDU会话建立请求,其中,所述PDU会话由所述第一终端建立;
    所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
    响应于存在与所述第一终端的第一标识对应的第二终端的第二标识,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道。
  6. 如权利要求1-5任一项所述的方法,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之前,还包括:
    在所述PDU会话中插入所述第一UPF,创建所述第一卫星的第一AN与所述第一UPF之间的N3接口隧道。
  7. 如权利要求6所述的方法,其中,所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
    根据所述第二终端的第二标识,从所述SMF中确定所述第二终端的用户面上下文;
    根据所述用户面上下文确定为所述第二终端服务的所述第二UPF;
    执行所述第一UPF的N4会话修改流程,并根据所述第二UPF的隧道信息更新所述第一UPF的隧道信息之中的对端端点信息,以创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
  8. 如权利要求7所述的方法,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之前,还包括:
    确定所述第一QoS流的流标识;
    建立所述第一QoS流的传输隧道关联规则,并将所述数据传输隧道与所述流标识进行关联。
  9. 如权利要求8所述的方法,其中,所述方法,还包括:
    确定目标分流方式;
    根据所述目标分流方式,建立所述第一QoS流的所述传输隧道关联规则。
  10. 如权利要求9所述的方法,其中,所述目标分流方式是星上AN分流或星上UPF分流。
  11. 如权利要求10所述的方法,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之后,还包括:
    响应于所述目标分流方式是所述星上UPF分流,向所述第一UPF下发流转发规则,使得从所述N3接口隧道上接收的上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述N3接口隧道进行传输;
    响应于所述目标分流方式是所述星上AN分流,向所述第一AN下发流转发规则,使得从第一AN接收的上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述第一AN进行传输。
  12. 如权利要求10所述的方法,其中,
    响应于所述目标分流方式是所述星上AN分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
    将所述第一UPF的N3隧道信息、所述第一QoS流的流标识发送至第一AN,并在所述第一AN中建立所述第一QoS流的传输隧道关联规则;
    响应于所述目标分流方式是所述星上UPF分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
    将地面UPF的N9隧道信息、所述第一QoS流的流标识发送至所述第一UPF,并在所述第一UPF中建立所述第一QoS流的传输隧道关联规则。
  13. 如权利要求12所述的方法,其中,所述在所述第一UPF中建立所述第一QoS流的传输隧道关联规则之后,还包括:
    采用所述第二UPF的隧道信息,更新所述传输隧道关联规则中与所述第一QoS流的流标识对应的地面UPF的N9隧道信息。
  14. 如权利要求3所述的方法,其中,所述创建所述第二UPF和所述第三UPF之间的数据传输隧道,包括:
    执行所述第二UPF的N4会话修改流程,并根据所述第三UPF的隧道信息更新所述第二UPF的隧道信息之中的对端端点信息,以创建所述第二UPF和所述第三UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
  15. 如权利要求3所述的方法,其中,还包括:
    控制所述第二UPF向所述第一卫星中的第一AN发送目标消息,所述目标消息中携带所述第一QoS流的流标识,使得所述第一卫星中的所述第一AN向所述第三卫星中的第二AN转发所述目标消息,所述目标消息用于指示所述第一AN停止向所述第二UPF发送所述第一QoS流。
  16. 一种装置,其中,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收针对PDU会话的SM策略修改请求,所述请求触发在所述PDU会话中建立第一QoS流,其中,所述PDU会话为第一终端建立;
    响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,所述第一卫星是服务所述第一终端的卫星,所述第二卫星是服务第二终端的卫星,所述第二终端是根据应用层信息确定的;
    指示所述第一UPF将所述第一QoS流的数据通过所述数据传输隧道进行传输。
  17. 如权利要求16所述的装置,其中,还包括:
    将所述PDU会话的第二QoS流的数据通过位于所述第一卫星的第一AN与地面UPF之间的数据传输隧道进行传输。
  18. 如权利要求16或17所述的装置,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道后,还包括:
    响应于确定所述第一终端发生切换,为所述PDU会话选择第三UPF,其中,所述第三UPF为切换后服务所述第一终端的第三卫星上的UPF;
    为所述PDU会话插入所述第三UPF,创建所述第二UPF和所述第三UPF之间的数据传输隧道。
  19. 如权利要求16-18任一项所述的装置,其中,在所述接收针对PDU会话的SM策略修改请求之后,还包括:
    响应于所述第一UPF和所述第二UPF之间已存在与所述第一QoS流的流标识相同的数据传输隧道,将所述第一QoS流的数据通过已存在的数据传输隧道进行传输;
    其中,所述已存在的数据传输隧道进行传输,是在接收到PDU会话建立请求,且确定存在与所述第一终端的第一标识对应的第二终端的第二标识之后创建的,所述第二终端是所述第二标识所属的终端。
  20. 如权利要求19所述的装置,其中,在所述接收针对PDU会话的SM策略修改请求之前,还包括:
    接收所述PDU会话建立请求,其中,所述PDU会话由所述第一终端建立;
    所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
    响应于存在与所述第一终端的第一标识对应的第二终端的第二标识,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道。
  21. 如权利要求16-20任一项所述的装置,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道前,还包括:
    在所述PDU会话中插入所述第一UPF,创建所述第一卫星的第一AN与所述第一UPF之间的N3接口隧道。
  22. 如权利要求21所述的装置,其中,所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,包括:
    根据所述第二终端的第二标识,从所述SMF中确定所述第二终端的用户面上下文;
    根据所述用户面上下文确定为所述第二终端服务的第二UPF;
    执行所述第一UPF的N4会话修改流程,并根据第二UPF的隧道信息更新所述第一UPF的隧道信息之中的对端端点信息,以创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,其中,所述对端 端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
  23. 如权利要求22所述的装置,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之前,还包括:
    确定所述第一QoS流的流标识;
    建立所述第一QoS流的传输隧道关联规则,并将所述数据传输隧道与所述流标识进行关联。
  24. 如权利要求23所述的装置,其中,还包括:
    确定目标分流方式;
    根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则。
  25. 如权利要求24所述的装置,其中,所述目标分流方式是星上AN分流或星上UPF分流。
  26. 如权利要求25所述的方法,其中,在所述创建位于所述第一UPF和所述第二UPF之间的数据传输隧道之后,还包括:
    响应于所述目标分流方式是所述星上UPF分流,向所述第一UPF下发流转发规则,使得从所述N3接口隧道上接收的上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述N3接口隧道进行传输;
    响应于所述目标分流方式是所述星上AN分流,向所述第一AN下发流转发规则,使得从第一AN接收的所述上行数据通过所述数据传输隧道进行传输,以及从所述数据传输隧道接收的下行数据通过所述第一AN进行传输。
  27. 如权利要求25所述的装置,其中,
    响应于所述目标分流方式是所述星上AN分流,根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
    将所述第一UPF的N3隧道信息、所述第一QoS流的流标识发送至第一AN,并在所述第一AN中建立所述第一QoS流的传输隧道关联规则;
    响应于所述目标分流方式是所述星上UPF分流,所述根据所述目标分流方式,建立所述第一QoS流的传输隧道关联规则,包括:
    将地面UPF的N9隧道信息、所述第一QoS流的流标识发送至所述第一UPF,并在所述第一UPF中建立所述第一QoS流的传输隧道关联规则。
  28. 如权利要求27所述的装置,其中,所述在所述第一UPF中建立所述第一QoS流的传输隧道关联规则之后,还包括:
    采用所述第二UPF的隧道信息,更新所述传输隧道关联规则中与所述第一QoS流的流标识对应的地面UPF的N9隧道信息。
  29. 如权利要求18所述的装置,其中,所述创建所述第二UPF和所述第三UPF之间的数据传输隧道,包括:
    执行所述第二UPF的N4会话修改流程,并根据所述第三UPF的隧道信息更新所述第二UPF的隧道信息之中的对端端点信息,以创建所述第二UPF和所述第三UPF之间的数据传输隧道,其中,所述对端端点信息,是所述数据传输隧道所连接对端端点相关的隧道信息。
  30. 如权利要求18所述的装置,其中,还包括:
    控制所述第二UPF向所述第一卫星中的第一AN发送目标消息,所述目标消息中携带所述第一QoS流的流标识,使得所述第一卫星中的所述第一AN向所述第三卫星中的第二AN转发所述目标消息,所 述目标消息用于指示所述第一AN停止向所述第二UPF发送所述第一QoS流。
  31. 一种协议数据单元PDU会话的管理装置,其中,所述装置包括:
    接收单元,用于接收针对PDU会话的SM策略修改请求,所述请求触发在所述PDU会话中建立第一QoS流,其中,所述PDU会话为第一终端建立;
    第一创建单元,用于响应于第一卫星的第一UPF和第二卫星的第二UPF之间不存在与所述第一QoS流的流标识相同的数据传输隧道,创建位于所述第一UPF和所述第二UPF之间的数据传输隧道,所述第一卫星是服务所述第一终端的卫星,所述第二卫星是服务第二终端的卫星,所述第二终端是根据应用层信息确定的;
    第一传输单元,用于指示所述第一UPF将所述第一QoS流的数据通过所述数据传输隧道进行传输。
  32. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至15任一项所述的协议数据单元PDU会话的管理方法。
  33. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-15中任一项所述的协议数据单元PDU会话的管理方法。
PCT/CN2021/131573 2020-12-04 2021-11-18 协议数据单元pdu会话的管理方法和装置 WO2022116855A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/255,422 US11968127B2 (en) 2020-12-04 2021-11-18 Protocol data unit (PDU) session management method and apparatus
JP2023534198A JP2023552429A (ja) 2020-12-04 2021-11-18 プロトコルデータユニット(pdu)セッションの管理方法と装置
KR1020237022690A KR20230113389A (ko) 2020-12-04 2021-11-18 프로토콜 데이터 유닛(pdu) 세션의 관리 방법 및 장치
EP21899889.6A EP4258569A1 (en) 2020-12-04 2021-11-18 Protocol data unit (pdu) session management method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011407142 2020-12-04
CN202011407142.1 2020-12-04
CN202011540381.4A CN114666393B (zh) 2020-12-04 2020-12-23 协议数据单元pdu会话的管理方法、装置及存储介质
CN202011540381.4 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022116855A1 true WO2022116855A1 (zh) 2022-06-09

Family

ID=81853816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131573 WO2022116855A1 (zh) 2020-12-04 2021-11-18 协议数据单元pdu会话的管理方法和装置

Country Status (5)

Country Link
US (1) US11968127B2 (zh)
EP (1) EP4258569A1 (zh)
JP (1) JP2023552429A (zh)
KR (1) KR20230113389A (zh)
WO (1) WO2022116855A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150870A (zh) * 2022-06-30 2022-10-04 广州爱浦路网络技术有限公司 会话残留处理方法、装置、会话管理功能实体及存储介质
CN115242289A (zh) * 2022-06-10 2022-10-25 广州爱浦路网络技术有限公司 卫星终端漫游通信方法、会话管理功能实体
WO2024096570A1 (ko) * 2022-11-03 2024-05-10 삼성전자 주식회사 무선 통신 시스템에서 단말에 대한 바인딩 정보를 관리하기 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262616A (zh) * 2020-01-15 2020-06-09 广州爱浦路网络技术有限公司 一种低轨卫星信关站的用户数据切换装置及切换方法
CN111629400A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 一种卫星协作通信的方法、装置及系统
CN111788847A (zh) * 2019-01-11 2020-10-16 Oppo广东移动通信有限公司 用于资源建立的方法及设备
US20200351766A1 (en) * 2019-05-02 2020-11-05 Verizon Patent And Licensing Inc. Enabling network-slice functions in transport domains

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014179367A1 (en) 2013-04-29 2014-11-06 Hughes Network Systems, Llc Data encryption protocols for mobile satellite communications
WO2020034316A1 (en) 2018-09-27 2020-02-20 Zte Corporation Methods and systems for handling user equipment associated information
US20220264503A1 (en) * 2019-06-07 2022-08-18 Interdigital Patent Holdings, Inc. Performing service delivery for multi-user mobile terminals cross-reference to related application
CA3152349A1 (en) * 2019-09-23 2021-04-01 Channasandra Ravishankar Next generation global satellite system with mega-constellations
DE112020007124T5 (de) * 2020-04-30 2023-03-09 Apple Inc. Konfiguration der sicherheitsrichtlinie auf benutzerebene mit feinerer granularität
EP4209044A1 (en) * 2020-10-23 2023-07-12 Apple Inc. Modified handover procedures for earth fixed and earth mobile beams
CN116648950A (zh) * 2020-11-25 2023-08-25 交互数字专利控股公司 高优先级MO数据的快速QoS规则变化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788847A (zh) * 2019-01-11 2020-10-16 Oppo广东移动通信有限公司 用于资源建立的方法及设备
CN111629400A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 一种卫星协作通信的方法、装置及系统
US20200351766A1 (en) * 2019-05-02 2020-11-05 Verizon Patent And Licensing Inc. Enabling network-slice functions in transport domains
CN111262616A (zh) * 2020-01-15 2020-06-09 广州爱浦路网络技术有限公司 一种低轨卫星信关站的用户数据切换装置及切换方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242289A (zh) * 2022-06-10 2022-10-25 广州爱浦路网络技术有限公司 卫星终端漫游通信方法、会话管理功能实体
CN115150870A (zh) * 2022-06-30 2022-10-04 广州爱浦路网络技术有限公司 会话残留处理方法、装置、会话管理功能实体及存储介质
WO2024096570A1 (ko) * 2022-11-03 2024-05-10 삼성전자 주식회사 무선 통신 시스템에서 단말에 대한 바인딩 정보를 관리하기 위한 방법 및 장치

Also Published As

Publication number Publication date
US11968127B2 (en) 2024-04-23
KR20230113389A (ko) 2023-07-28
US20240031300A1 (en) 2024-01-25
JP2023552429A (ja) 2023-12-15
EP4258569A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2022116855A1 (zh) 协议数据单元pdu会话的管理方法和装置
US20220174759A1 (en) Method and apparatus for operating wireless communication system having separated mobility management and session management
US10778779B2 (en) Method and system for session management for ultra reliable and low latency communications in high mobility scenarios
US7668139B2 (en) Mobile handover utilizing multicast in a multi-protocol label switching (MPLS)-based network
CN109246747B (zh) 前向接口的建立方法、ue接入方法、ue切换方法及装置
US20190166634A1 (en) Communication control method, and related network element
US9107127B2 (en) Communication session soft handover
CN108811016A (zh) 一种支持切换的方法
CN112020873B (zh) 用于发送和接收数据包流的方法和相关设备
US11140092B2 (en) Transport protocol server relocation
US20210076299A1 (en) Big Packet Protocol Mobility Instructions For 5G Handovers
MXPA06000670A (es) Metodo y sistema para proporcionar un enlace de transmision para trafico de emision continua.
US11743770B2 (en) Method, apparatus, system and device for configuring data stream, and computer medium
WO2015188357A1 (zh) 一种控制承载切换的设备和控制方法
CN114666393B (zh) 协议数据单元pdu会话的管理方法、装置及存储介质
WO2019072067A1 (zh) 一种下行报文处理方法、upf设备和存储介质
US11006339B2 (en) Handling at least one communication exchange between a telecommunications network and at least one user equipment
US10805845B2 (en) Supporting transport protocol server relocation
CN113473525B (zh) 一种数据传输的方法及装置
JP5408452B2 (ja) Mbmsベアラの確立、再構成、及び解放のための方法及び装置
US20230007128A1 (en) Voice packets over the control plane
CN112311759B (zh) 一种混合网络下的设备连接切换方法和系统
KR20220009274A (ko) 네트워크 장치 및 그 장치에서 수행되는 시그널링 처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255422

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023534198

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237022690

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021899889

Country of ref document: EP

Effective date: 20230704